wo 2014/120467 A1 |[IN I N0F V00O Y O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/120467 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

7 August 2014 (07.08.2014) WIPOIPCT
International Patent Classification:
GO6F 17/30 (2006.01)
International Application Number:
PCT/US2014/011910

International Filing Date:
16 January 2014 (16.01.2014)

Filing Language: English
Publication Language: English
Priority Data:

13/755,250 31 January 2013 (31.01.2013) US

Applicant: UNICORN MEDIA, INC. [US/US]; 24 West
5th Street, Tempe, Arizona 85281 (US).

Inventor: JOHNSON, Matthew A.; 24 West 5th Street,
Tempe, Arizona 85281 (US).

Agents: MCMILLAN, Scott et al.; Eighth Floor, Two
Embarcadero Center, San Francisco, CA 94111 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(84)

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(34

310f

320f

Title: DATABASE SHARD ARBITER

Player API

Record API Aggregator

Other
requester(s)
Shard Arbiter

i

Database Database Database
1 2 * o 0 n

350J/

T_l

330I

S S

340-1 340-2 340-n

300/‘f

FIG. 3

(57) Abstract: Techniques described herein provide for a shard arbiter to act
as an intermediary between querying and/or data-inserting applications and
sharded databases. The shard arbiter can provide an interface with which the
applications can provide a request (e.g., data insert and/or query) in any of a
variety of database languages, and the data is inserted into and/or retrieved
from sharded databases without the need for customization or any know-
ledge of how data is sharded. The shard arbiter can use business rules to de-
termine how data is sharded among databases, and may utilize different
types of databases-communicating with each database in its native language.

10

15

20

25

WO 2014/120467 PCT/US2014/011910

DATABASE SHARD ARBITER
BACKGROUND OF THE INVENTION

The ubiquity of networked sensors, computers, mobile devices, and other
electronic devices has caused vast increases in the amount of data gathered and stored by
these connected devices. These increases can cause many systems to exceed the limits for
which databases and other data structures are designed. One way to address this issue is to
“shard” the data, partitioning the data among several databases. Such sharding, however,
typically involves inflexible customization that requires customized database commands

reflecting a knowledge of how the data is sharded.

BRIEF SUMMARY OF THE INVENTION

The systems and methods disclosed provide a technical solution for managing
large amounts of data. A shard arbiter to act as an intermediary between querying and/or
data-inserting applications and sharded databases. The shard arbiter can provide an
interface with which the applications can provide a request (e.g., data insert and/or query)
in any of a variety of database languages, and the data is inserted into and/or retrieved
from sharded databases without the need for customization or any knowledge of how data
is sharded. The shard arbiter can use business rules to determine how data is sharded
among databases, and may utilize different types of databases—communicating with each

database in its native language.

An example method of database request management, according to the description,
includes receiving, via a network interface, a database request. The database request
comprises a first database command and metadata related to the first database command.
The method further comprises determining one or more business rules associated with the
database request, based on the metadata, determining, based on the one or more business
rules, a plurality of databases related to the database request, and formulating, with a
processor, a plurality of database commands based on the one or more business rules.
Each database command of the plurality of database commands corresponds with a
database of the plurality of databases and is determined based on the first database

command. The method also includes, for each database command of the plurality of

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

database commands, sending the database command to the database to which it

corresponds.

An example server providing database request management, according to the
description, can include a communications interface, a memory, and a processing unit
communicatively coupled with the memory and the communications interface. The
processing unit is configured to perform functions including receiving, via the
communications interface, a database request. The database request comprises a first
database command and metadata related to the first database command. The processing
unit is also configured to perform functions including determining one or more business
rules associated with the database request, based on the metadata, determining, based on
the one or more business rules, a plurality of databases related to the database request, and
formulating a plurality of database commands based on the one or more business rules.
Each database command of the plurality of database commands corresponds with a
database of the plurality of databases, and is determined based on the first database
command. The processing unit is configured to, for each database command of the
plurality of database commands, send, via the communications interface, the database

command to the database to which it corresponds.

An example non-transitory computer-readable medium, according to the
disclosure, has instructions imbedded thereon providing database request management.
The computer-readable medium includes instructions for receiving a database request.
The database request comprises a first database command and metadata related to the first
database command. The computer-readable medium also includes instructions for
determining one or more business rules associated with the database request, based on the
metadata, determining, based on the one or more business rules, a plurality of databases
related to the database request, and formulating a plurality of database commands based
on the one or more business rules. Each database command of the plurality of database
commands corresponds with a database of the plurality of databases and is determined
based on the first database command. The computer-readable medium also includes
instructions for sending, for each database command of the plurality of database

commands, the database command to the database to which it corresponds.

Items and/or techniques described herein may provide one or more of the

following capabilities, as well as other capabilities not mentioned. As indicated

WO 2014/120467 PCT/US2014/011910

previously, techniques allow an entity to send standard database commands to a shard
arbiter that can run the commands against sharded databases, without requiring the entity
to have any knowledge of how data is sharded. The shard arbiter can further be database
agnostic, receiving database commands in any database language, and working with data
shards among different types of databases. These and other embodiments, along with
many of its advantages and features, are described in more detail in conjunction with the

text below and attached figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is described in conjunction with the appended figures:

FIG. 1 is a simplified illustration of how shards can be generated from one or more

data objects.

FIG. 2 is a block diagram illustrating an example media servicing system

configured to deliver media content to a client.

