
(12) STANDARD PATENT (11) Application No. AU 2013324689 B2 
(19) AUSTRALIAN PATENT OFFICE 

(54) Title 
Method and system of storing and retrieving data 

(51) International Patent Classification(s) 
G06F 17/30 (2006.01) 

(21) Application No: 2013324689 (22) Date of Filing: 2013.09.04 

(87) WIPO No: W014/048540 

(30) Priority Data 

(31) Number (32) Date (33) Country 
13/628,517 2012.09.27 US 
12368027.4 2012.09.27 EP 

(43) Publication Date: 2014.04.03 
(44) Accepted Journal Date: 2016.07.07 

(71) Applicant(s) 
Amadeus S.A.S.  

(72) Inventor(s) 
Redoutey, Jean-Charles;Singer, Joel;Balard, Florent;Prud'homme, Florian;Bouteloup, 
Romain;Pitrat, Colin 

(74) Agent / Attorney 
Watermark Patent and Trade Marks Attorneys, 302 Burwood Road, Hawthorn, VIC, 3122 

(56) Related Art 
US 7434000 
US 7711657 
US 6256710 
US 2009/0307275 
US 6067550 
US 2010/0180208 
US 2011/0161540



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) 

(19) World Intellectual Property 
Organization 

International Bureau 
(10) International Publication Number 

(43) International Publication Date W O 2014/048540 Al 
3 April 2014 (03.04.2014) W I PO I P CT 

(51) International Patent Classification: (74) Agent: LIPPICH, Wolfgang; Samson & Partner, Widen
G06F 17/30 (2006.01) mayerstrasse 5, 80538 Miinchen (DE).  

(21) International Application Number: (81) Designated States (unless otherwise indicated, for every 
PCT/EP2013/002655 kind of national protection available): AE, AG, AL, AM, 

(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 
(22 Intenatona Fih Date:9.201) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 
4 September 2013 (04.09.2013) DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, 

(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, 
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 

(26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 

(30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 

12368027.4 27 September 2012 (27.09.2012) EP SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 

13/628,517 27 September 2012 (27.09.2012) US TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 
ZW.  

(71) Applicant: AMADEUS S.A.S. [FR/FR]; 485 route du Pin 
Montard, Sophia Antipolis, F-06410 Biot (FR). (84) Designated States (unless otherwise indicated, for every 

kind of regional protection available): ARIPO (BW, GH, 
(72) Inventors: REDOUTEY, Jean-Charles; Flat 9, 10 West- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 

boume Terrace, London W2 3UW (GB). SINGER, Joel; UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 
151 Chemin des 4 Chemin, Las Palmas Bat E, F-06600 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 
Antibes (FR). BALARD, Florent; 324 avenue de Verdun, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 
F-06700 Saint-Laurent du Var (FR). PRUD'HOMME, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, 
Florian; Bat D7 Res Gai Logis, rue Th6odore Aubanel, F- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 
13127 Vitrolles (FR). BOUTELOUP, Romain; 781 aven- KM, ML, MR, NE, SN, TD, TG).  
ue des Plantiers, Villa 15, F-06700 Saint Laurent du Var 
(FR). PITRAT, Colin; 58 boulevard du president Wilson, Published: 

F-06600 Antibes (FR). - with international search report (Art. 21(3)) 

(54) Title: METHOD AND SYSTEM OF STORING AND RETRIEVING DATA 

(57) Abstract: A method and a system of storing data by a software applica
Figure 1 tion are described. In a data storage system comprising one or more database 

- 40 systems and at least one cache node the software application interfaces inde

[ -''0pendently the one or more database systems on a first dedicated interface, 
and the at least one cache node on a second dedicated interface. The method 
and system are characterized in that: each read query of the data storage sys 

- -............... --------- - .. - .-.-.-.-.---.-.-------- tem by the software application is first solely issued to the plurality of cache 
nodes which returns the queried data if available. If not available, the soft

101 ware application receives a miss that triggers a fetch of the queried data from 
120 10 100 the one or more database systems. Upon having retrieved the queried data, 

Application the software application adds the queried data to at least one cache node.  
The method and system are further characterized in that each writing of the 

12 14 -one or more database systems by the software application is also concur
rently performed in the at least one cache node. Hence, population of the at 

02 30 least one cache node is quickly done at each missed read query of the at least 

Cache one cache node and at each write query of the data storage system.  
Database 

110 h30 

101 Cache 

Cache 10 

30



WO 2014/048540 PCT/EP2013/002655 

1 

METHOD AND SYSTEM OF STORING AND RETRIEVING DATA 

FIELD OF THE INVENTION 

The present invention relates generally to data management systems of 

the type used by large providers of goods and services to keep track of their 

5 overall product offering and level of availability, and more particularly to a 

system that allows a high level of inquiries issued by remote-users of the data 

storage to be responded without or within a very short delay, while not 

impacting the completion of the transactions that constantly update content as a 

result of the administration of the data storage.  

10 BACKGROUND OF THE INVENTION 

In an all interconnected world all large providers of goods and services 

have now set up large database systems holding the characteristics, 

specifications and costs of their products and service offerings. Operated under 

the control of a database management system (DBMS) contents are made 

15 accessible, simultaneously, to many online customers possibly from all over the 

world. Online customers are thus offered the opportunity to query the database 

and complete commercial transactions through the use of specific online 

software applications that let them book and buy various products and services.  

In the airline industry, examples of such very-large databases are the 

20 ones that hold inventory of airline companies. Such databases are used to keep 

track in real-time of the actual seat capacity, the current state of reservations 

along with the configurations of the fleet of flights operated by a given airline.  

More precisely, an airline's inventory usually contains all flights with 

their available seats and is generally divided into service classes (e.g. First, 

25 business or Economy class) and many booking classes, for which different 

prices and booking conditions apply. One of the core functions of the inventory 

management is the inventory control. Inventory control steers how many seats 

are available in the different booking classes for instance by opening and 
closing individual booking classes for sale. In combination with the fares and 

30 booking conditions stored in the Fare Quote System the price for each sold seat 

is determined. In most cases inventory control has an interface to an airline's



WO 2014/048540 PCT/EP2013/002655 

2 

Revenue Management System to support a permanent optimization of the 

offered booking classes in response to changes in demand. Users access an 

airline's inventory through an availability application having a display and 

graphical user interface. It contains all offered flights for a particular city-pair 

5 with their available seats in the different booking classes.  

Airline inventory databases are usually managed by airlines. Airline 

inventory databases can also be set up by companies that provide travel 

services to many actors of the travel industry including the airlines, the 

traditional travel agencies and all sorts of other online travel service providers 

10 too. Such a company is for example AMADEUS, a European travel service 

provider with headquarters in Madrid, Spain. Some inventories are directly run 

by airlines and are interfaced with a global distribution systems (GDS) or a 

central reservation system (CRS).  

In this environment, the utilization of these databases is characterized 

15 by a level of interrogations or read queries which has dramatically increased 

over the years. Indeed, the look-to-book ratio of transactions that databases 

must handle is becoming very high. Hence, travel service providers must put in 

place the necessary computerized resources to cope with that situation so that 

an ever growing number of online customers can effectively query the 

20 databases, and still obtain a quick response, while updating of the database can 

go on simultaneously as a result of the completion of booking and selling of 

seats to air travelers in the case of airlines.  

Large database systems provided by a few specialized companies like 

Oracle, a company headquartered in Redwood Shores, California, United 

25 States that specializes in developing database management systems, are 

available and largely used for implementing those databases. Alone, standard 

DBMS cannot however cope with the level of requirements raised by the need 

that large service providers of goods and services may have to serve 

simultaneously tens of thousands of potential customers. To achieve this 

30 objective, the database must somehow be shielded from the myriad of user 

queries it would otherwise directly receive.  

