US 20140344777A1

a2y Patent Application Publication o) Pub. No.: US 2014/0344777 A1l

a9 United States

Martin et al.

43) Pub. Date: Nov. 20, 2014

(54) SYSTEMS AND METHODS FOR DEFINING A
SIMULATED INTERACTIVE WEB PAGE

(71)
(72)

Applicant: iRise, El Segundo, CA (US)

Inventors: Maurice Martin, Hermosa Beach, CA
(US); Stephen Brickley, Hermosa
Beach, CA (US); Leon Amdour, Los
Angeles, CA (US); Alex Kravets,
Marina del Rey, CA (US); Brian Fan,
Irvine, CA (US); Dominic Infante,
Redondo Beach, CA (US); Stuart
Larking, Redondo Beach, CA (US);
Paul Aldama, Los Angeles, CA (US);
Brian Russell, Malibu, CA (US)

@
(22)

Appl. No.: 14/339,706

Filed: Jul. 24, 2014

Related U.S. Application Data

Continuation of application No. 13/856,137, filed on
Apr. 3, 2013, which is a continuation of application
No.11/671,331, filed on Feb. 5, 2007, now abandoned,
which is a continuation of application No. 10/763,080,
filed on Jan. 22, 2004, now Pat. No. 7,174,286, which
is a continuation of application No. PCT/US02/23816,
filed on Jul. 26, 2002.

Provisional application No. 60/308,052, filed on Jul.
26, 2001.

(63)

(60)

Publication Classification

(51) Int.CL
GOGF 9/44 (2006.01)
GOGF 3/0484 (2006.01)
(52) US.CL
CPC oo GOGF 8/20 (2013.01); GOGF 3/0484
(2013.01)
1673 G 717/105
(57) ABSTRACT

The system includes a novel software application interactive
representation modeling language, a software application
(82) operative to use the modeling language to create, read
and modify interactive representation models of the proposed
applications, a memory (86) to store requirement data and
interactive representation model data, a software application
(92) operative to read and update the interactive representa-
tion model data across a computer network, a software appli-
cation (76) operative to maintain a record of the requirements
and to administer operation of the system, a software appli-
cation (78) operative to render interactive representations of
the proposed applications in browser readable format, a soft-
ware application (82) operative to allow multiple instances of
other applications to access interactive representation data
and requirement data residing in the memory and a software
application (84) operative to allow an individual user’s inter-
actions with the system to be broadcast across a networked
system to other users.

160 PAGE
PRIMITIVE
176
CONSTANT
PRIMITIVE CONTAINMENT
162
FORM
PRIMITIVE
DATA FLOW
CONTAINMENT CONTAINMENT
CONTAINMENT

164

MATH ADD
PRIMITIVE

DATA FLOW:

CONTROL FLOW

172

CONTAINMENT
174

US 2014/0344777 Al

Nov. 20,2014 Sheet 1 of 29

Patent Application Publication

ATTAATTAA
INDISEA
01S1NdLN0
AUIAOYd

SINTWTIINOT
¥ NOLLYINASHId I
HALLOVIALNI MHIATYH

— 8¢

[

TIAON
NOILVNHESHIdId
HALLDVIHAINI
TVILINI ALVTID

— 9§

A

AHOLISOdTY
INTWAIINOTI
NI 40034

]

GALTTANOD
ATINAIOIANS
89 oN | 99
(4 ;09
/ /
A 4 Y \\
TIAON
NOILVINASTILTT SINTWAHINOT
JALLOVIALNI OL Qav /A4IQON
OL dav/AJIdON

3

['S19

SINIWNTIINOTH
TVLLINI LDHTI0D

— T8

€O
//
~0S

US 2014/0344777 Al

Nov. 20,2014 Sheet 2 of 29

Patent Application Publication

88

06 -

SATIA
AJOLISOdTd

JIAYES JISNN

6

A

INATTD JISAN

8L

X 3
¥6 /

A 4

YOLVINNIS

A

A

9L~

NOI

A

w

(43

731

HOMLAN

MIOMLIN

vb\

vb\

>

> 5 3> > > -

vvaVvv.Ilv.._
|

R T
> <+

> 2 > 3 oy > > ¥

— 08
HALSYOTNIS
9
_vvauvvvvvvvvﬂ’.
{ }
2 08
wasmous W | %

US 2014/0344777 Al

Nov. 20,2014 Sheet 3 of 29

Patent Application Publication

911

AVIdSId
aLrvadn

STIVSSHIN INTIWOONI
()
LAdNI Jdsi
‘LIVAAV

NIDAd

WA ALYAdN OL
INATTD DISOIN
TIVD

AVTdSIA

A

11vadn

/v:

ST LOYIINI
OILINNA S30¢

1141

ALIAI'TVA
JLVATIVAT

011

NOLLINN&
WIOoIIdd

— 801

_ _ INATTD DISOAN WO¥A
_ WY1 ISANOTI
_

_

_ /Nc—
|

|l e

_ _ SSAD0¥d N LYVIS

N

96
1NN 4ES SSADOU _ 86 mwﬂ]

¥oi

y|——— T — ==

_
_
_
_
_
_
]

Patent Application Publication

RECEIVE
REQUEST

126

T 124

128
\

Nov. 20,2014 Sheet 4 of 29

US 2014/0344777 Al

VALID NG, | REDIRECT
SESSION TO ION .
? LOGIN PAGE Flg. 4
130 134 \
IMAGE yEs | PROCESS
REQUESTED IMAGE
? REQUEST
136 Q
N | »(END 144
DALY SHOW STATIC /
ES AND
"PAGE NOT RETURN
SHOW FOUND" PAGE ACCUMULATED
DIRECTORY ~ CoMuLA
132 1407 VES BROWSER
YES 138
DECISION PAGE NOT _NO L‘ 142
REQUESTED UNSPECIFIED FOUND? /
? CONTROL
| FLOW
VISITATION
146 148 150 ALGORITHM
RETURN
PROCESS ACCUMULATED
FORM SUBMIT | HTML TO
BROWSER
154
N\ 156 \
PROCESS ROW RETURN
SELECTION | | ACCUMULATED @
FROM DYNAMIC HTML TO
TABLE BROWSER

.
P

158
D

Patent Application Publication Nov. 20, 2014 Sheet 5 of 29 US 2014/0344777 A1

160 PAGE
PRIMITIVE
176
CONSTANT
PRIMITIVE CONTAINMENT

162

FORM
PRIMITIVE

DATA FLOW

CONTAINMENT CONTAINMENT
CONTAINMENT

164
BUTTON
PRIMITIVE

TEXT TEXT
INPUT INPUT

PRIMITIVE PRIMITIVE

DATA FLOW CONTROL FLOW

170 172

MATH ADD PAGE

PRIMITIVE PRIMITIVE

CONTAINMENT
174

Fig. 5

DATA FLOW

US 2014/0344777 Al

Nov. 20,2014 Sheet 6 of 29

Patent Application Publication

991

pueguzool [auog
a
(a] 7] :Ag)1
| 9Bed Joj spusluannboy Jualng
[INIWIYINO3Y aav |
[l SUON] :UOeIISsel) 165
[a] BUDE] PEmS | lojsenbey]
[=] BUON] :sdfigng
[a] | smels [:pajepoly §| <]
[a] U] :8dh] [1]:0L peleioossy _
:uonduosag
_ | 86e4 J0} JusWalINbaY %<_
F[1 uopng
T
4 g
[#] [300W Nv310[300N VLI] [A¥0L03HIA] 21 B0d /ST [ANeiR [39vd INBRIN [O S| |
v] uolpolddy i
o« T [097 [a] 551986v20420L/MIST/HIN0yep/wis /esiyl/ |aisob/ /:dyy (@] ssauppy
u] . 8] & & _>\.o_m_1m.v sioan L] yoipaso) _G] @ s g aoDaD
disfl_s|oo] sajoan] Mok yp3 e
X = ns —1 ofeg

Patent Application Publication

Nov. 20,2014 Sheet 7 of 29

Fig. 7

145 \

EXTRACT ALL VALUES
SUBMITTED IN FORM
AND PACKAGE INTO

DATA TOKENS

147

DATAFLOW VISITATION
ALGORITHM

l

149 N

DETERMINE PAGE OR
DECISION TO BE
PROCESSED

151 .

CONTROL FLOW
VISITATION
ALGORITHM

END

US 2014/0344777 Al

Patent Application Publication

202
DECISION
OR TAG
PRIMITIVE
‘)

YES

206 \

CACHE
TOKEN AT
PRIMITIVE

END

Fig. 8A

Nov. 20,2014 Sheet 8 of 29 US 2014/0344777 Al
200 \
204 230
INPUT OR
NO NO N
P;’Ignv:llf?v];g} CONTAINER TAG o
) PRIMITIVE
?
ES YES
208 216
YES TOKEN NO TOKEN
ALREADY ALREADY
NO ES
210\ Y
LABEL END
TOKEN
218
212\ | \
e
TOKEN AT rOX !
PRIMITIVE oM
214\ |
FIND ALL
»| DATA FLOW |«
EXITS

Patent Application Publication Nov. 20, 2014 Sheet 9 of 29 US 2014/0344777 A1

232 234 236\
ACTION RETURN
PRIMITIVE? ERROR
YES
220
h 4
ACTION CACHE END
ALREADY TOKEN
XECUTED AT
PRIMITIVE
222 \ . 244 <4
CACHE TOKEN
AT PRIMITIVE FIND ALL
EMPTY DATA
FLOW
224 \ l INPUTS
FIND ALL
EMPTY DATA 240
FLOW INPUTS

ALL DATA
YES ~ pLOW INPUTS
CACHED?

226

ALL DATA
FLOW INPUTS
CACHED?

246 \
DATA FLOW,
228 \ PULL
DATA FLOW ALGORITHM
PULL
ALGORITHM

238 - [EXECUTE

ACTION Fi1 g. KB

A

Patent Application Publication Nov. 20, 2014 Sheet 10 of 29 US 2014/0344777 A1

300\

302

CONSTANT
PRIMITIVE?

LOW LABEL
PRIMITIVE?

INPUT TAG
PRIMITIVE?

PLACE
VALUE(S) IN TOKEN
TOKEN CACHED?
316
N v 320
RETURN | DATA FLOW RETURN
TOKEN PULL EMPTY
ALGORITHM TOKEN
322 1
> LABEL N
END TOKEN END
324 il
CACHE | Y
TOKEN AT 334 REMOVE
PRIMITIVE TOKEN
FROM
326 ! CACHE
FIND ALL
DATA FLOW 336 \ l
EXITS RETURN
328 ‘ TOKEN
DATA FLOW
PUSH
ALGORITHM
A 4
END

Fig. 9A

Patent Application Publication

336 \

338

END

ACTION
PRIMITIVE?

YES

DETERMINE
ORIGIN

y

FIND ALL
EMPTY DATA
FLOW INPUTS

MODEL REF
PRIMITIVE?

YES
348

DETERMINE
ORIGIN

350

ODEL RE
ALREADY
EXECUTED

340
352
YES ALL DATA N\
FLOW INPUTS RETURN
CACHED? QUTPUT FOR
ORIGIN
L
342\ 354
DATA FLOW | EXECUTE
PULL "l ACTION
ALGORITHM
356 \
344 FIND ALL
ACTION DA'll;; EEOW
ALREADY
XECUTED
346 \ 358,
RETURN DATA FLOW
OUTPUT FOR PUSH
ORIGIN ALGORITHM

Fig. 9B

Nov. 20,2014 Sheet 11 of 29

312

| 364

US 2014/0344777 Al

360 \

FIND ALL
EMPTY DATA
FLOW INPUTS

362
YES

366

ALL DATA
FLOW INPUTS
CACHED

DATA FLOW
PULL
ALGORITHM

AN Y

RETURN
EMPTY
TOKEN

END

US 2014/0344777 Al

Nov. 20,2014 Sheet 12 of 29

Patent Application Publication

o/ I

-~

0oy

T zop

women o []
Al
9207
(3
)
\ < 1
sise] Budyrent iy
oy OIF oy |_emdemsEs WL O)
/ \ @D syseL A |
' _w h I) N\
] sjuswaanbay Burkyents A __——» sjuawaunbay Buyent Ay
ar T v
eSERRY RODSAS \\\ paL awainboy 01| | osedte 9109 STEIS V@] Wwewalnbay
917 | D W suossnosig A | (D sanboy i -1
e ——
g i mmmfn_y Iy >=<V Ysesg Joensiuwpy Aieiodua] ‘swodjapm
744
4 r_M_@a_w_Sm_._w:_ g
g 1 [4] N [S— . 981y
/ \ W BYFETTEE e
1
\ [\ "1e0yd] ssappy deH sooL sewore 57 w3 e
L / \ \ J

J0J9513S uonedl|ddy

uoyng noboq

Crnven >

Patent Application Publication Nov. 20, 2014 Sheet 13 of 29 US 2014/0344777 A1

LOGIN PAGE
USER INTERFACE - LOGIN PAGE
2
10
username” I 11

assword
¢ T
company® [ATLI¥ g

| |
s072
[Log 1]13
Py &9

mﬂ m15M16m17

You are requesting a secured
application that requires
authentication. Please log in fo

begin using your application.18

FlG. 11

Patent Application Publication Nov. 20, 2014 Sheet 14 of 29

S04

US 2014/0344777 Al

|REQUIREMENTS - LOGIN PAGE

(1) - Login Page

Number of Requirements: 1

ID: 7Q010D

Priority: Unassigned
Assigned To:
Subtype:

Status:
Scope/Release: In Scope/Unassigned
Requestor:

Modified: 08-Apt-2002 06: 41 PM iRiseSuppott

Type: FDD This is the html for the login page.

This is the html for the login page.

(14) - MA

Number of Requirements: 1

ID: 8016WW
Priotity: Unassigned
Assigned To:
Subtype:

Status:
Scope/Release: /
Requestor:
Medified: 08-Apr-2002 06: 41 PM iRiseSupport

TypezIntent Marketing Adminstrator requirement.

Marketing Adminstrator requirement.

FiG. 12

506 308

FlG. 13

NAVIGATION INBOUND - LOGIN PAGE

Pages

Login Page Budget Entry Worksheet
Project Budget Fdll Life View Select Project

Sel Projegt Slage Workbench -MA and FM

Workiénch -PM and DH

Present View Full Life View

NAVIGATION QUTBOUND - LOGIN PAGE FOR FORM: FORM

Element Name

& (BUTTON) Log In

= [f | (DECISION) Is Login Valid?

F. (DECISION) Pull Error Message

F. (PAGE) Login Page

T. (DECISION) continue

T. (DECISION) Department Head?

F. (DECISION) Finance Manager?

F.(DECISION) Product Manager?

F. (DECISION) WS Accepted {MA only)

.0 {PAGE) Select Project

[f] 1. (DECISION) route

2. (PAGE) Workbench -MA and FM

T. {PAGE) Workbench -PM and DH

(7] (TEXT) MA & [7] (CECISION] Login As MA
7] (TEXT) PM < [| (DECISION) Login As PM
(7] (TEXT) DH 2 [1] (DECISION) Login As DH
[7] (TEXT) M < [| (DECISION) Login As FM

Patent Application Publication Nov. 20, 2014 Sheet 15 of 29 US 2014/0344777 A1

570
PAGE LOAD DATAFLOW (INBOUND] FOR LOGIN PAGE
Typs Element Name Flow Label Type Element Name
'] (TEXT) Error Msg & _Mmsg P k9 (SESSION) Session
[] (SELECT) CompanyList > (CONSTANT) Company
F | DATAFLOW QUTBQUND - LOGIN PAGEDATAFLOW QUTBOUND - LOGIN PAGEFOR FORM:
Tvpe Element Name Flow Lable Type Element Name
sl te] (TEXTINPUT) username = Usermname s DATA.FIND) Valid Login
\ [te] (TEXTINPUT) password = password < 8 (DATA.FIND) Valid Login
&4 (DATA.FIND) Valid Login = userRecord=pp» [i88 (SESSION) Session

4 (SESSION) Session = userRecord=pp

(SESSION) Session = userRecord«pp |8 (DATA.UNPACK) Get Role

(
(
3 (
(DECISION; Is Login Valid?
(
(

B (SESSION) Session

g (DATA.UNPACK) Get Role P 1ole P

FlG. 14

3.00 LIST PAGE

USER INTERFACE - 3.00 LIST PAGE

P PARENTAL] 3
=28r MCA TRo 4

Main Genre ~]8[= Define Plan J10[Find]!"
Create Title J[Artist™
List 2

FIG. 15

Patent Application Publication Nov. 20, 2014 Sheet 16 of 29

S04

US 2014/0344777 Al

|REQUIREMENTS - 3.00 LIST PAGE

(1) - 3.00 LIST PAGE

Number of Requirements: 1

ID: ZW1011

Priority: Unassigned
Assigned To: Temporary Administrator
Subtype: None

Status: Proposed

Scope/Release: Undecided/Unassigned
Requestor: Temporary Adminstrator
Modified: 04-Jun-2002 05:49 PM user1

ElClassifications
Page Functionality / 3.00 List CDs

Type: FDD List Page Functionality

their Genre

The List Page will allow users to search for CDs according to

(13) - Title

Number of Requirements: 1

I0: 5QR012
Priority: Unassigned
Assigned To:
Subtype: None
Status: Proposed
Scope/Release: Undecided/Unassigned
Requestor; User One

Modified: 03-Jun-2002 02:34 PM user1

[SlClessifications
Page Functionality / 3.00 List CDs

Type:FDD Tifle Column

on the Title column header.

The Record list should be sorted by Title when the user clicks

FiG. 16

hitp: lacalhost iRise/ tempreports 1023320189370.pdf Micrasoft Internet Explorer

File Edit View Favorites Tools Help |Addmssﬂ http:/ /localhost /iRise /tempreports /1023320189370, pdf

|
LB

®tack & @ B £} @search “Jreverite Obiedia (B3 B FE[J A Links Rise HittorndiRise Ras FI4E

BShn QAZROBG|IH «» Med &Q B Olef] o MEGERL B

Bockmaks

iRise ||

This is the customized header.

| Thumbnails

My CD Manager Report
Report Type: Requirements Invetory Report
Application; CD_manager

Page Functionality (6 of 29)
UB 2010 Color Conventions

Scope: Undecided Release: Unassigned Locked By: (none)

Modeled: No Subtype: None Estimate:
Requestor: Temporary Status: Proposed Assigned To: Temporary
Administrator Administrator

Priority: Unassigned

The background of the left navigation and the text color should match the site standard colors: blue and
gray. It should alsa be bold, underlined, and slightly larger than the normal text.

3010GP Genre Values
FDD

as options.
Scope: Undecided

Release: Unassigned Locked By: (none)

Ol M4 30012 PH asata aH X |4|

Any Drop-down for selecting or editing the Genre of a CD should contain the Rock, Blues, and Country

@ Done

[ElLocal Intranet

HG.17

Patent Application Publication Nov. 20, 2014 Sheet 17 of 29 US 2014/0344777 A1

hiip:// localnost [Rise/ fempreports 1023320189370.pdl Microsoff Infernet Explorer Oax
File Edit View Favorites Tools Help |Address http://lacalhost /iRise /tempreports /102332297 418.pdf |v PGT)‘

Back P Search (“JFavorite. Oledia Sm Links @)Rise Hiltord@YRise Ros IT&E

BSme |OSROAE]|[H (> v]ed a8 b Ocfiox] o AEEIRH | K

Bootmarks

| iRise |_| Hers is the Titls

Report Type: Testing Scenario Specifications Report
Here is the header. Application: CD_manager

| Thumbals

| Page Functionality 3.00 List CDs (3 of3) |
001108 Derault Search Criteria
FDD

THe List page (3.00) should load showing the results of a search on the last Genre selected {on page
2.00,3.00, or 3.01).

Scape; Undecided Release: Unassigned Locked By: (none)
Modeled: No Subtype: None Estimate;

Requestor: Temporary ~ Status: Proposed Assigned To: Temporary
Administrator Administrator

Priority; Unassigned

Test Scenario
Go to page 2.00 and create a CD in the Country genre. Click Create. When the system presents page
3.00, the list should contain all the Country CDs that exist in the database

20Z11J No CDs Found

FDD
If there are no CDs found for the Genre selected by the user on the List page, then a eor message

should be displayed in place of the CD list. The error message should read "No (Genre) CDs Found."

Scope: Undecided Release: Unassigned ~ Locked By: (none)
Modeled: No Subtype: Nane Estimate:

Requestor: Temporary Status: Proposed Assigned To: Temporary
Administrator Administrator

Priority: Unassigned

Test Scenario

Go to page 3.01 to remave all the CDs from the "Rock” Genre. Go to page 3.00 and apply the Genre
filter to show all Rock CDs. Click the "Go" button.

The sensor should re-present page 3.00 with an error message that states "No Rock CDs Found”

5QR012 Title Colum
FDD
The Record list should be sorted by Title when the user clicks on the Title column header.

KRR a = A ¢ D

Dane [ELocal Intranet
||:Emrf e O [G o (@17 - e K wter - e [Eorites - 7] [@] e/ 7e- | [QRSEQOI@N® s24M

FlIG. 18

Patent Application Publication Nov. 20, 2014 Sheet 18 of 29 US 2014/0344777 A1

http: localhost iRisa/ tempraparts 1023320189370.pdf Micresaft Intarnst Explorar DEE
File Edit View Favorites Taols Help |Addmssﬁ http:/ /localhost/iRise /tempreports /102332297 418.pdf |.|@>G3|
@ Back Search (1Fovertte OMedia (% B & M Links @BWRise Hiltond@¥Rise Ras GITAE

[Bgme (agMR[MA[W > H][e® B8 E Oofex] o Oo@Ee s |8

Boakmarks

=h This is the custom title.
2 | I R IS€ I—I Report Type: Release Review Report
H This is the custorn header. Application: CD, manager

[Page Functionality List CDs (3 of 11) |

001108 Default Search Criteria
FDD

The List page (3.00) should load showing the results of a search on the last Genre selected (on page
2.00, 3.00, or 3.01).

Scope: In Scope Release: Release 1.0 Locked By: (none)
Modeled: No Subtype: None Estimate:

Requestor: Temporary Status: Proposed Assighed To: Temporary
Administrator Administrator

Priority: Unassigned

20Z11J No CDs Found
FDD

The list Page will allow users to search for CDs according to their Genre.

Scope: In Scope Release: Release 1.0 Locked By: (none)
Modeled: No Subtype: None Estimate:

Requestor: Temporary Status: Proposed Assigned To: Temporary
Administrator Administrator

Priority: Unassigned

20211J No CDs Found

FDD
Ifthere are no CDs found for theGenre selected by the user on the List page, then a error message
should be displayed in of CD list. The error message should read "No (Genre) CDs Found."
Scope: In Scope Release: Release 1.0 Locked By: (none)
Modeled: No Subtype: None Estimate:
Requestor; Temporary Status: Proposed Assigned To; Temporary
Administratar Administrator
Priority: Unassigned
Bl M« 70011 M s O R %[»)
E“m [ELocal Intranet

FIG. 19

Patent Application Publication

Nov. 20,2014 Sheet 19 of 29

3.00 Lis- Page - Microsoft Intetnet Explorer
File Edit View Favorites Tools Help | Address hﬂp://lo:nl/iRise/s\m/mediai/ﬂ]_mamgev/l01119078]111?1021150798107=ﬁock&suhmm012190798515=Find|v| 6>Go
Guback v b v ® Bl @ | Q search CFovorte Owmedia & B FE @ & | Links @@IR1se Hilton @Rise Ros @YT&E
iRise i e [CRECTORVWETAWODE [CLERN WODE] [#]
- TG
2 PARENTAL| 3 —
ANy MCA PRa) 3 4 437
Main ~]2[~ Define Plan]10[Find]!
reate Artist™ Genré® Update1ﬁ
List Prince Rock
Esteesh Driven Engine. Pulley Rock
Joshua Tree U2 Rock H
I
/I Il
[Main Requirements for 3,00 List Page / |
7 72| Description:
.y I] 1Associated To:[[T+] Type:[fenl T+1
=] Is Modeled: aStatus:[Proposed 171
Subtype:Mone 1
Set O [] Requestor:OserOneT+1
et Classification: [None/] |
EME .
Current Requiremerts for 3.00 List Page 435
Do l UCIO @ Local Intranat
tar] [@ (53 i [Eu‘mml |'|EE\.N..... |[_ Yoo || @] 300 mln 5<]e§ E (198 ® 2:3:6 M
_______________ 4T i - ____ ____ __ _______________

FiG. 20A
FlIG. 201

FIG. 208

US 2014/0344777 Al

Patent Application Publication Nov. 20, 2014 Sheet 20 of 29 US 2014/0344777 A1

B e

3,00 List Page - Microsoft Interret Explorer / HEX
File Edit View Favorites Toolf Help | Address hrlp://lolnI/|'Ris|/s\m/m-dia?/CD_manngnr/l022|907E|21I’.’mﬂ\9!17‘3&|U7=Rnch&suhmir|012|9079&6!9=ﬁnd|'|pGOl

&back v v @ (A g Search CIFavorite OMe¢~£ O B SE @ A ! Links @)(Risa Hiltan @YRisa Ras @IT&E
[Main Requirgments for 3.00 List Pdge |
/

Description: [
I /] Associated To:(TT=] Type:[mfenl 1]
/ /L\ B IsModeled: oStatus:Proposed 71

Subtype: None T+
[*] Requestor:[JserOne =]
I=]

Set Classificafi

.00 List Page 455
Number of Requirements: 1

2 . Type:FOD | ist Page Funciionality
Priority: Unassigned

Assighed To: Tempgrary Administrator The List Page will allow users to search for CDs according to
Subtype: None their Genre
Status: Proposed
Scope/Release: Pndecided/Unassigned
Requestor: Temporary Adminstrator
Modified: 23-May-2002 04:29 PM user
Elclassifications
irality / 3.00 List CDs
(13) /r itle) Number of Requirements: 1

Type:FOD Tifle Golumn

Priority: Unassigned
Assigned To: The Record list should be sorted by Title when the user clicks
Subtype: None on the Title column header.

