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(57) 요 약

본 발명은 플라즈마에 노출시킴으로써 게이트 유전체 스택 (1) 을 변형하는 방법 및 시스템에 관한 것이다.

상기 방법은, 하이-k 층 (30) 을 갖는 게이트 유전체 스택을 기판 (10, 125) 상에 형성하는 단계; 불활성 기체

및 산소-함유 기체 또는 질소-함유 기체 중 하나를 함유하는 프로세스 기체로부터 플라즈마를 발생시키는 단계

로서, 상기 프로세스 기체압은 상기 플라즈마 내의 이온성 라디칼의 분량에 대한 중성 라디칼의 분량을 제어하

도록 선택되어 있는, 상기 플라즈마 발생 단계; 및 상기 게이트 유전체 스택 (1) 을 상기 플라즈마에 노출시킴

으로써 상기 게이트 유전체 스택 (1) 을 변형시키는 단계를 포함한다.
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특허청구의 범위

청구항 1 

게이트 유전체 스택을 변형시키는 방법으로서, 

기판에 형성된 하이-k 금속 산화물층 또는 하이-k 금속 실리케이트층을 갖는 게이트 유전체 스택을 제공하는

단계로서, 상기 하이-k 금속 산화물층 또는 하이-k 금속 실리케이트층은 유효 유전 상수를 갖는 것인 게이트

유전체 스택 제공 단계;

제 1 불활성 기체 및 산소-함유 기체를 함유하는 제 1 프로세스 기체로부터, 중성 산소 라디칼의 분량과 이온

성 산소 라디칼의 분량을 포함하는 제 1 플라즈마를 발생시키고, 상기 제 1 플라즈마 내의 이온성 산소 라디

칼의 분량에 대한 중성 산소 라디칼의 분량을 증가시키는데 효과적인 상기 제 1 프로세스 기체의 압력을 선택

하는 단계; 및

상기 게이트 유전체 스택을 상기 제 1 플라즈마에 노출시킴으로써 상기 게이트 유전체 스택을 변형시키는 단

계

를 포함하는 게이트 유전체 스택의 변형 방법.

청구항 2 

제 1 항에 있어서, 상기 기판은, Si 기판, Ge-함유 Si 기판, Ge 기판, 또는 화합물 반도체 기판을 포함하는

것인 게이트 유전체 스택의 변형 방법.

청구항 3 

제 1  항에 있어서, 상기 하이-k  층은 Ta2O5,  TiO2,  ZrO2,  Al2O3,  Y2O3,  HfSiOx,  HfO2,  ZrSiOx,  TaSiOx,  SrOx,

SrSiOx, LaOx, LaSiOx, YOx, 또는 YSiOx 또는 이들의 2 이상의 조합물을 포함하는 것인 게이트 유전체 스택의

변형 방법.

청구항 4 

제 1 항에 있어서, 상기 산소-함유 기체는 O2, O3, H2O, 또는 H2O2 또는 이들의 2 이상의 조합물을 포함하는 것

인 게이트 유전체 스택의 변형 방법.

청구항 5 

제 1 항에 있어서, 상기 제 1 불활성 기체는 He, Ar, Ne, Kr, 또는 Xe, 또는 이들의 2 이상의 조합물을 포함

하는 것인 게이트 유전체 스택의 변형 방법.

청구항 6 

제 1 항에 있어서, 상기 제 1 프로세스 기체 압력은 0.5 Torr 내지 5 Torr 인 것인 게이트 유전체 스택의 변

형 방법.

청구항 7 

제 1 항에 있어서, 상기 제 1 프로세스 기체 압력은 1 Torr 내지 3 Torr 인 것인 게이트 유전체 스택의 변형

방법.

청구항 8 

제 1 항에 있어서, 상기 산소-함유 기체에 대한 상기 제 1 불활성 기체의 비율은 20 내지 5 인 것인 게이트

유전체 스택의 변형 방법.

청구항 9 

제 1 항에 있어서, 상기 제 1 프로세스 기체는 Ar 및 O2 를 포함하는 것인 게이트 유전체 스택의 변형 방법.
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청구항 10 

제 9 항에 있어서, Ar/O2 비율은 20 내지 5 인 것인 게이트 유전체 스택의 변형 방법.

청구항 11 

제 1 항에 있어서, 상기 변형시키는 단계 동안 상기 기판을 150 ℃ 내지 450 ℃ 의 온도로 유지하는 단계를

더 포함하는 게이트 유전체 스택의 변형 방법.

청구항 12 

제 1 항에 있어서, 상기 변형시키는 단계는, 상기 게이트 유전체 스택을 상기 제 1 플라즈마에 5 초 내지 60

초의 기간 동안 노출시키는 단계를 포함하는 것인 게이트 유전체 스택의 변형 방법.

청구항 13 

제 1 항에 있어서, 상기 게이트 유전체 스택은, 상기 하이-k 층과 상기 기판과의 사이에 계면층을 더 포함하

는 것인 게이트 유전체 스택의 변형 방법.

청구항 14 

제 13 항에 있어서, 상기 변형시키는 단계는, 상기 계면층을 최소화하는 것, 상기 하이-k 층 내의 결함을 감

소시키는 것, 상기 하이-k 층에 산소를 포함시키는 것, 또는 상기 하이-k 층으로부터 탄소 불순물을 제거하는

것 중 하나 이상을 통해 상기 하이-k 층의 유효 유전 상수를 증가시키는데 충분한 시간 동안 수행되는 것인

게이트 유전체 스택의 변형 방법.

청구항 15 

제 13 항에 있어서, 상기 계면층은 산화물층, 질화물층, 또는 산질화물층을 포함하는 것인 게이트 유전체 스

택의 변형 방법.

청구항 16 

제 1 항에 있어서, 제 2 불활성 기체 및 질소-함유 기체를 함유하는 제 2 프로세스 기체로부터, 이온성 질소

라디칼의 분량과 중성 질소 라디칼의 분량을 포함하는 제 2 플라즈마를 발생시키고, 또한 상기 제 2 플라즈마

내의 중성 질소 라디칼의 분량에 대한 이온성 질소 라디칼의 분량을 증가시키는데 효과적인 상기 제 2 프로세

스 기체의 압력을 선택하는 단계; 및

상기 변형된 게이트 유전체 스택을 상기 제 1 플라즈마 없이 상기 제 2 플라즈마에 노출시키는 단계를 더 포

함하는 게이트 유전체 스택의 변형 방법.

청구항 17 

제 16 항에 있어서, 상기 질소-함유 기체는 N2 또는 NH3, 또는 이들의 조합물을 포함하는 것인 게이트 유전체

스택의 변형 방법.

청구항 18 

제 16 항에 있어서, 상기 제 2 불활성 기체는 He, Ar, Ne, Kr, 또는 Xe, 또는 이들의 2 이상의 조합물을 포함

하는 것인 게이트 유전체 스택의 변형 방법.

청구항 19 

제 16 항에 있어서, 상기 제 2 프로세스 기체 압력은 10 mTorr 내지 400 mTorr 인 것인 게이트 유전체 스택의

변형 방법.

청구항 20 

게이트 유전체 스택을 변형시키는 방법으로서, 

기판에 형성된 하이-k 층을 갖는 게이트 유전체 스택을 제공하는 단계;
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제 1 불활성 기체 및 질소-함유 기체를 함유하는 제 1 프로세스 기체로부터, 이온성 질소 라디칼의 분량과 중

성 질소 라디칼의 분량을 포함하는 제 1 플라즈마를 발생시키고, 상기 제 1 플라즈마 내의 중성 질소 라디칼

의 분량에 대한 이온성 질소 라디칼의 분량을 증가시키는데 효과적인 상기 제 1 프로세스 기체의 압력을 선택

하는 단계; 

상기 게이트 유전체 스택을 상기 제 1 플라즈마에 노출시킴으로써 상기 게이트 유전체 스택을 변형시키는 단

계; 

제 2 불활성 기체 및 산소-함유 기체를 함유하는 제 2 프로세스 기체로부터, 중성 산소 라디칼의 분량과 이온

성 산소 라디칼의 분량을 포함하는 제 2 플라즈마를 발생시키고, 상기 제 2 플라즈마 내의 이온성 산소 라디

칼의 분량에 대한 중성 산소 라디칼의 분량을 증가시키는데 효과적인 상기 제 2 프로세스 기체의 압력을 선택

하는 단계; 및

상기 변형된 게이트 유전체 스택을 상기 제 1 플라즈마 없이 상기 제 2 플라즈마에 노출시키는 단계

를 포함하는 게이트 유전체 스택의 변형 방법.

