

(12) United States Patent

Turner

(54) BACKING FOR PRE-PREG MATERIAL

(75) Inventor: Peter G. Turner, Eden, UT (US)

Assignee: Orbital ATK, Inc., Dulles, VA (US)

Subject to any disclaimer, the term of this (*) Notice:

patent is extended or adjusted under 35

U.S.C. 154(b) by 695 days.

Appl. No.: 12/701,126

(22)Filed: Feb. 5, 2010

(65)**Prior Publication Data**

US 2011/0192535 A1 Aug. 11, 2011

(51) Int. Cl. B32B 38/04 (2006.01)B29C 37/00 (2006.01)B29C 70/30 (2006.01)B29C 70/34 (2006.01)B32B 37/00 (2006.01)C08J 5/24 (2006.01)B29C 35/02 (2006.01)(2006.01)B29C 59/10 B29C 65/00 (2006.01)B29C 70/32 (2006.01)B32B 38/00 (2006.01)B32B 37/10 (2006.01)

(52) U.S. Cl.

CPC B29C 37/0075 (2013.01); B29C 70/30 (2013.01); B29C 70/342 (2013.01); B32B 37/003 (2013.01); C08J 5/24 (2013.01); B29C 35/02 (2013.01); B29C 59/10 (2013.01); B29C 66/028 (2013.01); B29C 66/721 (2013.01); B29C 70/32 (2013.01); B32B 38/0008 (2013.01); B32B 2037/109 (2013.01); B32B 2305/076 (2013.01); B32B 2309/68 (2013.01); B32B 2310/14 (2013.01)

(10) Patent No.:

(45) **Date of Patent:**

US 8,999,098 B2 Apr. 7, 2015

(58) Field of Classification Search

USPC 156/247, 266, 267, 270, 272.6, 286, 156/300, 299, 308.2, 307.1, 307.7, 87, 229, 156/73.1, 238, 258, 265, 302, 285, 486; 264/257, 258, 319

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

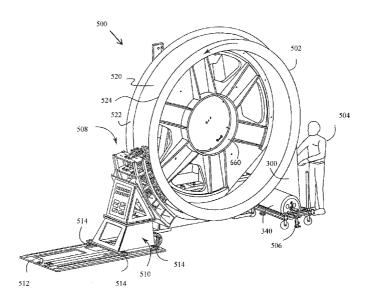
4,402,888 4,460,531		*	9/1983	Runck Harris et al	264/129		
4,548,770			10/1985		204/136		
4,591,402		×	5/1986	Evans et al	156/350		
4,929,319	Α		5/1990	Dinter et al.			
5,351,111	Α		9/1994	Takafuji et al.			
5,413,815	Α	×	5/1995	Williams et al	427/289		
6,073,670	Α	×	6/2000	Koury	156/425		
(Continued)							

FOREIGN PATENT DOCUMENTS

JР	354159476 A	aļt	12/1979	B29D 3/02
JP	402153938 A	*	6/1990	C08J 5/04

OTHER PUBLICATIONS

Strobel, Mark et al., A Comparison of Corona-Treated and Flame-Treated Polypropylene Films. Plasmas and Polymers, vol. 8, No. 1 (Mar. 2003), pp. 61-95.


(Continued)

Primary Examiner — Linda L Gray (74) Attorney, Agent, or Firm — TraskBritt

ABSTRACT (57)

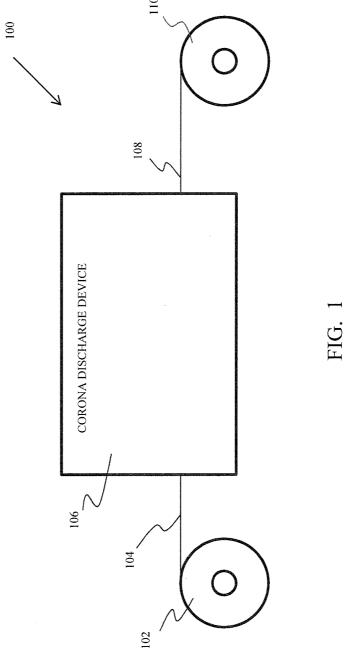
A method of preparing pre-impregnated (pre-preg) material is provided. The method comprises treating a first surface of a backing with a corona discharge to enhance surface adhesion and applying the pre-preg material to the treated surface of the backing to form a pre-preg material with backing.