Status: Proposed

Scope/Release: Undecided/Unassigned

Requestor: User One

Modified: 03-Jun-2002 02:34 PM user

Classifications
Page Functionality / 3.00 List CDs

e LI] Local intanet
torl] Qe O | T = e | = [T Rl CEemm]

J

459

FiG. 208

Patent Application Publication Nov. 20, 2014 Sheet 21 of 29 US 2014/0344777 A1

3.00 Lis: Page - Microsoft Interet Fxplorer ==X
file Edit View Favorites Tools Help [Address| hip://local/iRise/sim /medial /CO_manager/102219078121 171022190798107=Rockksubmit102210788618=Find_[w] ¢ Gol
qucck v b v ® B Q[® seorcn Crravortte Owecia & B FE 7B A [Links @ivise Hiton @ise Fos Brae
iRise ™¥muaer CURRENT PAGE [DIRECTORY WETAMODE [CLEAN WODE| []

E‘ N r MCA ARENTAL [] \
AVISORY Y36
Main Genrel [] [DefinePlan | [Findltt 454
Create Title Artist Genre Update
List 1999 Prince Rock
Esteem Driven Engine Pulley Rock
Joshua Tree U2 Rock
e I T @ Local intane: -
forl] o MO [@ = [!5.",., | = ||Ec=\.n,,..k.. [| !_|m.. o |Q545Q|:||:|..® 310 PM
HG.21
Find
1
person
¢
[
Unpack
1]2]
first néme\n person —=t1
last name \ Sessions
My P
y Tage / \ I Update Person Page
My Dyr}amlc Table *

First Name ~ Last Name AnImage | [Update]

F6.22

Patent Application Publication Nov. 20, 2014 Sheet 22 of 29 US 2014/0344777 A1

Find
1]
person
¥
1]
Unpack
112]
first nam
/ last name
MyPage | | F1i'id
:Form f . X ! |
| [My Dyrpamic Table : person
| First Namd-{Last Namg}~———ast name
| [T first name— 3
| Dodate A | Update

First Name | fnamelnputl firstName

|
|
|
|
Last Name | Inamelnput I : \‘ Ia's/tName
|
|
|
|
|

Go Button 1]2]3]
Here is the full name: full name 1T TXt'Add
fullhlame
Login Page
Session Form]
1\| i Username [Textnput 35i
profile | Pas.sword Textinput 36||
My Home Page F—"] | Login !
my account — <Check Login Stafjz= b -
\
My Account Page
Welcome to My Account

FlIG. 29

Patent Application Publication Nov. 20, 2014 Sheet 23 of 29 US 2014/0344777 A1

Bessiorn
1]
proflle
1T Access Level Zero
U1n|pack Your access level is 0

acceséLeveI/
My Home Page 0 Access Level One

what's my level? — Your access level is 1

—
Access Level Two
Your access level is 2

FlIG. 26

Input Page

|
. fname
First Name [f L
name | | Space

|
|
i Last Name |Iname i Iname
| |Show Full Name| |
[H s w—— 4 1]2]3]

Text Add

1]

full Néme

Full Name Page L
Here is your full name: yourFullName F’G, 27

The Start Page is the starting point for all simulations. (_Account Numbers) Hello Page
To simulate the experience of an existing account, select

account number 1001, To simulate the experience of a new Hello
account, use account number 2001

Start Page /
Form T, /— _______ J
I . Gol !
| Please select the account number you want to examine: acctNumber|—{Gel | acctNum —={1] .
' ! Session
L u |

Fi6. 28

Patent Application Publication Nov. 20, 2014 Sheet 24 of 29 US 2014/0344777 A1

| g el e e g [%)

FI6. 29 FlIG. 30

FlG. 31 FlG. 32

FlG. 33 FlG. 34

Egs]|
FIG. 35 FIG. 36

US 2014/0344777 Al

Nov. 20,2014 Sheet 25 of 29

Patent Application Publication

L£ 9l

dn-dod Joup3 Ausdoid aued Joup3 Auadoid
N _ I
/[e ‘punosbyoeg) Wd S0: 2002 '§z dunr uo
alig ulwpedwa) A palpou 1se
0 poyo Id ¥¥:2 2002 ‘0Z Aeiy uo
: HUV_ L ulwpe dway Aq paleal)
_ aued J| :eweN el 606011801201 shoy
Nd\G0:r 2002 ‘Gz 8unr uo ujwpedwsay Aq palipou ise !
Wd ¥7+2 2002 ‘02 Aeiy uo uiupe dwsy Ag psjesid alqe! A :0lfis
Y60S0/LE0E0L SAe) ﬂ L _H__u P07 algeL A
N\ SoIp9001d \ '
_ abeq .__2_ ‘aueN
\ abed ||
[ow] @G UFEELEH RROOO OO0 odEeaEEELEE

_EAm_m..m..am_@s__m aenus || | DD | W (0] © ©

[3¢c] <] G- G- vl @ | [= ||| O/ || & []_0] © ©)

suojdg

IS MSJA pesul Pl 81l

suopdo IS MAIA esul p3 el

INEjoQANE}ap - oS oSy

INEJRQAINE}RP - OIS aSi]

Patent Application Publication Nov. 20, 2014 Sheet 26 of 29 US 2014/0344777 A1

iRise Studio - default/Default
File Edit Insedmew List Options
Q& [[o] @ || &) sree 5] [0 M 55 -0 9 9
AP [FR0 REC oo (MO0 dC
/Requirements Pages
| Pages
@ [My Page
My Table
Text
AN
AN pd
Project Browser

FlG. 38

Patent Application Publication Nov. 20, 2014 Sheet 27 of 29 US 2014/0344777 A1

FlG. 39

Patent Application Publication Nov. 20, 2014 Sheet 28 of 29 US 2014/0344777 A1

Golfer Create Page
Fom B
| [Tatle |
| |
| |
: First Name: |Text|n§ut 41I 1 First Name
| |
| |
| |
I 1| | Last Name: | |Textinput 42H——H— List Name
| |
i i
: Pro: MChéCkBOX 5 : Pro
I I
I I
| || | Handicap: | |Textinput43 I Handicap
i i
i Comments:| |[TextArea 17| i Jomments:
| |
I|Create Golfer !
- - ____ |
[2[3]4]5]
Create Galfer
(Pack)
I
Golfer
i
1]
SaveGolfer
(Save) F IG. 4”
Start Page False Page
:rSTa_rt_PEg_e _____________ |

| [Password? | | Password? |

|
‘ Secret \ ,:/
Password? @
¢ i

112] \
TextE/qyals’

1 1/ True Page

6. 41

Patent Application Publication Nov. 20, 2014 Sheet 29 of 29 US 2014/0344777 A1

Find all CD
(Find)
1]
|
e
1
1]2]
Sort CD by Atist
(Exit)
Find all CD 1]
(Finc) |
CD
1] ;
|]
Unpack CD
C'D (Unpack)
1] 2] 1]2]3]]
Sort CD by Artist
(Sort) Aist Genre T Title
1 ‘
‘ CD Page
D ¢- Py 7
| |
1] | Dynamic Table }
'| Atist Genre Title Update||
CD ! |
{rpack) { l—_————"r s] —
1]2]3]] - il
CD
ﬁhnre Title 1]/ Session) -$-
cD Update Cd Page cD
,,,,,,,,,,,,,,,, S H
CD List Page 1(l|Jn2paicl;)| (Form 7} 1(|eSS|on)
Fom ||| 7 aE IEE |
[| | . | Il | ,
| Bynapic Table ! Arfist ; Artist fl] Textinput 8 | | Artist
| | | |
| . . |
| Adist Genre Title i | @elI:ITextlnpuHO, 1 Genre
: : Genre ; I A } cD
| | | |
i i Tille i Tide J|[Textinput 11] i Title
| |
L _ | |
" [Update CD | |
L - J
1]2[3]4 |

FIG. 42 AG43 [o

US 2014/0344777 Al

SYSTEMS AND METHODS FOR DEFINING A
SIMULATED INTERACTIVE WEB PAGE

[0001] This application is a continuation application of
U.S. application Ser. No. 13/856,137, filed Apr. 3, 2013,
which is a continuation application of U.S. application Ser.
No. 11/671,331, filed Feb. 5, 2007, now abandoned, which is
a continuation application of U.S. application Ser. No.
10/763,080, filed Jan. 22, 2004, now U.S. Pat. No. 7,174,286,
issued Feb. 6, 2007, which is a continuation application under
35U.S.C. §365(c) and 35 U.S.C. §120 of prior PCT applica-
tion PCT/US02/23816, filed Jul. 26, 2002, which was pub-
lished as WO 03/010684 Al on Feb. 6, 2003 under PCT
Article 21(2) in English, which claims the benefit under 35
U.S.C. §119(e) of U.S. Provisional Application No. 60/308,
052, filed Jul. 26, 2001, the entireties of which are hereby
incorporated by reference herein.

[0002] This application is related to (i) copending applica-
tion entitled SYSTEM AND PROCESS FOR GATHERING,
RECORDING AND VALIDATING REQUIREMENTS
FOR COMPUTER APPLICATIONS, Ser. No. 10/484,541,
which is the National Phase of prior PCT application PCT/
US02/23816 filed Jul. 26, 2002; to (ii) copending application
entitled SYSTEMS AND METHODS FOR COLLABORA-
TIVE PROGRAMMING OF SIMULATIONS OF COM-
PUTER PROGRAMS, Ser. No. 10/763,012, filed Jan. 22,
2004, which is also a continuation application of prior PCT
application PCT/US02/23816; and to (iii) copending appli-
cation entitled SYSTEMS AND METHODS FOR A PRO-
GRAMMING ENVIRONMENT FOR A SIMULATION OF
A COMPUTER APPLICATION, Ser. No. 10/762,428, filed
Jan. 22, 2004, now U.S. Pat. No. 7,349,837, issued Mar. 25,
2008, which is also a continuation application of prior PCT
application PCT/US02/23816.

TECHNICAL FIELD

[0003] The present invention is directed to a system and
process for gathering, recording and validating requirements
for computer applications in the fields of requirements analy-
sis for computer application development and of computer
application development.

[0004] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile repro-
duction by any one of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

INDUSTRIAL APPLICABILITY

[0005] The present invention has applicability in the field of
design and development of computer software applications
for businesses and other entities, particularly concerning
large, complex systems adapted for networks, including pri-
vate networks as well as public networks such as the Internet.

BACKGROUND OF THE INVENTION

[0006] With the increasing complexity involved in the
development of computer programs that embody very sophis-
ticated business logic, specification of the requirements of
these programs before they are actually built, i.e., pro-
grammed into computer readable code is important to timely
and cost-effective production of these systems.

Nov. 20, 2014

[0007] As organizations are forced to do more with less, the
need to deliver such applications on-time and on-budget with-
out sacrificing quality presents a bigger challenge than ever
before. One of the major problems in these fields is system
definition, i.e., the effective identification of accurate, com-
plete and unambiguous requirements for the system or appli-
cation. This is especially true of applications used on the
Internet. These applications must meet requirements related
not only to graphic design, content and usability, but also
related to complex scenarios of user system interactions that
are not complete and accurate requirements from outset and
may not even be documented before starting the application
design.

[0008] Traditional software development falls typically
into several main disciplines. The first is known as the “water-
fall” software development life cycle approach. The second
approach attempts to improve the effectiveness of the water-
fall approach by introducing prototypes into the development
lifecycle early in the development cycle. Each of these
approaches is associated with significant problems.

[0009] The waterfall approach is a development method
that is linear and sequential. Waterfall development has dis-
tinct goals for each phase of development. Once a phase of
development is completed, the development proceeds to the
next phase and there is no turning back. This phase of devel-
opment is analogous to the flow of water over a waterfall; it
cannot flow back to the top of the waterfall. In the waterfall
design approach, the requirements gathering phase typically
results with capture of requirements on paper documents.
Typically, the system designers generate a paper-based
design from the paper-based requirements. The system devel-
opers then interpret the paper-based design and convert it into
executable computer code. Typically, the executable code is
then delivered to the testers, who then evaluate the code to
determine if the resulting computer application meets the
requirements.

[0010] While waterfall development allows for departmen-
talization and managerial control, it does not allow for much
reflection or revision. Iterations of the design process require
iterations of the entire process. However, once an application
is in the testing stage, it is very difficult to go back and change
something that was not well thought out in the concept stage.
Also, typically, problems are not discovered until system
testing, and requirements must be fixed before the system is
designed. Requirements evolution makes the development
method unstable. Often during the design and code writing
phases, requirements inconsistencies, missing system com-
ponents and unexpected development needs are discovered.
Also, system performance cannot be tested until the system is
almost coded, and under-capacity may be difficult to correct.
For these reasons the standard waterfall model has been asso-
ciated with the failure or cancellation of a number of large
systems.

[0011] Known alternatives to the standard waterfall design
approach include modified waterfall approaches that include
those that start with a very rough notion of the system and
become more detailed over time, analogous to going over
several smaller waterfalls (spiral waterfall design); and those
that include overlapping phases and sub-projects (modified
waterfalls).

[0012] Other known design approaches include the staged
delivery approach, in which the designer reviews the concept,
requirements analysis, and architectural design phases, and

US 2014/0344777 Al

then implements these phases, shows them to the customer as
the components are completed, and then goes back to the
previous phase(s) if needed.

[0013] All of these waterfall type approaches suffer from
the same or similar problems, however. The iterative
approach through the phases, even when overlapped, results
in static requirements being interpreted into static designs and
developments. Because the requirements for most systems
are not well understood in the beginning, the costs for devel-
opment often become excessive and delivery schedules origi-
nally estimated must be revised. Finally, because complex
systems typically are not well understood in terms of their
actual implemented behaviors, it is only through actual inter-
action with the system that the system designers and business
analysts truly begin to understand what has been built.
Although the lessons learned may be valuable during water-
fall implementations, they cannot easily be taken advantage
of, due to the prohibitive costs of re-factoring the designs and
implementations to reflect the new requirements that spring
from these lessons.

[0014] The second general approach, the prototyping of
critical parts of the application, was developed, partly in
response to the problems associated with the waterfall and
modified waterfall approaches. As used herein, the term pro-
totype, and its variations, in the context of the design of
computer applications means the use of some form or stage of
application code, or the use of static images to represent
computer screen display.

[0015] The prototyping of critical parts, referred to some-
times herein as code prototyping, also was developed in
response to awareness in the field of the invention that soft-
ware product development tends to move along four paths: (1)
ideas to product; (2) low technology to high technology; (3)
drawings to code; and (4) appearance and behavior to perfor-
mance. In the code prototyping approach, a prototype code is
builtto test the results of the planning phase, during which the
developers attempt to understand the users and the users’
needs and how those were to be addressed in the software
application. The prototype code is then measured to see how
the user reacts and understands the developer’s work, and is
analyzed to see which parts of the prototype are doing well
and which parts are not. In this prototyping approach, the
prototype is actually code that is intended to accomplish the
intended purpose of designated parts of the overall software
application, and is therefore referred to herein as a “coded
prototype.”

[0016] The prototyping approach also has been associated
with numerous problems, foremost among them is that pro-
totypes are typically written in computer languages that only
programmers can understand and use. Thus the prototypes are
still developed as traditional computer programs, by pro-
grammers. This has several drawbacks. The first drawback is
that business analysts, who are the people most likely to
understand the needs and desires for the computer applica-
tion, cannot develop the prototype without reliance on com-
puter programmers, and must translate and communicate
these needs and desires to computer programmers in order to
have them construct the prototype. This communication is
traditionally inefficient and translation errors tend to be intro-
duced because of the differences in the interpretation of the
needs and desires for the prototype between two constituen-
cies with differing backgrounds and skill sets. Second, in
many organizations, skilled programming resources are pref-
erentially assigned to fixing existing computer systems or

Nov. 20, 2014

completing development of systems that are soon to be placed
in production. Thirdly, programming resources need poten-
tially expensive hardware and software tools to accomplish
their work. Fourthly, because prototypes are frequently con-
structed using the same infrastructure that the eventual appli-
cation will be deployed upon, prototyping efforts are fre-
quently delayed until strategic hardware acquisition,
development software acquisition and training have been
completed.

[0017] Yetanother problem with prototyped systems is that
they tend to become a replacement for actual development of
the envisioned system. There is a tendency to attempt to field
a completed, or near-completed prototype. Because the pro-
grammers were originally building just a subset of the system
for demonstration purposes, short cuts typically are taken in
this phase that lead to systems that do not scale well and have
significant performance problems.

[0018] Yet another problem with coded prototypes is that
they suffer from poor documentation, often because the pro-
totype and the requirements are not represented within the
same context.

[0019] Another problem with coded prototype based devel-
opments arises from the tendency for difficult problems to be
pushed to the future, and not solved by the time of product
completion, so that the initial hope of the prototype is not met
by the subsequent product.

[0020] Because of these limitations, another prototyping
approach, referred to as static prototyping, has evolved. In
this approach, only an image of the user interface of the
prospective computer application is developed. This image
may be created using commonly available drawing and dia-
gramming software, and may be created without some of the
drawbacks associated with employing programming
resources to create a coded prototype. Prototypes created in
this manner, however, suffer from additional drawbacks.
Foremost among them is that such static prototypes created
with drawing and diagramming software are unable to convey
to stakeholders an understanding of or how the application
will behave. Prototypes constructed in this manner do not
exhibit many of the interactive behaviors of computer appli-
cations, e.g., havigation from screen display to other screen
display, computation, storage and retrieval of data. They are
therefore referred to as “static image prototypes™ herein. It is
commonly known in the field of the current invention, that
stakeholders are much more apt to identify potential errors or
omissions in the early phases of software development if they
are permitted to interact with a prototype that does exhibit
these interactive behaviors.

[0021] To summarize the forgoing discussion of back-
ground art; coded prototypes suffer from drawbacks derived
from the need to utilize computer programmers in their con-
struction and static image prototypes suffer from drawbacks
derived from the fact that they are inherently not interactive.
[0022] In addition, the evolutionary delivery design pro-
cess, a cross between evolutionary prototyping and staged
delivery, is known.

[0023] Within the context of the above described software
design approaches, many systems analysts simply use a pad
of'paper to record requirements they gather from the eventual
users of the computer program being envisioned for develop-
ment. Still other systems analysts use word-processing pro-
grams to write specifications in a prose style. Several design
methodologies have emerged to graphically describe the use
ofiteration with computer programs, and how these programs

US 2014/0344777 Al

are to be organized internally. Ultimately, these specifications
all coalesce to static representations of the proposed or pro-
spective computer program that computer programmers must
either read on paper, or read from a computer screen to gain an
understanding of what the systems analysts interpreted what
the users meant when they designed the system. The pro-
grammers must then write the code that represents their best
interpretation of what the systems analysts and the users
meant when the static system specification was created.
Finally, after the computer programmers create the computer
software code, it is tested by the systems analysts and users to
determine if the programmers’ interpretation of the system
specification (that is, in turn, the system analysts’ interpreta-
tion of the requirements from users of the proposed computer
system) meets the users’ requirements. In complex systems
that must interact with multiple users, playing different roles,
and in turn interact with multiple other computer programs,
also playing different roles, the probability of interpreting the
users’ requirements correctly the first time is quite remote.
This necessitates frequent code changes and reinterpreta-
tions, first by the users, second by the systems analysts and
third, by the computer programmers. This cycle is repeated
until the computer programmers rewrite the software enough
times to embody what the users require of the system. The
reliance on static documents to transtfer the requirements into
a correct computer program results in repeated cycles of
development. These cyclic and redundant development
activities inflate the cost of the resulting system.

[0024] As such, the programmers, at the end of the cycle of
research and development of a large program or system,
typically are left to discover all of the ambiguous, hidden and
conflicting requirements as they actually write software code.
This invariably leads to failures of the code to correctly
embody the users’ requirements, longer development cycles,
increased costs and lower quality end products.

[0025] In addition, known computer application develop-
ment approaches typically do not include input from all of the
various stakeholders. Rather, it is generally business manag-
ers who determine the need for the application, and then
business analysts translate these needs into the domain spe-
cific jargon appropriate to the problem being solved, and
finally the computer programmers translate the business
domain information into executable code. This serial process
leads to misunderstandings, unresolved issues and miscon-
ceptions.

[0026] Finally, another problem with known software
application development approaches is that software testers
are provided with only a document for use in developing
quality assurance and acceptance tests, and acceptance test-
ing can occur only at the end of the development cycle. This
is an additional source of delay and problems because the
quality assurance engineers are then required to conduct their
own interpretation of all of the prior development work.

SUMMARY OF THE INVENTION

[0027] The right of priority for the present invention is
claimed on the basis of U.S. Provisional Patent Application
Ser. No. 60/308,052, filed Jul. 26, 2001. The disclosure of
invention contained therein is incorporated by reference as if
set forth fully herein.

[0028] With reference to FIG. 1, the overall process of a
preferred mode of the present invention is shown at 50,
including its requirements gathering, recording and valida-
tion steps. Upon starting the process, initial requirements for

Nov. 20, 2014

a proposed or prospective computer software implemented
application are collected at 52. The computer application that
is intended to be developed and deployed based on the
requirements and an interactive representation generated
using the present invention, is referred to alternatively as the
proposed application, the prospective application, the
intended application and the subject application.

[0029] The requirements are then recorded in an electronic
requirements repository or memory, shown at 54. Next an
initial interactive representation model, sometimes referred
to as an IRM, of the prospective application is created at 56.
In the course adding to or creating the initial interactive rep-
resentation model at 56, associations between requirements
and elements of the interactive representation may be
recorded in an electronic repository or memory. Then the
interactive representation model and the requirements, along
with their associations between them, may be reviewed at 58.
During the course of reviewing the interactive representation
and requirements at 58, requirements may be added and asso-
ciated to elements of the interactive representation. Following
the review at 58 a determination is made at 66 on whether the
interactive representation model and the requirements are
sufficiently complete. If they are sufficiently complete, then
they are provided as outputs of the process at 68, which serve
as inputs for generation of the actual code for the prospective
application. If they are not sufficiently complete, then the
requirements are modified at 60 and/or the interactive repre-
sentation model is modified at 62. In the course adding to
and/or modifying requirements at 60 or when modifying and/
or adding to the interactive representation model at 62, asso-
ciations between requirements and elements of the interactive
representation may be recorded in the electronic repository or
memory.

[0030] The term user(s) and the term stakeholder(s) herein
refer collectively and individually to persons who participate
in the process of the present invention and/or utilize the soft-
ware components of the present invention. The term user(s)
include(s), but is not limited to business analysts, program-
mers, project managers, business managers and users of the
prospective or subject application. The term user(s) also
means (1) individuals who will use, or are intended to use the
subject application once it has been developed and deployed;
and/or (2) individuals who represent the proposed application
users in the process of the present invention, particularly with
respect to communicating their needs and desires relative to
the behavior of the prospective application. For example,
when gathering and validating the requirements for a subject
application that will be used by the general public, for
example, a retail internet application for the sale of books or
compact disks, it is unlikely that a significant number of the
subject application’s eventual users, the general public, will
be available to participate in the process of the present inven-
tion. Instead, marketing representatives, product mangers and
similar individuals would act as proxies or surrogates for the
subjectapplication’s end users. Thus, as used herein, the term
proposed application user(s) refers to both the true user(s) of
the subject application, as well as to those acting as their
proxies.

[0031] As used herein the term requirement(s) refers to a
statement or portion of a statement regarding the desired or
necessary behavior of a prospective or subject computer
implemented software application or a set of proposed appli-
cations. A collection of one or more requirements is a subset
of the information that is typically provided to computer

US 2014/0344777 Al

programmers and typically enables them to develop a com-
puter application. For example, a subset of the requirements
for a retail internet application might include the following
requirements:

[0032] 1. “The system shall require the user to enter the
user’s zip code before allowing the user to submit the
user’s order.”

[0033] 2. “The order entry page shall have the corporate
logo in the upper left corner.”

[0034] 3. “If the user has ordered more than US$50.00
worth of qualifying merchandise during the previous
three months, adjust the shipping cost of all items that
are domestically sourced to the lower of USD$15 or
50% of the standard shipping cost.”

[0035] The initial requirements for the subject application
are recorded at 54 and subsequently modified or added to at
60 by business managers, business analysts, programmers
and subject application users. Within this context an advan-
tageous feature of the present invention is its ability to enable
multiple users to view and edit the requirements over a com-
puter network.

[0036] Another advantageous feature of the present inven-
tionis its ability to enable flexible definition of a classification
structure for the requirements and assignment of each
requirement to one or more of these classifications. For
example, different classifications could include “order man-
agement requirements,” “technical requirements” and
“requirements from external clients.” Another advantageous
feature of the present invention is its ability to designate the
e-mail addresses of other users and interested parties such
that any change to the electronic record of the requirements
causes an e-mail to be sent to each address to notify the
recipient of the change. Also, the present invention provides
the ability to establish the value of several attributes of the
requirements. For example, “type,” “subtype,” “priority,”
“status” and “assigned to” attributes may be established.
Other advantageous features of the present invention include
its ability to record electronic discussions regarding the
requirements; its ability to store and retrieve various elec-
tronic documents with each requirement; and its ability to
produce on-screen or printed reports of the requirements. Still
other advantageous features of the present invention include
its ability to record defect reports and tasks related to require-
ments. In this context a defect report includes statements
regarding incorrect or undesirable behavior of the prospective
application, that can optionally be tracked in the present
invention after providing the outputs of the invention at 68 to
individuals involved in the development and deployment of
the prospective application. In this context tasks refer to an
optional record of activities to be performed, or activities that
have been performed by users during the course of the use of
the invention. These functions are provided by a software
application that is part of the present invention. This applica-
tion is programmed, preferably, in Java® language and pro-
vides requirements management functionality for the pre-
ferred implementation of the present invention.

[0037] A feature of the overall process is creation of an
interactive representation, sometimes referred to as IR, and/or
an interactive representation model, sometimes referred to as
an IRM, of the prospective application. For the purposes of
the present invention, the term interactive representation
means (1) a simulation of the behavior of a prospective appli-
cation that is used to review conformance of behavior to the
desired or necessary behavior of the prospective application

Nov. 20, 2014

before it is developed and deployed; or, (2), the result of
interpreting and executing an IRM. The IRM is an executable
set of computer data that defines how an IR behaves. In a
preferred embodiment of the present invention, this computer
data is stored in terms of fundamental units, referred to as
“primitives,” or rules, and relationships among these rules
that are permitted by an interactive representation modeling
language, sometimes referred to herein as “IRML.” More
specifically, IRML refers to a language created as part of the
present invention, and used in the embodiments of the inven-
tion to specify the behavior of an interactive representation.
That language is represented in terms of the fundamental
rules, or primitives that are used to create and execute inter-
active representations. As used herein, the term primitive
refers to the most basic, indivisible unit in a language, spe-
cifically including the IRML used in the present invention and
its alternate embodiments. A list of preferred IRML primi-
tives for preferred embodiments is provided in Table II.

[0038] One or more users create the initial IRM at 56, and
modify and/or add to the IRM at 62 through various mouse
and keyboard gestures understood by one of the software
components of the present invention, as will be described in
detail. Using this software, referred to as “Studio,” a user
defines the appearance and behavior of an interactive repre-
sentation by (1) adding IRML primitives to the IRM; (2)
setting their attributes, and in some cases, their location; and
(3) establishing relationships between and among these
IRML primitives, as will also be described in detail. The
requirements for the prospective application are then associ-
ated to the primitives in the interactive representation. Each
association is recorded in a single, electronic system of
record. Examples of activities that can be performed by a user
during creation of the initial interactive representation model
at 56 or modifying and/or adding to the interactive represen-
tation model at 62 include:

[0039] 1. Initiating the “Studio” computer program com-
ponent. The process of creating the interactive represen-
tation begins with a user initiating a computer applica-
tion component referred to as “Studio.” Once the user
has been authenticated to this component the user selects
a particular proposed application on which to work. An
advantageous feature of the present invention is that the
requirements that were previously recorded at 54, 58 or
60 appear on the screen presented by the Studio software
component of the system and provide useful information
to the user as the user proceeds with building or creating
the interactive representation model, as well as the abil-
ity to record associations between these requirements
and elements with the IRM.

[0040] 2. Initially defining the user interface of the IRM.
In initially defining the user interface of the IRM, the
user reviews the requirements previously recorded at 54,
60 or 58 and then, through various mouse and keyboard
sequences, instructs the Studio software component to
perform certain pre-designated functions such as add (1)
pages; (2) forms; (3) tables; (4) text inputs; (5) buttons,
and other functions or components to the interactive
representation model. Throughout the use of various
mouse and keyboard gestures, the user may define the
relative positioning of various user interface compo-
nents and their containment within other user interface
components. Within the context of the present invention
the term containment refers to the relationship between
two primitives that effects the manner in which the con-

US 2014/0344777 Al

tained primitive is treated by a software component of
the system referred to as the “simulator.”” One of these
two primitives is referred to as a container primitive and
the other as a contained primitive. Containment, as used
herein, is conceptually derived from, and causes behav-
iors similar to the nesting of HTML tags in a conven-
tional HTML document. For example, a “text input”
primitive may be contained in a “table cell” primitive.
The simulator software component of the present inven-
tion renders this relationship by generating HTML, with
an HTML tag equivalent to the “text input” nested within
the HTML tag equivalent to the “table cell”, as will be
described in detail below. When the HTML tag equiva-
lent is interpreted by a browser, the text input appears
graphically within the table cell. The containment rela-
tionship among primitives also implies the association
between various user interface components and the user
interface component “form,” and is used by the simula-
tor software component to extract values submitted in a
form, and to package them into data tokens.

[0041] The user may also define attributes effecting the
appearance and behavior of these various user interface com-
ponents in the interactive representation. Alternatively, users
may choose to specify very minimal information regarding
the appearance of the subject application, and focus instead
on later steps in this process. The process of creating the user
interface of the IRM continues until the user has defined one
or more pages that are intended to represent the user’s under-
standing of the desired or needed behavior of the subject
application.

[0042] The Studio software component enables the user to
request that the interactive representation be displayed by the
simulation software component at any time. This is also an
advantageous feature of the present invention because in per-
mits users to review the work done to date and/or to evaluate
the extent to which the interactive representation reflects the
users’ interpretation of the requirements. In accordance with
the principles of the present invention, itis intended that users
will iteratively modify the IRM and review its compliance
with the requirements through use of the simulator compo-
nent ofthe invention, as will be described in detail hereinafter.

[0043] 3. Subsequently defining the user interface flow
of the IRM. Once preliminary compliance of the user
interface components with the requirements has been
reached, the user subsequently can define the user inter-
face flow of the IRM by connecting various primitives in
ways that define the user interface flow of the interactive
representation and, hence, the intended user interface
flow of the proposed application. This task typically
involves (1) selection of a user interface primitive, such
as an image, text or button; (2) selecting a destination
“page” primitive; and (3) choosing a menu option
labeled “connect.” An advantageous feature of the
present invention is its capability to interpret the user’s
intention to designate the user interface flow of the appli-
cation simply because of the types of primitives they
have chosen to connect, and without further specifica-
tion of a user’s intention to designate user interface flow.
During this activity of defining the user interface flow of
the IRM the Studio software component of the system
continues to support viewing of requirements and of the
dynamic display of the interactive representation.
Another advantageous feature of the present invention is
its ability to enable the user to designate several potential

Nov. 20, 2014

pages at a particular point in the user interface flow. This
function is accomplished through use of a “decision”
primitive. Through various mouse and/or keyboard ges-
tures, a user (1) connects a user interface component to
a primitive called “decision” in the preferred embodi-
ment; (2) connects the decision to one or more potential
pages; and, (3) connects another primitive to the deci-
sion using the system’s “data flow” function, as
described below in detail. These actions cause the simu-
lator software component of the system to display one of
the potential pages during review of the interactive rep-
resentation and requirements shown at 58 in FIG. 1, and
as described in greater detail below. This display is based
on the value of the data flow function at the time the
interactive simulation is rendered. Hence, the user is
provided with structure and functioning components of
the system of the present invention to define different
behaviors of the model, with the behaviors being con-
tingent on data values present at the time the interactive
representation is rendered.

