Liquid Hand Disheswashing Detergent Composition

A hand disheswashing detergent composition comprising a specific anionic surfactant system, a pearlescent agent and a rheology modifier, to provide superior grease cleaning combined with hand mildness.
LIQUID HAND DISWASHING DETERGENT COMPOSITION

FIELD OF INVENTION

The present invention relates to a liquid hand dishwashing compositions, and to a method of cleaning dishware with such detergent composition, comprising a specific anionic surfactant system, a pearlescent agent and a rheology modifier, to combine effective grease cleaning with mildness to the skin.

BACKGROUND OF THE INVENTION

Optimisation of grease cleaning is an ongoing task in the field of hand dishwashing. Consumers utilizing liquid detergent as a light-duty liquid dishwashing detergent composition tend to wash greasy, difficult to clean items at the end of their washing experience, after easier to clean items such as glasses and flatware are cleaned. Light-duty liquid dishwashing detergent compositions require a high suds profile while providing grease cleaning.

Recent trend has been to develop hand dishwashing compositions which provide effective cleaning and as well some hand care benefits. For example, Henkel WO2007/028571 discloses liquid aqueous cleaning products for hard surfaces, in particular for manual dishwashing, comprising an active with a beneficial effect on skin sensation that can be selected from sensorial actives and/or actives with a positive biological effect. Lion JP2005-179438 describes a liquid detergent composition for kitchen which reduces hand skin problems caused by detergents, prevents hand skin surface from becoming hard and keeps the hand skin in a fresh condition by using a plant extract, a polyhydric alcohol and a surfactant.

The object of the present invention is to provide compositions which are still very effective in grease cleaning while providing as well excellent hand mildness. It has been found that the specific anionic surfactant system of the present invention will provide the excellent cleaning required from a hand dishwashing liquid composition while being very soft and gentle to the hands. It has been further found that the pearlescent agent of the present invention such as those
having a plate like structure e.g. mica, would participate to the skin benefit by their action in skin color correction and on skin gloss correction. The interference with light provided by the pearlescent agent contributes to the correction of colors and of the skin gloss via an adjustment of reflective property of skin. Therefore, it has been found that the combination of the pearlescent agent and the specific anionic surfactant system of the present invention provide superior hand care benefit together with superior grease cleaning.

It is another advantage of the composition of the present invention to communicate to the consumer that such product will indeed provide the claimed hand care benefit. The addition of the pearlescent agent will indeed provide an excellent aesthetics that will communicate to the consumer the benefit of superior skin mildness. The rheology modifier of the present invention will provide a very stable suspension of the pearlescent agent and thereby improved aesthetics to the product.

SUMMARY OF THE INVENTION

The present application relates to a liquid hand dishwashing detergent composition comprising:
(a) 4% to 40% by weight of an anionic surfactant comprising no more than 15% by weight of the total composition, of a sulfonate surfactant;
(b) 0.005% to 3% by weight of an active pearlescent agent; and
(c) 0.001% to 3% by weight of a rheology modifier.

The present invention further relates to a method of cleaning dishware with such liquid detergent composition.

DETAILED DESCRIPTION OF THE INVENTION

The liquid hand dishwashing detergent composition and the method of cleaning dishware of the present invention surprisingly provides excellent grease cleaning combined with superior hand skin mildness.
As used herein "grease" means materials comprising at least in part (i.e., at least 0.5 wt% by weight of the grease) saturated and unsaturated fats and oils, preferably oils and fats derived from animal sources such as beef and/or chicken.

As used herein "suds profile" means the amount of sudsing (high or low) and the persistence of sudsing (sustained sudsing) throughout the washing process resulting from the use of the liquid detergent composition of the present composition. As used herein "high sudsing" refers to liquid hand dishwashing detergent compositions which are both high sudsing (i.e. a level of sudsing considered acceptable to the consumer) and have sustained sudsing (i.e. a high level of sudsing maintained throughout the dishwashing operation). This is particularly important with respect to liquid dishwashing detergent compositions as the consumer uses high sudsing as an indicator of the performance of the detergent composition. Moreover, the consumer of a liquid dishwashing detergent composition also uses the sudsing profile as an indicator that the wash solution still contains active detergent ingredients. The consumer usually renews the wash solution when the sudsing subsides. Thus, a low sudsing liquid dishwashing detergent composition formulation will tend to be replaced by the consumer more frequently than is necessary because of the low sudsing level. As used herein, "high sudsing" means a liquid has a sudsing profile before soil addition of at least about 2 cm, preferably at least about 4 cm, and more preferably about 5 cm, as measured using the Sudsing Test Method described herein, and said liquid maintains a suds height of greater than 0.5 cm for at least 2 soil additions, more preferably at least 5 soil additions, even more preferably at least 8 soil additions, as measured using the Sudsing Test Method described herein.

As used herein "dishware" means a surface such as dishes, glasses, pots, pans, baking dishes and flatware made from ceramic, china, metal, glass, plastic (polyethylene, polypropylene, polystyrene, etc.) and wood.

As used herein "liquid hand dishwashing detergent composition" refers to those compositions that are employed in manual (i.e. hand) dishwashing. Such compositions are generally high sudsing or foaming in nature.

As used herein "cleaning" means applying to a surface for the purpose of cleaning, and/or disinfecting.
The liquid Composition
The liquid detergent compositions herein generally contain from 30% to 95%, preferably 40% to 80%, more preferably 50% to 75% of an aqueous liquid carrier, preferably water, in which the other essential and optional compositions components are dissolved, dispersed or suspended.

The Pearlescent agent
The pearlescent agents according to the present invention are crystalline or glassy solids, transparent or translucent compounds capable of reflecting and refracting light to produce a pearlescent effect. Typically, the pearlescent agents are crystalline particles insoluble in the composition in which they are incorporated. Preferably the pearlescent agents have the shape of thin plates or spheres. Particle size is measured across the largest diameter of the sphere. Plate-like particles are such that two dimensions of the particle (length and width) are at least 5 times the third dimension (depth or thickness). Other crystal shapes like cubes or needles or other crystal shapes do not display pearlescent effect. Many pearlescent agents like mica are natural minerals having monoclinic crystals. Shape appears to affect the stability of the agents. The spherical, even more preferably, the plate-like agents being the most successfully stabilised. Particle size of the pearlescent agent is typically below 200microns, preferably below 100microns, more preferably below 50microns.

The compositions of the present invention comprise from 0.005% to 3.0%wt, preferably from 0.01 % to 1%, by weight of the composition of the 100% active pearlescent agents. The pearlescent agents may be organic or inorganic. The composition can comprise organic and/or inorganic pearlescent agent.

Organic Pearlescent Agents:

When the composition of the present invention comprise an organic pearlescent agent, it is comprised at an active level of from 0.05% to 2.0%wt, preferably from 0.1 % to 1.0% by weight of the composition of the 100% active organic pearlescent agents. Suitable organic pearlescent agents include monoester and/or diester of alkylene glycols having the formula:

\[O - R - V^O - R_1 - P \]
wherein R_i is linear or branched C12-C22 alkyl group;
R is linear or branched C2-C4 alkylene group;
P is selected from H, C1-C4 alkyl or -COR$_2$, R_2 is C4-C22 alkyl, preferably C12-C22 alkyl; and
$n = 1-3$.

In one embodiment, the long chain fatty ester has the general structure described above, wherein
R_i is linear or branched C16-C22 alkyl group, R is -CH$_2$-CH$_2$-, and P is selected from H, or -COR$_2$, wherein R_2 is C4-C22 alkyl, preferably C12-C22 alkyl.

Typical examples are monoesters and/or diesters of ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol or tetraethylene glycol with fatty acids containing from about 6 to about 22, preferably from about 12 to about 18 carbon atoms, such as caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselic acid, linoleic acid, linolenic acid, arachic acid, gadoleic acid, behenic acid, erucic acid, and mixtures thereof.

in one embodiment, ethylene glycol monostearate (EGMS) and/or ethylene glycol distearate (EGDS) and/or polyethylene glycol monostearate (PGMS) and/or polyethyleneglycol distearate (PGDS) are the pearlescent agents used in the composition. There are several commercial sources for these materials. For example, PEG6000MS® is available from Stepan, Empilan EGDS/A® is available from Albright & Wilson.

in another embodiment, the pearlescent agent comprises a mixture of ethylene glycol diester/ethylene glycol monoester having the weight ratio of about 1:2 to about 2:1. In another embodiment, the pearlescent agent comprising a mixture of EGDS/EGMS having the weight ratio of about 60:40 to about 50:50 is found to be particularly stable in water suspension.

Co-Crystallizing Agents: Optionally, co-crystallizing agents are used to enhance the crystallization of the organic pearlescent agents such that pearlescent particles are produced in the resulting product. Suitable co-crystallizing agents include but are not limited to fatty acids and/or fatty alcohols having a linear or branched, optionally hydroxyl substituted, alkyl group containing from about 12 to about 22, preferably from about 16 to about 22, and more preferably from about 18 to 20 carbon atoms, such as palmitic acid, linoleic acid, stearic acid, oleic acid, ricinoleic acid, behenyl acid, cetearyl alcohol, hydroxystearl alcohol, behenyl alcohol, linolyl alcohol, linolenyl alcohol, and mixtures thereof. In one embodiment where the co-crystallizing agent is present, the composition comprises 1-5 wt% C12-C20 fatty acid, C12-C20 fatty alcohol,
or mixtures thereof. In another embodiment, the weight ratio between the organic pearlescent agent and the co-crystallizing agent ranges from about 3:1 to about 10:1, or from about 5:1 to about 20:1. A preferred method of incorporating organic pearlescent agents into a composition is to use a pre-crystallized organic pearlescent dispersion, named as “cold pearl”. A number of cold pearls are commercially available. These include trade names such as Stepan, Pearl-2 and Stepan Pearl 4 (produced by Stepan Company Northfield, IL), Mackpearl 202, Mackpearl 15-DS, Mackpearl DR-104, Mackpearl DR-106 (all produced by McIntyre Group, Chicago, IL), Euperlan PK900 Benz-W and Euperlan PK 3000 AM (produced by Cognis Corp).

Inorganic Pearlescent Agents:

Preferred for the composition of the present invention are inorganic pearlescent agents. When the composition of the present invention comprise an inorganic pearlescent agent, it is comprised at an active level of from 0.005% to 1.0% wt, preferably from 0.01 % to 0.2% by weight of the composition of the 100% active inorganic pearlescent agents.

Inorganic pearlescent agents include aluminosilicates and/or borosilicates. Preferred are the aluminosilicates and/or borosilicates which have been treated to have a very high refractive index, preferably silica, metal oxides, oxychloride coated aluminosilicate and/or borosilicates. More preferred inorganic pearlescent agent is mica, even more preferred titanium dioxide treated mica such as BASF Mearlin Superfine.

It is preferable to use a pearlescent pigment with a high refractive index in order to keep the level of pigment at a reasonably low level in the formulation. Hence the pearlescent agent is preferably chosen such that it has a refractive index of more than 1.41, more preferably more than 1.8, even more preferably more than 2.0. Preferably the difference in refractive index between the pearlescent agent and the composition or medium, to which pearlescent agent is then added, is at least 0.02. Preferably the difference in refractive index between the pearlescent agent and the composition is at least 0.2, more preferably at least 0.6.

One preferred embodiment is metal oxide treated mica such as titanium oxide treated mica with a titanium oxide thickness from 1 nm to 150 nm, preferentially from 2 to 100 more preferentially from 5 to 50 nm to produce a silvery iridescence or from 50 nm to 150 nm produce colors that appear bronze, copper, red, red-violet or red-green. Gold iridescence could be obtained by applying a layer of iron oxide on top of a layer of titanium oxide. Typical
interference pigment function of the thickness of the metal oxide layer could be found in scientific literature.

Other commercially available suitable inorganic pearlescent agents are available from Merck under the tradenames Iriodin, Biron, Xirona, Timiron Colorona, Dichrona, Candurin and Ronastar. Other commercially available inorganic pearlescent agent are available from BASF (Engelhard, Mearl) under tradenames Biju, Bi-Lite, Chroma-Lite, Pearl-Glo, Mearlite and from Eckart under the tradenames Prestige Soft Silver and Prestige Silk Silver Star.

The surfactant system

The composition of the present invention will comprise 4% to 40%, preferably 6% to 32%, more preferably 11% to 25% by weight of the total composition of an anionic surfactant with no more than 15%, preferably no more than 10%, more preferably no more than 5% by weight of the total composition, of a sulfonate surfactant. It has been found that such surfactant system will provide the excellent cleaning required from a hand dishwashing liquid composition while being very soft and gentle to the hands.

Suitable anionic surfactants to be used in the compositions and methods of the present invention are sulfates, sulfosuccinates, sulfoacetates, and/or sulfonates; preferably alkyl sulfate and/or alkyl ethoxy sulfates; more preferably a combination of alkyl sulfates and/or alkyl ethoxy sulfates with a combined ethoxylation degree less than 5, preferably less than 3, more preferably less than 2.

Sulphate Surfactants

Suitable sulphate surfactants for use in the compositions herein include water-soluble salts or acids of C₁₅₋₄₅ alkyl or hydroxyalkyl, sulphate and/or ether sulfate. Suitable counterions include hydrogen, alkali metal cation or ammonium or substituted ammonium, but preferably sodium.

Where the hydrocarbyl chain is branched, it preferably comprises C₁₋₄ alkyl branching units. The average percentage branching of the sulphate surfactant is preferably greater than 30%, more preferably from 35% to 80% and most preferably from 40% to 60% of the total hydrocarbyl chains.
The sulphate surfactants may be selected from C₈-C₂₀ primary, branched-chain and random alkyl
sulphates (AS); C₁₀-C₁₈ secondary (2,3) alkyl sulphates; C₁₀-C₁₈ alkyl alkoxy sulphates (AEₓS)
wherein preferably x is from 1-30; C₁₃C₈ alkyl alkoxy carboxylates preferably comprising 1-5
ethoxy units; mid-chain branched alkyl sulphates as discussed in US 6,020,303 and US
6,060,443; mid-chain branched alkyl alkoxy sulphates as discussed in US 6,008,181 and US
6,020,303.

Alkyl sulfosuccinate - sulfoacetate

Other suitable anionic surfactants are alkyl, preferably dialkyl, sulfosuccinates and/or
sulfoacetate. The dialkyl sulfosuccinates may be a C₆₋₁₅ linear or branched dialkyl
sulfosuccinate. The alkyl moieties may be symmetrical (i.e., the same alkyl moieties) or asymmetrical (i.e., different alkyl moiety.es). Preferably, the alkyl moiety is symmetrical.

Sulphonate .Surfactants

The compositions of the present invention will preferably comprise no more than 15%,
preferably no more than 10%, even more preferably no more than 5% by weight of the total
composition, of a sulphonate surfactant. Those include water-soluble salts or acids of C₈₋₁₄
alkyl or hydroxyalkyl, sulphonates; C₈ alkyl benzene sulphonates (LAS), modified
alkylbenzene sulphonate (MLAS) as discussed in WO 99/05243, WO 99/05242, WO 99/05244,
methyl ester sulphonate (MES); and alpha-olefin sulphonate (AOS). Those also include the
paraffin sulphonates may be monosulphonates and/or disulphonates, obtained by sulphonating
paraffins of 10 to 20 carbon atoms. The sulfonate surfactant also include the alkyl glyceryl
sulphonate surfactants.

Further surfactant

The compositions can comprise further a surfactant selected from nonionic, cationic,
amphoteric, zwitterionic, semi-polar nonionic surfactants, and mixtures thereof. In a further
preferred embodiment, the composition of the present invention will further comprise amphoteric
and/or zwitterionic surfactant, more preferably an amine oxide or betaine surfactant.
The total level of surfactants is usually from 1.0% to 50%wt, preferably from 5% to 40%wt, more preferably from 8% to 35% by weight of the liquid detergent composition. Non-limiting examples of optional surfactants are discussed below.

5 Amp_hqteric_and_zwitterionc_Surfactants.
The amphoteric and zwitterionic surfactant can be comprised at a level of from 0.01% to 20%, preferably from 0.2% to 15%, more preferably 0.5% to 10% by weight of the liquid detergent composition. Suitable amphoteric and zwitterionic surfactants are amine oxides and betaines.

Most preferred amine oxides are coco dimethyl amine oxide or coco amido propyl dimethyl amine oxide. Amine oxide may have a linear or mid-branched alkyl moiety. Typical linear amine oxides include water-soluble amine oxides containing one R1 C helpers alkyl moiety and 2 R2 and R3 moieties selected from the group consisting of C1-3 alkyl groups and C1-3 hydroxyalkyl groups. Preferably amine oxide is characterized by the formula R1 - N[(R2)(R3)) -O wherein R1 is a Cg-is alkyl and R2 and R3 are selected from the group consisting of methyl, ethyl, propyl, isopropyl, 2-hydroxethyl, 2-hydroxypropyl and 3-hydroxypropyl. The linear amine oxide surfactants in particular may include linear Ci6-Ci8 alkyl dimethyl amine oxides and linear Cg-Cn alkoxy ethyl dihydroxy ethyl amine oxides. Preferred amine oxides include linear Ci6, linear Ci6-Ci2, and linear Ci2-Ci4 alkyl dimethyl amine oxides. As used herein "mid-branched" means that the amine oxide has one alkyl moiety having n1 carbon atoms with one alkyl branch on the alkyl moiety having n2 carbon atoms. The alkyl branch is located on the alpha carbon from the nitrogen on the alkyl moiety. This type of branching for the amine oxide is also known in the art as an internal amine oxide. The total sum of n1 and n2 is from 10 to 24 carbon atoms, preferably from 12 to 20, and more preferably from 10 to 16. The number of carbon atoms for the one alkyl moiety (ni) should be approximately the same number of carbon atoms as the one alkyl branch (n2) such that the one alkyl moiety and the one alkyl branch are symmetric. As used herein "symmetric" means that n1 - n2 is less than or equal to 5, preferably 4, most preferably from 0 to 4 carbon atoms in at least 50 wt%, more preferably at least 75 wt% to 100 wt% of the mid-branched amine oxides for use herein.

The amine oxide further comprises two moieties, independently selected from a C1-3 alkyl, a C1-3 hydroxyalkyl group, or a polyethylene oxide group containing an average of from about 1 to about 3 ethylene oxide groups. Preferably the two moieties are selected from a C1-3 alkyl, more preferably both are selected as a C1 alkyl.
Other suitable surfactants include betaines such as alkyl betaines, alkylamidobetaine, amidazoliniumbetaine, sulfobetaine (INCI Sultaines) as well as the Phosphobetaine and preferably meets formula I:

\[R^1[\text{CO-X} \ (\text{CH}_2)_n\text{N}^+\text{(R}_3\text{)}\text{-(CH}_2\text{)}_m\text{-[CH(OH)-CH}_2\text{]}_y\text{-Y} \ (\text{I}) \text{ wherein} \]

5 \(R^1 \) is a saturated or unsaturated C6-22 alkyl residue, preferably C8-18 alkyl residue, in particular a saturated C10-16 alkyl residue, for example a saturated C12-14 alkyl residue;

X is NH, NR\(^4\) with C1-4 Alkyl residue R\(^4\), O or S,

n a number from 1 to 10, preferably 2 to 5, in particular 3,

x 0 or 1, preferably 1,

10 \(R^2, R^3 \) are independently a C1-4 alkyl residue, potentially hydroxy substituted such as a hydroxyethyl, preferably a methyl.

m a number from 1 to 4, in particular 1, 2 or 3,

y 0 or 1 and

Y is COO, SO3, OPO(OR\(^5\))O or P(O)(OR\(^5\))O, whereby R\(^5\) is a hydrogen atom H or a Cl-4 alkyl residue.

Preferred betaines are the alkyl betaines of the formula (Ia), the alkyl amido betaine of the formula (Ib), the Sulfo betaines of the formula (Ic) and the Amido sulfobetaine of the formula (Id);

20 \(R^1\text{-N}^+(\text{CH}_3)_2\text{CH}_2\text{COO}^- \) (Ia)

\(R^1\text{-CO-NH(} \text{CH}_2\text{)}_3\text{N}^+(\text{CH}_3)_2\text{-CH}_2\text{COO}^- \) (Ib)

\(R^1\text{-N}^+(\text{CH}_3)_2\text{-CH}_2\text{CH(} \text{OH)CH}_2\text{SO}_3^- \) (Ic)

\(R^1\text{-CO-NH(} \text{CH}_2\text{)}_3\text{N}^+(\text{CH}_3)_2\text{-CH}_2\text{CH(} \text{OH)CH}_2\text{SO}_3^- \) (Id) in which \(R^1 \) as the same meaning as in formula I. Particularly preferred betaines are the Carbobetaine [wherein Y=COO\(^-\)].

25 in particular the Carbobetaine of the formula (Ia) and (Ib), more preferred are the Alkylamidobetaine of the formula (Ib).]

Examples of suitable betaines and sulfobetaine are the following [designated in accordance with INCI]: Almondamidopropyl of betaines, Apricotam idopropyl betaines, Avocadamidopropyl of betaines, Babassuamidopropyl of betaines, Behenam idopropyl betaines, Behenyl of betaines, betaines, Canolam idopropyl betaines, Capryl/Capram idopropyl betaines, Carnitine, Cetyl of betaines, Cocamidoethyl of betaines, Cocam idopropyl betaines, Cocam idopropyl Hydroxysultaine, Coco betaines, Coco Hydroxysultaine, Coco/Oleam idopropyl

Nonionic Surfactants

Nonionic surfactant, when present, is comprised in a typical amount of from 0.1% to 20%, preferably 0.5% to 10% by weight of the liquid detergent composition. Suitable nonionic surfactants include the condensation products of aliphatic alcohols with from 1 to 25 moles of ethylene oxide. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 8 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 10 to 18 carbon atoms, preferably from 10 to 15 carbon atoms with from 2 to 18 moles, preferably 2 to 15, more preferably 5-12 of ethylene oxide per mole of alcohol.

Also suitable are alkylpolyglycosides having the formula $R^2O(C_\text{H}_{2n}O)(\text{glycosyl})_x$ (formula (III)), wherein R^2 of formula (III) is selected from the group consisting of alkyl, alkyl-phenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n of formula (III) is 2 or 3, preferably 2; t of formula (III) is from 0 to 10, preferably 0; and x of formula (III) is from 1.3 to 10, preferably from 1.3 to 3, most preferably from 1.3 to 2.7. The glycosyl is preferably derived from glucose. Also suitable are alkyl glycerol ethers and sorbitan esters.
Also suitable are fatty acid amide surfactants having the formula (IV):

\[\text{O} \]

\[R^6 \text{CN}(R^7)_2 \]

\[(IV)\]

wherein \(R^6\) of formula (IV) is an alkyl group containing from 7 to 21, preferably from 9 to 17, carbon atoms and each \(R^7\) of formula (IV) is selected from the group consisting of hydrogen, \(\text{Ci}-\text{C}_4\) alkyl, \(\text{Ci}-\text{C}_4\) hydroxyalkyl, and \(-\text{(C}_2\text{H}_4\text{O})_x\text{H}\) where \(x\) of formula (IV) varies from 1 to 3. Preferred amides are \(\text{C}_8-\text{C}_{20}\) ammonia amides, monoethanolamides, diethanolamides, and isopropanolamides.

Cationic Surfactants

Cationic surfactants, when present in the composition, are present in an effective amount, more preferably from 0.1% to 20%, by weight of the liquid detergent composition. Suitable cationic surfactants are quaternary ammonium surfactants. Suitable quaternary ammonium surfactants are selected from the group consisting of mono \(\text{C}_6-\text{C}_6\) preferably \(\text{Cs}-\text{Ci}_6\) alkyl or alkenyl ammonium surfactants, wherein the remaining \(N\) positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups. Another preferred cationic surfactant is an \(\text{Cs}-\text{Ci}_8\) alkyl or alkenyl ester of a quaternary ammonium alcohol, such as quaternary chlorine esters. More preferably, the cationic surfactants have the formula (V):

\[
\begin{array}{c}
\text{N}^+ \\
\text{CH}_3 \\
\text{CH}_3 \\
\text{R}^1 \\
\text{(CH}_2\text{CH}_2\text{O})_n\text{H} \\
\end{array}
\]

\[X^-\]

\[(V)\]

wherein \(R^1\) of formula (V) is \(\text{Cs}-\text{Ci}_6\) hydrocarbyl and mixtures thereof, preferably, \(\text{Cs}-\text{Ci}_4\) alkyl, more preferably, \(\text{Cs}, \text{Ci}_0\) or \(\text{Ci}_2\) alkyl, and \(X\) of formula (V) is an anion, preferably, chloride or bromide.

Rheology Modifier

The compositions of the present invention preferably have viscosity from 50 to 2000 centipoises (50-2000 \(\text{mPa}^*\text{s}\)), more preferably from 100 to 1500 centipoises (100-1500 \(\text{mPa}^*\text{s}\)), and most preferably from 500 to 1300 centipoises (500-1300 \(\text{mPa}^*\text{s}\)) at \(20^\circ\text{C}\) and \(20^\circ\text{C}\). Viscosity can be determined by conventional methods. Viscosity according to the present invention is measured...
using an AR 550 rheometer from TA instruments using a plate steel spindle at 40 mm diameter and a gap size of 500 μm. The high shear viscosity at 20 s⁻¹ and low shear viscosity at 0.05 s⁻¹ can be obtained from a logarithmic shear rate sweep from 0.1 s⁻¹ to 25 s⁻¹ in 3 minutes time at 20°C. The preferred rheology described therein may be achieved using internal existing structuring with detergent ingredients or by employing an external rheology modifier.

The composition of the present invention comprises further a rheology modifier.

The overall objective in adding such a rheology modifier to the compositions herein is to arrive at liquid compositions which are suitably functional and aesthetically pleasing from the standpoint of product thickness, product pourability, product optical properties, and/or particles suspension performance. Thus the rheology modifier will generally serve to establish appropriate rheological characteristics of the liquid product and will do so without imparting any undesirable attributes to the product such as unacceptable optical properties or unwanted phase separation.

Generally, the rheology modifier will be comprised at a level of from 0.001% to 3% by weight, preferably from 0.01% to 1% by weight, more preferably from 0.02% to 0.8% by weight of the composition.

One type of structuring agent which is especially useful in the compositions of the present invention comprises non-polymeric (except for conventional alkoxylation), crystalline hydroxy-functional materials which can form thread-like structuring systems throughout the liquid matrix when they are crystallized within the matrix in situ. Such materials can be generally characterized as crystalline, hydroxyl-containing fatty acids, fatty esters or fatty waxes. Such materials will generally be selected from those having the following formulas:

\[
\begin{align*}
\text{I)} & \quad \text{CH}_2\text{OR}^1 \\
& \quad \text{CH}—\text{OR}^2 \\
& \quad \text{CH}_2\text{OR}^3 \\
\end{align*}
\]

Wherein \(R^1\) is the chemical moiety described below and \(R^2\) is \(R^1\) or \(H\); \(R^3\) is \(R^1\) or \(H\); \(R^4\) is independently \(C_{10}-C_{22}\) alkyl or alkenyl comprising at least one hydroxyl group;

\[
\begin{align*}
R^4 & \quad \text{is} \quad -\text{C-R}^4 \\
\end{align*}
\]
wherein: \(R^7 \) is the chemical moiety designed below and \(R^4 \) is as defined above in i); \(M \) is Na\(^+\), K\(^+\), Mg\(^{2+}\) or Al\(^{3+}\), or \(H \); and

\[\text{III)} \quad Z-(\text{CH(OH)})_a-Z' \]

where \(a \) is from 2 to 4, preferably 2; \(Z \) and \(Z' \) are hydrophobic groups, especially selected from \(C_6-C_{20} \) alkyl or cycloalkyl, \(C_6-C_{24} \) alkaryl or aralkyl, \(C_6-C_{20} \) aryl or mixtures thereof. Optionally \(Z \) can contain one or more nonpolar oxygen atoms as in ethers or esters.

Materials of the Formula I type are preferred. They can be more particularly defined by the following formula:

\[\begin{align*}
&\text{II)} \quad \text{R}^7-\text{C-OM} \\
&\text{III)} \quad Z-(\text{CH(OH)})_a-Z'
\end{align*} \]

wherein:

\((x + a) \) is from between 11 and 17;
\((y + b) \) is from between 11 and 17; and
\((z + c) \) is from between 11 and 17.

Preferably, in this formula \(x = y = z = 10 \) and/or \(a = b = c = 5 \).

In a preferred embodiment, the rheology modifier is indeed a crystalline, hydroxyl-containing rheology modifier such as castor oil and its derivatives. Especially preferred are
hydrogenated castor oil derivatives such as hydrogenated castor oil and hydrogenated castor wax. Commercially available, castor oil-based, crystalline, hydroxyl-containing rheology modifiers include THIXCIN® from Rheox, Inc. (now Elementis).

Alternative commercially available materials that are suitable for use as crystalline, hydroxyl-containing rheology modifiers are those of Formula III hereinbefore. An example of a rheology modifier of this type is 1,4-di-O-benzyl-D-Threitol in the R.R, and S,S forms and any mixtures, optically active or not. These preferred crystalline, hydroxyl-containing rheology modifiers, and their incorporation into aqueous shear-thinning matrices, are described in greater detail in U.S. Patent No. 6,080,708 and in PCT Publication No. WO 02/40627.

Other types of rheology modifiers, besides the non-polymeric, crystalline, hydroxyl-containing rheology modifiers described hereinbefore, may be utilized in the liquid detergent compositions herein. Polymeric materials which will provide shear-thinning characteristics to the aqueous liquid matrix may also be employed.

Suitable polymeric rheology modifiers include those of the polyacrylate, polysaccharide or polysaccharide derivative type. Polysaccharide derivatives typically used as rheology modifiers comprise polymeric gum materials. Such gums include pectine, alginate, arabinogalactan (gum Arabic), carrageenan, gellan gum, xanthan gum and guar gum. Gellan gum is commercially marketed by CP Kelco U.S., Inc. under the KELCOGEL tradename. Processes for preparing gellan gum are described in U.S. Patent Nos. 4,326,052; 4,326,053; 4,377,636 and 4,385,123.

A further alternative and suitable rheology modifier is a combination of a solvent and a polycarboxylate polymer. More specifically the solvent is preferably an alkyene glycol. More preferably the solvent is dipropy glycol. Preferably the polycarboxylate polymer is a polycarboxylate, polymethacrylate or mixtures thereof. The solvent is preferably present at a level of from 0.5 to 15%, preferably from 2 to 9% of the composition. The polycarboxylate polymer is preferably present at a level of from 0.1 to 10%, more preferably 2 to 5% of the composition. The solvent component preferably comprises a mixture of dipropylene glycol and 1,2-propanediol. The ratio of dipropylene glycol to 1,2-propanediol is preferably 3:1 to 1:3, more preferably preferably 1:1. The polycarboxylate is preferably a copolymer of unsaturated mono- or di-carboxylic acid and 1-30C alkyl ester of the (meth) acrylic acid. In an other preferred embodiment the rheology modifier is a polycarboxylate of unsaturated mono- or di-carboxylic acid and 1-30C alkyl
ester of the (meth)acrylic acid. Such copolymers are available from Noveon Inc under the tradename Carbopol Aqua 30.

Another preferred rheology modifier for use in the present invention is Micro Fibril Cellulose (MFC) such as described in US 2008/0108714: microfibrinous cellulose, bacterially derived or otherwise, can be used to provide suspension of particulates in surfactant-thickened systems as well as in formulations with high surfactant concentrations. Such MFC is usually present at concentrations from about 0.01% to about 1%, but the concentration will depend on the desired product. For example, while from 0.02 to 0.05% is preferred for suspending small mica platelets in liquid detergent composition. Preferably, MFC is used with co-agents and/or co-processing agents such as CMC, xanthan, and/or guar gum with the microfibrinous. US2008/0108714 describes MFC in combination with xanthan gum, and CMC in a ratio of 6:3:1, and MFC, guar gum, and CMC in a ratio of 3:1:1. These blends allow to prepare MFC as a dry product which can be "activated" with high shear or high extensional mixing into water or other water-based solutions. "Activation" occurs when the MFC blends are added to water and the co-agents/co-processing agents are hydrated. After the hydration of the co-agents/co-processing agents, high shear is generally then needed to effectively disperse the MFC to produce a three-dimensional functional network that exhibits a true yield point. Commercially available MFC: Cellulon® from CPKelko.

The Humectant

As used herein "humectant" refers to a hygroscopic substance other than water that imports hydrated water bound to the humectant through hydrogen bonding, into the skin. It is often a molecule with several hydrophilic groups, most often hydroxyl groups, but amines and carboxyl groups, sometimes esterified, can also be encountered.

In a preferred embodiment, the composition of the present invention will further comprise a humectant, typically at a level of from 0.1 wt% to 50 wt%, preferably from 1 wt% to 20 wt%, more preferably from 1 wt% to 10 wt%, even more preferably from 1 wt% to 6 wt%, and most preferably from 2% to 5% by weight of the total composition.

Humectants that can be used according to this invention include those substances that exhibit an affinity for water and help enhance the absorption of water onto a substrate, preferably skin.
Specific non-limiting examples of particularly suitable humectants include glycerol, diglycerol, polyethyleneglycol (PEG-4), propylene glycol, hexylene glycol, butylene glycol, (di)-propylene glycol, glyceryl triacetate, polyalkyleneglycols, phospholipids, collagen, elastin, ceramides, lecithin, and mixtures thereof. Others can be polyethylene glycol ether of methyl glucose, pyrrolidone carboxylic acid (PCA) and its salts, pidolic acid and salts such as sodium pidolate, polyols like sorbitol, xylitol and maltitol, or polymeric polyols like polydextrose or natural extracts like quillaia, or lactic acid or urea. Also included are alkyl polyglycosides, polybetaine polysiloxanes, and mixtures thereof. Lithium chloride is an excellent humectant but is toxic. Additional suitable humectants are polymeric humectants of the family of water soluble and/or swellable and/or with water gelatin polysaccharides such as hyaluronic acid, chitosan and/or a fructose rich polysaccharide which is e.g. available as FucogelOlOOO (CAS-Nr 178463-23-5) by SOLABIA S.

Humectants containing oxygen atoms are preferred over those containing nitrogen or sulphur atoms. More preferred humectants are polyols or are carboxyl containing such as glycerol, diglycerol, Sorbitol, Propylene glycol, Polyethylene Glycol, Butylene glycol; and/or pidolic acid and salts thereof and most preferred are sorbitol, glycerol, sodium lactate and/or urea. Glycerol can be sourced from P&G Chemicals.

Enzymes

In a preferred embodiment of the present invention, the composition will further comprise and enzyme, preferably a protease. It has been found that such composition comprising a protease will provide additional hand mildness benefit.

Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically or genetically modified mutants are included. The protease may be a serine protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of neutral or alkaline proteases include:

(a) subtilisins (EC 3.4.21.62), especially those derived from Bacillus, such as Bacillus lentus, B. alkalophilus, B. licheniformis, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibbonii, and Cellumonas described in US 6,312,936 Bl, US 5,679,630, US 4,760,025, US5,030,378, WO 05/052146, DEA6022216A1 and DEA 6022224A1.

(b) trypsin-like proteases are trypsin (e.g., of porcine or bovine origin) and the Fusarium protease described in WO 89/06270.
(c) metalloproteases, especially those derived from Bacillus amyloliquefaciens described in WO 07/044993 A2.

Preferred proteases for use herein include polypeptides demonstrating at least 90%, preferably at least 95%, more preferably at least 98%, even more preferably at least 99% and especially 100% identity with the wild-type enzyme from Bacillus lentus or the wild-type enzyme from Bacillus Amyloliquefaciens, comprising mutations in one or more of the following positions, using the BPN’ numbering system and amino acid abbreviations as illustrated in WO00/37627, which is incorporated herein by reference: 3, 4, 68, 76, 87, 99, 101, 103, 104, 118, 128, 129, 130, 159, 160, 167, 170, 194, 199, 205, 217, 222, 232, 236, 245, 248, 252, 256 & 259.

More preferred proteases are those derived from the BPN’ and Carlsberg families, especially the subtilisin BPN’ protease derived from Bacillus amyloliquefaciens. In one embodiment the protease is that derived from Bacillus amyloliquefaciens, comprising the Y217L mutation whose sequence is shown below in standard 1-letter amino acid nomenclature, as described in EP342177B1 (sequence given on p. 4-5).

```
AQSPYGVQSQIKAPALHSQGYTGSNVKVAVIDSIDSSHPDLKVAGGASMVPSETNPFD
NNSHGTHVAGTVAAALNSIGVGLGAPASLYAVKVLADDSQYGYSWINGIEWAIAANNMD
VINMSLGPSGAALKAADKAVASGTVVAVAAAGNEGTGSSSTVYGYPKYPVIAVG
DSSNQASFSVSEPQDVFAMPGVSQSTLPGNGYALNSMASHVAGAAALILSKH
WTNTQVRSSLENTTTKLDSFYGGKQLNQVQAQQ
```

Preferred commercially available protease enzymes include those sold under the trade names Alcalase®, Savinase®, Primase®, Durazym®, Polarzyme®, Kannase®, Liquanase®, Ovozyme®, Neutralse®, Everlase® and Esperase® by Novozymes A/S (Denmark), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Properase®, Purafect®, Purafect Prime®, Purafect Ox®, FN3® , FN4®, Excellase® and Purafect OXP® by Genencor International, and those sold under the tradename Opticlean® and Optimase® by Solvay Enzymes. In one aspect, the preferred protease is that sold under the tradename Purafect
Prime®, supplied by Genencor International being the subtilisin BPN' protease derived from Bacillus amyloliquefaciens with Y217L mutation.

Enzymes may be incorporated into the compositions in accordance with the invention at a level of from 0.00001% to 1%, preferably at a level of from 0.0001% to 0.5%, more preferably at a level of from 0.001% to 0.1% of enzyme protein by weight of the total composition.

The aforementioned enzymes can be provided in the form of a stabilized liquid or as a protected liquid or encapsulated enzyme. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid or a protease stabilizer such as 4-formyl phenyl boronic acid according to established methods. Protected liquid enzymes or encapsulated enzymes may be prepared according to the methods disclosed in USP 4,906,396, USP 6,221,829 Bl, USP 6,359,031 Bl and USP 6,242,405 Bl.

Cationic polymer

In a preferred embodiment of the present invention, the composition will further comprise a cationic polymer. It has been found that such composition comprising a cationic polymer will provide hand care benefit, more specifically moisturization benefit.

The cationic polymer will typically be present at a level of from 0.001wt% to 10wt%, preferably from 0.01wt% to 5wt%, more preferably from 0.05% to 1% by weight of the composition.

Suitable cationic deposition polymers for use in current invention contain cationic nitrogen containing moieties such as quaternary ammonium or cationic protonated amino moieties. The average molecular weight of the cationic deposition polymer is between about 5000 to about 10 million, preferably at least about 100000, more preferably at least about 200000, but preferably not more than about 1.5 million. The polymers also have a cationic charge density ranging from about 0.2meq/g to about 5meq/g, preferably at least about 0.4meq/g, more preferably at least about 0.6meq/g, at the pH of intended use of the dishwashing liquid formulation. As used herein the "charge density" of the cationic polymers is defined as the number of cationic sites per polymer gram atomic weight (molecular weight). Any anionic counterions can be used in association with cationic deposition polymers.
Specific examples of the water soluble cationized polymer include cationic polysaccharides such as cationized cellulose derivatives, cationized starch and cationized guar gum derivatives. Also included are synthetically derived copolymers such as homopolymers of diallyl quaternary ammonium salts, diallyl quaternary ammonium salt / acrylamide copolymers, quaternized polyvinylpyrrolidone derivatives, polyglycol polyamine condensates, vinylimidazolium trichloride/vinylpyrrolidone copolymers, dimethylallylammonium chloride copolymers, vinylpyrrolidone / quaternized dimethylaminoethyl methacrylate copolymers, polyvinylpyrrolidone / alkylamino acrylate copolymers, polyvinylpyrrolidone / alkylamino acrylate / vinylcaprolactam copolymers, vinylpyrrolidone / methacrylamidopropyl trimethylammonium chloride copolymers, alkylacrylamide / acrylate / alkylaminoalkylacrylamide / polyethylene glycol methacrylate copolymers, adipic acid / dimethylaminoxypropyl ethylenetriamine copolymer, quaternised or protonated condensation polymers having at least 1 heterocyclic group end group connected to the polymer backbone through a unit derived from an alkyl amide, the connection comprising an optionally substituted ethylene group (described in WO2007/098889 by BAS, p2-19).

Preferred cationic polymers are cationic polysaccharides, more preferably cationic cellulose polymers or cationic guar gum derivatives such as guar hydroxypropyltrimonium chloride, such as the Jaguar series ex Rhodia and N-Hance polymer series available from Aqualon, even more preferred are the salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquaternium-10, such as Ucare LR400 ex Dow Amerchol.

Cleaning polymer
The composition used in the method of the present invention can further comprise one or more alkoxylated polyethyleneimine polymer. The composition may comprise from 0.01 wt% to 10 wt%, preferably from 0.01 wt% to 2 wt%, more preferably from 0.1 wt% to 1.5 wt%, even more preferable from 0.2% to 1.5% by weight of the composition of an alkoxylated polyethyleneimine polymer as described on page 2, line 33 to page 5, line 5 and exemplified in examples 1 to 4 at pages 5 to 7 of WO2007/135645 published by The Procter & Gamble Company.

The alkoxylated polyethyleneimine polymer of the present composition has a polyethyleneimine backbone having from 400 to 10000 weight average molecular weight,
preferably from 400 to 7000 weight average molecular weight, alternatively from 3000 to 7000 weight average molecular weight.

These polyamines can be prepared for example, by polymerizing ethyleneimine in presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, and the like.

The alkoxylation of the polyethyleneimine backbone includes: (1) one or two alkoxylation modifications per nitrogen atom, dependent on whether the modification occurs at a internal nitrogen atom or at an terminal nitrogen atom, in the polyethyleneimine backbone, the alkoxylation modification consisting of the replacement of a hydrogen atom on a polyalkoxylene chain having an average of about 1 to about 40 alkoxy moieties per modification, wherein the terminal alkoxy moiety of the alkoxylation modification is capped with hydrogen, a Ci-C₄ alkyl or mixtures thereof; (2) a substitution of one Ci-C₄ alkyl moiety or benzyl moiety and one or two alkoxylation modifications per nitrogen atom, dependent on whether the substitution occurs at a internal nitrogen atom or at an terminal nitrogen atom, in the polyethyleneimine backbone, the alkoxylation modification consisting of the replacement of a hydrogen atom by a polyalkoxylene chain having an average of about 1 to about 40 alkoxy moieties per modification wherein the terminal alkoxy moiety is capped with hydrogen, a Ci-C₄ alkyl or mixtures thereof; or (3) a combination thereof.

The composition may further comprise the amphiphilic graft polymers based on water soluble polyalkylene oxides (A) as a graft base and sides chains formed by polymerization of a vinyl ester component (B), said polymers having an average of ≤1 graft site per 50 alkylene oxide units and mean molar mass Mw of from 3,000 to 100,000 described in BASF patent application WO2007/138053 on pages 2 line 14 to page 10, line 34 and exemplified on pages 15-18.

Magnesium ions

The optional presence of magnesium ions may be utilized in the detergent composition when the compositions are used in softened water that contains few divalent ions. When utilized, the magnesium ions preferably are added as a hydroxide, chloride, acetate, sulphate, formate, oxide or nitrate salt to the compositions of the present invention. When included, the magnesium ions are present at an active level of from 0.01% to 1.5%, preferably from 0.015% to 1%, more preferably from 0.025 % to 0.5%, by weight of the liquid detergent composition.
Solvent

The present compositions may optionally comprise a solvent. Suitable solvents include C_4-C_6 ethers and diethers, glycols, alkoxyalkyl glycols, C_6-C_{16} glycol ethers, alkoxyalkyl aromatic alcohols, aromatic alcohols, aliphatic branched alcohols, alkoxyalkyl aliphatic branched alcohols, alkoxyalkyl linear C_4-C_5 alcohols, linear C_6-C_7 alcohols, amines, Cg-Ci alkyl and cycloalkyl hydrocarbons and halohydrocarbons, and mixtures thereof. When present, the liquid detergent composition will contain from 0.01% to 20%, preferably from 0.5% to 20%, more preferably from 1% to 10% by weight of the liquid detergent composition of a solvent. These solvents may be used in conjunction with an aqueous liquid carrier, such as water, or they may be used without any aqueous liquid carrier being present.

Hydrotrope

The liquid detergent compositions of the invention may optionally comprise a hydrotrope in an effective amount so that the liquid detergent compositions are appropriately compatible in water. Suitable hydrotropes for use herein include anionic-type hydrotropes, particularly sodium, potassium, and ammonium xylene sulphonate, sodium, potassium and ammonium toluene sulphonate, sodium potassium and ammonium cumene sulphonate, and mixtures thereof, and related compounds, as disclosed in U.S. Patent 3,915,903. The liquid detergent compositions of the present invention typically comprise from 0% to 15% by weight of the liquid detergent composition of a hydrotropic, or mixtures thereof, preferably from 1% to 10%, most preferably from 3% to 6% by weight.

Polymeric Suds Stabilizer

The compositions of the present invention may optionally contain a polymeric suds stabilizer. These polymeric suds stabilizers provide extended suds volume and suds duration of the liquid detergent compositions. These polymeric suds stabilizers may be selected from homopolymers of (N,N-dialkylamino) alkyl esters and (N,N-dialkylamino) alkyl acrylate esters. The weight average molecular weight of the polymeric suds boosters, determined via conventional gel permeation chromatography, is from 1,000 to 2,000,000, preferably from 5,000 to 1,000,000, more preferably from 10,000 to 750,000, more preferably from 20,000 to 500,000, even more preferably from 35,000 to 200,000. The polymeric suds stabilizer can optionally be present in the form of a salt, either an inorganic or organic salt, for example the citrate, sulphate, or nitrate salt of (N,N-dimethylamino)alkyl acrylate ester.
One preferred polymeric suds stabilizer is (N,N-dimethylamino)alkyl acrylate esters, namely the acrylate ester represented by the formula (VII):

\[
\begin{align*}
&\text{CH}_3 \\
&\text{N} \\
&\text{CH}_3
\end{align*}
\]

(VII)

Other preferred suds boosting polymers are copolymers of hydroxypropylacrylate/dimethyl aminoethylmethacrylate (copolymer of HPA/DMAM), represented by the formulae VIII and IX:

\[
\begin{align*}
&\text{O} \\
&\text{O} \\
&\text{OH} \\
&\text{O} \\
&\text{N}
\end{align*}
\]

(VIII) (IX)

When present in the compositions, the polymeric suds booster/stabilizer may be present in the composition from 0.01% to 15%, preferably from 0.05% to 10%, more preferably from 0.1% to 5%, by weight of the liquid detergent composition.

Another preferred class of polymeric suds booster polymers are hydrophobically modified cellulosic polymers having a number average molecular weight (Mw) below 45,000; preferably between 10,000 and 40,000; more preferably between 13,000 and 25,000. The hydrophobically modified cellulosic polymers include water soluble cellulose ether derivatives, such as nonionic and cationic cellulose derivatives. Preferred cellulose derivatives include methylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, and mixtures thereof.

Diamines

Another optional ingredient of the compositions according to the present invention is a diamine. Since the habits and practices of the users of liquid detergent compositions show considerable variation, the composition will preferably contain 0% to 15%, preferably 0.1% to
15%, preferably 0.2% to 10%, more preferably 0.25% to 6%, more preferably 0.5% to 1.5% by weight of said composition of at least one diamine.

Preferred organic diamines are those in which pK1 and pK2 are in the range of 8.0 to 11.5, preferably in the range of 8.4 to 11, even more preferably from 8.6 to 10.75. Preferred materials include 1,3-bis(methylamine)-cyclohexane (pKa=10 to 10.5), 1,3 propane diamine (pK1=10.5; pK2=8.8), 1,6 hexane diamine (pK1=11; pK2=10), 1,3 pentane diamine (DYTEK EP®) (pK1=10.5; pK2=8.9), 2-methyl 1,5 pentane diamine (DYTEK A®) (pK1=11.2; pK2=10.0). Other preferred materials include primary/primary diamines with alkylene spacers ranging from C₄ to C₈. In general, it is believed that primary diamines are preferred over secondary and tertiary diamines. pKa is used herein in the same manner as is commonly known to people skilled in the art of chemistry: in an all-aqueous solution at 25°C and for an ionic strength between 0.1 to 0.5 M. Values referenced herein can be obtained from literature, such as from "Critical Stability Constants: Volume 2, Amines" by Smith and Martel, Plenum Press, NY and London, 1975.

Carboxylic Acid

The liquid detergent compositions according to the present invention may comprise a linear or cyclic carboxylic acid or salt thereof to improve the rinse feel of the composition. The presence of anionic surfactants, especially when present in higher amounts in the region of 15-35% by weight of the composition, results in the composition imparting a slippery feel to the hands of the user and the dishware.

Carboxylic acids useful herein include C₁₋₆ linear or at least 3 carbon containing cyclic acids. The linear or cyclic carbon-containing chain of the carboxylic acid or salt thereof may be substituted with a substituent group selected from the group consisting of hydroxyl, ester, ether, aliphatic groups having from 1 to 6, more preferably 1 to 4 carbon atoms, and mixtures thereof.

Preferred carboxylic acids are those selected from the group consisting of salicylic acid, maleic acid, acetyl salicylic acid, 3 methyl salicylic acid, 4 hydroxy isophthalic acid, dihydroxyfumaric acid, 1,2, 4 benzene tricarboxylic acid, pentanoic acid and salts thereof, citric acid and salts thereof and mixtures thereof. Where the carboxylic acid exists in the salt form, the cation of the salt is preferably selected from alkali metal, alkaline earth metal, monoethanolamine, diethanolamine or triethanolamine and mixtures thereof.

The carboxylic acid or salt thereof, when present, is preferably present at the level of from 0.1% to 5%, more preferably from 0.2% to 1% and most preferably from 0.25% to 0.5%.
The liquid detergent compositions of the present invention may be packaged in any suitable packaging for delivering the liquid detergent composition for use. Preferably the package is a clear package made of glass or plastic.

Other Optional Components:
The liquid detergent compositions herein can further comprise a number of other optional ingredients suitable for use in liquid detergent compositions such as perfume, dyes, opacifiers, enzymes, chelants, thickening agents, preservatives, disinfecting agents and pH buffering means so that the liquid detergent compositions herein generally have a pH of from 3 to 14, preferably 6 to 13, most preferably 6 to 10. The pH of the composition can be adjusted using pH modifying ingredients known in the art.

A further discussion of acceptable optional ingredients suitable for use in light-duty liquid detergent composition may be found in US 5,798,505.

The process of cleaning/treating a dishware
The method of dishwashing of the present invention comprises cleaning a dishware with a light-duty liquid detergent composition comprising the specific anionic surfactant system, the pearlescent agent and the rheology modifier. Said dishwashing operation comprises the steps of applying said composition onto said dishware, typically in diluted or neat form and rinsing said composition from said surface, or leaving said composition to dry on said surface without rinsing said surface. Instead of leaving said composition to dry on said surface on the air, it can also be hand-dried using a kitchen towel. During the dishwashing operation, particularly during the application of said liquid composition to the dishware and/or rinsing away of said liquid composition from the dishware, the hands and skin of the user may be exposed to the liquid composition in diluted or neat form.

By "in its neat form", it is meant herein that said liquid composition is applied directly onto the surface to be treated without undergoing any dilution by the user (immediately) prior to the application. This direct application of that said liquid composition onto the surface to be treated can be achieved through direct squeezing of that said liquid composition out of the hand dishwashing liquid bottle onto the surface to be cleaned, or through squeezing that said liquid composition out of the hand dishwashing liquid bottle on a pre-wetted or non pre-wetted
cleaning article, such as without intending to be limiting a sponge, a cloth or a brush, prior to cleaning the targeted surface with said cleaning article. By "diluted form", it is meant herein that said liquid composition is diluted by the user with an appropriate solvent, typically with water. By "rinsing", it is meant herein contacting the dishware cleaned with the process according to the present invention with substantial quantities of appropriate solvent, typically water, after the step of applying the liquid composition herein onto said dishware. By "substantial quantities", it is meant usually 0.1 to 20 liters.

In one embodiment of the present invention, the composition herein can be applied in its diluted form. Soiled dishes are contacted with an effective amount, typically from 0.5 ml to 20 ml (per 25 dishes being treated), preferably from 3ml to 10 ml, of the liquid detergent composition of the present invention diluted in water. The actual amount of liquid detergent composition used will be based on the judgment of user, and will typically depend upon factors such as the particular product formulation of the composition, including the concentration of active ingredients in the composition, the number of soiled dishes to be cleaned, the degree of soiling on the dishes, and the like. The particular product formulation, in turn, will depend upon a number of factors, such as the intended market (i.e., U.S., Europe, Japan, etc.) for the composition product. Typical light-duty detergent compositions are described in the examples section.

Generally, from 0.01 ml to 150 ml, preferably from 3ml to 40ml, even more preferably from 3ml to 10ml of a liquid detergent composition of the invention is combined with from 2000 ml to 20000 ml, more typically from 5000 ml to 15000 ml of water in a sink having a volumetric capacity in the range of from 1000 ml to 20000 ml, more typically from 5000 ml to 15000 ml. The soiled dishes are immersed in the sink containing the diluted compositions then obtained, where contacting the soiled surface of the dish with a cloth, sponge, or similar article cleans them. The cloth, sponge, or similar article may be immersed in the detergent composition and water mixture prior to being contacted with the dish surface, and is typically contacted with the dish surface for a period of time ranged from 1 to 10 seconds, although the actual time will vary with each application and user. The contacting of cloth, sponge, or similar article to the dish surface is preferably accompanied by a concurrent scrubbing of the dish surface.

Another method of the present invention will comprise immersing the soiled dishes into a water bath or held under running water without any liquid dishwashing detergent. A device for
absorbing liquid dishwashing detergent, such as a sponge, is placed directly into a separate quantity of a concentrated pre-mix of diluted liquid dishwashing detergent, for a period of time typically ranging from 1 to 5 seconds. The absorbing device, and consequently the diluted liquid dishwashing composition, is then contacted individually to the surface of each of the soiled dishes to remove said soiling. The absorbing device is typically contacted with each dish surface for a period of time range from 1 to 10 seconds, although the actual time of application will be dependent upon factors such as the degree of soiling of the dish. The contacting of the absorbing device to the dish surface is preferably accompanied by concurrent scrubbing. Typically, said concentrated pre-mix of diluted liquid dishwashing detergent is formed by combining 1ml to 200ml of neat dishwashing detergent with 50ml to 1500ml of water, more typically from 200ml to 1000ml of water.

Sudsing Test Method.

The sudsing profile can be measured by employing a suds cylinder tester (SCT), having a set of up to 6 cylinders (reference + up to 5 test products). Each cylinder is typically 30 cm long, and 10 cm in diameter. The cylinder walls are 0.5 cm thick, and the cylinder bottom is 1 cm thick. The SCT rotates a test solution in a closed cylinder, typically a plurality of clear plastic cylinders, at a constant rate of about 21 full, vertical revolutions per minute, for 2 minutes, after which the suds height is measured. 1 ml of Eileen B. Lewis Soil (comprising 12.7% Crisco oil, 27.8% Crisco shortening, 7.6% Lard, 51.7% Refined rendered edible beef tallow, 0.14% oleic acid, 0.04% palmitic acid and 0.02% stearic acid. Supplied by J&R Coordinating Services, Ohio) is added to the test solution, agitated again, and the resulting suds height measured, again. More soiling cycles are typically added till a minimum suds height, typically 0.5cm, is reached. The number of soiling cycles is indicative for the suds mileage performance (more soiling cycles indicates better suds mileage performance). Such a test may be used to simulate the initial sudsing profile of a composition, as well as its sudsing profile during use, as more soils are introduced from the surface being washed.

The sudsing profile test is as follows:

1. Prepare a set of clean, dry, calibrated cylinders, and water having a water hardness of 30gpg, at temperature 40°C, and at surfactant active concentration of 0.03% by weight.
2. Add the appropriate amount of test composition to each cylinder and add water to make a total 500 ml of composition + water in each cylinder.
3. Seal the cylinders and place them in the SCT.
4. **Turn on the SCT and rotate the cylinders for 2 minutes.**

5. **Within 1 minute, measure the height of the suds in cm. If suds height still higher than 0.5cm, add immediately after reading the suds height the soil and restart steps 4 and 5.**

6. **The sudsing profile is the average level of suds, in cm, generated by the composition across 2 replicates.**

The "high sudsing liquid" compositions according to the invention preferably have a sudsing profile of at least about 2 cm, more preferably at least about 4 cm, and even more preferably about 5 cm, before soil addition. Soil addition cycles are stopped when suds height in each cylinder reaches 0.5 cm only. For a "high sudsing liquid" the number of soil additions preferably is at least 2, more preferably at least 5, even more preferably at least 8.

EXAMPLES

<table>
<thead>
<tr>
<th></th>
<th>Ex.1</th>
<th>Ex.2</th>
<th>Ex.3</th>
<th>Ex.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyl C11-14 Ethoxy 0.5-2 Sulfate</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Linear Alkylbenzene Sulfonate</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Coco dimethyl amine oxide</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Sodium Citrate</td>
<td>2</td>
<td>0.2</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>Glycol distearate from Euperlan® Cognis</td>
<td>0.4</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>Mica (BASF Mearlin superfine)</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Hydrogenated Castor Oil Thixcin® Elementis</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Microfibril Cellulose from CPKelco</td>
<td>0.05</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>Glycerol</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Puraffect Prime™ Protease (ppm) - Genencor</td>
<td>25</td>
<td>25</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>UCARE LR400 Dow Amerchol Polyquat 10</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Alcohol: ethanol</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Salt: Sodium Chloride</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>**Minors *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Balance to 100% with water
Nonionic may be either Cn Alkyl ethoxylated surfactant containing 9 ethoxy groups or ClO alkyl ethoxylated surfactant containing 8 ethoxy groups.

<table>
<thead>
<tr>
<th></th>
<th>Ex.5</th>
<th>Ex. 6</th>
<th>Ex. 7</th>
<th>Ex. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyl C11-14 Ethoxy 0.5-2 Sulfate</td>
<td>24</td>
<td>24</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Nonionic<sup>1</sup></td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Sodium Citrate</td>
<td>2</td>
<td>0.2</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>Glycol distearate from Euperlan® Cognis</td>
<td>0.4</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>Mica (BASF Mearlin superfine)</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Hydrogenated Castor Oil Thixcin® Elementis</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Microfribil Cellulose from CPKelco</td>
<td>0.05</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Puraffect Prime™ Protease (ppm) - Genencor</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alcohol: ethanol</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Salt: Sodium Chloride</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Minors *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Minors: dyes, opacifier, perfumes, preservatives, hydrotropes, processing aids, stabilizers.

<table>
<thead>
<tr>
<th></th>
<th>Ex.9</th>
<th>Ex. 10</th>
<th>Ex. 11</th>
<th>Ex. 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkyl C11-14 Ethoxy 0.5-2 Sulfate</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Paraffin Sulfonate</td>
<td>2</td>
<td>2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Coco amido propyl Betaine</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sodium Citrate</td>
<td>2</td>
<td>0.2</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>Glycol distearate from Euperlan® Cognis</td>
<td>0.4</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>Mica (BASF Mearlin superfine)</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Hydrogenated Castor Oil Thixcin® Elementis</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Microfribil Cellulose from CPKelco</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>Glycerol</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Puraffect Prime™ Protease (ppm) - Genencor</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alcohol: ethanol</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Salt: Sodium Chloride</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Minors *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Minors: dyes, opacifier, perfumes, preservatives, hydrotropes, processing aids, stabilizers.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as "40 mm" is intended to mean "about 40 mm".
What is claimed is:

1. A liquid hand dishwashing detergent composition comprising:
 (a) 4% to 40% by weight of an anionic surfactant comprising no more than 15% by weight of total composition, of a sulfonate surfactant;
 (b) 0.005% to 3% by weight of an active pearlescent agent; and
 (c) 0.001% to 3% by weight of a rheology modifier.

2. A composition according to claim 1 wherein the anionic surfactant level is comprised at a level of from 6% to 32%, preferably from 11% to 25% by weight of the total composition.

3. A composition according to claims 1-2 wherein the anionic surfactant system comprises no more than 10%, preferably no more than 5% by weight of the total composition of sulfonate surfactant.

4. A composition according to any of the preceding claims wherein the anionic surfactant is selected from the group consisting of alkyl sulfate, alkyl ethoxy sulfates and mixtures thereof; preferably mixtures thereof with a combined ethoxylation degree less than 5, preferably less than 3, more preferably less than 2.

5. A composition according to any preceding claims further comprising 0.01% to 20%, preferably from 0.5% to 10% by weight of a surfactant selected from the group consisting of an amphoteric surfactant, a zwitterionic surfactant, and mixtures thereof, preferably selected from the group consisting of amine oxide and betaines surfactants and mixture thereof, more preferably is a coco dimethyl amine oxide.

6. The liquid detergent composition according to any of the preceding claims further comprising from 0.1% to 20% by weight of the liquid detergent composition of a nonionic surfactant selected from the group consisting of C₈-C₂₂ aliphatic alcohols with 1 to 25 moles of ethylene oxide, alkylpolyglycosides, fatty acid amide surfactants, and mixtures thereof.
7. A composition according to claims 1-2 wherein the pearlescent agent is an inorganic pearlescent agent, preferably selected from the group consisting of aluminosilicates, borosilicates and mixtures thereof, more preferably those selected from the group consisting of silica, metal oxides, oxychloride coated aluminosilicate / borosilicate and mixtures thereof, even more preferably titanium dioxide treated mica.

8. A composition according to claim 7 wherein the active pearlescent agent has a refractive index of more than 1.41, preferably more than 1.8, more preferably more than 2.0.

9. A composition according to any of the preceding claims wherein the rheology modifier is selected from the group consisting of crystalline hydroxyl fatty ester, especially hydrogenated castor oil; crystalline hydroxyl polysaccharide, especially micro fibril cellulose; and mixtures thereof.

10. A composition according to any of the preceding claims wherein said composition further comprises a protease, preferably a serine protease, more preferably is a subtilisin derived from Bacillus lentus, Bacillus licheniformis, Bacillus alkalophilus, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus pumilus, Bacillus gibsonii, and Bacillus Cellumonas; even more preferably is a subtilisin BPN' protease derived from Bacillus amyloliquefaciens, even more preferably comprising the Y217L mutation.

11. A composition according to any of the preceding claims further comprising a cationic polymer, preferably said cationic polymer is a cationic polysaccharide, more preferably a cationic cellulose polymer or cationic guar gum derivative, even more preferably hydroxyethyl cellulose, even more preferably salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide (polyquaternium 10).

12. A composition according to claim 1 to any of the preceding claims further comprising a humectant, preferably selected from the group consisting of polyols or carboxyl humectants, more preferably selected from the group consisting of sorbitol, glycerol, sodium, urea and mixtures thereof.
13. A composition according to any of the preceding claims wherein said composition has a sudsing profile of at least 2, preferably at least 3, more preferably at least 4 cm and which maintains a suds height of greater than 0.5 cm for at least 2 soil additions, more preferably at least 5 soil additions, even more preferably at least 8 soil additions, as measured by the cylinder sudsing test method.

14. A method of cleaning a dishware with a composition according to any of the preceding claims; said process comprising the steps of applying said composition onto said dishware.
INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/021907

A CLASSIFICATION OF SUBJECT MATTER

|------|----------|----------|----------|-----------|-----------|

According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

- **Minimum documentation searched (classification system followed by classification symbols)**
 - C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- **EPO-Internal**

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 975 225 A (PROCTER & GAMBLE [US]) 1 October 2008 (2008-10-01)</td>
<td>1-4, 6-10, 12-14</td>
</tr>
<tr>
<td>Y</td>
<td>paragraphs [0010], [0033], [0075], [0079], [0092] page 3, line 13 - line 14 claims 1-9,13,16; examples page 8, line 30</td>
<td>1-14</td>
</tr>
<tr>
<td>Y</td>
<td>DE 10 2007 030109 A1 (HENKEL AG & CO KGAA) [DE] 2 January 2009 (2009-01-02) paragraphs [0007], [0-16], [0036], [0037], [57106]; claims 1,3,4,6-13; examples</td>
<td>1-14</td>
</tr>
</tbody>
</table>

Special categories of cited documents

- *N* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

8 April 2010

Date of mailing of the international search report

03/05/2010

Name and mailing address of the ISA/Authorized officer

Loi sel et-Tai sne, S

Form PCT/ISA/210 (second sheet) (April 2005)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 767 878 B1 (PAYE MARC [BE] ET AL)</td>
<td>1,2,4-8, 12-14</td>
</tr>
<tr>
<td></td>
<td>column 2, line 14 - line 25; claim 1; example 1</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 0 520 551 A (UNILEVER NV [NL]; UNILEVER PLC [GB]) 30 December 1992 (1992-12-30)</td>
<td>1-4, 6, 9</td>
</tr>
<tr>
<td></td>
<td>claims 1,4,7-10,12,16; examples I-IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 3, line 11 - line 14</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 2008/242581 A1 (MURPHY CYNTHIA M [US] ET AL) 2 October 2008 (2008-10-02)</td>
<td>1,2,4-7, 12-14</td>
</tr>
<tr>
<td></td>
<td>paragraphs [0011], [0027], [0028], [0063], [0067]; claims 1-9,19; example</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 3, line 13 - line 16; claims 1-5,13; examples 6-16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 7, lines 8-10 - lines 18-22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 20, line 6 - page 21, line 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 28, line 7 - line 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraphs [0001], [0004], [0005], [0007], [0009]; claims 1-5; example 3</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 1975225</td>
<td>A</td>
<td>AR 067226 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2679282 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101636479 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008114225 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008234169 Al</td>
</tr>
<tr>
<td>DE 10200703010</td>
<td>Al</td>
<td>WO 20090000606 Al</td>
</tr>
<tr>
<td>US 6767878</td>
<td>Bl</td>
<td>AU 2004260156 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2532562 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EC SP066372 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1646709 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA06000432 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 544619 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005010138 Al</td>
</tr>
<tr>
<td>EP 0520551</td>
<td>A</td>
<td>DE 69209381 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69209381 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2084920 T3</td>
</tr>
<tr>
<td>US 2008242581</td>
<td>Al</td>
<td>AU 2008232915 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2682717 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2137289 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PA 8775201 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008121541 Al</td>
</tr>
<tr>
<td>WO 2007111898</td>
<td>A</td>
<td>CA 2642950 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2642955 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2642958 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2642962 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2642970 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1996687 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1996692 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1996688 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1999243 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1996689 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009530478 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009530479 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009530512 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009530481 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009530482 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009088363 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009069206 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009209445 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009069207 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009186797 Al</td>
</tr>
<tr>
<td>WO 2007111898</td>
<td>A</td>
<td>WO 2007111887 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007111888 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007111892 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007111899 A2</td>
</tr>
<tr>
<td>US 2008108714</td>
<td>Al</td>
<td>AR 063466 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2007317389 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2668898 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL 32132007 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101557797 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2091510 Al</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>KR 20090087030 A</td>
<td>14-08-2009</td>
<td></td>
</tr>
<tr>
<td>UY 30701 A1</td>
<td>30-04-2009</td>
<td></td>
</tr>
</tbody>
</table>