International Application Published Under the Patent Cooperation Treaty (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 June 2014 (19.06.2014)

(51) International Patent Classification:
A01N 43/48 (2006.01) A01P 13/02 (2006.01)

(21) International Application Number:
PCT/US2013/073845

(22) International Filing Date:
9 December 2013 (09.12.2013)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:

(71) Applicant: DOW AGROSCIENCES LLC [US/US]; 9330 Zionsville Road, Indianapolis, Indiana 46268-1054 (US).

Published:
— with international search report (Art. 21(3))

(54) Title: SYNERGISTIC WEED CONTROL FROM APPLICATIONS OF AMINOCYCLOPYRACHLOR AND 2,4-DICHLOROPHENOXACYETIC ACID (2,4-D)

(57) Abstract: Disclosed herein are herbicidal compositions comprising a synergistically herbicidal effective amount of (a) amino-cyclopyrachlor, or an agriculturally acceptable salt or ester thereof, and (b) 2,4-D, or an agriculturally acceptable salt or ester thereof. Also disclosed herein are methods of controlling undesirable vegetation, which comprise applying to vegetation or an area adjacent the vegetation or applying to soil or water to prevent the emergence or growth of vegetation (a) aminocyclopyrachlor, or an agriculturally acceptable salt or ester thereof, and (b) 2,4-D, or an agriculturally acceptable salt or ester thereof, wherein (a) and (b) are each added in an amount sufficient to produce a synergistic herbicidal effect.
SYNERGISTIC WEED CONTROL FROM APPLICATIONS OF AMINOCYCLOPYRACHLOR AND 2,4-DICHLOROPHENOXYACETIC ACID (2,4-D)

FIELD OF THE DISCLOSURE

[0001] The present disclosure relates to herbicidal compositions comprising a synergistically herbicidal effective amount of (a) ammocyclopyrachlor or an agriculturally acceptable salt or ester thereof, and (b) 2,4-dichlorophenoxyacetic acid (2,4-D) or an agriculturally acceptable salt or ester thereof. The present disclosure also relates to methods for controlling undesirable vegetation.

BACKGROUND

[0002] Many recurring problems in agriculture involve controlling growth of undesirable vegetation that can, for instance, inhibit crop growth. To help control undesirable vegetation, researchers have produced a variety of chemicals and chemical formulations effective in controlling such unwanted growth. However, a continuing need exists for new compositions and methods to control growth of undesirable vegetation.

SUMMARY OF THE DISCLOSURE

[0003] Herbicides of many types have been disclosed in the literature and a number are in commercial use. In some cases, herbicidal active ingredients have been found more effective in combination than when applied individually and this is referred to as "synergy" or "synergism." The present disclosure is based on the discovery that (a) ammocyclopyrachlor, or an agriculturally acceptable salt or ester thereof, and (b) 2,4-dichlorophenoxyacetic acid (2,4-D), or an agriculturally acceptable salt or ester thereof, display a synergistic herbicidal effect when applied in combination.

[0004] Accordingly, the present disclosure relates to herbicidal compositions comprising a synergistically herbicidal effective amount of (a) ammocyclopyrachlor, or an agriculturally acceptable salt or ester thereof, and (b) 2,4-dichlorophenoxyacetic acid (2,4-D), or an agriculturally acceptable salt or ester thereof. In some embodiments, (a) includes ammocyclopyrachlor in acid form. In some embodiments, (b) is selected from the group consisting of the ethyl, iso-propyl, butyl, iso-butyl, iso-
octyl, 2-ethylhexyl, and 2-butoxyethyl esters of 2,4-D, and the sodium, iso-propylammonium, dimethylammonium, diethanolammonium, di-iso-propylammonium, triethanolammonium, tri-iso-propylammonium, tri-isopropanolammonium, and choline salts of 2,4-D. The acid equivalent weight ratio of (a) to (b) can be from 1.560 to 2.4:1 (e.g., from 1:32 to 1:5.3). In some embodiments, the composition further comprises an additional pesticide (e.g., amicarbazone, aminopyralid, bromoxynil, chlorsulfuron, clopyralid, dicamba, dichlorprop-P, diclosulam, diuron, florasulam, flucarbazone-sodium, flumetsulam, fluroxypyr, glyphosate, glufosinate, imazamox, imazapyr, imazapic, imazaquin, imazethapyr, imazamethabenz, indaziflam, ioxynil, MCPA, mecoprop-P, metsulfuron-methyl, oxyfluorfen, penoxsulam, picloram, pinoxaden, pyroxasulam, rimsulfuron, sulfometuron, thifensulfuron-methyl, tebuthiuron, tribenuron-methyl, triclopyr, or agriculturally acceptable salts or esters or mixtures thereof). The additional pesticide can include aminopyralid choline salt, triclopyr choline salt, or a mixture thereof. In some embodiments, the composition is free of naptalam and salts and esters thereof. In some embodiments, the composition further comprises a herbicidal safener, an agriculturally acceptable adjuvant or carrier, or a combination thereof.

[0005] The present disclosure also relates to methods of controlling undesirable vegetation, which comprise applying to vegetation or an area adjacent the vegetation or applying to soil or water to prevent the emergence or growth of vegetation (a) aminocyclopyrachlor, or an agriculturally acceptable salt or ester thereof and (b) 2,4-D, or an agriculturally acceptable salt or ester thereof, wherein (a) and (b) are each added in an amount sufficient to produce a synergistic herbicidal effect. In some embodiments, (a) and (b) are applied simultaneously. In some embodiments, (a) and (b) are applied postemergence to the undesirable vegetation. The undesirable vegetation can be controlled in, for instance, cereals, conservation reserve program (CRP) lands, trees and vines, grasses grown for seed, pastures, grasslands, rangelands, industrial vegetation management (IVM), fallow land, forestry, wildlife management areas, rights-of-way, aquatics, sugar cane, or turf. In some embodiments, the undesirable vegetation is a broadleaf weed, a woody plant, or a semi-woody plant. The undesirable vegetation can be controlled in crops tolerant to glyphosate, glufosinate, dicamba, phenoxy auxins, pyridyloxy auxins,
aryloxyphenoxypropionates, acetyl CoA carboxylase (ACCase) inhibitors, imidazolinones, acetolactate synthase (ALS) inhibitors, 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, triazines, bromoxynil, or combinations thereof. For example, the undesired vegetation can be controlled in phenoxy acid tolerant crops and the phenoxy acid tolerant crops have tolerance conferred by an AAD12 gene. In some embodiments, the undesirable vegetation is resistant to auxinic herbicides. In some embodiments, (a) is applied in an amount of from 8-240 grams of acid equivalent per hectare (g ae/ha). In some embodiments, (b) is applied in an amount of from 100-4483 g ae/ha.

The description below sets forth details of one or more embodiments of the present disclosure. Other features, objects, and advantages will be apparent from the description and from the claims.

DETAILED DESCRIPTION

The present disclosure relates to herbicidal compositions comprising a synergistically herbicidal effective amount of (a) aminocyclopyrachlor, or an agriculturally acceptable salt or ester thereof, and (b) 2,4-dichlorophenoxyacetic acid (2,4-D), or an agriculturally acceptable salt or ester thereof. The present disclosure also relates to methods for controlling undesirable vegetation.

The term "herbicide," as used herein, means an active ingredient that kills, controls, or otherwise adversely modifies the growth of vegetation. A "herbicidally effective amount" is an amount of an active ingredient that causes a "herbicidal effect," i.e., an adversely modifying effect and includes deviations from, for instance, natural development, killing, regulation, desiccation, and retardation. The terms "plants" and "vegetation" can include, for instance, germinant seeds, emerging seedlings, and established vegetation.

Aminocyclopyrachlor

Compositions and methods of the present disclosure can include aminocyclopyrachlor or an agriculturally acceptable salt or ester thereof. Aminocyclopyrachlor, shown below, is a herbicide that can be used to control broadleaf weeds in, for instance, lawns (e.g., residential, industrial, and institutional),

![Chemical Structure](attachment:image.png)