[0044] 4. Defining additional behaviors in the IRM. Sub-
sequent to defining the user interface and user interface
flow of the IRM, the user may then specify other behav-
iors of the IRM. These other behaviors, include, by way
of example, and not by way of limitation, such functions
as the capture, storage and retrieval of data. Through use
of various mouse and keyboard gestures, the user may
connect user interface components to primitives referred
to as “actions” in the preferred embodiment. Actions
generally correspond to functions or behaviors that are
common among known computer programs, for
example the action labeled “data create” causes the IRM
to store some specified data for later retrieval by an
action labeled “data find”” Similarly, actions are pro-
vided in the preferred embodiment for string manipula-
tion, sorting lists of data and simple mathematical func-
tions. A list of these preferred actions is provided as part
of Table II. In the preferred embodiment each action
takes zero, one or many input parameters and provides
zero, one or many outputs. These inputs and outputs are
connected, using the Studio component, to other actions
or user interface components, and these connections are
referred to as “data flow” connections. By connecting
the outputs of an action to the inputs of another action,
users are enabled by the present invention to define
complex manipulation of data in the IRM. An advanta-
geous feature of the present invention relative to this
process is that the definition of such complex behavior in
the IRM does not require knowledge or use of a com-
puter language.

[0045] It might appear that the presentation of the process
for developing an IRM as described herein implies a progres-
sion from user interface definition to user interface flow defi-
nition, and only then to definition of more complicated behav-
ior of the IRM. However, another advantageous feature of the
present invention is that it enables these activities to occur, to
varying degrees, as will be described in detail below, in any
order in the overall system, as desired by the users. Further-
more, the activities described in this process may be distrib-
uted among multiple users, working collaboratively on one or
more IRMs. Furthermore, in other implementations of the
present invention, one or more of such activities may be
omitted from the process without significant impact on the
efficacy of the process. For example, the activity of defining

US 2014/0344777 Al

additional behaviors in the IRM may be omitted if the users
conclude that the requirements and interactive representa-
tions are sufficiently complete to express the users’ needs and
desires. With respect to the above functions, another advan-
tageous feature of the present invention is the ability of its
Studio software component to enable the user, through a
series of simple mouse movements, to record an association
between one or more requirements and one or more primi-
tives that have been added to the IRM. Similarly, the Studio
software component enables the display of associations that
have been previously defined.

[0046] Yet another advantageous feature of the present
invention is the capability of the Studio software component,
working in concert with the Music software component, to
enable multiple users to collaboratively and simultaneously
work on the same IRM. In the preferred embodiment of the
present invention, several users may utilize individual copies
of the Studio component on different computers, and in the
context of the present invention each individual copy is
referred to as an “instance” of the Studio. Modifications to the
IRM made by one user working with that user’s instance of
the Studio are seen by other users working with their
instances of the Studio on a near real-time basis. Furthermore,
these changes are immediately visible to any user who is
executing the IRM. As would be evident to a person skilled in
the art, this near real-time capability constitutes another
advantage of the invention relative to computer systems in
which users must publish the results of their work to other
users or computer systems in which users must actively
retrieve the results of others” work. For example, consider two
users Jon and Stephen, working collaboratively and simulta-
neously on the creation of a single IRM. As Jon adds new
primitives to the model using his instance of the Studio com-
ponent, Stephen’s instance of the Studio program displays the
new primitives on a near real time basis. Unlike many known
computer systems, Jon does not need to instruct his instance
of the Studio to update Stephen’s instance, nor does Stephen
need to request the latest IRM from Jon’s instance. As used
herein the term collaboration, and its variations, refer to the
shared creation of two or more individuals with complemen-
tary skills by their interacting to create a shared understand-
ing of a proposed software application that none had previ-
ously possessed or could have created alone. The goal of
collaboration is the creation of value resulting from interac-
tions among the collaborators. Collaboration, as thus defined,
and as enabled by the system and process of the present
invention, enables near real-time access by all collaborators.
Thus, in accordance with the principles of the present inven-
tion the IRM serves as both a model and as a guide or “road
map” for identifying and reducing ambiguity that arises dur-
ing creation of a proposed software application before it is
coded or deployed.

[0047] Similarly, changes to the requirements made by the
ION or Studio software components are reflected in all other
instances of ION and the Studio. This dynamic sharing of
requirements and IRM information facilitates effective com-
munication between all users of the system and contributes to
higher quality requirements and IRMs. Furthermore, this
dynamic sharing of information, coupled with the feature of a
single electronic record of the requirements and IRM of a
particular subject application, reduces the need for users to
maintain and reconcile multiple copies of the same informa-
tion.

Nov. 20, 2014

[0048] The next step in the overall process of the present
invention is the review of interactive representation and
requirements, shown at 58. In this step, the interactive repre-
sentation of the subject application, in conjunction with the
associated requirements, may be reviewed iteratively by busi-
ness managers, business analysts, programmers, and pro-
posed application users. In the presently most preferred
embodiment or mode of practicing the invention, two activi-
ties are available for accomplishing this task: simulation and
simulcasting, as will be described in detail below.

[0049] Simulation is an activity that begins when a user
executes an interactive representation model by choosing the
“simulate” menu item in the ION software component or the
“simulate” menu item in the Studio software component. This
choice causes the simulator component of the present inven-
tion to render the selected page of the IRM to the user’s
browser. As referred to in the present invention, the term
simulator means a software component of the present inven-
tion that renders an interactive representation of a proposed
application and related requirement information based on an
interactive representation model and associated requirement
information.

[0050] The simulator initially provides a list of the pages in
the application to the user. The user then chooses the page at
which they would like to simulate and calls the simulator
again. Upon receiving the request for this page, the simulator
creates a temporary memory area to build a response to the
user’s request. The simulator then “visits” the primitive that
represents the page requested by the user and processes that
primitive along with all of the primitives contained by that
page. As it “visits” primitives, the simulator incrementally
builds up its response. Some primitives are used to display
variable data to users, and for each of these primitives, the
simulator starts a separate process to determine the values of
these variables. Once all the necessary primitives have been
“visited” and their corresponding portion of the response has
been appended to the response, the response is sent back to the
user. Typically, the user then enters data and clicks on a button
or link to submit this data for processing. The simulator
receives this submission and extracts the values entered by the
user into the fields that were presented to them. It then passes
these values to primitives in the IRM that call standard sub-
routines that process the data, and, in turn, pass the results of
such processing on to other sub-routines for further process-
ing. This continues until all processing is complete, at which
point the simulator begins construction of the response to the
user in the same way it constructed the user’s first request for
a page. Once completed, the simulator passes its response to
the user, and waits for another request. This process repeats
until the user has completed their interactive representation
session.

[0051] Another advantageous feature of the present inven-
tion is its capability to display the requested page in a certain
format referred to as “Meta” mode. In Meta mode the require-
ments associated to the primitives contained on the page
through use of the Studio software component are displayed
on the user’s browser in addition to display of the page itself.
Furthermore, each of the primitives that is visually repre-
sented on the page is automatically assigned a reference num-
ber, and each of the requirements displayed is cross refer-
enced to these numbers. In the present invention, this display
of the IRM page and the cross-referenced requirements is
referred to as “requirements in context”. This feature of the
present invention is intended to facilitate each user’s under-

US 2014/0344777 Al

standing of the requirements and to significantly increase the
likelihood of discovery of erroneous or incomplete require-
ments at this stage of the overall process. In addition, pre-
ferred embodiments of the present invention provide the
capability to produce a report that contains the image of the
page, the automatically assigned cross-reference numbers
and the cross-referenced requirements.

[0052] Simulation continues as the user, though mouse and
keyboard gestures, interacts with the interactive representa-
tion. For example, the user may enter text into text inputs
presented in the interactive representation, or may click but-
tons presented in the interactive representation. Each of these
interactions is then communicated by the user’s browser to
the simulator software component. The simulator software
component then evaluates each interaction and responds by
rendering a new page to the user’s browser, with the new page
including the result of each interaction. In this way, the user is
presented with an experience very similar to what would be
experienced if that user were interacting with the completed
proposed application. This capability is also advantageous
because it greatly increases the likelihood of discovering
erroneous or incomplete requirements at this stage of the
overall process.

[0053] The simulator software component also provides, as
yet another advantageous feature, a capability for the user to
enter newly discovered requirements directly into the user’s
browser during simulation, and for these requirements to be
stored by the ION software component into the repository of
requirements for the subject application.

[0054] Asusedindescribing the present invention, the term
simulcasting refers to an activity that is identical to that of
simulation, but with the following differences. When simul-
casting, an individual user’s interaction with the IRM through
the simulator is broadcast to other users. The individual user
whose interaction is broadcast is referred to as the lead user.
The users viewing the interaction are referred to as following
users. This provides another way in the present invention to
review interactive representations and requirements, as
shown at 58. Furthermore, the simulcastor software compo-
nent provides the capability for a following user who is view-
ing the interaction broadcast through the simulcastor soft-
ware to temporarily initiate each such user’s own interaction
with the IRM and, at a time chosen by the lead user, to be
returned to the broadcast simulation. In the preferred imple-
mentation this capability is provided by the simulcastor. The
simulcastor is a software program application implemented
using Java® language in an applet framework. Alternatively,
known, commercial web-casting applications, such as for
example, Web-Ex, could be used to provide this or similar
functionality. The preferred embodiment, however, is advan-
tageous relative to this alternative because the preferred
embodiment does not require purchase or configuration of
additional software, nor does it require additional training for
effective use.

[0055] In the next step of the overall process 50 of the
present invention the user, or several users determine if the
requirements and the IRM are completed sufficient at 66 to
warrant proceeding to providing outputs to design and deliv-
ery of the actual code for the prospective application at 68.
[0056] If the requirements and/or the IRM of the proposed
application is determined to be incomplete, the process of the
present invention enables the user to modify and/or add
requirements at 60 and/or to modify and/or add to the IRM at
62. As used herein, the terms incomplete or insufficiently

Nov. 20, 2014

complete, when used in reference to requirements or the
interactive representation, by way of example, and not by way
of limitation, refer to instances where either the requirement
or interactive representation does not accurately represent the
needs and/or desires of the users regarding the behavior of the
prospective application, or when changes to the interactive
representation or requirements could better communicate to
the designers and developers the intended behavior of the
application.

[0057] Theactions taken at 62 are operationally the same as
the combination of actions taken at 52 and at 54, with one
difference. The difference is that in the case of step 60, users
edit the previously described requirements to increase con-
formity with the needs and/or desires of the users and/or by
adding newly discovered requirements.

[0058] Theactions taken at 62 are operationally the same as
those at 56, with one difference. The difference is that the
users modify or add to the interactive representation model to
increase conformity with the needs and/or desires of the
users.

[0059] The process then proceeds to step 58, review inter-
active representation and requirements, and subsequently to
step 68 in which, again, a determination is made on whether
the requirements and/or the interactive representation model
are sufficiently complete.

[0060] When the interactive representation model and the
requirements are sufficiently complete, the process proceeds
to provide outputs to design and delivery at 68. These outputs
are used by the individuals involved in the design, program-
ming, testing and deployment of the proposed application as
a description of the needed and desired behavior of the pro-
posed application. This step preferably includes utilizing the
ION software component of the invention to generate various
reports that can then be provided to programmers, designers,
architects, testing personnel and others involved in the actual
development and/or deployment of code for the proposed
application.

[0061] These reports are the result of yet another advanta-
geous feature of the present invention, i.e., the ability of the
ION software component, working in conjunction with the
simulator software component to generate such reports, such
as a functional specification report. An example of such a
report is shown in FIGS. 11-14, described below. This report
depicts a visual image of the appearance of a page or pages in
the IRM as well as a list of requirements that are associated
with user interface components that appear on the page or
pages. Furthermore, the functional specification report auto-
matically provides a numerical cross-reference between the
user interface components and their associated requirements.
In practical application of the present invention, steps 58, 66,
60 and 62 occur iteratively, as the requirements and IRM
incrementally approach completion. Another advantageous
feature of the present invention is that (1) this iterative process
results in better communication between and among users
regarding the needs and desires of the users relative to the
subject application, and (2) changes made in steps 60 and 62
are immediately recorded such that step 58 can occur within
seconds of steps 60 and 62.

[0062] Also, in practical application of the principles of the
present invention, users may elect to begin the process at step
56, when it is believed that the user(s) has/have sufficient
knowledge regarding the needs and/or desires for the subject
or prospective application to begin at this step in the overall
process.

US 2014/0344777 Al

[0063] One embodiment is a method of defining a simu-
lated interactive Web page, where the method includes: dis-
playing on a computer display a programming area compris-
ing one or more HTML user interface components for the
simulated interactive Web page; displaying on the computer
display an area for primitives; and enabling a user to draw a
graphical coupling from a selected HTML user interface
component to a selected primitive, wherein execution of the
simulated interactive Web page is based at least in part on an
interpretation of the graphical coupling.

[0064] One embodiment is an interpreted interactive repre-
sentation modeling apparatus that is executable in an interac-
tive graphical user interface, where the apparatus includes: a
user interface component displayed in the interactive graphi-
cal user interface, where the user interface component
includes at least two visible branches, where the visible
branches are visible at least during configuration of the
instruction for the interpreted interactive representation mod-
eling language; a Boolean condition associated with at least a
first branch and a second branch of the at least two visible
branches, where the first branch is associated with a first state
of the Boolean condition, and where the second branch is
associated with a second state of the Boolean condition,
where the association of the Boolean condition is visibly
displayed in the interactive graphical user interface at least
during configuration of the instruction; an interactive compo-
nent responsive to user interaction during execution of the
instruction, where the interactive component monitors data
flow inputs to the interactive graphical user interface for a
selection of a state of the Boolean condition; at least a first
executable instruction associated with the first branch, where
the first executable instruction is activated upon the detection
of a selection of the first state of the Boolean condition such
that the first executable instruction is conditionally executed;
and at least a second executable instruction associated with
the second branch, where the second executable instruction is
activated upon the detection of a selection of the second state
of the Boolean condition such that the second executable
instruction is conditionally executed.

[0065] One embodiment is an interpreted interactive repre-
sentation modeling apparatus, where the apparatus includes:
auser interface component displayed in an interactive graphi-
cal user interface, where the user interface component
includes at least three visible branches, where the visible
branches are visible at least during configuration of the
instruction for the interpreted interactive representation mod-
eling language; an integer-mode condition associated with at
least a first branch, a second branch, and a third branch of the
at least three visible branches, wherein: the first branch is
associated with a first integer value of the integer-mode con-
dition; the second branch is associated with a second integer
value of the integer-mode condition; the third branch is asso-
ciated with a third integer value of the integer-mode condi-
tion; wherein the association of the integer-mode condition is
visibly displayed at least during configuration of the instruc-
tion; an interactive component responsive to user interaction
during execution of the instruction, where the interactive
component monitors for a selection of a value for the integer-
mode condition; at least a first executable instruction associ-
ated with the first branch, where the first executable instruc-
tion is activated upon the detection of a value corresponding
to the first integer value of the integer-mode condition; at least
a second executable instruction associated with the second
branch, where the second executable instruction is activated

Nov. 20, 2014

upon the detection of a value corresponding to the second
integer value of the integer-mode condition; and at least a
third executable instruction associated with the third branch,
where the third executable instruction is activated upon the
detection of a value corresponding to the third integer value of
the integer-mode condition.

[0066] One embodiment is a method of interacting with a
user to define a behavior of a portion of an interactive presen-
tation, where the interactive presentation corresponds to a
simulation model, where the interactive presentation and the
user interact via an interactive graphical user interface, where
the method includes: monitoring a manipulation of a cursor
by a pointing device; monitoring a graphical dragging and
dropping of a first graphical symbol to a first area in the
interactive graphical user interface such that a user interface
component appears in the first area, where the user interface
component corresponds to a conditionally-executed instruc-
tion; receiving a name for the user interface component;
receiving a name and a text description for a requirement for
the user interface component; identifiably storing the name of
the user interface component, the name of the requirement,
and the text description of the requirement with the user
interface component; monitoring a dropping of a second
graphical symbol into the first graphical symbol in the pane of
the interactive graphical user interface, and at least partly in
response to the dropping of the second graphical symbol,
adding a first branch to the first graphical symbol, where the
first branch corresponds to a first code that is executed upon
selection of the first branch during run time; monitoring a
dropping of a third graphical symbol into the first graphical
symbol in the pane of the interactive graphical user interface,
and at least partly in response to the dropping of the third
graphical symbol, adding a second branch to the first graphi-
cal symbol, where the second branch corresponds to a second
code that is executed upon selection of the second branch
during run time; and receiving a data flow input control for the
first graphical symbol, where the data flow input is associated
with the first graphical symbol such that when the interactive
simulation of the simulation model runs in the interactive
graphical user interface, a combination of the data flow input
control and a data flow input received during run-time control
the branching of the first graphical symbol to the first branch
and to the second branch.

[0067] One embodiment is a method of automatically con-
figuring at least a portion of a behavior for an instruction for
a requirements validation computer program, where the
method includes: providing a user interface component in an
interactive graphical user interface; monitoring conditional
branches added to the user interface component, where the
conditional branches control program flow for the require-
ments validation computer program; automatically associat-
ing the conditional branches with a Boolean state when there
are two conditional branches associated with the user inter-
face component; and automatically associating the condi-
tional branches with an integer-mode when there are at least
three conditional branches associated with the user interface
component.

[0068] One embodiment is a computer system that is con-
figured to define a simulated interactive Web page, where the
computer system includes: a component configured to dis-
play on a computer display a programming area comprising
one or more HTML user interface components for the simu-
lated interactive Web page; a component configured to dis-
play on the computer display an area for primitives; and a

US 2014/0344777 Al

component configured to enable a user to draw a graphical
coupling from a selected HTML user interface component to
a selected primitive, wherein execution of the simulated inter-
active Web page is based at least in part on an interpretation of
the graphical coupling.

[0069] One embodiment is a computer system that is con-
figured to define a simulated interactive Web page, where the
computer system includes: a means for displaying on a com-
puter display a programming area comprising one or more
HTML user interface components for the simulated interac-
tive Web page; a means for displaying on the computer dis-
play an area for primitives; and a means for enabling a user to
draw a graphical coupling from a selected HTML user inter-
face component to a selected primitive, wherein execution of
the simulated interactive Web page is based at least in part on
an interpretation of the graphical coupling.

[0070] One embodiment is a computer program embodied
in a tangible medium for defining a simulated interactive Web
page, where the computer program includes: instructions
configured to display on a computer display a programming
area comprising one or more HTML user interface compo-
nents for the simulated interactive Web page; instructions
configured to display on the computer display an area for
primitives; and instructions configured to enable a user to
draw a graphical coupling from a selected HTML user inter-
face component to a selected primitive, wherein execution of
the simulated interactive Web page is based at least in part on
an interpretation of the graphical coupling.

BRIEF DESCRIPTION OF THE DRAWINGS

[0071] Various objects, features and attendant advantages
of'the present invention are described in conjunction with the
accompanying drawings, in which like reference characters
designate the same or similar parts throughout the several
views, and wherein:

[0072] FIG. 1 depicts the overall process of a preferred
mode of practicing, i.e., a preferred embodiment the present
invention.

[0073] FIG. 2 depicts the overall software components of
the FIG. 1 mode of the present invention, and their interac-
tion.

[0074] FIG. 3 depicts the operation of the software compo-
nent of the FIG. 1 mode that enables the user to read, create
and modify interactive representation models of the present
invention.

[0075] FIG. 4 depicts the processing of the software com-
ponent of the FIG. 1 embodiment that enables interactive
representations of prospective applications.

[0076] FIG.5is schematic diagram representing primitives
in an interactive representation model of the FIG. 1 embodi-
ment.

[0077] FIG. 6 is a depiction of an interactive representation
of the interactive representation model of FIG. 5.

[0078] FIG. 7 is a flow diagram of process form submit
algorithm of the FIG. 1 embodiment.

[0079] FIG.8A-Bisaflow diagram of the push mode of the
data flow visitation algorithm.

[0080] FIG.9A-Bisaflow diagram of the pull mode of the
data flow visitation algorithm.

[0081] FIG. 10 is a default screen of a preferred embodi-
ment of the present invention.

[0082] FIG. 11 is an example of the interactive representa-
tion page section of the functional specification report of the
preferred embodiment of the present invention.

Nov. 20, 2014

[0083] FIG. 12 is an example of the requirements section of
the functional specification report of the preferred embodi-
ment of the present invention.

[0084] FIG. 13 is an example of the control flow section of
the functional specification report of the preferred embodi-
ment of the present invention.

[0085] FIG. 14 is an example of the data flow section of the
functional specification report of the preferred embodiment
of the present invention.

[0086] FIG. 15 is another example of the interactive repre-
sentation page section of the functional specification report of
the preferred embodiment of the present invention.

[0087] FIG. 16 is another example of the requirements sec-
tion of the functional specification report of the preferred
embodiment of the present invention.

[0088] FIG. 17 displays an example of a requirement inven-
tory report of a preferred embodiment of the present inven-
tion.

[0089] FIGS. 18 and 19 display examples various reports of
a preferred embodiment of the present invention.

[0090] FIG. 20A-B displays a page of the interactive rep-
resentation of the preferred embodiment of the present inven-
tion in Meta mode.

[0091] FIG. 21 displays a page of the interactive represen-
tation of the preferred embodiment of the present invention in
Clean mode.

[0092] FIGS. 22 and 23 display an examples of usage ofa
dynamic table of a preferred embodiment of the present
invention.

[0093] FIG. 24 displays an example of use of an action
primitive of a preferred embodiment of the present invention.
[0094] FIG. 25 displays an example of the use of a decision
primitive in boolean mode of a preferred embodiment of the
present invention.

[0095] FIG. 26 displays an example of use of a decision
primitive in integer mode of a preferred embodiment of the
present invention.

[0096] FIG. 27 displays an example of use of a constant as
an input to an action of a preferred embodiment of the present
invention.

[0097] FIG. 28 displays an example of a use of a comment
of a preferred embodiment of the present invention.

[0098] FIGS. 29 through 36 display examples of icons for
use in a preferred embodiment of the present invention.
[0099] FIG. 37 displays an example of use of the property
editor feature of a preferred embodiment ofthe present inven-
tion.

[0100] FIG. 38 displays an example of use of the project
browser feature of a preferred embodiment of the present
invention.

[0101] FIG. 39 is a display of an example of an icon for use
in a preferred embodiment of the present embodiment.
[0102] FIG. 40 is a display of an example of an IRM that
accepts and saves data.

[0103] FIG. 41 is a display of an example of an IRM that
checks a password.

[0104] FIG. 42 is a display of an example of an IRM that
displays a list of retrieved data.

[0105] FIG. 43 is a display of an example of an IRM that
displays a list of retrieved data and allows updating of that
data.

US 2014/0344777 Al

MODE(S) FOR CARRYING OUT THE
INVENTION

Overview of Software Components and their
Interaction

[0106] One preferred embodiment of the current invention
includes several software components. These components
and their interaction are described in this section, with refer-
ence to FIG. 2. The software components of the present
invention may stored, individually or collectively on any
computer-readable medium, such as, by way of example,
including but not limited to conventional hard disks, CD-
ROMS, Flash ROMS, nonvolatile ROM, RAM and floppy
disks.

[0107] A standard browser (such as, preferably,
Microsoft® Internet Explorer® 70)is used to present the user
interface of the ION component 76 of the present invention,
as well as the user interface to the simulator component 78 of
the present invention. The browser 70 and ION component 76
interact over a computer network 72 utilizing a TCP/IP and
HTTP or HTTPS communication protocols 74. Similarly, the
browser 70 and the simulator 78 interact over the computer
network 72 utilizing TCP/IP and HTTP or HTTPS74. The
browser component runs on a computer system 80, typically
referred to as a client computer.

[0108] The ION component 76 of the present invention is
used to edit information regarding requirements, defect
reports and tasks, and information regarding administration
used for the operation of the present invention, such as user
names and passwords.

[0109] The simulcastor component 64 runs within a stan-
dard browser (not depicted in FIG. 2) and is used to present
the interactive representation to multiple users concurrently.
The simulcastor component 64 also interacts with the simu-
lator component 78, over computer network 72 utilizing TCP/
1P and HTTP or HTTPS protocol 74.

[0110] The studio component 82 of the present invention is
used to edit the IRM and the requirements, and interacts with
the music client component 84. Communication between
these components is implemented through use of conven-
tional Java method calls. The music client component 84
communicates with the music server component 92 over
computer network 72 utilizing TCP/IP and HTTP or HTTPS
prototype 74.

[0111] The music client component at 84 and 94 of the
present invention, working in conjunction with the music
server component 92 of the present invention provide access
to information about the requirements and IRM, as well as
administrative information stored in the repository files 86 to
the ION component 76, the simulator component 78 and the
studio component 82.

[0112] The music server component 92 mediates the stor-
age and retrieval of information regarding the requirements,
tasks, defect reports and the IRM among multiple users of this
information and reads and writes transactions reflecting
changes to this information to the repository files 86. The
music server component also communicates any changes to
the information made by one user, on a near real-time basis, to
other users accessing the same information and provides for
grouping of related updates to this information.

[0113] The repository files 86 component is a set of com-
puter files, encoded in and industry standard format called
Extensible Markup Language (XML) that contains informa-
tion regarding the IRM, requirements, defect reports, tasks

10

Nov. 20, 2014

and administrative information used in the operation of the
present invention, such as user names and passwords. XML
offers a flexible format for storing different data and other
advantages as would be understood by an individual skilled in
the art. The ION, simulator, and music server components, as
well as an instance 94 of the music client, run on a computer
system 88, typically a server, that runs a Servlet and Java
Server Page (JSP) container 90. Communication among these
components is implemented through use of conventional Java
method calls.

[0114] Alternative embodiments of the preset invention
could be implemented through use of a commercially avail-
able version of a container, such as BEA™ WeblLogic™ or
IBM WebSphere™ containers. However, such alternative
embodiments would require users of the present invention to
pay license fees to the vendor of those containers.

[0115] Another way to describe the role and interaction of
the Studio, IRML, and the simulator in the present invention
is to relate each to common definitions that are familiar to
those skilled in the art. The studio can be considered to be a
specialized “editor”, used to edit the IRML “language.”
IRML is subsequently processed by the simulator, which is
similar in function to an “interpreter.”” As with other editors,
including, for example, text editors, integrated development
environment editors, and language specific editors, the studio
is used to create and maintain a set of computer instructions,
i.e.,a“program”, orin the present invention, an IRM, for later
execution by another program or application. IRML, in this
context, is a specialized computer language designed for use
by business analysts and other users not familiar with tradi-
tional computer languages like HTML, Java™ or C++. The
IRMLI language is designed to be presented graphically by the
Studio, and is another advantageous feature that permits indi-
viduals without programming experience to create IRM’s
Like other interpreters, the simulator is capable of translating
a language, in this case, IRML into instructions that can be
ultimately executed by a computer, and when so executed,
results in the interactive representation of the present inven-
tion.

[0116] In an alternative embodiment of the present inven-
tion, a commercially available “editor” computer program
such as Microsoft® NET Studio® and/or a commercially
available “interpreter” computer program could be used in
place of the studio and/or simulator respectively. However,
these commercially available computer programs would need
to be modified significantly to provide the ability to associate
requirements to elements of the interactive representation
model and to present these requirements in the context of the
interactive representation. Furthermore, this alternative
embodiment would suffer from some of the drawbacks of
prior art, with respect to the fact that commercially available
“editors” and “interpreters” are designed for use by computer
programmers. Another disadvantage of this alternative
embodiment is that these commercially available computer
programs are not specifically designed for creation of inter-
active representation models, but rather for the development
of prospective computer applications, and, therefore, may
require performance of additional costly activities to achieve
a similar effect, e.g., declaration of variable types, declaration
of database record definitions, specification of deployment
configuration and/or installation and configuration of addi-
tional database management computer programs.

[0117] Similarly, in an alternative embodiment of the
present invention, IRML could be replaced by a single or

US 2014/0344777 Al

combination of several existing computer languages, such as
C++, Java® or Visual Basic®. Because these are general
purpose computing languages, they contain many more
primitives and rules for construction than IRML, and, there-
fore require additional time and effort in the creation of an
IRM. Furthermore, this alternative embodiment would suffer
from some of the drawback of prior art, with respect to the fact
that commercially available computing languages are
designed for use by computer programmers.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

[0118] Withreferenceto FIGS. 2-9, preferred, and alternate
software components of the preferred embodiment of the
present invention will be described.