청구항 21 

제 20 항에 있어서, 상기 기판은, Si 기판, Ge-함유 Si 기판, Ge 기판, 또는 화합물 반도체 기판을 포함하는

것인 게이트 유전체 스택의 변형 방법.

청구항 22 

제 20 항에 있어서, 상기 하이-k 층은 금속 산화물층 또는 금속 실리케이트층을 포함하는 것인 게이트 유전체

스택의 변형 방법.

청구항 23 

제 20  항에 있어서, 상기 하이-k 층은 Ta2O5, TiO2, ZrO2, Al2O3, Y2O3, HfSiOx, HfO2, ZrSiOx, TaSiOx, SrOx,

SrSiOx, LaOx, LaSiOx, YOx, 또는 YSiOx 또는 이들의 2 이상의 조합물을 포함하는 것인 게이트 유전체 스택의

변형 방법.

청구항 24 

제 20 항에 있어서, 상기 질소-함유 기체는 N2, 또는 NH3 또는 이들의 조합물을 포함하는 것인 게이트 유전체

스택의 변형 방법.

청구항 25 

제 20 항에 있어서, 상기 제 1 불활성 기체는 He, Ar, Ne, Kr, 또는 Xe, 또는 이들의 2 이상의 조합물을 포함

하는 것인 게이트 유전체 스택의 변형 방법.

청구항 26 

제 20 항에 있어서, 상기 제 1 프로세스 기체 압력은 10 mTorr 내지 400 mTorr 인 것인 게이트 유전체 스택의

변형 방법.

청구항 27 

제 20 항에 있어서, 상기 제 1 프로세스 기체 압력은 50 mTorr 내지 300 mTorr 인 것인 게이트 유전체 스택의

변형 방법.

청구항 28 

제 20 항에 있어서, 상기 질소-함유 기체에 대한 상기 제 1 불활성 기체의 비율은 20 내지 500 인 것인 게이

트 유전체 스택의 변형 방법.

청구항 29 
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제 20 항에 있어서, 상기 제 1 프로세스 기체는 Ar 및 N2 를 포함하는 것인 게이트 유전체 스택의 변형 방법.

청구항 30 

제 29 항에 있어서, Ar/N2 비율은 20 내지 500 인 것인 게이트 유전체 스택의 변형 방법.

청구항 31 

제 20 항에 있어서, 상기 변형시키는 단계 동안에 상기 기판을 150 ℃ 내지 450 ℃ 의 온도로 유지하는 단계

를 더 포함하는 게이트 유전체 스택의 변형 방법.

청구항 32 

제 20 항에 있어서, 상기 게이트 유전체 스택은, 상기 제 1 플라즈마에 60 초 내지 300 초의 기간 동안 노출

되는 것인 게이트 유전체 스택의 변형 방법.

청구항 33 

제 20 항에 있어서, 상기 변형시키는 단계는 상기 하이-k 층의 질소 함량을 증가시키는데 충분한 시간 동안

수행되는 것인 게이트 유전체 스택의 변형 방법.

청구항 34 

제 20 항에 있어서, 상기 게이트 유전체 스택은, 상기 하이-k 층과 상기 기판과의 사이에 계면층을 더 포함하

는 것인 게이트 유전체 스택의 변형 방법.

청구항 35 

제 34 항에 있어서, 상기 계면층은 산화물층, 질화물층, 또는 산질화물층을 포함하는 것인 게이트 유전체 스

택의 변형 방법.

청구항 36 

제 20 항에 있어서, 상기 산소-함유 기체는 O2, O3, H2O 또는 H2O2, 또는 이들의 2 이상의 조합물을 포함하는

것인 게이트 유전체 스택의 변형 방법.

청구항 37 

제 20 항에 있어서, 상기 제 2 불활성 기체는 He, Ar, Ne, Kr, 또는 Xe, 또는 이들의 2 이상의 조합물을 포함

하는 것인 게이트 유전체 스택의 변형 방법.

청구항 38 

제 20 항에 있어서, 상기 제 2 프로세스 기체 압력은 0.5 Torr 내지 5 Torr 인 것인 게이트 유전체 스택의 변

형 방법.

청구항 39 

제 20 항에 있어서, 상기 제 2 프로세스 기체 압력은 1 Torr 내지 3 Torr 인 것인 게이트 유전체 스택의 변형

방법.

청구항 40 

게이트 유전체 스택을 변형시키는 방법으로서, 

기판 상에 형성된 하이-k 층을 갖는 게이트 유전체 스택을 제공하는 단계;

제 1 불활성 기체 및 산소-함유 기체를 함유하는 제 1 프로세스 기체로부터, 중성 산소 라디칼의 분량과 이온

성 산소 라디칼의 분량을 포함하는 제 1 플라즈마를 발생시키고, 상기 제 1 플라즈마 내의 이온성 산소 라디

칼의 분량에 대한 중성 산소 라디칼의 분량을 증가시키는데 효과적인 상기 제 1 프로세스 기체의 압력을 선택

하는 단계; 
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상기 게이트 유전체 스택을 상기 제 1 플라즈마에 노출시킴으로써 상기 게이트 유전체 스택을 변형시키는 단

계; 

제 2 불활성 기체 및 질소-함유 기체를 함유하는 제 2 프로세스 기체로부터, 이온성 질소 라디칼의 분량과 중

성 질소 라디칼의 분량을 포함하는 제 2 플라즈마를 발생시키고, 상기 제 2 플라즈마 내의 중성 질소 라디칼

의 분량에 대한 이온성 질소 라디칼의 분량을 증가시키는데 효과적인 상기 제 2 프로세스 기체의 압력을 선택

하는 단계; 및

상기 변형된 게이트 유전체 스택을 상기 제 1 플라즈마 없이 상기 제 2 플라즈마에 노출시키는 단계

를 포함하는 게이트 유전체 스택의 변형 방법.

청구항 41 

제 40 항에 있어서, 상기 기판은, Si 기판, Ge-함유 Si 기판, Ge 기판, 또는 화합물 반도체 기판을 포함하는

것인 게이트 유전체 스택의 변형 방법.

청구항 42 

제 40 항에 있어서, 상기 산소-함유 기체는 O2, O3, H2O, 또는 H2O2 또는 이들의 2 이상의 조합물을 포함하는

것인 게이트 유전체 스택의 변형 방법.

청구항 43 

제 40 항에 있어서, 상기 제 1 불활성 기체와 상기 제 2 불활성 기체 각각은 He, Ar, Ne, Kr, 또는 Xe, 또는

이들의 2 이상의 조합물을 포함하는 것인 게이트 유전체 스택의 변형 방법.

청구항 44 

제 40 항에 있어서, 상기 제 1 프로세스 기체 압력은 0.5 Torr 내지 5 Torr 인 것인 게이트 유전체 스택의 변

형 방법.

청구항 45 

제 40 항에 있어서, 상기 산소-함유 기체에 대한 상기 제 1 불활성 기체의 비율은 20 내지 5 인 것인 게이트

유전체 스택의 변형 방법.

청구항 46 

제 40 항에 있어서, 상기 변형시키는 단계 동안 상기 기판을 150 ℃ 내지 450 ℃ 의 온도로 유지하는 단계를

더 포함하는 게이트 유전체 스택의 변형 방법.

청구항 47 

제 40 항에 있어서, 상기 변형시키는 단계는, 상기 게이트 유전체 스택을 상기 제 1 플라즈마에 5 초 내지 60

초의 기간 동안 노출시키는 단계를 포함하는 것인 게이트 유전체 스택의 변형 방법.

청구항 48 

제 40 항에 있어서, 상기 게이트 유전체 스택은 상기 하이-k 층과 상기 기판과의 사이에 계면층을 더 포함하

는 것인 게이트 유전체 스택의 변형 방법.

청구항 49 

제 48 항에 있어서, 상기 계면층은 산화물층, 질화물층, 또는 산질화물층을 포함하는 것인 게이트 유전체 스

택의 변형 방법.

