
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0187992 A1

US 20030187992A1

Steenfeldt et al. (43) Pub. Date: Oct. 2, 2003

(54) SERVICE TRIGGERING FRAMEWORK (30) Foreign Application Priority Data

(76) Inventors: Rico Werni Steenfeldt, Randers (DK); Jul. 5, 2001 (DK).. 200100707
Henry Gerard Smith, Edge Hill (GB)

Publication Classification

Correspondence Address: (51) Int. Cl. .. G06F 15/173
Intellectual Property Counsel (52) U.S. Cl. .. 709/227; 709/223
Ericsson Inc. (57) ABSTRACT
MS/EVW2CS
6300 Legacy Drive Disclosed is a method and a System for managing a plurality
Plano, TX 75024 (US) of Services triggered by a message of a Session protocol Such

as SIP controlling a communications Session, the method
comprising the Steps of obtaining a number of execution

(21) Appl. No.: 10/305,285 rules each of which specify a condition for invoking a
Service; and processing the execution rules in a predeter

(22) Filed: Nov. 26, 2002 mined order, a first execution rule causing a first Service to
be invoked, if the message fulfils a first condition, resulting

Related U.S. Application Data in a first modified message; and a Second execution rule
causing a Second Service to be invoked with the first modi

(60) Provisional application No. 60/334.552, filed on Dec. fied message as an input, if the first modified message fulfils
3, 2001. a Second condition specified by a Second execution rule.

105

US 2003/0187992 A1 Oct. 2, 2003 Sheet 1 of 13 Patent Application Publication

901 –

| -61-I

80||

() –a–GO
d|S

Patent Application Publication Oct. 2, 2003. Sheet 2 of 13 US 2003/0187992 A1

3 O 1

As S
313

307 is: (2) is
304 305 E (4) it s :
i.e.--

SIP req Sippy
Fig. 3

Patent Application Publication Oct. 2, 2003 Sheet 3 of 13 US 2003/0187992 A1

-
-

413
- "<

(ancillary

Pre-condition for---- FG K Feature Group K
(FG K)

509

Post-condition for FG K ------- Pre-condition for FG K+1 Feature Group K1
(FG K+1)

510

Patent Application Publication Oct. 2, 2003 Sheet 4 of 13 US 2003/0187992 A1

DOWnstream
fur is uu assu un ma ms smus an a rums arm was SS E-->

- in-----------------
eSOOSe

701 702

in SP/SDP
eS

703

out SIP/SDP
eS

Patent Application Publication Oct. 2, 2003 Sheet 5 of 13 US 2003/0187992 A1

8O1 802

Administrator Domain B
Order h--1

Administrator Domain A
Order h

806

Event Context

7

- 807

Fig. 8

Patent Application Publication Oct. 2, 2003 Sheet 6 of 13 US 2003/0187992 A1

RMA RMB RMC RMD RME
Priority 1 Priority 2 Priority3 Priority 4 Priority 5

P2)

s G
-2

GB ca S

1307

Original SIP
Message Object

Parser Handover Converter

1302
1301

Rule 1312 Default
Module instruction

a 7 Set a

Original SIP Resulting SIP
Fig. 13

Patent Application Publication Oct. 2, 2003 Sheet 7 of 13 US 2003/0187992 A1

/\ A—A-A-

st R. R. Q 11
It

T N
INNINT

st NNN
if |f| \|
HHHH Cs 3 tilt, I

NA;

s

s ss
' Al-A—A-

is R. R. R. I.
ai AHMINI RNRNR
3 TNNIN IN IN INS).
INAH : ISIS

AT WIN.INI
5 Y) /)) f

g

US 2003/0187992 A1

O

t
s CD

1.

o

-
s
Y

Oct. 2, 2003 Sheet 8 of 13 Patent Application Publication

Patent Application Publication Oct. 2, 2003 Sheet 9 of 13 US 2003/0187992 A1

Original SIP Original Event - 1401
Message Object Context

1402 1404 1405

Service
Appl. 2

n Control

Handover

ReadWrite

1403b

Current Event Current Event
Context Handover Context

Resulting SIP Resulting Event Context Message Object

Fig. 14

Fig. 15

US 2003/0187992 A1 Patent Application Publication

US 2003/0187992 A1 Oct. 2, 2003 Sheet 11 of 13 Patent Application Publication

US 2003/0187992 A1 Patent Application Publication

Patent Application Publication Oct. 2, 2003 Sheet 13 of 13 US 2003/0187992 A1

1918 1910

NEC Appl REC 1909 R

1905 1907 - 1915 1911 1901

(g) 1901 C C C 1920

1903 - 1914 1904 1916 1912

(ACE), (3) A A 2 B ar B J - 1921

7.6) E a E 1922
1906 1908

Fig. 19

Priviliges & Rights
2003

2001 2002 -

OEC () Rule Base (2)
SubscriberA-NZ - TTTTTTTTT Rule
Subscribe B Processor Base

2011 2012

Rule Module 1
Owner A
invoke RM2

M

2005 2006 2014

(5) 2007

Rule Module 2
Owner B

US 2003/0187992 A1

SERVICE TRIGGERING FRAMEWORK

CLAIM OF PRIORITY UNDER 35 USC 119

0001 Priority is hereby claimed under 35 USC 119 to
U.S. provisional application serial No. 60/334,552 filed on
Dec. 3, 2001.

BACKGROUND OF THE INVENTION

0002 This invention relates to the management of a
plurality of Services related to a communications Session, the
communications Session being controlled by a Session pro
tocol providing Session information about Said communica
tions Session.

0003. There is an increasing demand for interactive com
munications Sessions over the Internet, Such as IP telephony,
multimedia Sessions, Video streaming, etc. Interactive com
munications Sessions may be controlled by Session proto
cols, such as the Session Initiation Protocol (SIP) which
handles initiation, termination, and modification of Sessions
between users. SIP is not concerned with the type of session
to be initiated, i.e. with the actual content of SIP messages,
but rather with the managing of a Session. This includes
taskS Such as determining where a user to be contacted is
actually residing, delivering a description of the Session that
the user is being invited to, negotiating a common format for
describing Sessions, etc.
0004 SIP is based on the request-response paradigm. For
example, when initiating a Session, a caller Sends a request
addressed to the user the caller wants to call, i.e. the callee.
The request message is Sent to the callee, typically via a
number of proxy Servers responsible for routing and deliv
ering messages. Thee callee then sends a response, accepting
or rejecting the invitation. The response is forwarded back
through the Sequence of proxy servers in the reverse order.
0005. On top of the standard session management pro
vided by a session protocol such as SIP, additional services
may be implemented at the caller Site, the callee Site, or at
any of the intermediate proxy Servers.
0006. Here, the term service comprises a unit of func
tionality which may incrementally be added to a base System
and which results in an output which is perceivable by a
user, Such as a Subscriber, an administrator, or the like.
Hence, a Service, e.g. call forwarding, voice mail, Video
conferencing, etc., is a modular extension to a base System,
Such as a System for managing Sessions, e.g. a SIP System.
The process of adding and enabling features in a base System
will be called feature deployment.
0007. During a session, features may be triggered by
certain events. Triggering, i.e. the act of invoking a given
application on a given event, is usually based on contractual
relationships between subscribers and service providers. If
more than one feature is deployed in a Service network, and
one or more Service can be activated Simultaneously for one
or more users, then feature interactions occur. Here, the term
feature interaction comprises the influence or modification
of one feature by another. Feature interaction is an inevitable
by-product of modular features. There may be desirable and
undesirable feature interactions. However, it is a problem
that the overall behaviour of a service network may become
uncontrollable if feature interactions are not managed prop
erly. Consequently, feature interaction is an increasing prob

Oct. 2, 2003

lem, as the number and complexity of Service application
increases with the emergence of new technologies, Such as
UMTS, which put heavy demands on the capabilities of
Service networks. These Services may have been developed
independently and the Service providers need to be able to
Specify how conflicting instructions from these Services are
to be solved and mediated to the default behaviour of the
communications protocol used.
0008. In order to avoid feature interaction, the behaviour
of multiple features may be tested ad-hoc or Systematically,
when adding a new Service to a Service network, for example
by testing pairs of features. If instances of feature interac
tions are detected during tests or after deployment, the
detected problem may be fixed, e.g. by re-designing one or
more of the involved Service applications.
0009. The above approach requires a considerable
amount of resources, in particular as the number and com
plexity of the Services increases. Hence, it is a problem that
the above prior art does not scale well with the number and
complexity of Service applications.

SUMMARY OF THE INVENTION

0010. According to the invention, the above and other
problems are Solved by a method of managing a plurality of
Services triggered by a message of a Session protocol con
trolling a communications Session, the method comprising
the Steps of obtaining a number of execution rules each of
which Specifying a condition for invoking a Service, pro
cessing the execution rules in a predetermined order, a first
execution rule causing a first Service to be invoked, if the
message fulfils a first condition, resulting in a first modified
message, and a Second execution rule causing a Second
Service to be invoked with the first modified message as an
input, if the first modified message fulfils a Second condi
tion.

0011 Consequently, the invocation of services triggered
during a communications Session is controlled by a number
of execution rules which are processed in a predetermined
order, thereby controlling the order of services to be
invoked. Therefore, a mechanism for triggering applications
based on the Service execution rules is provided which
avoids an arbitrary overall behaviour due to an uncontrolled
order of execution. Furthermore, by editing the execution
rules, different deployment Strategies may easily be imple
mented, thereby providing a flexible, fine-grained Service
deployment infrastructure which provides great flexibility in
ordering the chain of Services allowing to optimise the
performance of the Service network.
0012 Hence, according to the invention, a flexible ser
Vice deployment infrastructure is provided which allows to
Systematically avoid feature interactions when managing a
large number of complex Services, e.g. when adding, remov
ing, Suspending, re-activating, or re-locating Services within
a Service network.

0013 A standardised framework for defining service
execution is provided which allows the distribution of the
Service management problem between independent Stake
holders, thereby providing a method which is scalable with
the number of Services.

0014) An execution rule includes one or more conditions
for performing one or more actions, Such as invoking a
Service application.

US 2003/0187992 A1

0.015 The term communications session comprises com
munications Sessions between users of a communications
network Such as a TCP/IP network, a local area network, a
wide area network, the Internet, or the like. Examples of
communications Sessions include Voice-over-Internet, IP
telephony, Video conferencing, Video Streaming, etc.
0016. The term session protocol comprises a protocol
controlling the communication Session, and in particular the
initiation, termination and modification of Sessions. Prefer
ably, the Session protocol is based on request/response
messages transmitted via the nodes of the communications
network between the participating users of a communica
tions Session. An example of Such a Session protocol is the
Session Initiation Protocol (SIP). Other examples include
the H.323 protocol Suite, MGCP and related protocols such
as IPDC, SGCP, H.248 etc.
0.017. The term service comprises a unit of functionality
which may incrementally be added to a base System. A
Service may offer Services to Subscribers, but may also offer
other Services, like administrative tasks to the network
administrator. Examples of Such Services include call for
warding, call waiting, voice mail, Statistics functions, call
back, Video conferencing, Video on demand, annonymizer
Services, auto reply, etc. A Service may be implemented
using a variety of technologies, e.g. OSA, Java, CGI, Perl,
C++, CPL, XML, etc.

0.018. In the context of the SIP protocol, a service is an
application or a number of applications executed locally on
a SIP server, e.g. as a CGI-Script or a CPL-Script, or
remotely on an application server contacted by the SIP
Server. In the latter case, the Service may be accessed and
invoked using Some Standard naming convention, i.e. using
SIP Request-URIs. Alternatively, the services may actually
register themselves at the SIP server using e.g. a 3GPPOSA
API framework. SIP services can be grouped into originat
ing and terminating Services, i.e. those that are associated the
caller and the callee.

0.019 Services may be triggered on conditions in a mes
Sage header, a message body, the SDP, or the like.
0020. The functionality of the SIP Server that is offered
to Service applications is termed Service features, Such as
access to some API, e.g. a server side OSAAPI, to statistical
functions, or the like. Service features may further be service
applications which register at the SIP Server and Subse
quently offer their service to be used by other service
applications.

0021. It is a further advantage of the invention that it is
independent of the technology used for the implementation
of the Services, the Signalling protocol, and the platform.
Hence, a network operator does not need to know in advance
which types of services that will be deployed in the service
network, thereby providing a robust and extendible Service
deployment infrastructure.

0022. As the number of stakeholders that may want to
register their own Services could be very large, there is a
need for scalability. Furthermore, the number of subscribers
asSociated with a domain may be very large, rendering the
issue of Scalability critical. Services may be triggered by
many different types of events and invoked based on a
plurality of different conditions, Such as matching Source
and destination addresses, time-dependant, or Some other

Oct. 2, 2003

pre-condition. Furthermore, non-SIP related services may be
invoked on SIP events, e.g. if certain conditions are fulfilled
at a given point in time. Different Service technologies, Such
as CPL, may be used. SIP related services may be invoked
on non-SIP related events, e.g. HTTP events. There may be
tens of thousands of services that may be offered to tens of
millions of subscribers, from tens of thousands 3rd party
Service providers. Consequently, the task of managing Ser
vices and Service interactions is a task which easily gets too
big and complicated for one administrator to manage.
0023. According to a preferred embodiment of the inven
tion, Said number of execution rules is grouped into a
number of rule modules, each rule module including a
number of execution rules, and the method further com
prises the Steps of

0024 processing a first one of said number of rule
modules resulting in a first accumulatively modified
message, and

0025 invoking processing a second one of said
number of rule modules providing the first accumu
latively modified message as an input.

0026 Consequently, by grouping the execution rules into
rule modules, i.e. groups of execution rules, the problem of
feature interaction is split into the problem of feature inter
action between features invoked within the same rule mod
ule and interactions between rule modules. Consequently, it
is an advantage of the invention, that a method of managing
feature interaction is provided which scales with the number
of Services. In particular, when different Services are pro
Vided by different Service providers, e.g. different companies
or different organisational entities within a company, a
Single provider may not have access to or may not be able
to test all of the Services provided. Hence, it is an advantage
of the invention that the task of analysing feature interaction
analysis may be split up according to rule modules and
distributed to different providers. This further implies that
the costs of Service management may be delegated to
independent parties as the number of Subscribers and Ser
vices grows.
0027. The stakeholders that may want to upload/register
and administer services on a SIP server could be the owner,
provider or administrator of the SIP server, network opera
tors, etc. It could also be different types of retailers, e.g.
virtual telecom operators, Internet Service Providers, etc. It
may also be different types of Service providers, Such as
application Service providers, content Service providers,
Service/feature providers. Also private organizations, enter
prises and Subscribers may be possible Stakeholders.
0028 Consequently, according to the invention, a flex
ible, extensible and Scalable management of contractual
relationships between the StakeholderS is achieved, includ
ing the management of charging, Settlements, policies and
Security.

0029. It is a further advantage of the invention, that it
provides a modular structure of execution rules, thereby
enabling the embedding of Service profiles for users, user
groups, Subscribers, etc. It is a further advantage of the
modularity that it enables reuse of rule modules, thereby
further facilitating the maintenance of the Service environ
ment.

US 2003/0187992 A1

0.030. When each rule module has associated with it a
priority indicative of an order of processing of Said number
of rule modules, the order of rule module execution is
determined by a simple parameter, thereby providing easy
and transparent control over the order of execution of rule
modules.

0.031 When each rule module corresponds to a rule
module owner authorised to edit the rule module, the admin
istrative authority for a rule module may easily be estab
lished, thereby further facilitating the delegation of admin
istrative authority, Such as editing rule modules, feature
interaction analysis within a rule module, etc.
0032. According to a further preferred embodiment of the
invention, the first rule module has assigned to it a privilege
indicative of an authority to alter a lock flag related to a
predetermined part of the accumulatively modified message
and Specifying whether Said predetermined part of the
accumulatively modified message may be modified by Ser
vices invoked from at least the Second rule module. Conse
quently, a mechanism is provided for explicitly allowing or
preventing alterations of individual attributes or groups of
attributes of the messages by Subsequent Services. Hence, an
efficient tool is provided for avoiding feature interactions
due to the changing of the context of one Service by another
service. This type of feature interaction will be referred to as
Violation of feature assumption which may cause ambiguous
or conflicting behaviour of Services. AS the authority to lock
and/or unlock certain attributes is linked to predetermined
privileges assigned to rule modules, the network operator
may detect misuse of privileges and thereby prevent unau
thorised behaviour, thereby increasing the Security of the
method. Privilege violation may be detected at run-time and
resolved, e.g. by notification and or de-activation of Ser
WCCS.