[0119] Thefirst software component is a computer program
that enables the user to read, create and modify interactive
representation models. Preferably the program is written in
Java® language. For convenience this program is referred to
as “Studio” and is shown at 82 in FIG. 2. The IRM’s in Studio
are represented in IRML. FIG. 3 depicts operation of the
Studio component.

[0120] Studio implements three high level processes: start
up process 96, process user input 98 and process incoming
messages 100.

[0121] During the start up process 96 the Studio software
calls another software component of the system, referred to as
the Music Client 84 and requests that an interactive represen-
tation model be retrieved from the server 88 and made avail-
able for reading and modification at 102. Upon successful
retrieval of an IRM, the Studio component 82 displays a
visual representation of the IRM as well as other information
about the IRM and enters an await state 104, during which
time it can receive and process either user input 106 or incom-
ing messages 100.

[0122] The Studio program monitors for user input 106 via
keystroke or mouse action. Upon receipt of such information,
the Studio program performs a function, represented at 108 in
FIG. 3, based on what information was received from the user.
The following are examples of the functions that the Studio
software performs:

[0123] 1. Choosing an IRM for viewing or modification.
[0124] 2. Adding new instances of primitives to the IRM.
[0125] 3. Modifying the attributes associated with the

primitives in the IRM.

[0126] 4. Deleting instances of primitives in the IRM.
[0127] 5. Declaring relationships between primitives in the
IRM.

[0128] 6. Modifying the visual display of the IRM.

[0129] 7. Declaring relationships between requirements

and instances of IRM primitives.

[0130] The Studio program then evaluates whether the
requested function is valid at 110. At determination is made at
118 whether or not to exit the program. If the requested
function is valid, the Studio program executes that function
108.

[0131] Ifthe function changes the information contained in
the IRM as determined at 120, then the Studio component
updates the IRM by calling the Music Client 112 and updating
the electronic record as will be described in greater detail
below. In some cases, as determined at 122, the Studio pro-
gram makes immediate changes to the screen displayed to the
user that reflect the update at 114. In other cases, the Studio
program does not make immediate changes, but waits until

Nov. 20, 2014

the music server 92 responds via the music client 84 and then
processes the update as incoming messages are processed,
shown at 116.

[0132] During processing of incoming messages, at 100,
the studio program receives messages from the local music
client whenever a remote music client updates the IRM via
the music server. The Studio program then updates the screen
displayed to the user reflecting the update, shown at 116,
unless the studio program has already made these changes
under the process user input process 98 described above.

[0133] In the preferred embodiment, the studio program is
written in Java® language and utilizes some components of
the conventional “Swing” and “AWT” libraries that are part of
the Java®™ System Developers Kit (Java® SDK). Alterna-
tively, the Studio program could be written in another lan-
guage, such as, for example C++, C# or Visual Basic.

[0134] The second software component of the preferred
embodiment of the present invention is a computer program
used to read and update IRM’s stored on a server computer
across a computer network. The term computer network
refers to a private network, usually internal to a company or
some other organization, and also refers to a public computer
network, such as the Internet. This second software compo-
nent is, for convenience, referred to as the music client. The
music client preferably is written in Java® language. The
other software components of the preferred system of the
present invention, i.e., the Studio, ION and simulator pro-
grams also use the music client 84 to read and update IRM’s.
The music client program also enables changes made to an
IRM by a studio program running on a computer at one user’s
location to be transmitted on a near real-time basis to other
studio programs that are running on different computers. The
music client software program that is running on the same
computer as a particular studio software program is referred
to as the local music client. Music client software programs
that are running on other computers are referred to as remote
music clients.

[0135] The music client software program implements
numerous commands that relate to reading and updating
IRM’s. The preferred commands that the music client of the
preferred embodiment processes are listed below in Table I,
along with a description of the effect of each. The music client
software program can be best understood by a person skilled
in the art as the implementation of an Application Program-
ming Interface (API), which is shown in Table 1. The first
column of the table contains Java method calls that are sup-
ported by the music component, as would be understood by a
person skilled in the art. Commands in this preferred embodi-
ment are provided as Java® method calls. The other software
components of the preferred embodiment of the present
invention that use the music client utilize these commands to
access and manipulate information regarding the require-
ments and the IRM. The descriptions of the effect of the
commands listed in Table I below include the terms “Tape”
and “Note.” Note refers to the basic record that the music
software program processes, and may contain information
about IRML primitives that are part of the IRM, and may
contain information about the IRM itself and/or about
requirements. Tape refers to a collection of notes, typically
the set of notes that collectively comprise a single IRM of a
proposed application and its requirements.

US 2014/0344777 Al

Nov. 20, 2014

12

TABLE I

MUSIC CLIENT API
©2002 iRise, Inc.

Command

Description of Effect

public String name()

public int index()

public String user()
public String host()

public int port()
public String file()

public String get Property (String name)
public void set Property (String name,
String value)

public Note new Note(String type)

public Note load Note(String key)

public Note[] find (Note. Filter, Note.
Sorter sorter

public Note[] filter(Note[] notes, Note.
Filter filter)

public Note[] sort(Note[] notes, Note.
Sorter sorter)

public boolean stop()

public boolean play()

public boolean play(int timeout)

public boolean jump(int timeout, int
index)

public void pause()

public void pause()

public void unpause()

public boolean register(int timeout)
throws java.io.IOException

public boolean unregister(int timeout)
throws java.io.IOException

public void openContext()

public void closeContext()
public boolean save(int timeout)
public void load(java.io.InputStream

is) throws java.io.IOException

public void save(java.io.Outputstream
os) throws java.io.JOException

// returns the name of the tape instance

// may return the namespace separator character
iy

returns an int representing the index (current
state) of the tape instance

indexes are completely relative with lesser
index(es) representing older state(s)

returns the user for the tape instance

returns the http(s) server host for the current
tape instance

returns the http(s) server port for the current
tape instance

returns the http(s) file for the current tape
instance

returns a string property on the tape instance
sets a string property on the tape instance

creates a new Note instance within the tape
instance of the given type

attempts to find and return a Note instance with
the specified key within the tape instance
returns null if key is null or if the Note cannot
be found

attempts to find and return an array of Note
instances meeting the specified filter criteria
and in the order of the specified sorter criteria
returns an empty array of notes if no notes meet
the filter criteria

returns all notes in the tape if no filter is
specified

returns notes in any order if no sorter is
specified

Attempts to find and return an array of Note
instances from the array of input Note instances
meeting the specified filter criteria

returns an empty array of notes if no notes
meet the filter criteria

returns all notes if no filter is specified
returns an array of Note instances from the
array of input Note instances in the order of the
specified sorter criteria

returns notes in any order if no sorter is
specified

stops continuous play if continuous play is in
effect

continuous play where the tape instance
endlessly attempts to receive all updated
transactions

does not block current thread

single play where the tape attempts to receive
all updated transactions at the time of the call
blocks current thread

pauses the tape and resets state of the tape to
given index

pauses continuous play

pauses continuous play

unpauses continuous play

registers the tape with its server and obtains a
unique mask/key generator

unregisters the tape with its server and returns
its unique mask/key generator

opens an internal context for batching
transactions

closes the internal context if one exists
(automatically queued for save)

saves all queued internal contexts

parse xml from UTF-8 char stream and execute
all transactions from the given input stream
loaded transactions are not queued

save all queued internal contexts to xml in
UTF-8 char stream

US 2014/0344777 Al

TABLE I-continued

Nov. 20, 2014

13

MUSIC CLIENT API
©2002 iRise, Inc.

Command Description of Effect

public Note][]
importNotes(java.io.InputStream is)
throws java.io.IOException

public void exportNotes(Note[] notes,
java.io.OutputStream os) throws
java.io.IOException

public String[] list(int timeout)

execute all transactions found

encoded output stream

tape namespace

namespaces beginning with ‘__’ are

hidden for system purposes
public boolean rename(int timeout,
String name)

namespace
public boolean compact(int timeout)

transaction log (optimization)

parse xml from zip-encoded input stream and

save all queued internal contexts to xml in zip-

list all tape namespaces directly beneath current

rename the current tape namespace fails if a
tape instance already exists in the new

Perform compacting of the server xml

[0136] The third software program included in a preferred
embodiment of the present invention is a computer program
that provides the capability to allow multiple, simultaneous
studio, ION and/or simulator instances to access IRM’s and
requirement data residing in a file on a server. This third
program is referred to as the “Music Server.” The Music
Server, shown at 92 in FIG. 2, also coordinates transmission
of updates made by the studio, ION and/or simulator pro-
grams to other studio, ION and/or simulator programs when
they access the same IRM.

[0137] The music server and the music client programs
communicate using Hypertext Transfer Protocol, an industry
standard communications protocol, commonly referred to as
HTTP. The music server and the music client can also com-
municate using Hypertext Transfer Protocol Secure, an indus-
try standard encrypted communications protocol, commonly
referred to as HTTPS.

[0138] Alternatively, the music server software program
could be implemented using a different computer language,
for example C++, C# or Visual Basic, each of which is well-
known. Similarly, the communication between the music
server and the music client programs could be implemented
using another protocol for program to program communica-
tion across computer networks, such as, for example, Remote
Method Invocation (RMI) or Distributed Component Object
Model (DCOM), both of which are well-known to those
skilled in this field.

[0139] Alternatively, the functionality provided by the
combination of the music server and music client software
programs of the present invention could be provided through
use of a combination of various commercially available data-
base programs and/or messaging programs. Examples of
commercially available database programs suitable for use in
the present invention include Oracle and SQL Server.
Examples of commercially available messaging programs
that are suitable for use in the present invention include MQ
Series, Vittria and Java® Messaging Service (JMS).

[0140] Inanother alternative embodiment of the invention,
IRM and requirements data files could be stored on one or
more server computers, or could be distributed across mul-
tiple computers that were running studio, ION and/or simu-
lator, and were utilizing file sharing provided by the comput-
ers’ disk operating systems to share this data.

[0141] The third software component of the present inven-
tion, the interactive representation modeling language,
referred to as IRML,, is a language created for and used in the
current invention to specify the behavior of interactive repre-
sentations. The language is represented in terms of (1) primi-
tives and (2) allowed connections between and among these
primitives. The list of IRML primitives, along with their
functions, allowed containment relationships, allowed out-
bound connections and allowed inbound connections are pre-
sented in Table II, Table III, Table IV and Table V, respec-
tively, below.

TABLE I

IRML PRIMITIVES AND THEIR FUNCTIONS
©2002 iRise.
Function of the primitives

Class

Primitive Function

User Interface Components - Tags

Break The Break Primitive causes the Simulator to present
a HTML “
" tag to force a visible line break.
This primitive is not accessible as a selection in the
iRise Studio client, it is automatically inserted on
each new line.

The Button Primitive causes the Simulator to present
a HTML “button” tag. The Simulator processes
Form submission when a button within a Form is
clicked during the execution of an Interactive

Button

US 2014/0344777 Al
14

TABLE II-continued

IRML PRIMITIVES AND THEIR FUNCTIONS
©2002 iRise.
Function of the primitives

Class Primitive Function

Representation. Subsequently the Simulator presents
the Page to which the Button is connected. An
Image can be used on the button.

Text The Text Primitive will display two different
behaviors during execution of an interactive
representation, depending on whether the Text is
connected with ControlFlow or not. If the text is
connected with control flow, then the Simulator will
present a HTML “a href” tag, making it a clickable
URL in the Simulator. If the Text is not connected
with ControlFlow, then the Simulator will present
plain text.

Image The Image Primitive causes the Simulator to present
a HTML “img” tag. The Simulator will display any
attached graphical image (gif, jpg, jpeg) during the
execution of an Interactive Representation.

User Interface Components - Input Tags

RadioButton The RadioButton Primitive causes the Simulator to
present a HTML “radio” tag with the value provided
either from user input during Interactive
Representation or defined in the IRM. The Simulator
processes DataFlow connected from a RadioButton
on Form submission during the execution of an
Interactive Representation with the selected value in
the RadioButton being used.

Select The Select Primitive causes the Simulator to present
a HTML “select” tag with the options provided
either from user input during Interactive
Representation or defined in the IRM. The Simulator
processes DataFlow connected from a Select on
Form submission during the execution of an
Interactive Representation with the selected option
in the Select being used.

TextArea The TextArea Primitive causes the Simulator to
present a HTML “textarea” tag. The Simulator
processes DataFlow connected to a TextArea on
Form submission during the execution of an
Interactive Representation. The TextArea can
populate with text using inbound DataFlow values
as defined by the user in the IRM.

TextInput The TextInput Primitive causes the Simulator to
present a HTML input of “text” tag. The Simulator
processes DataFlow connected to a TextInput on
Form submission during the execution of an
Interactive Representation. The TextInput can
populate with text using inbound DataFlow values
as defined by the user in the IRM.

CheckBox The CheckBox Primitive causes the Simulator to
present a HTML “checkbox” tag. The Simulator
processes DataFlow connected to a checkbox on
Form submission during the execution of an
Interactive Representation. The checkbox can
populate with checked or not checked using inbound
DataFlow values as defined by the user in the IRM.

User Interface Components - Container Tags

ConditionalHTML The ConditionalHTML primitive is a container that
determines HTML contents to display on execution
of an Interactive Representation, based on the
defined inbound DataFlow value at runtime
(dynamic) or from the IRM (constant/user defined
action). The primitives are contained in a condition
that can be defined (T, F, 0, 1, 2 or user defined) that
is evaluated on execution and outputs the resulting
HTML in the Simulator.

Dynamic Table The Dynamic Table primitive causes the Simulator
to present a HTML table with the number of table
rows determined at execution time, based on the
subject applications IRM and the number of rows of
data matched if the criterion for the contents of the

Nov. 20, 2014

US 2014/0344777 Al
15

TABLE II-continued

IRML PRIMITIVES AND THEIR FUNCTIONS
©2002 iRise.
Function of the primitives

Class Primitive Function

Dynamic Table is populating based off data in the
Simulator.

Form The Form Primitive is used to group input primitives
together. When a submission is executed that is
contained in the Form, (example, button or text
linked to control flow is clicked) the Forms input
elements with defined DataFlow (in the IRM) is
executed for the Interactive Representation.

Page The Page Primitive causes the Simulator to present a
HTML page. The name of the page defined in the
IRM causes the Simulator to create the “Title” tag
with the name provided.

Table The Table Primitive is used to group and layout
visual primitives as required. The Table Primitive
causes the Simulator to present a HTML “table” tag.

TableCell The TableCell Primitive is used to group and layout
visual primitives as required. The TableCell
Primitive causes the Simulator to present a HTML
“td” tag.

TableRow The TableRow Primitive is used to group and layout
visual primitives as required. The TableRow
Primitive causes the Simulator to present a HTML
“tr” tag.

Comment

Comment The comment allows a text comment to be defined
in the IRM for the purposes of creating a readable
note in the model. If the comment is connected to a
visual primitive (a instance of which is represented
in HTML at execution), it causes the Simulator to
present an image of a page in a book next to the
connected primitive. This comment text will display
when the mouse cursor is left over the image for a
second. If connected to a non-visual primitive, the
comment can be viewed and edited in the Studio, but
will not show in the HTML output during Interactive
Representation.

Flow Label

Flow Label The flow label primitive is a specialized primitive
used to denote a name for the data that flows
between two other primitives that are connected
using Data Flow.

Decision

Decision The Decision primitive is used to specify different
control flow based on some modeled criteria (in the
IRM), such as user input during the execution of an
Interactive Representation. The possible Decisions
control flows are user defined in the IRM.

References

ModelEntry A single ModelEntry instance is allowed in an IRM
to represent a single ControlFlow entry point into
the subject application model from another calling
Model.

ModelExit Model Exit represents a single ControlFlow
connection leaving a ModelRef element in the
subject application to be used by another model.

ModelRef ModelRef represents an invocation reference to
another application IRM with the ability to pass and
retrieve data values to the subject application, as
well as the ability to enter and return from the
referenced IRM through ControlFlow connections,
Inbound data values are passed into the subject
application IRM through ModelInput defined in the
referenced IRM. Outbound values are returned from
ModelOutput operations defined in the referenced
IRM. Inbound ControlFlow enters through
ModelEntry element and outbound DataFlow is
represented by ModelExit elements in the referenced
IRM.

Reference The Reference Primitive allows the definition a
Master element, that can then be referred to from
multiple locations on multiple pages within the

Nov. 20, 2014

US 2014/0344777 Al Nov. 20, 2014
16

TABLE II-continued

IRML PRIMITIVES AND THEIR FUNCTIONS
©2002 iRise.
Function of the primitives

Class Primitive Function

subject application IRM. References can refer to all
visual (HTML replaced) Primitives except for
Decisions.

Constant

Constant A Constant allows for non-changeable values to be
defined in the IRM that can be used for statically
populating primitives during execution of an
Interactive Representation. Another use of
Constants is to provide static input values for
actions.

Action

Data Create The Data Create Action allows for single and
composite DataFlow values to be persistently stored
from an interactive representation of the subject
application. Data Create is equivalent to a single set
of Pack and Save actions. The label on the Dataflow
connection is the name of the composite data it
creates.

Data Delete The Data Delete Action is used to delete single or
composite values from persistently stored data
created during an interactive representation of the
subject application. The label on the Dataflow
connection is the name of the data element and the
input DataFlow value is the actual data to be deleted.

Data Find The Data Find Action returns the results of
searching the persistently stored data for a subject
application. The inbound DataFlow defines the
criteria, the outbound are the values for the data
found matching the inbound criteria. If no inbound
DataFlow (criteria) is supplied, all values go
outbound. If multiple inbound connections, the find
criteria is the intersection (AND) of these values.

Data FindOR The Data FindOR Action returns the results of
searching the persistently stored data for a subject
application. The inbound DataFlow defines the
criteria, the outbound are the values for the data
found matching the inbound criteria. If more than
one DataFlow is connected inbound, then the Find
criteria will find the union of the values, e.g.
dataConnectInV1 OR dataConnectInV2.

Data Pack The Data Pack Action creates a composite DataFlow
value from the supplied values on the inbound
DataFlow connections.

Data Save The Data Save Action allows for single or composite
Dataflow values to be persistently stored from an
interactive representation of the subject application.
The label on the inbound Dataflow connection is the
name of the data it creates.

Data Unpack The Data Unpack Action disassembles the data
elements in a composite to its single elements. The
DataFlow inbound is the composite and the
DataFlow outbound label specifies the element to be
pulled from the composite.

Data Update The Data Update Action updates the persistent data
stored for the subject application. The first inbound
connection is the composite to be updated, the
second (and any additional) DataFlow connections
inbound are the values to update with. It must be a
composite for the first value, single elements cannot
be updated.

Session The Session Action is used for storing data to be
used between pages that are not needed beyond the
user’s interaction. The Session Action stores
DataFlow values for the duration of a user’s
interaction in one specific instance of a connection
between the user’s browser and the Simulator (uses
cookies). Data in a Session Action is NOT put in
persistent storage for the subject application. There
is only one instance of a Session Action for each
user’s connection, it can store unlimited amounts of

US 2014/0344777 Al
17

TABLE II-continued

IRML PRIMITIVES AND THEIR FUNCTIONS
©2002 iRise.
Function of the primitives

Class Primitive Function

composites or single data elements, but the names
must be unique, otherwise it will be overwritten.

HTML Href The HTML Href action takes the DataFlow inputs to
construct a URL that can be used to connect to text
to display as a clickable href during execution of the
interactive representation. The first inbound
DataFlow connection is the text that the URL will
display and the second inbound DataFlow
connections make up the actual URL. More inbound
DataFlow connections can be made, these will be
appended as name value pairs. E.g.

?s1 = vall&s2 = val2 where s1 is the name of the
connected DataFlow and vall is the data value.
The URL value should be complete, using http:// in
at the start, otherwise it will prepend the Simulator
URL.

HTML Img The HTML Img action takes the DataFlow inputs to
construct a URI that can be used to connect to text to
display an image during execution of the interactive
representation. The first inbound DataFlow
connection is the URI to an image that will display.

HTML Link The HTML Link action takes the DataFlow inputs to
construct a URL that can be used to connect to text
to display as a clickable href during execution of the
interactive representation. The first inbound
DataFlow connections make up the actual URL and
the second inbound DataFlow connection is the text
that the URL will display.

The URL value should be complete, using http:// in
at the start, otherwise it will prepend the Simulator
URL.

List Count The List Count Action counts the number of data
values connected on the inbound DataFlow. The
count number is the outbound DataFlow value.

An example use could be to count the number of
found elements from a Find Action.

List Range The List Range Action returns the values in the
range specified by the inbound DataFlow required
connections. The first inbound DataFlow
connection is the list of data values that the range
will be extracted from, the second inbound
DataFlow connection is the number of elements to
be returned. The third optional inbound DataFlow
connection can be used to specify an offset, or
starting point from the supplied list of values.

List Sequence The List Sequence Action acts like a counter that
will increment by one when supplied a value for
name on the required first inbound DataFlow
connection. The name gives each instance of a List
Sequence Action a unique identifier. The second
optional DataFlow inbound connection will set the
sequence to the supplied value. The optional
DataFlow outbound connection can be used to get
the sequence number.

List Sort The List Sort will alphabetically sort the named data
values specified on the inbound DataFlow
connections. The first inbound DataFlow
connection is the compound dataobject, the second
inbound DataFlow is the name of the data element to
be sorted. Note: For the second inbound DataFlow
connection, it is the name of the element that is the
sorting criteria, not the value.

Cast The Cast Action changes the name of single or
composite data supplied on the inbound DataFlow
connection to whatever is specified as the name of
the outbound DataFlow connection.

Email The Email Action uses the following required
DataFlow inputs to form an SMTP email message
that will actually be sent if the Simulators server is
configured to use an SMTP server. First input is To,
second is From, third is Subject, and fourth is the

Nov. 20, 2014

US 2014/0344777 Al Nov. 20, 2014
18

TABLE II-continued

IRML PRIMITIVES AND THEIR FUNCTIONS
©2002 iRise.
Function of the primitives

Class Primitive Function

Body. The labels used in the inbound connections
must match those exactly (To, From, Subject, Body).

Logic AND The Logic AND Action evaluates any inbound
DataFlow connections, if ALL of the optional inputs
are 1 then True is the DataFlow outbound
connection value, else it is <null>. When only an
outbound DataFlow connection is made, then value
will be True.

Logic OR The Logic OR Action evaluates any inbound
DataFlow connections, if ANY of the optional
inputs are 1 then True is the DataFlow outbound
connection value, else it is <null>. When only an
outbound DataFlow connection is made, then value
will be <null>.

Logic NOT The Logic NOT Action evaluates any inbound
DataFlow connections, if the first of the optional
inputs are O then True is the DataFlow outbound
connection value, else it is <null>. When only an
outbound DataFlow connection is made, then value
will be <null>.

Logic FALSE The Logic FALSE Action always returns <null> on
the DataFlow connection outbound, not matter what
DataFlow connections are made inbound.

Logic TRUE The Logic FALSE Action always returns True on
the DataFlow connection outbound, not matter what
DataFlow connections are made inbound.

Math Plus The Math Plus Action adds the optional DataFlow
inbound connection values together. If no inputs are
supplied, the outbound DataFlow connection value
is 0.0.

Math Minus The Math Minus Action subtracts the optional
DataFlow inbound connection values from each
other. If no inputs are supplied, the outbound
DataFlow connection value is 0.0.

Math Div The Math Div Action divides the optional DataFlow
inbound connection values by each other. If no
inputs are supplied, the outbound DataFlow
connection value is 0.0.

Math Mult The Math Mult Action multiplies the optional
DataFlow inbound connection values by each other,
If no inputs are supplied, the outbound DataFlow
connection value is 0.0.

Math Min The Math Min Action outputs the smallest value of
all the optional values supplied on the inbound
DataFlow connections. Negative numbers are
considered smaller than zero and positive numbers,
If no inputs are supplied, the outbound DataFlow
connection value is 0.0.

Math Max The Math Max Action outputs the largest value of
all the optional values supplied on the inbound
DataFlow connections. Negative numbers are
considered smaller than zero and positive numbers,
If no inputs are supplied, the outbound DataFlow
connection value is 0.0.

Math Remainder The Math Remainder Action divides the optional
DataFlow inbound connection values by each other
and outputs the remainder. If no inputs are supplied,
the outbound DataFlow connection value is 0.0.

Math Floor The Math Floor Action rounds down the first
(optional) DataFlow inbound connection value to the
nearest integer number. If no inputs are supplied,
the outbound DataFlow connection value is 0.0.

Math Round The Math Round rounds up or down to the closest of
the first (optional) DataFlow inbound connection
value to the nearest whole integer number. If no
inputs are supplied, the outbound DataFlow
connection value is 0.0

Math Abs The Math Abs gives the absolute integer value of the
first (optional) DataFlow inbound connection value,
If no inputs are supplied, the outbound DataFlow
connection value is 0.0

US 2014/0344777 Al
19

TABLE II-continued

IRML PRIMITIVES AND THEIR FUNCTIONS
©2002 iRise.
Function of the primitives

Class Primitive Function

Math Ceiling The Math Ceiling Action rounds up the first
(optional) DataFlow inbound connection value to the
nearest integer number. If no inputs are supplied,
the outbound DataFlow connection value is 0.0.

Math Random The Math Random Action generates a random
decimal number between zero and one. Any
inbound DataFlow connections will be ignored.

Math LT The Math LT Action returns true if the first
(optional) DataFlow inbound connection value is
less than the second (optional) inbound connection
value, otherwise returns <null>.

Math GT The Math GT Action returns true if the first
(optional) DataFlow inbound connection value is
greater than the second (optional) inbound
connection value, otherwise returns <null>.

Math LE The Math LE Action returns true if the first
(optional) DataFlow inbound connection value is
less than or equal to the second (optional) inbound
connection value, otherwise returns <null>.

Math GE The Math GE Action returns true if the first
(optional) DataFlow inbound connection value is
greater than or equal to the second (optional)
inbound connection value, otherwise returns <null>.

Math EQ The Math EQ Action returns true if the first
(optional) DataFlow inbound connection value is
equal to the second (optional) inbound connection
value, otherwise returns <null>.

Math NE The Math NE Action returns true if the first
(optional) DataFlow inbound connection value is
NOT equal to the second (optional) inbound
connection value, otherwise returns <null>.

ModelInput The ModelInput Primitive represents a single
inbound DataFlow value passed in from a calling
IRM.

ModelOutput The ModelOutput Primitive represents a single

outbound DataFlow value passed from the subject
application IRM to another application IRM.

Text Length The Text Length Action counts the number of
characters in the single data values connected on the
inbound DataFlow. The count number is the
outbound DataFlow value.

Text Trim The Text Trim Action removes any leading or
ending space characters in the single data values
connected on the inbound DataFlow. The resulting
string is the outbound DataFlow value.

Text Lowercase The Text Lowercase Action converts any
alphabetical characters in the single data values
connected on the inbound DataFlow to lowercase.
The resulting string is the outbound DataFlow value.

Text Uppercase The Text Uppercase Action converts any
alphabetical characters in the single data values
connected on the inbound DataFlow to lowercase.
The resulting string is the outbound DataFlow value.

Text Equals The Text Equals Action returns True if the first
(optional) DataFlow inbound connection value is
equal to the second (optional) inbound connection
value, otherwise returns <null>.

Text Notequal The Text Notequal Action returns True if the first
(optional) DataFlow inbound connection value is not
equal to the second (optional) inbound connection
value, otherwise returns <null>.

Text Add The Text Add Action concatenates the optional
DataFlow inbound single values that are connected
to make one single String for the outbound
DataFlow value.

Text Substmg The Text Substrng Action outputs the String value
for the substring as specified by the starting and
ending count. The first inbound DataFlow
connection provides the single string, the second
inbound DataFlow value is the starting index and the
third inbound DataFlow is the ending index. If no

Nov. 20, 2014

US 2014/0344777 Al
20

TABLE II-continued

IRML PRIMITIVES AND THEIR FUNCTIONS
©2002 iRise.
Function of the primitives

Class Primitive Function

inbound values are provided, <null> is returned. If
no starting index is provided, then the string as it
was inputted will be returned. The first character in
the string is index 1.

UserDefined The UserDefined Action allows the user to define a
constant value for any inbound or outbound
DataFlow connections that are made to the instance

of a UserDefined Action.
TABLE III
IRML Prmitives and Allowed Containment Relationships
©2002 iRise.
Class Primitive Allowed Containment Relationships

User Interface Components - Tags

Break Must be contained in a Page, can be
contained inside a TableCell, Form or
a Conditional HTML

Button Must be contained in a Form, can be

contained inside a Table Cell,
Dynamic Table or Conditional Html
(inside a Form.)