청구항 50 

제 40 항에 있어서, 상기 질소-함유 가스는 N2 또는 NH3 또는 이들의 조합물을 포함하는 것인 게이트 유전체

스택의 변형 방법.
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청구항 51 

제 40 항에 있어서, 상기 제 2 프로세스 기체 압력은 10 mTorr 내지 400 mTorr인 것인 게이트 유전체 스택의

변형 방법.

청구항 52 

삭제

청구항 53 

삭제

명 세 서

기 술 분 야

본 발명은 반도체 프로세싱에 관한 것으로, 보다 구체적으로는, 하이-k(high-k) 층을 포함하는 게이트 유전체[0001]

스택을 변형시키는 플라즈마 프로세싱 방법에 관한 것이다.

배 경 기 술

반도체 산업에 있어서, 마이크로일렉트로닉 디바이스들의 최소 피쳐 사이즈 (feature size) 는 보다 빠르고,[0002]

또한 보다 낮은 전력의 반도체 디바이스에 대한 요구를 충족시키기 위해 딥 서브-마이크론 영역(deep sub-

micron regime)에 적합되어 있다.  상보형 금속-산화물-반도체 (CMOS) 디바이스들의 다운스케일링은 게이트

유전 재료에 대한 스케일링을 구속한다.  종래의 SiO2 게이트 유전체 의 두께는 그것의 물리적인 한계에 근접

하고 있다.  가장 진보된 디바이스들은 약 1 나노미터 (nm) 이하의 산화막 환산막 두께 (EOT) 에 근접하는 질

화된 SiO2 게이트 유전체 를 사용하고 있으며 여기에서 누설 전류 밀도는 1 mA/cm
2

 일 수 있다.  디바이스 신

뢰성을 향상시키고 디바이스의 동작시 게이트 유전체 로부터 트랜지스터 채널로의 전기적인 누설을 저감시키

기 위해, 낮은 산화막 환산막 두께 (EOT) 를 유지하면서 게이트 유전체  층의 물리적인 두께를 증가시킬 수

있는 높은 유전상수 (하이-k) 게이트 유전 재료를 사용하는 것에 반도체 트랜지스터 기술이 계획되고 있다.

산화막 환산막 두께는 대체의 유전 재료로부터 얻어진 것과 동일한 용량 전압 곡선을 생성할 것인 SiO2 의 두

께로서 정의된다. 

SiO2 의 유전상수 (k~3.9) 보다 큰 유전상수를 특징으로 하는 유전 재료는 공통적으로 하이-k 재료로 지칭된[0003]

다.  하이-k 재료들은 SiO2 의 경우와 같이 기판의 표면 상에 성장되기 보다는 기판 상에 증착되어 있는 유전

재료들 (예를 들어, HfO2, ZrO2, HfSiO, ZrSiO, 등) 을 지칭할 수도 있다.  하이-k 재료는 금속 산화물층 또는

금속 실리케이트 층, 예를 들어, Ta2O5 (k~26), TiO2 (k~80), ZrO2 (k~25), Al2O3 (k~9), HfSiO (k~5-20), 및

HfO2 (k~25) 를 포함할 수 있다.

하이-k 재료의 게이트 스택으로의 일체화는 계면 상태 특성을 보존하고 양호한 전기적인 특성들을 갖는 계면[0004]

을 형성하기 위해 Si 기판의 표면에 유전 계면층을 요구할 수 있다.  그러나, 산화물 계면층이 있으면 스택의

전체 유전상수를 낮추므로, 산화물 계면층은 얇아져야 한다.  계면 산화물 유전층의 품질은, 상기 산화물층이

트랜지스터의 채널에 밀착하여 접속되기 때문에, 디바이스 성능에 영향을 줄 수 있다.

증착 후 미처리된(as-deposited) 하이-k 게이트 유전층은 증착 프로세스 동안 하이-k 층에 포함되는 점결함,[0005]

베이컨시 (vacancy) 또는 불순물을 공통적으로 함유한다.  이들 결함은 유전층에서 높은 누설 전류의 원인일

수 있고 결국에는 유전층 및 마이크로일렉트로닉 디바이스의 조기 불량을 유발할 수 있다.  이들 점 결함을

감소시키기 위해 어닐링 절차가 개발되었지만, 최대한 향상을 위해 통상적으로 높은 온도가 요구되어, 계면

산화물층의 두께를 증대시킬 수 있다.

발명의 상세한 설명

게이트 유전체 스택을 플라즈마에 노출시킴으로써 변형시키는 방법 및 시스템이 제공된다.  상기 방법은, 하[0006]

이-k 층을 갖는 게이트 유전체 스택을 기판 상에 형성하는 단계; 불활성 기체 및 산소-함유 기체 또는 불활성
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기체 및 질소-함유 기체를 함유하는 프로세스 기체로부터 플라즈마를 발생시키는 단계로서, 상기 프로세스 기

체  압력은  상기 플라즈마 내의 이온성 라디칼의 분량에 대한 중성 라디칼의 분량을 제어하도록 선택되어

있는, 상기 플라즈마 발생 단계; 및 상기 게이트 유전체 스택을 상기 플라즈마에 노출시킴으로써 상기 게이트

유전체 스택을 변형시키는 단계를 포함한다.

본 발명의 일 실시예에서, 상기 플라즈마는 불활성 기체 및 산소-함유 기체를 함유하는 프로세스 기체로부터[0007]

발생될 수 있고, 상기 프로세스 기체 압력은 플라즈마 내에서의 이온성 산소 라디칼의 분량에 대한 중성 산소

라디칼의 분량을 증가시키도록 선택된다.  플라즈마 프로세스는, 하이-k 층 내의 결함들을 감소시키는 것, 하

이-k 층에 산소를 포함시키는 것, 또는 하이-k 층으로부터 탄소 불순물 또는 임의의 다른 불순물을 제거하는

것을 통해 하이-k 층의 유전 상수를 증가시킴으로써 게이트 유전체 스택을 변형시킨다.

본 발명의 다른 실시예에서, 상기 플라즈마는 불활성 기체 및 질소-함유 기체를 함유하는 프로세스 기체로부[0008]

터 발생될 수 있고, 상기 프로세스 기체 압력은 플라즈마 내에서의 중성 질소 라디칼의 분량에 대한 이온성

질소 라디칼의 분량을 증가시키도록 선택된다.  플라즈마 프로세스는 하이-k 층의 질소 함량을 증가시킴으로

써 게이트 유전체 스택을 변형시킨다.

플라즈마 프로세싱 시스템은, 불활성 기체와 산소-함유 기체, 또는 불활성 기체와 질소-함유 기체를 함유하는[0009]

프로세스 기체로부터 플라즈마를 발생시키는 플라즈마 소스로서, 상기 프로세스 기체 압력은 플라즈마 내에서

의 이온성 라디칼의 분량에 대한 중성 라디칼의 분량을 제어하도록 선택된 것인 상기 플라즈마 소스; 기판 상

에 하이-k 층을 갖는 게이트 유전체 스택을 포함하는 기판을 지지하도록 구성되고, 또한 게이트 유전체 스택

을 플라즈마에 노출시킴으로써 게이트 유전체 스택을 변형시키도록 구성된 기판 스테이지; 기판을 기판 스테

이지로부터 및 기판 스테이지로 전송하도록 구성된 기판 전송 시스템; 및 플라즈마 프로세싱 시스템을 제어하

도록 구성된 컨트롤러를 구비한다.

실 시 예

도 1a 는 본 발명의 일 실시예에 따른 하이-k 층을 포함하는 게이트 유전체 스택을 도시한다.  게이트 유전체[0020]

스택 (1) 은 기판 (10) 및 상기 기판 (10) 상의 하이-k 층 (30) 을 포함한다.  기판 (10) 은, 예를 들어, Si

기판, Ge-함유 Si 기판, Ge 기판, 또는 화합물 반도체 기판과 같은 반도체 기판일 수 있고, 다수의 능동 소자

들 및/또는 격리 영역 (도시되지 않음) 을 포함할 수 있다.   기판 (10) 은 형성될 디바이스의 타입에 의존하

여 n-형 또는 p-형일 수 있다.  하이-k 층 (30) 은 예를 들어, 금속-산화물 층 또는 금속 실리케이트 층, 예

를 들어, Ta2O5, TiO2, ZrO2, Al2O3, Y2O3, HfSiOx, HfO2, ZrSiOx, TaSiOx, SrOx, SrSiOx, LaOx, 또는 LaSiOx, 또는

이들의 2 이상의 조합일 수 있다.  하이-k 층 (30) 은 예를 들어, 약 3 nm 두께일 수 있다.

