wo 2010/090745 A1 I T A0FO 0 OO KOO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 August 2010 (12.08.2010)

/AIV .;-;\
¥
d”Ik

(10) International Publication Number

WO 2010/090745 A1

(51) International Patent Classification:

GOG6F 12/08 (2006.01) GOG6F 3/06 (2006.01)

(21) International Application Number:

PCT/US2010/000317

(22) International Filing Date:

4 February 2010 (04.02.2010)
English
English

(25)
(26)
(30)

Filing Language:
Publication Language:

Priority Data:
61/150,380 Us

Applicant (for all designated States except US): OSR
OPEN SYSTEMS RESOURCES, INC. [US/US]; 105
State Route 101 A, Suite 19, Amherst, NH 03031 (US).

6 February 2009 (06.02.2009)
(1)

(72)
(73)

Inventors; and

Inventors/Applicants (for US only): MASON, W., An-
thony [US/CA]; 1203-821 Cambie Street, Vancouver,
British Columbia V6B 0E3 (CA). WIDDOWSON, Rod-
erick, David, Wolfe [GB/GB]; The Steading, Newmains,
Stenton, East Lothian, Scotland EH42 1TQ (GB).

Agents: WOLFE, Christopher, G. et al.; K&L Gates
LLP, Henry W. Oliver Building, 535 Smithfield Street,
Pittsburgh, PA 15222-2312 (US).

74

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted
a patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: METHODS AND SYSTEMS FOR DATA STORAGE

205 200

Network

(57) Abstract: In one general aspect,
various embodiments are directed to a
method of writing a data block to a
memory comprising receiving an elec-
tronic write request from an applica-
tion. A content address of a first data
block considering the value for the
first data block. A mapping of the first
data block to the content address may
be written to a logical end of the local

block map. The mapping may also be

written to a remote block map. If the
content address is not present at a lo-

L LB Map LB Map
Update Upda(e

213
LB Map LB Map
Updata Update
2188219 22N
Data Data Data
Map Block Block Update 2

2
@

/ 210
Remote Data Storage
L N
Lglﬂ“"‘:' LB Map LE Map LB Map ";’“u'g:' LB Map LB Map LB Map
oo Update Upda(e Update Ve Update Update Update
211 21 211 211
214

cal data storage, the value of the first
data block may be written to the local
data storage at a first location and
metadata associating the content ad-
dress with the first location may be
written to the local data storage.

Data Data Data
Map Block Block Update

Data Data DM R
Block Block Update
218 218 216

Data Data DM
Block Block Update
218 218 222

Figure 2

WO 2010/090745 A1 I 0000)00 N0 0 DO T

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

WO 2010/090745 PCT/US2010/000317

METHODS AND SYSTEMS FOR DATA STORAGE
W. Anthony Mason

Roderick David Wolfe Widdowson

PRIORITY CLAIM
[0001] This application claims the benefit of U.S. Provisional Patent Application
61/150,380 filed on February 6, 2009, which is incorporated herein by reference in its entirety.

BACKGROUND

Increasing numbers of computer devices utilize remote, server-side data storage,
including web-based data storage. According to typical server-side storage arrangements, a
service provider implements one or more network-accessible hosts. Each host usually comprises
data storage hardware and one or more servers for administering the hardware. The hosts and
data storage hardware may be at a single physical location, or may be distributed across multiple
location. Users of the service are able to access the hosts over the network to upload and
download data files. The network may be a local area network (LAN) or a wide area network
(WAN), such as the Internet. Typically, the users can access the central data store from multiple
computer devices, and often from any computer device having the appropriate client software
and the ability to communicate on the network. The service provider may be a private enterprise
providing data storage to its employees and other affiliates. Also, the service provider may be a
commercial entity selling access to its storage. One example of such a commercially available
remote data service is the SIMPLE STORAGE SERVICE or S3 available from AMAZON WEB
SERVICES LLC.

Remote or server-side data storage has a number of advantages. For example, remote
data storage is often used as a means to back-up data from client computers. Data back-up,
however, is only effective if it is actually practiced. Backing up files to a remote data storage
can be a tedious and time consuming task that many computer users just do not do. As more
individuals store important information on their mobile telephones and personal digital assistants

(PDA’s), backing up these devices is becoming prudent as well.

10

15

20

25

WO 2010/090745 PCT/US2010/000317

BRIEF DESCRIPTION OF THE FIGURES

Various embodiments of the present invention are described here by way of example in

conjunction with the following figures, wherein:
Figure 1 shows a block diagram of one embodiment of a client system architecture.

Figure 2 shows a block diagram of one embodiment of a system comprising a client
device organized according to the architecture of Figure 1 and utilizing a local data storage and a

remote data storage as a component of its data storage.

Figure 3 illustrates one embodiment of a process flow for writing data blocks to data

storage in the system of Figure 2.

Figure 4 illustrates one embodiment of a process flow for reading a data block using the

system of Figure 2.