Text Must be contained in a Page, can be
contained inside a Form, TableCell,
Dynamic Table or Conditional HTML

Image Must be contained in a Page, can be
contained inside a Form, TableCell,
Dynamic Table or Conditional HTML

User Interface Components - Input Tags

RadioButton Must be contained in a Form, can be
contained inside a TableCell, Dynamic
Table or Conditional Html (inside a
Form.)

Select Must be contained in a Form, can be
contained inside a TableCell, Dynamic
Table or Conditional Html (inside a
Form.)

TextArea Must be contained in a Form, can be
contained inside a TableCell, Dynamic
Table or Conditional Html (inside a
Form.)

TextInput Must be contained in a Form, can be
contained inside a TableCell, Dynamic
Table or Conditional Html (inside a
Form.)

CheckBox Must be contained in a Form, can be
contained inside a TableCell, Dynamic
Table or Conditional Html (inside a
Form.)

User Interface Components - Container Tags

Conditional HTML Must be contained in a Page, can be
contained inside a Table, TableRow,
TableCell, Form, Dynamic Table
Note: Conditional HTML can only
contain TableCell if it is contained in a
TableRow and can only contain
TableRow if it is contained in a Table

Dynamic Table Must be contained in a Page, can be
contained inside a TableCell or Form.
Can also be contained in a
Conditional HTML inside a TableCell.

Nov

.20,2014

US 2014/0344777 Al

Nov
21

TABLE III-continued

IRML Prmitives and Allowed Containment Relationships

©2002 iRise.
Class Primitive Allowed Containment Relationships
Form Must be contained in a Page, can be
contained inside a Form, TableCell or
Conditional HTML
Page Page is not contained by any
Primitive, it can contain all visual
Primitives.
Table Must be contained in a Page, can be
contained inside a TableCell, Form or
a Conditional HTML
TableCell Must be contained in a TableRow.
TableRow Must be contained in a Table.
Comment
Comment None
Flow Label
Flow Label None
Decision
Decision None
References
ModelEntry None
ModelExit None
ModelRef None
Reference Embedded references in Pages can
occur in any location where the
Referent Primitive would be allowed
based on its containment rules.
Constant
Constant None
Action None
Data Create None
Data Delete None
Data Find None
Data FindOR None
Data Pack None
Data Save None
Data Unpack None
Data Update None
Session None
HTML Href None
HTML Img None
HTML Link None
List Count None
List Range None
List Sequence None
List Sort None
Cast None
Email None
Logic AND None
Logic OR None
Logic NOT None
Logic FALSE None
Logic TRUE None
Math Plus None
Math Minus None
Math Div None
Math Mult None
Math Min None
Math Max None
Math Remainder None
Math Floor None
Math Round None
Math Abs None
Math Ceiling None
Math Random None
Math LT None
Math GT None
Math LE None
Math GE None
Math EQ None
Math NE None
ModelInput None
ModelOutput None
Text Length None

.20,2014

US 2014/0344777 Al

TABLE III-continued

22

IRML Prmitives and Allowed Containment Relationships

©2002 iRise.
Class Primitive Allowed Containment Relationships
Text Trim None
Text Lowercase None
Text Uppercase None
Text Equals None
Text Notequal None
Text Add None
Text Substrng None
UserDefined None
TABLE IV

Nov. 20, 2014

TABLE IV-continued

IRML Primitives and Allowed Outbound Connections
©2002 iRise.
Allowed outbound connections from the primitives

IRML Primitives and Allowed Outbound Connections
©2002 iRise.
Allowed outbound connections from the primitives

Class Primitive Allowed Connections Outbound Class Primitive Allowed Connections Outbound
User Interface Components - Tags TextArea A TextArea can be connected to
Text, TextArea, TextInput,
Break None RadioButton, Checkbox, Select,
Button A button can be connected to a Reference, Decision, Action and
Page, Decision, ModelExit, ModelRef with DataFlow.
ModelRef and Reference with Although only one instance of a
Control Flow. Maximum of one primitive in the list above can be
Control Flow connection can be connected directly to the TextArea
made from a button at one point in at one point in time, an unlimited
time. number of DataFlow connections
Text Text can be connected to a Page, can be made from a data branch that
Decision, ModelExit, ModelRef and is connected from a TextArea, to
Reference with Control Flow. any instance of the primitives listed
Maximum of one Control Flow above.
connection can be made from text at TextInput A TextInput can be connected to
one point in time. Text, TextArea, TextInput,
Image An image can be connected to a RadioButton, Checkbox, Select,
Page, Decision, ModelExit, Reference, Decision, Action and
ModelRef and Reference with ModelRef with DataFlow.
Control Flow. Maximum of one Although only one instance of a
Control Flow connection can be primitive in the list above can be
made from an Image at one point in connected directly to the TextInput
time. at one point in time, an unlimited
User Interface Components - Input Tags number of DataFlow connections
)) can be made from a data branch that
RadioButton A RadioButton can be connected to is connected from a TextInput, to
TeXt,’ TextArea, TextInput, any instance of the primitives listed
RadioButton, Checkbox, Select, above.
Reference, Demsmn, Action and CheckBox A checkbox can be connected to
ModelRef with DataFlow.
Although only one instance of a Text, TextArea, TextInput,
g y :
primitive in the list above can be RadioButton, C.h?CkbOX’ .Select,
connected directly to the checkbox Reference, Decision, Action and
at one point in time, an unlimited ModelRef with DataFlow.
number of DataFlow connections Although only one instance of a
can be made from a data branch that primitive in the list above can be
is connected from a RadioButton, to connected directly to the checkbox
any instance of the primitives listed at one point in time, an unlimited
above. number of DataFlow connections
Select A Select can be connected to Text, can be made from a data branch that

TextArea, TextInput, RadioButton,
Checkbox, Select, Reference,
Decision, Action and ModelRef
with DataFlow. Although only one
instance of a primitive in the list
above can be connected directly to
the checkbox at one point in time,
an unlimited number of DataFlow
connections can be made from a
data branch that is connected from a
select, to any instance of the
primitives listed above.

is connected from a checkbox, to
any instance of the primitives listed
above.

User Interface Components - Container Tags

Conditional HTML
Dynamic Table
Form

Page

Table

TableCell
TableRow

None
None
None
None
None
None
None

US 2014/0344777 Al
23

TABLE IV-continued

Nov. 20, 2014

TABLE IV-continued

IRML Primitives and Allowed Outbound Connections
©2002 iRise.
Allowed outbound connections from the primitives

IRML Primitives and Allowed Outbound Connections

©2002 iRise.

Allowed outbound connections from the primitives

Class Primitive Allowed Connections Outbound Class Primitive Allowed Connections Outbound
Comment Data Pack Data Pack requires an Outbound
Comment Can connect to any primitive, is not DataFlow connection. Only one
directional (inbound/outbound) outbound DataFlow connection can
Flow Label be made to a Data Pack instance at
Flow Label Because a Flow Label simply any point in time.
appears as a label on data flow Data Save Not required. There is no maximum
connections, its connection rules are on the number of outbound
embodied in the rules for the DataFlow connections that can be
primitives that are to be connected; made to a Data Save instance at any
Le., the rules expressed in this point in time.
column of the appendix. Data Unpack Data Unpack requires an Outbound
Decision DataFlow connection. There is no
Decision A Decision can be connected to a maximum on the number of
Page, Decision, ModelExit, outbound DataFlow connections that
ModelRef and Reference with can be made to a Data Unack
Control Flow. There is no instance at any point in time.
maximum on the number of Control Data Update Not required. There is no maximum
Flow connections that can be made on the number of outbound
from a Decision at one point in time. DataFlow connections that can be
Each one of these outbound made to a Data Update instance at
ControlFlow connections is labeled any point in time.
with a Condition identifier. The Session Not required. There is no maximum
condition can be user defined. on the number of outbound
References DataFlow connections that can be
ModelEntry A required single ControlFlow made to a Session instance at any
connection to Page, Decision or point in time.
Reference to Page or to Decision. HTML Href HTML Href requires an Outbound
ModelExit No outbound connections are DataFlow connection. Only one
allowed outbound DataFlow connection can
ModelRef Multiple outbound DataFlow be made to a HTML Href instance at
connections are allowed up to the any point in time.
same number of ModelOutputs HTML Img HTML Img requires an Outbound
defined in the referenced IRM. DataFlow connection. Only one
Multiple outbound ControlFlow outbound DataFlow connection can
connections are allowed up to the be made to a HTML Img instance at
number of ModelExits defined in any point in time.
the referenced IRM. HTML Link HTML Link requires an Outbound
Reference N/A DataFlow connection. Only one
Constant outbound DataFlow connection can
Constant A Constant can be connected to be made to a HTML Link instance at
Text, TextArea, TextInput, any point in time.
RadioButton, Checkbox, Select, List Count List Count requires an Outbound
Reference, Decision, Action and DataFlow connection. Only one
ModelRef with DataFlow. An outbound DataFlow connection can
unlimited number of DataFlow be made to a List Count instance at
connections can be made from a any point in time.
constant to any instance of the List Range List Range requires an Outbound

primitives listed above.

Action The outbound connections for
actions are specific to each one as
described below. Any outbound
connection can only be DataFlow.

Data Create Data Create requires an outbound
DataFlow to be connected. Only
one outbound DataFlow connection
can be made at any point in time.

Data Delete Not required. There is no maximum
on the number of outbound
DataFlow connections that can be
made to a Data Delete instance at
any point in time.

Data Find Data Find requires an Outbound
DataFlow connection. Only one
outbound DataFlow connection can
be made to a Data Find instance at
any point in time.

Data FindOR Data FindOR requires an Outbound
DataFlow connection. Only one
outbound DataFlow connection can
be made to a Data FindOR instance
at any point in time.

List Sequence

List Sort

Cast

Email

DataFlow connection. Only one
outbound DataFlow connection can
be made to a List Range instance at
any point in time.

Not required. There is no maximum
on the number of outbound
DataFlow connections that can be
made to a List Sequence instance at
any point in time.

List Sort requires an Outbound
DataFlow connection. Only one
outbound DataFlow connection can
be made to a List Sort instance at
any point in time.

Cast requires an Outbound
DataFlow connection. Only one
outbound DataFlow connection can
be made to a Cast instance at any
point in time.

Not required. There is no maximum
on the number of outbound
DataFlow connections that can be
made to an Email instance at any
point in time.

US 2014/0344777 Al

TABLE IV-continued

24

Nov. 20, 2014

TABLE IV-continued

IRML Primitives and Allowed Outbound Connections
©2002 iRise.
Allowed outbound connections from the primitives

IRML Primitives and Allowed Outbound Connections

©2002 iRise.

Allowed outbound connections from the primitives

Class Primitive Allowed Connections Outbound Class Primitive Allowed Connections Outbound

Logic AND Logic AND requires an Outbound Math Abs Math Abs requires an outbound
DataFlow connection. Only one DataFlow connection. Only one
outbound DataFlow connection can outbound DataFlow connection can
be made to a Logic AND instance at be made to a Math Abs instance at
any point in time. any point in time.

Logic OR Logic OR requires an Outbound Math Ceiling Math Ceiling requires an outbound
DataFlow connection. Only one DataFlow connection. Only one
outbound DataFlow connection can outbound DataFlow connection can
be made to a Logic OR instance at be made to a Math Ceiling instance
any point in time. at any point in time.

Logic NOT Logic NOT requires an Outbound Math Random Math Random requires an outbound
DataFlow connection. Only one DataFlow connection. Only one
outbound DataFlow connection can outbound DataFlow connection can
be made to a Logic NOT instance at be made to a Math Random instance
any point in time. at any point in time.

Logic FALSE Logic FALSE requires an Outbound Math LT Math LT requires an outbound
DataFlow connection. Only one DataFlow connection. Only one
outbound DataFlow connection can outbound DataFlow connection can
be made to a Logic FALSE instance be made to a Math LT instance at
at any point in time. any point in time.

Logic TRUE Logic TRUE requires an Outbound Math GT Math GT requires an outbound
DataFlow connection. Only one DataFlow connection. Only one
outbound DataFlow connection can outbound DataFlow connection can
be made to a Logic TRUE instance be made to a Math GT instance at
at any point in time. any point in time.

Math Plus Math Plus requires an Outbound Math LE Math LE requires an outbound
DataFlow connection. Only one DataFlow connection. Only one
outbound DataFlow connection can outbound DataFlow connection can
be made to a Math Plus instance at be made to a Math LE instance at
any point in time. any point in time.

Math Minus Math Minus requires an Outbound Math GE Math GE requires an outbound
DataFlow connection. Only one DataFlow connection. Only one
outbound DataFlow connection can outbound DataFlow connection can
be made to a Math Minus instance at be made to a Math GE instance at
any point in time. any point in time.

Math Div Math Div requires an outbound Math EQ Math EQ requires an outbound
DataFlow connection. Only one DataFlow connection. Only one
outbound DataFlow connection can outbound DataFlow connection can
be made to a Math Div instance at be made to a Math EQ instance at
any point in time. any point in time.

Math Mult Math Mult requires an outbound Math NE Math NE requires an outbound
DataFlow connection. Only one DataFlow connection. Only one
outbound DataFlow connection can outbound DataFlow connection can
be made to a Math Mult instance at be made to a Math NE instance at
any point in time. any point in time.

Math Min Math Min requires an outbound ModelInput A required single Outbound
DataFlow connection. Only one DataFlow connection is allowed
outbound DataFlow connection can ModelOutput No Outbound DataFlow connections
be made to a Math Min instance at are allowed
any point in time. Text Length Text Length requires an Outbound

Math Max Math Max requires an outbound DataFlow connection. Only one
DataFlow connection. Only one outbound DataFlow connection can
outbound DataFlow connection can be made to a Text Length instance at
be made to a Math Max instance at any point in time.
any point in time. Text Trim Text Trim requires an Outbound

Math Remainder Math Div requires an outbound DataFlow connection. Only one
DataFlow connection. Only one outbound DataFlow connection can
outbound DataFlow connection can be madle t(,) a Text Trim instance at
be made to a Math Div instance at any pointin time. .

o Text Lowercase Text Lowercase requires an
any pouitt in tine. Outbound DataFlow connection.
Math Floor Math Floor requires an outbound Onl tbound DataFl
; mly one outbound DataFlow
DataFlow connection. Only one connection can be made to a Text
outbound DataFlow connection can Lowercase instance at any point in
be made to a Math Floor instance at time.
any point in time. Text Uppercase Text Uppercase requires an
Math Round Math Round requires an outbound outbound DataFlow connection.

DataFlow connection. Only one
outbound DataFlow connection can
be made to a Math Round instance
at any point in time.

Only one outbound DataFlow
connection can be made to a Text
Uppercase instance at any point in
time.

US 2014/0344777 Al

TABLE IV-continued

25

Nov. 20, 2014

TABLE IV-continued

IRML Primitives and Allowed Outbound Connections

©2002 iRise.

Allowed outbound connections from the primitives

Class

Primitive

Allowed Connections Outbound

Text Equals

Text Notequal

Text Add

Text Equals requires an outbound
DataFlow connection. Only one
outbound DataFlow connection can
be made to a Text Equals instance at
any point in time.

Text Notequal requires an outbound
DataFlow connection. Only one
outbound DataFlow connection can
be made to a Text Notequal instance
at any point in time.

Text Add requires an outbound
DataFlow connection. Only one
outbound DataFlow connection can
be made to a Text Add instance at
any point in time.

IRML Primitives and Allowed Outbound Connections

©2002 iRise.

Allowed outbound connections from the primitives

Class Primitive

Allowed Connections Outbound

Text Substrng

UserDefined

Text Substrng requires an outbound
DataFlow connection. Only one
outbound DataFlow connection can
be made to a Text Substrng instance
at any point in time.

Not Required. Any number of
outbound DataFlow connections can
be made to a UserDefined Action at
any point in time.

In Table V, the permitted inbound connections for the primi-

tives are listed.

TABLEV

IRML Primitives and Allowed Inbound Connections

©2002 iRise.

Class

Primitive

Allowed Connections Inbound

User Interface Components - Tags

Break
Button
Text

Image

None

None

TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, Action and
ModelRef can be connected to a Checkbox
with DataFlow. Only one inbound
connection can be made at any one point
in time.

None

User Interface Components - Input Tags

RadioButton

Select

TextArea

TextInput

CheckBox

TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, Action and
ModelRef can be connected to a
RadioButton with DataFlow. Two inbound
connections can be made at any one point
in time. The first connection is the list of
options, the second connection is the
default value selected. The second
connection is optional.

TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, Action and
ModelRef can be connected to a Select
with DataFlow. Two inbound connections
can be made at any one point in time. The
first connection is the list of options, the
second connection is the default value
selected. The second connection is
optional.

TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, Action and
ModelRef can be connected to a TextArea
with DataFlow. Only one inbound
connection can be made at any one point
in time.

TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, Action and
ModelRef can be connected to a TextInput
with DataFlow. Only one inbound
connection can be made at any one point
in time.

TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, Action and
ModelRef can be connected to a Checkbox

US 2014/0344777 Al Nov. 20, 2014

26

TABLE V-continued

IRML Primitives and Allowed Inbound Connections
©2002 iRise.

Class

Primitive Allowed Connections Inbound

with DataFlow. Only one inbound
connection can be made at any one point
in time.

User Interface Components - Container Tags

Comment

Flow Label

Decision

References

Constant

Action

Conditional HTML TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, and Action
can be connected to a Checkbox with
DataFlow. Only one inbound connection
can be made at any one point in time.

Dynamic Table TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, and Action
can be connected to a Dynamic Table with
DataFlow. Only one inbound connection
can be made at any one point in time.

Form none

Page Button, Image, Text, Decision,
ModelEntry, ModelRef using Control
Flow. There is no maximum on the
number of ControlFlow connections to a
page.

Table none

TableCell none

TableRow none

Comment Can connect to any primitive, is not
directional (inbound/outbound)

Flow Label Because a Flow Label simply appears as a
label on data flow connections, its
connection rules are embodied in the rules
for the primitives that are to be connected;
Le., the rules expressed in this column of
the appendix.

Decision TextArea, TextInput, RadioButton,
Checkbox, Select, Constant, and Action
can be connected to a Decision with
DataFlow. Only one inbound DataFlow
connection can be made at any one point
in time. ControlFlow can be used to
connect Images, Buttons and Text into a
Decision.

ModelEntry No inbound connections are allowed

ModelExit Inbound ControlFlow connections from
Text, Button, Image, or Decision are
required.

ModelRef Multiple inbound DataFlow connections
are allowed up to the number of
ModelInputs defined in the referenced
IRM. Multiple outbound
ControlFlow connections are allowed up
to the number of ModelExits defined in
the referenced IRM.

Reference N/A

Constant none
The inbound connections for actions are
specific to each one as described below.
Any inbound connection can only be
DataFlow.

Data Create Data Create requires an inbound DataFlow
to be connected. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Data
Create instance at any point in time.

Data Delete Data Delete requires an inbound DataFlow
to be connected. Only one inbound
DataFlow connection can be made to a
Data Delete instance at any point in time.

US 2014/0344777 Al
27

TABLE V-continued

IRML Primitives and Allowed Inbound Connections

©2002 iRise.
Class Primitive Allowed Connections Inbound
Data Find Not required. There is no maximum on

the number of inbound DataFlow
connections that can be made to a Data
Find instance at any point in time.

Data FindOR At least one inbound DataFlow connection
is required. There is no maximum on the
number of inbound DataFlow connections
that can be made to a Data FindOR
instance at any point in time. If multiple
inbound connections are made, the
FindOR will return the OR of the values
connected.

Data Pack At least one inbound DataFlow connection
is required. There is no maximum on the
number of inbound DataFlow connections
that can be made to a Data Pack instance at
any point in time.

Data Save One inbound DataFlow connection is
required. Only one inbound connection
can be made to an instance of a Data Save
at any point in time.

Data Unpack One inbound DataFlow connection is
required. Only one inbound connection
can be made to an instance of a Data
Unpack at any point in time.

Data Update Two inbound DataFlow connections are
required. There is no maximum on the
number of inbound DataFlow connections
that can be made to a Data Update instance
at any point in time.

Session Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Session
instance at any point in time.

HTML Href HTML Href requires an inbound DataFlow
to be connected. There is no maximum on
the number of inbound DataFlow
connections that can be made to a HTML
Href instance at any point in time.

HTML Img HTML Img requires an inbound DataFlow
connection. Only one inbound DataFlow
connection can be made to a HTML Img
instance at any point in time.

HTML Link HTML Link requires two inbound
DataFlow connections. Maximum of two
inbound DataFlow connections can be
made to a HTML Link instance at any
point in time.

List Count List Count requires an inbound DataFlow
connection. Only one inbound DataFlow
connection can be made to a List Count
instance at any point in time.

List Range List Range requires two inbound DataFlow
connections. There is no maximum on the
number of inbound DataFlow connections
that can be made to a List Range instance
at any point in time.

The third inbound connection will be used
as the offset for the range, any more
inbound connections will be ignored.

List Sequence List Sequence requires an inbound
DataFlow connection. There is no
maximum on the number of inbound
DataFlow connections that can be made to
a List Sequence instance at any point in
time.

The second (optional) inbound connection
can be used to set the value of the
sequence instance, any more inbound
connections will be ignored.

Nov

.20,2014

US 2014/0344777 Al

28

TABLE V-continued

IRML Primitives and Allowed Inbound Connections

©2002 iRise.

Class

Primitive

Allowed Connections Inbound

List Sort

Cast

Email

Logic AND

Logic OR

Logic NOT

Logic FALSE

Logic TRUE

Math Plus

Math Minus

Math Div

Math Mult

Math Min

Math Max

Math Remainder

Math Floor

Math Round

List Range requires two inbound DataFlow
connections. Only two inbound DataFlow
connections can be made at any point in
time.

Cast requires an inbound DataFlow
connection. Only one inbound DataFlow
connection can be made to a Cast instance
at any point in time.

Email requires four inbound DataFlow
connections. Only four inbound DataFlow
connections can be made at any point in
time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Logic
AND instance at any point in time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Logic
OR instance at any point in time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Logic
NOT instance at any point in time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Logic
FALSE instance at any point in time.
Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Logic
TRUE instance at any point in time.
Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Plus instance at any point in time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Minus instance at any point in time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Div instance at any point in time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Mult instance at any point in time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Min instance at any point in time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Max instance at any point in time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Div instance at any point in time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Floor instance at any point in time, but any
connections other than the first one will be
ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Round instance at any point in time, but
any connections other than the first one
will be ignored.

Nov. 20, 2014

US 2014/0344777 Al

Nov
29

TABLE V-continued

IRML Primitives and Allowed Inbound Connections

©2002 iRise.

Class

Primitive

Allowed Connections Inbound

Math Abs

Math Ceiling

Math Random

Math LT

Math GT

Math LE

Math GE

Math EQ

Math NE

ModelInput
ModelOutput

Text Length

Text Trim

Text Lowercase

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Abs instance at any point in time, but any
connections other than the first one will be
ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Ceiling instance at any point in time, but
any connections other than the first one
will be ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
Random instance at any point in time, but
any connections will be ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
LT instance at any point in time, but any
connections other than the first two will be
ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
GT instance at any point in time, but any
connections other than the first two will be
ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
LE instance at any point in time, but any
connections other than the first two will be
ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
GE instance at any point in time, but any
connections other than the first two will be
ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
EQ instance at any point in time, but any
connections other than the first two will be
ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Math
NE instance at any point in time, but any
connections other than the first two will be
ignored.

No inbound DataFlow connections are
allowed

A required single Inbound DataFlow
connection is allowed

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Text
Length instance at any point in time, but
any connections other than the first one
will be ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Text
Trim instance at any point in time, but any
connections other than the first one will be
ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Text

.20,2014

US 2014/0344777 Al

30

TABLE V-continued

Nov. 20, 2014

IRML Primitives and Allowed Inbound Connections
©2002 iRise.

Class Primitive Allowed Connections Inbound

Lowercase instance at any point in time,

but any connections other than the first one

will be ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Text

Text Uppercase

Uppercase instance at any point in time,

but any connections other than the first one

will be ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Text

Text Equals

Equals instance at any point in time, but
any connections other than the first two

will be ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Text

Text Notequal

Notequal instance at any point in time, but

any connections other than the first two

will be ignored.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Text
Add instance at any point in time.

Not required. There is no maximum on
the number of inbound DataFlow
connections that can be made to a Text

Text Add

Text Substmg

Substrmg instance at any point in time, but

any more than two DataFlow input
connections will be ignored.

UserDefined Not Required. Any number of inbound

DataFlow connections can be made to a
UserDefined Action at any point in time.

[0142] There are nine classes of primitives in IRML in the
preferred embodiment of the present invention: (1) user inter-
face components referred to as “tags”; (2) user interface com-
ponents referred to as “input tags™; (3) user interface compo-
nents referred to as “container tags” or “containers”; (4)
comments; (5) flow labels; (6) decisions; (7) references, (8)
constants and (9) actions.

[0143] The first three classes of primitives, the user inter-
face tags, input tags and container tags are similar. The varia-
tion in their functions is readily apparent from their descrip-
tions in Tables I-V and from the detailed discussions of the
control flow and data flow visitation algorithms below. These
user interface components and the relationships among them
define how the interactive representation will appear to the
user, as will be described in regard to the simulator compo-
nent. The relationships among the user interface components
represents information that is important to how the interactive
representation will appear to the user. The definition of a
primitive itself is not sufficient to represent all of the infor-
mation necessary to explain its function. The relationships
between user interface components and other types of primi-
tives is often required to fully describe the interactive repre-
sentation.

[0144] The user interface components in the preferred
embodiment represent a subset of conventional user interface
components that are available to developers to program a
proposed application that is represented by an interactive
representation model. These include such components as
“page,” “form,” “table,” “button,” “text,” “text input” and

“image.” Specifically, in the preferred embodiment, the user
interface components are derived from, and function in a
manner similar to a subset of the user interface components
defined in Hypertext Markup [Language, a standard program-
ming language commonly known as HTML. HTML is typi-
cally used by programmers to develop subject applications.
Alternatively, the user interface components could be derived
from and function in a manner similar to those defined by
other languages, such as Microsoft Windows, Visual Basic or
the Apple Macintosh OS.

[0145] The fourth class of primitives, “comments,” provide
the user with the ability to annotate the IRM. Comments are
not processed by the simulator and do not impact the behavior
of the interactive representation. They can be viewed in the
Studio component.

[0146] The fifth class of primitives, “flow labels,” allows
users to label data flow relationships between other primi-
tives. Their function is similar to that of variable names in
other computer languages, as would be evident to a person
skilled in the art. The detailed processing of flow labels is
described in regard to the simulator component of the present
invention.

[0147] The sixth class of primitives, “decisions,” defines
the conditional execution of other primitives. In the preferred
embodiment, decisions function in a manner similar to that of
“IF ... THEN” and “CASE” statements found in conven-
tional computer languages. Alternatively, decisions could be
based on other conditional or branching structures found in

US 2014/0344777 Al

conventional computer languages, or derived from common
behaviors found in conventional computer applications.
[0148] The seventh class of primitives, “references,” allow
the reuse of portions of an IRM, or of other IRMs. The
attributes of a reference include a unique identifier for one or
more instances of other IRML primitives elsewhere in an
IRM. Using a reference primitive is similar to copying one or
more instances of primitives but is more efficient, from a
maintainability perspective. For example, common behavior
that occurs in several places within an IRM can be specified
once and referenced from the places where it occurs. This
reference feature of the present invention allows specification
of a single, simultaneous change to the common behavior,
rather than a serial or sequential change to the behavior wher-
ever it occurs. In this sense a reference primitive functions to
permit simultaneous, global changes to an IRM.

[0149] The eighth class of primitives, “constants,” provide
a method of storing data that is commonly used and is rela-
tively static in an interactive representation. For example,
days of the week, a company’s product types, and valid zip-
code/State combinations are constants.

[0150] Finally, the ninth class of primitives, “actions,”
define how data will be transformed, derived, stored,
retrieved, sorted or otherwise manipulated by the interactive
representation. In the preferred embodiment, actions include
typical ways that computer systems manipulate data, and are
not specific to any particular computer programming lan-
guage. Alternatively, the actions could be closely based on
one or more existing computer languages.

[0151] Unlike most known computer software program-
ming languages, the preferred implementation of the IRML
of'the present invention does not explicitly designate the order
in which actions are executed or user interface components
are rendered. Instead, the order of execution is inferred by the
simulator component of the present invention from the rela-
tionships among primitives, as will be described in detail
below. This advantageous feature of the present invention
relieves the user of the task of specifying order of execution
and significantly simplifies the process of creating and main-
taining an IRM. Alternatively, a language similar to IRML
could be implemented in a form that did require explicit
ordering of execution.