FIG. 3 is a simplified block diagram of a sharding system utilizing a shard arbiter,

according to one embodiment.

FIG. 4 is a functional block diagram illustrating various functional features of a

shard arbiter, according to one embodiment.

FIG. 5 is a swim-lane diagram illustrating generic interactions between a shard

arbiter, a requester, and one or more databases, according to one embodiment.

FIG. 6 is a simplified flow chart illustrating a method of database request

management using the techniques described herein, according to one embodiment.
FIG. 7 illustrates an embodiment of a computer system.

In the appended figures, similar components and/or features may have the same
reference label. Further, various components of the same type may be distinguished by
following the reference label by a dash and a second label that distinguishes among the
similar components. If only the first reference label is used in the specification, the
description is applicable to any one of the similar components having the same first

reference label irrespective of the second reference label.

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

DETAILED DESCRIPTION OF THE INVENTION

The ensuing description provides preferred exemplary embodiment(s) only, and is
not intended to limit the scope, applicability or configuration of the disclosure. Rather, the
ensuing description of the preferred exemplary embodiment(s) will provide those skilled
in the art with an enabling description for implementing a preferred exemplary
embodiment. It is understood that various changes may be made in the function and
arrangement of elements without departing from the spirit and scope as set forth in the

appended claims.

Increases in bandwidth associated with data communication networks such as the
Internet and increases in the processing power and application functionality of connected
devices (servers, computers, mobile devices, etc.) have caused similar increases in the
amount of data gathered and stored by these connected devices. This increase in data has
caused many systems to exceed the limits for which databases and other data structures are

designed, spurring the need for so-called “big data solutions”.

Big data solutions help systems gather, store, and manage data sets that are
generally too large to be efficiently processed using traditional data processing
applications. As these data sets are becoming increasingly common due to the ubiquity of
data-sensing and data-processing devices, the need for such big data solutions becomes
increasingly more apparent. Problematically however, big data is difficult to work with

using traditional methods, such as relational databases.

One method of handling a large amount of data that may be too large for a single
database to manage is to separate the data into various partitions, called “shards,” and
handling the shards separately. FIG. 1 is a simplified illustration of how shards can be
generated from one or more data objects 110. Here, the data object(s) 110 can be
partitioned, or “sharded,” into n shards. Depending on desired functionality, shards can
comprise mutually-exclusive partitions of data that are collectively exhaustive, such that
they can replicate the original data object(s) 110 when combined properly. The shards can
be managed and stored in separate databases. (As used herein, the term “shard” can refer
to a partition of data and/or a database in which the partition is stored. Furthermore, the
term “sharded databases” refers to databases storing shards in a sharded data system.)
Thus, by partitioning the data object(s) 110 into different shards 120 this manner, cach

database stores and maintains a manageable portion of the overall data.

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

Separating and combining the shards 120, however, can be difficult. Often, such
sharding is part of a customized solution in which a requesting entity must make requests
(such as data insertion, querying, and/or other data manipulation) using database
commands of a particular database language. Additionally, customized solutions often
require that the requesting entity has specialized knowledge of the particular methods of
sharding and/or the databases in which data shards are located, to allow the requesting
entity to separate and/or combine the shards 120 properly. Furthermore, such customized
solutions are often limited in the type of databases that may be integrated into the system,
and often take significant amounts of rework to integrate new databases into the system.
Accordingly, these customized data sharding systems can be problematic in applications in
which there might be multiple requesting entities and/or multiple data types. The system
of FIG. 2 illustrates an example of one such application in which data sharding can be

utilized.

FIG. 2 is a block diagram illustrating a media servicing system 200 configured to
deliver media content to a client 245, executed by an end user device 240 providing media
playback to an end user. The client 245 can be, for example, a media player, browser, or
other application adapted to request and/or play media files. The media content can be
provided via a network such as the Internet 270 and/or other data communications
networks, such as a distribution network for television content. The end user device 240
can be one of any number of devices configured to receive media over the Internet 270,
such as a mobile phone, tablet, personal computer, portable media device, set-top box,
video game system, etc. It will be understood that the media servicing system 200
illustrated in FIG. 2 is provided as an example, and other media servicing systems can
omit, add, and/or substitute components, depending on desired functionality. Furthermore,
as indicated above, media servicing is only one application in which the data sharding

techniques disclosed herein can be utilized.

In the media servicing system 200, a media file provided by one or more media
providers 230 can be processed and indexed by cloud-hosted integrated multi-node
pipelining system (CHIMPS) 210. The media file may be stored on media file delivery
service provider (MFDSP) 250, such as a content delivery network, media streaming
service provider, cloud data services provider, or other third-party media file delivery
service provider. Additionally or alternatively, the CHIMPS 210 may also be adapted to

store the media file.

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

A content owner 220 can utilize one or more media provider(s) 230 to distribute
media content owned by the content owner 220. For example, a content owner 220 could
be a movie studio that licenses distribution of certain media through various media
providers 230 such as television networks, Internet media streaming websites and other
on-demand media providers, media conglomerates, and the like. One or more ad
network(s) 260 may also be used provide advertisements, which can be shown at certain

times before, after, and/or during playback of the media file.