0.033 According to a yet further preferred embodiment of
the invention, the Step of invoking processing the Second
rule module further comprises the Step of Setting Said lock
flag to prevent modification of the predetermined part of the
accumulatively modified message by Services invoked from
the Second rule module, unless the lock flag was marked
unset by the first rule module. Consequently, by default, the
message attributes are locked for Subsequent changes when
the control is transferred from one rule module to another.
Hence, the Second rule module may only change message
attributes which the first rule module has explicitly marked
as being unlocked, thereby further improving the control of
possible feature interactions between rule modules and
confining feature analysis task to within the individual rule
modules. This results in a further improved scalability.
0034. When the step of obtaining a number of execution
rules further comprises the Step of detecting a predetermined
contractual relationship based on header information of the
message, and Selecting a number of rule modules based on
Said detected contractual relationship, a modular and Scal
able method is provided which enables the support for
operators to host 3rd party Services and/user defined Ser
vices. AS contractual relationships are detected on the basis
of header information, those 3rd party or user-defined Ser
vices which are relevant for a given message may be
identified on the basis of the detected contractual relation
ships.
0035. According to another preferred embodiment of the
invention, the Step of processing the first rule module further

Oct. 2, 2003

comprises the Step of invoking a predetermined third rule
module. Consequently, a rule module may invoke other rule
modules, thereby providing a powerful tool for creating a
hierarchy of rule modules and further improving the Scal
ability and flexibility of the deployment infrastructure. It is
an advantage of the invention that it allows the delegation
from one rule module owned by one party to another rule
module owned by another party. One party may invoke
applications in an order which is deemed appropriate by that
party and then pass control to another party which then may
invoke different applications. The first party may Subse
quently regain control to check the output from the Second
party. When this delegation is done, the first party may
decide which messages properties in the forwarded message
Subsequent applications can change by indicating which
message properties cannot be overwritten for an action.

0036. It is an advantage of the invention that it allows a
hierarchical delegation of administrative authority based on
the ability to trigger rule modules from within other rule
modules and lock message properties.

0037. When the first and second rule modules are related
to respective first and Second access control lists Specifying
access rights to the corresponding first or Second rule
module, the Violation of access rights may be detected and
resolved, thereby further increasing the Security of the
method.

0038. When the first and second rule modules comprise
respective first and Second Scripts in a predetermined mark
up language, a Simple language for Writing rule modules is
provided. Hence it is easy for an administrator to understand
how to express rules and what the meaning of the rules is,
thereby providing a simple mechanism for extending the
basic definition of the rule language with proprietary func
tions. An example of Such a language definition is XML.

0039. It is a further advantage of the invention that it
provides an extensible framework, i.e. it is easy to add
protocols, Service technologies and message properties, e.g.
if a new method is added to SIP

0040. It is a further advantage of the invention that it
provides a Scalable framework, i.e. the same way of express
ing rules is possible on large ISP networks and Small
end-user devices, e.g. 3G cell-phones.
0041 According to another preferred embodiment of the
invention, the message comprises a first and a Second Set of
attributes, the execution rules are grouped into at least a first
and a Second processing class of execution rules according
to corresponding constraints, where the Second processing
class is restricted to only modify attributes of the Second Set
of attributes, and the Step of processing the execution rules
further comprises the Step of processing the execution rules
of the first processing class before processing any execution
rule of the Second processing class. Consequently, the Ser
vices are divided into groups with predetermined behaviour
in terms of which parts of the Signalling messages they
update. Hence, the Services may rely on that the first Set of
message attributes will not be altered after the execution of
the first processing class. This provides a further mechanism
for Splitting up the task of feature interaction analysis into
manageable Subtasks. In the following, the processing
classes will also be referred to as processing points. The Sets
of attributes may comprise message header information and

US 2003/0187992 A1

message body comprising the actual Session content. The
attributes may be further split up into different types of
header information, e.g. Signalling attributes etc.

0042. It is a further advantage of the invention that it
provides means for Specifying how applications are allowed
to interact.

0.043 Preferably, the processing classes are processed in
a predetermined order for requests and responses and
applied to originating, terminating and "forwarded by Ser
vices.

0044 According to a further preferred embodiment of the
invention, the message comprises a first and a Second Set of
attributes, the execution rules are grouped into at least a first
and a Second processing class of execution rules according
to corresponding constraints, where the Second processing
class is restricted to only modify attributes of the Second Set
of attributes; and the method further comprises the step of
repeating the Steps of processing the first rule module and
invoking processing the Second rule module, where in each
repetition the processing of the first and Second rule modules
is limited to execution rules of a corresponding processing
class, and where each repetition results in a corresponding
accumulatively modified message which is used as an input
for a Subsequent repetition. Consequently, a combination of
the division onto rule modules with the concept of proceSS
ing classes is provided, thereby providing a fine-grained
framework for dividing the Services according to adminis
trative ownership and constraints imposed on the Services.

0.045 When the processing classes are defined separately
for execution rules triggered by requests and responses of
the Session protocol, the division of Services into processing
classes is further Split up according to the type of message,
thereby providing a more fine-grained splitting.

0.046 According to a preferred embodiment, the process
ing classes correspond to predetermined locations in a round
trip message flow according to the Session protocol, thereby
Simplifying the analysis of feature interaction.

0047 Preferably, the processing classes include a first
processing class of execution rules which impact Signalling
properties of the message, a Second processing class of
execution rules which impact non-signalling message body
content of the message, and a third processing class of
execution rules which neither impact the Signalling proper
ties nor the non-signalling message body content of the
message. Here, the term Signalling properties comprises SIP
and SDP message properties that can be matched in a rule
module condition to invoke a Service.

0.048 When a resulting modified message is generated
when all execution rules of the first and Second processing
classes are processed, the efficiency of the method is further
increased, as responses may be returned without having to
wait for Services of the third processing class.

0049 According to another preferred embodiment of the
invention, invoking the first Service further results in a
Second modified message; and the method further comprises
the Steps of processing Subsequent execution rules with the
first modified message as an input; and processing Subse
quent execution rules with the Second modified message as
an input. Hence, as a Service may return different outputs,

Oct. 2, 2003

each of which is an input to a chain of Subsequent Services,
a tree of cascaded chains of Services may be implemented.
0050. According to yet another preferred embodiment of
the invention, the method further comprises the Steps of

0051 storing information about which services are
executed and information about which order the
Services are executed in;

0052 receiving from the first service a request for
returning a notification to the first Service, if a
predetermined event occurs,

0053 storing the request in relation to the stored
information; and

0054 upon occurrence of the event, notifying the
first Service according to the Stored information.

0055 Hence, an efficient mechanism is provided for
requesting notification of future events by a Service appli
cation, thereby enabling monitoring applications, etc.
0056. When the execution modules comprise computer
readable Scripts, and the predetermined order of processing
the execution rules is determined by the order of execution
rules in Said Scripts, a simple mechanism is provided for
controlling the order of Service execution and the order of
notification regarding future events by an administrator of a
rule module.

0057 Preferably, the cascaded order of services is deter
mined by the order of execution rules within a rule module
and the order of rule modules.

0.058 When the execution rules are adapted to be
dynamically updated, i.e. during operation of the Service
network, a real-time Service management is provided.
0059. The invention further relates to a data processing
System comprising a Service execution environment module
adapted to invoke a plurality of Services triggered by a
message of a Session protocol controlling a communications
Session; characterised in that the data processing System
further comprises a Storage medium adapted to Store a
plurality of execution rules each of which specifying a
condition for invoking a Service; and the Service execution
environment module comprises a rule engine module
adapted to

0060)
0061 process the execution rules in a predetermined
order, a first execution rule causing a first Service to
be invoked, if the message fulfils a first condition,
resulting in a first modified message, and a Second
execution rule causing a Second Service to be
invoked with the first modified message as an input,
if the first modified message fulfils a Second condi
tion.

retrieve a number of execution rules, and

0062) The invention further relates to, in a data process
ing System, a Service execution environment module
adapted to invoke a plurality of Services triggered by a
message of a Session protocol controlling a communications
Session; characterised in that the Service execution environ
ment module comprises a rule engine module adapted to

0063 retrieve a number of execution rules each of
which Specifying a condition for invoking a Service;
and

US 2003/0187992 A1

0064 process the execution rules in a predetermined
order, a first execution rule causing a first Service to
be invoked, if the message fulfils a first condition,
resulting in a first modified message, and a Second
execution rule causing a Second Service to be
invoked with the first modified message as an input,
if the first modified message fulfils a Second condi
tion.

0065. The invention further relates to software program
comprising code means adapted to perform, when executed
on a data processing System, the Steps of the method
described above and in the following.
0.066 The software program may be embodied on a
computer-readable medium. The term computer-readable
medium may include magnetic tape, optical disc, digital
video disk (DVD), compact disc (CD or CD-ROM), mini
disc, hard disk, floppy disk, ferro-electric memory, electri
cally erasable programmable read only memory
(EEPROM), flash memory, EPROM, read only memory
(ROM), static random access memory (SRAM), dynamic
random access memory (DRAM), Synchronous dynamic
random access memory (SDRAM), ferromagnetic memory,
optical Storage, charge coupled devices, Smart cards, PCM
CIA card, etc.
0067. The invention further relates to a method of man
aging the deployment of a Service in a Service network, the
method comprising the Steps of

0068 specifying in a computer-readable script a
number of privileges and rights to be granted to the
Service during operation;

0069
tion;

0070 specifying a deployment strategy for said ser
Vice as a Set of execution rules Stored as a computer
readable rule module Script.

analysing potential causes of feature interac

0071. The invention further relates to a data record com
prising a rule module for use in the method described above
and in the following.
0.072 These and other aspects of the invention will be
apparent from and elucidated with reference to the embodi
ments and with reference to the drawings described herein
after.

BRIEF DESCRIPTION OF THE DRAWINGS

0073 FIG. 1 illustrates different types of feature inter
actions in a SIP service network;

0074 FIG. 2 illustrates the network elements involved in
a Service environment SIP Server architecture according to
an embodiment of the invention;
0075 FIG. 3 schematically illustrates a system architec
ture of a SIP server which supports a service execution rule
mechanism according to an embodiment of the invention;
0076 FIG. 4 illustrates the structure of a rule module
according to an embodiment of the invention;
0077 FIG. 5 illustrates the grouping of services into
constrained Sets of Services according to an embodiment of
the invention;

Oct. 2, 2003

0078 FIG. 6 illustrates the grouping of services into
constrained Sets of Services corresponding to locations in the
round trip SIP message flow according to a preferred
embodiment of the invention;
007.9 FIG. 7 illustrates the processing flow between
Services belonging to different processing points according
to an embodiment of the invention;
0080 FIG. 8 illustrates the grouping of services into rule
modules corresponding to administrative authority accord
ing to an embodiment of the invention;
0081 FIG. 9 illustrates an embodiment of the invention
where Services are grouped both according to processing
points and according to administrative authority;
0082 FIG. 10 illustrates the processing mechanism of
the embodiment of FIG. 9 in the case of multiple rule
modules and multiple processing points,
0083 FIG. 11 illustrates another example of the process
ing rules described in connection with FIG. 9;
0084 FIG. 12 illustrates a hierarchical rule module pro
cessing according to a preferred embodiment of the inven
tion;
0085 FIG. 13 shows an example of the flow of SIP
message event contexts and instruction Sets according to an
embodiment of the invention;
0086 FIG. 14 illustrates a mechanism for managing
multiple instruction Sets according to a preferred embodi
ment of the invention;
0087 FIG. 15 illustrates a tree of cascaded chains of
Service applications according to an embodiment of the
invention;
0088 FIG. 16 shows the software components of a
Service Support environment according to an embodiment of
the invention;
0089 FIG. 17 shows steps performed by the service
interaction module between the processing of the rule mod
ule and the processing of the Service application in the
embodiment of FIG. 16;
0090 FIG. 18 illustrates the tree structure of the pro
cessing of rule modules according to an embodiment of the
invention;
0091 FIG. 19 illustrates the recursive processing of rule
modules in a Situation where Service applications generate
new event contexts according to an embodiment of the
invention; and
0092 FIG. 20 illustrates a mechanism of enforcing
acceSS control in connection with rule modules according to
an embodiment of the invention.

DETAILED DESCRIPTION

0093 FIG. 1 illustrates different types of feature inter
actions in a SIP service network. With the introduction of
SIP, a new range of conversational and real time Services is
emerging on the Internet. These services 101-105 may be
managed by end user terminals 106-108, also called user
agents, or on one or multiple intermediate network Servers
109. Intermediate servers 109 may provide value-added
services 102-103 to originating and/or terminating user

US 2003/0187992 A1

agents, but also to the associated media client and Server
application(s). These intermediate Servers can be proxy
Servers, redirect Servers, dedicated application Servers or
even user agents.

0094 Communications messages sent between the user
agents are routed by the intermediate server 109 via the
Internet 110 or another communications network. A funda
mental problem managed by an intermediate SIP server 109
is to fulfil the user's Service level expectations, to maintain
good network performance and to allow flexible and Scale
able definition of new Services. Since performance is a key
issue, the architecture should allow for Some Services to
execute on the SIP server. Since it may not be feasible or
possible to execute certain services on the SIP server, the
architecture should allow for Services to be executed on
remote Servers as well.

0.095 There is a need for flexibility of service definition,
because the functionality of the SIP server should not be
defined in advance. In particular, Services may be continu
ously uploaded/registered from a range of Sources including
Service providers and Subscribers.
0096) The owner of the SIP Server may, at the same time,
be the SIP server provider, administrator and subscription
provider. This stakeholder will be referred to as a network
operator; it may be a kind of Telco or ISP. The network
operator may own the domain name of the SIP server and
provide service features to 3rd party service providers. The
network operator installs Service applications and rule mod
ules on the SIP server, and offers services to Subscribers. In
this case the network operator acts as a Service provider and
Service administrator. A Subscriber has a contractual rela
tionship with the network operator, in order to have a
Subscription, and to receive the Subscriber Services, offered
by the SIP server. The subscriber may have a service that
allows the Subscriber to upload Service applications and rule
modules to the SIP Server. The Subscriber owns these
Services for private use, i.e. personalized Services. For
Simplicity all parties other than the network operator(s) and
the Subscribers will be referred to as 3rd party service
providers which have a contractual relationship with the
network operator. Network Server owners, network Server
providers, network Server administrators, 3rd party Service
providers and subscribers are looking at the intermediate SIP
Servers as a potential platform for deploying Services that
cannot or should not be deployed in end-point user agents,
for one reason or another.

0097. There is a range of standardized protocols (e.g. SIP,
SDP, SOAP), languages (e.g. CPL) and interfaces (e.g.
SIP-CGI, 3GPP OSA API) that handle different aspects of
Service control. Also, Services are likely to apply their
control acroSS multiple protocols, network components, lan
guages and interfaces. The SIP server should be extensible
to Support all these aspects as required. These Service
applications may be owned by different parties, which have
different authorization levels and different contractual rela
tionships with the owner of the SIP server. The service
applications may add value to the default processing of SIP
requests and responses (but are not limited to doing SO) at
different specified call/session processing points, under dif
ferent conditions, etc.
0098. The following example illustrates that it is likely
that multiple services may be invoked based on one SIP

Oct. 2, 2003

event. Consider an example where a Subscriber, Say Bob, has
a SIP subscription with some SIP provider, say Telco. Bob
has a range of Services he would like to be placed in the
network. Services like terminal independent Services or
Services that become tailored to whatever terminal Bob is
currently using. There may also be Services that provide Bob
with security, privacy and reliability. Also, Bob does not
wish to manage his own Services. ASSume further that Bob
WorkSat a company, Say Corp. The Services that are invoked
to manage an incoming INVITE message to Bob, may look
like this:

0099] The Telco may own and administrate the SIP
server. The Telco also provides SIP services to subscribers,
and hosts 3rd parties services. The Telco recognizes that Bob
is a subscriber on incoming INVITE. The first service is a
Telco Call Barring application, to check if Bob has paid his
last bill. The second service is a service provided by the
Telco. It simply checks that the Caller's media codecs can be
handled by Bob's current location/terminal. If not the appli
cation will invite a media Stream converter into the media
Stream flow (using 3rd party call control). This conversion is
transparent for Bob, and the application will monitor for
responses from Bob, and update the Session descriptions as
needed. The third service is Bob's own callee preferences,
e.g. a CPL Script. This application monitors for responses for
the proxied request, and possibly routes the INVITE to
multiple destinations based on that. Say the INVITE is to
Bob's current private SIP URL. On “no response” the
INVITE is proxied to his wife Alice. In some cases Bob
wants all private calls to be diverted to his corporate SIP
URL. The fourth service is also a Telco service, but provided
to the Telco from a 3rd party application Service provider,
Say beSafe.com. This Service checks for message body
content types and provides virus checking when needed, e.g.
if there is an animated vCard included. The fifth service is
an ISP service that offers the callee multimedia advertising
in return of reimbursement of the Telco's charging. If the
Session is established and, if it is a Video-conference Session,
Bob receives a Small Streaming bar of information in the
bottom of the Video image. This Service is a monitoring
application and uses 3rd party call control. The ISP has an
account on the Telco SIP server and can offer Services
directly to the subscriber base owned by the Telco. Bob has
subscribed to this service directly with the ISP, without
involving the Telco. The Sixth Service is a Service managed
by the company where Bob works. If the call is to Bob's
current corporate SIP URL then the call is routed to Bob,
based on data only known within the Corp's private LAN
network. The last and Seventh Service is for administration
purposes, as the Telco might want to do Some logging.
0100. The above example illustrates the diversity of
contractual relationships associated with the different Ser
vices triggered by an event. The Services may be owned by
different Stakeholders, and implemented using different
technologies.