[0152] Also unlike most computer implemented software
programs, programs using an IRML in accordance with the
principles of the present invention preferably do not require
the explicit definition of data records separately from how the
data contained in those records is manipulated. For example,
in a typical, conventional computer software program a user
would need to define to the database subsystem or subroutine
that an “invoice record contained an invoice number, a total
amount, a vendor identification,” and, typically, other data.
Separately, the user would need to define in that computer
application or program that an invoice record contained the
same data in the code used to manipulate this data from the
database. However, because the simulator software compo-
nent of the present invention, working in combination with
the music software component, is capable of storing and
retrieving data without reliance on a static definition of the
data contained in a data record, the preferred IRML of the
present invention enables the user to specify only the manipu-
lation of the data and enables inferring of data record defini-
tion from this specification. This advantageous feature of the
present invention relieves the user of the task of explicitly
describing the definition of data records and relieves the users

Nov. 20, 2014

of'the task of ensuring that the same definition is required for
each time the corresponding record in the application is
manipulated. Alternatively, although not preferred, the IRML
of the present invention could be implemented utilizing a
separate static definition of data records.

[0153] Additionally, unlike most computer languages, the
preferred IRML of the present invention does not require
explicit designation of the type of data that is manipulated by
the IRM. Instead, all data is considered to be of type “string”
and the implementation of certain actions that manipulate this
data include logic to behave in a predictable manner, regard-
less of the true type of the data contained within the “string.”
The term “string” is well-known to those skilled in this field.
For example, an action named “math:add” will produce the
sum of two numbers if it is supplied with two strings that
contain numbers. If the math:add action receives either two
alphanumeric strings or one alphanumeric string and a string
that contains a number, it will produce the string “NaN”
indicating that one of the inputs is “Not a Number.” This
feature relieves the user from specifying the type of data
being manipulated by the system and eliminates the need for
the user to ensure agreement between the type of data pro-
vided to actions and the type of data that actions expect and/or
require when processing. Alternatively, and although not pre-
ferred, an IRML in accordance with the principles of the
present invention could be implemented in a form that
required explicit typing of data.

[0154] The fourth computer application included in the
preferred embodiment of the present invention provides users
with a browser-based program that maintains a record of the
requirements for a subject application, that administers the
implementation of the present invention, maintains a record
of defect reports related to the subject application and its
requirements and maintains a record of task performed, or to
be performed, by users of the present invention. For conve-
nience this fourth application is referred to as “ION.” For
purposes of the present invention, administration of the
implementation consists of activities necessary for the effi-
cient functioning of the overall invention but not including
frequently performed activities such as creation of the IRM,
presentation of interactive representations or recording and
editing of requirements. For example, administration of the
implementation includes establishing user names and pass-
words, creation of files to store IRM information, and defini-
tion of the range of valid values for attributes of requirements.
A detailed discussion of the functions and features provided
by ION is provided under Use of the Invention below.
[0155] IONisalso, preferably, written in Java® ™ using the
J2EE (Java® 2 Enterprise Edition®) framework. Preferably,
ION is constructed utilizing standard industry practices for
the construction of web-based applications and, therefore, its
detailed processing can be inferred from the description of its
functions and features described under Use of Invention
below, by an individual skilled in the art.

[0156] In operation, the ION program utilizes the music
clientto retrieve and update requirements that are stored at the
music server. As alternative embodiments in accordance with
the principles of the present invention, the fourth software
application could be written in other languages, such as for
example, C++, C# or Visual Basic. Also, as yet another alter-
native, the fourth application could be written with one of
several proprietary web application development environ-
ments, for example the Broadvision™ or ATG Dynamo™
brands of environments. Also, as yet another alternative, [ON

US 2014/0344777 Al

could be replaced by a commercially available requirements
management system, such as Rational Software’s Requistie-
Pro. However, drawbacks of this alternative embodiment
include a lack of integration with other components of the
invention and additional costs required to acquire, configure
and administer a commercially available requirements man-
agement system.

[0157] The fifth software application used in the preferred
embodiment of the present invention, referred to for conve-
nience as “simulator,” is a computer program that renders
interactive representations of prospective computer applica-
tions by accepting requests from the user’s browser, interpret-
ing the IRM, composing an HTML response to the user’s
requests and communicating its response to the user’s
browser. This fifth application is also, preferably, written in
Java® language. Alternate embodiments of this fifth com-
puter software application within the principles of the present
invention could be written in any of the C++, C# or Visual
Basic languages.

[0158] The process embodied by the simulator 78 is
depicted in further detail in FIG. 4, and described below. The
simulator processes using a request/response cycle similar to
that of other conventional computer applications that interact
with standard browsers. During the simulation process, a
user’s browser generates several types of requests, including
but not limited to requests to display pages, requests to dis-
play images and requests to process data entered by the user.
These requests are referred to as a “form submit” requests.
The simulator, in turn, composes a response in the form of an
HTML page and sends this to the browser. This request/
response cycle is repeated and results in the interactive rep-
resentation.

[0159] The simulator process starts when the simulator
receives a request, shown at 124 from the user’s browser.
Upon receipt of the request, the simulator determines if there
is a valid session, shown at 126, for the specific user that made
the request. If the user does not have a valid session, the
request is redirected at 128 by the simulator component to the
ION component 76 where the user is authenticated to the
system, a session is initiated, and the simulator process ends.
In the present invention, the term “session” refers to a set of
variables stored in the server computer’s memory and that
contain information regarding a user and the user’s interac-
tions with the ION and/or simulator components of the
present invention. This information is maintained for a period
between the receipt of an initial request from the user’s
browser and the termination of the session when the user has
chosen to log off the system, or when the session has been
terminated due to exceeding the maximum time allowed for a
session.

[0160] Ifthe user has a valid session, the simulator process
begins to determine the type of request that has been received
from the user by determining if an image was requested, as
shown at 130. If an image was not requested, the process
continues to determine if a page or decision was requested, as
shown at 132. Otherwise, the process continues to “process
image request,” as shown at 134. Process image request
retrieves the appropriate image stored with the IRM and
returns it to the browser, and enables the browser to present
this image to the user. Typically, this variant of request is
communicated to the simulator after the simulator has already
serviced requests for one or more pages. This is because the
simulator’s response to a page request may include one or
more references to images that the browser will automatically

Nov. 20, 2014

request from the simulator upon receipt of the page. After
returning an image, the simulator process ends.

[0161] The simulator continues to ascertain the type of
request by determining if a page or decision was requested, as
shown at 132. If a page or decision was requested, the simu-
lator process evaluates if a specific page was requested, as
described in the next paragraph and shown at 134. Otherwise
it continues to ascertain the type of request by determining if
a “form” was submitted, as shown at 146.

[0162] If a page or decision was requested, the simulator
evaluates the request to determine if a specific page was
contained in the request, as shown at 134. If a specific page
was not requested, the simulator interprets this as a request
136 for a list of the pages that exist in the current IRM, and
proceeds to find all pages in the current IRM. It then returns a
list of them to the user’s browser and ends processing.
[0163] Ifthe simulator had determined that a specific page
or decision was requested at 134, the simulator continues by
determining if the requested page can be found in the current
IRM at 138. If the page cannot be found, the simulator returns
a “page not found” message to the browser at 140 and ends
processing. Otherwise the simulator proceeds to execute the
control flow visitation algorithm, shown at 142, beginning at
the specified page or decision. The control flow visitation
algorithm, as will be described in detail below, proceeds to
evaluate the IRM and accumulate HTML to be returned to the
user’s browser in the subsequent step, “return accumulated
HTML to browser,” as shown at 144. The control flow visi-
tation algorithm recursively collects all of the user interface
components that are contained within the page, and con-
structs HTML representing these components. [f a decision is
specified, then the control flow visitation algorithm at 142
first evaluates the decision to identify the correct page and
then proceeds as described above.

[0164] After the control flow visitation algorithm has com-
pleted, the simulator proceeds to return accumulated HTML
to the browser and ends.

[0165] If a page or decision was not requested at 134, the
simulator continues to ascertain what type of request was
submitted, by determining if a form was submitted, as shown
at 146. If this is the case, the simulator process continues to
process form submit, as shown at 148, and described in regard
to FIG. 7. The simulator extracts all values submitted in form
and packages them into data tokens at 145 and invokes the
data flow visitation algorithm in push mode at 147. Upon
completion of the data flow visitation algorithm, the simula-
tor determines if a page or decision has been requested at 149
in connection with the form submit request and invokes the
control flow visitation algorithm at 151 for the page or deci-
sion. Upon completion of processing of the form submit, the
simulator returns accumulated HTML to browser, as shown at
150, and ends processing. If a form has not been submitted,
the process continues to row selection from dynamic table
requested at 152.

[0166] Process row selection, depicted at 152, from a
dynamic table is a specialized process implemented by the
simulator and that functions to support the IRML primitive
named “dynamic table” that is an advantageous feature of the
best mode of the present invention. A dynamic table is an
IRML primitive that can be used to emulate common behav-
ior of computer applications wherein a list of data separated
into rows is presented to a user and the user is allowed to select
one of the rows for further processing. After the dynamic table
has been presented to the user on a previous iteration of the

US 2014/0344777 Al

simulator request/response cycle, the user may choose a row
presented in the table that is then handled by this process. For
example, a proposed application may present a list of orders
placed by a client or a list of reservations made by a frequent
flyer. The proposed application user may then select one of
these orders or reservations for further processing. The cor-
responding computer processing that would be necessary for
the subject application to understand which order or reserva-
tion was selected by the proposed application user may be
complicated and not intuitive. This feature of the simulator is
advantageous because it handles this processing automati-
cally, by removing the necessity that it be specified in the
IRM. Once the simulator has completed processing of the
dynamic table row request at 154, it returns accumulated
HTML to the user’s browser at 156, otherwise it ends pro-
cessing at 158.

[0167] The simulator 78 repeats the process described
above upon receiving additional requests from the browser,
until the user makes no more requests.

Control Flow Visitation Algorithm

[0168] In general, the preferred embodiment of the control
flow visitation algorithm is a computer program based on a
pattern found in conventional software designs and com-
monly known as a “visitor pattern.” It functions to construct
the simulator’s response to a request from a browser. This
response appears in the browser in a manner similar to how it
would appear in the completed proposed application. This
response is composed of nested HTML tags, which the
browser uses to present a page to the user. The control flow
visitation algorithm is an automated process that constructs
this nested set of HTML tags based on the IRM.

[0169] Understanding the function of the control flow visi-
tation algorithm is facilitated by understanding that the IRM
is a collection of primitives and the relationships between and
among them. In the context of the control flow visitation
algorithm, important relationships include those that desig-
nate the flow of data, i.e., “dataflow”, those that designate
containment of user interface components, i.e., “contain-
ment”, those that designate references and those that desig-
nate the flow of the interactive representation, i.e., “control
flow”. Thus, an IRM can be characterized or depicted as a
series of circles representing primitives and arrows represent-
ing relationships. Such a depiction is presented and described
in detail in regard to FIG. 5.

[0170] The control flow visitation algorithm begins pro-
cessing at the primitive representing the page requested by the
user, shown at 160. The control flow visitation algorithm
begins to accumulate HTML at this point by adding a tag that
represents the beginning of a page into a temporary space
used to accumulate HTML. The simulator process continues
by examining the properties of the page primitive and
appending additional HTML code to the temporary space
based on these properties, including, for example, the name of
the page. The simulator then follows the containment rela-
tionships represented by the arrows between the page primi-
tive and the primitive contained by the page, in this case, the
form primitive shown at 162, or similarly from page primitive
172 to text primitive 174. The simulator then appends a tag
representing the beginning of the form into the temporary
space. The simulator then examines the properties of the form
primitive and adds additional HTML codes to the temporary
space. Continuing in its recursive process, it then “visits”
each of the contained primitives at 164, 166 and 168, in order

Nov. 20, 2014

from left to right, sequentially processing each primitive and
adding more HTML codes to the temporary space. The primi-
tives depicted at 164, 166 and 168 have no containment
arrows leading from them, and therefore the simulator pro-
cess recognizes these as “tags.” When processing tags, the
simulator performs several functions before appending
HTML to the temporary area. For example, the simulator
determines if there are any data flow arrows pointing into the
primitive. If so the simulator begins another process, called
the “data flow visitation algorithm,” which will be described
in detail below. In the case of a constant primitive, the data
flow visitation algorithm follows the arrow backwards to the
constant primitive depicted at 176, where it obtains the value
of'the constant, and ends processing. The control flow visita-
tion algorithm can then complete adding the necessary
HTML code to present this constant value in the text input
field specified by the text input primitive, as shown at 164, and
append this HTML code to the temporary area. This tag
processing continues to process the primitives shown at 166
and 168.

[0171] After having processed all of the contained objects,
in the form primitive, shown at 162, the control flow visitation
algorithm then returns to the form primitive itself. Because it
has encountered this form primitive before, the control flow
visitation algorithm now appends closing HTML code to the
temporary space, indicating the end of the form. Similarly, the
control flow visitation algorithm returns to the page primitive
at160 and appends the closing HTML code for the page to the
temporary area. This temporary area is then returned to the
process that called the control flow visitation algorithm, and,
in general, this accumulated HTML is returned to the user’s
browser.

[0172] The interactive representation experienced and seen
by the user for this example is depicted in FIG. 6 In this
example, a page with two text input fields is shown. One field
has a default value equal to the value stored in the constant,
and a button, as depicted in FIG. 6.

[0173] While performing the process described above, the
control flow visitation algorithm assigns a unique cross ref-
erence number to a subset of the user interface component
primitives that it encounters. When the simulator is operating
in Meta Mode, the control flow visitation algorithm automati-
cally inserts HTML code into the temporary area that causes
these cross reference numbers, and their accompanying text
to be displayed onthe user’s browser to the immediate right of
each user interface component.

Data Flow Visitation Algorithm

[0174] In general, the preferred embodiment of the data
flow visitation algorithm is a computer program based on the
conventional “visitor pattern,” much like the control flow
visitor algorithm. It functions to provide a facility for the
interactive representation to simulate the processing of data
common in proposed applications.

[0175] The data flow visitation algorithm relies on a feature
provided by the Music Client 84, another software compo-
nent of the present invention that has been previously
described, in which the IRM being executed by the simulator
is kept in the memory of the computer on which the simulator
and music client are running. The data flow visitation algo-
rithm processes a subset of the primitives contained in the
IRM, and which are held in the computer memory, and
appends data records to this memory that represents the par-
tial results of its computation. With respect to the preferred

US 2014/0344777 Al

embodiment of the present invention, these data records are
referred to as “tokens.” Because they are intermediate results
of the processing of a single request from the user’s browser
to the simulator, tokens are only stored in memory, and the
music client is not used to store them in the music server.
Tokens are stored in memory and associated to specific primi-
tives. This relationship is referred to as “tokens stored at a
primitive.” In the context of the present invention, to “cache”
atoken means to store it temporarily in the computer memory
at a particular primitive.

[0176] The data flow visitation algorithm begins process-
ing when it is invoked by the simulator, either from the control
flow visitation algorithm as previously described or from the
process form submit process 148, shown in FIG. 4, or the
process row selection from dynamic table process 152, also
shown in FIG. 4. In the detailed description that follows, it
will be shown that the data flow visitation algorithm, in sev-
eral cases, may also be invoked by itself. This is a common
computer programming technique referred to as “recursion”
as would be understood by an individual skilled in the art. For
the purpose of the present invention, “recursion” is defined as
“an algorithmic technique where a function, in order to
accomplish a task, calls itself with some part of the task.” This
is also the definition found at the National Institute of Stan-
dards and Technology web site at the Dictionary of Algo-
rithms and Data Structures (DADS). The preferred embodi-
ment of the simulator utilizes the advantageous recursion
features inherent in the Java™ language.

[0177] At the time the data flow visitation algorithm is
invoked it is directed to begin its processing at a specific
primitive in the IRM and it is invoked in one of two modes,
referred to as “push” and “pull,” with their meanings implied
as each is individually described in detail below. In general,
the data flow visitation algorithm process moves data, in the
form of tokens, entered by the user during simulation, of the
IRM, as well as causing primitives of the class “action” to
process the data. The data flow visitation algorithm moves the
data along relationships between primitives called data flow
relationships. Each data flow relationship can be thought of as
an arrow connecting two primitives. When the data flow visi-
tation algorithm is processing a primitive and needs to get
data from a different primitive from which an arrow points,
the pull mode of the data flow visitation algorithm is used.
When the data flow visitation algorithm has completed pro-
cessing a primitive and needs to send this data along the data
flow relationship arrows emanating from the processed primi-
tive, the push mode of the data flow visitation algorithm is
used.

[0178] The push mode of processing of the data flow visi-
tation algorithm is depicted at 200 in FIG. 8. Beginning the
process, the data flow visitation algorithm evaluates what
class of primitive it has been asked to process through a series
of steps depicted at 202, 204, 230, 232 and 234. Primitive
classes are described above. If it cannot identify the type of
primitive it has been asked to process, the data flow visitation
algorithm returns an error at 236 and ends processing.
[0179] Ifthe data flow visitation algorithm has been asked
to process a decision or tag primitive, it temporarily caches
the token at the current primitive, shown at 206. In the context
of the present invention, to “cache” a token means to store it
temporarily in the computer memory that also contains the
IRM. After caching the token, the process ends.

[0180] Thedata flow visitation algorithm may also be asked
to process a flow label primitive at 204. To process a flow label

Nov. 20, 2014

primitive, the data flow visitation algorithm first determines if
there is a token already cached at the flow label primitive, at
step 208. Since the data flow visitation algorithm can be
called multiple times in the processing of a single request
from the user’s browser to the simulator, it is possible that the
current primitive may have already been visited by a previous
execution of the data flow visitation algorithm. This initial
check performed by the data flow visitation algorithm when
processing flow label primitives prevents duplicate tokens
from being cached. If a token is already present the process
ends, otherwise the token is labeled with the name of the flow
label primitive at 210 and the token is cached for further
processing by another execution of the data flow visitation
algorithm at 212. The process then continues as the simulator
examines the IRM to determine all data flow exits at 214.
“Data flow exits” in the context of the current invention are
primitives that have data flow relationships directed to them
from the current primitive in the IRM. For each of the data
flow exits that exist, the data flow visitation algorithm process
200 is invoked again.

[0181] Ifthe data flow visitation algorithm has been asked
to process an input tag primitive, for example at 164 or 166 in
FIG. 5, or a container tag primitive, the simulator checks to
see if a token is currently cached at the primitive at 216. If not,
the data flow visitation algorithm process ends. If so, at 218
the data flow visitation algorithm process removes the token
from the cache and proceeds to find all data flow exits, at 214,
as described in detail previously. For example, the primitives
depicted at 164 and 166 both have a data flow exit to the
primitive at 174 via math add primitive 170 in FIG. 5. Typi-
cally, this processing of input tag primitives and containers
occurs during the execution of the data flow visitation algo-
rithm process when it is called from the process from submit
step 145. Because step 145 has already cached the data sub-
mitted by the user, this process simply has the effect of
advancing the tokens to the data flow exits that are related in
the IRM to the primitive being processed.

[0182] Ifthe data flow visitation algorithm has been asked
to process an action primitive at 232, the data flow visitation
algorithm first determines if the action has already been
executed at 220, and if it has the data flow visitation algorithm
ends processing. If the action has not yet been executed, the
data flow visitation algorithm caches the current token at the
action primitive, at step 222 and proceeds to find all inputs to
the action that have not yet had tokens stored at the primitive
for them, at step 224. Actions cannot be executed by the data
flow visitation algorithm or simulator unless all of the needed
inputs to the action have been cached at the action primitive
by the data flow visitation algorithm, therefore, the data flow
visitation algorithm evaluates all data flow inputs at step 226
before continuing. In the context of the present invention,
“data flow inputs” refer to primitives that have data flow
relationships directed to the current action primitive in the
IRM. If no token is cached for one or more of the data flow
inputs, the process continues to step 228, where the data flow
visitation algorithm is invoked in pull mode to obtain the
needed tokens. This step 228 is bypassed if all necessary
tokens are cached at the action primitive. The process contin-
ues by executing the action at step 238. Execution of the
action is performed by placing all of the tokens that have been
cached at the action primitive by the data flow visitation
algorithm and invoking a java sub-routine that handles the
actual processing of the action. The behavior of each action
primitive, i.e., the behavior of its specific java sub-routine, is

US 2014/0344777 Al

discussed in Table II. After the Java sub-routine has com-
pleted processing, the execute action step 228 continues by
collecting the data token(s) that has(have) resulted from the
execution. This(these) data token(s) are then passed along for
additional processing by the find all data flow exits step 214,
and subsequently by another invocation of the data flow visi-
tation algorithm, as was previously described in the context of
processing flow label primitives.

[0183] Ifthe data flow visitation algorithm has been asked
to process a model reference at 234, the data flow visitation
algorithm first caches the current token at the model reference
primitive 242. Similar to the processing for actions described
in detail above, the data flow visitation algorithm evaluates if
all data flow inputs for the model reference have cached
tokens at 244 and 240. If so, the process ends. Otherwise, the
data flow visitation algorithm 246 is invoked in pull mode for
each of the primitives for which no token was cached. Note
that the data flow visitation algorithm does not cause the
primitive referenced by the model reference primitive to be
executed; this invocation is left to the control flow visitor
process described in detail above.

[0184] The other mode of processing embodied in the data
flow visitation algorithm is the pull mode, which is depicted
at 300 in FIG. 9. To begin the pull process, the data flow
visitation algorithm evaluates what class of primitive it has
been asked to process through a series of steps depicted at
302,304,306, 308 and 310. Primitive classes are shown inthe
first column of Tables II-V. If it cannot identify the type of
primitive it has been asked to process, the data flow visitation
algorithm returns an error at 312 and ends processing.
[0185] Ifthe data flow visitation algorithm operating in pull
mode has been asked to process a constant primitive at 302,
the data flow visitation algorithm examines the constant
primitive and extracts the value(s) stored with the constant
primitive in the IRM, at step 314. These values are then placed
in a token which is returned, at 316, to the process that
invoked the data flow visitation algorithm in pull mode. The
process then ends.

[0186] Ifthe data flow visitation algorithm operating in pull
mode has been asked to process a flow label primitive at 304,
the data flow visitation algorithm first determines if there is a
token already cached at the flow label primitive, at step 318.
If there is a token cached, it is returned at 316, to the process
that invoked the data flow visitation algorithm in pull mode.
The process then ends. If there is not token cached, the pro-
cess continues by invoking the data flow visitation algorithm
in pull mode at 320 for the data flow input associated with the
current flow label primitive. Note that IRML connection
rules, as detailed in Tables IV and V, ensure that only one data
flow input will be present. When the data flow visitation
algorithm process invoked at 320 completes, the returned
token is labeled with the name of the data flow label primitive
at 322. The data flow visitation algorithm continues by cach-
ing the returned and named token at the data flow label primi-
tive at 324 and finding all data flow exits, as was previously
described, at 326. The data flow visitation algorithm is then
invoked in push mode at 328. After the data flow visitation
algorithm invoked at 328 completes, the token cached at 324
is returned to the process that called the data flow visitation
algorithm in pull mode, and the data flow visitation algorithm
process ends.

[0187] Ifthe data flow visitation algorithm operating in pull
mode has been asked to process an input tag primitive at 306,
the data flow visitation algorithm first determines if a token is

Nov. 20, 2014

cached at the input tag primitive at 330. If no token is cached,
an empty token, i.e., a token containing no data, is returned to
the process that invoked the data flow visitation algorithm,
depicted at 332. If a cached token is found at the input tag
primitive, it is removed from the cache at the input tag in step
334, returned to the calling process at 336 and the data flow
visitation algorithm process ends.

[0188] If the data flow visitation algorithm process operat-
ing in pull mode has been asked to process an action primitive
at 308, the data flow visitation algorithm first determines last
primitive “visited” by the process that invoked the data flow
visitation algorithm in pull mode, as depicted at 336. The last
visited primitive’s identifier, referred to as the origin, is stored
temporarily at step 336 to allow the correct token to be
returned to the process that invoked the data flow visitation
algorithm in the later step 346, which shall be described in
detail below. The process continues by finding all data flow
inputs to the action primitive being processed for which a
token has not been cached, which is depicted at step 338. If
the data flow visitation algorithm determines that all data flow
inputs have not already been cached at 340, it invokes the data
flow visitation algorithm in pull mode for each of the missing
tokens, at 342. After the data flow visitation algorithm
invoked at 342 has returned the necessary token(s), or if the
data flow visitation algorithm had determined that all data
flow inputs had already been cached at 340, the data flow
visitation algorithm continues to step 344. In step 344, the
data flow visitation algorithm determines if the action primi-
tive it has been asked to process has already been executed. If
the action has already been executed, the data flow visitation
algorithm, using the identifier stored in step 336, returns the
appropriate token for the origin at step 346 to the process that
invoked the data flow visitation algorithm in pull mode. Ifthe
action has not been executed, the data flow visitation algo-
rithm process continues to 354, “execute action.” Execution
of the action is performed by placing all of the tokens that
have been cached at the action primitive by the data flow
visitation algorithm and invoking a java sub-routine that
handles the actual processing of the action. The behavior of
each action primitive, i.e., the behavior of its specific java
sub-routine is discussed in Table II. After the Java sub-routine
has completed processing, the execute action step 354 con-
tinues by collecting the data token(s) that has(have) resulted
from the execution. This (these) data token(s) are then passed
along for additional processing by the find all data flow exits
step 356, and subsequently by another invocation of the data
flow visitation algorithm in push mode at 358. After the
invocation of the data flow visitation algorithm at 358 has
completed, the process proceeds to return the appropriate
token to the process that invoked the data flow visitation
algorithm at 346, as was previously described.

[0189] Ifthe dataflow visitation algorithm operating in pull
mode has been asked to process a model reference primitive,
as depicted at 310, the data flow visitation algorithm deter-
mines the origin for the request at 348 as previously described
in the context of processing action primitives. After complet-
ing step 348, the data flow visitation algorithm determines if
the current model reference primitive has already been
executed, and, if so returns the appropriate token for the
origin at step 352, which is identical to the previously
described step 346. The data flow visitation algorithm process
then ends. If the data flow visitation algorithm determines that
the model reference primitive has not been executed at 350, it
proceeds to collect the necessary inputs to the action at steps

US 2014/0344777 Al

360, 362 and 364. The processing performed by these steps is
identical to that previously described for steps 338, 340 and
342 respectively. After step 364 has been completed, the data
flow visitation algorithm returns an empty token to the pro-
cess that had called it in pull mode and ends processing.

USE OF THE INVENTION

[0190] With reference to FIGS. 10-43 use of the present
invention will be described, particularly in regard to the pre-
ferred embodiment as described above. In this regard it is the
people who participate in the application definition process
by managing requirements, building the IRM, or validating
an IR ofthe application to whom the following description of
the invention is directed. Also, this description of how to use
the invention is presented in two sections, the first section
directed to the interactive, network online interface, and the
second directed to the interactive representation model cre-
ation and modification interface.

[0191] Referring to FIG. 2, the web-based interface appli-
cation 76 and simulator application 78 of the present inven-
tion is installed on server 90 and communicates with a
browser 70. Each user accesses the interface and/or simulator
applications to manage the requirements and access the inter-
active representation, sometimes referred to as the “simula-
tion,” for a prospective application. In accordance with terms
accepted in the art, individual screens presented by the web-
based interface are sometimes referred to as “pages.”

Accessing the Online Interface

[0192] The web interface of the present invention is
accessed in a conventional fashion through a convention web
browser that has access to a server that is hosting the software
of the present invention. After completing conventional log-
on procedures, the user will be presented with a default screen
400, sometimes referred to as a dashboard, similar to that
shown in FIG. 10. A typical screen will have a main menu, an
application selector and a logout button.

Using the Dashboard Screen

[0193] The dashboard 400 contains filtered requirement
lists for example “My Requests” 402, “My Discussions” 404,
and a filtered list of tasks, labeled “My Tasks™ and shown at
406 as shown in FIG. 10. The dashboard also contains search
functionality that allows the user to search the requirements
repository for a word, phrase or requirement identifier. The
requirements listed in each of the filter sections on the dash-
board are ordered with the most recently updated requirement
at the top. To view all the requirements in a list, the name of
the list is clicked, for example “My Requests” 402. To col-
lapse the requirements list, the down-arrow link is clicked, for
example arrow 408 for the “My Requirements” list. A second
click on the arrow is used to expand the requirements list.

[0194] The repository may be searched, through use of the
search feature 410 located at the top of the dashboard. The
word, phrase, or identifier for the requirement(s) for the
desired search is typed, and one of the radio buttons 412 (any),
414 (all), 416, (phrase) or 418 (identifier) that corresponds to
the type of search criteria desired is clicked. The server will
then present a page (not shown) containing the results of the
search.