[0010] In some embodiments, the aminocyclopyrachlor is in acid form and is 6-amino-5-chloro-2-cyclopropylpyrimidine-4-carboxylic acid (6-amino-5-chloro-2-cyclopropyl-4-pyrimidin carboxylic acid). In some embodiments, the aminocyclopyrachlor is in the form of an agriculturally acceptable salt or ester thereof. Exemplary agriculturally acceptable salts or esters of aminocyclopyrachlor include, but are not limited to, sodium salts, potassium salts, ammonium salts or substituted ammonium salts (e.g., mono-, di- and tri-Cl-C8 -alkylammonium salts such as methyl ammonium, dimethylammonium and isopropylammonium, mono-, di- and tri-hydroxy-C2 -C8 -alkylammonium salts such as hydroxyethylammonium, di(hydroxyethyl)ammonium, tri(hydroxyethyl)ammonium, hydroxypropylammonium, di(hydroxypropyl)ammonium and tri(hydroxypropyl)ammonium salts), and their diglycolamine salts and their esters (e.g., its Cl-C8-alkyl esters and Cl-C4-alkoxy-C2-C4-alkyl esters, such as methyl esters, ethyl esters, isopropyl, butyl, hexyl, heptyl, isoheptyl, isoctyl, 2-ethylhexyl and butoxyethyl esters, and aryl esters such as benzyl). Exemplary agriculturally acceptable salts of aminocyclopyrachlor can include aminocyclopyrachlor-sodium, aminocyclopyrachlor-potassium, aminocyclopyrachlor choline salt, or mixtures thereof. An exemplary agriculturally acceptable ester of aminocyclopyrachlor can include aminocyclopyrachlor-methyl. Aminocyclopyrachlor or agriculturally acceptable salts or esters thereof are or have been commercially available, for example, from DuPont Crop Protection under the
The aminocyclopyrachlor or an agriculturally acceptable salt or ester thereof can be applied to vegetation or an area adjacent the vegetation or applied to soil or water to prevent the emergence or growth of vegetation in an amount sufficient to induce a herbicidal effect. In some embodiments, the aminocyclopyrachlor or agriculturally acceptable salt or ester thereof is applied to vegetation or an area adjacent the vegetation or applied to soil or water to prevent the emergence or growth of vegetation in an amount of 8 grams of acid equivalent per hectare (g ae/ha) or greater (e.g., 10 g ae/ha or greater, 15 g ae/ha or greater, 20 g ae/ha or greater, 25 g ae/ha or greater, 30 g ae/ha or greater, 35 g ae/ha or greater, 40 g ae/ha or greater, 45 g ae/ha or greater, 50 g ae/ha or greater, 55 g ae/ha or greater, 60 g ae/ha or greater, 65 g ae/ha or greater, 70 g ae/ha or greater, 75 g ae/ha or greater, 80 g ae/ha or greater, 85 g ae/ha or greater, 90 g ae/ha or greater, 95 g ae/ha or greater, 100 g ae/ha or greater, 105 g ae/ha or greater, 110 g ae/ha or greater, 115 g ae/ha or greater, 120 g ae/ha or greater, 140 g ae/ha or greater, 160 g ae/ha or greater, 180 g ae/ha or greater, 200 g ae/ha or greater, or 220 g ae/ha or greater). In some embodiments, the aminocyclopyrachlor or agriculturally acceptable salt or ester thereof is applied to vegetation or an area adjacent the vegetation or applied to soil or water to prevent the emergence or growth of vegetation in an amount of 240 g ae/ha or less (e.g., 230 g ae/ha or less, 220 g ae/ha or less, 210 g ae/ha or less, 200 g ae/ha or less, 190 g ae/ha or less, 180 g ae/ha or less, 170 g ae/ha or less, 160 g ae/ha or less, 150 g ae/ha or less, 140 g ae/ha or less, 130 g ae/ha or less, 120 g ae/ha or less, 110 g ae/ha or less, 100 g ae/ha or less, 90 g ae/ha or less, 80 g ae/ha or less, 70 g ae/ha or less, 60 g ae/ha or less, 50 g ae/ha or less, 40 g ae/ha or less, 30 g ae/ha or less, 25 g ae/ha or less, 20 g ae/ha or less, 15 g ae/ha or less, or 10 g ae/ha or less). In some embodiments, the aminocyclopyrachlor or agriculturally acceptable salt or ester thereof is applied to vegetation or an area adjacent the vegetation or applied to soil or water to prevent the emergence or growth of vegetation in an amount of from 8-240 g ae/ha (e.g., from 16-220 g ae/ha, from 35-210 g ae/ha, from 50-180 g ae/ha, from 60-160 g ae/ha, or from 70-140 g ae/ha).
2,4-D

[0012] Compositions and methods of the present disclosure can include 2,4-D or an agriculturally acceptable salt or ester thereof. 2,4-D, shown below, is a herbicide that can be used to control broadleaf weeds in, for instance, asparagus, cereals, corn, grasses, hay, rice, sorghum, soybeans (preplant), sugarcane, fallowland, pasture, rangeland, turf, and noncropland. Its herbicidal activity is described in THE PESTICIDE MANUAL, Fifteenth Edition, 2009.

\[
\begin{align*}
\text{Cl} & \quad \text{Cl} \\
\text{O} & \quad \text{OH} \\
\end{align*}
\]

[0013] 2,4-D can be provided in its acid form (as shown above), or as an agriculturally acceptable salt or ester thereof. Exemplary agriculturally acceptable salts or esters of 2,4-D include, but are not limited to, sodium salts, potassium salts, ammonium salts or substituted ammonium salts, in particular mono-, di- and tri-Ci-Csalkylammonium salts such as methyl ammonium, dimethylammonium and isopropylammonium (e.g., triisopropanolammonium), mono-, di- and tri-hydroxy-C2-C8alkylammonium salts such as hydroxyethylammonium, di(hydroxyethyl)ammonium, tri(hydroxyethyl)ammonium, hydroxypropylammonium, di(hydroxypropyl)ammonium and tri(hydroxypropyl)ammonium salts, their diglycolamine salts and their esters, in particular its Ci-Cgalkyl esters and Ci-C4alkoxy-C2-C4alkyl esters, such as methyl esters, ethyl esters, isopropyl, butyl, hexyl, heptyl, isoheptyl, isoctyl, 2-ethylhexyl and butoxyethyl esters. Exemplary agriculturally acceptable salts or esters of 2,4-D can include, but are not limited to, the ethyl, iso-propyl, butyl, iso-butyl, iso-octyl, 2-ethylhexyl, and 2-butoxyethyl esters of 2,4-D, and the sodium, iso-propylammonium, dimethylammonium, diethanolammonium, di-iso-propylammonium, triethanolammonium, tri-iso-propylammonium, tri-iso-propanolammonium, and choline salts of 2,4-D, and mixtures thereof. In some embodiments, the 2,4-D is provided as an amine salt, such as 2,4-D-olamine salt, dimethylamine (DMA) salt, monoethanolamine (MEA) salt, triisopropanolamine (TIPA) salt, or a mixture thereof. 2,4-D and agriculturally acceptable salts or esters thereof are or have been commercially available, for
example, under the trademark AKOPUR® (by AAKO B.V.); ACMECHECK® or ACMEHALT® (by ACME ORGANICS PVT. LTD.); DIEON® (by AGRO-CARE CHEM. INDUS. GROUP LTD.); D-AMIN® (by AGSIN PTE. LTD.), D-638®, FIVE STAR®, ORCHARD STAR®, and SOLVE® (by ALBAUGH, INC.); CITRIS FIX® or HIVOL 0-44 (by AMVAC CHEM. CORP.); MEGATOX® (by ANCOM CROP CARE S.B.); CORNOX® (by ATABAY AGROCHEMICALS & VETERINARY PRODS. INC.); HERBIFEN® (by ATANOR S.A.); CRISALAMINA® or CRISAMINA® (by CHRISTAL CHEM. INTER-AMERICA); KILLER® (by FERTIAGRO PTE. LTD.); ESTER H® or Hekafermin® (by HEKTASTICARET T.A.S.); WEEDKILLER® (by HUBEI SANONDA CO., LTD.); HIT -RR®, SUPERHIT®, or TWISTER® (by INSECTIDES (INDIA) LTD.); AMINOL® (by MAKHTESHIM AGAN GROUP); DRI-CLEAN®, ESTERON® 99C, FORMULA 40®, ORCHARD CLEAN®, SOLUTION®, TURRET®, WEEDAR® 64, WEEDESTROY® AM-40, or WEEDONE® (by NUFARM AMS. INC.); AMINE 400®, HI-DEP®, ORCHARD MASTER®, or PASTURE PRO® (by PBI/GORDON CORP.); PILAR -2,4-D® (by PILAR AGRISCIENCE (CANADA) CORP.); AMIN EXT®, DI-AMIN®, ESTER EXT®, SAFA ESTER® (by SAFA TARIM A.S.); AMINOZ® or AMINOZ® CT (by SANONDA (AUSTRALIA) PTY. LTD.); SCULPIN® G (by SEPRO CORP.); or D-AMIN®, GOLD COIN AMINE®, or ZA-AMINE® (by ZAGRO SINGAPORE PTE. LTD.).