도 1b 는 본 발명의 일 실시예에 따른 하이-k 층 및 계면층을 포함하는 게이트 유전체 스택을 도시한다.  게[0021]

이트 유전체 스택 (1) 은 기판 (10) 및 유전층 (40) 을 포함하고, 상기 유전층은 기판 (10) 상의 계면층 (20)

및 상기 계면층 (20) 상의 하이-k 층 (30) 을 포함한다.  계면층 (20) 은 예를 들어, 산화물층 (예를 들어,

SiOx), 질화물층 (예를 들어, SiNx), 또는 산질화물층 (예를 들어, SiOxNy) 을 포함할 수 있다.

본 발명의 일 실시예에서, 발명자들은 게이트 유전체 스택 (1) 을 높은 프로세스 기체 압력 상태의 산소-함유[0022]

플라즈마 (고압 플라즈마) 에 노출시킴으로써 도 1a 및 도 1b 에서의 게이트 유전체 스택 (1) 을 변형시키는

플라즈마 프로세스를 식별하였다.  고압 플라즈마는, 저압 플라즈마에 비해, 이온성 산소 라디칼의 분량에 대

해 증가된 분량의 중성 산소 라디칼 (여기된 산소종) 을 포함한다.  고압 산소-함유 플라즈마를 사용하여 게

이트 유전체 스택 (1) 을 변형시키는 단계는, 하이-k 층 (30) 의 유전상수를 증가시키는 것, 하이-k 층 내의

탄소 불순물의 분량을 감소시키는 것, 높은 누설 전류 또는 다른 전기적인 열화 양태를 야기하는 하이-k 층

내의 결함을 감소시키는 것, 또는 하이-k 층 (30) 의 산소-함량을 증가시키는 것을 포함할 수 있다.  또한,

고압 플라즈마 프로세스는 고온 열산화 프로세스 및 저압 플라즈마 프로세스에 비해 계면층 (20) 의 성장 (두

께) 을 최소화하고, 또한 중성 산소 라디칼에 대해 보다 높은 농도의 이온성 산소 라디칼을 갖는다.

산소계 플라즈마는 기본적으로 2 가지 종류의 산소 라디칼: 이온성 산소 라디칼 (예를 들어, O2
+

) 및 중성 (준[0023]

안정) 산소 라디칼 (예를 들어, O
*

) 을 포함할 수 있다.  본 발명의 일 실시예에 따르면, 플라즈마 내의 이온

성 산소 라디칼의 분량에 대한, 플라즈마 내의 중성 산소 라디칼의 분량은 높은 프로세스 기체 압력, 예를 들

어, 약 0.5 Torr 내지 약 5 Torr 의 압력을 사용하여 증가될 수 있다.  본 발명의 다른 실시예에서, 기체 압

력은 약 1 Torr 내지 약 3 Torr 일 수 있고, 2 Torr일 수 있다.  프로세스 기체는 O2, O3, H2O, 또는 H2O2, 또
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는 이들의 2 이상의 조합물을 포함하는 산소-함유 기체, 및 He, Ne, Ar, Kr 또는 Xe, 또는 이들의 2 이상의

조합물을 포함하는 불활성 기체를 포함할 수 있다.   본 발명의 일 실시예에서, 프로세스 기체는 Ar 및 O2 를

포함할 수 있다.  본 발명의 일 실시예에서, 산소-함유 기체에 대한 불활성 기체의 비율은 약 20 내지 약 5

일 수 있다.  다른 실시예에서, 불활성 기체는 Ar 일 수도 있고, 산소 함유 기체는 O2일 수도 있고, Ar/O2 비

는 약 20 내지 약 5 사이이다.  비교를 위해, 약 10 mTorr 내지 200 mTorr 의 프로세스 기체 입력을 사용하는

저압 플라즈마 프로세싱은 중성 산소 라디칼에 대해 보다 높은 분량의 이온성 산소 라디칼을 포함한다.

본  발명의 다른 실시예에서,  발명자들은 게이트 유전체 스택 (1)  을  낮은 프로세스 기체 압력 (P  ~  200[0024]

mTorr) 상태의 질소-함유 플라즈마에 노출시킴으로써 도 1a 및 도 1b 에서의 게이트 유전체 스택 (1) 을 변형

시키는 플라즈마 프로세스를 식별하였다.   상기  플라즈마는 높은 프로세스 기체 압력 플라즈마 (P  ~  800

mTorr) 에 비해, 중성 질소 라디칼 (예를 들어, N2
*

) 에 대해 증가된 분량의 이온성 질소 라디칼 (예를 들어,

N2
+

) 을 포함한다. 

저압 질소-함유 플라즈마를 사용하여 게이트 유전체 스택 (1) 을 변형시키면 하이-k 층 (30) 의 질소-함량이[0025]

증가되고 계면층 (20) 의 성장이 최소화되고, 그럼으로써 보다 좋은 유전 두께 스케일링을 허용한다.  또한,

하이-k 층 (30) 의 질소 함량은 플라즈마 노출 시간의 증가에 따라 증가한다.  저압 질소-함유 플라즈마는,

N2O 또는 NO 기체를 사용하고 계면을 질화시키지만 하이-k 층 (30) 의 질화는 제한적인 고온 열 질화 (질소-

포함) 프로세스들에 비해 계면층 (20) 의 성장을 최소화한다.  NH3 를 사용하는 열 질화 프로세스들도 또한

계면을 질화시키지만 하이-k 층 (30) 의 질화는 제한적이고, 또한 하이-k 층 (30) 의 수소 (H) 함량을 감소시

키기 위해 부가적인 어닐링 단계들을 필요로 할 수 있다.  또한, 고압 질소 플라즈마를 사용하는 플라즈마 질

화 프로세스들은 계면 질화를 증가시키고, 하이-k 층 (30) 은 덜 질화시킨다.

본 발명의 일 실시예에 따르면, 플라즈마 내의 중성 질소 라디칼의 분량에 대한, 플라즈마 내의 이온성 질소[0026]

라디칼의 분량은 저압 플라즈마를 사용하여 증가될 수 있다.  상기 프로세스 기체 압력은 예를 들어, 약 10

mTorr 내지 약 400 mTorr 일 수 있다.  대안으로, 상기 기체 압력은 약 50 mTorr 내지 약 300 mTorr 일 수 있

고, 또한 200 mTorr 일 수 있다.  상기 프로세스 기체는 N2 또는 NH3 , 또는 이들의 조합물을 포함하는 질소-

함유 기체, 및 He, Ne, Ar, Kr, 또는 Xe, 또는 이들의 2 이상의 조합물을 포함하는 불활성 기체를 포함할 수

있다.  본 발명의 일 실시예에서, 프로세스 기체는 Ar 및 N2 를 포함할 수 있다.  본 발명의 일 실시예에서,

질소-함유 기체에 대한 불활성 기체의 비율은 약 20 내지 약 500 일 수 있다.

본 발명의 다른 실시예에서, 도 1a 및 도 1b 의 게이트 유전체 스택 (1) 은 고압 산소-함유 플라즈마 (즉, 약[0027]

0.5 Torr 내지 약 5 Torr 의 압력) 에 노출됨으로써 변형될 수 있고, 후속으로, 얻어지는 변형된 게이트 유전

체 스택이 저압 질소-함유 플라즈마 (즉, 약 10 mTorr 내지 400 mTorr 의 압력) 에 노출될 수 있다.

본 발명의 또 다른 실시예에서, 도 1a 및 도 1b 의 게이트 유전체 스택 (1) 은 저압 질소-함유 플라즈마에 노[0028]

출됨으로써 변형될 수 있고, 후속으로, 얻어지는 변형된 게이트 유전체 스택이 고압 산소-함유 플라즈마에 노

출될 수 있다.

도 2a 내지 도 2f 는 본 발명의 실시예들에 따른 게이트 유전체 스택을 변형시키는 플라즈마 프로세싱 시스템[0029]

들의 개략적인 다이어그램이다.  구체적인 하드웨어의 많은 변동들이 본 발명이 실용화될 수 있는 프로세싱

시스템들을 실행시키는데 사용될 수 있으므로, 도 2a 내지 도 2f에 도시된 플라즈마 프로세싱 시스템들은 예

시적인 목적으로만 도시되어 있고, 또한 이들 변동은 당업계의 당업자에게 용이하게 명백할 것이다.  유사한

참조 번호는 유사한 부분들을 가리킨다.