DESCRIPTION

Various embodiments are directed to systems and methods for implementing content
addressable, log structured data storage schemes, which may be implemented on a single
machine or across multiple machines as part of a remote storage system. In some embodiments,
content addressable, log structured data stbrage may be used to allow client devices to utilize
remote storage as their primary, bootable data storage and/or may facilitate data back-up
utilizing remote data storage. In embodiments where the remote storage is used as a client’s
primary data storage, data may be cached at local storage, but ultimately pushed to the remote
storage. In this way, valuable user data may be concentrated at the remote data source, allowing

for easier data management, updating and back-up.

In various embodiments, the content addressable, log-structured nature of the data
storage schemes may address existing shortcomings of remote data storage that currently make it
undesirable for use as a bootable primary data storage. On such shortcoming is related to access
times. Access times for remote storage are often greater than access times for local storage. On
the pull or download side, a client machine may achieve acceptable access times and minimize

pulls from the remote storage by locally caching data that is subject to repeated use. Further,

10

15

20

25

30

WO 2010/090745 PCT/US2010/000317

many implementations of remote storage are configured to minimize pull times, which may

increase the effectiveness of caching or even make it unnecessary.

The optimization of remote data source pull times, though, often comes at the expense of
longer push times. Push times on some commercially available remote storage solutions can be
between several seconds and several hours. Accordingly, it may be desirable to minimize data
being pushed to remote storage. In various implementations, the content addressable, log-
structured data storage described herein may address this concern. Because the data storage is
content addressable, the client may not have to push a new data block if a data block with the
equivalent content already exists at the remote data source. Because the data storage is log-
structured, writing to or modifying the remote storage may only require pushing a new data
block, if any, and pushing short modifications to one or more logs describing the new data
block. Although the content addressable, log-structured data storage has certain disclosed
advantages when used in a remote storage environment, it may also be used to achieve other

advantages, for example, on a single machine.

Figure 1 shows a block diagram of one embodiment of a client system architecture 100
comprising content addressable, log-structured data storage 110. The architecture 100 may be
implemented by a client computing device in a remote storage environment. For example, the
data storage 110 may comprise local and remote data storage portions. The data storage 110 and
the various components of the architecture 100 may be implemented utilizing software and/or
hardware. For example, in addition to the data storage 110, the architecture 100 may comprise
one or more examples of an application 102, an operating system 106, a storage driver 108,
cache memory 112, physical memory 114 as well as other common components that are not

shown.

The application 102 may include a group of one or more software components executed
by a processor or processors of the client device. It will be appreciated that the architecture 100
may, in various aspects, include additional applications (not shown) that may execute
sequentially or simultaneously relative to the application 102. The application 102 may perform
at least one task such as, for example, providing e-mail service, providing word processing,
providing financial management services, efc. Applications, such as the application 102 may
perform tasks by manipulating data, which may be retrieved from the data storage 110 and/or

memory 112, 114.

10

15

20

25

30

WO 2010/090745 PCT/US2010/000317

Interaction between the application 102 and the data storage 110 and memory 112, 114
may be facilitated by the operating system 106 and the storage driver 108. The operating system
106 may be any suitable operating system. For example, in various non-limiting embodiments,
the operating system 106 may be any version of MICROSOFT WINDOWS, any UNIX
operating system, any Linux operating system, OS/2, any version of Mac OS, efc. To acquire
data for manipulation and output results, applications 102 may generate “read requests” and

“write requests” for particular data blocks.

A data block may represent the smallest unit of data handled by the architecture 100
and/or stored at data storage 110. Logical constructs, such as files, may be expressed as one or
more data blocks. Metadata may also be expressed as one or more data blocks. Data blocks
may be of any suitable size, depending on the implementation of the client system 100. For
example, many physical storage drives have disks with sectors that are 512 bytes. Some disks
may have 520 byte sectors, leaving 512 bytes for data and 8 bytes for a checksum. Other disks,
such as some SCSI disks, may have 1024 byte data blocks. Accordingly, some embodiments
may utilize data blocks that are 512, 520 and/or 1024 bytes in size. Also, for example, a typical
file system sector may be 4096 bytes or 4 kilobytes (kB) and, some physical storage devices,
such as CD-ROM’s, have sectors that are 2048 bytes (2 kB). Accordingly, 4 kB and 2 kB data

blocks may be desirable in some embodiments.

The read and write requests originating from the application 102 are provided to the
operating system 106. (It will be appreciated that some read and write requests may originate
directly from the operating system 106.) In various embodiments, the application 102 may
utilize an application program interface (API) or other library (not shown) to facilitate
communication between the application 102 and the operating system 106. The operating
system 106 may service read or write requests from the application 102, for example, by
accessing data storage 110 through the storage driver 108, or by accessing memory 114, 112.
Physical memory 114 (e.g., Random Access Memory or RAM) may include volatile or non-
volatile memory with read and write times that are faster than those of the data storage 110. The
operating system 106 may utilize physical memory 114 to store data that is very commonly read
or written to during normal operation, thus reducing access times and increasing execution
speed. Accordingly, some read or write requests from the application 102 may be handled
directly from memory 112, 114. Optional cache memory 112 may be faster than physical

memory 114 and may be used for a similar purpose.