29 Claims, 5 Drawing Sheets

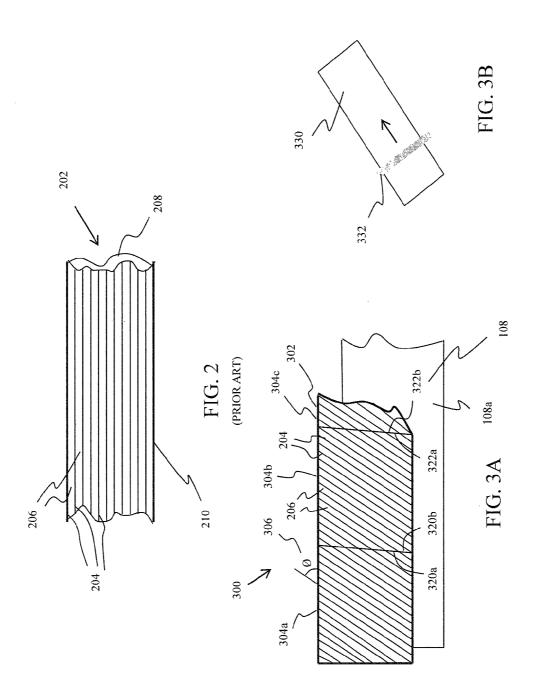
US 8,999,098 B2

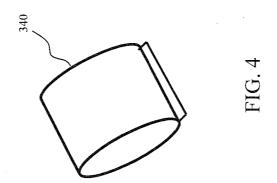
Page 2

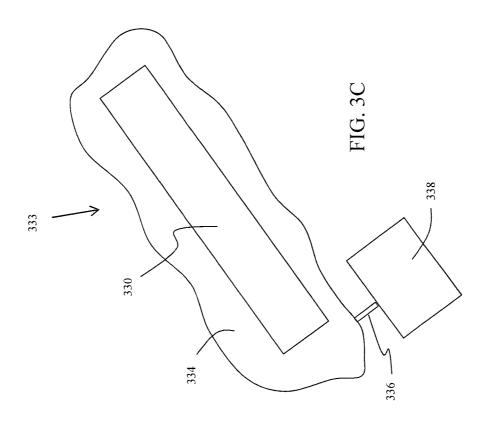
(56) References Cited

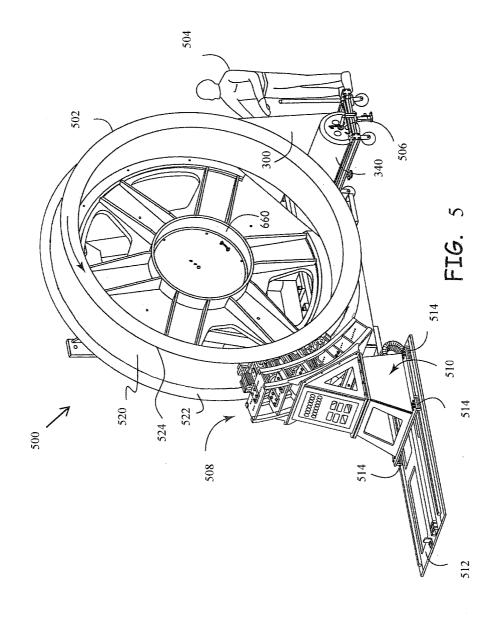

U.S. PATENT DOCUMENTS

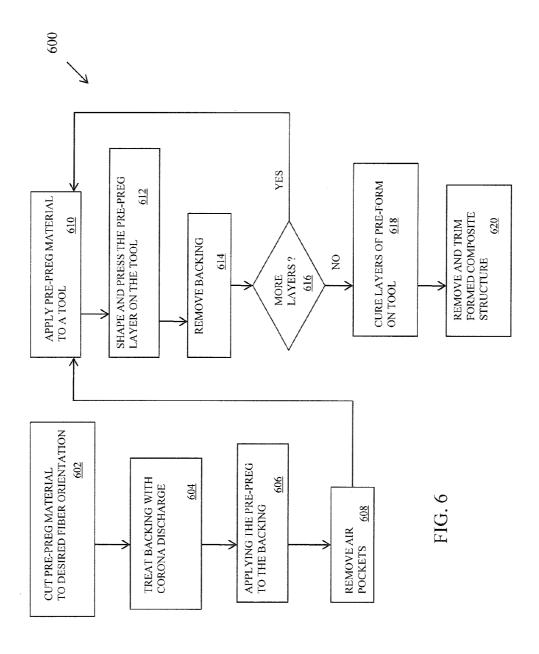
7,086,627			Kehler et al 2	
2001/0015317	A1*	8/2001	Kawabe et al	204/164
2003/0199337	A1*	10/2003	Hebert et al	473/371
2006/0003133	A1*	1/2006	Johnson	428/40.1
2007/0017628	A1*	1/2007	Evans	156/230


OTHER PUBLICATIONS


Zander, Nicole et al., Oxidation of Polyethylene: A Comparison of Plasma and Ultraviolet Ozone Processing Techniques. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5069, ARL-TR-4701 (Jan. 2009), 21 pages.


^{*} cited by examiner




Apr. 7, 2015

1

BACKING FOR PRE-PREG MATERIAL

BACKGROUND

Pre-impregnated (pre-preg) material is used in the formation of high-strength low-weight structures, such as, but not limited to, parts used to build aircraft and spacecraft. Pre-preg material is made of composite fibers such as carbon, glass, aramid and the like, that are bonded together with a resin that is activated with heat to cure. The pre-preg material is typically formed in sheets that are supplied to the manufacturer of the part. The manufacturer then forms stacks of sheets of pre-prepreg material in a desired shape of the part and heats the part in an autoclave to cure the resin. Sheets of pre-prepreg material are typically supplied in a 0 degree or a 90 degree orientation. That is, the length of the fibers are typically either orientated parallel to a side edge of the sheet or orientated perpendicular to a side edge of the sheet. Some applications

For the reasons stated above and for other reasons stated below that will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for an efficient, effective and cost 25 effect method of providing a layer pre-preg material having different orientations.