The CHIMPS 210 can further manage the processing and syndication of media
received from the media provider(s) 230. For example, the CHIMPS 210 can provide
transcoding and other services to enable media provided by the media provider(s) to be
distributed in a variety of formats to a variety of different device types in a variety of
locations. Additionally, it can be noted that various functions, operations, processes, or
other aspects that are described in this example, and other examples, as being performed
by or attributable to the CHIMPS 210 can be performed by another system operating in
conjunction with the CHIMPS 210, loosely or tightly synchronized with the CHIMPS 210,
or independently; for example, collecting data from other digital services to be combined
and reported with data collected by the CHIMPS 210 can, in some implementations, be
performed by a system other than the CHIMPS 210. Additional detail regarding the
functionality of the CHIMPS 210 can be found in in U.S. Patent Application No.
23/624,029, entitled “Dynamic Chunking for Delivery Instances,” which is incorporated

by reference herein in its entirety.

In some embodiments, the CHIMPS 210 is able to gather and provide analytical
data to the media provider(s) 230 and/or content owner 220 regarding the media’s
syndication, including user behavior during media playback. For example, the CHIMPS
210 can provide information indicating that end users tend to stop watching a video at a
certain point in playback, or that users tended to follow links associated with certain
advertisements displayed during playback. With this data, media provider(s) 230 can
adjust factors such as media content, advertisement placement and content, etc., to
increase revenue associated with the media content and provide the end user device 240

with a more desirable playback experience.

Although only one client 245 and one end user device 240 are shown in FIG. 2, it

will be understood that the media servicing system 200 can provide media to many

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

(hundreds, thousands, millions, etc.) clients 245 and end user devices 240. Moreover, the
media servicing system 200 can be configured to provide the many (hundreds, thousands,
millions, etc.) media assets to any or all of the clients 245. Accordingly, to effectively
store and manage the vast amount of resulting analytical data, the CHIMPS 210 may
utilize data sharding and/or other big data solutions. Here, however, because of the large
variety different media provider(s) 230 and/or other requesting entities, the previously-
described customized sharding solutions may not provide sufficient flexibility to adapt to
the needs of the requesting entities. With this in mind, embodiments herein are directed

to a shard arbiter that can be utilized to provide a flexible sharding solution.

FIG. 3 is a simplified block diagram of a sharding system 300 utilizing a shard
arbiter 330, described in more detail below. In this embodiment, in addition to the shard
arbiter 330, the sharding system includes a player application programming interface
(API) 310, record API 320, aggregator 350, other requester(s) 360, and a plurality of
databases. Other embodiments may include other components, depending on the
application and desired functionality. Components may be implemented using hardware
and/or software on one or more computing devices, such as one or more servers of the
CHIMPS 210 of FIG. 2. These computing devices can include the computer system 700
of FIG. 7, described below. Components may be combined, separated, substituted,
omitted, and/or added, as needed. Databases 340 may be local to and/or remote from the
shard arbiter 303. Moreover, one or more databases 340 may by hosed by a requesting
entity, such as a media provider 230. A person of ordinary skill in the art will recognize

various modifications.

The player API 310 can perform any of a variety of functions, depending on
desired functionality. In some embodiments, the player API 310 provides media chunks
and/or other information to clients 245 related to the playback of media files. The player
API 310 can also gather analytics data based on the delivery of this information and/or
information transmitted from the clients 245. The player API 310 can then store the

analytics data on a local directory.

The player API 310 can then, periodically and/or based on a triggering event
and/or schedule, post the stored analytics data. Data can be preliminarily sorted by, for

example, a media provider 230 or other requesting entity, and provided to the record API

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

320. In one embodiment, the player API 310 posts media provider-specific JavaScript
Object Notation (JSON) files to the record API 320.

The record API 320 then receives the analytics data from the player API 310 and
routes the data accordingly. When the analytics data is to be stored in at least one of the
databases 340, the record API 320 can provide the data to the shard arbiter 330. In
addition to the data, the record API 320 can provide the shard arbiter 330 with metadata,
such as a key and/or some other identifier by the shard arbiter 330 can use to identify and
shard the data into the separate databases 340, providing each database 340 with its
respective shard of data using the appropriate language of that particular database 340.

Periodically and/or based on a triggering event and/or schedule, the aggregator 350
can aggregate data stored in the databases 340 into a summary across different parameters,
according to desired functionality. The aggregator 350 can utilize the shard arbiter 330 to
aggregate data, for example, for a particular media provider 230. To do so, the aggregator
350 can provide the shard arbiter with a query in a database language (e.g., SQL) to
summarize the data for that particular media provider 230 in accordance with desired
parameters for the summary. Additionally, the aggregator 350 can provide the shard
arbiter 330 with logic by which the shard arbiter 330 can create one or more data objects
for the aggregator 350. Thus, after receiving the query and logic from the aggregator 350,
the shard arbiter 330 can use the query to determine the desired data and identify the
databases in which the data is stored. The shard arbiter 330 can then query the different
respective databases 340 to gather the desired data, then group the data into one or more

data objects for the aggregator 350 based on the logic provided by the aggregator 350.

In sum, the shard arbiter 330 can act as the arbiter for how any data is stored and
queried across the databases 340. The aggregator 350 can, for example, use the shard
arbiter 330 to store the summarized data it received from the shard arbiter. (When storing
the summarized data, as with other data, the shard arbiter 330 may not need to parse the
data into different shards. That is, only one shard may be needed.) Other requester(s)
360, which can include applications internal and/or external to the CHIMPS 210, can use
the shard arbiter to retrieve data for reporting analytical data to the media provider(s) 230

and/or other entities.