10

15

20

25

30

WO 2010/090745 PCT/US2010/000317

Many read and write requests, however, require the operating system 106 to access data
storage 110. In these instances, the operating system 106 may package read or write requests
and provide them to the storage driver 108. Read requests provided to the storage driver 108
may comprise an identifier(s) of a data block or blocks to be read (e.g., a logical block
identifier). Write requests provided to the storage driver 108 may comprise identifier(s) of a
data block or blocks to be written, along with the data blocks to be written. The storage driver
108 may execute the read and write requests. For example, in response to a read request, the
storage driver 108 may return the requested data block or blocks. In response to a write request,
the storage driver 108 may write the included data block. It will be appreciated that in various
embodiments, some or all‘ of the functionality of the storage driver 108 may be implemented by

the operating system 106.

Physically, the data storage 110 may include any kind of storage drive or device capable
of storing data in an electronic or other suitable computer-readable format. In some
embodiments, data storage 110 may include a single fixed disk drive, an array of disk drives, an
array of disk drives combined to provide the appearance of a larger, single disk drive, a solid
state drive, efc. Data storage 110 may be local, accessible directly to the operating system 106,
or may be remote, accessible over the network, such as the Internet. In various embodiments,

the data storage 110 may comprise local and remote portions.

Logically, the data storage 110 may be implemented according to a content addressable,
log-structured scheme. In a log-structured organization, data blocks and metadata describing the
data blocks are written to a data source sequentially. To retrieve data blocks, the metadata is
consulted to determine the location of the desired data block. In content addressable schemes,
each data block is described by a representation of its content (e.g., a content address). A
content address for a block may be found, for example, by applying a hash algorithm to the data
block. The hash algorithm may return a number, or hash, of a predetermined length. The hash
represents the content of the data block. Depending on the quality of the hash algorithm used, it
may be highly unlikely that two data blocks having different values will return the same content
address or hash (e.g., a collision). Example hash algorithms may include SHA-0, SHA-1, SHA-
2, SHA-3, MD5, etc. Different algorithms, and different versions of each algorithm may yield
hashes of different sizes. For example, the SHA-2 algorithm may yield hashes of 28, 32, 48, 64
bytes or more. The likelihood may be dependent on the quality of the hash algorithm, the length

of the hash, and the size of the data block to be hashed. For example, when utilizing a larger

10

15

20

25

30

WO 2010/090745 PCT/US2010/000317

data block, it may be desirable in some circumstances to select a hash algorithm generating a

longer hash.

Content addressable storage may utilize two layers of mappings. A logical block map, or
block map, may link an identifier of a data block provided in a read or write request to a
corresponding hash or content address. The identifier of the data block may be a name of a file
or file portion, a disk offset, or other logical unit. A data mapping may map the hash or content
address of a data block to the data block (e.g., a physical location of the data block, or other way
to access the data block). A read request received from the operating system 106 may comprise
an identifier of the block or blocks to be read. The block map may be used to convert the
identifier or identifiers to one or more hashes or content addresses. The data map may be used
to return the identified data block or blocks given the hash or content address. A write request
may comprise an identifier of and an indication of the value of a block (or blocks) to be written.
The hash algorithm may be applied to the value to generate a content address. The content
address may then be associated with the identifier in the block mapping. In a content
addressable storage, it is possible for more than one identifier to correspond to the same content
address and therefore to the same location in physical storage. For example, if two or more data
blocks have the same value, only one instance of the data block may be stored at the data storage
110. Accordingly, if the content address and data block to be written are already stored at the
data storage, there may be no need to re-write the data block. The block map, however, would
be updated so that the identifier included in the request points to the exiting data block having

the same content address.

According to various embodiments, the content addressable mapping functions may be
implemented by the operating system 106, or the storage driver 108 of the architecture 100. In
some embodiments where the mapping functions are implemented by the storage driver 108,
their implementation may be transparent to the operating system 106 and the application 102.
For example, the operating system 106 may provide disk offsets as identifiers for each data
block in a read or write request. The storage driver 108 may implement the block mapping and
the data mapping to return the data blocks to the operating system 106 and/or write the blocks to
storage 110. In this way, the operating system 106 may believe that it is reading and writing

from a local disk even if the data storage 110 comprises local and remote portions.

Figure 2 shows a block diagram of one embodiment of a system 200 comprising a client
device 205 organized according to the architecture 100 and utilizing a local data storage 202 and

a remote data storage 204 as a component of its data storage 110. Accordingly, the data storage
' 6

10

15

20

25

30

WO 2010/090745 PCT/US2010/000317

110 illustrated in Figure 1 may be embodied by a local data storage 202 and a remote data
storage 204. The local and remote data storage 202, 204 shown in Figure 2 also illustrate a
content addressable, log-structured implementation. The local data storage 202 may comprise
any suitable kind of physical data storage device including, for example, a random access
memory (RAM), a read only memory (ROM), a magnetic medium, such as a hard drive or
floppy disk, an optical medium such as a CD or DVD-ROM or a flash memory card, etc. The
remote data storage 204 may comprise any suitable kind data storage located remotely from the
client 205. The remote data storage 204 may be accessible to the client via a network 201 such
as, for example, the Internet. One or more servers 203 may administer the remote data storage
204. According to various embodiments, the remote data storage 204 may comprise a cloud

storage system.