SUMMARY OF INVENTION

The above-mentioned problems of current systems are addressed by embodiments of the present invention and will be understood by reading and studying the following specification. The following summary is made by way of example and not by way of limitation. It is merely provided to aid the 35 reader in understanding some of the aspects of the invention.

In one embodiment, a method of preparing pre-impregnated (pre-preg) material is provided. The method comprises treating a first surface of a backing with a corona discharge to enhance surface adhesion and applying the pre-preg material 40 to the treated surface of the backing to form a pre-preg material with backing.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention can be more easily understood and further advantages and uses thereof more readily apparent. when considered in view of the detailed description and the following figures in which:

- FIG. 1 is a side view of a corona discharge system of one 50 embodiment of the present invention;
- FIG. 2 is a top view illustration of a pre-preg material of the
- FIG. 3A is a top view illustration of the forming of the pre-preg material of an embodiment of the present invention; 55
- FIG. 3B is a top view of an application of a squeegee on a formed pre-preg material with backing;
- FIG. 3C is a top view of an application of a vacuum debulk system on the formed pre-preg material and backing;
- FIG. 4 is a side view of a roll of pre-preg material of an 60 embodiment of the present invention;
- FIG. 5 is a side perspective view of a forming system implementing an embodiment of the present invention; and
- FIG. 6 is a formation flow diagram of one embodiment of the present invention.