도  2a  에서,  플라즈마 프로세싱 시스템 (100)  은  기판 스테이지 (120)  를 탑재하기 위한 기둥(pedestal)[0030]

(112) 을 갖는 프로세스 챔버 (110) 를 포함하고, 상기 기판 스테이지는 기판 (125) 을 지지하고 상기 기판

(125) 을 플라즈마 프로세싱 영역 (160) 에 노출시킨다.  기판 스테이지 (120) 는 기판 (125) 을 가열 또는

냉각시키도록 추가로 구성될 수 있다.  플라즈마 프로세싱 시스템 (100) 은 프로세스 기체를 원격 플라즈마

소스 (205) 에 도입하기 위한 기체 주입 시스템 (140) 을 더 포함하고, 여기에서 상기 프로세스 기체는 불활

성 기체 및 산소-함유 기체, 또는 불활성 기체 및 질소-함유 기체를 포함한다.  기체 주입 시스템 (140) 은

외부 (ex-situ) 기체 소스 (도시되지 않음) 로부터 원격 플라즈마 소스 (205) 까지의 프로세스 기체의 전달에

대해 독립적인 제어를 허용한다.
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여기된 프로세스 기체 (215) 는 원격 플라즈마 소스 (205) 로부터 플라즈마 프로세싱 영역 (160) 으로 도입된[0031]

다.  여기된 프로세스 기체 (215) 는 기체 주입 플레넘 (도시되지 않음), 일련의 배플 플레이트 (도시되지 않

음) 및 멀티-오리피스 샤워헤드 기체 주입 플레이트 (165) 를 통해 플라즈마 프로세싱 영역 (160) 으로 도입

될 수 있다.  광학 모니터링 시스템 (220) 을 사용하여 플라즈마 프로세싱 영역 (160) 으로부터 발광을 모니

터링할 수 있다.  프로세스 챔버 (110) 는 진공 펌프 시스템 (150) 에 접속되어 있고, 상기 진공 펌프 시스템

은 약 5,000 리터/초 (및 이상) 까지 펌핑할 수 있는 터보-분자 진공 펌프 (TMP), 및 기체 압력을 제어하기

위한 게이트 밸브를 포함할 수 있다.

기판 (125)  은 로보트 기판 전송 시스템 (210)  을 거쳐 슬롯 밸브 (도시되지 않음) 및 챔버 피드-스루우[0032]

(feed-through) (도시되지 않음) 를 통해 프로세스 챔버 (110) 내로 전송되고 프로세스 챔버 (110) 로부터 전

송되며, 상기 기판은 기판 스테이지 (120) 내에 수용된 기판 리프트 핀 (도시되지 않음) 에 의해 접수되고 기

판 스테이지에 수용된 디바이스들에 의해 기계적으로 전송된다.  일단 기판 (125) 이 기판 전송 시스템 (210)

으로부터 접수되면, 기판은 기판 스테이지 (120) 의 상부 표면까지 낮아진다.

기판 (125) 은 정전 클램프 (도시되지 않음) 를 통해 기판 스테이지 (120) 에 부착될 수 있다.  또한, 기판[0033]

스테이지 (120) 는 히터 소자 (130) 를 포함하고 기판 스테이지 (120) 는 추가로 기판 스테이지 (120) 로부터

의 열을 받아들이고 열을 열 교환 시스템 (도시되지 않음) 으로 전달하는 재-순환 냉각제 플로우를 포함하는

냉각 시스템을 포함할 수 있다.  또한, 기판 (125) 과 기판 스테이지 (120) 사이의 기체-갭 열 전도를 향상시

키기 위해 기판의 배면으로 기체가 전달될 수 있다.  높여진 온도 또는 낮추어진 온도에서 기판의 온도 제어

가 요구될 때 상기 시스템이 사용될 수 있다.  

컨트롤러 (155) 는 마이크로프로세서, 메모리, 및 통신하는데 충분한 제어 전압을 발생시킬 수 있는 디지털[0034]

I/O  포트를  포함하고,  프로세싱  시스템  (100)  으로부터의  출력을  모니터할  뿐만  아니라 프로세싱 시스템

(100)  에 대한 입력들을 활성화한다.  또한,  컨트롤러 (155)  는 프로세스 챔버 (110),  기체 주입 시스템

(140), 원격 플라즈마 소스 (205), 광학 모니터링 시스템 (220), 가열 소자 (130), 기판 전송 시스템 (210),

및 진공 펌프 시스템 (150) 에 결합되어 있고 이들과 정보를 교환한다.  예를 들어, 메모리에 저장된 프로그

램은, 저장된 프로세스 레시피에 따라 프로세싱 시스템 (100) 의 상술된 컴포넌트들을 제어하는데 사용될 수

있다.  컨트롤러 (155) 의 일 예는 미국 텍사스주, 오스틴에 위치한 델 코포레이션 (Dell Corporation) 으로

부터 입수할 수 있는, DELL PRECISION WORKSTATION 610
TM

 이다.

도 2b 는 본 발명의 일 실시예에 따른 게이트 유전체 스택을 변형시키는 플라즈마 프로세싱 시스템을 도시한[0035]

다.  플라즈마 프로세싱 시스템 (101) 은 마이크로웨이브 전송 윈도우 (240) 상에 탑재되어 있는 슬롯 안테나

(230) 를 포함한다.  상기 윈도우 (240) 는 외부 마이크로웨이브 플라즈마 소스 (250) 로부터 플라즈마 프로

세싱 영역 (160) 내부로의 마이크로웨이브 방사의 효율적인 전송을 위해 Al2O3 를 포함할 수 있다.  마이크로

웨이브 전력은, 예를 들어, 약 500 와트 (W) 내지 약 5000 와트 (W) 일 수 있다.  마이크로웨이브 주파수는

예를 들어, 2.45 GHz 또는 8.3 GHz 일 수 있다.  기체 주입 시스템 (140) 은 윈도우 (240) 와 기판 (125) 과

의 사이에 위치된 기체 전달 링 (260) 을 사용하여 프로세스 챔버 (110) 의 내부로 프로세스 기체를 전달하도

록 구성되어 있다.  기체 전달 링 (260) 은 마이크로파 전력 공급 플라즈마에 의한 여기를 위해 프로세스 기

체 (115) 를 플라즈마 프로세싱 시스템 (160) 내부로 도입하기 위한 복수의 기체 주입 구멍 (270) 을 포함한

다.  도 2b 에서, 컨트롤러는 프로세스 챔버 (110), 기체 주입 시스템 (140), 가열 소자 (130), 진공 펌프 시

스템 (150), 기판 전송 시스템 (210), 광학 모니터링 시스템 (220), 및 외부 마이크로웨이브 플라즈마 소스

(250) 에 결합되어 있고 이들과 정보를 교환한다.

도 2c 는 본 발명의 일 실시예에 따른 게이트 유전체 스택을 변형시키기 위한 플라즈마 프로세싱 시스템을 도[0036]

시한다.  도 2c  의 프로세싱 시스템 (102)  은 프로세스 챔버 (110)  내에 플라즈마를 형성하고 유지할 수

있다.  도 2c 에 도시된 실시예에서, 기판 스테이지 (120) 는 추가로 전극으로서 기능할 수 있고, 상기 전극

을 통해 RF 전력이 플라즈마 프로세싱 영역 (160) 내의 플라즈마에 결합되어 있다.  예를 들어, 기판 스테이

지 (120) 내의 금속 전극 (도시되지 않음) 은 임피던스 매치 네트워크 (135) 를 통해 RF 발생기 (145) 로부터

기판 스테이지 (120) 까지 RF 전력의 전송을 통해 RF 전압으로 전기적으로 바이어스될 수 있다.  RF 바이어스

는 전자들을 가열하고, 그럼으로써 플라즈마를 형성하고 유지한다.  RF 바이어스를 위한 통상적인 주파수는

약 0.1 MHz 내지 100 MHz 의 범위일 수 있고 약 13.6 MHz 일 수 있다.