[0014] The 2,4-D or an agriculturally acceptable salt or ester thereof described herein can be used in an amount sufficient to induce a herbicidal effect. In some embodiments, the 2,4-D or agriculturally acceptable salt or ester thereof is applied to vegetation or an area adjacent the vegetation or applied to soil or water to prevent the emergence or growth of vegetation in an amount of 100 grams of acid equivalent per hectare (g ae/ha) or greater (e.g., 150 g ae/ha or greater, 200 g ae/ha or greater, 250 g ae/ha or greater, 300 g ae/ha or greater, 350 g ae/ha or greater, 400 g ae/ha or greater, 450 g ae/ha or greater, 500 g ae/ha or greater, 550 g ae/ha or greater, 600 g ae/ha or greater, 650 g ae/ha or greater, 700 g ae/ha or greater, 750 g ae/ha or greater, 800 g ae/ha or greater, 850 g ae/ha or greater, 900 g ae/ha or greater, 1000 g ae/ha or greater, 1020 g ae/ha or greater, 1040 g ae/ha or greater, 1060 g ae/ha or greater, 1080 g ae/ha or greater, 1100 g ae/ha or greater, 1120 g ae/ha or greater, 1140 g ae/ha or greater, 1160 g ae/ha or greater, 1180 g ae/ha or greater, 1200 g ae/ha or greater, 1220
g ae/ha or greater, 1240 g ae/ha or greater, 1260 g ae/ha or greater, 1280 g ae/ha or greater, 1300 g ae/ha or greater, 1320 g ae/ha or greater, 1340 g ae/ha or greater, 1360 g ae/ha or greater, 1380 g ae/ha or greater, 1400 g ae/ha or greater, 1450 g ae/ha or greater, 1500 g ae/ha or greater, 1600 g ae/ha or greater, 1700 g ae/ha or greater, 1800 g ae/ha or greater, 1900 g ae/ha or greater, 2000 g ae/ha or greater, 2100 g ae/ha or greater, 2200 g ae/ha or greater, 2300 g ae/ha or greater, 2400 g ae/ha or greater, 2500 g ae/ha or greater, 2600 g ae/ha or greater, 2700 g ae/ha or greater, 2800 g ae/ha or greater, 2900 g ae/ha or greater, 3000 g ae/ha or greater, 3100 g ae/ha or greater, 3200 g ae/ha or greater, 3300 g ae/ha or greater, 3400 g ae/ha or greater, 3500 g ae/ha or greater, 3600 g ae/ha or greater, 3700 g ae/ha or greater, 3800 g ae/ha or greater, 3900 g ae/ha or greater, 4000 g ae/ha or greater, 4100 g ae/ha or greater, 4200 g ae/ha or greater, 4300 g ae/ha or greater, or 4400 g ae/ha or greater). In some embodiments, the 2,4-D or agriculturally acceptable salt or ester thereof is applied to vegetation or an area adjacent the vegetation or applied to soil or water to prevent the emergence or growth of vegetation in an amount of 4483 g ae/ha or less (e.g., 4400 g ae/ha or less, 4300 g ae/ha or less, 4200 g ae/ha or less, 4100 g ae/ha or less, 4000 g ae/ha or less, 3900 g ae/ha or less, 3800 g ae/ha or less, 3700 g ae/ha or less, 3600 g ae/ha or less, 3500 g ae/ha or less, 3400 g ae/ha or less, 3300 g ae/ha or less, 3200 g ae/ha or less, 3100 g ae/ha or less, 3000 g ae/ha or less, 2900 g ae/ha or less, 2800 g ae/ha or less, 2700 g ae/ha or less, 2600 g ae/ha or less, 2500 g ae/ha or less, 2400 g ae/ha or less, 2300 g ae/ha or less, 2200 g ae/ha or less, 2100 g ae/ha or less, 2000 g ae/ha or less, 1900 g ae/ha or less, 1800 g ae/ha or less, 1700 g ae/ha or less, 1600 g ae/ha or less, 1500 g ae/ha or less, 1450 g ae/ha or less, 1400 g ae/ha or less, 1380 g ae/ha or less, 1360 g ae/ha or less, 1340 g ae/ha or less, 1320 g ae/ha or less, 1300 g ae/ha or less, 1280 g ae/ha or less, 1260 g ae/ha or less, 1240 g ae/ha or less, 1220 g ae/ha or less, 1200 g ae/ha or less, 1180 g ae/ha or less, 1160 g ae/ha or less, 1140 g ae/ha or less, 1120 g ae/ha or less, 1100 g ae/ha or less, 1080 g ae/ha or less, 1060 g ae/ha or less, 1040 g ae/ha or less, 1020 g ae/ha or less, 1000 g ae/ha or less, 950 g ae/ha or less, 900 g ae/ha or less, 850 g ae/ha or less, 800 g ae/ha or less, 750 g ae/ha or less, 700 g ae/ha or less, 650 g ae/ha or less, 600 g ae/ha or less, 550 g ae/ha or less, 500 g ae/ha or less, 450 g ae/ha or less, 400 g ae/ha or less, 350 g ae/ha or less, 300 g ae/ha or less, 250 g ae/ha or less, 200 g ae/ha or less, or 150 g ae/ha or less). In some embodiments,
the 2,4-D or agriculturally acceptable salt or ester thereof is applied to vegetation or an area adjacent the vegetation or applied to soil or water to prevent the emergence or growth of vegetation in an amount of from 100-4483 g ae/ha (e.g., from 200-4000 g ae/ha, from 300-3500 g ae/ha, from 400-3000 g ae/ha, from 500-2500 g ae/ha, from 600-2000 g ae/ha, from 700-1600 g ae/ha, from 800-1450 g ae/ha, from 900-1350 g ae/ha, or from 1000-1260 g ae/ha).

Herbicidal Mixtures or Combinations

[0015] The (a) aminocyclopyrachlor or an agriculturally acceptable salt or ester thereof is mixed with or applied in combination with (b) 2,4-D or an agriculturally acceptable salt or ester thereof in an amount sufficient to induce a synergistic herbicidal effect. In some embodiments, (a) and (b) are used in an amount sufficient to induce a synergistic herbicidal effect while still showing good crop compatibility (i.e. their use in crops does not result in increased damage to crops when compared to the individual application of the herbicidal compounds (a) or (b)). As described in the *Herbicide Handbook* of the Weed Science Society of America, Ninth Edition, 2007, p. 429, "'synergism' [is] an interaction of two or more factors such that the effect when combined is greater than the predicted effect based on the response to each factor applied separately." Synergistic in the herbicide context can mean that the use of (a) and (b) as defined above results in an increased weed control effect compared to the weed control effects that are possible with the use of (a) or (b) alone. In some embodiments, the damage or injury to the undesired vegetation caused by the compositions and methods disclosed herein is evaluated using a scale from 0% to 100%, when compared with the untreated control vegetation, wherein 0% indicates no damage to the undesired vegetation and 100%, indicates complete destruction of the undesired vegetation. In some embodiments, Colby’s formula is applied to determine whether using (a) and (b) in combination shows a synergistic effect: S. R. Colby, *Calculating Synergistic and Antagonistic Responses of Herbicide Combinations*, WEEDS 15, p. 22 (1967)

\[
E = X + Y - \frac{XY}{100}
\]
wherein

\[X = \text{effect in percent using (a) aminocyclopyrachlor or an agriculturally acceptable salt or ester thereof at an application rate } a; \]

\[Y = \text{effect in percent using (b) 2,4-D or an agriculturally acceptable salt or ester thereof at an application rate } b; \]

\[E = \text{expected effect in percent } (\%) \text{ of (a)+(b) at application rates } a \text{ and } b. \]

[0016] In Colby's equation, the value E corresponds to the effect (plant damage or injury) that is to be expected if the activity of the individual compounds is additive. If the observed effect is higher than the value E calculated according to the Colby equation, then a synergistic effect is present according to the Colby equation.

[0017] In some embodiments, the compositions and methods disclosed herein are synergistic as defined by the Colby equation. In some embodiments, the joint action of aminocyclopyrachlor or an agriculturally acceptable salt or ester thereof and 2,4-D or an agriculturally acceptable salt or ester thereof results in enhanced activity against undesired vegetation (via synergism), even at application rates below those typically used for the pesticide to have a herbicidal effect on its own. In some embodiments, the compositions and methods disclosed herein can, based on the individual components, be used at lower application rates to achieve a herbicidal effect comparable to the effect produced by the individual components at normal application rates. In some embodiments, the compositions and methods disclosed herein provide an accelerated action on undesired vegetation (i.e. they effect damaging of undesired vegetation more quickly compared with application of the individual herbicides).

[0018] In some embodiments, the acid equivalent weight ratio of (a) aminocyclopyrachlor or an agriculturally acceptable salt or ester thereof to (b) 2,4-D or an agriculturally acceptable salt or ester thereof that is sufficient to induce a synergistic herbicidal effect is at least 1:560 (e.g., at least 1:500, at least 1:450, at least 1:400, at least 1:350, at least 1:300, at least 1:250, at least 1:200, at least 1:150, at least 1:100, at least 1:90, at least 1:80, at least 1:70, at least 1:60, at least 1:50, at least 1:45, at least 1:40, at least 1:35, at least 1:30, at least 1:25, at least 1:20, at least 1:15, at least 1:10, at least 1:5, at least 1:4, at least 1:3, at least 1:2, at least 1:1, at least 1.5:1, at least 2:1). In some embodiments, the acid equivalent weight ratio of (a) to (b) that is sufficient to induce a synergistic herbicidal effect is 2.4:1 or less (e.g., 2:1 or
less, 1.5:1 or less, 1:1 or less, 1:2 or less, 1:3 or less, 1:4 or less, 1:5 or less, 1:10 or less, 1:15 or less, 1:20 or less, 1:25 or less, 1:30 or less, 1:35 or less, 1:40 or less, 1:45 or less, 1:50 or less, 1:60 or less, 1:70 or less, 1:80 or less, 1:90 or less, 1:100 or less, 1:150 or less, 1:200 or less, 1:250 or less, 1:300 or less, 1:350 or less, 1:400 or less, 1:450 or less, 1:500 or less, or 1:525 or less). In some embodiments, the acid equivalent weight ratio of (a) to (b) is from 1:560 to 2.4:1 (e.g., from 1:300 to 2:1, from 1:150 to 1.5:1, from 1:75 to 1:1, from 1:32 to 3:4, or from 1:32 to 1:8). In some embodiments, the acid equivalent weight ratio of (a) to (b) is from 1:32 to 1:5.3.

Formulations

[0019] The present disclosure also relates to formulations of the compositions and methods disclosed herein. In some embodiments, the formulation can be in the form of a single package formulation including both (a) aminocyclopyrachlor or an agriculturally acceptable salt or ester thereof and (b) 2,4-D or an agriculturally acceptable salt or ester thereof. In some embodiments, the formulation can be in the form of a single package formulation including both (a) and (b) and further including at least one additive. In some embodiments, the formulation can be in the form of a two-package formulation, wherein one package contains (a) and optionally at least one additive while the other package contains (b) and optionally at least one additive. In some embodiments of the two-package formulation, the formulation including (a) and optionally at least one additive and the formulation including (b) and optionally at least one additive are mixed before application and then applied simultaneously. In some embodiments, the mixing is performed as a tank mix (i.e., the formulations are mixed immediately before or upon dilution with water). In some embodiments, the formulation including (a) and the formulation including (b) are not mixed but are applied sequentially (in succession), for example, immediately or within 1 hour, within 2 hours, within 4 hours, within 8 hours, within 16 hours, within 24 hours, within 2 days, or within 3 days, of each other.

[0020] In some embodiments, the formulation of (a) and (b) is present in suspended, emulsified, or dissolved form. Exemplary formulations include, but are not limited to, aqueous solutions, powders, suspensions, also highly-concentrated aqueous, oily or other suspensions or dispersions, aqueous emulsions, aqueous microemulsions,
aqueous suspo-emulsions, oil dispersions, pastes, dusts, and materials for spreading or granules.