In accordance with common practice, the various described features are not drawn to scale but are drawn to 2

emphasize specific features relevant to the present invention. Reference characters denote like elements throughout the figures and the text.

DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the claims and equivalents thereof.

Embodiments of the present invention provide a method of require the sheets of pre-preg material having different ori- 20 preparing and creating sheets of pre-preg material of select orientations using a corona discharge on a backing material to prepare the backing so the pre-preg material sticks to the backing. Although, this technique works well for various types of backing material such as semi-ridged paper, it also works well for pliable inexpensive polyethylene (PE) backing. The use of a flexible (pliable) backing such as PE is desirable for some applications where the pre-preg is pressed onto a tool with the backing on. This is especially true when applying the pre-preg material around a corner of the tool where the fibers are stretched on the tool to cover the corner. In this situation, the backing also needs to stretch. The use of a paper backing in forming complex shapes can lead to wrinkling or tearing of the backing instead of stretching. As a result, the pre-preg material will fold with the paper or split apart between fibers across the paper tear. Paper backing also allows bridging to occur in concave regions especially if they are adjacent to flat or convex surfaces.

> One type of backing material commonly used for pre-preg material is a semi-rigid paper. Paper is a common backing used by pre-preg material suppliers because the pre-preg material sticks well to it. An example of a pre-preg material 202 on a paper backing 208 is illustrated in FIG. 2. In this example, the pre-preg material 202 includes fibers 204 held together with resin 206. In this example, the fibers 204 are orientated at a 0 degree angle in relation to a side 210 of the backing material 202. This 0 degree orientation is a common orientation of pre-preg material provided by pre-preg material suppliers. Pre-preg material supplied by the material supplier can generally be referred to as feedstock. The spacing between the fibers 204 and resin 206 throughout FIGS. 2 and 3A are provided merely for illustration purposes of orientations. Moreover, the pre-preg material 202 and 300 in FIGS. 2 and 3A are illustrated as having one layer of fibers orientated in one direction (uni-tape). However, the embodiments also include woven fabric pre-preg material known in the art.

> It is often desired to use pre-preg material having different fiber orientations than is provided by the manufacture. Referring to FIG. 3A, an example of pre-preg material 300 having a desired orientation is provided. In particular, in this embodiment, sections 304a through 304c of pre-preg material 300 from the material supplier are cut out at a desired angle. The sections 304a through 304c are then lined up end to end 320a to 320b and 322a to 322b and connected together so the fibers 204 have a select angle 306 (orientation) in relation to a side edge 302 of pre-preg material 300. One method of connecting the section together is with a tape. The sections are then placed on a new backing 108. As discussed above, it may be

desirable to press the pre-preg material on a tool for forming with the backing material still attached to the pre-preg material. In embodiments, the pre-preg material 300 with the select orientation 306 is placed on a pliable backing 108. However, pre-preg material 300 will not stick well enough to 5 the pliable backing 108 to prevent it from falling off during forming and handling. Hence, in embodiments, the pre-preg material 300 is placed on a backing 108 surface that has been treated with a corona discharge to promote more adhesion.