Because the shard arbiter 330 acts as an intermediary between the databases 340

and the record API 320, aggregator 350, and other requester(s) 360, the record API 320,

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

aggregator 350, and other requester(s) 360 do not need to have any knowledge of the
database structure. Thus, as databases 340 are added, updated, or removed, the record API
320, aggregator 350, and other requester(s) 360 to not need to be reprogrammed to

accommodate the database changes.

FIG. 4 is a functional block diagram of the shard arbiter 330 illustrating various
functional features of the shard arbiter 330. Again, the shard arbiter 330 can be
implemented in software and/or hardware of a computer system, such as the computer
system 700 described in relation to FIG. 7. As with other figures provided herein, FIG. 4
is provided only as an example embodiment. Other embodiments of a shard arbiter may

include different functions, based on application.

The shard arbiter 330 can include translating 410, sharding 430, and collating 440
functions, each of which can be informed by business logic 420, which is based on certain
business rules 425. Thus, when the shard arbiter 330 receives a request, such as a data

insert or query, it can use the business logic 420 to determine how to handle the request.

The business logic 420 can be based on metadata provided with requests. The
metadata can include, for example, a customer identifier, a time of day, a type of data, and
the like. Business rules can dictate how the request is to be processed, given the metadata
provided, which can inform the various functions of the shard arbiter 330. For example,
the business rules can include one or more connection strings indicating the database(s) to

which data is to be queried and/or inserted if the business rules are satisfied.

In a further example, sharding 430 can be based on a business rule indicating data
for a certain customer of a certain type is to be sharded into certain databases 340.
Collating 440 can perform the same in reverse by combining data from different databases
based on business rules indicating how the data was sharded. The shard arbiter 330 can
receive and respond to requests from various entities via the communications interface

450.

Translating 410 is also based on how data is sharded. Here, translating 410 can
comprise receiving a query and determining how the relevant data is sharded. The shard
arbiter 330 can then formulate queries to the relevant databases based on the query
received, translating the queries when necessary into the language used by each of the
relevant databases. For example, the shard arbiter may receive a query in SQL for data

that is stored in different types of databases (e.g., NoSQL, MySQL, etc.) that may utilize

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

different query languages. Accordingly, the shard arbiter 330 will translate the SQL query
as needed to provide a query to each relevant database in its respective language.
Furthermore, some “translating” may be needed even when an output query is in the same
language as an input query, because the query may need to be formulated differently,
based on how the data is sharded. The input query may comprise any of a variety of query
languages. The language of the input query can be determined by business rules (e.g.,
customer A uses query language B), using an identifier in the metadata, and/or parsing the
query itself. Similar translating can be performed on database commands other than

queries.

As an illustrative example in which the sharding system 300 is part of a CHIMPS
210, the player API 310 can receive vast amounts of data regarding the playback of
various media files. In particular, as end users play, pause, rewind, fast-forward, etc.
through media and/or ad content, clients provide data indicative of this behavior to the
player API 310 (e.g., periodically and/or on an event-triggered basis), which gathers the
data and stores it in a local directory. Each piece of data is tagged with a visitor globally
unique identifier (GUID), which is unique to each client 245 during the playback of a
media file. Every 5 minutes, the player API posts a JSON file to the record API 320 with
all the data for Broadcasting Company X (a media provider 230). The record API 320
determines the data should be routed to the shard arbiter 330, and provides the shard
arbiter with the data, along with metadata indicating the data is for Broadcasting Company
X and where in the data the visitor GUID can be located. The shard arbiter 330 then uses
business logic 420 to shard the data based on a Business Rule Z, which dictates that data
tagged with a visitor GUID beginning with numbers 0-3 is to be sent to database 1 340-1,
data tagged with a visitor GUID beginning with numbers 4-7 is to be sent to database 2
340-2, and so on, such that all data is routed to a database. When the aggregator 350
subsequently sends a query to the shard arbiter 330 for summarized information for
Broadcasting Company X, the shard arbiter 330 can query each of the respective databases
using their respective query languages and collate the results, based on the knowledge that

the data is sharded according to Business Rule Z.

Although examples above discuss the shard arbiter 330 as used in a media
servicing system (e.g., as part of a CHIMPS 210), embodiments are not so limited.
Techniques disclosed herein for providing a shard arbiter or similar functionality can offer

sharding solutions for any of a variety of applications requiring data management.

10

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

FIG 5 is a swim-lane diagram illustrating generic interactions between a shard
arbiter 330, a requester, and one or more databases 340, according to one embodiment.
The shard arbiter 330, requester, and/or database(s) 340 can be configured in the manner
shown in FIG. 3, for example, where the requestor can be the record API 320, Aggregator
350, and/or other requester(s) 360, and database(s) 340 can include all or a subset of the n
databases 340 illustrated in FIG 3. A person having ordinary skill in the art will recognize
many alterations and modifications, which can be brought about when the shard arbiter is

utilized in applications other than media servicing.

At block 505, the requestor sends a request to the shard arbiter 330. The request
can include a command to be run against a database, such as a data insert and/or data
query. The request can further include metadata and, for data insertion, one or more data
objects. The requester can include a local application, such as an application executed by
a computer in the same local network as the shard arbiter. For that matter, where the shard
arbiter 330 is implemented on a single computer, the requesting application may be
executed by the same computer. In other configurations, the requester may be an entity

transmitting the request remotely via, for example, the Internet.