Many solutions for caching database contents have thus been 

developed. Cache may be an application cache, located at application tier,



WO 2014/048540 PCT/EP2013/002655 

3 

which basically reuses pieces of data previously fetched from the database by 

the application. This immediately raises the issue of the data quality then 

delivered in response to further user interrogations since database contents 

may have been updated in the mean time. This turns out to be truly challenging 

5 for some applications where databases are constantly updated and require a 

high quality of data. This is for instance the case of applications related to 

airline's inventory where the freshness of the data directly impacts the 

possibility to sell seats and the price offered to customers.  

Thus, unless the quality of data delivered by this type of cache is not of 

10 prime importance, and may be considered as being more informative than 

anything else, this type of application caches requires the implementation of 

sophisticated mechanisms, between database et cache, that allow invalidation 

and/or replacement of the previously fetched pieces of data when updated in 

database thus keeping application cache and database contents indeed 

15 consistent. Often, cache is inserted in the path between the database and the 

application so that it is always queried first by the application. If the queried data 

is not present in cache, then it is fetched from the database and brought into the 

cache before being delivered to the application. All these solutions have in 

common to require that cache and database be tightly coupled and need to be 

20 aware of each other. As a consequence, these solutions are not easily scalable 

when service provider must deploy more computer resources to cope with an 

increase of traffic and serve more customers while maintaining system 

performances.  

A specific solution that allows a rather good scalability brings some 

25 independence between cache and database is however shown in US patent 

6,609,126 which describes a "System and method for routing database 

requests to a database and a cache". In the disclosed solution database and 

cache are becoming somehow independent by being driven separately, solely 

under the control of the application. However, the cache is only used to answer 

30 read queries while updates are performed only in database by application.  

Hence, to reflect the changes brought to the database into the caches the 

above patent describes a replication component contained in database that 

updates the caches.



4 

All above caching solutions bring an important additional workload to the 

database while caches and databases are not however guaranteed to be always 

coherent and databases must be aware of the various caches. This requires that 

specific operations be performed in databases when adding a new cache thus 

5 preventing scalability to be simply achievable. As mentioned, US patent 

6,609,126 requires that the database management system imbeds a foreign 

component. This is not really compatible with the utilization of a standard DBMS.  

It is thus an object of the invention to describe a computerized data system 

equipped with a database that allows a high traffic and a high scalability while 

10 providing user with a suitable data quality.  

Further objects, features and advantages of the present invention will 

become apparent to the ones skilled in the art upon examination of the following 

description in reference to the accompanying drawings. It is intended that any 

additional advantages be incorporated herein.  

15 SUMMARY OF THE INVENTION 

The foregoing and other problems are overcome, and other advantages 

are realized, in accordance with the embodiments of this invention.  

The present invention provides a method of storing and retrieving data in a 

data storage system, wherein the data storage system comprises at least one 

20 computer including at least one data processor and a software application that 

implements a middle tier, the data storage system further comprises one or more 

database systems and a plurality of cache nodes that implement a storage tier, 

the middle tier is configured to interface the storage tier of the data storage 

system with a client tier, the method comprising: at the at least one computer of 

25 the middle tier: in response to receiving a first user request from a user device of 

the client tier requiring at least one reading of data, sending a read query solely to 

the plurality of cache nodes; in response to receiving a first queried data from at 

least one cache node in response to the read query, processing, with the at least 

one data processor, the first user request using the first queried data; in response 

30 to receiving a miss from all cache nodes in response to the read query, fetching, 

with the at least one data processor, the one or more database systems based on



4a 

the first user request; in response to retrieving a second queried data from the 

one or more database systems, processing the first user request using the 

second queried data from the one or more database systems and sending, to the 

at least one cache node the second queried data and an instruction to add the 

5 second queried data to the at least one cache node to thereby populate the at 

least one cache node with the second queried data from the one or more 

database systems in response to the missed read query; and in response to 

receiving a second user request requiring at least one writing of updated data 

concurrent with fetching the second queried data from the one or more database 

10 systems, sending an instruction for writing the one or more database systems 

with the updated data, sending an instruction for concurrently writing the at least 

one cache node with the updated data to thereby populate the plurality of cache 

nodes at each write query of the data storage system, and aborting a subsequent 

addition of the second queried data in the at least one cache node such that the 

15 updated data is stored in the plurality of cache nodes.  

Comprises/comprising and grammatical variations thereof when used in 

this specification are to be taken to specify the presence of stated features, 

integers, steps or components or groups thereof, but do not preclude the 

presence or addition of one or more other features, integers, steps, components 

20 or groups thereof.  

The present invention further provides a method of storing and retrieving 

data in a data storage system, wherein the data storage system comprises at 

least one computer including at least one data processor and a software 

application that implements a middle tier, the data storage system further 

25 comprises one or more database systems and a plurality of cache nodes that 

implement a storage tier, the middle tier is configured to interface the storage tier 

of the data storage system with a client tier, the method comprising: at the at least 

one computer of the middle tier and in response to receiving a first user request 

requiring a reading of data sending a read query solely to the plurality of cache 

30 nodes; in response to receiving a first queried data from at least one cache node 

in response to the read query, processing the user request with the first queried 

data; in response to receiving a miss from all cache nodes in response to the



4b 

read query, fetching the one or more database systems based on the first user 

request; in response to retrieving a second queried data from the one or more 

database systems processing the first user request and sending to the plurality of 

cache nodes the second queried data and an instruction to add the second 

5 queried data to the plurality of cache nodes to thereby populate the plurality of 

cache nodes with the second queried data from the one or more database 

systems in response to the missed read query; and in response to receiving a 

miss from all cache nodes in response to the read query and the one or more 

database systems returning a miss associated with requested data of the first 

10 user request, adding, in the plurality of cache nodes, data of absence that 

indicates that the requested data of the first user request is not stored in the one 

or more database systems of the data storage system such that subsequent 

fetching of the one or more databases to retrieve the requested data for the first 

user request is avoided.  

15 The present invention also provides a data storage system comprising: 

one or more database systems; a plurality of cache nodes; at least one data 

processor; and a memory storing a software application, where execution of the 

software application by the at least one data processor causes the at least one 

processor to: in response to receiving a first user request from a user device, 

20 send a read query to the plurality of cache nodes; in response to receiving a first 

queried data from the plurality of cache nodes in response to the read query, 

process the first user request using the first queried data; in response to receiving 

a miss from the plurality of cache nodes in response to the read query, fetch the 

one or more database systems based on the first user request; in response to 

25 retrieving a second queried data from the one or more database systems, 

process the first user request using the second queried data and send, to the 

plurality of cache nodes, the second queried data and an instruction to add the 

second queried data to the plurality of cache nodes to thereby populate the 

plurality of cache nodes with the second queried data from the one or more 

30 database systems responsive to the missed read query; and in response to 

receiving a second user request requiring at least one writing of updated data 

concurrent with fetching the second queried data from the one or more database



4c 

systems, send an instruction for writing the one or more database systems with 

the updated data and send an instruction for concurrently writing the plurality of 

cache nodes with the updated data to thereby populate the plurality of cache 

nodes at each write query of the data storage system, and aborting a subsequent 

5 addition of the second queried data in the plurality of cache nodes such that the 

updated data is stored in the plurality of cache nodes.  

There is described herein a method of storing data in a data storage 

system and retrieving data from the data storage system, comprising a software 

application, one or more database systems and a plurality of cache nodes, the 

10 software application being configured to receive user requests requiring at least 

one reading of data or one writing of data, the software application being further 

configured to send read queries and write queries to the data storage system for 

processing the user requests, the method being characterized in that the software 

application interfaces independently the one or more database systems and the 

15 plurality of cache nodes and in that the method comprises the following steps 

performed by the software application with at least one data processor: 

upon reception of a user request requiring at least a reading of data, the software 

application sends a read query solely to at the plurality of cache nodes.  