3

Referring to FIG. 1, a corona discharge system 100 of one 10 embodiment is illustrated. With the corona discharge system 100, backing 104 from a roll 102 of backing 104 is passed through a corona discharge device 106 to treat one surface of the backing 104. The corona discharge device 106 exposes the one surface of the backing to an electrical discharge 15 (corona). As a result, oxygen molecules within the electrical discharge area break into their atomic form and are free to bond to the ends of molecules in the backing material. This results in a chemically activated surface that increases surface tension. The treated backing 108 is then rolled up into roll 110 20 and is ready for use. As discussed above, the backing material in one embodiment is a pliable backing material such as polyethylene (PE). However, the present invention is not limited to PE backing material. In fact, most all types of backing material for pre-preg material can benefit from a corona dis- 25 charge treatment to enhance bonding of the pre-preg material on the backing. In one embodiment of a PE backing example, a 0.002 inch (2 mil) thick linear low density polyethylene LLDPE film that is treated to a 38+/2 dyne/cm² surface energy is used. As discussed above, other types of backing 30 material are contemplated and can benefit from the corona discharge. Different backing material will require different surface energy levels. Moreover, different adhesion levels require different surface energy levels and different thickness of the film used as backing will yield different mechanical 35 behavior in terms of stiffness and conformability. A typical range for a thickness of a backing material would be 0.001 inch to 0.006 inches. Another example type of the elastic material that could be used is polyurethane material. Polyurethane materials are more pliable (elastic) than PE material 40 and offer greater tear resistance and may offer advantages in forming complex shapes. Other types of plastic can be used for backing including, but not limited to, polyester, nylon and fluorinated hydrocarbons. Plasma treating films is another method for increasing surface tension but it tends to burn 45 through thin films.

Once, one surface 108a of the backing material 108 has been treated, the pre-preg material 300 is placed on the treated surface 108a as illustrated in FIG. 3A. As stated above, the corona discharge treatment on the treated surface 108a of the 50 backing material 108 will adhere to the side edge 302 of the pre-preg material 300. In one embodiment, entrapped air between the pre-preg material 300 and the treated surface 108a of the formed pre-preg material and backing 330 is removed by pushing it out with a squeegee 332 or other 55 wiping method as illustrated in FIG. 3B. This aids in the adhesion between the pre-preg material 300 and the treated surface 108a. In yet another embodiment, a vacuum debulk system 333 is applied to assist pressing the treated surface 108a into intimate contact with the pre-preg material 300 and 60 removing air to aid in the adhesion between the pre-preg material 300 and the treated surface 108a. An example vacuum debulk system 333 is illustrated in FIG. 3C. In FIG. 3C, the formed pre-preg material and backing 330 is placed in a vacuum bag 334 that is connected to a vacuum 338 by a 65 connector 336. In an embodiment that implements a vacuum debulk, the vacuum debulk is applied at room temperature for

4

as short as 5 seconds. In another embodiment, an elevated temperature of about 45° C. is used in the debulking. Generally, longer vacuum time of higher temperatures help improve the immediate tack. However, the advantages of the higher temperature and time dissipate after 24 hours to the same adhesion value. Adhesion is measured in peel strength. Specimens 75 mm wide are prepared and then pulled tested in a 180 degree peel. Preferred values in one embodiment are in the range of 0.3-0.45 kg/cm width (2-3 lbs/3 inch width). Higher values would tend to stick too well and pull the pre-preg material apart upon removal. Lower values tend to be difficult to achieve with corona discharge of non-slip agent grade of PE or tend not to stick as well through the forming process. Once, the pre-preg material 300 is adhered to treated surface 108a, it is ready to be applied to a tool. In one embodiment, once the pre-preg material 300 is adhered to the backing 108 (formed pre-preg material and backing 330) it is rolled up in a roll 340 that can be easily stored or moved to a desired location for use.

Referring to FIG. 5, an application of the pre-preg material 300 with the backing 108 treated with corona discharge is illustrated. In particular, FIG. 5 illustrates the pre-preg material 300 being applied by an operator 504 to a tool 502. The tool 502 in this example rotates about a central hub 660. The tool 502 in this example includes a first forming surface 520 and side forming surfaces 522 and 524 that form a ring shaped composite structure with opposed flanges. As the tool 502 rotates, the operator 504 applies the pre-preg material 300 from the roll 340 on the forming surfaces 520, 522 and 524 of the tool 502. The roll 340 is held by a supply roll holding device 506. Because the backing 108 has been treated with corona discharged (and vacuum debulked in an embodiment) the backing 108 remains on the pre-preg material 300 even though the pre-preg material 300 is initially shaped by the operator to conform to the shape of the forming surfaces 520, 522 and 524 of the tool 502 as it is applied.

A forming head 508 that includes a plurality of rollers is used to press the backing 108 and pre-preg material 300 into the forming surfaces 520, 522 and 524 of the tool 502. Since, the backing 108 in this example is pliable and treated with the corona discharge, the backing 108 moves as the pre-preg material 300 moves. The forming head 508 in this example is supported by a forming head base 510 that slidably engages a base plate 512 via guides 514. An example of a forming head 508 arrangement is provided in commonly assigned U.S. patent application Ser. No. 12/615,908 entitled "Automated Composite Annular Structure Forming," filed on Nov. 10, 2009, now U.S. Pat. No. 8,282,757, issued Oct. 9, 2012, which is incorporated herein in its entirety. In one embodiment, once the tool 502 rotates such that a complete layer of pre-preg material 300 and backing 108 has encased the forming surfaces 520, 522 and 524 of the tool 502, the pre-preg material 300 and backing 108 are cut. The tool 502 then continues to rotate so that the forming head 508 presses all portions of the backing 108 and the pre-preg material 300 on the forming surfaces 520, 522 and 524 of the tool 502 while the backing 108, after contacting the forming head 508, is removed. Once all the backing 108 is removed, the process is repeated until the desired number of layers of pre-preg material 300 is formed. Once that occurs, the tool 502 with the formed layers of pre-preg material 300 are placed in an autoclave and cured.

FIG. 6 is a formation flow diagram of an embodiment. In this embodiment, the process starts by cutting pre-preg material to a desired fiber orientation (602). The pre-preg material may be a uni-tape, woven fabric or the like. A side of a backing of a select material is then treated with corona dis-

charge to increase its adhesion properties (604). As discussed above, a variety of different materials could be used for the backing. The pre-preg material having the desired fiber orientation is then applied to the treated surface of the backing (606). In one embodiment, air pockets between the pre-preg 5 material and the backing are removed to increase adhesion (608). This step may not be needed in all situations. One method used to remove the air is with a squeegee as described. Another method is with a vacuum debulk system. In particular, a vacuum debulking assists in pressing the pre-preg mate- 10 rial into the backing and in removing air between pre-preg material and the backing to assist adhesion and performance when the pre-preg is applied to a tool. Once the pre-preg material is coupled to the backing, it can be stored on a roll until use as discussed above or applied to a tool right away. 15

In using the pre-preg material with corona discharge treated backing, the pre-preg material is applied to the forming surfaces of a tool (610). The pre-preg material and backing are then shaped and pressed into the forming surfaces of the tool to form the pre-preg material in a desired shape (612). 20 In some embodiments heat is used to aid in the forming of the pre-preg material. Once the pre-preg material has been pressed into the desired shape, the backing is removed (614). It is then determined if additional layers of pre-preg material are needed to form the desired structure (616). If additional 25 into a desired shape further comprises: layers are needed (616), the process continues at (610). If no more layers are needed (616), the pre-preg material is cured (618). One method of curing the pre-preg material is with an autoclave. Once the pre-preg material has been cured, it is removed from the tool and trimmed to form a composite part 30 (620).

Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific 35 embodiments shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.

The invention claimed is:

1. A method of forming a composite structure comprising: breaking oxygen molecules into their atomic form with a corona discharge;

bonding the atomic form of the oxygen molecules to molecules in a first surface of a removable backing material; 45 applying a pre-preg material to the first surface of the removable backing material to form a pre-preg material with removable backing, the pre-preg material comprising a curable resin;

positioning the pre-preg material with removable backing 50 on at least one forming surface of a tool;

pressing a second surface of the removable backing material of the pre-preg material to apply the pre-preg material on the at least one forming surface of the tool and form the pre-preg material into a desired shape;

removing the removable backing material from the prepreg material with removable backing material after the pre-preg material is shaped; and

curing the pre-preg material.

2. The method of claim 1, further comprising:

removing air pockets between the pre-preg material and the removable backing material to enhance adhesion.

- 3. The method of claim 2, wherein removing the air pockets further comprises at least one of applying a squeegee and applying a vacuum debulking.
 - 4. The method of claim 1, further comprising: forming the pre-preg material from a feedstock.

6

- 5. The method of claim 1, wherein the pre-preg material is one of a uni-tape and a woven fabric.
 - **6**. The method of claim **1**, further comprising:

vacuum debulking the pre-preg material with removable backing material to enhance adhesion between the prepreg material and the removable backing material.

- 7. The method of claim 6, wherein vacuum debulking the pre-preg material with removable backing comprises applying the vacuum debulking for less than 5 seconds at a temperature of about 45 degrees C.
 - 8. The method of claim 1, further comprising: preparing the pre-preg material to achieve a desired fiber
- 9. The method of claim 8, wherein preparing the pre-preg material to achieve a desired fiber orientation further com-

cutting a feedstock in sections at select angles; and coupling the sections of feedstock end to end to form pre-preg material having the desired fiber orientation.

- 10. The method of claim 1, wherein pressing a second surface of the removable backing material of the pre-preg material to apply the pre-preg material on the at least one forming surface of the tool and form the pre-preg material
 - applying forming rollers of a forming head to the second surface of the removable backing material of the prepreg material with removable backing.
 - 11. The method of claim 1, further comprising:
 - after removing the backing material from the pre-preg material, applying and pressing at least one other layer of pre-preg material before curing.
 - 12. The method of claim 1, further comprising:
 - after curing, removing the formed pre-preg material from the tool; and

trimming the formed pre-preg material.

- 13. The method of claim 1, wherein the removable backing material is made from one of polyethylene, polyurethane, 40 polyester, a paper, nylon and fluorinated hydrocarbons.
 - 14. The method of claim 1, wherein bonding the atomic form of the oxygen molecules to molecules in a first surface of a removable backing material further comprises applying an energy level to the first surface of the removable backing material, the energy level selected in consideration of an adhesion level between the first surface of the removable backing material and the pre-preg material on the removable backing material.
 - 15. A method of forming a composite structure comprising: applying sections of a feedstock comprising a resin and fibers to a removable backing material to form a sheet of pre-preg having a desired fiber orientation relative to a side of the sheet of pre-preg, the desired fiber orientation comprising a non-zero degree angle fiber orientation, and a first surface of the removable backing material bonded to the feedstock through oxygen molecules broken into their atomic form with a corona discharge;

applying the sheet of pre-preg having the desired fiber orientation to at least one surface of a tool to form a pre-preg having a desired shape;

removing the removable backing material from the prepreg having the desired shape; and curing the pre-preg having the desired shape.

16. The method of claim 15, further comprising exposing 65 the removable backing material to a surface energy level selected based on a material used as the removable backing material.

7

- 17. The method of claim 15, wherein applying the sections of the feedstock to the removable backing material comprises removing air between the sections of the feedstock and the removable backing material.
- 18. The method of claim 15, wherein applying the sheet of pre-preg having the desired fiber orientation to at least one surface of a tool to form a pre-preg having a desired shape comprises stretching the sheet of pre-preg having the desired fiber orientation and the removable backing material over the tool.
- 19. The method of claim 15, wherein applying the sheet of pre-preg having the desired fiber orientation to at least one surface of a tool to form a pre-preg having a desired shape comprises applying the sheet of pre-preg having the desired fiber orientation and removable backing material to the at 15 least one surface of the tool.
- 20. The method of claim 15, further comprising applying additional sheets of pre-preg having the desired fiber orientation to form the pre-preg having the desired shape.
- 21. The method of claim 15, wherein the removable backing material is stretchable.
- 22. The method of claim 15, wherein the removable backing material is pliable.
- 23. The method of claim 15, wherein the removable backing material is flexible.
 - 24. A method of forming a composite structure comprising: positioning a sheet of pre-preg material with a removable backing material on at least one forming surface of a tool, the sheet of pre-preg material with the removable backing material comprising sections of a feedstock having a fiber orientation relative to a side of the sheet of pre-preg of a non-zero degree angle fiber orientation applied to a first surface of the removable backing material, the first surface of the removable backing material bonded to the sheet of pre-preg material through oxygen molecules broken into their atomic form with a corona discharge;

forcing the sheet of pre-preg material onto the at least one forming surface of the tool by pressing a second surface of the removable backing material to form the sheet of 40 pre-preg material into a desired shape;

removing the removable backing material from the sheet of pre-preg material after the sheet of pre-preg material is shaped; and

curing the sheet of pre-preg material.

- 25. The method of claim 24, further comprising selecting the first surface of the removable backing material to exhibit an enhanced surface adhesiveness relative to the second surface of the removable backing material.
- **26**. The method of claim **24**, further comprising forcing ⁵⁰ another sheet of pre-preg material onto the sheet of pre-preg

8

material on the at least one forming surface of the tool by pressing a second surface of another removable backing material of the another sheet of pre-preg material to form the another sheet of pre-preg material into the desired shape.

27. A method of forming a sheet of pre-preg material with a removable backing for a composite structure, the method comprising:

breaking oxygen molecules into their atomic form with a corona discharge;

bonding the atomic form of the oxygen molecules to molecules in a first surface of a removable backing;

orienting a feedstock comprising a resin and fibers at a desired fiber orientation relative to a lateral side of the removable backing comprising a non-zero degree angle fiber orientation;

applying sections of the feedstock to the first surface of the removable backing to form a sheet of pre-preg material including the fibers at the desired fiber orientation relative to the lateral side of the removable backing;

positioning the sheet of pre-preg material on at least one forming surface of a tool;

pressing a second surface of the removable backing to apply the sheet of pre-preg material on the at least one forming surface of the tool and form the sheet of prepreg material into a desired shape;

removing the removable backing from the sheet of prepreg material after the sheet of pre-prep material is shaped; and

curing the sheet of pre-preg material.

28. The method of claim 27, further comprising selecting the removable backing to exhibit an enhanced surface adhesion relative to the second surface of the removable backing.

29. A method of forming a composite structure comprising: applying a pre-preg material to a first surface of a removable backing material to form a pre-preg material with removable backing, the pre-preg material comprising a curable resin, and the first surface of the removable backing material bonded to the pre-preg material through oxygen molecules broken into their atomic form with a corona discharge;

positioning the pre-preg material with removable backing on at least one forming surface of a tool;

pressing a second surface of the removable backing material of the pre-preg material to apply the pre-preg material on the at least one forming surface of the tool and form the pre-preg material into a desired shape;

removing the removable backing material from the prepreg material with removable backing material after the pre-preg material is shaped; and

curing the pre-preg material.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,999,098 B2 Page 1 of 1

APPLICATION NO. : 12/701126 DATED : April 7, 2015 INVENTOR(S) : Peter G. Turner

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the specification:

COLUMN 3, LINE 38, change "0.006 inches." to --0.006 inch.--COLUMN 4, LINE 63, change "diagram of" to --diagram **600** of--

COLUMN 5, LINE 11, change "between pre-preg" to --between the pre-preg-

In the claims:

CLAIM 27, COLUMN 8, LINE 27, change "of pre-prep" to --of pre-preg--

Signed and Sealed this Twenty-third Day of February, 2016

Michelle K. Lee

Michelle K. Lee

Director of the United States Patent and Trademark Office