The local storage 202 may comprise a local logical block log, or local block log 206 and
a local data log 208. The local block log 206 may comprise a local logical block map or local
block map comprising local block map units 213. The local block map may implement the
block mapping function of the data storage system. For example, the local block map may
comprise a table or other data structure linking data block identifiers (e.g., received from the
operating system 106) with corresponding content addresses (e.g., hashes). The units 213
making up the local block map may be written in sequential log-structured format. Units 213
indicating changes to the local block map may be written to the logical end of the log 206. For
example, arrow 214 indicates the logical direction of updates. To find the current state of the
local block map, the client system 205 (e.g., via device driver 108) may either start at the logical
beginning of the log 206 and consider each recorded change or start at the logical end of the log

206 and continue until the most recent change to the mapping of a desired data block is found.

The local data log 208 may comprise a data map units 216 and data blocks 218. The
data map units 216 and data blocks 218 may be commingled in a log-structured format. It will
be appreciated, however, that, in some embodiments, data blocks 218 may instead be
commingled with the local block log 206 or may be included in a separate log (not shown). The
data map units 216 may, collectively, make up a local data map which may map various content
addresses to data units. Generally, the local data log may indicate which data blocks are cached
at the local data étorage 202. If a data block is not cached at the local data storage 202, then the

client device 205 may retrieve the data block at the remote data storage, as described below.

The remote data source 204 may comprise a remote logical block log 210 and a remote

data section 212. The remote block log 210 may comprise remote block log units 211, which
7

10

15

20

25

30

WO 2010/090745 PCT/US2010/000317

may be stored at the remote data source in a log-structured fashion. Collectively, the remote
block log units 211 may make up a remote block log. The remote block log may be
substantially similar to the local block log in most circumstances. That is, data block identifiers
utilized by the operating system 106 should generally map to the same content address at the
local block map and the remote block map. For example, the local block map may serve as a
local cache copy of the remote block map. If the local block map is lost, it may be substantially

replaced by pulling the remote block map.

The remote data section 212 may comprise data blocks 218, which may be organized in
any suitable fashion. In the embodiment pictured in Figure 2, the data blocks 218 are organized
in a log-structured fashion with remote data map units 222 making up a remote data map that
describes the position of each data block in the log by its content address. Any other suitable
method of indexing the data blocks 218 by content address may be used, however. For example,
in various embodiments, the data blocks 218 may be stored hierarchically with each layer of the
hierarchy corresponding to a portion of the content address (e.g., the first x bits of the content
address may specify a first hierarchy level, the second x bits may specify a second hierarchy
level, and so on). Also, in other erhbodiments, the data blocks 218 may be stored according to a

SQL database or other organization structure indexed by content address.

Figure 3 illustrates one embodiment of a process flow 300 for writing data blocks to data
storage in the system 200. Although the process flow 300 is described in the context of a write
request regarding a single data block, it will be appreciated that the steps could be easily
modified for write requests comprising more than one data block. Referring to the process flow
300, a write request may be generated (302). The write request may include an identifier of a
data block (e.g., a disk offset) and a value for the data block. According to various
embodiments, the write request may originate from an application 102, be formatted by the
operating system 106 and forwarded to the storage driver 108. A hash algorithm may be applied
to data block value included in the write request (e.g., by the storage driver 108) to generate a
content address (304). The storage driver 108 may update the local block map to associate the
identifier with the content address corresponding to the data block value (306). This may be
accomplished, for example, by writing a local block map unit 213 comprising the update to the
end of the local block log 206. If the remote data storage 204 is available (308), then the remote
block map may also be updated (310), for example, by pushing a remote block map unit 211
indicating the association to the end of the remote block log 210. If the remote data storage 204

is not available, the local block map unit 213 may be marked as un-pushed.

8

10

15

20

25

30

WO 2010/090745 PCT/US2010/000317

The storage driver 108 may traverse the local data map to determine if the content
address is listed in the local data map (312). If the content address is not listed in the local data
map, it may indicate that no existing data block on the local data storage 202 has the same value
as the data block to be written. Accordingly, the data block to be written may be written to the
end of the local data log 208 along with a local data map unit 216 mapping the content address
of the data block to be written to its physical location in the log 208 (314). According to various
embodiments, the local copy of the data block may be maintained, at least until the client 205 is

able to verify that the data block has been correctly written to the remote data storage 204.

The storage driver 108 may also determine if a data block having the same content
address as the data block to be written is present at the data section 212 of the remote data
storage 204 (316). In embodiments where the data section 212 is log structured, this may
involve traversing a remote data map comprising remote data map units 222. In embodiments
where the data units are stored hierarchically at the data section 212, this may involve examining
a portion of the hierarchy corresponding to the content address to determine if a value is present.
In embodiments where the data units are stored in an indexed fashion (e.g., at a SQL server), it
may involved performing a search using the content address as an index. If no data block
having the same content address as the data block to be written is present at the remote data
storage 204, then the value of the data block to be written may be pushed to the remote data
storage 204, if it is available. If the remote data storage is not available, then the local data log
may be updated to indicate that the data block to be written has not be pushed to the local data
storage 204.