Nov. 20, 2014

Creating and Modifying Requirements

[0195] There are two ways to create requirements in the
repository through the web-based interface. One way,
described in Adding Requirements in Meta mode below,
allows users to add requirements in context during simulation
operating in Meta mode. Alternatively, users can add require-
ments to the repository by using the Requirements/Create
Requirements main menu option, in conventional fashion, to
create a new requirement. Similarly, users can modify exist-
ing requirements in the repository by using the Requirements/
Modify Requirement main menu option, in conventional
fashion. The screen or page used to create or modify a require-
ment is sometimes referred to as the “requirement edit page.”
In addition to the name and text description of the require-
ment, the attributes listed in Table VIbelow can be assigned to
the requirement. The table also describes the meaning of the

attribute and its allowable values.

TABLE VI

Requirement Attributes
© 2002 iRise, Inc.

Attribute Description

Allowable Values

Subtype The subtype assigned

to the requirement.

Indicates if the
requirement is
considered in scope.

Scope

The Release of the
prospective
application that will
meet the requirement.

Release

Requestor The person who
requested the
requirement.

The person who is
responsible for the
next workflow step for
the requirement.

The priority or
importance of the
requirement.

The estimated amount
of effort required to
implement the
requirement.
Designates if the
requirement is
represented in the
IRM.

Designates if the
requirement has been
locked (i.e. marked
read only)

Describes a test
scenario that will
verify that a particular
requirement has been
met.

Describes a
recommended
implementation
approach.

Assigned To

Priority

Estimate

Modeled

Locked

Testing
Scenario

Implementa-
tion Notes

Selected from a drop-down list
containing the range of potential
Subtype values established by the
system administrator.

Selected from a drop-down list
containing the values
‘Undecided’, ‘In Scope’ and ‘Out
of Scope’.

Selected from a drop-down list
containing the releases established
by the administrator. A release
can only be assigned if the Scope
attribute is set to something other
than ‘Undecided’.

Selected from a drop-down list
containing all the users that have
access to the current application.
Selected from a drop-down list
containing all the users that have
access to the current application.

Selected from a drop-down list
containing the values established

by the administrator
Any alphanumeric text.

True or False, as represented by a
checkbox.

True or False, as represented by a
checkbox.

Any alphanumeric text.

Any alphanumeric text.

Creating and Moditying Tasks

[0196]

Users acting in a project or team management

capacity can use tasks to manage and track the activities and

US 2014/0344777 Al

responsibilities of individuals involved in the process of col-
lecting and validating requirements for the prospective appli-
cation. A task represents a unit of work that may have a start
date, end date, assignee and a list of associated requirements.
There are two ways to create a task, using the Tasks/Create
Task main menu option, where by the user can create an
isolated task that has no association to any requirement or
defect report; and using the ‘Create Task’ button on the
requirement edit or defect report edit pages, whereby the user
can create a task that is automatically associated to the
requirement or defect report being edited. In either case, the
create task page is presented, which allows the user to record
the name, description and other attributes for the task. Simi-
larly, users can modify existing tasks in the repository by
using the Tasks/Modify Task main menu option, in conven-
tional fashion. The screen or page used to create or modify a
requirement is sometimes referred to as the “task edit page.”
In addition to a task name and description, the following
Table VII lists task attributes available in the preferred
embodiment, describes attributes and the range of acceptable
values for these attributes.

TABLE VII

Task Attributes
© 2002 iRise, Inc.

Attribute Description Values
Action The action that the Selected from a drop-down list
assignee is responsible containing: Implement, Model,
for completing. Review, Release, Resolve, Revise,
Schedule Implementation,
Test or Other.
Status The status of the task ~ Selected from a drop-down list
containing ‘Complete’ and
‘Incomplete’.
Build The build that the task Selected from a list of all builds

will affect. created by the administrator.

Nov. 20, 2014

TABLE VII-continued

Task Attributes
© 2002 iRise, Inc.

Attribute Description Values
Assigned By The user that assigned Selected from a list of all users
the task. with access to the application.
Assigned To The user that is selected from a list of all users
responsible for with access to the application.
completing the task.
Planned The planned start and ~ Any date in MM/DD/YYYY
Start, End end date for the task format.
Actual Start, The actual start and Any date in MM/DD/YYYY
End end data for the task format.
Associations The associations that ~ N/A
exist between the task
and other
Requirements in the
repository
Creating and Modifying Defect Reports
[0197] There are two ways to create a defect report, using

the Defect/Create Defect main menu option, whereby the user
can create an isolated defect that has no association to any
other requirement; and using the ‘Create DR’ button on the
requirement edit page, whereby the user can create a defect
that is automatically associated to the requirement being
edited. In either case, the create defect report page is pre-
sented, which allows the user to record the name, description
and attributes for the defect report. Similarly, users can
modify existing defect reports in the repository by using the
Requirements/Moditfy Requirement main menu option, in
conventional fashion. The screen or page used to create or
modify a defect report is sometimes referred to as the “defect
report edit page.” The attributes that can be entered for a
defect report are listed in Table VIII, below, along with the
description of the attribute and the range of allowable values
for the attributes.

TABLE 8

Defect Report Attributes
© 2002 iRise, Inc.

Attribute

Description Values

Subtype

The subtype for the defect. Selected from a drop-down
containing the Subtype values
established by the administrator.

Described in the Administrators Guide.

[Defect] Status

Severity
Discovered in
Build

Scope

Release

Reported By

The defect status.
Note: this is separate
from the requirement
status attribute.

The severity of the defect.

The code build that
produced the bug.

Determines if the
defect fix is in scope.

If “In Scope’,
determines which
release will contain the
bug fix.

The user who reported
the defect.

Selected from a drop-down
containing the Defect Status values
established by the administrator.
Described in the Administrators
Guide.

Selected from a drop down containing
Critical, High, Medium and Low.
Selected from a drop-down
containing a list of builds defined by
the administrator. Described in the
Administrators Guide.

Selected from a drop-down
containing ‘In Scope’ and ‘Out of
Scope’

Selected from a drop-down
containing a list of releases defined
by the administrator. Described in
the Administrators Guide.

Selected from a drop-down

containing a list of users with access to the

current application.

US 2014/0344777 Al

TABLE 8-continued

Nov. 20, 2014

Defect Report Attributes
© 2002 iRise, Inc.

Discussions

Attribute Description Values
Assigned To The user who is Selected from a drop-down
currently responsible containing a list of users with access
for the defect. to the current application.
Priority The priority associated Selected from a drop-down
to the defect repair containing a list of priorities defined
effort. by the administrator. Described in
the Administration Guide.
Estimate The effort or time Text Input.
required fixing the
defect.
Modeled Determines if the Checkbox.
proper functionality has
been modeled.
Classifications
[0198] Requirements and defect reports can be organized [0202]

into appropriate hierarchical classifications for additional
context and organization in conventional fashion. An advan-
tageous feature of the current invention is that a requirement
may be designated to more than one classification simulta-
neously. Classifications can be used organize lists of require-
ments on pages and printed reports, in conventional fashion.

Notifications

[0199] Notifications refers to a feature that allows users to
receive email messages when a requirement, defect report, or
task is changed. These email messages, which are automati-
cally generated by the invention, include the information
previously recorded for the requirement, the new information
recorded and the user that made the change. A user may be
added to the notification list when creating or editing a
requirement, defect report or task, by selecting the user names
that should be notified from a list of the users with access to
the system that are not currently designated to receive notifi-
cations, and moving it to the list of users that are currently
designated to receive notifications. Users names may also be
moved from the list of users that are currently designated to
receive notifications and moved to the list of users with access
to the system that are not designated to receive notifications.

Relationships

[0200] Users may designate a list of requirements that are
related to a particular requirement by selecting said require-
ments from a list of the requirements in the repository in
conventional fashion. Similarly, relationships between and
among requirements, defect reports and tasks can be estab-
lished.

Change History

[0201] A complete change history is maintained automati-
cally for every requirement, change request and defect report
in the repository. To view the change history the user opens
the requirement, change request, or defect report in edit
mode, clicks on the “History” tab. A list of all changes, the
modifying user, and the modification dates is then displayed.
Optionally the ‘Select View’ drop down to filter may be used
to filter the change history by a particular type of change, for
example, to show only changes to the status attribute.

The Discussion feature allows users to converse
regarding a particular requirement, defect report or change
request, in the form of an on-line threaded discussion, as
would be understood by an individual skilled in the art. The
record of such a conversation are stored in the repository so
they can be referred to at any point for decisions, opinions and
general information submitted by the discussion participants.

Attachments

[0203] Attachments allow you to add supporting docu-
ments to the repository. This can be useful, for example, when
a diagram clarifies a requirement or a screen image supports
a defect report. To add an attachment to a requirement, or

defect report:

[0204] 1) Click on the Attachments tab.

[0205] 2)Inthe ‘Create New Attachment’ area, click on the
Browse button.

[0206] 3) Pick the attachment to upload from the local file
system.

[0207] 4)Clickonthe ‘Attach File’ button to upload the file.
[0208] Once the file has been uploaded, it is part of the

attachment pool in the repository that contains all the files that
have been uploaded for the current prospective application.
[0209] Alternatively, a requirement can be tied to any file
that exists in the attachment pool instead of uploading the
same file twice. This is useful if the user has a number of
requirements that are supported by one document.

[0210] To attach a requirement to a file in the attachment
pool:
[0211] 1) Click on the View List button in the ‘Create

New Attachment” area. The Attachment page will
refresh showing the attachment pool.

[0212] 2)Click on the file name to attach a file in the pool
to the current requirement. The page will refresh and the
file name will be listed in the ‘Current Attachments’ list.

[0213] If a requirement has an attachment, then an attach-
ment icon will be displayed on the Attachment tab. Typically,
the icon will appear to be a sheet of paper with a corner folded
over and a paperclip on the top of the paper.

[0214] To delete an attachment from a requirement:

[0215] 1) In the ‘Current Requirements’ list, select the
Delete checkbox for the attachments to delete.

[0216] 2) Click on the Delete button and the checked
attachments will be removed from the current require-

US 2014/0344777 Al

ment. Note: if no other requirement is attached to the
deleted file, then it will also be remove from the attach-
ment pool.

Viewing Requirements, Defect Reports and Tasks

[0217] Existing requirements and defect reports can be
viewed in a variety of conventional manners using the
Requirement/View Requirements main menu option Tasks
can be viewed in a similar conventional fashion using the
Task/View Tasks main menu option. The View Requirements
page is organized into two major areas: the filter area and the
list area. The filter area contains a set of conventional filters
that allow the user to view a subset of all the requirements and
defect reports in the repository. The list area contains the
subset of the requirements or defect reports. Once any filter,
or variety thereof is selected, pressing the “Go” button will
apply the filters and refresh the list. The format of the require-
ment list is can be presented in a variety of fashions by
selecting a format from the drop-down list named “Format”.
The preferred options are described in Table IX below.

TABLE IX

List Format Options

Format Description

List Organizes the requirement list by classification in a non-
hierarchical manner, i.e. all classifications are presented in a flat
list.

Expanding the classification reveals a list of requirements,
change requests, and defect reports, displaying the identifier,
Status, and Name attributes

Organizes the requirements list by classification in a non-
hierarchical manner, i.e. all classifications are presented in a flat
list.

Expanding the classification reveals a list of requirements,
change requests, and defect reports, displaying the identifier,
Type, Subtype, Status, Scope, Release, Requestor, Modification
Date, Modifier, Name and Requirement Text attributes
Organizes the requirement list according to the

classification hierarchy.

Expanding a particular classification reveals all the children
classifications, requirements, change requests, and defect
reports.

Organizes the requirement list by classification in a non-
hierarchical manner, i.e. all classifications are presented in a flat
list.

Expanding a classification reveals a list of requirements,
change requests, and defect reports, and allows you to edit the
following attributes: Locked

Assigned To

Priority

Status

Estimate

Subtype

Severity

Scope

Release

Detail

Hier-
archy

Grid

Custom and Quick Filters

[0218] Custom Filters define a predefined, customizable set
of conditions that can quickly filter the list as desired. They
can be used to apply, delete or edit an existing custom filter, as
well as create a new custom filter. These actions are accom-
plished in a conventional fashion and the selection of particu-
lar filter criteria is considered to be within the ordinary skill of
the art.

39

Nov. 20, 2014

[0219] Quick filters allow the user to apply and combine
attribute-based filters to the requirement list. When multiple
quick filters are selected, the result set includes all require-
ments that meet ALL of the specified filter criteria. For
example, if the Requested By quick filter is set to ‘used’ and
the Status quick filter is set to ‘approved’, then all the results
shown in the requirements will be requested by user 1 and
‘approved’ in status.

Classification Filter

[0220] The classification filter allows the user to filter out
requirements that are not contained by the classification
selected in the classification filter drop-down. To filter by
classification the user selects the classification that contains
the requirements desired, and their requirements will be
recursively included in the list.

Search Filter

[0221] The search filter allows the user to search the entire
repository or the filtered requirements currently presented on
the list for a word, phrase, or requirement identifier. To search
for a requirement, the word, phrase or identifier of the require-
ment desired is typed in the search criteria prompt. Then the
radio button that represents type of search criteria being used
is clicked and the ‘Go’ button is clicked to execute the search.
When the page is refreshed, only requirements that contain
the specified search criteria are included in the list.

The List Area

[0222] The listarea displays a set of requirements that meet
the filter criteria specified in the Filter Area of the View
Requirements page. The requirements are organized by clas-
sification, and formatted according to the Format drop-down
in the filter area.

Expanding and Collapsing Classifications

[0223] The default view for the lists area shows a list of the
classifications that contain requirements that meet the filter
criteria. Each classification is collapsed by default. To expand
aclassification and examine its contents, the user clicks on the
(+) symbol to the left of the classification name. Alternatively,
the user may click the ‘Expand All’ button to expand all
collapsed classifications. Similarly, to collapse a classifica-
tion, the (-) symbol is clicked or the ‘Collapse All’ button is
used.

Deleting Requirements or Defect Reports

[0224] To remove a requirement or defect report from the
repository:

[0225] 1) Use the Requirements/View Requirements
main menu option to display a list of requirements and
defect reports.

[0226] 2) Find the requirement to delete in the require-
ment list (using the filters if necessary).

[0227] 3) Click on the requirement text or title to edit the
requirement.

[0228] 4) Use the classification drop-down to select the
“Trash” classification.

[0229] Requirements designated to the Trash classification
are automatically filtered out of all requirements lists, so they
are essentially stored in a deleted state. To remove a require-
ment out of the trash, open the Trash classification in the View

US 2014/0344777 Al

requirements list, find the requirement to revive, and use the
classification drop down to put the requirement into a classi-
fication other than Trash.

Using Reports

[0230] The reporting feature of the preferred embodiment
includes two pre-built reporting templates that the user can
use to produce electronic reports of data contained in the
repository that can be subsequently printed; the Functional
Specification Report, sometimes referred to as the “FSR and
the Requirements Inventory Report, sometimes referred to as
the “RIR.” These reports are described in detail below.
[0231] By default, both reports draw on the data that exists
in the repository at the time report is generated. However, the
user can produce historical reports using by specifying a
previously created version tag, as described below.

Functional Specification Report

[0232] With reference to FIGS. 11-14, the Functional
Specification Report contains at least one image of a page
from the interactive representation rendered by the simulator
depicted in FIG. 11 at 502. The image is identical to what a
user would see when executing the interactive representation
using the simulator component, as previously described, in
Meta mode, also as previously described. In addition the
functional specification report 504 contains, with reference to
FIG. 12, a list of the requirements associated with the page
presented at 502 and/or the user interface components con-
tained therein. Only requirements that are associated to the
pages included in the report will be printed in the FSR. Addi-
tionally and with reference to FIG. 13, the FSR may option-
ally contain a summarization of the control flow connections
that originate from the primitives contained on the page(s)
included in the report at 506, 508. This section includes the
name and an icon indicating the type of the primitive from
which the control flow connection originates and the name
and an icon indicating type of the primitive at which the
control flow terminates. If the control flow terminates at a
decision, this section of the report shows the name of the
decision, the labels on its branches (e.g., T, F, 0, 1, 2, 3), and
the name and an icon representing the type of the primitive at
which the control flow from these branches terminate. Addi-
tionally, the FSR shows the name of all decision primitives
and pages that have contained primitives with control flow
connections terminating at the page that is the subject of the
report, along with an icon indicating their type.

[0233] Furthermore, with reference to FIG. 14, the FSR
optionally includes a list of all primitives contained on the
page that have data flow connections terminating at them at
510, along with primitives name, an icon indicating the type
of primitive, the data flow label for the connection, an icon
representing the type of the primitive that is the source of the
data flow connection and the name of the primitive that is the
source of the data flow connection.

[0234] Furthermore, with reference to FIG. 14, the FSR
optionally includes a list of primitives contained on the page
that have data flow connections originating from them at 512,
along with an icon indication the type of the primitive. In
addition the name of the connecting data flow’s label, and the
name and an icon representing the type of the primitive at
which the data flow terminates. If the data flow terminates at
a primitive, and that primitive has data flow connections
originating from it, the reports continues listing connection

Nov. 20, 2014

information, with new primitives starting a new line, until all
primitives that are connected by data flow are encountered
and listed on the report. In the preferred embodiment, the
studio component includes a feature that would prevent users
from creating an IRM that would cause the FSR’s process to
experience an endless loop. Furthermore, in practice, most
regions of interconnected dataflow are not more than 5 levels
deep.

[0235] These report sections are advantageous features of
the present invention, because they communicate the require-
ments in the context of static images extracted from the inter-
active representation, as well as control and data flow con-
nection information that is useful the individuals that will be
designing and programming the prospective application.
[0236] In the preferred embodiment, the FSR is delivered
as an HTML document that can be displayed and printed by a
browser. To generate the FSR:

[0237] 1) Click on Reports/Generate Reports in the main
menu.
[0238] 2) Optionally pick a version tag to produce a

historical report.

[0239] 3) Select the Functional Specification Report
radio button.

[0240] 4) Click on the ‘Customize Report’ button. The
server will present the FSR parameter screen.

[0241] 5) Type a Title and a Header for the report.

[0242] 6) Select the pages to include in the report by
clicking on the page name in the ‘Available’ list and
clicking on the (>) button to move the selected pages to
the “Selected Pages’ list. Use Ctrl and Shift to select
multiple pages.

[0243] 7) Set the Modeled filter to include Modeled, Not
Modeled, or all requirements associated to the selected
pages.

[0244] 8) Optionally pick the ‘Number Elements on
Page Images’. This will produce the screen shots in Meta
mode so the requirements can be easily tied to their
associated widget.

[0245] 9) Optionally pick ‘Show all Requirement
Attributes’ to include attributes for each requirement
included in the report.

[0246] 10) Optionally pick ‘Dataflow On’ to include a
data flow section for each page in the report.

[0247] 11) Optionally pick ‘Navigation On’ to include
the navigation flow section for each page in the report.

[0248] 12) Select the desired print orientation option.
[0249] 13) Click on the ‘Create Report’ button.
Requirement Inventory Report
[0250] The Requirement Inventory Report (RIR) contains

the set of requirements that meet filters applied on the report
parameter page. The report is produced in PDF format, mak-
ing it easy to distribute. To generate the Requirement Inven-
tory Report:

[0251] 1) Click on Reports/Generate Reports in the main
menu.

[0252] 2) Optionally pick a version to produce a histori-
cal report.

[0253] 3) Select the Requirement Inventory Report radio
button.

[0254] 4) Click on the ‘Customize Report’ button. The

server will present the RIR parameter screen.

US 2014/0344777 Al

[0255] 5) Use the filter area at the top of the RIR param-
eter page to determine what requirements should be
included in the report.

[0256] 6) Type a Title, Header, and Footer for the report.
[0257] 7)Optionally elect to ‘Include Table of Contents.’
[0258] 8) Select the print orientation.

[0259] 9) Select the preferred sorting options.

[0260] 10) Optionally elect to also print associated

requirements, change requests, or defect reports.
[0261] 11) Click on the ‘Create Report” button.
[0262] The server will present the RIR report in PDF format
in a new browser window. F1G. 17 shows a sample of the RIR
content.

Creating Version Tags

[0263] Version tags are bookmarks in the history of an
application simulator application. The reporting feature can
use version tags to generate historical reports. To generate a
version tag:

[0264] 1) Select Reports= Version Tags from the main
menu.

[0265] 2) Click on the ‘Create a New Version’ button.

[0266] 3)Type ina Version Number, Name and Descrip-
tion.

[0267] 4) Click on the ‘Create Button’. The server will

attach the current date and time to the version tag.
[0268] Reports can now be optionally run against the ver-
sion tag to produce historical views of the database.

Simulating the Proposed Application

[0269] As the project team iteratively builds the IRM in
concert with the requirement data for a proposed application,
all users with access to the application may view and validate
the simulation for that proposed application through the
online interface. To simulate the proposed application the
menu option Simulate/Simulate from the main menu is
selected. The system will display a browser window contain-
ing a list of pages in the IRM. Clicking on the name of a page
initiates a simulation session. The interactive representation
of proposed application can be viewed in one of two modes:
Clean or Meta. The buttons at the top of the simulation page
can be used to toggle between Clean and Meta mode.

Meta Mode

[0270] With reference to FIG. 20, The Meta mode shows
the simulated page with superscript enumerations uniquely
identifying all the visible user interface components in the
simulation area 437. The Meta mode also includes an add
requirement area 435 that allows users to add and view
requirements that describe the simulated page, without need-
ing to return to the create requirements page, and a list of the
requirements associated with the visible user interface com-
ponents at 439, enumerated with corresponding numbers.

Adding Requirements in Meta Mode

[0271] Users can add requirements to the repository using
the ‘Add Requirement’ section of the Meta mode page. To add
a requirement:
[0272] 1) Click on the superscript number of the widget
that you want to create a requirement for.
[0273] 2)Typethe name and requirement text for the new
requirement.

41

Nov. 20, 2014

[0274] 3) Optionally fill out the other requirement
attributes.
[0275] 4) Optionally select the classification that will

contain the requirement.
[0276] 5) Click on the ‘Add Requirement’ button.

Viewing Associated Requirements in Meta Mode

[0277] All requirements that are currently associated to the
simulated page or elements on the simulated page are shown
in a list below the simulated page 439. The requirements are
organized into groups labeled according to the element to
which they are associated. FIG. 20 shows the simulation in
Meta mode and highlights the relationship between the
requirements and their associated user interface components.
For example line 432 highlights the relationship between the
list page (with superscript 1) and the requirement numbered
1. Similarly, for example, line 433 highlights the association
between the user interface element superscripted 13 with the
requirement number 13.

Clean Mode

[0278] The Clean mode allows users to view the simulated
application in its purest form, and an example screen is shown
in FIG. 21. The buttons 434 and 436 in the upper-right area of
the simulation window allow the user to toggle between clean
mode 436 and Meta mode 434. Clean mode displays the pure
prototype HTML without any superscripts or requirement
data. This allows users to get a more realistic feel for the
application being defined.

Simulcasting a Simulation Session

[0279] The simulcastor component allows multiple users to
follow a leading user who is exiting an interactive represen-
tation model. Any user may lead or follow a simulcast ses-
sion. To start and lead a simulcast session:

[0280] 1) Click on Simulate/Simulcast in the main menu.
The server will present the Simulcastor page in a new
browser window.

[0281] 2)Pick the subject application to use in the simul-
cast session.

[0282] 3) Click on the ‘Lead Simulation” button. The
server will present a page confirming that that user is
leading the simulcast. Any users following the simulcast
will be listed in the ‘Participants’ list.

[0283] 4) Click on the ‘Simulation Home Page’ to go to
the page directory for the application that is simulcast-
ing. As the lead user clicks through the application, the
users following the simulcast session will see the same
pages.

[0284] 5) When finished, click on the ‘Stop Leading’
button.

[0285] To follow a simulation session:

[0286] 1) Click on Simulate/Simulcast in the main menu.
The server will present the Simulcastor page in a new
browser window.

[0287] 2) Pick the application that will be simulcast.

[0288] 3) Click on the ‘Follow Simulation’ button. The
prototype pages presented to the leader as the leader of
the simulcast session uses the simulation will also be
presented to each follower.

[0289] 4) During the simulcast session, the simulation
seen as a follower is ‘live’, meaning that the user may use
the pages as desired, until the session leader changes

US 2014/0344777 Al

pages. At that point the server will present the leader’s
new page to all the simulcast followers.

The Studio™ Interface Software Application

[0290] The Studio™ interface allows the user to build the
proposed application’s interactive representation that is itera-
tively validated through simulation. The Studio client is
started by double-clicking on the Studio icon on the client
computer. When the login window appears, the user may or
must provide the data listed in Table X below, before begin-
ning a Studio session.

TABLE VIII

Studio Login Window Data

Data Description

Username The user’s username, must be provided.

Password The user’s password, must be provided

Server The hostname or IP address, must be provided.

Port The port on which the music server is running,
must be provided.

SSL A checkbox signifying whether the music server

should be communicated with using the HTTP or the
HTTPS protocols.

Proxy A checkbox signifying whether the music server
should be contacted through a proxy.

Address The hostname or IP address of the proxy server

Port The port on which the proxy server is running

Building the Interactive Representation Model
Adding Primitives

[0291] Primitives are the building blocks that allow the user
to rapidly build the IRM. In general, primitives can be added
to the IRM in three different ways, depending on user pref-
erence:

[0292] 1) Using the toolbar
[0293] 2) Using the right-click menu options
[0294] 3) Using the Insert main menu options
Adding a Primitive from the Toolbar
[0295] To add primitives from the toolbar, two options are

available. The drag-and-drop approach allows the user to drag
an element from the toolbar area and drop it at the desired
location in the IRM. The insertion point approach allows the
user to place the insertion point where the user wants the
element to be located on the whiteboard The raised buttons on
the toolbar that represent the element wanted are simply
clicked to add.

Adding a Primitive from the Right Click Menu

Options
[0296] To add a primitive from the right click menu:
[0297] 1) Right click on the location where the new

primitive is wanted.

[0298] 2) Follow the New submenu to find the primitives
that is to be added.

[0299] 3) Click on the desired primitive. The elements
that cannot be inserted at the selected location will be
disabled in the menu.

Nov. 20, 2014

Adding a Primitive from the Insert Main Menu

Options
[0300] To add a primitive from the Insert main menu
option:
[0301] 1) Place the insertion point where the user wants

to insert the new primitive.

[0302] 2) Click on the Insert main menu option.

[0303] 3) Follow the submenu to find the primitives to
add.

[0304] 4) Click on the desired primitive. The elements

that cannot be inserted at the selected location will be
disabled in the menu.

Adding Pages

[0305] Pages are special primitives. They are used through-
out the application as references and organizational struc-
tures. Pages are ‘top level’ primitives: They can only be
inserted directly on the gray area of the whiteboard. The Page
icon is typically an illustration of a sheet of paper, not shown,
in vertical orientation and with a corner folded over.

Adding Primitives to Pages

[0306] User interface primitives are pages and any other
primitives as identified in Table IT above primitives that can be
contained in a page. User interface primitives are shown as
Toolbar Icons. In general, a user can add a primitive to a page
by following the process described in the adding primitives
section. However, some user interface—tag primitives, e.g.
the select primitive, text input primitive, etc., must be con-
tained by the form primitive.

Using the Radio Button Primitive

[0307] The radio button primitive allows the simulation
user to pick one value from a set of options. The options are
defined by the first data flow connected to the radio button
primitive. Additionally, the second data flow connected to the
radio button primitive can be used to define the radio button
option that is selected by default when the simulator presents
the page. To create a radio button set:

[0308] 1) Add a radio button primitive into a form.
[0309] 2) Define the name of the radio button primitive.
[0310] 3) Select the layout of the radio button set (verti-

cal or horizontal).

[0311] 4) Click OK.

[0312] 5) Add the first data flow line leading to the radio
button primitive to define the domain values (i.e.
options) available in the radio button set. This can be
accomplished using a Constant or data flow from
another action (e.g. unpack, session or find). During
simulation, one option will appear in the radio button set
for each data object or element that is available through
the data flow.

[0313] If there is only one data flow input for the radio
button primitive, then by default no option will be selected
when the page is displayed in simulation. However, the user
can use a second data flow input to define the default value. If
the value of the second data flow matches one of the values in
the first data flow input, then that value will be selected be
default. If the value of the second data flow does NOT match
one of the values in the first data flow input, then the second
data flow value will be added to the radio button set and set as
the default.

US 2014/0344777 Al

Using the Select Primitive

[0314] The select primitive allows the user to add drop-
down lists, also known as ‘selects’ to the IRM Like a radio
button primitive, the select primitive allows the simulation
user to pick one value from a set of options. The list of options
available to the simulation user is defined by the first data flow
input connected to the primitive. The second (optional) data
flow input connected to the primitive can be used to set a
default value that appears when the page containing the select
primitive is simulated. To add a select primitive:

[0315] 1) Drop a select primitive into a form.
[0316] 2) Define the name of the select primitive.
[0317] 3) Optionally define the size of the select primi-

tive. The size attribute determines how many options are
visible simultaneously in the simulation.

[0318] 4) Click OK.