[0021] In some embodiments, (a) aminocyclopyrachlor or an agriculturally acceptable salt or ester thereof and/or (b) 2,4-D or an agriculturally acceptable salt or ester thereof is an aqueous solution that can be diluted before use. In some embodiments, (a) and/or (b) is provided as a high-strength formulation such as a concentrate. In some embodiments, the concentrate is stable and retains potency during storage and shipping. In some embodiments, the concentrate is a clear, homogeneous liquid that is stable at temperatures of 54°C or greater. In some embodiments, the concentrate does not exhibit any precipitation of solids at temperatures of -10°C or higher. In some embodiments, the concentrate does not exhibit separation, precipitation, or crystallization of any components at low temperatures. For example, the concentrate remains a clear solution at temperatures below 0°C (e.g., below -5°C, below -10°C, below -15°C). In some embodiments, the concentrate exhibits a viscosity of less than 50 centipoise (50 megapascals), even at temperatures as low as 5°C.

[0022] The compositions and methods disclosed herein can also be mixed with or applied with an additive. In some embodiments, the additive can be diluted in water or can be concentrated. In some embodiments, the additive is added sequentially. In some embodiments, the additive is added simultaneously. In some embodiments, the additive is premixed with the aminocyclopyrachlor or agriculturally acceptable salt or ester thereof. In some embodiments, the additive is premixed with the 2,4-D or agriculturally acceptable salt or ester thereof. In some embodiments, the additive is premixed with the aminocyclopyrachlor or agriculturally acceptable salt or ester and the 2,4-D or agriculturally acceptable salt or ester thereof.

[0023] In some embodiments, the additive is an additional pesticide. Exemplary additional pesticides include, but are not limited to, acetochlor, aclonifen, amicarbazone, 4-aminopicolinic acid based herbicides, such as halaxifen, halaxifen-methyl, and those described in U.S. Patent Nos. 7,314,849 (B2) and 7,432,227 (B2), ametryn, amidosulfuron, aminopyralid, aminotriazole, ammonium thiocyanate, asulam, anilofos, atrazine, beflobutamid, benazolin, bentazon, bifenox, bromacil, bromoxynil, butachlor, butafenacil, butralin, butoxydim, carbetamide, carfentrazone, carfentrazone-ethyl, chlorimequat, chlorosulfuron, chlortoluron, cinidon-
ethyl, clethodim, clodinafop-propargyl, clomazone, cyanazine, cyclosulfamuron,
cyloxydim, dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop-methyl,
diclosulam, diflufenican, difluzenzopyr, dimefuron, dimethachlor, diquat, diuron,
EPTC, ethoxysulfuron, fenoxaprop, fenoxaprop-ethyl, fenoxaprop-ethyl+isoxadifen-ethyl,
fenoxaprop-P-ethyl, fenoxasulfone, flazasulfuron, florasulam, fluazifop,
fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron (LGC-42153),
flufenacet, flumetsulam, flumioxazin, flupyrdsulfuron, fluroxypyr, fluroxypyr-meptyl,
flurtamone, gibberellic acid, glufosinate, glufosinate-ammonium, glyphosate,
haloxyfop-methyl, haloxyfop-R, hexazinone, imazamethabenz, imazamox, imazapic,
imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, indaziflam,
iodosulfuron, iodosulfuron-ethyl-sodium,ioxynil, isoproturon, isoxaben, isoxaflutole,
lactofen, linuron, MCPA, MCPB, mecoprop, mecoprop-P, mesosulfuron,
mesosulfuron-ethyl sodium, metazochlor, metosulam, metribuzin, metsulfuron,
metsulfuron-methyl, MSMA, 1-napthaleneacetic acid, napropamide, norflurazon,
orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxyfluoren, paraquat,
pendimethalin, penoxsulam, picloram, picolinafen, pinoxaden, piperophos,
primisulfuron, profluazol, prometon, propanil, propaquizafop, propoxycarbazone,
propyzamide, prosulfocarb, prosulfuron, pyrafluoren-ethyl, pyrasulfotole,
pyribenzoxim (LGC-40863), pyroxasulam, pyroxasulfone, quinclorac, quinmerac,
quizalofop-ethyl-D, quizalofop-P-ethyl, quizalofop-P-teturyl, rimsulfuron,
sethoxydim, simazine, sulfentrazione, sulfometuron, sulfosate, sulfosulfuron,
tebuthiuron, tepraloxidim, terbacil, terbutryn, thiazopyr, thienocarbazone-methyl,
thifensulfuron, thifensulfuron-methyl, topramezone, tralkoxydim, triasulfuron,
tribenuron, tribenuron-methyl, triafamone, triclopyr, and trifluralin, and agriculturally
acceptable salts, esters and mixtures thereof. In some embodiments, the additional
pesticide includes aminopyralid choline salt, triclopyr choline salt, or a mixture
thereof.

[0024] In some embodiments, the compositions and methods disclosed herein do not
incorporate naptalam (i.e., N-1-naphthaleneacetic acid or NPA) or the salts or esters
thereof. In some embodiments, the compositions and methods disclosed herein are
free of naptalam or the salts or esters thereof. In some embodiments, naptalam or the
salts or esters thereof are not applied to the vegetation, the area adjacent to the
vegetation, the soil, or the water, in the methods disclosed herein.

[0025] In some embodiments, the aminocyclopyrachlor or an agriculturally
acceptable salt or ester thereof is provided in a premixed formulation with an
additional pesticide. In some embodiments, the aminocyclopyrachlor or an
agriculturally acceptable salt or ester thereof is premixed with, chlorsulfuron,
dicamba, imazapyr, glufosinate, glyphosate, MCPA, metsulfuron-methyl, or mixtures
thereof. Exemplary premixes of aminocyclopyrachlor or an agriculturally acceptable
salt or ester thereof and an additive that are or have been commercially available
include, but are not limited to, PERSPECTIVE® (a premix incorporating
chlorsulfuron by DUPONT CROP PROTECTION), VIEWPOINT® (a premix
incorporating imazapyr and metsulfuron-methyl by DUPONT CROP PROTECTION).
PLAINVIEW® (a premix incorporating sulfometuron and chlorsulfuron by DUPONT
CROP PROTECTION), or STREAMLINE® (a premix incorporating metsulfuron-methyl
by DUPONT CROP PROTECTION).