대안 실시예에서, RF 전력은 다수의 주파수로 기판 스테이지 (120) 에 인가될 수 있다.  또한, 임피던스 매치[0037]

네트워크 (135) 는 반사 전력을 최소화함으로써 RF 전력의 프로세싱 챔버 (110) 내의 플라즈마로의 전송을 최
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대화하는 기능을 한다.  매치 네트워크 토폴로지 (예를 들어, L-형, π-형, T-형) 및 자동 제어 방법은 당분

야에 주지되어 있다.  기체 주입 시스템 (140) 은, RF-전력 공급 플라즈마에 의한 여기를 위해 멀티-오리피스

샤워헤드 기체 주입 플레이트 (165) 를 통해 프로세스 기체 (115) 를 플라즈마 프로세싱 영역으로 전달하도록

구성되어 있다.  도 2c 에서, 컨트롤러 (155) 는 프로세스 챔버 (110), RF 발생기 (145), 임피던스 매치 네트

워크 (135),  기체 주입 시스템 (140),  광학 모니터링 시스템 (220),  가열 소자 (130),  기판 전송 시스템

(210), 및 진공 펌프 시스템 (150) 에 결합되어 있고 이들과 정보를 교환한다.

도 2d 는 본 발명의 일 실시예에 따른 게이트 유전체 스택을 변형시키는 플라즈마 프로세싱 시스템을 도시한[0038]

다.  도 2d 의 프로세싱 시스템 (103) 은, 도 2c 를 참조하여 설명한 컴포넌트들에 부가하여, 플라즈마 밀도

를 잠재적으로 증가시키고 및/또는 플라즈마 프로세싱 균일도를 향상시키기 위해 기계적으로 또는 전기적으로

회전하는 DC 자계 시스템 (170) 을 추가로 구비한다.  또한, 컨트롤러 (155) 는 회전 속도 및 자계 강도를 조

정하기 위해 회전하는 자계 시스템 (170) 에 결합되어 있다.  

도 2e 는 본 발명의 일 실시예에 따른 게이트 유전체 스택을 변형시키는 플라즈마 프로세싱 시스템을 도시한[0039]

다.  도 2e 의 프로세싱 시스템 (104) 은, 도 2c 를 참조하여 설명한 컴포넌트들에 부가하여, 멀티-오리피스

샤워헤드 기체 주입 플레이트 (165) 를 포함하고, 상기 멀티-오리피스 샤워헤드 기체 주입 플레이트는 또한

RF 전력이 RF 발생기 (180) 로부터 임피던스 매치 네트워크 (175) 를 통해 결합되어 있는 상부 플레이트 전극

으로서 기능할 수 있다.  상부 전극에 대한 RF 전력의 인가 주파수는 약 10 MHz 내지 약 200 MHz 의 범위일

수 있고 약 60 MHz 일 수 있다.  부가적으로, 하부 전극 (기판 스테이지 (120)) 에의 전력 인가를 위한 주파

수는 약 0.1 MHz 내지 약 30 MHz 의 범위일 수 있고 약 2 MHz 일 수 있다.  또한, 컨트롤러 (155) 가 RF 발생

기 (180) 및 임피던스 매치 네트워크 (175) 에 결합되어 상부 전극 (165) 에의 RF 전력의 인가를 제어할 수

있다.

본 발명의 일 실시예에서, 도 2e 에서의 기판 스테이지 (120) 는 전기적으로 접지될 수 있다.  대안 실시예에[0040]

서, DC 바이어스가 기판 스테이지 (120) 에 인가될 수 있다.  또 다른 실시예에서, 기판 스테이지 (120) 는

프로세싱 시스템 (104) 으로부터 전기적으로 격리될 수 있다.  이러한 셋업 (setup) 에서, 플라즈마가 온(O

N)일 때,기판 스테이지 (120) 및 기판 (125) 상에 플로팅 전위가 형성될 수 있다.

도 2f 는 본 발명의 일 실시예에 따른 게이트 유전체 스택을 변형시키는 플라즈마 프로세싱 시스템을 도시한[0041]

다.  도 2c 를 참조하여 설명한 컴포넌트들에 부가하여, 도 2f 의 프로세싱 시스템 (105) 은, RF 전력이 임피

던스 매치 네트워크를 통해 RF 발생기 (185) 를 거쳐 결합되어 있는 유도 코일 (195) 을 추가로 포함한다.

RF 전력은 유도 코일 (195) 로부터 유전 윈도우 (도시되지 않음) 를 통해 플라즈마 프로세싱 영역 (160) 에

유도적으로 결합되어 있다.  유도 코일 (195) 에 대한 RF 전력의 인가를 위한 주파수는 약 0.1 MHz 내지 약

100 MHz 의 범위일 수 있고 약 13.6 MHz 일 수 있다.  유사하게, 기판 스테이지 (120) 에의 전력의 인가를 위

한 주파수는 약 0.1 MHz 내지 약 100 MHz 의 범위일 수 있고 약 13.6 MHz 일 수 있다.  게다가, 슬롯 파라데

이 실드 (도시되지 않음) 를 사용하여 유도 코일 (195) 과 플라즈마 사이의 용량 결합을 감소시킬 수 있다.

또한, 컨트롤러 (155) 가 RF 발생기 (185) 및 임피던스 매치 네트워크 (190) 에 결합되어 유도 코일 (195) 에

대한 전력의 인가를 제어할 수 있다.

본 발명의 일 실시예에서, 도 2f 에서의 기판 스테이지 (120) 는 전기적으로 접지될 수 있다.  대안 실시예에[0042]

서는, DC 바이어스가 기판 스테이지 (120) 에 인가될 수 있다.  또 다른 실시예에서, 기판 스테이지 (120) 는

프로세싱 시스템 (105) 으로부터 전기적으로 격리될 수 있다.  이러한 셋업에서는, 플라즈마가 온일 때 기판

스테이지 (120) 및 기판 (125) 상에 플로팅 전위가 형성될 수 있다.

다른 실시예에서, 플라즈마는 ECR (electron cyclotron resonance) 을 사용하여 형성될 수 있다.  또 다른 실[0043]

시예에서, 플라즈마는 헬리콘 파동의 런칭 (launching) 으로부터 형성될 수 있다.  다른 실시예에서, 플라즈

마는 전파하는 표면 파동으로부터 형성될 수 있다.

도 3a 및 도 3b 는 본 발명의 실시예에 따른 산소-함유 플라즈마에 대한 파장의 함수로서 발광 (OE) 강도를[0044]

도시한다.  도 2b 에 개략적으로 도시된 플라즈마 프로세싱 시스템 (101) 을 사용하여 O2 및 Ar 을 함유하는

프로세스 기체로부터 플라즈마를 발생시켰다.  도 3a 는 플라즈마 내의 중성 O
*

 라디칼로부터의 광 방출에 할

당되어 있는 약 844.6 nm 의 파장에서 최대 강도를 갖는 OE 피쳐 (feature)(300) 를 도시한다.  곡선 (310)

은 2 Torr 의 프로세스 기체 압력에 대해 측정된 O
*

 강도를 도시하고, 곡선 (320) 은 50 mTorr 의 프로세스

기체 압력에 대해 측정된 O
*

 강도를 도시한다.  플라즈마 파라미터들은 2000 sccm 의 Ar 기체 유량, 200 sccm
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의 O2 기체 유량, 및 2000 W 의 플라즈마 전력을 추가로 포함했다.  도 3a 는 프로세스 기체 입력의 증가가

플라즈마 내의 중성 O
*

 라디칼의 분량을 증가시킨다는 것을 도시한다.

도 3b 는 플라즈마 내의 이온성 O2
+

 라디칼로부터의 광 방출에 할당되어 있는 약 282 nm 내지 약 283 nm 의 파[0045]

장에서 최대 강도를 갖는 OE 피쳐 (330) 를 도시한다.  곡선 (340) 은 2 Torr 의 프로세스 기체 압력에 대해

측정된 O2
+

 강도를 도시하고, 곡선 (350) 은 50 mTorr 의 프로세스 기체 압력에 대해 측정된 O2
+

 강도를 도시

한다.  다른 플라즈마 파라미터들은 도 3a 에서와 동일하였다. 도 3b 는 프로세스 기체 입력의 증가가 플라즈

마 내의 이온성 O2
+

 라디칼의 분량을 감소시킨다는 것을 도시한다.