At block 510, the request is received by the shard arbiter 330, which then
determines related business rules at block 515. Business rules can vary, and may be
determined from the metadata provided in the request. Furthermore, business rules may
be specific to a particular entity for which the data is gathered, dictating, for example, the
type of database with which certain data is stored based on the entity’s preferences.
Additionally or alternatively, business rules can be based on any number of factors, such

as database availability, data type, logic provided in the request, and the like.

At block 520, the shard arbiter 330 formulates database command(s) 520. The
database command(s) can be based on the request and the database(s) involved (which can
be identified based on the related business rules). Furthermore, the shard arbiter can
effectively “translate” the request by formulating the database command(s) in the

language(s) utilized by the database(s).

Optionally, where data is to be inserted into the database(s), the shard arbiter 330
shards the data in accordance with business rules at block 525. The sharding can be
performed in any of a variety of ways, depending on desired functionality, and may not

involve any virtual separation of the sharded data, but rather supplying the database(s) 340

11

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

with the portions of the data representative of its respective shard. Accordingly, sharding
may be combined with block 530, in which the shard arbiter 330 sends the database

command(s).

Sending database command(s) can also vary, depending on the database(s) 340
involved. Database(s) can be hosted by any of a variety of entities, such as the requesting
entity. In some configurations, one or more database(s) 340 may be stored on the same
computer and/or network as the shard arbiter 330. Furthermore, as indicated previously,
data provided in certain requests may include only one shard, in which case the shard
arbiter may send only one database command. In such a case, the shard arbiter routes the
data to the correct database and provides any translating that may be needed to ensure the

database command is provided in the correct querying language of the database.

At block 535, the database(s) receive the database command(s), which are
executed at block 540. Depending on the type of request (e.g., a query), the database(s)
340 return result(s) at block 545.

Blocks 550-565 may be optional, depending on the type of request and/or if
result(s) are to be returned to the requester. At block 550, the shard arbiter 330 receives
the result(s) from the database(s) 340 and, at block 555, combines the results and prepares
the response. As discussed carlier, the business rules for sharding the data can be used in
reverse to determine how to results from different databases can be combined.
Furthermore, the shard arbiter 330 can provide the result(s) in a preferred format of the
requester. For example, the shard arbiter 330 may form one or more data objects from the
result(s) using a function or other logic provided to the shard arbiter 330 by the requester
in the request at block 505. The response, including the formatted result(s), is sent by the
shard arbiter 330 at block 560, and received by the requester at block 565.

FIG. 6 is a simplified flow chart illustrating a method 600 of database request
management using the techniques described herein, according to one embodiment. The
method 600 can be implemented, for example, by a shard arbiter 330 as described herein
above. As with all other figures provided herein, FIG. 6 is provided as an example and is
not limiting. Various blocks may be combined, separated, and/or otherwise modified,
depending on desired functionality. Furthermore, different blocks may be executed by
different components of a system and/or different systems. Such systems can include the

computer system, described herein below with regard to FIG. 7.

12

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

At block 605, a database request is received, having a first database command and
metadata related to the first database command. The database command can include, for
example, data insertion and/or a database query. The request can be received from any of

a variety of requesting entities, as described previously.

At block 615, one or more business rules associated with the request are
determined based on the metadata of the request. As indicated above, the metadata can
include any type of information, such as a customer identifier, time of day, data type, and
the like, which can be used to determine business rules that can be used to process the
request. The business rules can be used to, at block 625, determine a plurality of databases
related to the request. That is, the business rules can be used to determine how data is
currently sharded and/or how data to be inserted is to be sharded. Moreover, for requests
that include a data insertion, the metadata can identify a portion of the data (such as the
visitor GUID in the example above) that can be used to shard the data. This identification

can be made using, for example, a certain tag in the metadata.

At block 635, a plurality of database commands are formulated, based on the one
or more business rules, where each command corresponds with a database and is
determined based on the first database command. For example, where the first database
command of the request is a query for certain data that is sharded among a plurality of
databases, a plurality of corresponding database commands are formulated to retrieve the
corresponding data from each database of the plurality of databases. Data insertions can
be handled similarly. At block 645, for each of the plurality of database commands, the
database command is sent to the database to which it corresponds, thereby inserting,

retrieving, and/or otherwise manipulating the sharded data according to the request.

It should be noted that FIG. 6 provides only an example method 600 of database
request management. Other embodiments may omit, substitute, or add various procedures
or components as appropriate. For example, for requests in which results are provided,
additional steps can be taken to retrieve, combine, and return the requested results, as
indicated by the optional blocks shown in FIG. 5. A person of ordinary skill in the art will

recognize many alterations to the example method 600 of FIG. 6.

FIG. 7 illustrates an embodiment of a computer system 700, which may be
configured to execute various components described herein using any combination of

hardware and/or software. For example, one or more computer systems 700 can be

13

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

configured to execute the shard arbiter 330, database(s) 340, and/or other components of
the systems described in relation to FIGS. 2-4. FIG. 7 provides a schematic illustration of
one embodiment of a computer system 700 that can perform the methods provided by
various other embodiments, such as the methods described in relation to FIGS. 5-6. It
should be noted that FIG. 7 is meant only to provide a generalized illustration of various
components, any or all of which may be utilized as appropriate. FIG. 7, therefore, broadly
illustrates how individual system elements may be implemented in a relatively separated
or relatively more integrated manner. In addition, it can be noted that components
illustrated by FIG. 7 can be localized to a single device and/or distributed among various

networked devices, which may be disposed at different physical locations.