[0319] 5) Add the first data flow input to the select primi-
tive to define the domain values (i.e. options) available in
the simulated drop-down set. This can be accomplished
using a Constant or data flow from another action (e.g.
unpack, session or find). During simulation, one option
will appear in the drop-down set for each data object or
element that is available through the first data flow.

[0320] Ifthere is only one data flow input line connected to
the select primitive, then by default the first value in the data
flow input (e.g. the first value listed in the Constant) will be
the default value when the drop-down is displayed in simu-
lation. However, the user can use a second data flow input to
define a different default value. If the value of the second data
flow matches one of the values in the first data flow input, then
that value will be selected be default. If the value of the second
data flow does NOT match one of the values in the first data
flow input, then the second data flow value will be added to
the select options and set as the default.

Using Button Primitives

[0321] Button primitives allow the user to represent HTML
button inputs. They primarily exist to submit form data and
allow page navigation. To create a button:

[0322] 1) Drop a button primitive into a form.

[0323] 2) Define the name and the value of the button.
The name will be shown in the Studio application white-
board and the Value will be shown on the face of the
button in the simulation. Click OK.

[0324] 3) Alternatively create navigation flow from the
button to the appropriate page or navigation decision. If
the button does not have outgoing navigation flow, then
when the user presses it in simulation, the parent form
will be submitted but the same page will be represented.

[0325] To use an image as the face of a button:
[0326] 1) Access the properties of the button to change.
[0327] 2) Change the Type property to Image.
[0328] 3) Click on the Set button to set the image source.
[0329] 4) Pick an image from the local drive and click
open.
[0330] 5) Click OK in the property editor.
Using Conditional Html Primitives
[0331] Conditional HTML (CHTML) primitives allow the

user to add dynamic presentation logic to the interactive rep-
resentation. Depending on the single data flow input, the
CHTML displays one of its numerous branches. Similar to
navigation decisions, CHTML primitives can exist in Bool-

Nov. 20, 2014

ean or integer mode. In Boolean mode, the CHTML logic is
based on the existence of incoming data flow. In integer mode,
the CHTML logic is based on the value of the incoming data
flow. A CHTML primitive is in Boolean mode until a third
branch has been added, at which time the primitive is trans-
formed automatically to integer mode. To create display

logic:
[0332] 1) Drop a conditional HTML primitive into a
page on the whiteboard.
[0333] 2) Define a name for the CHTML primitive.
[0334] 3) Click OK.
[0335] 4) Add the first branch to the CHTML primitive

by dropping a primitive into the CHTML primitive. A
‘F* will appear in the upper right corner signifying cre-
ation of the ‘False’ branch of the CHTML.

[0336] 5) Drop another primitive into the CHTML
primitive, but outside the boundary of the primitive con-
tained in the ‘F’ branch A “T” will appear in the upper
right corner representing the new ‘True’ branch.

[0337] 6) Add a data flow input line to the CHTML that
will determine what branch the CHTML will display
during simulation.

[0338] The interactive representation IRM now includes
conditional HTML logic that displays the ‘T branch if the
data flow input contains any value other than O (zero). Oth-
erwise, the ‘F’ branch is displayed.

[0339] The user can turn a CHTML primitive into integer
mode to IRM more than two display alternatives. To create an
integer-mode CHTML primitive:

[0340] 1) Drop a conditional HTML primitive into a
page on the whiteboard.

[0341] 2) Define a name for the CHTML primitive.

[0342] 3) Click OK.

[0343] 4) Add the first branch to the CHTML primitive

by dropping a primitive into the CHTML primitive. A
‘F* will appear in the upper right corner signifying cre-
ation of the ‘False’ branch of the CHTML.

[0344] 5) Drop another primitive into the CHTML
primitive, but outside the boundary of the primitive con-
tained in the ‘F’ branch. A “T” will appear in the upper
right corner representing the new ‘True’ branch.

[0345] 6) Add a third branch by dropping another primi-
tive into the CHTML primitive but outside the existing
branch. When this is completed, the branch labels (in the
upper right corner) will change from [T, F] to [0,1,2],
signifying that the CHTML is now in integer mode.

[0346] 7) Repeat step 6 as necessary until CHTML
branches represent all logical display options.

[0347] 8) Add a data flow input line to the CHTML that
will determine what branch the CHTML will display
during simulation.

[0348] The interactive representation model IRM now
includes display logic that shows one of numerous branches
depending on the VALUE of the incoming data flow. If the
value of the data flow is an integer value corresponding to one
of'the CHTML branches, then that branch will be displayed in
simulation. If the value is null, O (zero) or anything else not
represented by the CHTML branches, then the 0 (zero)
branch will be displayed by default.

Using Dynamic Table Primitives

[0349] Dynamic Table primitives allow the user to create
interactive representations of lists of data, typically database-
driven lists. In simulation, a dynamic table primitive appears

US 2014/0344777 Al

as a table that contains one row for each data token, or row,
passed to it during the processing of the simulator. The col-
umn names shown in the interactive representation and the
data to be displayed from each of the tokens of the dynamic
table are defined by the primitives placed in the dynamic
table.

Displaying Data in a Dynamic Table

[0350] Thedatatokens that are displayed in a dynamic table
typically come from a several actions related to each other
using data flow. Typically these actions are a find and unpack
action chain. The data flow outputs from the unpack action
usually flow into the primitives contained in the dynamic
table. To create a dynamic table:

[0351] Add a dynamic table to a page in the IRM.

[0352] Putone primitive into the dynamic table to represent
each column that should appear in the interactive representa-
tion.

[0353] Connect data flow from an unpack action to one or
more of the primitives contained in the dynamic table.

Linking from a Dynamic Table

[0354] Dynamic table columns may be designated as
sources of control flow, allowing simulation users to click on
alink in a row of data to navigate to another page, as shown in
FIG. 22. When navigation flow is established from a primitive
in adynamic table, that link will be present on every row in the
simulated table. Dynamic tables also have a specialized fea-
ture that allows the user to IRM simulate the behavior of a
subject application wherein a data token is selected from a
dynamic table. When a user clicks on a link in a dynamic
table, the data token represented by the row containing the
link is passed out of the dynamic table as output data flow, and
used in subsequent processing.

Using Dynamic Tables for Batched Updates

[0355] Furthermore, dynamic tables can be used for
batched updates. This feature allows the user to simulate a
common function of subject applications wherein a editable
list of data tokens is presented. To add this functionality to the
IRM, the dynamic table must be contained in a form primitive
and the dynamic table receive data flow input from an unpack
action. Furthermore, the primitives contained within the
dynamic table must be of the class user interface compo-
nents—input tags. During simulation, when a button primi-
tive that is contained in the same form as the dynamic table is
clicked, all data tokens containing the values entered by the
simulation user are submitted to the simulator for processing.
Typically, in the context of using dynamic table for batched
updates, the contained primitives in the dynamic table are
each related to an update action primitive, while the origin of
the set of data tokens is related to the first input of the update
action primitive. The specialized dynamic table processing in
the simulator ensures that the appropriate data token(s) is(are)
updated by the update action primitive. A typical usage of a
dynamic table in this respect is shown in FIG. 23

Using an Image Primitive

[0356] Theimage primitive allows the user to add images to
the interactive representation. The user can specify the source
file for the image and connect the image to other primitives
with control flow. To add an image to the IRM:
[0357] 1) Drop an image primitive into a page.
[0358] 2) Name the image appropriately and set any
other desirable attributes.

Nov. 20, 2014

[0359] 3) Click on the ‘Set’ image button.
[0360] 4) In the file selection dialog, pick the image file
you want to use in the IRM and press Open.
[0361] 5) Click OK.
Using Actions
[0362] As previously described, action primitives define

how data will be transformed, derived, stored, retrieved,
sorted or otherwise manipulated by the interactive represen-
tation. In the preferred embodiment, actions include typical
ways that computer systems manipulate data, and are not
specific to any particular computer programming language.
The example illustrated in FIG. 24 shows the use of a “text.
add” action. The “text.add” action appends each of its inputs
to each other, resulting in a single string containing the char-
acters found in its inputs. Its function is similar to that of a
concatenation operator found in conventional programming
languages. In this case the text.add action is being used to
concatenate the first name provided by the simulation user
with a space and the last name, also supplied by the user
during simulation. The inputs to the action in this example are
the are data flow connections labeled firstName and lastName
originating from text input primitives labeled fnamelnput and
Inamelnput respectively, and the unlabeled data flow connec-
tion from the constant primitive labeled. When the user simu-
lates the page labeled “My Page, the page containing the text
input primitives labeled fhamelnput and Inamelnput is pre-
sented to the user, whereupon they may enter values into each
of these fields and click the button primitive labeled “Go
Button.” After the simulator completes processing the form
submit that was triggered when the user clicked the button,
the values that were entered by the user are passed in the form
of data tokens to the text.add action as described above. The
text.add primitive executes its internal concatenation routine
and returns a data token labeled fullName. Then the page
labeled “My Page” is redisplayed with the computed full
name displayed at the text field labeled “full name.”

Adding Decisions

[0363] Decisions define the conditional execution of other
primitives. In the preferred embodiment, decisions function
in a manner similar to that of “IF . . . THEN” and “CASE”
statements found in conventional computer languages. Alter-
natively, decisions could be based on other conditional or
branching structures found in conventional computer lan-
guages, or derived from common behaviors found in conven-
tional computer applications.

[0364] For example, the following behavior could be rep-
resented by through the use of a decision in an IRM:

[0365] If the subject application user has a savings
account record, clicking on, the ‘my account’ link
should cause the page named My Account Home Page to
be displayed by the subject application, otherwise, the
page named Account Registration should be displayed.

Using a Decision Connected in Boolean Mode

[0366] Decisions process in either Boolean or integer
modes, depending on the number of control flow outputs that
are connected to them int the IRM. A decision with less than
three control flow outputs evaluates in Boolean mode. When
connecting the control flow outputs, the first control flow
connection made by the user designates the path of process-
ing if the boolean data token it receives from its input data

US 2014/0344777 Al

flow has the value of “False”, whereas the second connection
made by the user designates the path of processing if the data
token it receives from its input data flow has the value of
“True.” The example illustrated in FIG. 25 shows a decision
named “Check Login Status™ that evaluates based on whether
or not a profile data token is available in the session as fol-
lows:

[0367] Ifthere is any profile data object in session, then the
decision evaluates to true and the simulator’s processing fol-
lows the ‘T’ branch, and hence, the My Account Page con-
structed by the simulator and returned to the user for display.
If there is no profile data token in session, then the decision
evaluates to false and the simulator’s processing follows the
‘F’ branch, and, hence, the Login Page is displayed.

Using Decision Connected in Integer Mode

[0368] A decision with three or more control flow outputs
evaluates in integer mode. An integer navigation decision
evaluates on the integer value of the data flow input. If the
value of the data flow input is null or anything other than the
integers specified by navigation flow output labels then the
navigation flow defaults to follow the ‘O’ branch. The
example illustrated in FIG. 26 shows a decision named
“access level check” that evaluates based on the access Level
data token of the profile data token stored in session, as
follows:

[0369] Ifthe access level data token contains ato 0, 1, or 2,
then the simulator will present the pages labeled “Access
Level Zero”, “Access Level One” or the “Access Level Two,”
respectively.

Using Flow Filters

[0370] Interactive representation Flow filters help control
the whiteboard area by allowing the user to show and hide
various interactive representation primitives and flow lines.
Model filters can be applied to the entire whiteboard using the
options available in the view main menu option. The user can
also apply filters to selected primitives using filter buttons in
the toolbar area, with six such buttons included in the pre-
ferred embodiment having the names and functions listed in
Table X1, below. This allows the user to show and hide flow
lines and primitives that directly related to the selected primi-
tives. To apply the filters available in the toolbar:

[0371] 1) Select the primitive(s) to apply the filter to. The
filters act recursively on containers and apply to all of the
contents of the selected container as well.

[0372] 2) Select the filter button to apply from the six
buttons shown below in Table XI:

TABLE XI

1. MODEL FILTERS

Button Description
Show all This model filter button exposes all primitives that are sources
inbound for data flow or navigation flow that lead to the selected

primitives primitives.

Show all This model filter button exposes all primitives that are
outbound destinations for data flow or navigation flow that lead from
primitives the selected primitives.

Show all This model filter button exposes all the flow lines that lead to
inbound the selected primitives as well as all the primitives that are the
flows and sources for these flow lines.

primitives

Nov. 20, 2014

TABLE XI-continued

1. MODEL FILTERS

Button Description
Hide all This model filter button hides all the flow lines that lead to the
inbound selected primitives.
flows
Show all ~ This model filter button exposes all the flow lines that lead
outbound from the selected primitives as well as all the primitives that
flows and are the destinations for these flow lines.
primitives
Hide all This model filter button hides all the flow lines that lead from
outbound the selected primitives.
flows and
primitives

Collapsing and Expanding Containers
[0373] As an interactive representation model grows, the

value of whiteboard real estate increases. Collapsing and
expanding containers allows the user to minimize the amount
of' whiteboard space occupied by the user’s pages. To collapse
a container:

[0374] Double click on a container name. This collapses an
expanded container. Collapsed containers only display their
italicized primitive name. The contents of the container and
the flow lines leading in and out of the container are hidden
from the whiteboard view.

[0375] Double-clicking on the italicized name of a col-
lapsed container will expand the container to its previous
state, showing all of its contents.

Hiding Interactive Representation Primitives

[0376] Similarto collapsing and expanding containers, any
interactive representation primitives can be suppressed from
the whiteboard view using the show and hide options avail-
able in the right-click menu. To hide a primitive, right click on
the element to hide and select Hide from the menu options.
Whenever a container directly contains a hidden primitives,
the container name becomes italicized. Double-clicking on
an italicized primitives name exposes its hidden relation-
ships. Additionally, the user can select ‘Show All’ from the
View main menu option to show all hidden primitives across
the entire whiteboard.

Finding Primitives in the Whiteboard

[0377] The user can search the whiteboard area to find
primitives based on name. To find an element in the white-
board:

[0378] 1) Press Ctrl-F or select Find from the edit menu.
[0379] 2) In the find dialog, enter the text to search for.
[0380] 3) Click OK to search for a primitive name that

contains the given text.

[0381] 4) Optionally click F3 to ‘find next.’
Locking Primitives
[0382] When a primitive is locked, the user can view the

primitives and its properties, but can’t modify it. The user
who locked the primitives is allowed to unlock it. However, if
another user locked the primitives, then only that may unlock
it. Locking and unlocking are applied recursively to contain-
ers. Therefore, if a user locks a container primitive, for
example, a table, form, or page, all the contents of that con-

US 2014/0344777 Al

tainer are also locked. The same rule applies to the unlock
operation except that primitives that were locked by another
user will remain locked. To lock a primitive:

[0383] 1) Right click on the primitive to lock.

[0384] 2) Select ‘Lock’ from the context menu.

[0385] 3) To unlock a primitive:

[0386] 4) Right click on the primitives to unlock.
[0387] 5) Select ‘unlock’ form the context menu. If

unlock is not available, then the primitives was probably
locked by another user.

Selecting Multiple Primitives

[0388] Selecting multiple primitives allows the user to
apply most whiteboard operations, for example, copy, move
and hide, or to edit primitives properties simultaneously. To
select multiple primitives on the whiteboard, the user can use
the lasso or Ctrl-left-click. Use the lasso to select multiple
primitives by left clicking on the gray area of the whiteboard
and dragging the mouse to create a rectangle that contains the
desired primitives. Alternatively, hold down the Ctrl key
while clicking on the primitives to be selected.

Centering on Pages

[0389] The user may quickly scroll the whiteboard coordi-
nates to focus on a particular page by using the ‘center on’
feature. To center on a page:
[0390] 1) Right click on the page name in the project
browser page list.
[0391] 2) Select ‘center on’ from the context menu.

Simulating Pages from the Studio Client Application

[0392] The user can use the ‘Simulate’ toolbar button or the
right click menu to simulate a particular page from the Studio
application. To use the toolbar:

[0393] 1) Select the page to be simulated by clicking on
the bar, colored blue in the preferred embodiment, at the
top of the page in the whiteboard.

[0394] 2) Click on the ‘Simulate’ button in the toolbar
area. The selected page will be simulated on the user’s
browser.

Using the Property Editor

[0395] Properties allow the user to control the details of any
primitives. The property editor allows the user to adjust these
properties, making the interactive representation model more
realistic. The property editor pane is displayed on the right
side of the Studio application window. The user can drag the
left border to adjust the width. When a primitive in the white-
board is selected, the properties for that element will be
displayed in the property editor pane. If the user would rather
use the property editor pop-up, F7 is pressed to toggle
between pane and pop-up modes. In pop-up mode, the user
can access the properties for a primitive by selecting the
Properties option from the right click menu or by shift-right-
clicking on a primitive, as shown in FIG. 37.

Using the Project Browser

[0396] With reference to FIG. 38, the user can use the
project browser to access the list of requirements and the
interactive representation model pages for the current appli-
cation. The tabs at the top of the project browser can be used
to switch between lists. The user can use F5 to toggle the

Nov. 20, 2014

project browser between on and off. Common activities
executed in the project browser area include:

[0397] 1) Simulating a Page

[0398] 2) Centering the whiteboard on a page

[0399] 3) Associating requirements to primitive

[0400] 4) Finding requirements associated to a primitive
[0401] 5) Filtering the requirements list.

Simulating a Page from the Project Browser

[0402]
[0403]
[0404]

To simulate a page in project browser:
1) Click on the Pages tab in the project browser
2) Right click on the page to be simulated
[0405] 3) Select ‘Simulate’ from the context menu.
[0406] Centering the Whiteboard on a Page from the
Project Browser To center the whiteboard on a particular
page:

[0407] 1) Click on the Pages tab in the project browser
[0408] 2) Right click on the page to be centered
[0409] 3) Select ‘Center On’ from the right click menu

The whiteboard will automatically scroll to center on the
selected page.

Associating Requirements to Primitives

[0410] A requirement is typically associated to a primitive
when the requirement describes a needed or desired behavior
of the subject application that the primitive represents in the
interactive representation model. This association controls
the presentation of requirements in the simulation Meta mode
as well as their inclusion and placement on the functional
specification report. This association is reflected on both the
Meta mode page and the functional specification report
through the use of automatically generated superscript num-
bers, as was previously described. To create an association
between a requirement and a primitive:

[0411] 1) Click on the Requirements tab in the project
browser
[0412] 2) Click on the desired requirement, using the (+)

symbol to expand the parent classifications if necessary.

[0413] 3) Right click on the primitive to be associated

with the requirement.

[0414] 4) Select Associate from the context menu.
[0415] To remove an association between a requirement
and a primitive:

[0416] 1) Click on the Requirements tab in the project

browser

[0417] 2) Click on the desired requirement, using the (+)

symbol to expand the parent classifications if necessary.

[0418] 3) Right click on the primitives to be removed

from association with the requirement.

[0419] 4) Select Associate from the context menu.

Finding Requirements Associated to a Primitive

[0420] To find the requirements associated to a particular
primitive:
[0421] 1) Click on the Requirements tab in the project
browser
[0422] 2) Check the checkbox labeled “for selected
objects only”
[0423] 3) On the whiteboard, click the primitives of
interest
[0424] The requirements tab will only display the require-
ments associated to the selected primitives.

US 2014/0344777 Al

Finding Primitives Associated to a Requirement

[0425] To find the primitives associated to a particular
requirement:
[0426] 1) Click on the Requirements tab in the project
browser
[0427] 2) Right click on the requirement that of interest
[0428] 3) Pick ‘Find Associated’ from the context menu.
[0429] The whiteboard will highlight and center on the first
primitive thatis associated to the requirement. If there is more
than one primitives associated to the selected requirement,
pressing F3 will find ‘find next’.

Filtering the Requirements List

[0430] The filters under the List main menu option allow
the user to filter the requirement list according to the Modeled
attribute. To filter out requirements that are not modeled:

[0431] 1) Click on List in the main menu
[0432] 2) Uncheck the “not modeled” option
[0433] To filter out requirements that are modeled:
[0434] 1) Click on List in the main menu
[0435] 2) Uncheck the “modeled” option
[0436] While the present invention has been described in

connection with what is presently considered to be the most
practical and preferred embodiments, it is to be understood
that the invention is not to be limited to the disclosed embodi-
ments, but to the contrary, is intended to cover various modi-
fications and equivalent arrangements included within the
spirit of the invention, which will be set forth in claims in a
corresponding utility application and to be accorded the
broadest interpretation so as to encompass all such modifica-
tions and equivalent structures.
What is claimed is:
1. An interactive model development system comprising:
at least one computing device; and
a non-transitory computer-readable medium having com-
puter-executable instructions stored thereon that, if
executed by the at least one computing device, cause the
at least one computing device to perform operations
comprising:
presenting to a user a listing of one or more interactive
representation models of one or more proposed applica-
tions for viewing or modification, wherein the one or
more interactive representation models are not the one or
more proposed applications;
enabling the user to select a first interactive representation
model from the listing of one or more interactive repre-
sentation models of one or more proposed applications;
enabling the user to add primitives to the selected interac-
tive representation model;
enabling the user to modify attributes associated with the
primitives in the selected interactive representation
model,;
enabling the user to delete instances of primitives in the
selected interactive representation model;
enabling the user to define relationships between primi-
tives in the selected interactive representation model;
modifying a visual display of the selected interactive rep-
resentation model at least partly in response to the user:
adding a first primitive to the selected interactive repre-
sentation model, modifying attributes associated with a
second primitive in the selected interactive representa-
tion model, or deleting a third primitive in the selected
interactive representation model;

Nov. 20, 2014

generating an HTML version of the selected interactive
representation model in response to a user action;

enabling the HTML version of the selected interactive
representation model to be rendered in a browser.

2. The interactive representation modeling apparatus as
defined in claim 1, the operations further comprising:

providing a user interface via which the user can cause at

least one primitive to be hidden and hiding the at least
one primitive in response to a user instruction to hide the
at least one primitive.

3. The interactive representation modeling apparatus as
defined in claim 1, wherein the selected interactive represen-
tation model was generated using a language different than
HTML.

4. The interactive representation modeling apparatus as
defined in claim 1, the operations further comprising enabling
a user to make global changes to the selected interactive
representation model via a first primitive.

5. The interactive representation modeling apparatus as
defined in claim 1, the operations further comprising enabling
members of a team to access and modify the selected inter-
active representation model via respective user interfaces of
the interactive model development system.

6. The interactive representation modeling apparatus as
defined in claim 1, the operations further comprising enabling
the user to annotate the selected interactive representation
model with a first annotation, wherein the first annotation is
displayable to the user together with the interactive represen-
tation model when the interactive representation model is
displayed in a design area, and the first annotation is not
displayed to the user when the selected interactive represen-
tation model is displayed as an HTML model.

7. The interactive representation modeling apparatus as
defined in claim 1, wherein the interactive representation
modeling apparatus is configured to generate and provide for
display a navigable listing of pages of the selected interactive
representation model.

8. The interactive representation modeling apparatus as
defined in claim 1, wherein the interactive representation
modeling apparatus is configured to provide an interface that
enables the user to define a user interface flow, wherein the
user interface flow is definable prior to user interfaces
referred to by the user interface flow being created.

9. The interactive representation modeling apparatus as
defined in claim 1, wherein the interactive representation
modeling apparatus is configured to provide an interface that
enables the user to define a user interface flow.

10. The interactive representation modeling apparatus as
defined in claim 1, wherein the plurality of primitives further
comprises a decision primitive, wherein the decision primi-
tive is configurable to make a decision using a Boolean opera-
tion based on at least one of a radio button input, a text input,
or a check box input.

11. The interactive representation modeling apparatus as
defined in claim 1, wherein the interactive representation
modeling apparatus is configured to enable the user to specify
anotification list of users who are to receive at least a first type
of'notification related to the interactive representation model.

12. The interactive representation modeling apparatus as
defined in claim 1, wherein the interactive representation
modeling apparatus is configured to enable users to conduct
an online discussion regarding the interactive representation
model, wherein the online discussion is recorded for refer-
ence.

US 2014/0344777 Al

13. The interactive representation modeling apparatus as
defined in claim 1, wherein the interactive representation
modeling apparatus is configured to enable atleast one user to
upload a file, the file comprising at least a diagram, to facili-
tate an online discussion regarding the interactive represen-
tation model, wherein the online discussion is recorded for
reference.

14. The interactive representation modeling apparatus as
defined in claim 1, wherein a defined relationship between a
first primitive and a second primitive in the selected interac-
tive representation model is a conditional relationship.

15. A computer implemented method, the method compris-
ing:

enabling, by an interactive model development system, the

user to select a first interactive representation model of a
proposed application;

enabling, by the interactive model development system,

the user to add primitives to the selected interactive
representation model;
enabling, by the interactive model development system,
the user to modify attributes associated with the primi-
tives in the selected interactive representation model;

enabling, by the interactive model development system,
the user to delete instances of primitives in the selected
interactive representation model;

enabling, by the interactive model development system,

the user to define relationships between primitives in the
selected interactive representation model;

modifying, by the interactive model development system, a

visual display of the selected interactive representation
model at least partly in response to the user: adding a first
primitive to the selected interactive representation
model, modifying attributes associated with a second
primitive in the selected interactive representation
model, or deleting a third primitive in the selected inter-
active representation model;

generating, by the interactive model development system,

an HTML version of the selected interactive representa-
tion model in response to a user action; and

enabling, by the interactive model development system,

the HTML version of the selected interactive represen-
tation model to be rendered in a browser.

16. The method as defined in claim 15, the operations
further comprising:

providing a user interface via which the user can cause at

least one primitive to be hidden and hiding the at least
one primitive in response to a user instruction to hide the
at least one primitive.

17. The method as defined in claim 15, wherein the selected
interactive representation model was generated using a lan-
guage different than HTML.

18. The method as defined in claim 15, the operations
further comprising enabling a user to make global changes to
the selected interactive representation model via a first primi-
tive.

19. The method as defined in claim 15, the operations
further comprising enabling members of a team to access and
modify the selected interactive representation model via
respective user interfaces of the interactive model develop-
ment system.

20. The method as defined in claim 15, the operations
further comprising enabling the user to annotate the selected
interactive representation model with a first annotation,
wherein the first annotation is displayable to the user together

Nov. 20, 2014

with the interactive representation model when the interactive
representation model is displayed in a design area, and the
first annotation is not displayed to the user when the selected
interactive representation model is displayed as an HTML
model.

21. The method as defined in claim 15, wherein the inter-
active representation modeling apparatus is configured to
generate and provide for display a listing of pages of the
selected interactive representation model.

22. The method as defined in claim 15, wherein the inter-
active representation modeling apparatus is configured to
provide an interface that enables the user to define a user
interface flow, wherein the user interface flow is definable
prior to user interfaces referred to by the user interface flow
being created.

23. The method as defined in claim 15, wherein the inter-
active representation modeling apparatus is configured to
provide an interface that enables the user to define a user
interface flow.

24. The method as defined in claim 15, wherein the plural-
ity of primitives further comprises a decision primitive,
wherein the decision primitive is configurable to make a
decision based on at least one of a radio button input, a text
input, or a check box input.

25. The method as defined in claim 15, wherein the plural-
ity of primitives further comprises a decision primitive,
wherein the decision primitive is used to process decisions
using a Boolean operation.

26. The method as defined in claim 15, wherein the inter-
active representation modeling apparatus is configured to
enable the user to specify a notification list of users who are to
receive at least a first type of notification related to the inter-
active representation model.

27. The method as defined in claim 15, wherein the inter-
active representation modeling apparatus is configured to
enable users to conduct an online discussion regarding the
interactive representation model, wherein the online discus-
sion is recorded for reference.

28. The method as defined in claim 15, wherein the inter-
active representation modeling apparatus is configured to
enable at least one user to upload a file to facilitate an online
discussion regarding the selected interactive representation
model, wherein the online discussion is recorded for refer-
ence.

29. The method as defined in claim 15, wherein a defined
relationship between a first primitive and a second primitive
in the selected interactive representation model is a condi-
tional relationship.

30. A non-transitory computer-readable storage medium
storing computer executable instructions that when executed
by a processor perform operations comprising:

enabling the user to select a first interactive representation

model of a proposed application;

enabling the user to add primitives to the selected interac-

tive representation model;

enabling the user to modify attributes associated with the

primitives in the selected interactive representation
model,;

enabling the user to delete instances of primitives in the

selected interactive representation model;

enabling the user to define relationships between primi-

tives in the selected interactive representation model;
modifying a visual display of the selected interactive rep-
resentation model at least partly in response to the user:

US 2014/0344777 Al Nov. 20, 2014
49

adding a first primitive to the selected interactive repre-
sentation model, modifying attributes associated with a
second primitive in the selected interactive representa-
tion model, or deleting a third primitive in the selected
interactive representation model;

generating an HTML version of the selected interactive
representation model in response to a user action; and

enabling the HTML version of the selected interactive
representation model to be rendered in a browser.

#* #* #* #* #*