[0026] In some embodiments, the 2,4-D or an agriculturally acceptable salt or ester
thereof is provided in a premixed formulation with an additional pesticide. In some
embodiments, the 2,4-D or an agriculturally acceptable salt or ester thereof is
premixed with clopyralid, fluroxypyr, metsulfuron-methyl, 2,4-D, or mixtures thereof.
Exemplary premixes of 2,4-D or an agriculturally acceptable salt or ester thereof and
an additive that are or have been commercially available include, but are not limited
to, GESAPAZ-H® (a premix incorporating ametryn by SYNGENTA), TRINATOX D®
(a premix incorporating ametryn by PYOSA S.A. DE C.V.), VERSATIL® (a premix
incorporating ametryn by AGROQUIMICOS VERSA, S.A. DE C.V.), ANILO-D® (a
premix incorporating anilofos by LADDA CO., LTD.), SHOTGUN ® (a premix
incorporating atrazine by LOVELAND PRODS., INC.; UNITED AGRI PRODS.),
TOPSHOT® (a premix incorporating bentazone and cyanazine by BASF CORP.
LLC), DOUBLE UP® B+D (a premix incorporating bromoxynil by HELENA CHEM.
Co.), MAESTRO® D (a premix incorporating bromoxynil by NUFARM AMS. INC.),
THUMPER® (a premix incorporating bromoxynil by BAYER CROPSCIENCE), WECO
MAX® (a premix incorporating bromoxynil by WILBER-ELLIS CO.),
CLEENSWEEP® D (a premix incorporating bromoxynil and fluroxypyr by NUFARM
AMS. INC.), TRIO® (a premix incorporating bromoxynil and propanil by BAYER CROPSCIENCE), THUMPER® TOTAL (a premix incorporating bromoxynil and thiencarbazone-methyl by BAYER CROPSCIENCE), BLOG® (a premix incorporating butachlor by AGSIN PTE LTD.), WEEDCLEAN® (a premix incorporating butachlor by LADDA CO., LTD.), RAGE® D-TECH (a premix incorporating carfentrazone-ethyl by FMC CORP.), SPEEDZONE® (a premix incorporating carfentrazone-ethyl, dicamba, and mecoprop-P by PBI/GORDON CORP.), LOTUS® D (a premix incorporating cinidon-ethyl by BASF CORP.), COMMANDO® (a premix incorporating clopyralid by ALBAUGH, INC.), CURTAIL® (a premix incorporating clopyralid by Dow AGROSCIENCES LLC), CUTBACK® (a premix incorporating clopyralid by NUFARM AMS. INC.), MILLENNIUM ULTRA® 2 (a premix incorporating clopyralid and dicamba by NUFARM AMS. INC.), BANVEL® + 2,4-D (a premix incorporating dicamba by ARYSTA LIFESCIENCE N. AM. CORP.), BRASH® (a premix incorporating dicamba by WINFIELD SOLUTIONS LLC), BRUSH-RHAP® (a premix incorporating dicamba by HELENA CHEM. CO.), DIACHEM® (a premix incorporating dicamba by PARIJAT), KAMBAMASTER® (a premix incorporating dicamba by HELENA CHEM. CO.), MAGNOLIA SUPER® (a premix incorporating dicamba by HELES TASTICARET T.A.S.), RANGE STAR® (a premix incorporating dicamba by ALBAUGH, INC.), RIFLE®-D (a premix incorporating dicamba by LOVELAND PRODS. INC.; UNITED AGRI PRODS.), SELECTONE G® (a premix incorporating dicamba by CHIMAC-AGRIPHAR S.A.), TROOPER® (a premix incorporating dicamba by MERIDIAN AGROCHEMICAL PTY, LTD.), VALSAMBA® (a premix incorporating dicamba by STOCKTON AGRIMOR AG), VALSAMIN® (a premix incorporating dicamba by STOCKTON AGRIMOR AG), VETERAN® 720 (a premix incorporating dicamba by NUFARM AMS. INC.), WEEDMASTER® (a premix incorporating dicamba by BASF CORP.), BRUSHMASTER® (a premix incorporating dicamba and dichlorprop by PBI/GORDON CORP.), DURTOK® 540 (a premix incorporating dicamba and dichlorprop by INVES S.A.), DURTOCK® AMINA (a premix incorporating dicamba and dichlorprop by INVES S.A.), SUPER TRIMEC® (a premix incorporating dicamba and dichlorprop by PBI/GORDON CORP.), SUPERB RUSH® KILLER (a premix incorporating dicamba and dichlorprop by
PBI/GORDON CORP.), ESCALADE® 2 (a premix incorporating dicamba and fluroxypyr by NUFARM AMS. INC.), TRIMONAL® (a premix incorporating dicamba and MCPA by CHIMAC-AGRI PHAR S.A.), DYVEL® DS (a premix incorporating dicamba and meprop by BASF CORP.); ENDRUN® (a premix incorporating dicamba and meprop by HELENA CHEM. CO.); TRIMEC® 1000 (a premix incorporating dicamba and meprop by PBI/GORDON CORP.), TRIMEC® 992 (a premix incorporating dicamba and meprop by PBI/GORDON CORP.), TRIMEC® BENT GRASS (a premix incorporating dicamba and meprop by PBI/GORDON CORP.), TRIMEC® CLASSIC (a premix incorporating dicamba and meprop by PBI/GORDON CORP.), TRIMEC® SOUTHERN (a premix incorporating dicamba and meprop by PBI/GORDON CORP.), TRIMEC® PLUS (a premix incorporating dicamba, meprop, and MSMA by PBI/Gordon Corp.), MEC AMINE-D® (a premix incorporating dicamba and meprop-P by LOVELAND PRODS. INC.), STRIKE® 3 (a premix incorporating dicamba and meprop-P by WINFIELD SOLUTIONS, LLC), TRIPLET® (a premix incorporating dicamba and meprop-P by NUFARM AMS., INC.), TRUPOWER2® (a premix incorporating dicamba and meprop-P by NUFARM AMS., INC.), 4-SPEED® (a premix incorporating dicamba, pyraflufen-ethyl, and meprop-P by NUFARM AMS., INC.), SURGE® (a premix incorporating dicamba, sulfentrazone, and meprop-P by PBI/GORDON CORP.), CIMARRON® MAX (a premix incorporating dicamba and metsulfuron-methyl by DUPONT CROP PROTECTION), TROOPER® EXTRA (a premix incorporating dicamba and picloram by NUFARM AMS., INC.), 4-SPEED® XT (a premix incorporating dicamba, pyraflufen-ethyl, and triclopyr by NUFARM AMS., INC.), QUINCEPT® (a premix incorporating dicamba and quinclorac by NUFARM AMS., INC.), Q4® PLUS (a premix incorporating dicamba, quinclorac, and sulfentrazone by PBI/GORDON CORP.), FOUNDATION® (a premix incorporating dicamba, sulfentrazone, and triclopyr by WILBUR-ELLIS CO.), T-ZONE® (a premix incorporating dicamba, sulfentrazone, and triclopyr by NUFARM AMS., INC.), MALEZAFIN®57 (a premix incorporating dichloroprop by INVES A S.A.), DUPLOSAN® DP/D (a premix incorporating dichloroprop-P by BASF CORP.), SUPLOSAN® KOMBI (a premix incorporating dichloroprop-P by BASF CORP.), PATRON® 10 (a premix incorporating dichloroprop-P by NUFARM AMS. INC.), STRIKE® THREE ULTRA 2 (a premix
incorporating dichloroprop-P and fluroxypyr by WINFIELD SOLUTIONS LLC),
SPOILER® (a premix incorporating dichloroprop-P and mecoprop-P by NUFARM
AM. INC.), TRIAMINE® (a premix incorporating dichloroprop-P and mecoprop-P by
NUFARM AM. INC.), TRIAMINE® JET-SPRAY (a premix incorporating
dichloroprop-P and mecoprop-P by NUFARM AM. INC.), DASATOX® (a premix
incorporating diuron and MSMA by ANCOM CROP CARE S.B.), TILLER® (a premix
incorporating fenoxaprop-P-ethyl and MCPA by BAYER CROPSCIENCE), STARANE®
+ SALVO® (a premix incorporating fluroxypyr by Dow AGROSCIENCES LLC and
LOVELAND PRODS., INC.), TRUMPCARD® (a premix incorporating fluroxypyr by
HELENA CHEM. CO.), CHASER® ULTRA2 (a premix incorporating fluroxypyr and
MCPA by LOVELAND PRODS., INC.), KAMEL-FERT® (a premix incorporating
gibberellic acid and 1-naphthaleneacetic acid by VALPCO), SPEED-MIX® (a premix
incorporating gibberellic acid and 1-naphthaleneacetic acid by VALPCO), CREDIT
MASTER® (a premix incorporating glyphosate by NUFARM AM. INC.), FAITER® (a
premix incorporating glyphosate by INSECTICIDAS INTERNACIONALES, C.A.), HAT-
TRICK® (a premix incorporating glyphosate by ANCOM CROP CARE S.B.),
LANDMASTER® BW (a premix incorporating glyphosate by ALBAUGH, INC.),
LANDMASTER® II (a premix incorporating glyphosate by MONSANTO CORP.),
RECOIL® (a premix incorporating glyphosate by NUFARM AM. INC.), ACTRIL®
DS (a premix incorporating ioxynil by BAYER CROPSCIENCE), CHIMAC® MIXTE (a
premix incorporating MCPA by CHIMAC-AGRIPHAR S.A.), COMBI F675® (a premix
incorporating MCPA by PACIFIC AGRISCIENCE PTE. LTD.), FENOX® (a premix
incorporating MCPA by DUPOCSA, PROTECTORES QUIMICOS PARA EL CAMPO S.A.),
GROTEX COMPLEX® (a premix incorporating MCPA by TRAGUSA),
HERBICIDA C PROBELTE® (a premix incorporating MCPA by PROESELTE S.A.),
SELECTYL MD® (a premix incorporating MCPA by CHIMAC-AGRIPHAR S.A.), U
46® COMBI-FLUID (a premix incorporating MCPA by BASF CORP.), CHIMAC®
COP SPECIAL (a premix incorporating mecoprop by CHIMAC-AGRIPHAR S.A.),
U46® KV-COMBI-FLUID (a premix incorporating mecoprop by BASF CORP.),
DUPLOSAN® KV-COMBI® (a premix incorporating mecoprop-P by BASF CORP.),
MATAMONTE® (a premix incorporating metsulfuron-methyl by DUPOCSA,
PROTECTORES QUIMICOS PARA EL CAMPO S.A.), ARENA® (a premix incorporating
picloram by STOCKTON AGRIMOR AG), CAMPERO® (a premix incorporating picloram by INVES A. S.A.), EXTERMINATOR® (a premix incorporating picloram by DUPOCSA, PROTECTORES QUIMICOS PARA EL CAMPO S.A.), GRAZON® P+D (a premix incorporating picloram by Dow AGROSCIENCES LLC), GUNSLINGER® IVM (a premix incorporating picloram by ALBAUGH, INC.), GUNSLINGER® (a premix incorporating picloram by ALBAUGH, INC.), HIREDHAND® P+D (a premix incorporating picloram by Dow AgroSciences LLC), PATHWAY® (a premix incorporating picloram by Dow AGROSCIENCES LLC), POTRERON® (a premix incorporating picloram by INSECTICIDAS INTERNACIONALES, C.A.), STOKE® (a premix incorporating picloram by DUPOCSA PROTECTORES QUIMICOS PARA E L CAMPO, S.A.), TALION® (a premix incorporating picloram by STOCKTON AGRIMOR AG), TERMINATOR® (a premix incorporating picloram by DUPOCSA, PROTECTORES QUIMICOS PARA EL CAMPO S.A.), TORDON® 101 (a premix incorporating picloram by Dow AGROSCIENCES LLC), TROOPER® P+D (a premix incorporating picloram by NUFARM AMS. INC.), TROTTON® (a premix incorporating picloram by PROFICOL), TURUNA® (a premix incorporating picloram by STOCKTON AGRIMOR AG), RILOF-H® (a premix incorporating piperophos by SYNGENTA), VE GEMEC® (a premix incorporating prometon by PBI/GORDON CORP.), ORIZO® PLUS(a premix incorporating propanil by RICECO LLC), AQUASWEEP® (a premix incorporating triclopyr by NUFARM AMS. INC.), CANDOR® (a premix incorporating triclopyr by NUFARM AMS. INC.), CHASER® (a premix incorporating triclopyr by LOVELAND PRODS., INC.), CROSSBOW® L (a premix incorporating triclopyr by LOVELAND PRODS., INC.), FOREFRONT® R&P (a co-pack product incorporating aminopyralid by Dow AGROSCIENCES LLC), GRAZONNEXT® (a co-pack product incorporating aminopyralid by Dow AGROSCIENCES LLC), PASTURALL® (a co-pack product incorporating aminopyralid by Dow AGROSCIENCES LLC), and RESTORE® (a co-pack product incorporating aminopyralid by Dow AGROSCIENCES LLC).