The computer system 700 is shown comprising hardware elements that can be
electrically coupled via a bus 705 (or may otherwise be in communication, as appropriate).
The hardware elements may include processing unit(s) 710, which can include without
limitation one or more general-purpose processors, one or more special-purpose
processors (such as digital signal processors, graphics acceleration processors, and/or the
like), and/or other processing structure, which can be configured to perform one or more
of the methods described herein, including the methods described in relation to FIGS. 5-6,
by, for example, executing commands stored in a memory. The computer system 700 also
can include one or more input devices 715, which can include without limitation a mouse,
a keyboard, and/or the like; and one or more output devices 720, which can include

without limitation a display device, a printer, and/or the like.

The computer system 700 may further include (and/or be in communication with)
onge or more non-transitory storage devices 725, which can comprise, without limitation,
local and/or network accessible storage. This can include, without limitation, a disk drive,
a drive array, an optical storage device, a solid-state storage device, such as a random
access memory (“RAM?”), and/or a read-only memory (“ROM?”), which can be
programmable, flash-updateable, and/or the like. Such storage devices may be configured
to implement any appropriate data stores, including without limitation, various file

systems, database structures, and/or the like.

The computer system 700 can also include a communications interface 730, which
can include wireless and wired communication technologies. Accordingly, the

communications interface can include a modem, a network card (wireless or wired), an

14

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

infrared communication device, a wireless communication device, and/or a chipset (such
as a Bluetooth™ device, an IEEE 702.11 device, an IEEE 702.15.4 device, a WiFi device,
a WiMax device, cellular communication facilities, UWB interface, etc.), and/or the like.
The communications interface 730 can therefore permit the computer system 700 to be

exchanged with other devices and components of a network.

In many embodiments, the computer system 700 will further comprise a working
memory 735, which can include a RAM or ROM device, as described above. Software
elements, shown as being located within the working memory 735, can include an
operating system 740, device drivers, executable libraries, and/or other code, such as one
or more application programs 745, which may comprise computer programs provided by
various embodiments, and/or may be designed to implement methods, and/or configure
systems, provided by other embodiments, as described herein. Merely by way of example,
one or more procedures described with respect to the method(s) discussed above, such as
the methods described in relation to FIGS. 5-6, might be implemented as code and/or
instructions executable by a computer (and/or a processing unit within a computer); in an
aspect, then, such code and/or instructions can be used to configure and/or adapt a general
purpose computer (or other device) to perform one or more operations in accordance with

the described methods.

A set of these instructions and/or code might be stored on a non-transitory
computer-readable storage medium, such as the storage device(s) 725 described above. In
some cases, the storage medium might be incorporated within a computer system, such as
computer system 700. In other embodiments, the storage medium might be separate from
a computer system (e.g., a removable medium, such as an optical disc), and/or provided in
an installation package, such that the storage medium can be used to program, configure,
and/or adapt a general purpose computer with the instructions/code stored thereon. These
instructions might take the form of executable code, which is executable by the computer
system 700 and/or might take the form of source and/or installable code, which, upon
compilation and/or installation on the computer system 700 (e.g., using any of a variety of
generally available compilers, installation programs, compression/decompression utilities,

etc.), then takes the form of executable code.

It will be apparent to those skilled in the art that substantial variations may be

made in accordance with specific requirements. For example, customized hardware might

15

10

15

20

25

30

WO 2014/120467 PCT/US2014/011910

also be used, and/or particular elements might be implemented in hardware, software
(including portable software, such as applets, etc.), or both. Further, connection to other

computing devices such as network input/output devices may be employed.

As mentioned above, in one aspect, some embodiments may employ a computer
system (such as the computer system 700) to perform methods in accordance with various
embodiments of the invention. According to a set of embodiments, some or all of the
procedures of such methods are performed by the computer system 700 in response to
processing unit(s) 710 executing one or more sequences of one or more instructions
(which might be incorporated into the operating system 740 and/or other code, such as an
application program 745) contained in the working memory 735. Such instructions may
be read into the working memory 735 from another computer-readable medium, such as
one or more of the storage device(s) 725. Merely by way of example, execution of the
sequences of instructions contained in the working memory 735 might cause the
processing unit(s) 710 to perform one or more procedures of the methods described herein.
Additionally or alternatively, portions of the methods described herein may be executed

through specialized hardware.

It should be noted that the methods, systems, and devices discussed above are
intended merely to be examples. It must be stressed that various embodiments may omit,
substitute, or add various procedures or components as appropriate. For instance, it should
be appreciated that, in alternative embodiments, the methods may be performed in an
order different from that described, and that various steps may be added, omitted, or
combined. Also, features described with respect to certain embodiments may be
combined in various other embodiments. Different aspects and elements of the
embodiments may be combined in a similar manner. Also, it should be emphasized that
technology evolves and, thus, many of the elements are examples and should not be

interpreted to limit the scope of the invention.

Terms, “and” and “or” as used herein, may include a variety of meanings that also
is expected to depend at least in part upon the context in which such terms are used.
Typically, “or” if used to associate a list, such as A, B, or C, is intended to mean A, B, and
C, here used in the inclusive sense, as well as A, B, or C, here used in the exclusive sense.
In addition, the term “one or more” as used herein may be used to describe any feature,

structure, or characteristic in the singular or may be used to describe some combination of

16

10

WO 2014/120467 PCT/US2014/011910

features, structures, or characteristics. However, it should be noted that this is merely an
illustrative example and claimed subject matter is not limited to this example.
Furthermore, the term “at least one of” if used to associate a list, such as A, B, or C, can be
interpreted to mean any combination of A, B, and/or C, such as A, AB, AA, AAB,
AABBCCC, etc.

Having described several embodiments, it will be recognized by those of skill in
the art that various modifications, alternative constructions, and equivalents may be used
without departing from the spirit of the invention. For example, the above elements may
merely be a component of a larger system, wherein other rules may take precedence over
or otherwise modify the application of the invention. Also, a number of steps may be
undertaken before, during, or after the above elements are considered. Accordingly, the

above description should not be taken as limiting the scope of the invention.

17

WO 2014/120467 PCT/US2014/011910

WHAT IS CLAIMED I8S:

1. A server providing database shard arbitration among a plurality of
databases, the server comprising:
a communications interface;
a memory; and
a processing unit communicatively coupled with the memory and the
communications interface, the processing unit configured to perform functions including:
receiving, via the communications interface, a database request,
wherein the database request comprises:
a first database command , and
metadata related to the first database command, wherein the
metadata comprises information indicative of at least one of:
an entity related to the database request,
a time of day, or
a type of data;
determining one or more business rules associated with the database
request, based on the metadata;
determining, based on the one or more business rules, a plurality of
databases related to the database request;
formulating a plurality of database commands based on the one or
more business rules, wherein each database command of the plurality of database
commands:
corresponds with a database of the plurality of databases,
corresponds with a separate portion of data related to the
database request, and
is determined based on the first database command; and
for each database command of the plurality of database commands,
sending, via the communications interface, the database command to the database to

which it corresponds.

18

WO 2014/120467 PCT/US2014/011910

2. The server providing database shard arbitration among a plurality of
databases as recited in claim 1, wherein the processing unit is further configured to
perform functions including:

receiving, in response to sending the database commands, results from the
plurality of databases;

formulating a response to the database request, wherein formulating the
response comprises combining the results from the plurality of databases based on the one
or more business rules; and

sending the response via the communications interface.

3. The server providing database shard arbitration among a plurality of
databases as recited in claim 2, wherein the processing unit is further configured to

formulate the response by creating one or more data objects with the combined results.

4. The server providing database shard arbitration among a plurality of
databases as recited in claim 1, wherein the processing unit is configured to:

receive the database request comprising one or more data objects; and

formulate the plurality of database commands by including, in each
database command of the plurality of database commands, a subset of the one or more

data objects.

5. The server providing database shard arbitration among a plurality of
databases as recited in claim 1, wherein the processing unit is configured to:

communicate with different types of databases; and

for each database command of the plurality of database commands,
formulate the database command in a language of the database to which the database

command corresponds.

6. The server providing database shard arbitration among a plurality of
databases as recited in claim 1, wherein the processing unit is configured to identify, in the
metadata related to the first database command, information indicative of at least one of:

an entity related to the database request,

a time of day, or

a type of data.

19

WO 2014/120467 PCT/US2014/011910

7. A method of providing database shard arbitration among a plurality
of databases, the method comprising;:
receiving, via a network interface, a database request, wherein the database
request comprises:
a first database command, and
metadata related to the first database command, wherein the
metadata comprises information indicative of at least one of:
an entity related to the database request,
a time of day, or
a type of data;
determining one or more business rules associated with the database
request, based on the metadata;
determining, based on the one or more business rules, a plurality of
databases related to the database request;
formulating, with a processor, a plurality of database commands based on
the one or more business rules, wherein each database command of the plurality of
database commands:
corresponds with a database of the plurality of databases,
corresponds with a separate portion of data related to the database
request, and
is determined based on the first database command; and
for each database command of the plurality of database commands, sending

the database command to the database to which it corresponds.

8. The method of providing database shard arbitration among a
plurality of databases as recited in claim 7, wherein the first database command and the
plurality of database commands comprise database queries, the method further
comprising:

receiving, in response to sending the database commands, results from the
plurality of databases;

formulating a response to the database request, wherein formulating the
response comprises combining the results from the plurality of databases based on the one
or more business rules; and

sending the response via the network interface.

20

WO 2014/120467 PCT/US2014/011910

9. The method of providing database shard arbitration among a
plurality of databases as recited in claim 8, wherein formulating the response further

comprises creating one or more data objects with the combined results.

10. The method of providing database shard arbitration among a
plurality of databases as recited in claim 7, wherein:

the database request comprises one or more data objects; and

formulating the plurality of database commands comprises including, in
cach database command of the plurality of database commands, a subset of the one or

more data objects.

11. The method of providing database shard arbitration among a
plurality of databases as recited in claim 7, wherein:

the plurality of databases includes databases of more than one type; and

formulating the plurality of database commands includes, for each database
command of the plurality of database commands, formulating the database command in a

language of the database to which the database command corresponds.

12. The method of providing database shard arbitration among a
plurality of databases as recited in claim 7, wherein at least one database of the plurality of

database commands is sent via the network interface.

13. The method of providing database shard arbitration among a
plurality of databases as recited in claim 7, wherein the metadata related to the first
database command comprises information indicative of at least one of:

an entity related to the database request,

a time of day, or

a type of data.