Preferably, if the software application receives a queried data (i.e., a



WO 2014/048540 PCT/EP2013/002655 

5 

data that is retrieved) from at least one cache node in response to the read 

query, then it uses the queried data to process the user request. Preferably, if 

the software application receives a miss from all cache nodes in response to the 

read query, meaning thereby that the data has not been found in the cache 

5 node, then it fetches the one or more database systems; if the queried data is 

present in the database system, upon having retrieved the queried data from 

the one or more database systems, the software application uses the queried 

data to process the user request and sends the queried data to at least one 

cache node and an instruction to add the queried data to the at least one cache 

10 node.  

According to a preferred embodiment, upon reception of a user request 

requiring at least a writing of data, the software application sends an instruction 

for writing the one or more database systems and also sends an instruction for 

concurrently writing the plurality of cache nodes; thereby, populating the 

15 plurality of cache nodes at each missed read query, i.e. at each read query for 

which the queried data is not found in all cache nodes, and at each write query 

of the data storage system. Each data is thus stored identically in at least one 

cache node of the plurality of cache nodes and in the one or more database 

systems, ensuring thereby that the database systems and the plurality of cache 

20 nodes are always fully synchronized.  

Thus, the invention allows having the database completely independent 

from the plurality of cache comprising the plurality of cache nodes contrary to 

known solutions involving a replication component integrated in the database to 

25 perform the update of the cache, the database and cache being thereby not 

fully independent which limits the scalability of the entire storage system and 

requires specific database.  

The computerized data system equipped with a database and a cache 

that are completely independent and unaware of each other thus permits an 

30 unbounded scalability of the data system by simply bringing more computer and 

storage capacity when necessary to cope with an increase of traffic.  

In addition, high scalability can be achieved while limiting the cost of the 

equipment. In particular, the invention can be implemented with standard



WO 2014/048540 PCT/EP2013/002655 

6 

databases and DBMS. The invention also allows reducing the cost of the 

maintenance. In particular, the increasing of the storage resources does not 

need any operation on the database.  

Since, the software application is in charge of updating the data in the 

5 database and of populating the caches either through reflecting a writing of the 

database or through adding a queried data that is present in the database but 

not yet present in the cache, end-users can be provided with high quality data 

i.e., the most up-to-date data. In addition, caches are rapidly populated which 

allows increasing the throughput right upon the addition of a new cache node to 

10 the system.  

In addition, the invention allows providing user with precise and 

customer tailored replies.  

According to a non limitative embodiment, a write query comprises at 

least one of: addition, update and deletion of data in the database systems 

15 Optionally, the method according to the invention may comprise any 

one of the following facultative features and steps: 

The data model of cache and database may be identical but does not 

need to be strictly identical though. The only requirement is that they must be 

consistent so that exact same addressing keys can be derived for accessing 

20 cache and database records. The keys must also allow database records to be 

locked for write operation consistency. Hence, data records are either stored 

identically in database and in cache, when present, or in a way which 

guarantees consistency of the addressing of the same data records in cache 

and in database. For example, cache data model can be adapted versus the 

25 database model to expedite the retrieving of data so that access time of the 

cache is improved while addressing is kept fully consistent between the two 

entities.  

According to a non limitative embodiment, the data model of the cache 

nodes is the same as the data model of the one or more databases. Each data 

30 of each cache node is stored identically in the database system. Each data of 

the database system is stored identically in each cache node.  

The instruction to write the one or more database systems is sent by 

the software application to the one or more database systems.



WO 2014/048540 PCT/EP2013/002655 

7 

The instruction for concurrently writing the plurality of cache nodes is 

sent by the software application to the plurality of cache nodes 

One single software application accesses the database system and the 

cache nodes.  

5 The data storage system comprises one single database system.  

The cache comprises cache nodes, comprising each data storage 

means which are not persistent.  

The software application receives a positive acknowledgement on 

completion of a successful addition of the queried data to the at least one cache 

10 node.  

If a writing of data occurs while the same queried data are concurrently 

fetched from the one or more databases then the subsequent addition of the 

queried data in the at least one cache node is aborted and a negative 

acknowledgement is returned to the software application; thereby, enabling the 

15 software application to use the written data instead.  

The following steps are performed upon sending of an instruction for writing 

the one or more database systems and an instruction for concurrently writing 

the plurality of cache nodes: 

retrieving from the one or more database systems and locking in the one or 

20 more database systems a currently stored data on which the writing applies; 

processing in software application and writing in the one or more database 

systems new data to be stored; 

writing in software application a cache buffer to temporarily hold said new 

data to be stored; 

25 forwarding to and setting into the at least one cache node said new data to 

be stored and committing the transaction to the one or more database 

systems.  

In the present invention a cache node or a cache is different from a cache 

buffer. The cache buffer stores temporarily the data during the writing. No data 

30 is retrieved from the cache buffer in response to a user request. The cache 

buffer is dedicated to the processing of the writes.



WO 2014/048540 PCT/EP2013/002655 

8 

If the commit fails, then the application software sends an instruction to 

the at least one cache node to delete said new data that has been previously 

set.  

5 The at least one cache node that contains said new data deletes it from 

its content. If a plurality of cache nodes contain said new data, then all the 

cache nodes of said plurality delete it.  

The software application decides to which cache node or which cache 

nodes among the plurality of cache nodes the instruction to add data or the 

10 instruction for updating or deleting data is sent.  

The decision takes into account a load balancing.  

If the queried data is not either present in the one or more database 

systems or in at least one cache node, then, 

upon fetching the one or more database systems a miss is returned to the 

15 software application instead of the queried data; 

the software application sends to at least one cache node a data of 

absence which is added to the at least one cache node for the 

corresponding queried data, the data of absence becoming immediately 

available for all next queries; 

20 thereby, avoiding the software application to have to further fetch the one or 

more databases in a next attempt to retrieve the missing queried data.  

The data user requested by end-users that are not eventually found in 

database are then stored in cache as "missing data" so that a next interrogation 

of the cache can return immediately the information that the user requested 

25 data is neither present in cache nor in database. This prevents further 

interrogation of the database from slowing down the database system.  

According to one non limitative embodiment, each data is associated 

with a header to form a record, the header indicating whether the content is 

missing in the at least one database system. Thus, reading only the header of 

30 the record enables knowing whether it is worth fetching the database system.  

According to another embodiment, the cache node stores a specific 

value associated to the data, said specific value indicating that the data is not 

present in the database.



WO 2014/048540 PCT/EP2013/002655 

9 

The software application interfaces independently the one or more 

database systems on a first dedicated interface, and the plurality of cache 

nodes on a second dedicated interface.  

The data model is chosen in such a way that it is directly map-able 

5 between the database and the cache 

Each set of data is grouped by functional entity and indexed by a key 

which makes the set of data immediately accessible as a whole thanks to this 

key both in the database system and in the cache nodes.  

The data are grouped by flight-date and are identified by a flight-date 

10 key.  

The software application is a software application of a travel provider's 

inventory.  

The software application, the database system and the cache nodes 

are comprised in an inventory of a travel provider.  

15 Typically, the travel provider is an airline.  

The user request received at the software application is sent by at least 

one of: travel agency, online travel agency, on online-customer.  

The data model of the cache nodes and the database are consistent so 

that exact same addressing keys can be derived for accessing cache nodes 

20 and database data.  

The data are either stored identically in the database and in at least one 

cache node, when present, or in a way which guarantees consistency of the 

addressing of the same data in cache and in database.  

25 In a further aspect thereof this invention provides a computer-program 

product or a non-transitory computer-readable medium that contains software 

program instructions, where execution of the software program instructions by 

at least one data processor results in performance of operations that comprise 

execution of the above method.  

