(54) Title: HOLLOW GEAR HOB

(57) Abstract: A hob for a cutting apparatus including a hollow body of a sintered hard, metal composition and a cavity located within the body, the cavity having a volume in the range of about 10% to about 90% of the volume of the body.
HOLLOW GEAR HOB

TECHNICAL FIELD
[0001] A hollow hob for a cutting tool comprising a body of a sintered hard metal composition and at least one cavity located within the body, characterized in that the cavity has a volume in the range of about 10% to about 90% of the volume of the body.

BACKGROUND
[0002] Common materials for hobbing in the gear cutting industry include high speed steel (HSS) and solid carbide (SC). Although HSS tools offer lower cost solutions, wear and reliability are issues. High wear resistant materials, such as cemented carbide, are popular for metal drilling and cutting tools.

[0003] Solid carbide hobbs offer high cutting speeds, but the larger module sizes are very heavy and therefore both difficult for customers to handle and can be too heavy for the machine on which the tool is to be used. Indexable hob solutions for module sizes 4 and are commercially available. However, variation in the location of the inserts limits tolerances to quality class B approximately to DIN 3968 and/or BS ISO 4468 in most situations.

[0004] Another disadvantage with the presently available solid carbide hobs is cost. Raw material costs are the major contribution to expensive production costs. Moreover, current solid carbide hobs don't allow the introduction of cutting coolant/lubricant or vibration damping.

SUMMARY
[0005] In one embodiment, a hob for a cutting apparatus includes a body of a sintered hard metal composition, and a cavity located within the body, the cavity having a volume in the range of about 10% to about 90% of the volume of the body.

[0006] In another embodiment, a method of forming a hollow hob of a cutting apparatus includes the steps of providing a body of a sintered hard metal composition, wherein a cavity is located within the body, the cavity having a volume...
in the range of about 10% to about 90% of the volume of the body; and fusing at least one sintered part to the body.

[0007] In yet another embodiment, a cutting tool for a cutting apparatus includes a body of a sintered hard metal composition and at least one cavity located within the body. The cavity has a volume in the range of about 10% to about 90% of the volume of the body. At least one sintered part is fused to the body.

[0008] The foregoing summary, as well as the following detailed description of the embodiments, will be better understood when read in conjunction with the appended drawings. It should be understood that the embodiments depicted are not limited to the precise arrangements and instrumentalities shown.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Fig. 1 is a cross-section of a cutting tool having a hollow hob according to an embodiment of the present disclosure.

[0010] Fig. 2 is an enlarged cross-section of the hollow hob of Fig. 1.

[0011] Fig. 3 is a cross-section of another embodiment of a hollow hob.

[0012] Fig. 4 is a cross-section taken along line II-II of Fig. 3.

[0013] Figs. 5(a) - 5(c) are cross-sections of other embodiments of a hollow hob according to the present disclosure.

[0014] Fig. 6 is yet another embodiment of a hollow hob according to the present disclosure.

[0015] Fig. 7 is still another embodiment of a hollow hob according to the present disclosure.

[0016] Fig. 8 is another embodiment of a hollow hob according to the present disclosure.

[0017] Fig. 9 is a flow diagram illustrating a method of forming a hollow hob according to the present disclosure.

DETAILED DESCRIPTION

[0018] Referring to Figs. 1 and 2, a hob 10 according to a present embodiment has a body 12 of a sintered hard metal composition of material. A hard metal
composition is a composite material normally having a hard phase composed of one or more carbides, nitrides or carbonitrides of tungsten, titanium, chromium, vanadium, tantalum, niobium (or similar) bonded by a metallic phase, typically cobalt, nickel, iron (or combinations) or similar in varying proportions. Body 12 can be solid cemented carbide. Solid cemented carbide describes specified hard particulates combined with a specified binder alloy. For example, tungsten carbide bonded or cemented together by a cobalt alloy binder.