14. An apparatus for providing database shard arbitration among a
plurality of databases, the apparatus comprising:
means for receiving a database request, wherein the database request
comprises:
a first database command, and

metadata related to the first database command;

21

WO 2014/120467 PCT/US2014/011910

means for determining one or more business rules associated with the
database request, based on the metadata;
means for determining, based on the one or more business rules, a plurality
of databases related to the database request;
means for formulating a plurality of database commands based on the one
or more business rules, wherein each database command of the plurality of database
commands:
corresponds with a database of the plurality of databases, and
is determined based on the first database command; and
for each database command of the plurality of database commands, sending

the database command to the database to which it corresponds.

15. The apparatus as recited in claim 14, wherein the first database
command and the plurality of database commands comprise database queries, the
apparatus further comprising:

means for receiving, in response to sending the database commands, results
from the plurality of databases;

means for formulating a response to the database request, wherein
formulating the response comprises combining the results from the plurality of databases
based on the one or more business rules; and

means for sending the response via a data communication network.

22

WO 2014/120467 PCT/US2014/011910

1/7
Data Object(s)
110I
Shard Shard Shard
® o o
120-1 120-2 120-n

FIG. 1

WO 2014/120467 PCT/US2014/011910

217

220 1 2101

Content
Owner

CHIMPS

2301 f 240

End User

Media Device

Provider(s) [Client |

L 245

2601
Ad Media File Delivery
Network(s) Service Provider

250f

!’

FIG. 2

WO 2014/120467

310f

Player API

|

320f

Record API

37

Aggregator
350I

PCT/US2014/011910

360f

Other
requester(s)

330f

Shard Arbiter

0

Database Database Database
1 2 e o o n
340-1 340-2 340-n

300/\f

FIG. 3

WO 2014/120467 PCT/US2014/011910

417

330I

Translating &

410
Business <«—»] Business Logic &
Rules
\ \\ Communications
425 420 l Interface
Sharding <« 450
430

Collating <«

\

440
Shard Arbiter

FIG. 4

PCT/US2014/011910

WO 2014/120467

5/7

_ asuodsal pusg |.|v_

m 095 H m gogJ
r-—— - 1 : F— = 7 %suodsas™ ~— ~] :
|__ _neewnmy] |_swded pue synsessuowog |
gvgJ £ : _mmMu.l _ :
(s)pueWWOD BSEgR)EP 9)NJaX] . (s)ynsal ane00Yy | "
oG~ 1 i 0sgd m
(S)puBWIWOD BSEgRIEP SAISI9Y | “ (s)puewwWOD Bseqeiep puss “
ceg {0 Y
: So|NnJ SsauIsng] :
i |_um oouepioooe uigjep preys |
i gegd ﬂl
M (s)puewwod "
' asegejep aje|nuIo '
i oeg? T m
m S9|NJ SSBUISNJ Paje|a. auIuIB}a("
i cig? 1
. 1s9nbal 9A1909Y A|.| Jajgle pJeys 0} 1sanbal puag
P oig” i gog”
(s)esegeleq m 19101y pJeys m J9)sonbay

WO 2014/120467 PCT/US2014/011910

6/7

f 605

Receive a database request having
e A first database command, and
e Metadata related to the first database command

l I

Determine one or more business rules associated with
the request, based on the metadata

l I

Determine, based on the one or more business rules, a
plurality of databases related to the request

l

635
Formulate a plurality of database commands based on f
the one or more business rules. Each database
command:
e Corresponds with a database, and
¢ Is determined based on the first database command

l f 645

For each of the plurality of database commands, send the
database command to the database to which it
corresponds

600

FIG. 6

WO 2014/120467 PCT/US2014/011910

77

705

] Processing Unit(s) \I</IV(e)rrri:(i)nrg
y

710

Storage Device(s) Operating

(— System
725
! 735

740 745

Input Device(s)

715 o
Application(s)
Output Device(s)
720
Communications
730 Interface

700

FIG. 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/011910

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F GO6Q

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X SUN MICROSYSTEMS:
computing architecture",
INTERNET CITATION,

Retrieved from the Internet:

es/CloudComputing.pdf
[retrieved on 2009-11-02]
the whole document

X US 6 151 584 A (PAPIERNIAK KAREN A [US] ET
AL) 21 November 2000 (2000-11-21)
column 2, 1line 57 - column 23, line 42

"Introduction to cloud

29 June 2009 (2009-06-29), XP007910393,

URL:http://www-cdn.sun.com/featured-articl

1-15

1-15

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

17 April 2014

Date of mailing of the international search report

25/04/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Warry, Lawrence

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/011910

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X THOMAS KWOK ET AL: "A Software as a
Service with Multi-tenancy Support for an
Electronic Contract Management
Application",

SERVICES COMPUTING, 2008. SCC '08. IEEE
INTERNATIONAL CONFERENCE ON, IEEE,
PISCATAWAY, NJ, USA,

7 July 2008 (2008-07-07), pages 179-186,
XP031291259,

ISBN: 978-0-7695-3283-7

the whole document

A SANDEEP PARIKH ET AL: "MongoDB on Red Hat
Enterprise Linux",

RED HAT,

1 May 2012 (2012-05-01), XP055114229,

the whole document

1-15

1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/011910
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 6151584 A 21-11-2000 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report
	Page 33 - wo-search-report