0101 Different services deployed in a service network
may interact with each other. These interactions may be
between Services related to a Single user, multiple users, or
between customer Services and System Services. The inter
action may further be between Services running on the same
network component or on different network component. In
FIG. 1, different types of interactions are illustrated: single
user-multiple component (SUMC), customer-System

US 2003/0187992 A1

(CUSY), multiple user-single component (MUSC), multiple
user-multiple component (MUMC), and Single user-multiple
component (SUMC) interactions.
0102) There are many causes of feature interaction,
including “violation of feature privileges” and “violation of
feature assumptions:
0103 Violation of feature privileges: Privileges of fea
tures are broken, if features are invoked redundantly or by
un-authorized parties. The main problem caused by Violat
ing feature privileges is redundant consumption of
resources, or unauthorized access to resources. This may be
un-intended or malicious in nature. When violation of fea
ture privileges occurs, there is a fight between features,
authorized or non-authorized, for access to the resources. If
features are invoked redundantly or by un-authorized par
ties, they may Subsequently be the cause for Violation of
feature assumptions. Clearly, avoidance of violation of fea
ture privileges is desirable.
0104. As will be described below, according to the inven
tion, violations of feature privileges are resolved by filtering
on context, on contractual relationships, on conditions, on
access control lists, privileges and rights.
0105 Filtering on context relates to the need for inter
preting an event in a certain context. This necessity becomes
apparent when managing networked multimedia Services
that operate in a converged network.
0106 Filtering on contractual relationships relates to the
need for mapping an event to a set of features which are
contractually obliged to process that event. This issue is
particularly important in a de-regulated market where not
only the provider of the network infrastructure and Session
control Services can offer value added Services to Subscrib
ers, but where 3rd parties have a legal right to make that
offering as well.
0107 Filtering on access control policies ensures that an
event only causes authorized behaviour at the node.
0108 Filtering on conditions ensures that a feature is not
invoked redundantly when an event occurs and features to
be invoked are detected based on the context, on contractual
relationships and acceSS privileges. These conditions may
depend on e.g. the properties of the event, System properties
or network properties.
0109 Violation of feature assumptions: Assumptions
about feature behaviour are broken, if the context of a
feature is changed by another feature in Such a way that the
feature cannot work as intended. A violation of feature
assumptions may cause ambiguous or conflicting behaviour.

0110 Features are the visible behaviour of executing a
Service application. An instruction issued by the Service
application issues to control the value-added behaviour of
the SIP node is termed a feature instruction. However, many
features may apply their behaviour to a message before the
controlling instruction is sent back to the SIP node. The
controlling instruction or instruction Set that is sent back to
the SIP node is termed a service control instruction. It
contains a resulting event context, i.e. the properties of a SIP
message that has to be sent upstream or downstream in
response to the original event context that triggered the
Service applications. Ambiguous behaviour occurs, when the
Service control instruction is different depending on the

Oct. 2, 2003

Sequence in which the features gain control over the current
event context. Ambiguous instructions are not necessarily
mutually exclusive.
0111. As an example, let a SIP message body contain a
color picture in gif format. Define S1 to be a service
application that is triggered on message body content of gif
format. Let S1 be a Service application that converts the gif
format into a jpg format. Furthermore, define S2 to be a
Service application that also is triggered on message body
content of gif format. Let S2 be a Service application that
converts the gif picture into a black and white picture.
0112 Let S1 be the first application to be invoked,
triggered by the gif content. S1 will convert the gif picture
to a jpg picture and write it to the current event context. S2
will never be invoked. The resulting event context will
contain a color jpg picture.
0113 Now let S2 be the first application to be invoked,
triggered by the gif content. S2 will convert the color gif
picture into a black and white picture and write it to the
current event context. S1 will, Subsequently, be invoked
based on the gif content as Specified by the current event
context. S1 will convert the gif picture to a jpg picture and
write it to the current event context. The resulting event
context will contain a black and white jpg picture.
0114 Clearly, S1 and S2 provide ambiguous behaviour,
because the context of one feature is changed by the other.
0115 Conflicting feature instructions are instructions that
are mutually exclusive. Conflicting instructions will try to
override each other. In this case conflicting instructions are
typically also the cause of ambiguous behaviour.

0116 Furthermore, all feature instructions are potential
un-authorized instruction Sets, unless they are explicitly
authorized. Un-authorized feature instructions can have a
malicious nature or be the result of a buggy Service appli
cation. In any case they can do damage to the Safety and
integrity of the System and should be detected.
0117 Monitoring service applications may cause addi
tional problems to those already discussed. Monitoring
Service applications may issue asynchronous feature instruc
tions towards the SIP node at any time, as they are running
continuously. AS they are monitoring for future events, they
may proceSS on these events and provide more feature
instructions. If there are multiple Simultaneous monitoring
Service applications, their generated feature instructions may
depend on the order in which they are notified about the
event. This adds to the complexity of the previously dis
cussed problems.

0118. The detection and resolution of violations of fea
ture assumptions is much more complicated than the reso
lution of violations of feature privileges. As will be
described below, according to the invention, means are
provided to Specify how to resolve ambiguous behaviour,
means to divide the feature interaction management in
independent feature groupS and administration domains, and
a simple default rule to resolve feature interaction interfer
ence detected at run-time. Violations of feature assumptions
are resolved by feature ordering based on the cascaded chain
principle and conditional triggering, and feature priorities
based on the lock/unlock mechanism. This will be described
in more detail below.

US 2003/0187992 A1

0119) Other causes of feature interaction include, limita
tions of network Support, e.g. limited protocol functionality
or limited user interfaces, intrinsic problems in distributed
Systems, Such as resource contention, feature co-ordination,
timing, or non-atomic operations, violation of System Secu
rity, fraudulent, tampered or eavesdropped messages, non
cooperative interactions by features with conflicting inter
eStS, etc.

0120 In general three different types of solutions to
feature interaction problems may be distinguished:
0121 Infrastructure: The development of infrastructures
for the deployment of features which integrate feature
interaction management, i.e. which deal with the causes of
Some defined feature interactions. Feature interactions are
managed both before (specification) and after (enforcement)
feature deployment time, i.e. during Specification or by
enforcement of rule based policies, etc. According to the
invention, the rule module Scripts compose an infrastructure
for deploying features which provides a framework for
feature interaction management.
0.122 Service creation: The design of features with
regard to causes of feature interactions, i.e. the detection of
feature interactions during the design phase. This, feature
interactions may be managed before feature deployment,
e.g. via explicitness, feature interaction cause analysis, Veri
fication test, etc. According to the invention, requirements
are imposed on the Service creation and feature deployment
Strategy Specification.

0123 Run-time: The resolution of feature interactions as
they occur. AS not all feature interactions may be identified
before feature deployment, they have to be detected at
run-time, e.g. by cryptographic authentication, authorization
and Secrecy, rule based policies, resolution algorithms, Al
negotiation, etc. According to the invention, Simple rules are
provided for how feature interactions detected at run-time
are resolved. These rules include the checking of acceSS
control lists associated with rule modules, the resolution of
access violations by alarm notification and taking violating
rule modules out of operation, the checking of Scripts
Specifying privileges and rights, and the resolution of vio
lations of privileges and rights by alarm notification and
taking violating features out of operation.
0.124. The general management process according to the
invention includes the following Steps:

0.125 1. Feature design specification, independently of
other features: A Service is designed and Specified
without considering interactions with other features.
However, according to an embodiment of the inven
tion, the Service is designed with respect to the pro
cessing points model described below.

0.126 2. Contract negotiation: The party wishing to
deploy a Service in the Service network negotiates with
the administrator of the service network which privi
leges and rights may be granted to the Service. Accord
ing to an embodiment of the invention, a privileges and
rights Script associated to the Service is created.

0127 3. Feature interaction analysis: The possible fea
ture interactions are investigated based on experience
and possibly knowledge about Some of the features
deployed in the Service network.

Oct. 2, 2003

0128 4. Feature deployment strategy specification:
The author of a rule module which is to deploy the
Service acquires an administrative domain. Based on
the feature interaction analysis and knowledge about
the Service, Subscribers and users, the feature deploy
ment Strategy is specified in a rule module Script.

0129. 5. Feature implementation.
0130. 6. Verification test.
0131 7. Feature installation and activation.
0132) 8. Feature run-time behaviour and management.
0.133 9. Feature de-activation and de-installation.

0.134. According to the invention, a framework for fea
ture interaction management is provided which

0.135 allows for the analysis stage to be easily
mapped to Specification rules by providing a simple
language and framework with easily understood
principles,

0.136 defines clear boundaries between the group
ings of features which are known to a given analysis
entity and those which are not,

0.137 provides simple and thus easily understand
able rules for the handover of control between these
groups of features. When handing over from one
group of features to another there is a mechanism for
ensuring that a Subsequent group of features does not
compromise the previous group, and

0.138 simplifies the analysis stage by specifying
processing points in the processing of events at
which there are guaranteed pre-conditions and at
which applications are only allowed to give certain
instructions to the Server.

0139 FIG. 2 illustrates the network elements involved in
a Service environment SIP Server architecture according to
an embodiment of the invention. The previous sip client 203
represents any client, such as a SIP enabled PC, a wireless
terminal, a previous hop proxy, a SIP/PSTN gateway etc.
The client makes requests for Session Services with incom
ing requests to the SIP server 202. The SIP server 202
represents the proxy, redirect or dedicated SIP enabled
application Server where the Service Support environment
201 is implemented. Alternatively, it may be any other SIP
enabled entity that triggers value added Services, Such as a
user agent, registrar, or the like. Services located in the SIP
server service support environment 201 are defined by
Service applications, Such as SIP-CGI Scripts, rule modules
and service features. The SIP Node 202 may hand over
control to the Service Support environment 201 on reception
of an event. The service Support environment 201 can
Subsequently invoke a relevant Service application accord
ing to certain filter criteria and based on that event. The
Service application returns a feature instruction or a set of
instructions. The service support environment 201 hands
back control to the SIP node 202, together with service
control instructions that informs the SIP node 202 about how
to process the event. The SIP node forwards the request to
the next SIP client 204. Responses to the request will be
routed in the opposite direction from the next SIP client 204
via the SIP node 202 to the previous SIP client 203, possibly
triggering additional Services. The next sip Server 204 rep

US 2003/0187992 A1

resents any server, e.g. a SIP enabled PC, a wireless termi
nal, a next hop proxy, a SIP/PSTN gateway etc. The server
handles incoming requests. The remote server 206 offers
remote Service execution, e.g. in another Service Support
environment. Based on e.g. performance criteria the Service
Support environment 201 may initiate processing on the
remote Server 206, e.g. by use of request/response protocols.
In this way different categories of Services may be invoked
and managed on different hosts. The protocol used towards
the remote Server may be any protocol Supporting request/
response dialogs, e.g. SIP, ICAP, HTTP, OSA API, etc. The
administration server 205 performs administrative tasks on
the Service environment. It is responsible for configuring the
Service Support environment 201, which is associated to the
domain of the SIP Node 202. Hence the environment of the
service support environment 201 includes a SIP node, ser
Vice applications, remote hosts and an administration entity.
0140 FIG. 3 schematically illustrates a system architec
ture of a SIP server which supports a service execution rule
mechanism according to an embodiment of the invention.
The service Support environment 301 enforces the deploy
ment infrastructure, i.e. how one feature interacts with
another. Hence, the service Support environment 301 pro
vides the functionality in the SIP server that supports value
added services. The service support environment 301 com
prises a rule engine 303 for managing the rule modules 308
stored in an execution rule base 307. The rule engine 303
further comprises a rule module execution module 314
responsible for processing rule modules. The rule engine can
invoke services 309-311 via the service execution engine
manager 302. The service definition manager 312 provides
functionality for the administration of the rule modules. The
SIP server further implements a SIP protocol stack 304
including the SIP default functionality 306 and a SIP mes
sage parser 305. The message parser 305 Supports the SIP
protocol and extracts message properties that can be inter
preted by the rule engine 303. The administration server 313
performs administrative tasks on the Service environment.
0141 An important mechanism for implementing Service
deployment policies according to the invention is the Speci
fication of deployment rules as Service execution rules
Specified in rule modules. Service execution rules Specify
conditions and actions that need to be taken, if the conditions
are fulfilled. According to the invention, a programming
language for Specifying these rules is defined which will be
referred to as Service Execution Rule Language (SERL).
0142. The rule modules 308 are managed and executed
by the rule engine 303. The rule engine 303 is the main
functional entity that implements the triggering and feature
interaction mechanism, and is part of the Service Support
environment 301. When an event occurs, the message parser
invokes the rule engine 303 and hands over the event to the
rule engine 303. The rule engine 303 finds and loads the
relevant rule modules 308 and processes those that are
relevant to the received event in the correct order. The
filtering includes a detection of contractual obligations. The
events define the context in which rule modules are pro
cessed, i.e. the conditions are evaluated according to the
properties of the SIP message events. The rule engine 303
invokes the corresponding actions when the rule pattern
matches the given message properties. Based on the content
of these actions, the rule engine 303 may issue invocation
instructions to the application execution engine manager 302

Oct. 2, 2003

or another appropriate entity within the Service Support
system. SERL scripts do not have knowledge about the
Services that they invoke and manage, other than the knowl
edge about how to invoke them and manage features in
general. The controlling instructions received from the
invoked service applications are mediated back to the SIP
stack 304 when the last rule module has been processed.
0143. The rule engine 303 further manages the informa
tion which is sent between different services. When an event
occurs, an event context is established containing the rel
evant properties of the event in a Standardized way. The
message properties have a name and a value. The value may
be determined by the message. Examples of SIP message
properties are

0144. Name: SipRequest. Request-URI, Value:
Sip:bob(Ocorp.com

0145 Name: sipRequest.To, Value: Bob Smith
<Sip:bob(acorp.com.>

0146 Name: sipResponse.Status-Code, Value: 301
0147 An example of a SDP message property is:
0148 Name: sclp.m., Value: video 48232 RTP/AVP 0

014.9 The rule engine 303 Supports a number of internal
APIs that can be accessed by the interfacing functional
entities. These APIs include

0150 a message notification API used by the SIP
Stack 304 for message notification from the message
parser 305 to the rule engine 303,

0151 a rule base definition API, used by the service
definition manager 312,

0152 a service instruction API used by the applica
tion execution engine manager 302 to hand over
instructions to the rule engine 303 on behalf of the
service applications 309-311, and

0153 an arming API used by the application execu
tion engine manager 302 to request the arming of
triggerS and transaction events on behalf of the
service applications 309-311.

0154) The application execution engine manager 302
embeds and manages a number of application execution
engines 315 for different types of Service applications, e.g.
a OSA engine, a CPL engine, CPL interpreter, a CGI engine
and/or a Servlet engine. It Supports the interface induced by
the rule engine 303 and maps between the application API
and the rule engine API. From the viewpoint of the rule
engine 303 all application execution engines 315 look like a
Single entity, i.e. the application execution engines manager
302. The service definition manager 312 may provide further
functionality to the application execution engines 315.
O155 The APIs provided by the application execution
engines manager 302 include:

0156 an invocation API used by the rule engine 303
for invocation instructions from the rule engine to
the application execution engine manager 302, and

0157 a notification API used by the rule engine 303
for notification instructions from the rule engine to
the application execution engine manager 302.