30 The exemplary embodiments also encompass a method of storing data 

in a data storage system and retrieving data from the data storage system, 

comprising a software application, one or more database systems and a



WO 2014/048540 PCT/EP2013/002655 

10 

plurality of cache nodes, the software application being configured to receive 

user requests requiring at least one reading of data or one writing of data, the 

software application being further configured to send read queries and write 

queries to the data storage system for processing the user requests, the 

5 method being characterized in that the software application interfaces 

independently the one or more database systems and the plurality of cache 

nodes and in that the method comprises the following steps performed by the 

software application with at least one data processor: 

upon reception of a user request requiring at least a reading of data, the 

10 software application sends a read query solely to the plurality of cache nodes; 

if the software application receives the queried data (i.e., the data that is 

retrieved) from at least one cache node, then it uses the queried data to 

process the user request, 

if the software application receives a miss from all cache nodes, then it 

15 fetches the one or more database systems; if the queried data is present in 

the database system, upon having retrieved the queried data from the one 

or more database systems, the software application uses the queried data 

to process the user request and sends to at least one cache node the 

queried data and an instruction to add the queried data to the at least one 

20 cache node; if not found in database, add in cache an information that 

indicates that the data does not exist 

and wherein each data is stored identically in at least one cache node 

of the plurality of cache nodes and in the one or more database systems or in a 

way which guarantees consistency of the addressing of the same data in cache 

25 and in database.  

Optionally but advantageously, upon reception of a user request 

requiring at least a writing of data, the software application sends an instruction 

for writing the one or more database systems and also sends an instruction for 

30 concurrently writing the plurality of cache nodes; thereby, populating the 

plurality of cache nodes at each missed read query and at each write query of 

the data storage system.



WO 2014/048540 PCT/EP2013/002655 

11 

In yet another aspect thereof this invention provides a method of storing 

data in a data storage system of an airline's Inventory and retrieving data from 

the data storage system, comprising a software application, one or more 

5 database systems and a plurality of cache nodes, the software application being 

configured to receive user requests requiring at least one of: a reading of data 

to know an availability regarding at least one flight and a writing of data to 

modify an availability regarding at least one flight; the software application being 

further configured to send read queries and write queries to the data storage 

10 system for processing the user requests, the method being characterized in that 

the software application interfaces independently the one or more database 

systems and the plurality of cache nodes and in that the method comprises the 

following steps performed by the software application with at least one data 

processor: 

15 upon reception of a user request requiring at least a reading of data to know an 

availability regarding at least one flight, the software application sends a read 

query solely to the plurality of cache nodes; 

if the software application receives the queried data (i.e., the data that is 

retrieved) from at least one cache node, then it uses the queried data to 

20 process the user request, 

if the software application receives a miss from all the cache nodes, then it 

fetches the one or more database systems; if the queried data is present in 

the database system, upon having retrieved the queried data from the one 

or more database systems, the software application uses the queried data 

25 to process the user request and sends the queried data to at least one 

cache node and an instruction to add the queried data to the at least one 

cache node; 

and wherein each data is stored identically in at least one cache node of the 

plurality of cache nodes and in the one or more database systems.  

30



WO 2014/048540 PCT/EP2013/002655 

12 

Optionally but advantageously, the user request requiring at least a 

writing to modify an availability regarding at least one flight is a user request for 

at least on of: purchasing a seat, canceling a seat, modifying a seat.  

5 In yet another aspect thereof this invention provides a data storage 

system comprising one or more database systems, at least one cache node, at 

least one data processor and a software application, where execution of the 

software application by the at least one data processor results in performance 

of operations that comprise execution of any one of the above methods and 

10 wherein the one or more database systems and the at least one cache node are 

configured to be independently driven by the software application.  

Advantageously the number of cache nodes and the processing power 

of the computerized means for running the software application are adapted to 

meet the aggregated peak traffic generated by all end-users of the software 

15 application.  

Optionally, the data storage system according to the invention may 

comprise any one of the following facultative features and steps: 

The number and storage resource of the cache nodes is adapted to 

20 hold the whole database system contents.  

Some data of the database system are stored in more than one cache 

node.  

The hit ratio query of the at least one cache node eventually reaches 

100% when the whole database system contents has been transferred into the 

25 at least one cache node by the software application.  

In yet another aspect thereof this invention provides an Inventory of a 

travel provider comprising the data storage system of the present invention.  

BRIEF DESCRIPTION OF THE DRAWINGS 

FIGURE 1 depicts a data storage system according to the invention.  

30 FIGURE 2 illustrates the process that eventually permits to obtain in application 

a data requested by an end user and which is not yet present in cache.  

FIGURE 3 describes the process of writing concurrently database and cache 

from the application.



WO 2014/048540 PCT/EP2013/002655 

13 

FIGURE 4 illustrates the process of getting in cache data from the database in 

the particular case where a concurrent writing operation occurs.  

FIGURE 5 gives further details on the timing of the data writing performed 

simultaneously by the application in database and in cache.  

5 FIGURE 6 illustrates the case where requested data is neither present in cache 

nor in database.  

FIGURE 7 illustrates the case where a writing of the database and cache is a 

delete.  

DETAILED DESCRIPTION 

10 The following detailed description of the invention refers to the 

accompanying drawings. While the description includes exemplary 

embodiments, other embodiments are possible, and changes may be made to 

the embodiments described without departing from the spirit and scope of the 

invention.  

15 

Figure 1 describes a data storage system 100 according to the 

invention in which a software application 10 is interfacing independently, on one 

hand, a database system 20 and, on the other hand, a cache system also 

referred to as cache and comprising one or more cache nodes 30.  

20 It is worth noting here that the database cache system of the invention 

described hereafter are specific mainly because the whole database content 

may eventually be transferred into a set of cache nodes that operate as a front

end processing layer shielding all the reading traffic that would otherwise reach 

the database systems 20 thus dramatically improving the performances of the 

25 data storage system 100. A sufficient number of cache nodes are then deployed 

to support the whole traffic and to handle together the whole data base content.  

Hence, when the system has been up and running for a significant period of 

time all data entities contained in the back-end database are eventually 

transferred or present into the set of cache nodes so that there is no longer any 

30 cache miss since all read queries are then handled by the cache nodes.  

Writings of the database are systematically performed in cache and in database 

so that cache and database contents are always consistent. Even though data 

storage system hereafter described is thus more a high speed front-end storing



WO 2014/048540 PCT/EP2013/002655 

14 

and processing system to a database used as a repository of data the term of 

cache is however used in the following description of the invention.  

The data storage system 100 follows the traditional tree-tier architecture 

often used by data processing systems. The middle tier 120 is the software 

5 application 10 tier from where the proprietary software application 10 of the 

service provider is run. In the example previously used of a GDS this is typically 

the inventory application of any airline which is aimed at keeping track of all 

reservations and booking of seats among the airline fleet of flights.  

The client tier 130 is comprised of all remotely located users 40 of the 

10 application 10. In case of a travel application set up by a service provider like 

the above airline inventory the end users are typically travel agents in traditional 

travel agencies. They are as well individuals that use any of the many available 

travel web sites or online travel agencies from which they can issue travel 

requests and possibly book, online, air trips.  

15 The lower tier is the storage tier 110 that comprises the database 

system 20. The invention does not make any assumption on the database 

system used by the service provider. It is most often based on a standard data 

base management system (DBMS) commercially available but it can be as well 

a proprietary database system. Whichever database system is used by the 

20 service provider it is implemented from a sufficient amount of hardware and 

software resources to hold and process all the data of the service provider. In 

Figure 1 all hardware resources needed to implement the data storage system 

100 are shown as individual computer-like machines globally referred to by 
numeral reference 101. Persistent, non-volatile, storage is assumed to be 

25 available from each individual computer and also as separate data disk 102 

when necessary, for example to permanently hold the database contents.  

The data storage system of the invention comprises the storage tier 110 

and the middle tier 120.  

In the present invention, the term 'user request' or 'request' designates 

30 a demand coming from a user 40 and that reaches an application 10. The user 

can be a person such as a traveler or a travel agent or can be a computerized 

system that sends requests.



WO 2014/048540 PCT/EP2013/002655 

15 

In the present invention, the term 'data query' or 'query' designates a 

demand sent by the application 10 to a cache node 30 and/or to the database 

system 20. A query can be a read query or a write query.  

A read query comprises an instruction to get from at least a cache node 

5 or to read a data from the database systems. Typically, the action for obtaining 

a data from the database systems is designated as a 'read', whereas the action 

for obtaining a data from a cache node is designated as a "get". A queried data 

is at least a data that must be get or read for fulfilling, at least in part, a user 

request.  

10 A write query comprises an instruction to add, to update/set, or to delete 

a data. Typically, the action for modifying a data from the database systems is 

designated as an 'update', whereas the action for modifying a data from a 

cache node is designated as a "set".  

Thus, in the following invention, the application 10 receives user 

15 requests and sends data queries, these queries being either read queries or 

write queries.  

Whichever system is actually used, the invention assumes that 

database 20 is the ultimate data repository of the service provider. The 

database 20 then preferably adheres to the ACID (Atomicity, Consistency, 

20 Isolation and Durability) set of properties guaranteeing that database 

transactions are thus processed reliably in terms of: Atomicity, Consistency, 

Isolation and Durability.  

With respect to database systems previously mentioned and known 

from the prior art, the software application 10 of the present invention remains 

25 connected directly, thus independently, to the database 20 through a dedicated 

interface 12. Hence, operation of the database system is not affected 

whatsoever by the one or more cache nodes 30 that have their own dedicated 

interface 14 with the software application 10. As further discussed in the 

following description of the invention, it is then up to the software application 10 

30 to only send to the database the mandatory transactions that this latter must 

necessarily handle, i.e., the ones in which database contents is permanently 

updated as a result of new bookings being completed and generally whenever



WO 2014/048540 PCT/EP2013/002655 

16 

status of reservations must be changed because, for example, cancellations 

have occurred.  

Thus there is no connection between any one of the cache nodes 30 

5 and the database system 20. No messages, instructions or data are exchanges 

between the database system and the cache nodes 30 

In data storage system 100 all of the traffic handled by the software 

application 10 is then supported through the dedicated cache software 

application 10 interface 14. As shown in Figure 1 cache is functionally located at 

10 storage tier like the database. Interface 14 and the one or more cache nodes 30 

are assumed to be able to handle all the traffic of the data storage system 100, 

whichever throughput is targeted, just by providing and deploying at software 

application 10 tier 120, and at storage tier 110 for the cache nodes, enough 

hardware and software resources to meet the expected throughput. Hence, 

15 processing more data is simply obtained by adding more computing and storing 

resources to the existing ones. This way of doing provides a system scalability 

which is not limited by architectural considerations other than the number of 

computer platforms that need to be deployed to achieve the targeted 

throughput, i.e., their cost, power dissipation and floor occupancy.  

20 To allow above scalability to be effective, the data storage system 100 

is based on a global key/value data model where contents are consistent in 

cache and in database so that a same key can be used to retrieve both. The 

data model is thus chosen in such a way that it is directly map-able in database 

and in cache. Especially, each set of data is grouped by functional entity and 

25 indexed by a common unique key. This makes them immediately accessible as 

a whole from the unique key both in database and in cache although contents 

may somehow differ. The only requirements on the data model to operate as 

explained above are: 

- the ability, before an update, to lock a superset of the data to be updated in 

30 cache; 

- the possibility to deduce all cache keys impacted by a given update in the 

database in order to update them.



WO 2014/048540 PCT/EP2013/002655 

17 

A typical example taken from the field of the travel industry is as in 

following table: 

Key in DB Lock level (in DB) Ken cache [Cache keys 
_ _ el_(in____ Key in cache Jgeneration 

Flght - Date Flight - Date [Fight- Date equal to key in DB 

O&D (*) - Date D ate DateDate one key per day in 
range range !the date range 
Leg (**) - Date Flight - Date Leg (**) - Date [equal to key in DB 

one key per leg (* Flight - Date Flight - Date [Leg(**)- Date 

Where: 

(*) O&D = origin & destination 

5 (**) A leg is a part of a flight. For example, a flight can go from Nice (NCE) to 
New York (NYC) with a stop at Paris (CDG). It has two legs: NCE-CDG and 
CDG-NYC. (Note that it contains three O&D: NCE-CDG, NCE-NYC and 
CDG-NYC.) 

In the above example the schedule information is stored in a relational 
10 database. The "mother" table has a Flight-Date primary key. One of the "child" 

tables has a Leg-Date primary key. Some writings (updates for instance) are 

done at flight level, others at leg level. Locking at flight level is used in both 

cases. This is used to prevent any modification on the flight and also on all legs 
of the flight. The lock cannot be set at leg-date level because an update of the 

15 flight would then update all legs and could lead to concurrent updates.  

Therefore, the data model of the database and caches, if not strictly 
identical, must be consistent so that same indexing keys can be derived for 

accessing cache and database records while allowing database records to be 
20 locked.  

The architecture shown in Figure 1 works with a cache organized as a 

single layer client side distributed cache which supports the whole throughput 

and also simplifies significantly the management of the cache data consistency.  

Having a client side distributed cache means that data distribution among the 

25 various cache nodes 30 composing the cache is known and computed on client 

side at software application 10 tier. As a consequence, all cache nodes 30 are



WO 2014/048540 PCT/EP2013/002655 

18 

thus fully independent and scalability of the system is indeed potentially 

unlimited. However, actually getting more processing power by adding new 

cache nodes 30 in the storage tier is only achievable if a balanced distribution of 

data within the nodes is also maintained. To obtain that distribution be indeed 

5 balanced, data are distributed based on their key properties. For instance, flight 

oriented data are distributed on the basis of their flight number. Any modification 

that would trigger a change of the distribution, e.g., because of a change of the 

number of available cache nodes or of the distribution parameters, is also 

supported through a graceful redistribution procedure that keeps the whole 

10 cache system online and working in nominal conditions while redistribution 

takes place. To this end a temporary dual-feed to two cache configurations is 

later described in the following description of the invention.  

The data storage system 100 of the invention does not require any type 

of synchronization mechanism between cache and database. The cache is 

15 used by the software application 10 in an explicit way, i.e.: it is up to the 

software application 10 tier to use either one of the two data sources: database 

or cache, or both at during the same user request, e.g., when database or 

cache must be written. The direct consequence of this approach is that 

database is kept totally unaware of the existence of a cache and is not at all 

20 impacted by the presence, or not, of a cache in the data structure of the 

invention. The opposite is obviously also true: the cache is totally decoupled 

from the database. Both structures can then fully evolve independently if 

necessary.  

25 It is worth noting that data writings within the cache are not using an 

invalidation policy. All writings result in the immediate replacement of the data 

into the cache. When the whole database contents is eventually mapped into 

the cache and distributed over all available cache nodes 30, hit ratio reaches 

100% even in case a very high level of concurrent writings happens.  
30 

Cache data can always be considered as valid and there is no need for 

extra process to check for it. Indeed, every cache miss triggers the addition of 

the missing value into the cache from the database. This is done once for all 

thus ensuring the lowest possible load on the database which is fetched only



WO 2014/048540 PCT/EP2013/002655 

19 

once per data entity to retrieve. This occurs mostly when cache becomes 

operational, e.g., after a power-on of the system following an addition of a 

cache node 30, a failure or the cache node 30, an operation of maintenance 

etc. The invention assumes there is enough room in the distributed cache 

5 nodes 30 to receive the whole database contents.  

The absence of data requested by an end-user in the database is also 

recorded in the cache. If a piece of data requested by an end user can neither 

be found in cache nor retrieved from the database then an absence of data is 

recorded into the cache so that next time cache is queried no fetching of the 

10 corresponding piece of data will be attempted from the database in order to 

further limit database load.  

The architecture described in Figure 1 is extensible to any type of data 

that can be key-value oriented. Also, it is applicable to any process that can be 

key-value oriented. It is in particular applicable to any of the processes devised 

15 to check flight availability.  

The following figures describe the operations that are conducted by the 

software application 10 between database and cache to obtain that cache 

eventually supports the whole traffic generated by the software application 10 to 

serve all user requests.  