The availability of the remote data storage 204 may, in various embodiments, depend on
the network connectivity of the client 205. For example, when the client is able to communicate
on the network 201, the remote data storage 204 may be available. It will be appreciated that
when the client logs on to the network 201 after having been disconnected for one or more write
requests, there may be one or more data blocks 218 and local block map units 213 that have not
been pushed to the remote data storage 204. In this case, for each local block map unit 213 that
is un-pushed, step 310 may be performed to update the remote block map. Likewise, for each
data block 218 that is un-pushed, steps 316 and 318 may be performed to first determine if the
data block 218 is present at the remote data storage 204 and, if not, push the data block 218 to

the remote data storage 204.

Figure 4 illustrates one embodiment of a process flow 400 for reading a data block using

the system 200. Although the process flow 400 is described in the context of a read request
9

10

15

20

25

30

WO 2010/090745 PCT/US2010/000317

regarding a single data block, it will be appreciated that the steps could be duplicated for read
requests comprising more than one data block. Referring to the process flow 400, a read request
may be generated (402). The read request may comprise an identifier for the data block to be
read. If the identifier is listed in the local block map (404), then the local block map may be
utilized to find the content address associated with the identifier (406). If the identifier is not
listed in the local block map, then the remote blc;ck map may be used to find the content address
associated with the identifier (408). If the identifier is not listed in the local block map, and the
remote data storage 204 is not available, the read request may fail. After obtaining the content
address corresponding to the requested data block, it may be determined if the content address
appears in the local data map (410). If so, then the requested data block may be returned from
local storage 202 (412). If not, then the requested data block may be pulled from remote data
storage 204, utilizing the content address (414). Optionally, after being pulled from the rerhote
data storage, the data block may be written to the local data log 208 and the local data map may
be updated accordingly (416). This may allow the data block to be accessed locally for future

reads.

The methods and systems described herein may provide several advantages. For
example, as described above, data back-up may be facilitated. The remote data storage 204 may
serve as back-up storage. Because the client device 205 automatically uploads changes to data
blocks to the remote data storage 204, the back-up is not overly burdensome on users of the
client device 205 and does not require extra diligence on the part of the users. In various
embodiments, the remote data storage 204 may be ordinarily inaccessible to the client device
205. In these embodiments, a user of the client device may affirmatively log into to remote data

storage 204 to perform a back-up.

The methods and systems described herein may also promote device accessibility. For
example, the remote block map may correspond to a particular client device 205. Accordingly, a
user of the client device 205 may log into the remote data storage 204 on a new device, access
the remote block map, and re-create the client device 205 on the new device. With access to the
block map and functionality for implementing the methods and systems above, the new device
may boot directly from the remote storage 204 to implement the device. In embodiments where
other data is present on the new device, functionality may be provided to hash and log this data
to form a local data map. Because many data blocks are common across different devices that
run similar operating systems and applications, this may minimize the number of data blocks

that must be pulled from the remote data storage 204. To implement this functionality at a new

10

10

15

20

25

30

WO 2010/090745 PCT/US2010/000317

device, a user may be provided with a USB drive or other storage device comprising, for
example, a version storage driver 108, authentication credentials to the remote storage device
204 and/or a block map corresponding to the remote block map. The ability to re-create the
client device 205 on a new machine may provide a number of benefits. For example, in the
event of the loss of a client device 205, a clone of the device could be created on a new device
by simply implementing the storage driver 108 and accessing the remote block map. Also, for
example, a user may be able to access their client device 205 while traveling without having to

physically transport the device.

Various other advantages of the disclosed systems and methods arise from the fact that
client device 205 data is present at the remote data storage 204. For example, data at the remote
data store 204 may be scanned for viruses. Because any viruses that are present would be
executing at the client device 205 and not at the remote data store 204, it may be difficult for a
virus to hide its existence at the remote data store 204. Data blocks at the remote data store 204

that are found to include a virus signature may be deleted and/or flagged as potentially infected.

Still other advantages of the disclosed systems and methods arise from embodiments
where an enterprise stores data from many client devices 205 at a single remote data store 204.
For example, each individual client device 205 may have a unique remote block map stored at
remote block map log 210. The remote data section 212 of the remote data store 204 may be
common to all client devices 205 of the enterprise (e.g., computer devices on a company’s
network, mobile phones on a mobile carrier’s network, etc.). Because many data blocks are
common on similar computer devices, implementing a common remote data section 212 may
save significant storage space. In addition, enterprise administrators may be able to update
applications on some or all of the client devices 205 by updating or changing the appropriate
data blocks 218 at the remote data section 212 and updating the remote block log for each client
device 205. When each client device 205 re-authenticates itself to the remote data storage 204,
the changes to the block log may be downloaded, completing the update. Also, when remote
data from multiple client devices 205 is commingled, processing required to perform virus
checking may be significantly reduced because duplicated data blocks may only need to be

scanned once.