US 2003/0187992 A1

0158. The default SIP server behaviour 306 comprises
the functionality of a proxy server, redirect Server, applica
tion Server or even a user agent. It may further include
Registrar or IM&P functions. It provides an interface which
can be accessed by the rule engine 303 to place instructions.
Alternatively, a Service application may implement the SIP
server behaviour. Therefore, it is possible for the rule engine
to invoke only parts of each of the above functions as
required by the Service applications.
0159. The service definition manager 312 provides an
O&M API used by the administration server 313, service
applications 309-311, and the SIP stack 304. The API
provides functionality for

0160 Manual authentication and authorization of
new rule modules and Service applications.

0.161 Manual configuring of rights and privileges of
rule modules and Service applications.

0162 Manual loading of rule modules and service
applications.

0163 Manual activation/deactivation of rule mod
ules and Service applications.

0164)
0.165 Manual validation of service applications
implemented using Script languages.

0166 Manual deletion of rule modules and service
applications

0.167 Manual listing of all rule modules and service
applications together with their Status.

0168)
0169. The service definition manager 312 may further
provide an interface Supporting an automatic handling of
Some of the above manual functions and/or additional fea
tures, Such as listing available Service features, getting
interface and/or version of a Service feature, listing Sup
ported execution engines and Script languages, Such as JVM,
CPL, Perl, etc., installation/un-installation of Service fea
tures, activation/deactivation of Service features, registering
of Service application that will provide Services as Service
features to other Service application, Subscription to Service
features, invoking/terminating of Service features, Statistic
operations like “monitor processor load”, “busy hour calls”,
accounting operations, activation/deactivation, reading,
resetting of accounting records, etc.

Manual validation of rule modules.

Manual modification of rule modules.

0170 Here, the term service features comprises functions
which are offered to Service applications. The Service fea
tures are considered as being integrated into the Service
support environment 301 and SIP stack 304. The application
execution engine manager 302 and the Service definition
manager 312 both provide Service features to the Service
applications 309-311. Although some of the features offered
by the application execution engine manager 302 are medi
ated through the rule engine 303 and the SIP stack 304.
0171 The service applications 309-311 are programs,
compiled or interpreted, executing in the Service Support
environment 301 of the SIP server, or on a remote server.
Their purpose may be related or unrelated to the basic
functions of the SIP sever. Service applications may imple
ment SIP server behaviour. Service applications may offer

Oct. 2, 2003

Services to other Service applications, i.e. they may be
Service features. For example, a Service application may
contain some MIME type converter, and offer it as a service
feature to other Service applications. Other Service applica
tions may then use this function in order to perform a
service. Preferably, service applications should be portable
between SIP servers and may be executed on remote servers.
Service applications may access, or may be accessed
through global or local naming convention, a Standardized
or local nameSpace, by using Specified file paths to the
applications, etc., open and Standardized API, e.g. SIP-CGI,
OSA API, HTTP, ICAP, CPL, servlets, etc.
0172 A Standardised mechanism of accessing Service
application is an advantage for 3rd party Service providers.
0173 The SIP Server does not necessarily manage
remotely placed Service applications, as it may have no
knowledge about them. In this case, the SIP server or the
application execution engine manager 302 may require
location information provided by the triggering information.
0.174. The message parser 305 is responsible for inter
preting messages received, isolating well-defined elements
as message properties, and causing actions to be activated
when appropriate. When an event occurs, an message object
is established containing the relevant properties isolated by
the message parser 305.
0.175 Preferably, any supported protocol has a corre
sponding message parser. A parser may contain Subordinate
parsers that correspond to Subordinate protocols, i.e. embed
ded in other protocols like SIP. For example, within a SIP
message parser there may be separate parsers for handling
different media types such as SDP, HTML, XML, and
XHTML. From the standpoint of the rule engine, all parsers
look like a single engine. The API for message parser should
preferably be defined Such that parsers for new protocols and
content can be added modularly.
0176 For any protocol to be supported by the service
Support environment 301, the interface between the message
parser of that protocol and the rule engine covers

0177 the set of properties defined by the message
parser, including the property name, its relationship
to the message it characterizes, and the ability of an
action to modify it, and

0.178 the processing points at which rules can be
activated.

0179. In one embodiment of the invention, the service
support environment 301 or each of the functional entities
within the Service Support environment may be placed at
separate hosts serving multiple servers, e.g. SIP, Web, WAP,
I-Mode, RTSP Servers, and accessing multiple application
servers, e.g. databases, OSA, Web, SIP, etc.
0180 For example the rule engine 303, the application
execution engine manager 302 and the Service definition
manager 312 may be located at each their host, possibly
interfacing via IP. The interfaces between the rule engine
and the various Servers may be Standardized or proprietary.
The interfaces between the rule engine, the application
execution engine manager and the Service definition man
ager should, preferably, be proprietary and packaged
together. The interfaces between the Service application
Servers and the Service Support environment are preferably

US 2003/0187992 A1

standardized, like OSA API, HTTP, SIP or some database
API like Some SQL based API. In Such a distributed con
figuration the a further advantage of the invention becomes
apparent, as the rule engine is able to manage many types of
events, not only SIP events, but also HTTP events, SMTP
events, Wap events, Media codec events like MPEG7 events
or 3D virtual reality or gaming object events, etc.

0181 Still referring to FIG. 3, the trigger mechanism
according to an embodiment of the invention may be illus
trated by a simple example where it is assumed that only a
single rule module is relevant for a received event. In FIG.
3, the numerals in circles refer to the following Steps of a
trigger example:

0182 1. A SIP request is received at the message
parser 305.

0183 2. The SIP message parser 305 generates a SIP
message object. The rule engine 303 converts this
into a SIP event context.

0184) 3. The relevant rule modules 308 are located
in the execution rule base 307 based on the event
context, processing points and contractual relation
ships. An embodiment of this mechanism will be
described below.

0185. 4. The rule engine 303 loads the found rule
module 308 from the execution rule base 307 into the
rule module execution engine 314, and executes it.
As an example, let the loaded rule module contain
the following functionality, i.e. a rule Specifying
trigger criteria and invocation actions for Service
applications 310 and 311:

<rulemodule priority="1">
<ancillary>

<owner class="Network Operator's
<name>Telco</name>
<id-telco.com.<fide
<id-123.123.123.123</ids.

<f owners
<f contexts

<protocols
&SIP version="2.0 f>

</protocols
<f contexts

<fancillary>
<rule processing-point="1">

<property name="request-line' matches=INVITE">
<property name="TARGET matches="telco.dk">
<action> “invoke application Y 3/action>
<action> “invoke application Z <faction>

</property>
</rule>

</rulemodule>

0186 5. A trigger is reached, and the specified
service application Y (310) is invoked by sending an
invocation command to the application execution
engine manager 302.

0187 6. The application execution engine manager
302 locates the application Y (310).

0188 7. The application execution engine manager
302 loads the relevant service application Y (310)

Oct. 2, 2003

into an application execution engine 315 and, Sub
Sequently, activates it for execution.

0189 8. The resulting instruction from application
310 is handed back to the rule engine 303.

0.190) 9. The rule engine 303 resumes processing the
rule module, and triggers another application Z
(311). An invocation command is given to the appli
cation execution engine manager 302.

0191 10. The application execution engine manager
302 locates the application Z (311).

0.192 11. The application execution engine manager
302 loads the relevant service application Z (311)
into an execution engine 315 that can run the appli
cation and, Subsequently, activates it.

0193 12. The resulting instruction from application
311 is handed back to the rule engine 303.

0194 13. The rule engine 303 resumes processing
the rule module, and finds out that the rule module
has no more rules to execute, and that there are no
more rule modules to load. Subsequently, the rule
engine 303 sends the final result of the services to the
SIP default behaviour 306.

0195) 14. The SIP default behaviour 306 merges the
output from the rule engine 303 with possible default
output and Sends the SIP message to the message
parser/converter 305.

0196) 15. The SIP Message is e.g. proxied.
0197). In the case of multiple rule modules, the above
steps 13-14 may alternatively be as follows

0198 13. The rule engine 303 resumes processing
the rule module, and finds out that the rule module
has no more rules to execute. The rule engine 303
searches for rule modules with lower order priority
than the previous executed rule module.

0199. 14. Go to point 3 in the previous example. If
a rule module is found it will be run as in previous
example, possibly invoking other applications, e.g.
the application 309 will be invoked.

0200 When no rule modules or services are installed to
control a session, the rule engine 303 hands over control to
the SIP server, and specifies an empty output. The SIP server
may possibly merge the empty output with the default
behaviour 306 of the server as in SIP-CGI, according to
default SIP behaviour for Registrars, Redirect Server and
Proxy Server.

0201 FIG. 4 illustrates the structure of a rule module
according to an embodiment of the invention. According to
the invention, a rule module 401 is conceptually a tree
comprising a number of service execution rules 401-402,
each rule specifying a number of conditions 403-404 and
405, respectively, and a number of actions 406-407 and 408,
respectively, that need to be taken if the corresponding
conditions are fulfilled. In the following, conditions will also
be referred to as patterns. At a high level a rule module
further comprises

0202 owner information 409 specifying the owner
of the rule module, i.e. an identifiable party with an

US 2003/0187992 A1

interest in the SIP node. This party may own multiple
rule modules. The owner information may further
include information about contractual relationships.

0203 protocol information 410 specifying the con
text in which to interpret the rules in the rule module.
Examples of protocols are SIP, SDP, HTTP, H.323,
etc. Preferably, there should only be a single protocol
defined per rule module. Otherwise some overlap
may provide ambiguous interpretation. For example,
both SIP and HTTP have content type header fields.

0204 access control information 411 specifying
which parties have the right to invoke, administer
and read the rule module,

0205 a rule module identifier 412, preferably a
unique identifier. Additionally, a rule module may
include a number of aliases.

0206. A rule module may further comprise ancillary
information 413 providing further context information for a
rule module and index information 414.

0207. A pattern 403-405 is an expression that can be
evaluated with respect to the message properties in an event
context, and either the rules will match or fail to match the
properties in the context. Actions 506-408 may identify
applications, built-in Service features, remote Servers, load
Sharing hosts, or next hop Sip Servers to be invoked. They
may further identify downloaded and externally placed

12
Oct. 2, 2003

0208 Preferably, every rule module has an explicit order
ing priority assigned to it, i.e. the order priority Specifies the
Sequence in which rule modules are loaded by the rule
engine.

0209 According to a preferred embodiment of the inven
tion, the nodes of the tree in the graphical representation are
represented by XML elements. The branching from one
node to the next nodes is represented by enclosing the
element representing the next node(s) within the element
representing the node branched from. The weighting of the
branches is given by the order in which they are represented
in the Script. This weighting gives the order in which to
process the elements when an event is received. In other
words, the Script is executed from top to bottom. Thus, in
this embodiment, there are no loops within a SERL script.
Preferably, the format of a rule module is specified as an
XML DTD or XML Schema.

0210. It is an advantage of this embodiment, that it is
based on a Standardized and extensible language to Specify
languages.

0211. In one embodiment of the invention, policies can
be associated with rules Specifying privileges and rights.
Each node of the rule module may have an associated Policy
node, which may contain acceSS control lists.

0212. The following is an example of an instance of a rule
module specified as a SERL script:

&xml version="1.0">

</serule>
</rulemodules

action objects, etc. Rules, conditions and actions may have
parameters that describe their behaviour, they are the
attributes of the tree nodes. The branches have a weighting
indicating which branch should be processed first.

<!DOCTYPE sen PUBLIC “-f/IETF//DTD RFCxxxx SERL
1.O/IEN” “serl.dtd’s
<rulemodule priority="4">

<owner class="service provider's
<name>Third Party Example.</name>
<hostname>sip.example.com</hostname>
<company>www.3party.example.com</company>

<fowners
<protocol protocolname="sip' protocolversion="2.0"

f>
<rmid-44444/rmid
<serule processing-point="1">
<property name="sipEventContext.TARGET
matches="From's
<property name="sipRequest.method

matches=“INVITE's
<property name="User-Agent matches="company1'>

<action>
<invoke type="soap's

<objname>company2</objname>
<objoperation>Event Report</objoperation>
<objaddre

www.company2com/soap/servlet/rpcrouter
</objaddr>

<invokes
<faction>

</property>
</property>

</property>

0213 FIG. 5 illustrates the grouping of services into
constrained Sets of Services according to an embodiment of
the invention. According to this embodiment, services 501
508 are grouped into a set of feature groups 509-510. In the

US 2003/0187992 A1

example shown in FIG. 5, feature group 509 contains
features 501-504 and feature group 510 contains features
505-508. For each feature group, certain constraints are
imposed on the Services of that group, i.e. they are only
allowed to issued well-defined types of instructions. The
feature groups do not specify how Single features are
allowed to interact within a feature group, as long as they do
not violate the constrains on the group behaviour. The
feature groups are Sequentially ordered, e.g. by enumerating
the feature groups. In the example of FIG. 5, feature group
509 is the K-th feature group in a sequence of feature groups
and feature group 510 is enumerated by K+1. The ordering
of feature groups imposes an order of execution, Such that
the features of feature group 509 are executed prior to the
execution of the features in group 510. Preferably, the
definition of a feature group comprises a Specification of the
group ordering, e.g. by Specifying a group index, by Speci
fying a previous and a next feature group, or the like.
Preferably, the definition of a feature group further com
prises a specification of pre-conditions, i.e. conditions on
which the features of that feature group may rely, and a
Specification of constraints enforced on the behaviour of the
Services of that feature group. Hence, the feature groups are
an ordering mechanism formalizing a fundamental type of
feature interaction by providing an ordered Sequence in
which Service applications are invoked. Therefore, this
mechanism provides a framework for grouping the problem
of feature interaction into constrained Sets of features. The
mechanism actually Solves feature interactions between
these feature groups, because, due to the constraints on the
feature groups, the feature assumptions when handing over
control from one group to the next, is deterministic and
well-defined. It is an advantage of this grouping that it
provides a mechanism for decomposing the problem of
feature interaction analysis into Smaller, independent prob
lems, thereby making the problem easier to manage. Fur
thermore, it is an advantage that formalized problem areas
may be delegated to independent parties, making the prob
lem more Scalable. The mechanism of feature groups gives
the administrator and Service provider the ability to catego
rize the Service applications to different points in processing
time, where the Service applications should be invoked.
0214 FIG. 6 illustrates the grouping of services into
constrained Sets of Services corresponding to locations in the
round trip SIP message flow according to a preferred
embodiment of the invention. According to this embodi
ment, the feature groups are related to locations P1-P6 in the
logical request/response round trip message flow which have
certain pre-conditions guaranteed for the event context, and
where a Service application can be invoked based on the
constraints about which behaviour is allowed at that loca
tion. These feature groups will be referred to as processing
points.

0215. The six processing points P1-P6 are a general
grouping of services. Processing points P1-P3 and P4-P6
logically cover corresponding problems. Processing points
P1-P3 include services which are triggered on requests 607
and processing points P4-P6 include Services which are
triggered on responses 608. Logically, processing points P1
and P4, points P2 and P5, and points P3 and P6 correspond
to corresponding constraints.
0216 A SIP message can roughly be divided into two
parts, the Signalling properties, i.e. properties related to SIP,

Oct. 2, 2003

SDP, etc. and the message body content which is not related
to Signalling, Such as gif, html, etc. Services invoked on a
SIP event can therefore be grouped into those which:

0217)
0218 impact the non-signalling message body con
tent only, and

0219 those which neither impact the signalling
properties nor the non-Signalling message body con
tent.

impact the Signalling properties,

0220. This gives the basic grouping of services into three
groups 601-603 associated to the three processing points
P1-P3, respectively. Similarly, in the response pass, the
corresponding groups 604-606 are related to the processing
points P4-P6, respectively.
0221) Here, the term signalling properties comprises SIP
and SDP message properties that can be matched in a rule
module condition to invoke a Service. Consequently, appli
cations that change a signalling property may cause another
application to be invoked, which might invoke yet another
application and So fourth. The advantage in moving the
handling of Service applications which do not change Sig
nalling properties to a processing point after all changes to
the Signalling properties has occurred, is that the adminis
trator has an easier task in ordering the applications at the
processing points P2 and P5.
0222. In one embodiment of the invention, the processing
points P1-P6 may be defined as follows:

0223 Processing point P1-Previous Hop Client
Request: A SIP request 607 from a previous hop
client has been received. For this particular request
and for this particular Subscriber no rule modules
have been invoked at any previous processing point.
This processing point comprises Services which
impact the SIP/SDP signalling properties of the
resulting messages(s), but not the message body
COntent.

0224 Processing point P2-Request Content Point:
The signalling properties of the resulting SIP/SDP
message(s) have been generated and cached, i.e. this
part of the SIP message is ready to be sent. Addi
tional updates to the call/media control Signalling
properties should not occur, unless explicitly autho
rized. The Services 602 invoked at processing point
P2 should not impact the SIP/SDP signalling prop
erties as generated in processing point P1. However,
there may be exceptions to this rule. For example,
services may impact SIP headers like Alert-info,
Call-Info, Content-Disposition, Content-Encoding,
Content-Language, Content-Length, Content-Type,
and Require. Special care should be taken, if these
Signalling properties are changed at both processing
points P1 and P2. Examples of types of media
content that may be processed at this processing
point include SOAP, HTML, VXML, SMIL, gif,
mpeg7, au, etc.

0225 Processing point P3-Request Batch Point:
The SIP resulting message(s) has been generated and
sent. No more updates to the resulting message(s)
can occur. This processing point corresponds to
services 603 that just need to be invoked but do not

US 2003/0187992 A1

produce and output which is needed to process the
request. These Services mat only read the resulting
message(s), not update it.

0226. The processing points
0227 P4-Previous Hop Server Response,
0228 P5-Response Content Point, and
0229 P6-Response Batch Point may be defined for
response messages 608 analogously to the process
ing points P1-P3, respectively.

0230. Alternatively or additionally, other processing
points may be defined. For example, an additional process
ing point P0 (not shown) may be defined without constraints
on the features and which is triggered on any event, i.e. on
the reception of both requests 607 and responses 608.
0231 Preferably, additional processing points may be
asSociated with one of the high level processing points. For
example, Sub-processing points may be defined for proceSS
ing point P1, which may be named P1.1, P1.2, P1.2.1, P1.2.2
etc. Preferably, new processing points should only be
defined, if they define a logical group of Services that may
be beneficial to invoke according to Specified pre-condi
tions.

0232 The following table includes some examples of
Services which may be defined at the different processing
points at a originating and terminating SIP Server, respec
tively:

services on originating services on terminating
PP Server Sewer

P1 Originating call barring
Caller preferences/CPL call

Terminating call barring
Callee preferences/CPL routing

barring Outlook based routing decisions
MM adviser controller Presence based routing decisions
(reimbursement) Automatic instant messaging

services
Media stream converter controller
Online gaming server
Virus scanner

Privacy/secrecy enforcement
Anonymous caller

P2 Animated Vcard
Greetings of the day

P3 Logging
P4 Call back service if queuing

Logging
IVR controller
Music queue controller
MM advertiser controller
privacy/secrecy enforcement
Animated Vcard
Joke of the day
Logging

P5 Weard converter
Virus scanner

P6 Logging

0233 FIG. 7 illustrates the processing flow between
Services belonging to different processing points according
to an embodiment of the invention. In the embodiment
described in connection with FIG. 6, services that impact
different parts of a SIP message are grouped into different
processing points. This may be utilised in order to provide
an efficient processing of Services. Services which impact
the SIP Signalling properties of an incoming message 701
are included in processing point P1. Therefore, the output
from processing point P1 comprises the final call/media
control instructions 702. This can immediately be merged
with possible SIP server default behaviour and handed over
to the message converter 705 which prepares the outgoing

Oct. 2, 2003

SIP message 703. In addition, the services invoked at
processing point P2 can rely on that the Signalling properties
can no longer change, e.g. they can With confidence apply
Services that dependent on the final generated destination
address.

0234. By concentrating services that impact the non
Signalling SIP message body content only (and possibly the
related content header fields) in processing point P2, the
output 704 from processing point P2 is sufficient for the
Server to actually send the resulting outgoing SIP message(s)
703. The output 704 from processing point P2 is handed over
to the message converter 705, merged with the output 702
from processing point P1, and the message 703 is sent.
0235. When the output from processing points P1 and P2
is ready, processing point P3 is reached. The Services in
processing point P3 do not impact the content of the result
ing SIP message 703, but may rely on it. Hence, preferably,
the resulting SIP message generated from point P1 and P2
may be sent before waiting for the execution of processing
point P3 services, thereby increasing the efficiency of the
System.

0236 Hence, the grouping of Services according to pro
cessing points has the following advantages: Processing
points simplify the problem of feature interaction. Process
ing points make the problem of feature interaction more
Scalable. Processing points improve latency of processing
messages when using parallel processing, i.e. multiple pro
ceSSorS. Responses or proxy requests can be handed back to
the network faster, because service applications that do not
specify instructions to the SIP Server are located in process
ing point P3. Hence, the response or proxy request does not
need to wait for the Service applications in processing point
P3 to be invoked.

0237 FIG. 8 illustrates the grouping of services into rule
modules corresponding to administrative authority accord
ing to an embodiment of the invention. AS rule modules have
a rule module owner associated with it, they correspond to
an administrative domain where an administrator, i.e. the
rule module owner, can Specify Service deployment policies.
Within a rule module, the order of actions is assigned by the
owner of the rule module, i.e. the SERL script author.
0238 According to this embodiment of the invention,
each rule module has a priority assigned to it. The priority
Specifies the relationship between rule modules. The higher
the rule module priority, the earlier the rules in the rule
module are applied. FIG. 8 schematically shows two rule
modules 801 and 802. Rule module 801 is owned by
administrator A, while rule module 802 is owned by admin
istrator B. The rule module priorities of the rule modules
801-802 are indicated by a rule module order, where a low
order corresponds to a high priority and Vice versa. For
example, rule order 1 may be defined to be the highest
priority. In the example of FIG. 8, rule module 801 has a
rule module order h and rule module 802 has an order h--1.
Consequently the services 803-804 invoked by rule module
801 are executed before the Service 805 of rule module 802.

0239 Rule modules with the same owner may have the
Same ordering priority. Preferably, in that case, they should
have different event contexts (e.g. SIP, HTTP, ...), thereby
avoiding that more than one rule module with the same
priority is invoked on the same event context. In other words

US 2003/0187992 A1

rule modules that can be invoked on the same message
property from a given event context should have different
priorities.
0240 Each administrative domain is independent of
other administrative domains. This means that one admin
istrative domain does not need to have knowledge of the
Services deployed in other domains. Each administrator is
responsible for analyzing and Specifying Service deployment
policies in one given domain.
0241. If more than one rule module or service application
is invoked at a given event, they each will provide a set of
feature instructions that will specify how this event is to be
processed, for example whether the event should be for
warded or terminated. Clearly Such feature instructions
should not be processed simultaneously, and Some feature
instructions may override others. However, in Some cases it
might not be important in which order feature instructions
are applied or whether they are applied Simultaneously.
0242. According to the invention, a mechanism is pro
Vided to allow administrative domains to protect their fea
ture instructions when handing over control to another
administrative domain. This means that each administrative
domain may limit the hand-over of control to properties that
are unimportant to the correct behaviour of its features. The
object that is passed from one Service to another is the
current event context 806-807. Preferably, when handing
over the control of the event context 806 between service
applications belonging to the same administrative domain,
the default rule is that no properties of the event context is
protected. If Something has to be protected, it has to be done
explicitly. Between administrative domains, however, all
properties of an event context 807 are protected by default.
If Something is not necessary to protect between adminis
trative domains, it has to be explicitly marked un-protected.
Preferably, the right to mark properties protected and/or
un-protected should be governed by a privilege associated
with a rule module.

0243 In other words, higher priority rule modules may
lock message properties if they have the privileges to do So,
and locked message properties cannot be unlocked by rule
modules unless they have the privileges to do So.
0244. The following example of a fragment of a rule
module illustrates the locking/unlocking of message prop
erties after a feature F1 has been executed:

<rulemodule priority="1">

<serule processing-point="1">
<action>

<invoke type="sip-servlet's
<objname>

F1
</objname>
<lock object="property

name="sipRequest. Request-URI fs
<unlock object="keep' fs

</invokes
<faction>

</serule>
</rulemodule>.

0245. In one embodiment of the invention, an action
output may terminate the rule module, i.e. the downstream

Oct. 2, 2003

applications are not invoked. Furthermore, actions may
explicitly Set privileges on message properties in the current
event context, if they have the privileges to do so. It is an
advantage of this embodiment that the administrative
domains are independent once they have been assigned a
priority.

0246 According to this embodiment, an overall admin
istrator assigns the priorities or ranges of priorities of the
rule modules based on contractual relationships with each of
the rule module owners. The overall domain administrator
would naturally also be the owner of the highest priority rule
module. For example, at the top of the hierarchy is the SIP
service provider who owns the domain name and IP address
of the host. The SIP service provider may provide many
Services to many parties. He may also run applications for
his own purposes, for example logging, accounting, Statis
tics gathering, fraud detection, advertising etc. He may place
one or more rule modules on the Server.

0247 For example, the SIP service provider may place a
rule module for each of his Subscribers. When a SIP event
was received in the SIP server the SIP service providers
main rule module may invoke Some of his own Services and
then hand over control to the rule module for the appropriate
Subscriber. In this rule module there may be rules to trigger
services tailored for the specific subscriber. These services
may be provided by the SIP service provider himself or
bought-in by the SIP service provider from third party
service providers. The SIP service provider would be
responsible for analyzing feature interaction problems
between these Services and Specifying order priorities and
instruction priorities between the Service applications, pref
erably by using SERL. In this case the main rule module and
the Subscriber rule module are both owned and administered
by the SIP service provider. They are said to be in one
administration domain. At Some point in the order priority
the SIP service provider may decide to hand over to a rule
module owned by the subscriber himself. Note that indi
vidual Subscribers may be able to write their own SERL
Scripts, or they may only able to update preferences, e.g. via
a HTML form, from which a SERL script may be generated.
The Subscriber's rule module may invoke a CPL script, or
may in turn invoke another rule module, Some third party
service provider's rule module, or the like. If the subscrib
er's rule module includes more than one action, the Sub
scriber has to specify which action should be done first.
Likewise in the third parties rule module the actions should
be ordered according to the wishes of the third party.

0248. In another scenario, the subscriber may be an
employee of a corporate customer. In this case the SIP
service providers rule module may first hand over to the
corporate customer's rule module which might invoke Some
applications and then hand over to the individual Subscrib
er's rule module.

0249. The top-level administrator may like to intersperse
the priority order with a number of rule modules. However,
it may be cumberSome to intersperse rule modules with
lower priority rule modules of other parties. One solution to
this problem is to Separate rule module priorities with
Sufficient back-up ranges that can be used at a later time.
Alternatively, a hierarchical administration domain model
may be applied, as will be described in connection with FIG.
12.

US 2003/0187992 A1

0250 Preferably, the service support environment Sup
ports a mechanism for notifying administrators when an
application attempts to alter a protected property. Preferably,
an application that attempts to alter a protected property is
taken out of Service.

0251. It is noted that modifications of the above scheme
are possible. For example, in a hierarchy of administrative
domains each level administrator may have complete Scope
to arrange rule modules at levels with lower priority, within
an allocated priority range. The higher level administrator
would delegate this Scope.

0252) It is an advantage of this embodiment that it
provides a Scalable mechanism for managing and imple
menting Service deployment policies. According to this
embodiment, the Service Support environment is able to host
3" party service deployment policies without considerable
extra work for the domain administrator. It is a further
advantage that limitations are placed on the number of
Stakeholders or the number of contractual relationships
between them.

0253) It is a further advantage of this embodiment that the
task of feature interaction analysis is broken down into
administrative domains, thereby allowing a distribution of
the problem between the parties concerned.

0254 FIG. 9 illustrates an embodiment of the invention
where Services are grouped both according to processing
points and according to administrative authority. FIG. 9
Schematically shows a rule module 901 with priority order
h and a rule module 902 with priority order h--1. Rule
module 901 invokes services F1, F2, F5, and F6, while rule
module 902 invokes services F3, F4, F7, and F8. The
services F1-F8 are further related to processing points 903
and 904. Processing point 903 includes services F1-F4, and
processing point 904 includes services F5-F8. The process
ing points 903-904 are enumerated Such that processing
point 903 has the index K and processing point 904 has the
indeX K+1, indicating that processing point 903 is processed
before processing point 904.

0255 According to this embodiment, rules are applied in
Sequence of the processing points. Consequently, when
processing rule modules, only the Service execution rules
belonging to the current processing-point are executed.

0256 For each processing point, there are sets of rule
modules which are grouped according to priority and which
may be invoked at that processing point. All priority 1 rule
modules are grouped in Set 1, all priority 2 rule modules are
grouped in Set 2, and So on. However, given an event
context, at most one rule module is invoked in each of these
Sets. A rule module may be distributed over multiple pro
cessing points.

0257). In the example of FIG. 9, first the services of the
processing point 903 are processed according to their rule
module priority, i.e. Services F1 and F2 are processed before
services F3 and F4. Subsequently, the features F5 and F6 of
processing point 904 and priority h are invoked before
Services F7 and F8.

0258. The rule modules 901 and 902 which are schemati
cally illustrated in FIG. 9, may be expressed as indicated in
the following examples of rule modules.

Oct. 2, 2003

0259 Rule module 901:

<rulemodule priority="h'>
<Owner. <name> A </name> <fowners . . .
<serule processing-point="k'>

<property . . . D
<action> F1 <faction>
<action> F2 <factions

</property>
</serule>
<serule processing-point="k+1'>

<property . . . D
<action> F5 <factions
<action> F6 <factions

</property>
</serule>

</rulemodule>.

0260 Rule module 902:

<rulemodule priority="h+1'>
<Owner. <name> B </name> <fowners . . .
<serule processing-point="k'>

<property . . . D
<action> F3 <factions
<action> F4 <faction>

</property>
</serule>
<serule processing-point="k+1'>

<property . . . D
<action> F7 <factions
<action> F8 <faction>

</property>
</serule>

</rulemodule>.

0261 FIG. 10 illustrates the processing mechanism of
the embodiment of FIG. 9 in the case of multiple rule
modules and multiple processing points. According to this
embodiment, there are four processing points enumerated P0
through P3 and five rule modules RMA through RM E, with
priorities 1 through 5, respectively. According to the pro
cessing rules described in connection with FIG. 9, services
are processed as indicated by the circles in FIG. 10 which
are enumerated 1 through 20 and connected by arrows. Each
enumerated circle may represent a Set of rules invoking a
number of actions.

0262 FIG. 11 illustrates another example of the process
ing rules described in connection with FIG. 9. FIG. 11
illustrates instances 1111a-1115a of rule modules RM A
through RM E on the left side 1101 and instances 1111b
1115b of the rule modules RMA through RM E on the right
side 1102 of the figure, respectively, The rule modules RM
A through RME comprise rules corresponding to processing
points P0 through P6. Hence, the instances of rule modules
on the left side 1101 may represent different sections of the
Same respective rule modules as the rule modules on the
right side 1102. As was described in connection with FIG.
6, the processing. points P1-P3 are triggered by SIP requests,
while the processing points P4-P6 are triggered by
responses. Processing point P0 is triggered by both requests
and responses. Hence, in this example, and incoming SIP
request 1103, e.g. an INVITE request, triggers services of
rule modules RM A through RM E which are related to
processing points P0-P3, in the order indicated by the arrows

US 2003/0187992 A1

on the left side 1101 in FIG. 11. In the example of FIG. 11,
it is further assumed, that a service 1104 outputs an instruc
tion causing a response 1105. This response, in turn, triggers
the processing of the rules of the rule modules RMA (111b)
through RM E (1115b) which are related to the processing
points P0 and P4-P6, as indicated on the right side 1102 of
FIG. 11, starting with the service(s) 1106, and resulting in
an outgoing message 1108, e.g. a generated provisional
response. The processing of the services on the left side 1101
further results in an outgoing message 1107, e.g. an INVITE
proXy request.

0263 FIG. 12 illustrates a hierarchical rule module pro
cessing according to a preferred embodiment of the inven
tion. When the rule engine 1200 receives an event 1201, it
identifies the relevant rule modules 1216-1219 of different
priorities for this event in the rule base. The rule engine 1200
generates a current event context 1202, initiateS processing
of the highest priority rule module 1216 and passes control
over the generated current event context 1202 to that rule
module 1216. When the processing of the highest priority
rule module 1216 is completed, the rule engine 1200 invokes
the Subsequent rule module 1217 according to rule module
priority and passes the modified current event context 1206
to the next rule module 1214. Similarly, the subsequent rule
modules 1218-1219 are invoked and control over the respec
tive current event contexts 1207 and 1214 is passed to them.
Finally, the resulting event context 1215 is returned to the
rule engine 1200. According to this embodiment of the
invention, each invoked rule module may Subsequently
invoke one or more other rule modules. According to a
preferred embodiment, rule modules are divided into two
types of rule modules: Rule modules 1216-1219 which may
be invoked by the rule engine 1200 according to their order
priority, and rule modules 1220-1225 which may only be
invoked by other rule modules. The latter type of rule
modules may formally be identified by a special order
priority, e.g. the ordering priority 0. According to this
embodiment, rule modules with this priority have special
restrictions associated with them: Rule modules with this
ordering priority should not be invoked by the rule base
processing procedure of the rule engine 1200, but are
invoked from another rule module with explicit privileges to
do so. Rule modules with ordering priority different from 0
are not invoked from another rule module, but only by the
rule engine. Rule modules with the same owner may have
the same ordering priority (different from 0), but in that case,
they should have different event contexts, e.g. SIP, HTTP,
etc. This means that they should not be invoked on the same
event context. Rule modules with different owners may have
the same ordering priority, but in that case they should not
be invoked on the same property in the same event. In other
words, rule modules that can be invoked on the same
message property from a given event context should have
different priorities, unless it is zero. The first rule module
1216 is invoked by the rule engine, before any rule modules
with ordering priority 0 are invoked. This rule module is
termed the root rule module. When the root rule module
1216 invokes priority 0 rule modules, they may again invoke
other priority 0 rule modules. These relationships between
rule modules is termed the rule module hierarchy. This
mechanism of invoking rule modules from within rule
modules gives a hierarchical distribution of administrative
domains, also called the hierarchical administrative domain
model. The benefits with this model is that it is easy to

Oct. 2, 2003

administer, and gives a great amount of control to the master
rule modules. It is a further advantage that additional rule
modules may be added to an existing hierarchy without
having to reassign a large number of priorities to Subsequent
rule modules.

0264. The above rules avoid that rule modules are
invoked twice by accident in the rule base processing
procedure.

0265. In the example illustrated in FIG. 12, rule module
1216 invokes rule modules 1221 and 1222 in that order,
passes control of the corresponding event contexts 1203
1204, and receives the resulting current event context 1205.
Similarly, rule module 1218 invokes rule modules 1222
1223 with the corresponding event contexts 1208-1209 and
the resulting event context 1213. Finally, the rule module
1223 invoked by rule module 1218 further invokes rule
modules 1224-1225 with the corresponding event contexts
1210-1211 and the resulting event context 1212.
0266 Hence, a hierarchical invocation process is per
formed, generating a Sequence of current event contexts
indicated by the enumeration of the event contexts 1202
1215.

0267. It is noted that, if there are more than one process
ing points defined, the above description of rule module
processing Should be understood as per processing point, i.e.
for each processing point a corresponding hierarchy of rule
modules is processed.
0268 An important task of the rule base processing
procedure of the rule engine 1200 is the mapping of SIP
events to relevant rule modules. This process very much
depends on the contractual relationships defined on the
domain in question. A SIP event includes a number of
message properties which can be used to detect a possible
contractual relationship. These properties include
Siprequest.from, Siprequest.to, Siprequest. RequestURI, Sip
response.from, Sipresponse.to, Sipresponse.contact, and Sip
response.Via. In particular, the From and Request-URI of a
SIP message are important properties of an event used to
detect a contractual relationship with a network operator or
3rd party Service provider. However, other message prop
erties may be taken into account, e.g. contact headers and via
headers. A message property that can be used to detect a
contractual relationship and thus trigger a rule module will
be referred to as a rule module trigger (RMTrigger).
0269. When a SIP request message arrives at a SIP
Server, at least one of the From or Request-URI message
properties should specify a Subscriber that has a contractual
relationship with one of the network operators of the SIP
Server. The message properties of From or the Request-URI
may contain a domain name, like netopX.com, or an IP
address of one of the network operators of the SIP Server,
like 123.123.123.000. In addition, the From and Request
URI include a subscriber identifier, like a name or phone
number. This is contained in the SIP URL or TELURL. The
SIP-URL also has parameters like “transport-param”, “user
param' and “other-param'. These parameters may include
information specific to a network operator, as the IMSI to
identify mobile terminal subscribers and terminals.
0270. For example, using the above properties a SIP
event may be mapped to a unique network operator, if a
number of requirements are fulfilled, for example, if each of

US 2003/0187992 A1

the network operators of the SIP Server has a unique domain
name, like netopX.com and netopy.com, and if they have
different IP addresses. If they share the same IP address,
conjectural relationship resolutions may be ambiguous, as
the message properties of the From and Request-URI may
contain an IP address and not a domain name.

0271 Third party service providers that upload/register
Service applications on the SIP Server have a contractual
relationship with the network operator which can be
detected. For example, the 3rd party Service provider may
receive an allocated ID from the network operator with
whom the 3rd party Service provider has a contractual
relationship. If the network operator has a domain name, e.g.
netopX.com, and associated IP address, the 3rd party Service
provider with unique name partyZ, may receive allocated
IDS following a name convention, e.g. "partyZ.netopX
.com'. Now the From and Request-URI may be matched to
relevant rule modules. AS netopX.com and partyZ.netopX
.com both should be invoked on an event containing netopX
.com in either the From or Request-URI, they should have
different explicit ordering priorities. It is understood, that
other name conventions may be introduced instead.

0272. It is understood, that the mechanisms of order
priority and rule module hierarchy may be applied indepen
dently of each other or in combination with each other, as
was described in connection with FIG. 12.

0273 FIG. 13 shows an example of the flow of SIP
messages and instruction Sets according to an embodiment
of the invention. The message parser 1304 converts the
original SIP message 1306 into an original SIP message
object 1303. This is used to invoke the initial rule module
1301 and, hence, the first Sequence of Service applications.
When a rule module 1301 is loaded into the rule engine 1302
and executed, one or more actions are reached, depending on
the signalling message object 1303 which was received from
the message parser 1304 and on the basis of which rule
module 1301 was identified, e.g. as described in connection
with FIG. 12. When an action is reached, the service
application 1305 associated with the action is invoked, that
is, it is activated, possibly with parameters, and possibly
with access to the entire Signalling message object 1303
which triggered the application. The access privileges to the
entire Signalling message depend on the functionality and
scope of the used service access API, e.g. CGI API versus
OSA API, as well as the privileges of the owner of the rule
module 1301 and the privileges of the invoked service
application 1305. The initial signalling message object 1303
represents the entire Set of message properties embedded in
the original SIP message 1306 which may include multiple
media types. The invoked service application 1305 performs
Some processing based on the Signalling message 1303 and
hands back the result 1307 to the rule engine 1302. This
result is referred to as the instruction Set, as it can potentially
contain multiple instructions, e.g. CGI instructions, OSA
API instructions etc. When multiple services are invoked
based on one signalling Message, the rule module processor
will end up with multiple instruction sets. This set of
instruction Sets is termed the “instruction Set base'.

0274 The rule engine 1302 and the application execution
engine determine which instructions to mediate to the SIP
Server default behaviour 1308. The instruction set may be
filtered based on privileges and feature interaction resolu

Oct. 2, 2003

tion, before mediating it to the SIP server default behaviour
1308 which may further merge the instruction set with a
default SIP instruction set 1312. The resulting set of instruc
tions is termed the “resulting instruction set'. The Resulting
SIP message object(s) 1309 represent(s) the actual SIP
messages, which are to be sent downstream or upstream.
Hence, this leads to one or more resulting SIP message
objects 1309 which are sent to the message converter 1310
which, Subsequently, transforms it into one or more SIP
messages 1311 to be sent.

0275 FIG. 14 illustrates a mechanism for managing
multiple instruction Sets according to a preferred embodi
ment of the invention. According to this embodiment, an
event context is a representation of a SIP message object, but
it may contain additional information, Such as feature inter
action information as well as the MIME types included in
the message body of the SIP message. The original event
context 1401 represents the original SIP message object
1402. The current event context 1403a-b is an event context
based on the instruction Set generated by the Service appli
cations 1404-1405. At any given time one service applica
tion is in control of the current event context. Even when
multiple Service applications are concurrently running and
applying control to the handling of the transaction, only one
of them has the control of the current event context at any
time. In the example of FIG. 14, two service applications
1404-1405 are shown. Initially, service application 1404 has
control over the current event context 1403a. When the
application 1404 has completed its processing, the control
over the current event context is handed over to the Service
application 1405. At this point, service application 1405
controls the current event context 1403b, i.e. it has the right
to read and write it. In one embodiment of the invention
other Service applications may have the right to read the
current event context 1403b.

0276 Hence, triggering of Subsequent Service applica
tions is based on the current event context. The current event
context is further cleaned for possible feature interaction
problems, So Subsequently invoked Service applications can
rely on it. When control is handed over from one service
application to the next through the invocation mechanism
provided by the rule engine, the ownership of the current
event context is handed over. In this way, when all Service
applications have been invoked and applied their instruc
tions, the final resulting event context 1406 is achieved.
Thus, the resulting event context 1406 represents the result
ing SIP message object(s) 1407. Note that this mechanism
does not exclude parallel processing, Since the Service
applications 1404 and 1405 may be executed in parallel.
However, according to this embodiment, a Sequence of
updating the current event context is enforced.

0277. It is further noted that a service application may
fork a request to multiple destinations. This results in the
generation of multiple current event contexts.

0278 FIG. 15 illustrates a tree of cascaded chains of
Service applications according to an embodiment of the
invention. When services are executed on different SIP
Servers and apply control to a Session, they provide a natural
ordering of Services, even if they are unaware of each other.
This ordering may be Said to be upstream or downstream. A
downstream ordering is the ordering of Services as they are
invoked downstream from the origin client to the destination

US 2003/0187992 A1

Server. An upstream ordering is the ordering of Services as
they are invoked upstream from the destination Server to the
origin client. When Services which apply control to one
instance of a Session are invoked in a given order on the
Same SIP Server, the Services can be thought of as cascaded
according to the same ordering principle. This ordering
principle is called cascading of Services and the chain of
Services is called the cascaded chain of Services.

0279 When a request is received, the earlier a service is
invoked based on this event, the more logically upstream it
is considered to be in the chain of cascaded services. When
a response is received then the earlier the Service is invoked,
based on this event, the more logically downstream it is
considered to be in the chain of cascaded Services. Hence,
the applications are treated as if they were triggered on
different hosts.

0280 This model is conceptually simple and provides a
natural algorithm for resolving conflicts between the instruc
tions of multiple Service applications at the same SIP event.

0281. On reception of a SIP event the actions are
executed in order of priority in the following manner:

0282) 1) Control is passed to the first application.

0283 2) Some response is received from the first
application

0284 3) Control is passed to the second application

0285) 4) Some response is received from the second
application and So on.

0286 However, if the first application terminates the
request, the Second application is not invoked.

0287. In this way a decision about whether to invoke a
Subsequent application can depend on the output from the
previous application. Furthermore, instruction priorities
asSociated with actions are by default ordered according to
the cascading principle.

0288 If an application forks a request, there is not a
Simple chain of cascaded Services but rather a tree of
cascaded services. This will be referred to as the “request
tree'. A request tree represents a number of cascaded chains
of applications. Each path from the root of the tree to one of
the leaves represents a cascaded chain.

0289 FIG. 15 shows an example of a request tree where
a service application APP1 is invoked by the rule module
execution module 1501 with the original event context OEC
as an input. When the control is handed over from the
application APP1 to the subsequent application APP2, the
application APP2 gains control over the current event con
text EC2. The application APP2 forks the request creating
event context EC3 and event context EC4. A lower priority
action invokes application APP3 due to one or more prop
erties in event context EC3. Another lower priority action
invokes another application APP4 due to one or more
properties in event context EC4. This leads to a tree-like
Structure representing the trail of invoked applications. In
this tree the branches are representations of event contexts.
The nodes are representations of triggers. The root of the tree
is the original event context OEC. The leaves of the tree are
the resulting event contexts REC1 and REC2.

Oct. 2, 2003

0290 When there are no more actions in a rule module all
the current event contexts are fed back to the rule base
processing procedure 1502. This procedure may invoke
another rule module which will construct more of the
request tree. Consequently, the tree may become quite large
with many nodes and branches depending on the Services
that are triggered.

0291. It is noted that in some cases an application may
Send an asynchronous feature instruction to the Service
Support environment, i.e. not related to an existing transac
tion. In this case the application has started a new transaction
and is considered to be at the root of a new cascaded chain
tree.

0292. In order to allow parallel processing of services, the
Service Support environment may be capable of passing
control to more than one Service Simultaneously. This is not
in contradiction with the cascaded Services model, because
the instructions from the parallel invoked services should be
applied in the order of the cascading. If the more down
Stream Service responds before the more upstream Service,
the rule engine waits for the more upstream Service to
respond, before it can mediate the instructions. The instruc
tions are mediated as if the Services where invoked one-by
one. The administrator should be capable of Specifying
whether a group of actions should be applied Simultaneously
in this manner.

0293 FIG. 16 shows the software components of a rule
engine according to an embodiment of the invention. The
rule base processing procedure 1601 invokes the rule mod
ules 1602 stored in the rule base 1603 in the right order. The
rule module processing procedure 1604 executes the rules in
the rule module. The service interaction module 1605 covers
a set of functions 1700 including enforcement of the trig
gering, feature interaction, privileges and rights. The func
tions 1700 will be described in greater detail in connection
with FIG. 17.

0294. When a SIP event is reported to the rule engine in
the form of an original event context 1609, the rule base
processing procedure 1601 is executed in order to find and
execute the correct rule modules in the correct order. The
rule base processing procedure 1601 passes the rule modules
to be processed and the original event context 1610 to the
rule module processing procedure 1604. The ordering of the
rule modules together with the ordering of the rules within
each rule module determines the ordering of patterns and
actions 1606-1608 processed by the rule module processing
procedure 1604. The actions invoke corresponding Service
applications 1611-1613. When invoking service application
1611, the original event context is passed as the current
event context CEC1 to the service interaction module 1605
which, in turn, passes the event context EC1 to the Service
application 1611. The service application 1611 results in a
set of feature instructions 1614 which cause an update of the
current event context by the Service interaction module
1605. The resulting current event context 1615 is returned to
the rule module processing procedure 1604. The service
applications 1612 and 1613 are invoked in a similar manner,
resulting in corresponding instruction sets 1616-1617 which
are converted by the service interaction module 1605 into
corresponding current event contexts 1618-1619. During
this conversion, the service interaction module 1605 per
forms authorization checks and, if a Service application 1613

US 2003/0187992 A1

returns an unauthorized instruction set 1617, the unautho
rized instructions are not converted. Hence, the current event
context 1619 does not differ from the incoming event
context 1620. Preferably, the service application is notified
1621 about this failure. It is noted that a service may result
in the Spawning of multiple current event contexts as
described in connection with FIGS. 15 and 18. When a rule
module is finished processing the patterns and actions 1606
1608, the final set of current event contexts 1622 is returned
to the rule base processing procedure 1601. Subsequent
invocations of rule modules will be dependent on this set of
current event contexts. It is noted that a Service application
may arm/disarm events and triggerS for future events, as will
be described in greater detail below. Hence, a Service
application may further return an arming request 1623.
0295 FIG. 17 shows steps performed by the service
interaction module between the processing of the rule mod
ule and the processing of the Service application in the
embodiment of FIG. 16. This functionality 1700 includes
feature interaction management and checking of privileges
performed by the rule engine 1702 and the application
execution engine 1703. When the invocation command and
the current event context CECa is received from the rule
module processor 1601, the privileges of the rule module are
checked in step 1704. The privileges of the rule module are
Specified in an access control list ACL2 associated with the
rule module. If the rule module has the privileges to issue
invocation commands, in step 1705, the rule engine 1702
Sends the invocation command to the application execution
engine 1703 via the application execution engine manager
(not shown). It may only be necessary to send part of the
current event context to the application execution engine
1703, as denoted by f(CECa).
0296) In step 1706, the application execution engine 1703
converts the received event context f(CECa) into a suitable
data format for the service application 1707 to be invoked.
This may include the conversion to a Suitable name Space for
the invocation of that Service application. Furthermore, in
step 1708, the application execution engine 1703 checks
privileges and rights. An acceSS control list ACL3 associated
with the service application 1707 may specify the privileges
of the service application 1707 to access the value of
f(CECa) or part of it. Furthermore, the rule module has
access to the Service application 1707 depending on another
access control list ACLA, also associated with the Service
application 1707. If access is granted, the Service application
1707 is invoked in step 1709, and relevant parts of the event
context g(ECa) are provided as an input. Subsequently, the
service application 1707 returns control to the rule engine
1702 via the application execution engine 1703 by sending
the instruction set 1710 or an internal representation of the
instruction Set. In Step 1711, privileges and rights of the
service application 1707 to issue these instructions are
checked, e.g. based on an access control list ACL5 associ
ated to the service application 1707. If the service applica
tion 1707 has the privileges to issue these instructions, the
instructions are converted from the internal representation
(step 1712), and the converted instructions 1713 are for
warded to the rule engine. Furthermore, any arming requests
1716 are forwarded as well. In step 1714, possible feature
interaction problems with earlier issued instructions from
previously authorized and invoked Service applications are
resolved. This resolution is based on whether previously
invoked applications have protected message properties in

20
Oct. 2, 2003

the current event context. The next current event context
CECb is generated and returned to the rule module processor
1601. Finally, in step 1715, the rule engine stores informa
tion about the invoked Service in memory, e.g. by building
the request tree described in connection with FIG. 14. The
request tree is used in connection with the reporting of future
eVentS.

0297 As mentioned above, some services, e.g. monitor
ing applications, are interested in future events. In order to
tell the rule engine about this interest in future events, the
Service application has to request for event reports, also
termed dynamically arming for event reports.
0298. According to a preferred embodiment of the inven
tion, dynamically arming of transaction events is tied to the
processing of a SIP transaction, which is bounded in time.
Transactions may typically last from between Some milli
Seconds to a few minutes, depending on the configuration of
the SIP Server. Since, dynamically arming of transaction
events only applies to the lifetime of a transaction, this type
of arming is non-permanent and implicitly disarmed when
the transaction is ended, thereby providing a fast mecha
nism. If an application arms events which pertain to the
transaction it was triggered in, the application maintains its
place in the cascaded Services model. Responses are
reported to all the applications which have armed them,
Starting with the leaf of the tree, i.e. the downstream most
application. During the lifetime of a transaction the request
tree exists in the memory of the rule engine. Subsequent
events related to the same transaction are thus related to the
request tree. Events relating to the request tree can come
from applications, from downstream Servers and from
upstream clients.
0299 Events from upstream clients enter the request tree
at the root. This means that they are first reported to the
application at the root of the tree. This application may
terminate or redirect the event in which case it will not be
Sent further in the original tree but a new request tree may
be constructed. A request may also need to be forwarded to
all the same destinations as the original request, or the
request may need to be sent to one of the destinations to
which the original request was forwarded. Events from
applications enter the request tree at the appropriate node.
Events from downstream Servers enter the request tree at one
of the leaves.

0300 This leads to the mechanism of request-tree tra
Versal, in which the rule engine remembers the order in
which applications where invoked, i.e. the request tree. It is
an advantage of this embodiment that it provides a clear rule
for the order in which events are reported within the context
of a transaction. The clear rule is the cascaded Services
model which is a conceptually simple rule that can be easily
understood by administrators and application designers.
This also simplifies the API via which the application
execution engines add rules to the rule base. Rather than
having to arm for CANCEL of a specific branch in a rule
module it can Simply arm for cancel of the given call leg.
0301 There are various ways to implement the request
tree traversal. For example, the Rule engine may achieve
this traversal by using the VIA header and branch parameter.
In effect this would mean creating a separate instance of the
rule engine every time the destination address is changed by
forwarding the request to the SIP server. The DNS lookup

US 2003/0187992 A1

done by the SIP stack would then determine whether or not
the request comes back to be processed by the Server a
second time. When a request is received from the SIP server
it would be treated as a new Request. The rule engine should
have a mechanism for ensuring that Services, for example
those triggered on the FROM field, would not be errone
ously invoked again.
0302 Alternatively, in a preferred embodiment, the event
is handled at the host for the entire request tree, i.e. including
all forwardings until all the leaves of the request tree
represent destinations elsewhere in the network. This
embodiment has the advantage of being more efficient as
fewer instances of Signalling State machines and manager
classes are required. For example, the request tree may be
implemented, by having, for each trigger of an application,
an instantiation of a node object which can have pointers to
the previous and the next nodes in the tree. The following
pseudo code fragment shows how the building of a request
tree may be incorporated in the algorithms for rule base
processing and rule module processing. The idea is to
associate every event context with a RequestTreeNode. This
is the RequestTreeNode at which the event context was
created. Each node is either the root of the tree or it is
asSociated with an action execution:

ECI RuleBaseManager(EC) {
OEC-EG
Root = new RequestTreeNode
OEC.SourceNode = Root
CECI = do OriginatingServices(OEC)
CECI = do TerminatingServices(CEC)
RECI = do ForwardedByServices(CECII)
Return REC

ECI process Action (Action, EC, . . .){
ActionNode = new RequestTreeNode
EC.SourceNode.next = ActionNode
ActionNode-previous = EC.SourceNode
if Rule ModulePrivilegesOK

ECI = invokeService(Action, EC)
for all ECido

EC.SourceNode = Action Node
endfor
InstructionConflictResolution (ECI)
Return ECI

else
Return some failure indication

0303 Considering the model of a logical cascading of
Service applications the following two general rules may be
formulated for the service execution environment to follow:

0304 Events travelling upstream should be reported
to the logically downstream most applications first.

0305 Events travelling downstream should be
reported to the logically upstream most applications
first.

0306 The logical cascaded order of services is kept when
distributing event notifications to prevent the highly com
pleX and unmanageable situation that events can be reported
to cascaded Services in any order.
0307 Preferably, the applications that arm such events
are invoked at processing point 1 or 4 and their Sub
processing points. Preferably, the network operator may

Oct. 2, 2003

Specify in the rule list for processing point 4 a point where
the dynamically armed triggerS Should be reported. This
means that the logically cascaded chain of Services estab
lished for the request is kept and new Services are triggered
either before or after this chain. The same rule can apply for
Subsequent requests that are related to an existing transac
tion. This time it will be at processing point 1 that the
administrator may specify when to report dynamically
armed events.

0308 Alternatively or additionally, another type of arm
ing may be employed which will be referred to as dynami
cally armed triggers which are added as rules to an appro
priate rule module in the rule base. Dynamically armed
triggerS provide a less expensive mechanism in terms of
processing power and execution memory for the reporting of
events which do not pertain to the transaction in which the
application was triggered. Preferably, these requests for
event reports should be Stored in persistent Storage, i.e. they
become rules in the rule base. These rules can be non
permanent by Specifying an expiration timer, or permanent.
In the latter case the Service application should explicitly
disarm the request for event reports to remove it. Alterna
tively, they may also be armed in a report-once then disarm
mode. Furthermore, if no expiration time is given, a default
time, e.g. 1 hour, may be applied to the rule. When this time
has expired, the rule is deleted. This has the advantage of
avoiding that that the Server runs out of data Storage capac
ity.
0309 Preferably, trigger rules are added to a rule module
which the application has the privileges and rights to update.
It will normally be the same rule module from which the
application was triggered. Exactly where in the priority
order within a rule module these rules should be added may
be determined by an implicit rule priority order, i.e. an
integer representing where the rule should be placed within
the existing rule module. When a SERL script is first added,
the rules are ordered in the order they appear in the Script.
If there are N rules, the integers 1 through N are implicitly
asSociated with the rules. A rule can be deleted by referring
to these numbers. A rule can be added by referring to the rule
that the new rule should be placed-after. This has the
advantage, that the amount of data that needs to be
eXchanged when a rule is added to a large rule module is
reduced.

0310. If no position is specified, then the rule module
engine may follow the following algorithm when adding
these triggers: Search the rule module for the same property
pattern as in the new rule. If a pattern is found, Search for any
Sub-pattern, and So on. If no Sub-pattern is found, insert the
rule as the highest priority rule in the enclosed list of actions.
If no similar pattern is in the rule module already, insert as
the first pattern. This algorithm provides a logically advan
tageous placement of the rule. For example, it ensures that
the actions for the caller where TARGET=FROM are not
mixed with actions for callees where TARGET=Request
URI. It also means that rules added last are also the first
encountered when an event happens. This is the Simplest
default behaviour.

0311. It may be possible to indicate whether a trigger rule
is permanent or should be automatically deleted once the
event is reported. Which type of rules an application can add
dynamically may be linked to the privileges and rights
assigned to the application.

US 2003/0187992 A1

0312. In another alternative embodiment the cascaded
request tree is only maintained for the lifetime of an event.
In this case, when the last application in the chain has
finished its processing and the SIP event is sent then the
cascaded chain is no longer relevant. Until that point it may
be useful for the Rule engine to hold a representation of the
cascaded chain in memory. This is because applications may
run on Separate Servers and may take Some time to respond
to the invocation. While the rule Engine is waiting for a
response an earlier application in the chain may cancel the
request. If this happens, the rule engine will need to inform
the application execution engine of the application it is
waiting for. This means that the rule engine should remem
ber which was the next application in the chain. By the time
the SIP event has been forwarded all the applications in the
chain should have armed rules for the events which interest
them, thus there is no longer a need for the rule engine to
remember the cascaded chain. The advantage of this Solution
is that the rule engine itself is simple. It just reports events
based on Rule modules at the relevant processing points.
However, this Solution is complex to administrate and places
the complexity of ordering of the events into the applica
tions. i.e. the applications need to decide in which priority
position the rule should be added in a rule module.
0313 FIG. 18 illustrates the tree structure of the pro
cessing of rule modules according to an embodiment of the
invention. When an event is received, the rule base proceSS
ing unfolds a processing pattern which will be referred to as
the rule base tree. When a request arrives at the SIP Server
corresponding to an original event context 1801, the asso
ciated Subscribers may be the originating party (i.e. caller)
and/or the terminating party (i.e. callee). The caller is
identified by the From header field. The Callee (or current
callee) is identified by the Request-URI. The From header
field and the Request-URI should uniquely identify a sub
scriber at the SIP Server where these Subscribers have a

22
Oct. 2, 2003

contractual relationship with the network operator and Ser
Vice providers. Following the cascading principle, the origi
nating services 1802 are invoked before terminating services
1803, even if the originating and terminating parties are
located at the same host. A third category of Services may
also be invoked. These are termed the forwarded-by services
(not shown). This category of Services is invoked, if a
request is forwarded to a new destination belonging to
another Subscriber. In this case originating Services may
need to be invoked on behalf of the callee. For each party,
the Services are invoked based on location of the rule
modules as they are placed in the different processing points
1804-1809. For each processing point, the sets of rule
module priorities 1810-1814 are examined for a match.
Within each priority at most one rule module 1815-1817,
respectively, is invoked. However, a rule module 1817 may
be the root of a rule module hierarchy 1818 as described in
connection with FIG. 12. For simplicity, such a rule module
hierarchy may be considered as a Single rule module. Hence,
the function of the rule module processing 1601, the func
tions 1700 of the service interaction module and the service
applications 1819 invoked by the rule modules, may be
considered as a leave in the rule base tree. Based on the
current event context CEC, the rule module 1817 is invoked
and it and returns a resulting event context REC. This
resulting event context REC is considered the current event
context CEC for the next rule module that is invoked. When
all rule modules have been invoked and the last of them
returned the resulting event context, then the resulting event
context is the set of SIP signaling messages that will be sent
upstream and/or downstream, as answer to the original
incoming SIP message.

0314. The above processing structure which is graphi
cally illustrated in FIG. 18 may further be illustrated by the
following example of a pseudo code fragment:

ECI RuleBaseManager(EC) {
OEC-EC
CECI = do OriginatingServices(OEC)
CECI = do TerminatingServiCeS(CECII)
RECI = do ForwardedByServiceS(CECII)
Return REC

ECI OriginatingServices(EC) {
if Subscriber(EC.From) = UNKNOWN

return do RuleBaseprocessing(ECTARGET="FROM)
else

return EC
endif

ECI TerminatingServices(ECI){

Where:

for all ECIh
if Subscriber(ECIh. Request-URI) = UNKNOWN

TEMP =
do RuleBaseProcessing(EGh TARGET="REQUESTURI)
ECIh) = TEMP

endif
endfor
return ECI

ECI = EC(EC1, ... ECIh), ..., ECIC MAX}
and ECIh = TEMP means:
ECI = EC{CEC1, ... ECIh-1)TEMP11),...,

TEMPT MAX,ECh+1, ... ECIC MAX}

US 2003/0187992 A1

-continued

ECI ForwardedByServices(ECI){
for all ECIh

if Subscriber(EC.ForwardedBy) =
(UNKNOWN NOT PRESENT)
TEMP =

RuleBaseProcessing(ECTARGET="FORWARDEDBY)
ECIh) =TEMP

endif
endfor
return ECI

ECI RuleBaseProcessing(ECTARGET){
CEC1 = EC
for all (relevant) processing points CPPi

for all priorities I
Rule Module = FindRule Module(...)

for all CECIt
TEMPI = processRule Module(CECt.

Rule Module,TARGETCPPI)
CECIt = TEMPI)

endfor
endfor

endfor
endfor
Return CEC

0315. It is noted that a service application may change the
From header field or the Request-URI. Furthermore, the
resulting From header field or the resulting Request-URI
may belong to another Subscriber which may even be
unknown to the SIP Server which processes the event. If the
resulting From and/or the Request-URI is a new but known
Subscriber at the SIP Server, the services associated with this
Subscriber are invoked as well. In this case the rule base
processing procedure may be invoked recursively resulting
in a hierarchic Structure of rule base trees.

Oct. 2, 2003

0316 Processing of a rule module comprises the step of
taking each action in turn in priority order, evaluating
whether the enclosing patterns match the current event
context and if So applying the action. In the following, a
method according to an embodiment of the invention is
described in greater detail.

0317. The following pseudo code fragment provides a
high level description of an algorithm for processing a rule
module:

ECI process Rule Module(EC, RM, TARGET, CPP){
CEC1 = EC
// CPP represents the current processing point CPP
// TARGET represents the rule module trigger
for all ACTIONi in RM

for all CECIt
if CECt. ForwardedBy = null

if (enclosingPatternsTrue(CECt), ActionID)
TEMPI = process Action(ACTIONi, CECt), . . .)

for all TEMPh
if (TARGET is a REQUEST URI AND

Subscriber(TEMPh.REQUEST-URI) =
Subscriber(TARGET)
If i.e. for terminating services

and if the call has been
forwarded to a new user then

TEMPIh. ForwardedBy = TARGET
endif

endfor

CECIt = TEMPI)
t= t-TEMP MAX

endif
endfor

endfor
endfor

Return CEC

US 2003/0187992 A1

0318. Here, The enclosing PatternsTrue method returns a
boolean indicating if the patterns which enclose the actions
are true. The processAction method may be implemented as
indicated in the following pseudo code Segment:

ECI process Action(Action, EC, . . .)
if Rule ModulePrivilegesOK

ECI = invokeService(Action, EC)
InstructionConflictResolution (ECI)

Return ECI
else

Return a failure indication

0319 where ECI is the set of forwardings of the event
context. If it is empty, the Service has terminated the request
or response.

0320 The service application may further issue instruc
tions that are not instructions to forward the event context.
These are not shown in the above algorithm. Such instruc
tions may be processed by the rule base manager.
0321) When executing actions in priority order, the result
of the action may be to change the current event context.
After Such an action, the processing of the current rule
module continues. After executing the current rule module,
further rule modules may be executed according to the rule
base processing procedure. The lower priority order actions
are only executed, if the pattern(s) that enclose them match
the new message properties, as specified by the current event
context. This is illustrated by the following example of a
fragment of pseudo Script which describes two actions
enclosed by two patterns:

<property name=Request matches=INVITEs.
<property name=RequestURI matches="xcorp.com">

do Action CPL’?user=RequestURI
do Action proxybehaviour

</property>
</property>.

0322 The two actions are enclosed by two patterns which
indicate that the actions should only be applied if the request
is an INVITE and the Request URI contains the domain
name Xcorp.com. The first action invokes a user Supplied
CPL script. If the user CPL script does not change the
destination of the request, the Standard proxy behaviour is
invoked to locate the user and proxy the request. If the CPL
Script changes the destination So that the destination will
resolve to another host, the Standard proxy behaviour need
not be invoked.

0323 If the message property which triggered the rule
module changes So that it represents a new user, the pro
cessing of that rule module is stopped. The purpose of this
is that rule modules can be thought of as being processed on
behalf of a single user. This simplifies the rule module
processing and Script authoring.
0324 FIG. 19 illustrates the recursive processing of rule
modules in a situation where Service applications generate
new event contexts according to an embodiment of the
invention. The new event contexts may change the original

24
Oct. 2, 2003

rule module trigger and, in this case, new rule modules may
be invoked recursively. For example, a Subscriber's callee
preferences, e.g. a CPL Script, may forward the request to a
new destination associated with another Subscriber of the
same SIP server. In this case the forwarded-to Subscriber's
callee preferences, e.g. another CPL Script, should be
invoked as well.

0325 As illustrated by the example of FIG. 19, an initial
event context 1901 generates a recursion of rule module
invocations, when a SIP request message is forwarded to
multiple new, destinations associated with other Subscriber
accounts. In the example of FIG. 19, the application 1914 is
triggered by the rule module 1903 on behalf of Subscriber A.
The rule module 1903 is triggered by the original event
context 1901. The application 1914 generates three event
contexts 1904-1906, where the rule module trigger has
changed in the two event contexts 1905-1906 which are
asSociated with new Subscriber accounts. The event context
1904, is an updated event context but associated with the
Same Subscriber whose rule module initially invoked appli
cation 1914. In this case the Subscriber rule modules 1907
1908 associated with the new event contexts 1905-1906,
respectively, are also invoked. Rule module 1907, in turn,
invokes application 1915 which generates two new event
contexts 1909 and 1910, and so forth. Consequently, a tree
processing Structure is created in which the leaves corre
spond to the set of resulting event contexts 1910-1913.
Subsequently, the resulting event contexts 1910-1913 cause
the SIP server to send SIP messages upstream or down
stream or both. It is noted that the example of FIG. 19 shows
a simple case assuming that the rule modules only contain
one action each.

0326 If the five applications 1914-1918 in FIG. 19 have
requested to be notified of Subsequent replies to the resulting
SIP messages, according to the cascading principle,
responses are notified to the logically most downstream
application first. In FIG. 19 responses to the resulting event
context 1910 are notified first to application 1918, then to
application 1915 and finally to application 1914, as indi
cated by the line 1919. For the resulting event context 1911
the corresponding Sequence is application 1915 and appli
cation 1914, as indicated by line 1920. For the resulting
event context 1912 the sequence is application 1916 and
then application 1914, as indicated by line 1921. Finally, for
the resulting event context 1913 the Sequence is application
1917 and then application 1914.

0327 FIG. 20 illustrates a mechanism of enforcing
acceSS control in connection with rule modules according to
an embodiment of the invention. Two types of access control
are enforced. Access to rule modules should only be granted
to authenticated and authorized parties, and access to Service
features should only be granted to authenticated and autho
rized rule modules. According to one embodiment this
acceSS control may be implemented by using So-called
access control lists (ACL). Such a list may be an XML
document possibly embedded in the rule module or located
in the same directory as, or otherwise associated with, the
rule module. Access control lists include access control
rules. The acceSS control list may enumerate each of the
individuals or groups that are granted access to the rule
module. The mechanism may also be used to explicitly
Specify privileges and rights of the rule modules, e.g. which

US 2003/0187992 A1

Service features the rule module may use. Therefore, it
allows the administrator to manage privileges and rights of
rule modules.

0328. Furthermore, the mechanism may be used to man
age privileges and rights of Service applications. If a Sub
Scriber uploads a CPL Script, there may be an associated rule
module that invokes that Service at the right time. In this case
the rule module should have explicit privileges and rights to
do so. This may be managed by associating access control
lists with the CPL Script. The mechanism may further be
used to explicitly Specify privileges and rights of the Service
application, e.g. which Service features, APIs, etc., the
Service application may use. Hence, it allows the adminis
trator to manage privileges and rights of Service applica
tions.

0329 Referring to the enumerated circles in FIG. 20, the
following privileges may be checked:

0330, 1) An original event context 2001 is sent to the
rule engine after proper authentication of Subscribers
(A is the caller, B the callee). Rule modules and
Service applications are all authenticated, and have
been given privileges and rights.

0331) 2) The rule base processor 2002 tries to access
rule modules in the rule base 2003, which are asso
ciated with authenticated Subscriber A or B or both.
The rule base processor 2002 should not be allowed
to acceSS rule modules associated with other Sub
Scribers when processing this event. The rule base
2003 may be located on a remote server, in which
case the rule engine Should authenticate itself.

0332 3) If allowed according to the access control
list 2005, the rule base processor 2002 can invoke the
loaded rule module 2004, say rule module 1 owned
by A.

0333 4) If allowed according to the access control
list 2006, rule module 2004 may attempt to invoke
another rule module 2007 associated with another
owner B.

0334 5) If allowed according to the access control
list 2008, the rule base processor 2002 may invoke
the loaded rule module 2007.

0335 6) If allowed according to the access control
lists 2005 and 2012, rule module 2004 may attempt
to invoke service application 2010 if allowed. The
Service application 2010 may access the event con
text 2013 according to access control list 2011.

0336 7) The service application 2010 may return a
set of instructions 2014 which is mediated back to
the rule module processor, if allowed according to
access control list 2015.

0337) 8) The service application 2010 may arm/
disarm for events, if allowed according to access
control list 2015.

0338 9) The service application 2010 may attempt
to give instructions to another rule module 2007 than
the one that invoked it, if allowed according to
access control List 2012.

Oct. 2, 2003

0339 Access control to rule modules may be enforces by
the policy nodes in a rule module. An example of a rule
module access control list embedded in a rule module may
look like this:

<policy>
<rmacle

<rule id='rule1.
<acle

<subject><subscribers Alice</subscribers </subject>
<privileges

<read>no</read>
<writesno &fwrites
<invokes yes</invoked

</privileges
<facle

</rule>
</rmacle

</policy>

0340 This policy could be applied to the entire rule
module, in which case it states that the Subscriber Alice, may
invoke this rule module, but she must not read or write it.

0341 Such policy XML scripts may be embedded within
rule modules, but they may also be associated data elements.
For example, the network operator may link a policy XML
Script to the rule module of a Subscriber, Specifying the
privileges granted by the network operator to the owner of
the rule module. These privileges could specify the Services
or Service features the rule module is allowed to invoke, as
illustrated by the following example of Such a Service access
control list:

<policy>
<sacle

<rule id='rule1.
<acle
<subbject><subscribers Alice.</subscribers.</subject>

<privileges
f/this rule module may use the logging

function
<service.>

<name>logging</name>
<invokes yes</invoked

</services
//this rule module may invoke other rule

modules
<service.>

<name>RuleEngine</name>
<invokes yes</invoked

</services
</privileges

<facle
</rule>

<?sacle
</policy>.

0342. It is noted that a SIP server service Support envi
ronment may further be adapted to generate accounting
records, e.g. for content charging, applications charging,
usage charging, or the like. For example, the records may be
provided via logs from SERL scripts or CPL scripts, man
aged via library functions or a Service applications, etc.

0343 Furthermore, a system implementing service trig
gering according to the invention, preferably implements

US 2003/0187992 A1

Security measures in order to preserve Safety and integrity of
the SIP Node even though subscribers and 3rd party service
providers may be allowed to upload not only Service appli
cations, but also instructions on how and when to invoke
them, including Some degree of feature interaction resolu
tion. possible Security measures include the configuration of
privileges and rights of rule modules, Service applications,
name Space convention policies, authentication mecha
nisms, authorization mechanisms, access protection, authen
tication and validation of uploaded rule modules, logging
and monitoring, etc.
0344. It is noted that the invention has primarily been
described in connection with network Services. However it
is also applicable to be used in end user equipment.
0345) Furthermore, it is noted that the invention,
although primarily described in connection with SIP, may
embrace other Signalling protocols as well. SERL is not
limited to invoke services based on SIP events, but may
invoke any type of Service application based on any type of
event, in the context of any type of busineSS model. The
invention may be applied to manage Services for any SIP
enabled node. Using SERL Scripts, Services can be invoked
from nodes that implements user agents, registrars, redirect
Servers or proxy Servers.

0346 Finally, it is noted that in the 3GPP architecture all
Subscriber data is administered in the so-called Home Sub
scriber server (HSS). SIP related applications are invoked
from a node called a Serving Call State Control Function
(S-CSCF). When a subscriber connects to a network his
User Equipment (UE) performs a CSCF discovery to select
an appropriate S-CSCF. The S-CSCF registers with the HSS
that it is Serving the Subscriber in question. Service triggers
could then be transported from the HSS to the S-CSCF in the
form of Service execution rules in the SERL format. The
HSS could also use the Service Execution Rules associated
with a Subscriber to decide to allocate a different S-CSCF
based on which S-CSCF has the correct services installed.
Hence, an embodiment of the invention may be used in order
for the HSS to place the subscriber based triggers at the
correct processing point and priority and thus in the correct
priority order with permanent Services installed at the
S-CSCF. Hence, a mechanism according to the invention
may be embedded in the 3GPP IPMM domain.

We claim:
1. A method of managing a plurality of Services triggered

by a message of a Session protocol controlling a communi
cations Session, the method comprising the Steps of:

obtaining a number of execution rules each of which
Specify a condition for invoking a Service;

processing the execution rules in a predetermined order, a
first execution rule causing a first Service to be invoked,
if the message fulfils a first condition, resulting in a first
modified message, and a Second execution rule causing
a second service to be invoked with the first modified
message as an input, if the first modified message fulfils
a Second condition.

2. A method according to claim 1, wherein Said number of
execution rules is grouped into a number of rule modules,
each rule module including a number of execution rules, and
the method further comprises the Steps of:

26
Oct. 2, 2003

processing a first one of Said number of rule modules
resulting in a first accumulatively modified message;
and

invoking processing a Second one of Said number of rule
modules providing the first accumulatively modified
message as an input.

3. A method according to claim 2, wherein each rule
module has associated with it a priority indicative of an
order of processing of Said number of rule modules.

4. A method according to claim 2, wherein each rule
module corresponds to a rule module owner authorised to
edit the rule module.

5. A method according to claim 2, wherein the first rule
module has assigned to it a privilege indicative of an
authority to alter a lock flag related to a predetermined part
of the accumulatively modified message and Specifying
whether Said predetermined part of the accumulatively
modified message may be modified by Services invoked
from at least the Second rule module.

6. A method according to claim 5, wherein the Step of
invoking processing the Second rule module further com
prises the Step of Setting Said lock flag to prevent modifi
cation of the predetermined part of the accumulatively
modified message by Services invoked from the Second rule
module, unless the lock flag was marked unset by the first
rule module.

7. A method according to claim 2, wherein the Step of
obtaining a number of execution rules further comprises the
Step of detecting a predetermined contractual relationship
based on header information of the message; and Selecting
a number of rule modules based on Said detected contractual
relationship.

8. A method according to claim 2, wherein the Step of
processing the first rule module further comprises the Step of
invoking a predetermined third rule module.

9. A method according to claim 2, wherein the first and
Second rule modules are related to respective first and
Second acceSS control lists Specifying access rights to the
corresponding first or Second rule module.

10. A method according to claim 2, wherein the first and
Second rule modules comprise respective first and Second
Scripts in a predetermined mark-up language.

11. A method according to claim 1, wherein the message
comprises a first and a Second Set of attributes, the execution
rules are grouped into at least a first and a Second processing
class of execution rules according to corresponding con
Straints, where the Second processing class is restricted to
only modify attributes of the second set of attributes; and the
Step of processing the execution rules further comprises the
Step of processing the execution rules of the first processing
class before processing any execution rule of the Second
processing class.

12. A method according to claim 2, wherein the message
comprises a first and a Second Set of attributes, the execution
rules are grouped into at least a first and a Second processing
class of execution rules according to corresponding con
Straints, where the Second processing class is restricted to
only modify attributes of the second set of attributes; and the
method further comprises the Step of repeating the Steps of
processing the first rule module and invoking processing the
Second rule module, where in each repetition the processing
of the first and Second rule modules is limited to execution
rules of a corresponding processing class, and where each

US 2003/0187992 A1

repetition results in a corresponding accumulatively modi
fied message which is used as an input for a Subsequent
repetition.

13. A method according to claim 11, wherein the process
ing classes are defined separately for execution rules trig
gered by requests and responses of the Session protocol.

14. A method according to claim 11, wherein the first Set
of attributes comprises signalling properties of the message.

15. A method according to claim 11, wherein the process
ing classes correspond to predetermined locations in a round
trip message flow according to the Session protocol.

16. A method according to claim 11, wherein the process
ing classes include a first processing class (P1) of execution
rules which impact Signalling properties of the message, a
Second processing class of execution rules (P2) which
impact non-signalling message body content (of the mes
Sage, and a third processing class (P3) of execution rules
which neither impact the Signalling properties nor the non
Signalling message body content of the message.

17. A method according to claim 16, wherein a resulting
modified message is generated when all execution rules of
the first and Second processing classes are processed.

18. A method according to claim 1, wherein invoking the
first Service further results in a Second modified message;
and the method further comprises the Steps of processing
Subsequent execution rules with the first modified message
as an input; and processing Subsequent execution rules with
the Second modified message as an input.

19. A method according to claim 1, wherein the method
further comprises the Steps of

Storing information about which Services are executed and
information about which order the services are
executed in;

receiving from the first Service a request for returning a
notification to the first Service, if a predetermined event
OCCurS,

Storing the request in relation to the Stored information;
and

upon occurrence of the event, notifying the first Service
according to the Stored information.

20. A method according to claim 2, wherein the execution
modules comprise computer-readable Scripts, and the pre
determined order of processing the execution rules is deter
mined by the order of execution rules in Said Scripts.

21. A method according to claim 1, wherein the Step of
processing the execution rules further comprises the Step of
marking at least a part of the first modified message as being
locked for modification by at least the Second Service.

22. A method according to claim 1, wherein the Session is
related to a number of Subscribers including a caller and a
callee, a Service is adapted to be triggered by a request from
a Subscriber; and the method further comprises the Step of
invoking Services requested by the caller before invoking
any Service requested by the callee.

27
Oct. 2, 2003

23. A method according to claim 1, wherein the Session
protocol is a Session initiation protocol.

24. A method according to claim 1, wherein the commu
nications Session is a multimedia Session.

25. A method according to claim 1, wherein the execution
rules are adapted to be dynamically updated.

26. A data processing System, comprising:

a Service execution environment module adapted to
invoke a plurality of Services triggered by a message of
a Session protocol controlling a communications Ses
Sion; and

a storage medium adapted to Store a plurality of execution
rules each of which specify a condition for invoking
one of Said plurality of Services, wherein the Service
execution environment module comprises a rule engine
module adapted to:

retrieve a number of execution rules, and

process the execution rules in a predetermined order, a
first execution rule causing a first Service to be
invoked, if the message fulfils a first condition,
resulting in a first modified message, and a Second
execution rule causing a Second Service to be
invoked with the first modified message as an input,
if the first modified message fulfils a Second condi
tion.

27. In a data processing System, a Service execution
environment module adapted to invoke a plurality of Ser
vices triggered by a message of a Session protocol control
ling a communications Session, wherein Said Service execu
tion environment module comprises a rule engine module
adapted to:

retrieve a number of execution rules each of which
Specify a condition for invoking a Service; and

process the execution rules in a predetermined order, a
first execution rule causing a first Service to be invoked,
if the message fulfils a first condition, resulting in a first
modified message, and a Second execution rule causing
a second service to be invoked with the first modified
message as an input, if the first modified message fulfils
a Second condition.

28. A Service execution environment module according to
claim 27, wherein the rule engine module is adapted to
interpret a predetermined rule execution Specification lan
guage.

29. A Service execution environment module according to
claim 27, wherein the rule engine module further comprises
a rule base processor module adapted to retrieve the execu
tion rules, and a rule module processing module adapted to
process the execution rules.