[0019] However, similarly to the above, solid cemented carbide may be tungsten, silicon, niobium, titanium, vanadium, chromium, tantalum, nickel, cobalt, or combinations thereof. The binder may often be cobalt or nickel. It should be appreciated that other materials for the members are contemplated by the present embodiments and therefore such should not be limited by a specific material.

[0020] Body 12 is a solid body of such material and is usually made by powder metallurgical methods, namely, but not limited to, for example, by pressing and sintering. The term solid body is defined as one contiguous, unitary body of material. However, the solid body is not limited to a specific homogenous composition, but may have a gradient, wherein relevant abundance of constituents vary across the body. It should also be appreciated that the composition of material is not limited to specific gradients.

[0021] Body 12 has at least one cavity 14. Cavity 14 has a volume in the range of about 10% to about 90% of the volume of the body. Hence, the hollow solid carbide hob 10 of the present embodiments would be lower in weight and therefore easier to handle, possible for machines to support and possible to achieve A or AA quality tolerances, according to DIN 3968 and/or BS ISO 4468, in solid carbide hobs in larger sizes than previously practical.

[0022] As shown in Figs. 3 and 4, body 12 can have a plurality of cavities 14'. The specific number and position of the cavities in body 12 being dependent on the particular end use of the hob. Moreover, the particular shape of the cavities can vary and although not shown, numerous different shapes of cavities are contemplated by the present disclosure. The total volume of the cavities can be of about 10% to about 90% of the volume of the solid body. Body 12 could be formed,
for example, by extrusion, to have multiple cavities extending partially or through its entire length.

[0023] Body 12 of the hob includes a core 16 having opposed ends. An end plate 18 can be attached at each end of the core to form cavity 14 (14'). Each of the plates can be produced separately, for example, by direct pressing. As will be described further herein, after sintering the parts, core 16 and end plates 18 can be assembled and fused together, leaving the internal space or cavity 14. End plates 18 can be cemented carbide of the same composition as core 16, or two or more different compositions and being different with respect to composition and/or grain size that are fused together, this would allow increased use of recycled material as compared to the core.

[0024] The hob of the present invention can have a plurality of different sintered parts fused to core 16 or end plates 18, depending upon the desired end use of the hob. Referring to Figs. 5(a) – 5(c), core 16 can have shank ends 20 attachable directly to the ends of core 16 (Fig. 5(a)). Alternatively, a shank end 20 can be fused to an end plate and then to the core (Fig. 5(b). For example, body 12 can have a Capto® coupling (Sandvik Coromant, Gåmo, SE) attached thereto as shown in Fig. 5(c). It should be appreciated that a variety of parts can be fused or attached to the hob. For example, mantles, arbors, shanks, couplings, shafts and/or any other component or element. As discussed above, the elements fused to the core can be the same or different cemented carbide than the body or any other suitable material.

[0025] As shown in Fig. 6, body 12 can be formed as a partially enclosed hob component 24 having a cavity 26. One end of component 24 is enclosed the other end is open and sealable by end plate 18, or any other element. Cavity as used herein refers to an enclosed cavity, as well as, a recess formed in the body.

[0026] Referring to Fig. 7, cavity 14 can be filled with a vibration damping medium 28. Medium 28 can be introduced to cavity 14 through a channel 30 provided in the end plate 18 that is then subsequently sealed, e.g. with a steel plug 32. It should be appreciated that the cross-section of the channel leading to the cavity is less than the cross-section of the cavity.
Referring to Fig. 8, and as described supra, a sintered part 34, such as an arbor or shank, can be fused to body 12. Body 12 can include coolant holes 36 therein. Coolant may be introduced into a cavity 14 through channel 30 provided in the shank plate and exit via holes 34 to direct lubrication/cooling/flushing fluid directly to the cutting edge rather than flood cooling as is common today.

Referring to Fig. 9, a method 50 of forming a hollow hob of a cutting tool according to the present embodiments is described. In step 52 a body 12 of the hob is provided. Body 12 has been sintered for obtaining substantially the full density and hardness thereof. As described above, body 12 can be a core 16 or component 24 having the desired shape.

In step 54 at least one cavity 14 is formed in body 12 by fusing at least one sintered part such as an end plate/shanks 18 and or any other part to core 16/component 24 to enclose the cavity(ies) 14, 14', 14". As described above, cavity 14 has a volume of about 10% to about 90% of the volume of the body. Plates 18 can be machined with channels] 28 or other features prior to sintering.

After the sintered members are assembled to form the desired shape of the hob and cavity heating occurs. Heating the members in the assembled relationship is employed to fuse the members together in such a way that one solid unitary hollow hob body 12 is formed. No filler material or attachment material, such as brazing, is needed to attach the end plates or other parts to the core/component to form the body and cavity.

During fusing the assembled materials are subject to a vacuum or gas atmosphere, without the application of external pressure, and to a temperature sufficient to fuse the at plurality of materials together at the to form the unitary body. For example, at a temperature of about 1340°C to about 1360°C.

Although the present embodiment(s) has been described in relation to particular aspects thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred therefore, that the present embodiment(s) be limited not by the specific disclosure herein, but only by the appended claims.
CLAIMS

1. A hollow hob for a cutting apparatus comprising a body of a sintered hard metal composition and at least one cavity located within the body, characterized in that the cavity has a volume in the range of about 10% to about 90% of the volume of the body.

2. The hob according to claim 1, characterized in that the hard metal composition is solid cemented carbide.

3. The hob according to claims 1 or 2, characterized in that the hard metal composition is solid tungsten carbide.

4. The hob according to any of claims 1-3, characterized in that the hard metal composition is tungsten carbide bonded with a cobalt alloy binder.

5. The hob according to any of claims 1-4, characterized in that the hard metal composition is selected from the group of tungsten, silicon, chromium, vanadium, tantalum, niobium, titanium, nickel, cobalt, iron and combinations thereof.

6. The hob according to any of the preceding claims, characterized in that the body includes a core having opposed sides and a sintered element fused to each side of the core so as to seal the cavity.

7. The hob according to claim 6, characterized in that the core and each sintered element are cemented carbide of the same composition or of one or more different compositions.

8. The hob according to any of the preceding claims, characterized in that at least one sintered part is fused to the body.
9. The hob according to claim 8, wherein the at least one sintered part is a cemented carbide.

10. The according to any of the preceding claims, characterized in that a vibration dampening medium is disposed with the at least one cavity.

11. The according to any of the preceding claims, characterized in that a plurality of cavities are formed in the body.

12. The according to any of the preceding claims, characterized in that a plurality of coolant holes are disposed in the body.

13. A method of forming a hob of a cutting apparatus comprising the steps of providing a hollow body of a sintered hard metal composition, wherein at least one cavity is located within the body, characterized in that the at least one cavity has a volume in the range of about 10% to about 90% of the volume of the body, and at least one sintered part is fused to the body.

14. The method according to claim 13, characterized in that the hard metal composition is solid cemented carbide.

15. The method according to claims 13 or 14, characterized in that the hard metal composition is solid tungsten carbide.

16. The method according to any of claims 13-15, characterized in that the hard metal composition is tungsten carbide bonded with a cobalt alloy binder.

17. The method according to any of claims 13-16, characterized in that the hard metal composition is selected from the group of tungsten, silicon, chromium,
vanadium, tantalum, niobium, titanium, nickel, cobalt, iron and combinations thereof.

18. The method according to any of claims 13-17, characterized in that the step of providing the body includes providing a core having opposed sides and fusing a sintered element fused to each side of the core so as to seal the at least one cavity.

19. The method according to claim 18, characterized in that the core and each sintered element are cemented carbide of the same composition or one or more different compositions.

20. The method according to any of claims 13-19, characterized in that the at least one sintered part is a cemented carbide.

21. The method according to any of claims 13-20, further comprising the step providing a vibration dampening medium within the at least one cavity.

22. The method according to any of claims 14-21, further comprising the step of forming a plurality of coolant holes in the body.

23. The method according to any of claims 13-22, further comprising the step of providing a plurality of cavities in the body, the total volume of the plurality of cavities being about 10% to about 90% of the volume of the body.

25. A cutting tool for a cutting apparatus comprising a body of a sintered hard metal composition and at least one cavity located within the body, characterized in that the cavity has a volume in the range of about 10% to about 90% of the volume of the body and at least one sintered part fused to the body.
26. The cutting tool according to claim 25, characterized in that the hard metal composition is solid cemented carbide.

27. The cutting tool according to claims 25 or 26, characterized in that the hard metal composition is solid tungsten carbide.

28. The cutting tool according to any of claims 25-27, characterized in that the hard metal composition is tungsten carbide bonded with a cobalt alloy binder.

29. The cutting tool according to any of claims 25-28, characterized in that the hard metal composition is selected from the group of tungsten, silicon, chromium, vanadium, tantalum, niobium, titanium, nickel, cobalt, iron and combinations thereof.

30. The cutting tool according to any of claims 25-29, characterized in that the body includes a core having opposed sides and a sintered element fused to each side of the core so as to seal the cavity.

31. The cutting tool according to any of claims 25-30, characterized in that the core and each sintered element are cemented carbide of the same composition or one or more different compositions.

32. The cutting tool according to any of claims 25-31, characterized in that the at least one sintered part is a cemented carbide.

33. The cutting tool according to any of claims 25-32, further comprising a vibration dampening medium disposed with the at least one cavity.

34. The cutting tool according to any of claims 25-33, further comprising a plurality of cavities formed in the body.
35. The cutting tool according to any of claims 25-34, further comprising a plurality of coolant holes disposed in the body.

36. The cutting tool according to any of claims 25-35, characterized in that the cutting tool is a hollow hob.
Provide a sintered core/component

Fusing end plates/shank plates or other elements to form a unitary hollow hob body with cavity(ies)

Fig. 9
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. B23F21/16, B23F23/12, B23C5/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B23F B23C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2003/017013 AI (SOLTAU WOLFGANG DE ET AL) 23 January 2003 (2003-01-23)</td>
<td>1, 2, 6, 7, 18, 19, 30</td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td>10-12, 21-23, 33</td>
</tr>
<tr>
<td>Y</td>
<td>J P 2010 137345 A (MITSUBISHI HEAVY IND LTD) 24 June 2010 (2010-06-24)</td>
<td>1-5, 8, 9, 13-17, 20,</td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td>24-29, 31-32, 36</td>
</tr>
<tr>
<td>X</td>
<td>DE 10 2012 001732 AI (KENNAMETAL INC [US]) 1 August 2013 (2013-08-01)</td>
<td>25, 34, 35</td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 A document member of the same patent family

Date of the actual completion of the international search: 3 November 2014

Date of mailing of the international search report: 11/11/2014

Name and mailing address of the ISA/Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Watson, Stephanie
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DE 44 45 911 CR (FETTE WILHELM GMBH [DE]) 21 December 1995 (1995-12-21) the whole document</td>
<td>11,12, 22,23</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2003017013 AI</td>
<td>23-01-2003</td>
<td>DE 10135282 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1279455 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003017013 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010137345 A</td>
</tr>
<tr>
<td>DE 102012001732 AI</td>
<td>01-08-2013</td>
<td>CN 103223502 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102012001732 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013223943 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2593099 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2185428 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2218928 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2218931 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S62228311 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4813823 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4881431 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102009029715 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012093592 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010145801 AI</td>
</tr>
<tr>
<td>US 2008298913 AI</td>
<td>04-12-2008</td>
<td>US 2008298913 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009025896 AI</td>
</tr>
<tr>
<td>DE 4445911 CI</td>
<td>21-12-1995</td>
<td>NONE</td>
</tr>
</tbody>
</table>