20 As shown previously the cache part of the system is pretty simple and 

composed of one or more standalone computers offering a basic remote 

key/value protocol. Three basic operations on the cache are defined that let 

software application 10 updates it, populates the cache from the database, and 

retrieves data from the cache. They are: 

Set (key, value): Unconditionally update in cache the value associated 
with the key 

Add (key, value): Add the value associated with the key when it is not 
already present in cache 

Get (key): Return from cache the value associated with the key.  

25 The invention does not make any assumption on the way they are actually 

implemented by the software application 10 provided the expected level of 

performance can be reached. Advantageously, bulk operations are defined 

which makes possible to send and process several basic operations together.



WO 2014/048540 PCT/EP2013/002655 

20 

The main part of the system is on the software application 10 tier to 

control data distribution over all cache nodes 30. Key/value data are spread 

among the nodes composing the cache. To obtain that distribution be as much 

as possible equally spread over all nodes a property of the key is extracted and 

5 the corresponding cache node 30 is computed by the formula: 

nodenumber = keypropertyasa_number MODULO the numberofnodes 

Flight oriented data use the property that consecutive flight numbers are 

usually used for flight having same properties. In this case the flight number is 

directly used as a base for the distribution.  

10 For flight oriented data based on origin and destination of flight (O&D) a 

hash value is computed on the sole O&D key.  

As already discussed, balancing the data distribution over all available 

nodes is really key in achieving unlimited scalability.  

Figure 2 and 3 show how cache is populated and maintained coherent 

15 with database contents under the sole control of the software application 10.  

Figure 2 describes the process that eventually permits to obtain in 

software application 10 a data requested by an end user and which is not yet 

present in cache. This situation mostly prevails when a cache is being 

populated, e.g., after a power-on of the system or because a new node has 

20 been inserted or removed and a rebalancing of the cache node 30 contents is in 

progress.  

When software application 10 needs to answer a user request, cache is 

first read through a "Get" operation 210. In the example of an airline inventory 

database this is for example to answer one of the numerous user requests that 

25 are issued by end users of the database to find if seats are available in a 

particular flight on a certain date, in a certain class, etc. If the corresponding 

data is not present in cache, i.e., typically the corresponding data has not yet 

been brought in cache by a previous read, cache then returns a "Miss" 220 to 

the software application 10. Otherwise, the information is obviously just returned 

30 to the software application 10 from the cache which ends the "Get" operation.  

The software application 10 can thus fulfill the user request of the end-user.  

Eventually, it aggregates the queried data with additional data and returns it in 

response to the request from the end-user. Additional data are typically other



WO 2014/048540 PCT/EP2013/002655 

21 

data that may be necessarily retrieved to fulfill the user request. For instance, 

some data can be get from a cache node, while other data that are also 

necessary to fulfill the same user request must be get from other cache nodes 

and/or must be read from the database systems 20.  

5 Upon receiving the information that queried data is not present in 

cache, the software application 10 interrogates the database with a "Read" 

operation 230. The missing information is then returned 240 to the software 

application 10. Reading of the data from the database occurs on the database 

dedicated interface 12 previously described. This is done by issuing, from the 

10 software application 10, the corresponding queries to the database 

management system (DBMS) used by the data storage system 100 of the 

invention.  

Upon receiving from database the data missing in the cache the 

15 software application 10 then performs an "Add" operation 250 to store the data 

into the cache. From this time on, the data is present 270 in cache as long as 

cache stays operational and is not reconfigured. At completion of this operation 

a positive acknowledgement (OK) 260 is returned to the software application 

10.  

20 It is worth noting here that this process occurs only once while cache is 

up and running for any given pieces of data that are stored identically or 

consistently in database and in cache nodes 30. This occurs the first time the 

data is requested by software application 10 and is not yet present in cache.  

After which corresponding data is possibly updated if database contents needs 

25 to be changed, for example, because airline seats have been sold. In this case, 

as described hereafter, the software application 10 updates both the cache and 

the database so that it is never necessary to re-execute the process of Figure 2.  

Figure 3 describes the process of updating concurrently database and 

cache from the software application 10.  

30 To always keep coherent database and cache contents, the software 

application 10 always updates both cache and database. The updating of the 

cache is then done with a "Set" operation 310 previously described.  

Simultaneously, an "Update" 305 of the database is performed using the query



WO 2014/048540 PCT/EP2013/002655 

22 

language of the DBMS in use. The update is effective after the operation has 

been committed 320 to the database by the application.  

More precisely, the Set is not done when the update is done in 

database but when the commit is done. The application keeps the data to be set 

5 in memory until the commit is done. There are possibly a high number of steps 

between the Update 305 and the Set 310. However, the Set 310 and the 

Commit 320 are intended to be performed in a row.  

In steady state, i.e., after system has been up and running for a 

significant period of time, the whole contents of the database has eventually 

10 been brought and distributed over all cache nodes 30; then, the update 

operations, i.e., content updates, inserts and deletes are the only operations 

that need to be performed on the database interface thus much lowering the 

database load. The case of a delete operation that triggers a nullification of the 

corresponding data in cache is described in figure 7.  

15 Also, it must be noted that cache of the invention is populated both from 

read and writes operations since the process of Figure 3 does not assume that 

any particular conditions need to be fulfilled to write into the cache. This 

contributes significantly to expedite the population of the cache nodes 30 after a 

power-on as compared to systems where only reads are used to populate 

20 cache. This is possible and is thus simply done because, as already stated, 

data entities stored by database and cache are both kept updated which is not 

the case in other cache solutions where database and cache contents may be 

significantly different generally in an attempt to keep cache storage 

requirements minimum or when cache data entities delivered to the software 

25 application 10 are built from disjoint pieces of data extracted from various parts 

of the database.  

Figure 4 describes the process of Figure 2 in the particular case where 

a concurrent writing (update for instance) of the database is requested by the 

software application 10 thus interfering with its execution.  

30 In a manner identical to what was described in Figure 2 the process 

starts with a "Get" 210 of data from the cache which is followed by a "Miss" 220 

that triggers the fetching 230 of the missing data from the database. However, 

while missing data is normally returned 240 to the software application 10, a



WO 2014/048540 PCT/EP2013/002655 

23 

write query 410 for the same data is also received by the software application 

10. The writing is performed as explained in Figure 3. It is done in cache with a 

"Set" operation 310 and in database with an "Update" operation 305. The 

corresponding data becomes immediately available 420 when the "Set" is 

5 issued to the cache and, in database, when the "Commit" 320 is sent. Before 

the set is triggered, the application keeps the data in memory ("Set in memory").  

Then, in this particular case, cache contents must not be further 

updated by the following "Add" 250 that results from the fetching 230 of the 

missing data from the database since this latter has been updated in the mean 

10 time. The "Add" 252 is then actually aborted. A negative acknowledgement (KO) 

262 is returned which let know the software application 10 that the update of the 

cache has not been actually performed by the "Add" operation.  

Thus, for updating the cache with the data read in the database, the 

invention uses the add command so that we can send data to the cache without 

15 having to lock the data in database. Indeed, if the data is still not in the cache 

when trying to add it, it will effectively be added. If it has been updated in the 

meanwhile by an update process, the add will fail but this is expected: the 

update process had the lock on the database and so the primacy on the update 

for this key, hence it is normal this is the one that stays in the cache.  

20 These features of the invention allow a very smooth integration with the 

update process, in particular since database system and cache cannot lock or 

impact the performance of each others, while still ensuring a data is never read 

more than once in the database, thus having the lowest possible load on the 

database.  

25 

Figure 5 gives further details on the timing of the data updates 

performed simultaneously by software application 10 in database and in cache.  

The software application 10 begins the update transaction by issuing 

the corresponding queries 510 to the database to retrieve the current stored 

30 values. Simultaneously, to prevent concurrent updates to occur from another 

software application 10, the database management system (DBMS) locks the 

current stored values. Within software application tier, data are processed by 

software application 10. When data are ready to be updated 530 by DBMS an



WO 2014/048540 PCT/EP2013/002655 

24 

update of a buffer cache 540 in software application 10 is also performed that 

holds the new data to be forwarded and stored in cache.  