[0027] In some embodiments, the additive includes an agriculturally acceptable adjuvant. Exemplary agriculturally acceptable adjuvants include, but are not limited to, antifreeze agents, antifoam agents, compatibilizing agents, sequestering agents, neutralizing agents and buffers, corrosion inhibitors, colorants, odorants, penetration aids, wetting agents, spreading agents, dispersing agents, thickening agents, freeze
point depressants, antimicrobial agents, crop oil, safeners, adhesives (for instance, for use in seed formulations), surfactants, protective colloids, emulsifiers, tackifiers, and mixtures thereof. Exemplary agriculturally acceptable adjuvants include, but are not limited to, crop oil concentrate (mineral oil (85%) +emulsifiers (15%)); nonylphenol ethoxylate; benzylcocoalkyldimethyl quaternary ammonium salt; blend of petroleum hydrocarbon, alkyl esters, organic acid, and anionic surfactant; c-9-C11 alkylpolyglycoside; phosphate alcohol ethoxylate; natural primary alcohol (Ci2-Ci6) ethoxylate; di-sec-butylphenol EO-PO block copolymer; polysiloxane-methyl cap; nonylphenol ethoxylate+urea ammonium nitrate; emulsified methylated seed oil; tridecyl alcohol (synthetic) ethoxylate (8 EO); tallow amine ethoxylate (15 EO); and PEG(400) dioleate-99.

[0028] In some embodiments, the additive is a safener that is an organic compound leading to better crop plant compatibility when applied with a herbicide. In some embodiments, the safener itself is herbicidally active. In some, the safener acts as an antidote or antagonist in the crop plants and can reduce or prevent damage to the crop plants. Exemplary safeners include, but are not limited to, AD-67 (MON 4660), benoxacor, benthiocarb, brassinolide, cloquintocet (mexyl), cyometrinil, cyprosulfamide, daimuron, dichlormid, dicyclonon, dietholate, dimepiperate, disulfoton, fenchlorazole, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, harpin proteins, isoxadifen-ethyl, jiecaowan, jiecaoxi, mephenpyr, mepenpyr-diethyl, mephenate, naphthalic anhydride, 2,2,5-trimethyl-3-(dichloroacetyl)-l,3-oxazolidine, 4-(dichloroacetyl)-l-oxa-4-azaspiro [4.5]decane, oxabetrinil, R29148, and N-phenyl-sulfonylbenzoic acid amides, as well as agriculturally acceptable salts and, provided they have a carboxyl group, their agriculturally acceptable derivatives thereof. In some embodiments, the safener can be cloquintocet or an ester or salt thereof, such as cloquintocet (mexyl). For example, cloquintocet can be used to antagonize harmful effects of the compositions on rice and cereals.

[0029] Exemplary surfactants (e.g., wetting agents, tackifiers, dispersants, emulsifiers) include, but are not limited to, the alkali metal salts, alkaline earth metal salts and ammonium salts of aromatic sulfonic acids, for example lignosulfonic acids, phenolsulfonic acids, naphthalenesulfonic acids, and dibutynaphthalenesulfonic acid, and of fatty acids, alkyl- and alkyaryl sulfonates, alkyl sulfates, lauryl ether sulfates.
and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols, and also of fatty alcohol glycol ethers, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene or of the naphthalene sulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isoctyl-, octyl- or nonylphenol, alkylphenyl or tributylphenyl polyglycol ether, alkyl aryl polyether alcohols, isostridecyl alcohol, fatty alcohol/ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers or polyoxypropylene alkyl ethers, lauril alcohol polyglycol ether acetate, sorbitol esters, lignosulfite waste liquors and proteins, denatured proteins, polysaccharides (e.g., methylcellulose), hydrophobically modified starches, polyvinyl alcohol, polycarboxylates, polyalkoxylates, polyvinyl amine, polyethyleneimine, polyvinylpyrrolidone and copolymers thereof.

[0030] Exemplary thickeners include, but are not limited to, polysaccharides, such as xanthan gum, and organic and inorganic sheet minerals, and mixtures thereof.

[0031] Exemplary antifoam agents include, but are not limited to, silicone emulsions, long-chain alcohols, fatty acids, salts of fatty acids, organofluorine compounds, and mixtures thereof.

[0032] Exemplary antimicrobial agents include, but are not limited to, bactericides based on dichlorophen and benzyl alcohol hemiformal, and isothiazolinone derivatives, such as alkylisothiazolinones and benzisothiazolinones, and mixtures thereof.

[0033] Exemplary antifreeze agents, include, but are not limited to ethylene glycol, propylene glycol, urea, glycerol, and mixtures thereof.

[0034] Exemplary colorants include, but are not limited to, the dyes known under the names Rhodamine B, pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1, pigment blue 80, pigment yellow 1, pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48:1, pigment red 57:1, pigment red 53:1, pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51, acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108, and mixtures thereof.
Exemplary adhesives include, but are not limited to, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol, tylose, and mixtures thereof.

In some embodiments, the additive includes a carrier. In some embodiments, the additive includes a liquid or solid carrier. In some embodiments, the additive includes an organic or inorganic carrier. Exemplary liquid carriers include, but are not limited to, petroleum fractions or hydrocarbons such as mineral oil, aromatic solvents, paraffinic oils, and the like; vegetable oils such as soybean oil, rapeseed oil, olive oil, castor oil, sunflower seed oil, coconut oil, corn oil, cottonseed oil, linseed oil, palm oil, peanut oil, safflower oil, sesame oil, tung oil and the like; esters of the above vegetable oils; esters of monoalcohols or dihydric, trihydric, or other lower polyalcohols (4-6 hydroxy containing), such as 2-ethyl hexyl stearate, n-butyl oleate, isopropyl myristate, propylene glycol diololate, di-octyl succinate, di-butyl adipate, di-octyl phthalate and the like; esters of mono, di and polycarboxylic acids and the like, toluene, xylene, petroleum naphtha, crop oil, acetone, methyl ethyl ketone, cyclohexanone, trichloroethylene, perchloroethylene, ethyl acetate, amyl acetate, butyl acetate, propylene glycol monomethyl ether and diethylene glycol monomethyl ether, methyl alcohol, ethyl alcohol, isopropyl alcohol, amyl alcohol, ethylene glycol, propylene glycol, glycerine, N-methyl-2-pyrrolidinone, N,N-dimethyl alkylamides, dimethyl sulfoxide, liquid fertilizers and the like, and water as well as mixtures thereof. Exemplary solid carriers include, but are not limited to, silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, pyrophyllite clay, attapulgus clay, kieselguhr, calcium carbonate, bentonite clay, Fuller's earth, cottonseed hulls, wheat flour, soybean flour, pumice, wood flour, walnut shell flour, lignin, ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders, and mixtures thereof.

In some embodiments, emulsions, pastes or oil dispersions, can be prepared by homogenizing (a) and (b) in water by means of wetting agent, tackifier, dispersant or emulsifier. In some embodiments, concentrates suitable for dilution with water are prepared, comprising (a), (b), a wetting agent, a tackifier, and a dispersant or emulsifier.
[0038] In some embodiments, powders or materials for spreading and dusts can be prepared by mixing or concomitant grinding of (a) and (b) and optionally a safener with a solid carrier.

[0039] In some embodiments, granules (e.g. coated granules, impregnated granules and homogeneous granules) can be prepared by binding the (a) and (b) to solid carriers.

[0040] The compositions disclosed herein can comprise a synergistic, herbicidally effective amount of (a) and (b). In some embodiments, the concentrations of (a) and (b) in the formulations can be varied. In some embodiments, the formulations comprise from 1% to 95% (e.g., from 5% to 95%, from 10% to 80%, from 20% to 70%, from 30% to 50%) by total weight of (a) and (b). In some embodiments, (a) and (b), independently, can be employed in a purity of from 90% to 100% (e.g., from 95% to 100%) according to NMR spectrometry. In some embodiments, the concentrations of (a), (b), and additional pesticides in the formulations can be varied. In some embodiments, the formulations comprise from 1% to 95% (e.g., from 5% to 95%, from 10% to 80%, from 20% to 70%, from 30% to 50%) by total weight of (a), (b), and additional pesticides, independently, can be employed in a purity of from 90% to 100% (e.g., from 95% to 100%) according to NMR spectrometry.

Methods of Application

[0041] The compositions disclosed herein can be applied in any known technique for applying herbicides. Exemplary application techniques include, but are not limited to, spraying, atomizing, dusting, spreading, or direct application into water (in-water). The method of application can vary depending on the intended purpose. In some embodiments, the method of application can be chosen to ensure the finest possible distribution of the compositions disclosed herein.

[0042] The compositions disclosed herein can be applied pre-emergence (before the emergence of undesirable vegetation) or post-emergence (i.e., during and/or after emergence of the undesirable vegetation). In some embodiments, the compositions disclosed herein are applied post-emergence when the undesirable vegetation starts with leaf development up to flowering. In some embodiments, the compositions...
disclosed herein are applied post-emergence to relatively immature undesirable vegetation to achieve the maximum control of weeds. In some embodiments when the compositions are used in crops, the compositions can be applied after seeding and before or after the emergence of the crop plants. In some embodiments, the compositions disclosed herein show good crop tolerance even when the crop has already emerged, and can be applied during or after the emergence of the crop plants. In some embodiments, when the compositions are used in crops, the compositions can be applied before seeding of the crop plants.

[0043] In some embodiments, the compositions disclosed herein are applied to vegetation or an area adjacent the vegetation or applying to soil or water to prevent the emergence or growth of vegetation by spraying (e.g., foliar spraying). In some embodiments, the spraying techniques use, for example, water as carrier and spray liquor rates of from 10 liters per hectare (L/ha) to 2000 L/ha (e.g., from 50 L/ha to 1000 L/ha, or from 100 to 500 L/ha). In some embodiments, the compositions disclosed herein are applied by the low-volume or the ultra-low-volume method, wherein the application is in the form of micro granules. In some embodiments, wherein the compositions disclosed herein are less well tolerated by certain crop plants, the compositions can be applied with the aid of the spray apparatus in such a way that they come into little contact, if any, with the leaves of the sensitive crop plants while reaching the leaves of undesirable vegetation that grows underneath or the bare soil (e.g., post-directed or lay-by).