요약하면, 도 3a 및 도 3b 는 산소-함유 플라즈마 내에서의 이온성 O2
+

 라디칼에 대한 중성 O
*

 라디칼의 상대[0046]

적인 분량이 프로세스 기체 압력을 변화시킴으로써 넓은 범위에 걸쳐 제어될 수 있음을 도시한다.  구체적으

로는, 프로세스 기체 압력이 높으면, 이온성 O2
+

 라디칼의 분량에 대해 중성 O
*

 라디칼의 분량이 증가된 산소-

함유 플라즈마를 발생시킬 수 있다.  약 50 mTorr 의 저압에서 O
*

/O2
+

 비율은 약 10 이고 약 2 Torr 의 고압에

서 O
*

/O2
+

 비율은 약 114 임을 추정한다.

도 4a 및 도 4b 는 본 발명의 일 실시예에 따른 플라즈마 변형된 게이트 유전체 스택에 전기적인 특성을 도시[0047]

한다.  도 4a 는 게이트 전압의 함수로서 플라즈마 변형된 게이트 유전체 스택의 게이트 전류 밀도를 도시한

다.  곡선 (400) 및 곡선 (410) 은 높은 기체 압력 (2 Torr) 에서 발생된 산소-함유 플라즈마 및 낮은 기체

압력 (50 mTorr) 에서 발생된 산소-함유 플라즈마에 의해 HfSiOx 하이-k 층 (~ 3 nm 두께) 을 변형시킨 이후

의 게이트 누설 전류 밀도 (Jg) 를 각각 도시한다.  도 4a 는 고압 산소-함유 플라즈마를 사용하여 변형된

HfSiOx 하이-k 층이 저압 산소-함유 플라즈마를 사용하여 변형된 HfSiOx 하이-k 층과 거의 일치하는 게이트 전

류 밀도를 갖는다는 것을 도시한다.

도 4b 는 게이트 전압의 함수로서 플라즈마 변형된 게이트 유전체 스택의 용량을 도시한다.  곡선 (420) 및[0048]

곡선 (430) 은 높은 기체 압력에서 발생된 산소-함유 플라즈마 및 낮은 기체 압력에서 발생된 산소-함유 플라

즈마에 의해 HfSiOx 하이-k 층을 변형시킨 이후의 게이트 유전체 스택의 용량 (C) 를 각각 도시한다.  도 4b

는 고압 산소-함유 플라즈마를 사용하여 변형된 HfSiOx 하이-k 층이 저압 산소-함유 플라즈마를 사용하여 변

형된 HfSiOx 층 보다 낮은 용량을 갖는다는 것을 도시한다.

고압 산소-함유 플라즈마를 사용하여 변형되었던 게이트 유전체 스택의 산화막 환산막 두께 (EOT; Equivalent[0049]

oxide thickness) 는 약 1.5 nm 로 추정되었고, 저압 산소-함유 플라즈마를 사용하여 변형되었던 게이트 유전

체 스택의 산화막 환산막 두께 (EOT) 는 약 1.7 nm 로 추정되었다.  도 4a 및 도 4b 의 결과는, 저압 산소-함

유 플라즈마는 하이-k 층의 유효 유전상수를 감소시킴으로써 하이-k 층을 변형시키는 반면, 고압 산소-함유

플라즈마는 계면 산화물층의 두께를 보존하고, 따라서 유전체 스택의 유효 유전상수를 유지한다는 것을 도시

한다.  본 발명자들은 고압 플라즈마는 플라즈마 산화 동안 계면 층 두께 증가를 최소화하고, 층내의 결함을

감소시키고, 산소를 층내에 포함시키고, 층으로부터 탄소 불순물을 제거하고, 또한 저압 플라즈마에 노출된

막 보다 낮은 게이트 누설 전류 밀도를 산출한다라고 믿는다.

또한, 도 4a 에서의 Jg 는 고온에서 어닐링되었던 하이-k 층들과 동등하다.  따라서, 본 발명의 실시예들은,[0050]

계면 산화물 층의 두께를 증가시킬 수 있는 고온 열 공급을 최소화할 수 있는 방법을 제공한다.

도  5a  및  도  5b  는  본 발명의 일 실시예에 따른 질소-함유 플라즈마에 대한 파장의 함수로서 발광 (OE;[0051]

Optical emmision) 강도를 도시한다.  도 2b 에 개략적으로 도시된 플라즈마 프로세싱 시스템 (101) 을 사용

하여 N2 및 Ar 을 함유하는 프로세스 기체로부터 플라즈마를 발생시켰다.  도 5a 는 플라즈마 내의 중성 N2
*

라디칼로부터의 광 방출에 할당되어 있는 약 337 nm 의 파장에서 최대 강도를 갖는 OE 피쳐 (500) 를 도시한

다.  곡선 (510) 은 800 mTorr 의 프로세스 기체 압력에 대해 측정된 N2
*

 강도를 도시하고, 곡선 (520) 은 200

mTorr 의 프로세스 기체 압력에 대해 측정된 N2
*

 강도를 도시한다.  플라즈마 파라미터들은 약 1000 sccm 의
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Ar 기체 유량, 약 10 sccm 의 N2 기체 유량, 및 2000 W 의 플라즈마 전력을 추가로 포함했다.  도 5a 는 800

mTorr 에서 200 mTorr 로의 프로세스 기체 압력의 감소가 플라즈마 내의 중성 N2
*

 라디칼의 분량을 감소시킨다

는 것을 도시한다.

도 5b 는 플라즈마 내의 이온성 N2
+

 라디칼로부터의 발광에 할당되어 있는 약 427.2 nm 의 파장에서 최대 강도[0052]

를 갖는 OE 피쳐 (530) 를 도시한다.  곡선 (550) 은 800 mTorr 의 기체 압력에 대해 측정된 N2
+

 강도를 도시

하고, 곡선 (540) 은 200 mTorr 의 프로세스 기체 압력에 대해 측정된 N2
+

 강도를 도시한다.  다른 플라즈마

파라미터들은 도 5a 에서와 동일하였다.  도 5b 는 프로세스 기체 압력의 감소가 플라즈마 내의 이온성 N2
+

 라

디칼의 분량을 증가시킨다는 것을 도시한다.

요약하면, 도 5a 및 도 5b 는 질소-함유 플라즈마에서의 중성 N2
*

 라디칼에 대한 이온성 N2
+

 라디칼의 상대적[0053]

인 분량은 프로세스 기체 압력을 변화시킴으로써 넓은 범위에 걸쳐 제어될 수 있다는 것을 도시한다.  구체적

으로, 낮은 프로세스 기체 압력은 중성 N2
*

 라디칼의 분량에 대해 이온성 N2
+

 라디칼의 분량이 증가된 질소-함

유 플라즈마의 발생을 허용한다.

도 6a 는 플라즈마 조건의 함수로서 및 층 깊이의 함수로서 본 발명의 일 실시예에 따른 게이트 유전체 스택[0054]

에서의 질소 농도 프로파일을 도시한다.  기판 상에 증착된 ~3 nm 두께의 HfSiOx 하이-k 층을 포함하는 게이

트 유전체 스택을 N2 및 Ar 을 함유하는 프로세스 기체로부터 발생된 질소-함유 플라즈마에 노출시켰다.  Si-

N 비율 (fraction) 은 질화된 계면층의 상대적인 분량을 나타낸다.  Si-N 비율은 ToF-SIMS (time-of-flight

secondary ion mass spectroscopy) 및 스퍼터 뎁스 프로파일링 (sputter depth profiling) 에 의해 측정되었

다.  곡선들 (610, 620, 630, 및 640) 은 상이한 플라즈마 조건에 대한 플라즈마 변형된 게이트 유전체 스택

에서의 Si-N 비율을 도시한다.  플라즈마 내에서의 중성 질소 라디칼에 대한 이온성 질소 라디칼의 비율 (R)

은 곡선 (610) 으로부터 곡선 (640) 까지 감소한다. 

도 6a 는 플라즈마 내에서의 보다 높은 분량의 이온성 질소 라디칼 (즉, R610) 이 게이트 유전체 스택 내부로[0055]

의 질소 포함을 증가시키고 보다 얇은 질화된 계면층을 형성하였다는 것을 도시한다.  곡선들 (610, 620, 및

640) 의 최대 강도에 각각 대응하는 마커들 (612, 622, 및 642) 에 의해 도시된 바와 같이, 플라즈마 내에서

의 이온성 라디칼의 분량의 증가에 따라 최대 질소 함량의 위치 (깊이) 가 감소되었다. 