Then, software application 10 can commit the change 550 which is 

immediately performed in cache 552 with a "Set" operation and also committed 

5 to database 554. One may notice that the new data is thus available in cache 

slightly prior 556 it is indeed committed and available 558 in database.  

Reference 556 shows the timeframe during which the update is made available 

to end users in cache while it is not yet available in the database system 20.  

If, for any reason, e.g., because of a hardware and/or software failure, 

10 commitment fails to complete normally the previous writing operation in cache, 

i.e., the "Set" operation 552, is rolled back so that cache contents is left 

unchanged. Hence, if commit fails, a "commit KO" 560 is raised to the 

application which then issues a delete 562 towards the cache to remove the 

added data. As a result, a wrong value is then present in the cache in the mean 

15 time 564.  

Thus the highest performance non database related and impacting data 

quality is provided to the cache: updates are propagated to the cache using a 

write ahead commit with "asked for commit" data. If deferred constraints are 

banned for the cached data, this makes the data in the cache "at worse" in 

20 advance compared to the database but without any extra cost, in particular 

without the very high cost of the usual two phases commit architectures. Such 

quality fulfils the data quality requirements for the availability requests and can 

even be considered as an advantage from the final client perspective.  

25 Figure 6 describes the case where queried data is neither present in 

cache nor in database. This covers the cases where end-users are requesting 

pieces of information that are not held in database.  

When such a situation occurs, to prevent further interrogations of the 

database, the absence of corresponding data is also recorded into the cache.  

30 Then, next time the cache is interrogated from the software application 10 the 

information that the queried data is not present in database is directly delivered 

by the cache itself thus further reducing the database load.



WO 2014/048540 PCT/EP2013/002655 

25 

The process is similar to the one described in Figure 2. After a "Get" 

operation 210 issued to cache has returned a "Miss" 220, reading 230 of the 

corresponding data in the database also returns to the software application 10 a 

database "Miss" 640. Then, the absence of data is added 650 into the cache.  

5 Like with data, the absence of data is becoming available immediately 270 in 

cache which also returns an acknowledgment 260 to the software application 

10.  

According to a non limitative embodiment, each data is associated with a 

header to form a record and the header indicates whether the content is missing 

10 in the database system 20. Thus, reading only the header of the record enables 

to know whether it is worth fetching the database system. According to an 

alternative embodiment, the cache node stores a specific value associated to 

the data, said specific value indicating that the data is not present in the 

database. Thus, reading only the value of the record enables to know whether it 

15 is worth fetching the database system.  

Figure 7 illustrates the case already mentioned in figure 3 where the 

specific update operation from the application is a delete 705 of data from the 

database. This operation is overall performed as explained in figure 3 except 

that deleted data is not actually removed from the cache but replaced by the 

20 indication of an "absence of data". When delete is committed 320 to the 

database by the application the corresponding information is stored in cache 

with a specific "SET" operation 310. The "absence of data" is becoming 

immediately available 330. Hence, as previously discussed, if cache is later 

interrogated it can provide directly the information that the requested data is no 

25 longer neither present in cache nor in database.  

The following discusses the case where it becomes necessary to 

modify the configuration of the database system of the invention, e.g., to cope 

with a traffic increase. Extra cache nodes must be added to expand the system 

30 configuration as shown in figure 1 in order to provide more cache storage 

capacity and to be able to distribute the increasing traffic over a larger number 

of processing nodes. However, with a larger number of nodes, and generally 

speaking whenever the number of active nodes must be changed, the keys that



WO 2014/048540 PCT/EP2013/002655 

26 

uniquely address data in nodes must be recomputed to indeed allow the whole 

traffic to be evenly spread over the new complete set of nodes.  

The invention does not assume any particular way of computing keys 

from the data entities that are stored and retrieved identically from database 

5 and cache. Most of the time, depending on the type of data to be handled by a 

particular application, some hashing function is used and the node addressing 

is then just derived from the hashed key by further computing it modulo the 

number of nodes. Hence, if the number of nodes is changed, a different result is 

obtained for retrieving a particular data entity that possibly needs to be looked 

10 for in a different node of the new configuration. The problem comes from the 

fact that a configuration update is not atomic and must be transparently 

performed while database system is fully operational. Not all cache clients are 

made aware of the new configuration at the same time. This means that some 

writes of data would be done on the basis of the new configuration while others 

15 could still use the old configuration. The result would be an inconsistent set of 

data between cache and database.  

The invention takes care of this by enabling a procedure called "dual

feed". Dual feeding consists in maintaining one extra configuration in addition to 

the one normally used for the cache, hence the name of "dual-feed". The extra 

20 configuration is not used by default but can be activated for the time of the 

configuration change. When it is activated, all write operations are sent both to 

the standard configuration and to the dual-feed configuration. A time-to-live 

(TTL) is a property associated to each item in the cache. As the name suggests, 

it corresponds to the period of time item is valid. Once it expires, the item can 

25 no longer be retrieved from the cache, resulting in a cache miss as if the data 

was missing. This can be set by configuration: one for the standard 

configuration and one for the dual-feed configuration. When no time to live is 

set, the item never expires.  

As the activation of dual-feed configuration is not atomic either, it must 

30 be activated in a first place with a short time to live. Once the dual feed 

configuration is fully activated, the time to live can be removed. It is only once 

the time to live has expired that the standard configuration and the dual-feed 

configuration can be swapped. Once the configuration change is over, the dual-



WO 2014/048540 PCT/EP2013/002655 

27 

feed can be deactivated. During the steps where the configuration is being 

propagated (activation / deactivation of dual-feed), some "invalid" data can be 

written but only in places where they are not read. Thus, the procedure is as 

follows: 

5 - creation of dual-feed configuration with short TTL 

- activation of the dual-feed configuration, wait for its propagation 

- removing of the short TTL from dual-feed configuration 

- swapping of standard and dual-feed configurations, waiting for their 

propagation 

10 - deactivation of the dual-feed 

A set of procedure to allow any change on the system in an online way 

is described below.  

The proposed architecture offers such scalability that the whole system 

15 may not be later in a position to work properly without the cache. To deal with 

such situation, according to an embodiment of the invention, it is proposed that 

all maintenance operations are meant to be done online, impacting at most one 

node (or the equivalent proportion of the traffic) at a time (eg. cache node 

upgrade or replacement made one by one, global cache changes performed 

20 using a dual feed mechanism) to lower the impact on the database.  

- cache node upgrade or replacement are made one by one. The 

system will preferably use the database to retrieve the data that should have 

been hosted by this node.  

25 - global cache changes, typically, adding or removing or changing a 

plurality of cache nodes, that would result in the global distribution to be 

dramatically changed are performed using a dual feed mechanism as described 

in previous paragraph.  

30 From the above description it appears clearly that the present invention 

allows keeping data consistent between the cache and the database thanks to a 

mechanism which is non-strictly speaking ACID compliant but highly scalable, 

impactless on the database, allowing 100% hit ratio and, above all, fully meeting



WO 2014/048540 PCT/EP2013/002655 

28 

data quality needs. In addition, the invention allows to cache highly dynamic 

data i.e., typically up to several tens writings per second per unitary data, while 

still benefiting from the off-load effect of the cache.



29 

CLAIMS 

1. A method of storing and retrieving data in a data storage system, 

wherein the data storage system comprises at least one computer including at 

5 least one data processor and a software application that implements a middle tier, 

the data storage system further comprises one or more database systems and a 

plurality of cache nodes that implement a storage tier, fhe middle tier is 

configured to interface the storage tier of the data storage system with a client 

tier, the method comprising: 

10 at the at least one computer of the middle tier: 

in response to receiving a first user request from a user device of the client tier 

requiring at least one reading of data, sending a read query solely to the plurality 

of cache nodes; 

in response to receiving a first queried data from at least one cache node 

15 in response to the read query, processing, with the at least one data processor, 

the first user request using the first queried data; 

in response to receiving a miss from all cache nodes in response to the 

read query, fetching, with the at least one data processor, the one or more 

database systems based on the first user request; 

20 in response to retrieving a second queried data from the one or more 

database systems, processing the first user request using the second queried 

data from the one or more database systems and sending, to the at least one 

cache node the second queried data and an instruction to add the second queried 

data to the at least one cache node to thereby populate the at least one cache 

25 node with the second queried data from the one or more database systems in 

response to the missed read query; and 

in response to receiving a second user request requiring at least one 

writing of updated data concurrent with fetching the second queried data from the 

one or more database systems, sending an instruction for writing the one or more 

30 database systems with the updated data, sending an instruction for concurrently 

writing the at least one cache node with the updated data to thereby populate the 

plurality of cache nodes at each write query of the data storage system, and



30 

aborting a subsequent addition of the second queried data in the at least one 

cache node such that the updated data is stored in the plurality of cache nodes.  

2. The method of claim 1, wherein the second user request comprises at 

5 least one of: addition, update, and deletion of data in the database systems.  

3. The method of claim 1 or 2, further comprising; 

receiving a positive acknowledgement on completion of a successful addition of 

the queried data from the one or more database systems to the at least one 

10 cache node.  

4. The method of any one of claims 1 to 3, wherein the at least one 

computer of the middle tier interfaces independently with the one or more 

database systems on a first dedicated interface, and the least one computer of 

15 the middle tier interfaces with the plurality of cache nodes on a second dedicated 

interface.  

5. The method of any one of claims 1 to 4, wherein a data model of the 

plurality of cache nodes and a data model of the one or more databases are 

20 consistent such that common addressing keys can be derived for accessing 

cache nodes and database data.  

6. The method of any one of claims I to 5, wherein the at least one 

computer of the middle tier is an inventory system of a travel provider.  

25 

7. The method of any one of claims 1 to 6, wherein the first user request is 

sent by at least one of: travel agency, online travel agency, and online-customer.  

8. The method of any one of claims 1 to 7, further comprising: 

30 in response to sending an instruction for the writing of data in the one or more 

database systems and an instruction for concurrently writing the at least one 

cache node:



31 

retrieving from the one or more database systems a currently stored data 

on which the writing applies and locking said currently stored data; 

writing in the one or more database systems new data to be stored; 

writing in a cache buffer of the at least one computer of the middle tier to 

5 temporarily hold said new data to be stored; 

forwarding to and setting into the at least one cache node said new data to 

be stored; 

committing the transaction to the one or more database systems; and 

in response to failing to commit, preferably deleting the new data in the at 

10 least one cache node.  

9. The method of any one of claims 1 to 8, further comprising: 

determining the at least one cache node from among the plurality of cache 

nodes to which the instruction to add the second queried data or the instruction 

15 for writing the at least one cache node with the updated data is sent, wherein the 

at least one cache node from among the plurality is preferably determined based 

on a load balancing.  

10. The method of any one of claims I to 9, further comprising: 

20 in response to the one or more database systems returning a miss 

associated with requested data of the first user request, sending to the at least 

one cache node a data of absence for addition to the at least one cache node 

corresponding to the first user request, such that the data of absence is 

immediately available for all subsequent read queries to thereby avoid 

25 subsequent fetching of the one or more databases to retrieve the requested data 

of the first user request.  

11. The method of any one of claims 1 to 10, wherein each of the plurality 

of cache nodes stores a record comprising a header, and the header of the at 

30 least one cache node indicates that the requested data is missing in the at least 

one database system or the value of the requested data is set to a value 

indicating the absence of the requested data.



32 

12. The method of any one of claims 1 to 11, wherein records of the 

plurality of cache nodes and records of the one or more database systems are 

stored such that related records of the plurality of cache nodes and the one or 

more database systems are consistently addressed, preferably wherein keys 

5 associated with the records allow the records stored in the one or more database 

systems to be locked.  

13. The method of claim 12, wherein each record of the plurality of cache 

nodes and each record of the one or more database systems is grouped by 

10 functional entity and indexed by a key which makes the record immediately 

accessible in the one or more database systems and in the plurality of cache 

nodes, wherein each functional entity is preferably a flight-date and each key is a 

flight-date key.  

15 14. A method of storing and retrieving data in a data storage system, 

wherein the data storage system comprises at least one computer including at 

least one data processor and a software application that implements a middle tier, 

the data storage system further comprises one or more database systems and a 

plurality of cache nodes that implement a storage tier, the middle tier is 

20 configured to interface the storage tier of the data storage system with a client 

tier, the method comprising: 

at the at least one computer of the middle tier and in response to receiving 

a first user request requiring a reading of data sending a read query solely to the 

plurality of cache nodes; 

25 in response to receiving a first queried data from at least one cache node 

in response to the read query, processing the user request with the first queried 

data; 

in response to receiving a miss from all cache nodes in response to the 

read query, fetching the one or more database systems based on the first user 

30 request; 

in response to retrieving a second queried data from the one or more 

database systems processing the first user request and sending to the plurality of 

cache nodes the second queried data and an instruction to add the second



33 

queried data to the plurality of cache nodes to thereby populate the plurality of 

cache nodes with the second queried data from the one or more database 

systems in response to the missed read query; and 

in response to receiving a miss from all cache nodes in response to the 

5 read query and the one or more database systems returning a miss associated 

with requested data of the first user request, adding, in the plurality of cache 

nodes, data of absence that indicates that the requested data of the first user 

request is not stored in the one or more database systems of the data storage 

system such that subsequent fetching of the one or more databases to retrieve 

10 the requested data for the first user request is avoided.  

15. The method of claim 14, wherein the data storage system is an airline 

inventory system, the one or more database systems store availability for flights 

managed by the airline inventory system, the plurality of cache nodes store 

15 availability for flights managed by the airline inventory system, and wherein the 

first user request is for an availability regarding at least one flight managed by the 

airline inventory system.  

16. The method of claim 15, further comprising: 

20 in response to receiving a second user request requiring a writing to modify an 

availability regarding at least one flight, sending an instruction for writing the one 

or more database systems and also sending an instruction for concurrently writing 

the plurality of cache nodes to thereby populate the plurality of cache nodes in 

response to each write query of the data storage system, wherein the second 

25 user request preferably corresponds to at least one of: purchasing a seat, 

canceling a seat, modifying a seat.  

17. A data storage system comprising: 

one or more database systems; 

30 a plurality of cache nodes; 

at least one data processor; and



34 

a memory storing a software application, where execution of the software 

application by the at least one data processor causes the at least one processor 

to: 

in response to receiving a first user request from a user device, send a 

5 read query to the plurality of cache nodes; 

in response to receiving a first queried data from the plurality of cache nodes in 

response to the read query, process the first user request using the first queried 

data; 

in response to receiving a miss from the plurality of cache nodes in 

10 response to the read query, fetch the one or more database systems based on 

the first user request; 

in response to retrieving a second queried data from the one or more 

database systems, process the first user request using the second queried data 

and send, to the plurality of cache nodes, the second queried data and an 

15 instruction to add the second queried data to the plurality of cache nodes to 

thereby populate the plurality of cache nodes with the second queried data from 

the one or more database systems responsive to the missed read query; and 

in response to receiving a second user request requiring at least one 

writing of updated data concurrent with fetching the second queried data from the 

20 one or more database systems, send an instruction for writing the one or more 

database systems with the updated data and send an instruction for concurrently 

writing the plurality of cache nodes with the updated data to thereby populate the 

plurality of cache nodes at each write query of the data storage system, and 

aborting a subsequent addition of the second queried data in the plurality of 

25 cache nodes such that the updated data is stored in the plurality of cache nodes.  

18. The data storage system of claim 17, wherein the number of cache 

nodes is adapted to hold all contents of the database system.  

30 19. The data storage system of claim 17 or 18, wherein some data of the 

database system are stored in more than one cache node.



35 

20. The data storage system of any one of claims 17 to 19, wherein the 

data storage system corresponds to an inventory system of a travel provider.  

5












	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