[0044] In some embodiments, wherein the undesirable vegetation is treated post-emergence, the compositions disclosed herein are applied by foliar application. In some embodiments, herbicidal activity is exhibited by the compounds of the synergistic mixture when they are applied directly to the plant or to the locus of the plant at any stage of growth or before planting or emergence. The effect observed can depend upon the type of undesirable vegetation to be controlled, the stage of growth of the undesirable vegetation, the application parameters of dilution and spray drop size, the particle size of solid components, the environmental conditions at the time of use, the specific compound employed, the specific adjuvants and carriers employed, the soil type, and the like, as well as the amount of chemical applied. In some
embodiments, these and other factors can be adjusted to promote non-selective or selective herbicidal action.

[0045] The compositions and methods disclosed herein can be used to control undesired vegetation in a variety of crop and non-crop applications. In some embodiments, the compositions and methods disclosed herein can be used for controlling undesired vegetation in crops. Exemplary crops include, but are not limited to, sugar beets; cereals such as wheat and wheat-like crops, rye, triticale and barley, corn or maize, oats, sorghum, rice, and sugar cane; and oilseed crops such as canola or oilseed rape and sunflower; fodder brassicas. In some embodiments, the compositions and methods disclosed herein can be used for controlling undesired vegetation in non-crop areas. Exemplary non-crop areas include, but are not limited to, turf, pasture, fallow, wildlife management areas, or rangeland. In some embodiments, the compositions and methods disclosed herein can be used in industrial vegetation management (IVM) or for utility, pipeline, roadside, and railroad rights-of-way applications. In some embodiments, the compositions and methods disclosed herein can also be used in forestry (e.g., for site preparation or for combating undesirable vegetation in plantation forests). In some embodiments, the compositions and methods disclosed herein can be used to control undesirable vegetation in conservation reserve program lands (CRP), aquatics, trees, vines, grasslands, and grasses grown for seeds. In some embodiments, the compositions and methods disclosed herein can be used on lawns (e.g., residential, industrial, and institutional), golf courses, parks, cemeteries, athletic fields, and sod farms.

[0046] The compositions and methods disclosed herein can also be used in crop plants that are resistant to, for instance, herbicides, pathogens, and/or insects. In some embodiments, the compositions and methods disclosed herein can be used in crop plants that are resistant to one or more herbicides because of genetic engineering or breeding. In some embodiments, the compositions and methods disclosed herein can be used in crop plants that are resistant to one or more pathogens such as plant pathogenous fungi owing to genetic engineering or breeding. In some embodiments, the compositions and methods disclosed herein can be used in crop plants that are resistant to attack by insects owing to genetic engineering or breeding. Exemplary resistant crops include, but are not limited to, corn or maize, sorghum, wheat,
sunflower, rice, canola or oilseed rape, soybeans, cotton, alfalfa, clover, rye, barley, triticale, and sugarcane that are resistant to synthetic auxins, or crop plants that, owing to introduction of the gene for Bacillus thuringiensis (or Bt) toxin by genetic modification, are resistant to attack by certain insects. In some embodiments, the compositions and methods described herein also can be used in conjunction with glyphosate, glufosinate, dicamba, phenoxy auxins, pyridyloxy auxins, aryloxyphenoxypropionates, acetyl CoA carboxylase (ACCase) inhibitors, imidazolinones, acetolactate synthase (ALS) inhibitors, 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, triazines, and bromoxynil to control vegetation in crops tolerant to glyphosate, glufosinate, dicamba, phenoxy auxins, pyridyloxy auxins, aryloxyphenoxypropionates, acetyl CoA carboxylase (ACCase) inhibitors, imidazolinones, acetolactate synthase (ALS) inhibitors, 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, triazines, bromoxynil, or combinations thereof. In some embodiments, the undesirable vegetation is controlled in glyphosate, glufosinate, dicamba, phenoxy auxins, pyridyloxy auxins, aryloxyphenoxypropionates, acetyl CoA carboxylase (ACCase) inhibitors, imidazolinones, acetolactate synthase (ALS) inhibitors, 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, triazines, and bromoxynil tolerant crops possessing multiple or stacked traits conferring tolerance to multiple chemistries and/or multiple modes of action. In some embodiments, the undesired vegetation is controlled in phenoxy auxin tolerant crops and the phenoxy auxin tolerant crops have tolerance conferred by an AAD12 gene. The combination of (a), (b), and a complementary herbicide or salt or ester thereof can be used in combination with herbicides that are selective for the crop being treated and which complement the spectrum of weeds controlled by these compounds at the application rate employed.

[0047] The herbicidal compositions prepared disclosed herein are effective against a variety of types of undesirable vegetation. In some embodiments, the compositions disclosed herein can be used for controlling undesirable vegetation such as broadleaf weeds, woody plants, or semi-woody plants. Exemplary undesirable vegetation includes, but is not limited to, Polygonum species such as wild buckwheat.
(Polygonum convolvulus), Amaranthus species such as pigweed (Amaranthus retroflexus), Chenopodium species such as common lambsquarters (Chenopodium album L.), Sida species such as prickly sida (Sida spinosa L.), Ambrosia species such as common ragweed (Ambrosia artemisiifolia), Acanthospermum species, Anthemis species, Atriplex species, Cirsium species, Convolvulus species, Conyza species such as horseweed (Conyza canadensis), Cassia species, Commelina species, Datura species, Euphorbia species, Geranium species, Galinsoga species, Ipomoea species (morning-glory), Lamium species, Malva species, Matricaria species, Prosopis species, Rumex species, Sysimbrium species, Solanum species, Trifolium species, Xanthium species, Veronica species, Viola species, common chickweed (Stella ria media), velvetleaf (Abutilon theophrasti), Hemp sesbania (Sesbania exaltata Cory), spurred anoda (Anoda cristata), common blackjack (Bidens pilosa), wild mustard (Brassica kaber), shepherd's purse (Capsella bursa-pastoris), cornflower (Centaurea cyanus), common hennepetle (Galeopsis tetrahit), cleavers (Galium aparine), common sunflower (Helianthus annuus), tall tick-clover (Desmodium tortuosum), Kochia (Kochia scoparia), spotted medick (Medicago arabica), annual mercury (Mercurialis annua), field forget-me-not (Myosotis arvensis), common poppy (Papaver rhoeas), jointed charlock (Raphanus raphanistrum), prickly saltwort (Salsola kali), wild mustard (Sinapis arvensis), field sowthistle (Sonchus arvensis), field pennycress (Thlaspi arvense), tall khakiweed (Tagetes minuta), Brazil callalily (Richardia brasiliensis), rat's-tail plantain (Plantago major), and narrow-leaved plantain (Plantago lanceolata). In some embodiments, the undesirable vegetation includes java bean, bracken, Clidemia rubra, or Melochia parviflora.

[0048] By way of non-limiting illustration, examples of certain embodiments of the present disclosure are given below.

Examples

Evaluation of Aminocyclopyrachlor and 2,4-D for Post-Emergence Synergistic Weed Control

[0049] Field trials were conducted with applications made to established grassland with naturally occurring weed populations. The target plants were treated with postemergence foliar applications when they were at the beginning of flowering stage
and 50 centimeters (cm) (19.7 inches (in)) tall for *Senna obtusifolia* plants and at the flowering stage and 70-90 cm (27.6-35.4 in) for *Melochia parviflora* plants. All treatments were applied using a randomized complete block trial design, with 4 replications per treatment.

[0050] Treatments consisted of aminocyclopyrachlor in acid form and the dimethylamine salt of 2,4-D, each in water and applied alone or in combination. Spray solutions were prepared using an appropriate amount of dilution to form a 2.4 liter (L) aqueous spray solution with active ingredients in single and two way combinations. Formulated compounds were applied to the plant material with a backpack sprayer equipped with 8003 nozzles calibrated to deliver 42.8 gallons per acre (gal/acre) (400 liters per hectare (L/ha)) at a spray height of 18-20 inches (45-51 centimeters (cm)) above average plant canopy.

[0051] The treated plants were *Senna obtusifolia* (CASOB, java bean), or *Melochia parviflora* (MEOPA). The treated plots and control plots were rated blind at various intervals after application. Ratings were based on a scale of 0-100%, as discussed above, wherein 0% indicates no damage to the undesired vegetation and 100% indicates complete destruction of the undesired vegetation.

[0052] Colby's equation was used to determine the herbicidal effects expected from the mixtures, as described above. The results were measured at 42 days or 58-62 days after the first application of the compositions. The trials exhibited unexpected synergy, and those results were found statistically significant under the p-value test. The herbicide tank mix combinations tested, application rates and ratios employed, plant species tested, and results are given below.

<table>
<thead>
<tr>
<th>Weed</th>
<th>Aminocyclopyrachlor</th>
<th>Dimethylamine salt of 2,4-D</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASOB</td>
<td>Evaluation Interval</td>
<td>g ac/ha</td>
<td>Mean % weed control</td>
</tr>
<tr>
<td>42 days</td>
<td>35</td>
<td>72.0</td>
<td>1120</td>
</tr>
<tr>
<td>MEOPA</td>
<td>58-62 days</td>
<td>140</td>
<td>52.1</td>
</tr>
<tr>
<td>MEOPA</td>
<td>58-62 days</td>
<td>35</td>
<td>6.8</td>
</tr>
</tbody>
</table>
As shown above, the samples demonstrated synergistic weed control, with higher measured weed control than would be predicted by the Colby equation.