도 6b 는 플라즈마 노출 시간의 함수로서 및 층 깊이의 함수로서 본 발명의 일 실시예에 따른 게이트 유전체[0056]

스택의 질소 함량을 도시한다.  게이트 유전체 스택의 질소 함량은 플라즈마 노출 시간의 증가에 따라 증가되

었다.

도 7 은 본 발명의 일 실시예에 따른 게이트 유전체 스택을 변형시키는 흐름도이다.  상기 방법은 기판 상의[0057]

계면층의 성장을 최소화하면서 게이트 유전체 스택을 변형시키고 하이-k 층의 특성들을 향상시키는 플라즈마

프로세스를 사용한다.  프로세스 (700) 은 710 에서 시작된다.  720 에서, 하이-k 층을 포함하는 게이트 유전

체 스택이 기판 상에 제공된다.  본 발명의 일 실시예에서, 상기 기판은 기판과 하이-k 층 사이에 위치되는

계면층을 포함할 수 있다.  730 에서, 플라즈마는 불활성 기체 및 산소-함유 기체, 또는 불활성 기체 및 질소

-함유 기체를 포함하는 프로세스 기체로부터 발생되고, 상기 프로세스 기체 압력은 플라즈마 내에서의 이온성

라디칼의 분량에 대한 중성 라디칼의 분량을 제어하도록 선택되어 있다.

본 발명의 일 실시예에서, 플라즈마는, 730 에서, 불활성 기체 및 산소-함유 기체를 포함하는 프로세스 기체[0058]

로부터 발생되고, 높은 프로세스 기체 압력은 플라즈마 내에서의 이온성 산소 라디칼의 분량에 대한 중성 산

소 라디칼의 분량을 증가시키도록 선택되어 있다.  고압 산소-함유 플라즈마는, 하이-k 층의 결함을 감소시키

고, 하이-k 층에 산소를 포함시키고, 또한 하이-k 층으로부터 탄소 불순물들을 제거하는 것을 통해 하이-k 층

의 유전상수를 증가시킴으로써 게이트 유전체 스택을 변형시킬 수 있다.

본 발명의 다른 실시예에서, 플라즈마는 730 에서 불활성 기체 및 질소-함유 기체를 포함하는 프로세스 기체[0059]

로부터 발생되고, 낮은 프로세스 기체 압력은 플라즈마 내에서의 중성 질소 라디칼의 분량에 대한 이온성 질

소 라디칼의 분량을 증가시키도록 선택되어 있다.  저압 질소-함유 플라즈마는 게이트 유전체 스택의 질소 함
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량을 증가시킬 수 있고 얇은 질화된 계면층을 형성할 수 있다.

740 에서, 게이트 유전체 스택을 고압 산소-함유 플라즈마 또는 저압 질소-함유 플라즈마에 노출시킴으로써[0060]

상기 게이트 유전체 스택이 변형된다.  플라즈마 노출을 소망하는 시간 동안 실시하여 게이트 유전체 스택을

변경시켰으면, 750 에서 프로세스가 종료된다.  일 실시예에서, 스택은 약 5초 내지 약 60초의 기간 동안 산

소 함유 플라즈마에 노출된다.  다른 실시예에서, 스택은 약 60초 내지 약 300초의 기간 동안 질소 함유 플라

즈마에 노출된다.  어느 실시예에서도, 기판은 변경동안 약 150℃ 내지 약 450℃의 온도에서 유지될 수도 있

다.

본 발명의 또 다른 실시예에서는, 게이트 유전체 스택이 고압 산소-함유 플라즈마에 노출됨으로써 변형될 수[0061]

있고, 여기에서 상기 플라즈마는 플라즈마 내에서의 이온성 산소 라디칼의 분량에 대해 증가된 분량의 중성

산소 라디칼을 포함하며, 후속으로, 얻어지는 게이트 유전체 스택이 저압 질소-함유 플라즈마에 노출됨으로써

추가로 변형될 수 있고, 여기에서 상기 플라즈마는 플라즈마 내에서의 중성 질소 라디칼의 분량에 대해 증가

된 분량의 이온성 질소 라디칼을 포함한다.  달리 표현하면, 730 및 740 이 고압 산소-함유 플라즈마를 사용

하여 첫번째로 수행되고, 그 다음으로 730 및 740 이, 도 7 의 점선으로 나타낸 바와 같이, 저압 질소-함유

플라즈마를 사용하여 두번째로 수행되고, 그 다음으로 750 에서 프로세스가 종료된다.

본 발명의 또 다른 실시예에서는, 게이트 유전체 스택이 저압 질소-함유 플라즈마에 노출됨으로써 변형될 수[0062]

있고, 여기에서 상기 플라즈마는 플라즈마 내에서의 중성 질소 라디칼의 분량에 대해 증가된 분량의 이온성

질소 라디칼을 포함하며, 후속으로, 얻어지는 게이트 유전체 스택이 저압 질소-함유 플라즈마에 노출됨으로써

추가로 변형될 수 있고, 여기에서 상기 플라즈마는 플라즈마 내에서의 이온성 산소 라디칼의 분량에 대해 증

가된 분량의 중성 산소 라디칼을 포함한다.  달리 표현하면, 730 및 740 이 저압 질소-함유 플라즈마를 사용

하여 첫번째로 수행되고, 그 다음으로 730 및 740 이, 도 7 의 점선으로 나타낸 바와 같이, 고압 산소-함유

플라즈마를 사용하여 두번째로 수행되고, 그 다음으로 750 에서 프로세스가 종료된다.

당업자에 의해 용이하게 이해되는 바와 같이, 상술된 고압 산소-함유 플라즈마 프로세스 및 저압 질소-함유[0063]

플라즈마 프로세스는 클러스터 툴 (tool) 내의 동일한 플라즈마 프로세싱 시스템에서 순차적으로 수행될 수

있고, 또는 대안으로 이들 프로세스들은 동일한 클러스터 툴 내의 상이한 플라즈마 프로세싱 시스템에서 수행

될 수 있다.  상기 클러스터 툴은, 상기 클러스터 툴 내에서 기판들을 전송하도록 구성된 기판 전송 시스템,

및 상기 클러스터 툴의 컴포넌트들을 제어하도록 구성된 컨트롤러를 추가로 포함할 수 있다.

본 발명을 실행할 때 본 발명의 다양한 변형 및 변동이 사용될 수 있음에 유의해야 한다.  그러므로 첨부된[0064]

특허청구범위 내에서, 본 발명은 여기에 구체적으로 설명된 것과 달리 실행될 수 있음이 이해될 것이다.

도면의 간단한 설명

첨부된 도면에서,[0010]

도 1a 는 본 발명의 일 실시예에 따른 하이-k 층을 포함하는 게이트 유전체 스택을 도시하고;[0011]

도 1b 는 본 발명의 일 실시예에 따른 하이-k 층 및 계면층을 포함하는 게이트 유전체 스택을 도시하고;[0012]

도 2a 내지 도 2f 는 본 발명의 실시예들에 따라 게이트 유전체 스택을 변형시키는 플라즈마 프로세싱 시스템[0013]

들의 개략적인 다이어그램이고;

도 3a 및 도 3b 는 본 발명의 일 실시예에 따른 산소-함유 플라즈마에 대한 파장의 함수로서 발광 (OE) 강도[0014]

를 도시하고;

도 4a 및 도 4b 는 본 발명의 일 실시예에 따른 플라즈마 변형된 게이트 유전체 스택의 전기적인 특성들을 도[0015]

시하고;

도 5a 및 도 5b 는 본 발명의 일 실시예에 따른 질소-함유 플라즈마에 대한 파장의 함수로서 OE 강도를 도시[0016]

하고;

도 6a 는 본 발명의 일 실시예에 따른 플라즈마 조건의 함수로서 및 층 깊이의 함수로서 게이트 유전체 스택[0017]

에서의 질소 농도 프로파일을 도시하고;

도 6b 는 본 발명의 일 실시예에 따른 플라즈마 노출 시간의 함수로서 및 층 깊이의 함수로서 게이트 유전체[0018]

스택에서의 질소 농도 프로파일을 도시하고; 또한
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도 7 은 본 발명의 일 실시예에 따른 게이트 유전체 스택을 변형시키는 흐름도이다.[0019]
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