It will be appreciated that a client device 205 may be any suitable type of computing
device including, for example, desktop computers, laptop computers, mobile phones, palm top

computers, personal digital assistants (PDA’s), etc. As used herein, a “computer,” “computer

&

computer device,” or “computing device,” may be, for example and without
11

system,

10

15

20

25

30

WO 2010/090745 PCT/US2010/000317

limitation, either alone or in combination, a personal computer (PC), server-based computer,
main frame, server, microcomputer, minicomputer, laptop, personal data assistant (PDA),
cellular phone, pager, processor, including wireless and/or wireline varieties thereof, and/or any
other computerized device capable of configuration for processing data for standalone
applicatién a;nd/or over a networked medium or media. Computers and computer systems
disclosed herein may include operatively associated memory for storing certain software
applications used in obtaining, processing, storing and/or communicating data. It can be
appreciated that such memory can be internal, external, remote or local with respect to its
operatively associated computer or computer system. Memory may also include any means for
storing softwafe or other instructions including, for example and without limitation, a hard disk,
an optical disk, floppy disk, ROM (read only memory), RAM (random access memory), PROM
(programmable ROM), EEPROM (extended erasable PROM), and/or other like computer-

readable media.

The term “computer-readable medium” as used herein may include, for example,
magnetic and optical memory devices such as diskettes, compact discs of both read-only and
writeable varieties, optical disk drives, and hard disk drives. A computer-readable medium may
also include memory storage that can be physical, virtual, permanent, temporary, semi-

permanent and/or semi-temporary.

It is to be understood that the figures and descriptions of embodiments of the present
invention have been simplified to illustrate elements that are relevant for a clearAunderstanding
of the present invention, while eliminating, for purposes of clarity, other elements, such as, for
example, details of system architecture. Those of ordinary skill in the art will recognize that
these and other elements may be desirable for practice of various aspects of the present
embodiments. However, because such elements are well known in the art, and because they do
not facilitate a better understanding of the present invention, a discussion of such elements is not

provided herein.

It can be appfeciaied that, in some embodiments of the present methods and systems
disclosed herein, a singleicomp(')nent can be replaced by multiple components, and multiple
compoﬁents replaced‘ by a single component, to perform a given function or functions. Except
where such substitution would not be operative to practice the present methods and systems,
such substitution is within the scope of the present invention. Examples presented herein,
including operational examples, are intended to illustrate potential implementations of the

present method and system embodiments. It can be appreciated that such examples are intended
12

10

WO 2010/090745 PCT/US2010/000317

primarily for purposes of illustration. No particular aspect or aspects of the example method,
product, computer-readable media, and/or system embodiments described herein are intended to

limit the scope of the present invention.

It should be appréciated that figures presented herein are intended for illustrative
purposes and are not intended as design drawings. Omitted details and modifications or
alternative embodiments are within the purview of persons of ordinary skill in the art.
Furthermore, whereas particular embodiments of the invention have been described herein for
the purpose of illustrating the invention and not for the purpose of limiting the same, it will be
appreciated by those of ordinary skill in the art that numerous variations of the details, materials
and arrangement of parts/elements/steps/functions may be made within the principle and scope

of the invention without departing from the invention as described in the appended claims.

13

WO 2010/090745 PCT/US2010/000317

CLAIMS

We claim:
1. A system for remote storage of data, the system comprising:
a processor circuit comprising at least one processor;

a local data storage device in electronic communication with the processor circuit, wherein

the local data storage device comprises:

a local block map, wherein the local block map comprises a plurality of mappings,

wherein each mapping maps an identifier of a data block to a corresponding content address; and

a log-structured local data storage comprising data units organized by content

address; and

a memory circuit operatively associated with the processor circuit, wherein the memory
circuit comprises instructions that, when executed by the processor circuit, cause the processor

circuit to:

receive an electronic write request from an application, wherein the write request

comprises an identifier of a first data block and a value for the first data block;

derive a content address of the first data block considering the value for the first data
block;

write a mapping to a logical end of the local block map, wherein the mapping maps

the identifier of the first data block to the content address;
write the mapping to a remote block map;
determine if the content address is present at the local data storage;
conditioned upon the content address not being present at the local data storage:

write the value of the first data block to the local storage at a first location;

and

14

WO 2010/090745 PCT/US2010/000317

write to the local storage metadata associating the content address with the

first location.

2. The system of claim 1, wherein the plurality of mappings are logically arranged in
the local block map in chronological order based on when each mapping was written to the local

block map.

3. The system of claim 1, wherein deriving the content address comprises applying a

hash algorithm to the value for the first data block.

4. The system of claim 3, wherein the hash algorithm is selected from the group
consisting of SHA-0, SHA-1, SHA-2, SHA-3 and MD5.

5. The system of claim 1, wherein the first data block is at least one size selected from

the group consisting of 512 bytes, 520 bytes, 1024 bytes, 2048 bytes and 4096 bytes.

6. The system of claim 1, wherein the local block map is organized according to a log-

structured format.

7. The system of claim 1, wherein the remote block map is organized according to a

log-structured format.

8. The system of claim 1, further comprising marking the mapping as un-pushed when

a remote data storage comprising the remote block data map is unavailable.

15

WO 2010/090745 PCT/US2010/000317

9. The system of claim 1, wherein the memory circuit further comprises instructions
that, when executed by the processor circuit, cause the processor circuit to, conditioned upon the

content address not being present at the local data storage:
determine whether the content address is present at a remote storage;
write the value of the first data block to the remote storage at a first location; and

write to the remote storage metadata associating the content address with the first location.

10. A method for remote storage of data, the method comprising;:

receiving an electronic write request from an application, wherein the write request

comprises an identifier of a first data block and a value for the first data block;

deriving a content address of the first data block considering the value for the first data

block;

writing a mapping to a logical end of a local block map, wherein the mapping maps the
identifier of the first data block to the content address, wherein the local block map comprises a
plurality of mappings, wherein each of the plurality of mappings maps an identifier of a data block

to a corresponding content address;
writing the mapping to a remote block map;

determining if the content address is present at a local data storage, wherein the local data

storage is log-structured and comprises data units organized by content address;
conditioned upon the content address not being present at the local data storage:
writing the value of the first data block to the local storage at a first location; and

writing to the local storage metadata associating the content address with the first

location.

11. A portable data storage device for re-creating a client device on a computer

machine, the device comprising a computer readable medium having written thereon:
16

WO 2010/090745 PCT/US2010/000317
a local block map, wherein the local block map comprises a plurality of mappings, wherein
each mapping maps an identifier of a data block to a corresponding content address;
a log-structured local data storage comprising data units organized by content address; and
instructions that, when executed by a processor circuit, cause the processor circuit to:

receive an electronic write request from an application, wherein the write request

comprises an identifier of a first data block and a value for the first data block;

derive a content address of the first data block considering the value for the first data

block;

write a mapping to a logical end of the local block map, wherein the mapping maps

the identifier of the first data block with the content address;
write the mapping to a remote block map;
determine if the content address is present at the local data storage;
conditioned upon the content address not being present at the local data storage:

write the value of the first data block to the local storage at a first location;

and

write to the local storage metadata associating the content address with the

first location.

12. A computer readable medium comprising instructions thereon that, when executed

by at least one processor, cause the at least one processor to:

upon receipt of a write request comprising an identifier of a data block and a value of the

data block, derive a content address for the data block based on the value of the data block;
update a local block map to associate the identifier with the content address;
update a remote block map to associate the identifier with the content address;

determine whether a log-structured local data log comprises the content address;

17

WO 2010/090745 PCT/US2010/000317

conditioned upon the local data log not comprising the content address:
write the value of the data block to the local data log at a first location; and

write to the local data log metadata associating the content address with the first

location;
determine whether a remote data log comprises the content address;
conditioned upon the remote data log not comprising the content address:
write the value of the data block to the remote data log at a first remote location; and

write to the remote data log metadata associating the content address with the first

remote location.

13. The computer readable medium of claim 12, wherein the remote data log is log-
structured.
14. The computer readable medium of claim 12, wherein the remote data log is

organized according to at least one of a hierarchal storage structure and an indexed storage

structure.

15. The computer readable medium of claim 12, wherein updating the local block map
comprises writing a mapping to a logical end of the local block log, wherein the mapping maps the

identifier of the data block with the contént address.

16. The computer readable medium of claim 12, wherein updating the remote block map
comprises writing a mapping to a logical end of the remote block log, wherein the mapping maps

the identifier of the data block with thé content address.

18

WO 2010/090745 PCT/US2010/000317

17. A computer system comprising:
a processor circuit comprising at least one processor;

a local data storage device in electronic communication with the processor circuit, wherein

the local data storage device comprises:

a local block map, wherein the local block map comprises a plurality of mappings,

wherein each mapping maps an identifier of a data block to a corresponding content address; and

a log-structured local data storage comprising data units organized by content
address; and

a memory circuit operatively associated with the processor circuit, wherein the memory
circuit comprises instructions that, when executed by the processor circuit, cause the processor

circuit to:

receive an electronic read request from an application, wherein the read request

comprises an identifier of a first data block;

determine if the local block map comprises a content address associated with the

identifier of the first data block;

conditioned upon the local block map comprising a content address associated with

the identifier of the first data block, retrieving the content address from the local block map;

conditioned upon the local block map not comprising the content address, retrieving

the content address from a remote block map;
determine whether the content address appears in the local data storage;

conditioned upon the content address appearing in the local data storage, retrieving a
value associated with the content address in the local storage and returning the value to the

application as a value for the first data block; and

conditioned upon the content address not appearing in the local data storage,
retrieving a value associated with the content address in the remote storage and returning the value

to the application as an identifier of a value for the first data block.

19

WO 2010/090745 PCT/US2010/000317

18. The system of claim 17, wherein the memory circuit comprises instructions that,
when executed by the processor circuit, cause the processor circuit to, conditioned upon the content
address not appearing in the local data storage, write the value associated with the content address

in the remote storage to the local data storage.

19. ~ The system of claim 17, wherein the plurality of mappings are logically arranged in
the local block map in chronological order based on when each mapping was written to the local

block map.

20. A computer-implemented method comprising:

receiving by a processor circuit an electronic read request from an application, wherein the
read request comprises an identifier of a first data block, and wherein the processor circuit

comprises at least one processor and is in communication with a local data storage;

determining by the processor circuit if a local block map at the local data storage comprises

a content address associated with the identifier of the first data block;

conditioned upon the local block map comprising a content address associated with the
identifier of the first data block, retrieving the content address from the local block map by the

processor circuit;

conditioned upon the local block map not comprising the content address, retrieving the

content address from a remote block map by the processor circuit;

determining by the processor circuit whether the content address appears in the local data

storage;

conditioned upon the content address appearing in the local data storage, retrieving by the
processor circuit a value associated with the content address in the local data storage and returning

the value to the application as a value for the first data block; and

conditioned upon the content address not appearing in the local data storage, retrieving a
value associated with the content address in the remote storage and returning the value to the
application as an identifier of a value for the first data block.

20

PCT/US2010/000317

WO 2010/090745

1/4

Aowsyy 1esisAud

142 1

| 8inbi]

Kiowal ayoe)

ZLL H

abeiols ejeg

,/o:

lanuQ obelois

/QS

(SO) wayskg Bunelado

oe\

ooF\

uoljes|dddy

NS\

PCT/US2010/000317

WO 2010/090745

2/4

Z ainbi4

AN AN N N N
ejyepdn yo0ig ¥ooig ayepdn yoolg Yoig
Wa ejeq eleq na eeg eeg
yAYA / —
00 20 de
| | etepdn poig o o 0z -+ _! ajepdn %00/g Yoo|g dew
wa Wu a M d \« d wa eleq eleq eleq
w/ we sie ez gl Mo/ ez’ mz/ ezl
TYAN ATAN
ejepdn a1epdn ajepdn sjepdn |
deiy g1 deiy g1 vz deiy g1 \ depy g1
\ £
L~ [AYAN L2~ _.rN/ﬂ 11 TAN A TAN n_‘Nn(
elepdn syepdn ajepdn v_uwﬁ eyepdn ejepdn eyepdn xuw__\,_m
de g1 desy 87 dep g1 . |eojBoq - den a1 dey g1 den g7 3180
902
kAN SERTOTS B Teo0
[
/ y Novz /
v0Z 20¢ il N 411 N
| JeauQ Kowsy | [Kiowep
JIOMIBN = 7| ebrioyg | | [eo1sAy aysen
1 [
'y 801 4
y 3 y
102 (s0) weysAs Bupesedo
€0z 204 w +
\ Ty y uopeojjdddy
S0¢C

00z

WO 2010/090745

PCT/US2010/000317

3/4

300

e

Receive write request from application
including identifier of data block(s) and
data block(s)

302

Y

Apply hash algorithm to data block(s)

304

v

Update local logical block map to
associate identifier with hash of data
block(s)

306

Update remote logical block map to
associate identifier with hash of data
block(s)

310

Yes

Remote
data storage available?
308

Save data block(s) to local storage and
update local data map
314

ontent address
listed in local data map?
312

Push data block values to remote
storage
318

present at remote data storage?

Figure 3

WO 2010/090745

Using local logical block map, find
content address(es) associated with
data block(s)

406

Yes

PCT/US2010/000317

4/4

400

/

Receive read request with identifier of
data block(s)
402

ldentifier listed
at local block map?
404

No

Using remote logical block map, find
content address(es) associated with
data block(s)

408

Return data block(s) from local storage
412

—Conten

address(es) listed in
local data map?
410

lNo

Pull data block(s) from remote storage
414

'

Write data block(s) to local storage and
updated local data map
416

Figure 4

INTERNATIONAL SEARCH REPORT

international application No

PCT/US2010/000317

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F12/08 GO6F3/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F ’

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* { Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A US 2004/225837 Al (LEWIS RUSSELL L [USI])
11 November 2004 (2004-11-11)

paragraphs [0010] - [0017], [0023] -
[0026]; figures 1,2

A BRESSOUD T C ET AL: "OPEN CAS: A FLEXIBLE
ARCHITECTURE FOR CONTENT ADDRESSABLE
STORAGE"

PROCEEDINGS OF THE ISCA INTERNATIONAL
CONFERENCE, PARALLEL ANDDISTRIBUTED
COMPUTING SYSTEMS, XX, XX,

15 September 2004 (2004-09-15), pages
580-587, XP009068171

page 580, left-hand column

page 585, right-hand column, line 22 -
page 586, right-hand column, line 22

_____ L

1-20

1-20

m Further documents are listed in the continuation of Box C. E See patent family annex.

* Special categories of cited documents :

A document defining the general state of the art which is not

considered to be of particular relevance invention

"T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

‘E* efa_lr_lier g;)cument but published on or after the international *X* document of particular relevance; the claimed invention
ling date cannot be considered novel or cannot be considered to
°L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
“f{“f.h Is C“etg to esta_blllsh the publlcauonifqa(tje of another *Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
*0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious 1o a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
9 July 2010 21/07/2010
Name and mailing address of the ISA/ Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL ~ 2280 HV Rijswijk
Tel. (+31-70) 340-2040, i
Fax: (+31-70) 340-3016 . Nielsen, Ole

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No -

| PCT/US2010/000317

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

12 October 2004 (2004-10-12)
column 3, 1ine 51 - column 4, line 16

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2006/174156 Al (BALASUBRAMANIAN SRIDHAR 1-20
[US]) 3 August 2006 (2006-08-03)
paragraphs [0007] - [0010]
A US 6 804 718 B1 (PANG HWEE HWA [SG] ET AL) 1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2010/000317
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2004225837 Al 11-11-2004 NONE
US 2006174156 Al 03-08-2006 NONE
US 6804718 B1 12-10-2004 NONE

Fomn PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report
	Page 29 - wo-search-report