The compositions and methods of the appended claims are not limited in scope by the specific compositions and methods described herein, which are intended as illustrations of a few aspects of the claims and any compositions and methods that are functionally equivalent are intended to fall within the scope of the claims. Various modifications of the compositions and methods in addition to those shown and described herein are intended to fall within the scope of the appended claims. Further, while only certain representative compositions and method steps disclosed herein are specifically described, other combinations of the compositions and method steps also are intended to fall within the scope of the appended claims, even if not specifically recited. Thus, a combination of steps, elements, components, or constituents may be explicitly mentioned herein; however, other combinations of steps, elements, components, and constituents are included, even though not explicitly stated. The term "comprising" and variations thereof as used herein is used synonymously with the term "including" and variations thereof and are open, non-limiting terms.

Although the terms "comprising" and "including" have been used herein to describe various embodiments, the terms "consisting essentially of" and "consisting of" can be used in place of "comprising" and "including" to provide for more specific embodiments of the invention and are also disclosed. Other than in the examples, or where otherwise noted, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood at the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, to be construed in light of the number of significant digits and ordinary rounding approaches.

<table>
<thead>
<tr>
<th>MEOPA</th>
<th>days</th>
<th>70</th>
<th>10.0</th>
<th>1120</th>
<th>24.4</th>
<th>73.8</th>
<th>32.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58-62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEOPA</td>
<td>days</td>
<td>210</td>
<td>81.8</td>
<td>1120</td>
<td>24.4</td>
<td>94.5</td>
<td>86.2</td>
</tr>
</tbody>
</table>
WHAT IS CLAIMED IS:

1. A herbicidal composition comprising a synergistically herbicidal effective amount of (a) aminocyclopyrachlor, or an agriculturally acceptable salt or ester thereof and (b) 2,4-dichlorophenoxyacetic acid (2,4-D), or an agriculturally acceptable salt or ester thereof.

2. The composition of claim 1, wherein (a) includes aminocyclopyrachlor in acid form.

3. The composition of claim 1 or 2, wherein (b) is selected from the group consisting of the ethyl, iso-propyl, butyl, iso-butyl, iso-octyl, 2-ethylhexyl, and 2-butoxyethyl esters of 2,4-D, and the sodium, iso-propylammonium, dimethylammonium, diethanolammonium, di-iso-propylammonium, triethanolammonium, tri-iso-propylammonium, tri-iso-propanolammonium, and choline salts of 2,4-D, and mixtures thereof.

4. The composition of any one of claims 1-3, wherein the acid equivalent weight ratio of (a) to (b) is from 1:560 to 2.4:1.

5. The composition of any one of claims 1-4, wherein the acid equivalent weight ratio of (a) to (b) is from 1:32 to 1:5.3.

6. The composition of any one of claims 1-5, further comprising an additional pesticide.

7. The composition of claim 6, wherein the additional pesticide includes one or more pesticides selected from the group consisting of aminopyralid, amicarbazone, bromoxynil, chlorsulfuron, clopyralid, dicamba, dichlorprop-P, diclosulam, diuron, florasulam, flucarbazone-sodium, flumetsulam, fluroxypyr, glyphosate, glufosinate, imazamox, imazapyr, imazapic, imazaquin, imazethapyr, imazamethabenz, indaziflam, ioxynil, MCPA, mecoprop-P, metsulfuron-methyl, oxyfluorfen, penoxsulam, picloram, pinoxaden, pyroxsulam, rimsulfuron,
sulfometuron, thifensulfuron-methyl, tebuthiuron, tribenuron-methyl, triclopyr, and agriculturally acceptable salts or esters or mixtures thereof.

8. The composition of claim 7, wherein the additional pesticide includes aminopyralid choline salt, triclopyr choline salt, or a mixture thereof.

9. The composition of any one of claims 1-8, wherein the composition is free of naptalam, or a salt or ester thereof.

10. The composition of any one of claims 1-9, further comprising a herbicidal safener.

11. The composition of any one of claims 1-10, further comprising an agriculturally acceptable adjuvant or carrier.

12. The composition of any one of claims 1-11, which is synergistic as determined by the Colby equation.

13. The composition of any one of claim 1-12, wherein the composition is provided as a herbicidal concentrate.

14. A method of controlling undesirable vegetation, which comprises applying to vegetation or an area adjacent the vegetation or applying to soil or water to prevent the emergence or growth of vegetation (a) aminocyclopyrachlor, or an agriculturally acceptable salt or ester thereof and (b) 2,4-D, or an agriculturally acceptable salt or ester thereof,

 wherein (a) and (b) are each added in an amount sufficient to produce a synergistic herbicidal effect.

15. The method of claim 14, wherein (a) and (b) are applied simultaneously.
16. The method of claim 14 or 15, wherein (a) and (b) are applied postemergence to the undesirable vegetation.

17. The method of any one of claims 14-16, wherein (a) includes aminocyclopyrachlor in acid form.

18. The method of any one of claims 14-17, wherein (b) is selected from the group consisting of the ethyl, iso-propyl, butyl, iso-butyl, iso-octyl, 2-ethylhexyl, and 2-butoxyethyl esters of 2,4-D, and the sodium, iso-propylammonium, dimethylammonium, diethanolammonium, di-iso-propylammonium, triethanolammonium, tri-iso-propylammonium, tri-iso-propanolammonium, and choline salts of 2,4-D, and mixtures thereof.

19. The method of any one of claims 14-18, wherein (a) and (b) are applied in an acid equivalent weight ratio of (a) to (b) from 1:560 to 2.4:1.

20. The method of any one of claims 14-18, wherein (a) and (b) are applied in an acid equivalent weight ratio of (a) to (b) from 1:32 to 1:5.3.

21. The method of any one of claims 14-20, further comprising applying an additional pesticide.

22. The method of claim 21, wherein the additional pesticide includes one or more pesticides selected from the group consisting of aminopyralid, amicarbazone, bromoxynil, chlorsulfuron, clopyralid, dicamba, dichlorprop-P, diclosulam, diuron, florasulam, flucarbazone-sodium, flumetsulam, fluroxypyr, glyphosate, glufosinate, imazamox, imazapyr, imazapic, imazaquin, imazethapyr, imazamethabenz, indaziflam, ioxynil, MCPA, mecoprop-P, metsulfuron-methyl, oxyfluorfen, penoxsulam, picloram, pinoxaden, pyroxsulam, rimsulfuron, sulfometuron, thifensulfuron-methyl, tebuthiuron, tribenuron-methyl, triclopyr, and agriculturally acceptable salts or esters or mixtures thereof.
23. The method of claim 22, wherein the additional pesticide includes aminopyralid choline salt, triclopyr choline salt, or a mixture thereof.

24. The method of any one of claims 14-23, wherein naptalam, or a salt or ester thereof, is not applied to the vegetation, the area adjacent to the vegetation, the soil, or the water.

25. The method of any one of claims 14-24, further comprising applying a herbicidal safener.

26. The method of any one of claims 14-25, further comprising applying an agriculturally acceptable adjuvant or carrier.

27. The method of any one of claims 14-26, wherein (a) and (b) are synergistic as determined by the Colby equation.

28. The method of any one of claims 14-27, wherein the undesirable vegetation is controlled in cereals, CRP, trees and vines, grasses grown for seed, pastures, grasslands, rangelands, IVM, fallow land, forestry, wildlife management areas, rights-of-way, aquatics, sugar cane, or turf.

29. The method of any one of claims 14-28, wherein the undesirable vegetation is controlled in crops tolerant to glyphosate, glufosinate, dicamba, phenoxy auxins, pyridyloxy auxins, aryloxyphenoxypropionates, acetyl CoA carboxylase (ACCase) inhibitors, imidazolinones, acetolactate synthase (ALS) inhibitors, 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitors, protoporphyrinogen oxidase (PPO) inhibitors, triazines, bromoxynil, or combinations thereof.

30. The method of claim 29, wherein the undesirable vegetation is controlled in phenoxy auxin tolerant crops and the phenoxy auxin tolerant crops have tolerance conferred by an AAD12 gene.
31. The method of any one of claims 14-30, wherein the undesirable vegetation is resistant to auxinic herbicides.

32. The method of any one of claims 14-31, wherein the undesirable vegetation is a broadleaf weed, a woody plant, or a semi-woody plant.

33. The method of any one of claims 14-32, wherein the undesirable vegetation includes java bean, bracken, *Clidemia rubra*, or *Melochia parviflora*.

34. The method of any one of claims 14-33, wherein (a) is applied in an amount of from 8-240 g ae/ha.

35. The method of any one of claims 14-34, wherein (b) is applied in an amount of from 100-4483 g ae/ha.
INTERNATIONAL SEARCH REPORT

A. **CLASSIFICATION OF SUBJECT MATTER**
- IPC (B): A01N 43/48, 39/02; A01P 13/02 (2014.01)
- USPC: 504/116.1, 130, 136

According to International Patent Classification (IPC) or to both national classification and IPC

B. **FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)
- IPC(B): A01N 43/48, 39/02; A01P 13/02 (2014.01)
- USPC: 504/116.1, 130, 136, 317

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

- aminocyclopyrachlor, 2,4-dichlorophenoxyacetic acid OR (2,4-D); herbicide, application, acid form, ester, salt, sodium,
- Dimethylanilinum

C. **DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 8,203,033 B2 (MCCUTCHEON, BF et al.) 19 June 2012; column 14, lines 39-60; column 47, lines 37-67</td>
<td>3/1-2</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search

28 February 2014 (28.02.2014)

Date of mailing the international search report

18 MAR 2014

Authorized officer:

Shane Thomas

PCT Helpdesk: 571-272-4300
PCT DSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: 4-13, 17-35 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: