METHOD FOR PREPARING IMAGE INFORMATION

The invention relates to a method for preparing image information relating to a monitoring region in the visual region of an optoelectronic sensor, especially a laser scanner, used to record the position of objects in at least one recording plane, and in the visual region of a video system having at least one video camera. Depth images recorded by the optoelectronic sensor respectively contain pixels corresponding to points of a plurality of recorded objects in the monitoring region, with position co-ordinates of the corresponding object points, and the video images recorded by the video system of a region containing the object points comprise the pixels and the data detected by the video system. On the basis of the recorded position co-ordinates of at least one of the object points, at least one pixel corresponding to the object point and recorded by the video system is defined. The data corresponding to the pixel of the video image and the pixel of the depth image and/or the position co-ordinates of the object points are associated with each other.

Veröffentlicht:

— mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist: Veröffentlichung wird wiederholt, falls Änderungen eintreffen


Zur Erklärung der Zweitbuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

IBEO Automobile Sensor GmbH

Verfahren zur Bereitstellung von Bildinformationen

Die vorliegende Erfindung betrifft ein Verfahren zur Bereitstellung von Bildinformationen über einen Überwachungsbereich.


Als bilderfassende Vorrichtungen können beispielsweise Laserscanner zur Erfassung tiefenaufgelöster Bilder verwendet werden, die bei einer Abtastung einen Sichtbereich mit mindestens einem gepulsten Strahlungsbündel abtasten, das einen vorgegebenen Winkelbereich überstreicht und von


Tiefenauflösende Bilder sind auch mit Videosystemen mit Stereokameras erfasbar. Die Genauigkeit der Tiefeninformation sinkt jedoch mit zunehmendem Abstand des Objekts von dem Stereokamerasystem, was eine Objekterkennung und -verfolgung erschwert. Darüber hinaus sollte der Abstand zwischen den Kameras des Stereokamerasystems im Hinblick auf eine möglichst hohe Genauigkeit der Tiefeninformation möglichst hoch sein, was bei beschränktem Bauraum, wie er insbesondere in einem Fahrzeug vorliegt, problematisch ist.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren bereitzustellen, mit dem Bildinformationen bereitgestellt werden können, die eine gute Objekterkennung und -verfolgung gestatten.


Bei dem erfindungsgemäßen Verfahren werden die Bilder zweier Vorrichtungen zur Bilderfassung verwendet, deren Sichtbereiche jeweils den Überwachungsbereich einschließen, der insbesondere auch einem der beiden Sichtbereiche entsprechen kann. Der Sichtbereich eines Videosys-
tems ist in der Regel dreidimensional, der eines optoelektronischen Sensors zur Lageerkennung, beispielsweise eines Laserscanners, aber nur zweidimensional. Unter der Formulierung, dass der Überwachungsbereich in dem Sichtbereich eines Sensors liegt, wird daher im Fall eines zweidimensionalen Sichtbereichs verstanden, dass die Projektion des Überwachungsbereichs auf die Erfassungsebene, in der der optoelektronische Sensor Lageinformationen erfasst, innerhalb des Sichtbereichs des optoelektronischen Sensors liegt.


Optoelektronische Sensoren zur Erfassung solcher tiefenaufgelöster Bilder sind grundsätzlich bekannt. So können beispielsweise Systeme mit Stereovideokameras verwendet werden, die eine Einrichtung zur Umsetzung der von den Kameras aufgenommenen Intensitätsbilder in tiefenaufgelöste Bilder aufweisen. Vorzugsweise werden jedoch Laserscanner verwendet, die eine sehr genaue Lagebestimmung erlauben. Insbesondere kann es sich um die eingangs genannten Laserscanner handeln.

Als zweite Vorrichtung zur Bilderektion wird ein Videosystem mit mindestens einer Videokamera verwendet, bei der es sich beispielsweise um eine Zeile von Photodetektionselementen oder, bevorzugt, um Kameras mit

Auf der Basis der erfassten Lagekoordinaten wenigstens eines der Gegenstands punkte wird dann wenigstens ein dem Gegenstandspunkt entsprechender, von dem Videosystem erfasster Bildpunkt bestimmt. Im Ergebnis wird so zu einem Bildpunkt des Tiefenbildes ein entsprechender Bildpunkt in dem Videobild bestimmt.


So erhaltene Daten für einen Gegenstandspunkt können beispielsweise als neue Bildpunkte mit Datenelementen für Lagekoordinaten und Intensitäts- oder Farbinformation ausgegeben, abgespeichert oder in einem parallel ablaufenden Verfahren, beispielsweise zur Objekterkennung und -verfolgung direkt verwendet werden.

Durch das erfindungsgemäße Verfahren können für einen Gegenstandspunkt Daten nicht nur hinsichtlich entweder der Lage oder anderer, weiterer, beispielsweise optischer Eigenschaften von Gegenstandspunkten bereitgestellt werden, wie dies bei einfachen Sensoren und Videokameras der Fall ist, sondern sowohl hinsichtlich der Lage als auch der weiteren
Eigenschaften. Beispielsweise können zusätzlich zur Lage Intensität und/oder Farbe für einen Gegenstandspunkt bereitgestellt werden.


Weiterhin ist es bevorzugt, dass die Bestimmung von Gegenstandspunkt-
ten entsprechenden Bildpunkten des Videobildes und die Zuordnung
entsprechender Daten zu den Gegenstandspunkten entsprechenden
Bildpunkten des Tiefenbildes für Gegenstandspunkte in einem vorgegebe-
nen Fusionsbereich erfolgt. Bei dem Fusionsbereich kann es sich um
einen zunächst beliebigen Bereich im Überwachungsbereich handeln, der
beispielsweise in Abhängigkeit von der Verwendung der bereitzustellenden
Daten vorgegeben werden kann. Damit kann unabhängig vom Überwach-
ungs bereich insbesondere ein kleinerer, innerhalb des Überwachungs-
bereichs liegender Bereich vorgegeben werden, in dem die Ergänzung von
Daten stattfinden soll. Der Fusionsbereich entspricht dann einer "region of
interest". Durch die Vorgabe solcher Fusionsbereiche kann das Verfahren
deutlich beschleunigt werden.

Bei einer bevorzugten Ausführungsform des Verfahrens werden das Tief-
fenbild und das Videobild jeweils zunächst segmentiert. Mindestens einem
Segment in dem Tiefenbild wird dann wenigstens ein Segment des Video-
bildes zugeordnet, das Bildpunkte enthält, die wenigstens einigen der
Bildpunkte des Segments des Tiefenbildes entsprechen. Dabei kann zwar
die Segmentierung des Tiefenbildes und die Segmentierung des Videobil-
des beispielsweise bei Videosystemen, die tiefenaufgelöste Bilder erfassen,
nach gleichen Kriterien erfolgen, doch erfolgt bevorzugt die Segmentierung
in dem Tiefenbild unter Verwendung von Lageinformationen, insbesondere
Nachbarschaftskriterien, und die Segmentierung in dem Videobild nach
anderen, beispielsweise in der Bildverarbeitung von Videobildern bekan-
ten Kriterien, beispielsweise auf der Basis von Intensitäten, Farben, Tex-
turen und/oder Kanten von Bildbereichen. Die entsprechenden Daten
können durch Vorverarbeitungsstufen, beispielsweise Bilddatenfilterung,
ermittelt werden. Diese Zuordnung ermöglicht es, Bildpunkten in dem
Tiefenbild als Daten Segmente des Videobildes zuzuordnen. Damit kann
insbesondere auch Information in Richtungen senkrecht zur Erfassungs-
5 ebene des Tiefenbildes, in der die Abtastung durch den optoelektronischen
Sensor erfolgt, erhalten werden. Dabei kann es sich beispielsweise um die
Ausdehnung des Segments bzw. eines diesem Segment zugeordneten
10 Objekts in einer dritten Dimension handeln. Anhand solcher Information
kann eine Klassifizierung von Objekten bei einem Objekterkennungs-
–verfolgungsverfahren sehr erleichtert werden. Beispielsweise kann ein
einzelner Leitpfosten an einer Straße allein aufgrund der Höhe leicht von
einer Straßenlaterne unterschieden werden, obwohl sich beide Gegen-
stände in dem Tiefenbild nicht oder kaum unterscheiden.

Weiter ist es bevorzugt, dass das Tiefenbild segmentiert wird, dass in
einem Bereich des Videobildes, der Bildpunkte enthält, die Bildpunkten
15 wenigstens eines Segments in dem Tiefenbild entsprechen, nach einem
vorgegebenen Muster gesucht wird, und dass das Ergebnis der Suche dem
Segment und/oder den das Segment bildenden Bildpunkten als Daten
zugeordnet wird. Bei dem Muster kann es sich allgemein um ein Bild eines
Bereichs eines Gegenstands handeln, beispielsweise um ein Bild eines
Verkehrszeichens oder ein Bild einer Fahrbahnmarkierung. Die Erken-
20 nung des Musters in dem Videobild kann dabei mit aus der Videobildver-
arbeitung bekannten Mustererkennungsverfahren erfolgen. Diese Weiter-
bildung des Verfahrens ist besonders dann vorteilhaft, wenn aufgrund von
Informationen über mögliche Gegenstände in dem Überwachungsbereich
bereits Vermutungen aufgestellt werden können, was für Gegenständen
bzw. diese darstellenden Objekten ein Segment in dem Tiefenbild entspre-
25 chen könnte. Beispielsweise kann bei Auftreten eines Segments, das dem
Pfahl eines Verkehrsschildes entsprechen könnte, ein Ausschnitt in dem
Videobild, dessen Breite durch die Größe und Lage des Segments und die
Ausdehnung des größten erwarteten Objekts, beispielsweise eines Ver-
kehrsschilds, gegeben ist, auf das Abbild eines bestimmten Verkehrsschil-
des hin untersucht werden, und dem Segment eine entsprechende Information, zum Beispiel der Typ des Verkehrsschildes, zugeordnet werden.

Bevorzugt können mit Hilfe einer Bildauswertung der Videobilder für Objekte, die mittels des optoelektronischen Sensors erkannt wurden, beispielsweise deren Höhe, Farbe und Materialeigenschaften ermittelt werden. Bei Verwendung einer Thermokamera als Videokamera kann auch zusätzlich auf die Temperatur geschlossen werden, was die Klassifikation einer Person deutlich erleichtert.


Die der Erfindung zugrundeliegende Aufgabe wird nach einer zweiten Alternative durch ein erfindungsgemäses Verfahren mit den Merkmalen des Anspruchs 7 gelöst.

Danach wird ein Verfahren zur Bereitstellung von Bildinformationen über einen Überwachungsbereich, der im Sichtbereich eines optoelektronischen Sensors zur Erfassung der Lage von Gegenständen in wenigstens einer Erfassungsebene und im Sichtbereich eines Videosystems zur Erfassung tiefenaufgelöster, dreidimensionaler Videobilder mit mindestens einer
Videokamera liegt, geschaffen, bei dem von dem optoelektronischen Sensor erfasste Tiefenbilder, die jeweils Gegenstandspunkten auf einem oder mehreren erfassten Gegenständen in dem Überwachungsbereich entsprechende Bildpunkte enthalten, und von dem Videosystem erfasste Videobildern eines die Gegenstandspunkte enthaltenden Bereichs, die Bildpunkte mit Lagekoordinaten der Gegenstandspunkte enthalten, bereitgestellt werden, Bildpunkte in dem Videobild, die sich nahe oder in der Erfassungsebene des Tiefenbildes befinden, durch eine Translation und/oder Rotation an entsprechende Bildpunkte des Tiefenbildes angepasst werden, und die Lagekoordinaten dieser Bildpunkte des Videobildes entsprechend der bestimmten Translation und/oder Rotation korrigiert werden.


Im Hinblick auf den optoelektronischen Sensor und die von diesem erfassten Tiefenbilder gelten die in bezug auf das erfindungsgemäße Verfahren nach der ersten Alternative gemachten Ausführungen auch für das erfindungsgemäße Verfahren nach der zweiten Alternative.

Das Videosystem, das wie das Videosystem bei dem Verfahren nach der ersten Alternative mindestens eine Videokamera aufweist, für die die Ausführungen oben auch entsprechend gelten, ist bei dem Verfahren nach der zweiten Alternative zur Erfassung tiefenaufgelöster, dreidimensionaler Videobilder ausgebildet. Das Videosystem kann dazu eine monokulare Kamera und eine Auswerteeinrichtung aufweisen, mit der aus aufeinan-
derfolgend erfassten Videobildern mit bekannten Verfahren Lagedaten für Bildpunkte bereitgestellt werden. Bevorzugt werden jedoch Videosysteme mit Stereo-Videokameras verwendet, die zur Bereitstellung tiefenaufgelöster Bilder im oben genannten Sinne ausgebildet sind und entsprechende AuswerteEinrichtungen zur Bestimmung der tiefenaufgelösten Bilder aus den von den Videokameras erfassten Daten aufweisen können. Wie bereits oben ausgeführt, können die Videokameras CCD- oder CMOS-Flächen sensors und eine abbildende Vorrichtung aufweisen, die den Sichtbereich der Videokameras auf die Flächen sensors abbildet.


Die Anpassung kann auf unterschiedliche Weise erfolgen. Bei einer ersten Variante werden die Lagekoordinaten aller Bildpunkte eines Segments auf die Erfassungsebene des optoelektronischen Sensors projiziert. Durch Mittelwertbildung der so projizierten Bildpunkte wird dann eine Lage des Segments in der Erfassungsebene des optoelektronischen Sensors definiert. Beispielsweise bei Verwendung geeigneter rechtwinkliger Koordina-
tensysteme, bei denen eine Achse senkrecht zur Erfassungsebene ausgerichtet ist, bedeutet das Verfahren allein eine Mittelung über die Koordinaten in der Erfassungsebene.


Die Anpassung kann durch Optimierungsverfahren erfolgen, bei denen beispielsweise der - einfache oder quadratische - Abstand der sich entsprechenden Bildpunkte oder die Summe der - einfachen oder quadratischen Abstände - aller betrachteten Bildpunkte minimiert wird, wobei je nach der zur Verfügung stehenden Rechenzeit die Minimierung gegebenenfalls nur teilweise erfolgen kann. Unter "Abstand" wird hierbei jede Funktion der Koordinaten der Bildpunkte verstanden, die Kriterien für einen Abstand von Punkten in einem Vektorraum erfüllt. Bei der Anpassung wird wenigstens eine Translation und/oder Rotation ermittelt, die notwendig ist, um die Bildpunkte des Videobildes an die des Tiefenbildes anzupassen.

Daraufhin werden die Lagekoordinaten dieser Bildpunkte des Videobildes entsprechend der bestimmten Translation und/oder Rotation korrigiert.
Bevorzugt werden über die bei der Anpassung verwendeten Bildpunkte hinaus auch in der Richtung senkrecht zu der Erfassungsebene liegende Bildpunkte des Videobildes entsprechend korrigiert.


Die korrigierten Koordinaten können dann, insbesondere als Bild, ausgegeben, abgespeichert oder bei einem parallel ablaufenden Verfahren verwendet werden.

Da die Lageinformation in den Tiefenbildern, insbesondere bei Verwendung von Laserscannern, deutlich genauer als die Lageinformation in Sichtrichtung bei Videosystemen ist, können so sehr genaue, tiefenaufgelöste, dreidimensionale Bilder bereitgestellt werden. Es werden die genauen Lageinformationen des Tiefenbildes mit den genauen Lageinformationen des Videobildes in dazu senkrechten Richtungen zu einem sehr genauen dreidimensionalen Bild kombiniert, was eine auf diesen Daten basierende Objekterkennung und -verfolgung wesentlich erleichtert. Beispielsweise können Werbetafeln mit Bildern als Flächen erkannt werden, so dass eine Fehlinterpretation des Videobildes vermieden werden kann.

Im Unterschied zu dem erfindungsgemäßen Verfahren nach der ersten Alternative, bei dem im wesentlichen die Lageinformation durch weitere Daten ergänzt wird, wird bei dem Verfahren nach der zweiten Alternative also die Genauigkeit der Lageinformationen in einem dreidimensionalen,
tiefenaufgelösten Bild erhöht, was eine Objekterkennung und –verfolgung wesentlich erleichtert.

Insbesondere können aufgrund der vorhandenen dreidimensionalen Informationen Objekte sehr leicht klassifiziert werden.

Weiterhin ist erfindungsgemäß eine Kombination mit dem Verfahren nach der ersten Alternative möglich, wonach weitere Videoinformationen den Bildpunkten des Videobildes zugeordnet werden.

davon vorliegen müssen. Bei der Anpassung, für die entsprechende Verfahren wie bei der Anpassung der Bildpunkte verwendet werden können, können insbesondere die Summen der einfachen oder quadratischen Abstände aller Bildpunkte des Segments des Tiefenbildes von allen Bildpunkten des Segments des Videobildes in oder nahe der Erfassungsebene im Sinne der ersten oder zweiten Variante als zu minimierende Funktion verwendet werden, so dass sich eine einfache, aber genaue Anpassung realisieren lässt.

Grundsätzlich kann das Verfahren nach der zweiten Alternative für jedes Segment einzeln durchgeführt werden, so dass im wesentlichen eine lokale Korrektur erfolgt. Es ist jedoch bevorzugt, dass die Anpassung für alle Segmente des Tiefenbildes gemeinsam durchgeführt wird, so dass Tiefenbild und Videobild in der Erfassungsebene insgesamt möglichst gut zur Deckung gebracht werden, was einer Kalibrierung der relativen Lage und Ausrichtung von optoelektronischem Sensor und Videosystem gleichkommt.


Die folgenden Weiterbildungen beziehen sich auf die erfindungsgemäßen Verfahren nach der ersten und der zweiten Alternative.
Die erfindungsgemäßen Verfahren können verflochten mit anderen Verfahren, beispielsweise zur Objekterkennung und -verfolgung, ausgeführt werden. Dabei können die Bildinformationen, d.h. bei dem Verfahren nach der ersten Alternative wenigstens die Lageinformationen und die weiteren Daten aus dem Videobild, und bei dem Verfahren nach der zweiten Alternative die korrigierten Lageinformationen, nur bei Bedarf gebildet werden. Bei den erfindungsgemäßen Verfahren ist es jedoch bevorzugt, dass die bereitgestellten Bildinformationen wenigstens die Lagekoordinaten von Gegenstandspunkten enthalten und als tiefenaufgelöstes Bild verwendet werden. Die so bereitgestellten Daten können dann wie ein tiefenaufgelöstes Bild behandelt, d.h. beispielsweise ausgegeben oder gespeichert, werden.


Bei einer anderen bevorzugten Weiterbildung wird auf der Basis der Daten eines der tiefenaufgelösten Bilder oder der zusammengeführten Bildinformationen eine Objekterkennung und -verfolgung durchgeführt und der Fusionsbereich anhand von Daten der Objekterkennung und -verfolgung bestimmt. Damit kann insbesondere eine Ergänzung von Lageinformationen aus dem Tiefenbild, das für eine Objekterkennung und -verfolgung

weise der Verlauf der Fahrbahn mit großer Genauigkeit vorhergesagt werden. Diese Vermutung kann dann zur Stützung der Interpretation der Tiefen- und/oder Videobilder verwendet werden.


Dabei ist es besonders bevorzugt, dass bei dem Verfahren nach der zweiten Alternative die Anpassung für Segmente in wenigstens zwei der mehreren Tiefenbilder gleichzeitig erfolgt. Die Anpassung für mehrere Tiefenbilder in einem Schritt ermöglicht eine konsistente Korrektur der Lageinformationen in dem Videobild, so dass auch die Lagedaten, insbesondere in einem tiefenaufgelösten Bild, für geneigte Flächen sehr genau korrigiert werden können.

25 Bestimmte Typen von optoelektronischen Sensoren wie zum Beispiel Laserscanner erfassen Tiefenbilder, indem bei einer Abtastung des Sichtbereichs die Bildpunkte nacheinander erfasst werden. Bewegt sich der optoelektronische Sensor relativ zu Gegenständen im Sichtbereich, erscheinen unterschiedliche Gegenstandspunkte desselben Gegenstands


Vorzugsweise werden kinematische Daten verwendet, die in zeitlicher Nähe zu der Abtastung und besonders bevorzugt während der Abtastung durch den Sensor erfasst werden.


Ein Fehler in den Positionen der Bildpunkte des Tiefenbildes kann auch dadurch hervorgerufen werden, dass sich zwei Objekte, von denen eines zu Beginn der Abtastung und das andere gegen Ende der Abtastung erfasst wurde, mit hoher Geschwindigkeit gegeneinander bewegen. Dies

Auch durch diese Korrektur wird die Gefahr herabgesetzt, dass es zu Problemen bei der Zusammenführung von Bildpunkten des Tiefenbildes mit Bildpunkten des Videobildes kommt. Darüber hinaus wird die nachfolgende Verarbeitung der Bildpunkte erleichtert.
Besonders bevorzugt werden bei der Korrektur die Lagekoordinaten der Bildpunkte entsprechend der ihnen zugeordneten Bewegungsdaten und der Differenz zwischen der Erfassungszeit der Bildpunkte des Tiefenbildes und einem Bezugszeitpunkt korrigiert.

Bei den Bewegungsdaten kann es sich wiederum insbesondere um kinematische Daten handeln, wobei die zur Korrektur verwendeten Verschiebungen wie oben aus den vektoriellen Geschwindigkeiten und gegebenenfalls Beschleunigungen der Objekte und der Zeitdifferenz zwischen der Erfassungszeit eines Bildpunktes des Tiefenbildes und dem Bezugszeitpunkt erfolgt.

Die genannten Korrekturen können alternativ oder kumulativ angewendet werden.

Zahlen auftreten und weiterhin keine Verschiebung der Positionen durch Variation des Bezugszeitpunkts aufeinanderfolgender Abtastungen bei bewegtem Sensor erfolgt, was eine nachfolgende Objekterkennung und -verfolgung erschweren könnte.


Bei einer weiteren bevorzugten Ausführungsform des Verfahrens werden als erster Schritt ein Tiefenbild und ein Videobild erfasst und deren Daten für die weiteren Verfahrensschritte bereitgestellt.
Weiterer Gegenstand der Erfindung ist ein Verfahren zur Erkennung und Verfolgung von Objekten, bei dem Bildinformationen über den Überwachungsbereich mit einem Verfahren nach einem der vorhergehenden Ansprüche bereitgestellt werden, und auf der Basis der bereitgestellten Bildinformationen eine Objekterkennung und -verfolgung durchgeführt wird.

Darüber hinaus ist Gegenstand der Erfindung auch ein Computerprogramm mit Programmcode-Mitteln, um eines der erfindungsgemäßen Verfahren durchzuführen, wenn das Programm auf einem Computer ausgeführt wird.

Gegenstand der Erfindung ist auch ein Computerprogrammprodukt mit Programmcode-Mitteln, die auf einem computer lesbaren Datenträger gespeichert sind, um eines der erfindungsgemäßen Verfahren durchzuführen, wenn das Computerprogrammprodukt auf einem Computer ausgeführt wird.

Unter einem Computer wird hierbei eine beliebige Datenverarbeitungsvorrichtung verstanden, mit der das Verfahren ausgeführt werden kann. Insbesondere kann diese digitale Signalprozessoren und/oder Mikroprozessoren aufweisen, mit denen das Verfahren ganz oder in Teilen ausgeführt wird.

Schließlich ist Gegenstand der Erfindung eine Vorrichtung zur Bereitstellung von tiefenaufgelösten Bildern eines Überwachungsbereichs, mit mindestens einem optoelektronischen Sensor zur Erfassung der Lage von Gegenständen in wenigstens einer Ebene, insbesondere einem Laserscanner, einem Videosystem mit mindestens einer Videokamera und einer mit dem optoelektronischen Sensor und dem Videosystem verbundenen Da-
tenverarbeitungseinrichtung, die zur Durchführung eines der erfindungs-
gemäßen Verfahren ausgebildet ist.

Bevorzugt weist das Videosystem eine Stereokamera auf. Besonders be-
vorzugt ist das Videosystem zur Erfassung tiefenaufgelöster, dreidimensi-
onaler Bilder ausgebildet. Die zur Bildung des tiefenaufgelösten Videobil-
des aus den Bildern der Stereokamera erforderliche Einrichtung kann
entweder in dem Videosystem enthalten sein oder durch die Datenverar-
beitungseinrichtung gegeben sein, in der die entsprechenden Operationen
durchgeführt werden.

Um die Lage und Ausrichtung von optoelektronischem Sensor und Video-
system fest vorgeben zu können, ist es bevorzugt, den optoelektronischem
Sensor und das Videosystem zu einem Sensor zu integrieren, so dass
deren räumliche Anordnung zueinander bereits bei der Herstellung festge-
legt wird. Andernfalls ist eine Kalibrierung notwendig. Besonders bevor-
zugt liegt eine optische Achse einer abbildenden Vorrichtung einer Video-
kamera des Videosystems zumindest im Bereich des optoelektronischen
Sensors nahe, vorzugsweise in der Erfassungsebene. Diese Anordnung
erlaubt eine besonders einfache Bestimmung von einander zugeordneten
Bildpunkten des Tiefen- und des Videobildes. Weiterhin ist es besonders
bevorzugt, dass das Videosystem eine Anordnung von Photodetektionse-
lementen aufweist, der optoelektronische Sensor ein Laserscanner ist, und
die Anordnung von Photodetektionselementen synchron mit einem zur
Abtastung eines Sichtbereichs des Laserscanners verwendeten Strah-
lungsbündel und/oder mindestens einem zur Detektion von Strahlung
dienenden Photodetektionselement des Laserscanners, insbesondere um
eine gemeinsame Achse, verschwenkbar ist, da hierdurch auch die Prob-
leme im Hinblick auf die Synchronisation der Erfassung von Videobild
und Tiefenbild reduziert werden. Bei der Anordnung von Photodetektion-
selementen kann es sich insbesondere um eine Zeile, Spalte oder eine flächige Anordnung wie zum Beispiel eine Matrix handeln. Vorzugsweise wird zur Erfassung von Bildpunkten auch in einer Richtung senkrecht zur Erfassungsebene eine Spalte oder eine flächige Anordnung verwendet.

Ausführungsformen der Erfindung werden nun beispielhaft anhand der Zeichnung beschrieben. Es zeigen:

Fig. 1   eine schematische Draufsicht auf ein Fahrzeug mit einem Laserscanner, einem Videosystem mit einer monokularen Kamera und einem vor dem Fahrzeug befindlichen Pfahl,

Fig. 2   eine teilweise schematische Seitenansicht des Fahrzeugs und des Pfahls in Fig. 1,

Fig. 3   eine schematische teilweise Darstellung eines von dem Videosystem in Fig. 1 erfassten Videobildes,

Fig. 4   eine schematische Draufsicht auf ein Fahrzeug mit einem Laserscanner, einem Videosystem mit einer Stereokamera und einem vor dem Fahrzeug befindlichen Pfahl, und

Fig. 5   eine teilweise, schematische Seitenansicht des Fahrzeugs und des Pfahls in Fig. 4.

In den Fig. 1 und 2 trägt ein Fahrzeug 10 zur Überwachung des Bereichs vor dem Fahrzeug an seiner Frontseite einen Laserscanner 12 und ein Videosystem 14 mit einer monokularen Videokamera 16. In dem Fahrzeug befindet sich weiterhin eine mit dem Laserscanner 12 und dem Videosys-
tem 14 verbundene Datenverarbeitungseinrichtung 18. In Fahrtrichtung vor dem Fahrzeug befindet sich ein Pfahl 20.

Der Laserscanner 12 weist einen in Fig. 1 nur teilweise gezeigten Sichtbereich 22 auf, der aufgrund der Anbaulage symmetrisch zur Längsachse des Fahrzeugs 10 einen Winkel von etwas mehr als 180° abdeckt. Der Sichtbereich 22 ist in Fig. 1 nur schematisch und zur besseren Darstellung insbesondere in radialer Richtung zu klein dargestellt. In dem Sichtbereich 22 befindet sich beispielhaft der Pfahl 20 als zu erfassender Gegenstand.

Der Laserscanner 12 tastet seinen Sichtbereich 22 in grundsätzlich bekannter Weise mit einem mit konstanter Winkelgeschwindigkeit umlaufenden, gepulsten Laserstrahlungsbündel 24 ab, wobei ebenfalls umlaufend in konstanten Zeitabständen $\Delta t$ zu Zeiten $\tau_i$ in festen Winkelbereichen um einen mittleren Winkel $\alpha_i$ detektiert wird, ob das Strahlungsbündel 24 von einem Punkt 26 bzw. Bereich eines Gegenstands wie des Pfahls 20 reflektiert wird. Der Index $i$ läuft dabei von 1 bis zur Anzahl der Winkelbereiche im Sichtbereich 22. Von diesen Winkelbereichen ist in Fig. 1 nur ein Winkelbereich gezeigt, der dem mittleren Winkel $\alpha_i$ zugeordnet ist. Hierbei ist der Winkelbereich zur deutlicheren Darstellung übertrieben groß gezeigt. Der Sichtbereich 22 ist, wie in Fig. 2 erkennbar, bis auf die Aufweitung des Strahlenbündels 24 zweidimensional und liegt in einer Erfassungsebene. Anhand der Laufzeit des Laserstrahlpulses wird der Sensorabstand $d_i$ des Gegenstandspunktes 26 von dem Laserscanner 12 ermittelt. Der Laserscanner 12 erfasst daher als Koordinaten in dem Bildpunkt für den Gegenstandspunkt 26 des Pfahls 20 den Winkel $\alpha_i$ und den bei diesem Winkel festgestellten Abstand $d_i$, das heißt die Position des Gegenstandspunkts 26 in Polarkoordinaten.
Die Menge der bei einer Abtastung erfassten Bildpunkte bildet ein Tiefenbild im Sinne der vorliegenden Anmeldung.

Der Laserscanner 12 tastet seinen Sichtbereich 22 jeweils in aufeinanderfolgenden Abtastungen ab, so dass eine zeitliche Folge von Abtastungen und entsprechenden Tiefenbildern entsteht.

Die monokulare Videokamera 16 des Videosystems 14 ist eine konventionelle Schwarz-Weiß-Videokamera mit einem CCD-Flächensensor 28 und einer abbildenden Vorrichtung, die in den Fig. 1 und 2 schematisch als einfache Linse 30 dargestellt ist, tatsächlich aber aus einem Linsensystem besteht, und aus dem Sichtbereich 32 des Videosystems einfallendes Licht auf den CCD-Flächensensor 28 abbildet. Der CCD-Flächensensor 28 weist in einer Matrix angeordnete Photodetektionselemente auf. Signale der Photodetektionselemente werden ausgelesen, wobei Videobilder mit Bildpunkten gebildet werden, die die Positionen der Photodetektionselemente in der Matrix oder eine andere Kennung für die Photodetektionselemente und jeweils einen der Intensität des von dem entsprechenden Photodetektionselement empfangenen Lichts entsprechenden Intensitätswert enthalten. Die Videobilder werden in diesem Ausführungsbeispiel mit der gleichen Rate erfasst, mit der von dem Laserscanner 12 Tiefenbilder erfasst werden.

Von dem Pfahl 20 ausgehendes Licht wird durch die Linse 30 auf den CCD-Flächensensor 28 abgebildet. Dies ist in den Fig. 1 und 2 für die Umrisse des Pfahls 30 durch die kurzgestrichelten Linien schematisch angedeutet.

Ein Überwachungsbereich 34 ist in den Fig. 1 und 2 schematisch durch eine gepunktete Linie näherungsweise dargestellt und durch den Teil des Sichtbereichs 32 des Videosystems gegeben, dessen Projektion auf die Ebene des Sichtbereichs 22 des Laserscanners innerhalb des Sichtbereichs 22 liegt. Innerhalb dieses Überwachungsbereichs 34 befindet sich der Pfahl 20.


Bei einem ersten Verfahren zur Bereitstellung von Bildinformationen nach einer bevorzugten ersten Ausführungsform des erfindungsgemäßen Ver-

Zur einfacheren Darstellung wird angenommen, dass sich im Überwachungsbereich 34 nur der Pfahl 20 befindet. Das von dem Laserscanner 12 erfasste Tiefenbild weist dann Bildpunkte 26', 36' und 38' auf, die den Gegenstandspunkten 26, 36 und 38 entsprechen. Diese Bildpunkte sind in Fig. 1 und Fig. 2 zusammen mit den entsprechenden Gegenstandspunkten gekennzeichnet. Von dem Videobild sind in Fig. 3 nur die Bildpunkte 40 des Videobildes gezeigt, die im wesentlichen gleiche Intensitätswerte aufweisen, da sie dem Pfahl 20 entsprechen.

Die beiden Bilder werden dann segmentiert. Ein Segment des Tiefenbildes wird aus Bildpunkten gebildet, von denen wenigstens zwei höchstens einen vorgegebenen Maximalabstand haben. Im Beispiel bilden die Bildpunkte 26', 36' und 38' ein Segment.

Die Segmenten des Videobildes enthalten Bildpunkte, deren Intensitätswerte sich um weniger als einen kleinen vorgegebenen Maximalwert unterscheiden. In Fig. 3 ist das Ergebnis der Segmentierung gezeigt, wobei Bildpunkte des Videobildes nicht gezeigt sind, die nicht zu dem gezeigten Segment gehören, das dem Pfahl 20 entspricht. Das Segment hat also im wesentlichen eine Rechteckform, die der des Pfahls 20 entspricht.

Soll bei einem Objekterkennungs- und -verfolgungsverfahren festgestellt werden, was für einem Gegenstand das aus den Bildpunkten 26', 36' und 38' des Tiefenbildes gebildete Segment entspricht, wird ergänzend die Information aus dem Videobild herangezogen. Als Fusionsbereich wird hier der gesamte Überwachungsbereich 34 vorgegeben.
Aus den Lagekoordinaten der Bildpunkte 26', 36' und 38' des Tiefenbildes werden unter Berücksichtigung der relativen Lage des Videosystems 14 zu der Erfassungsebene des Laserscanners 12, der relativen Lage zu dem Laserscanner 12 sowie der Abbildungseigenschaften der Linse 30 diejenigen Photodetektionselemente bzw. Bildpunkte 39 des Videobildes berechnet, die den Gegenstandspunkten 26, 36 und 38 entsprechen und ebenfalls in Fig. 3 gezeigt sind.


Diese Bildpunkte des Tiefenbildes können auch zusammen mit der zugeordneten Information ausgegeben oder gespeichert werden.

Ein zweites Verfahren nach einer weiteren Ausführungsform der Erfindung nach der ersten Alternative unterscheidet sich von dem ersten Verfahren dadurch, dass nicht die Informationen des Tiefenbildes, sondern

Ein weiteres Ausführungsbeispiel der Erfindung nach der zweiten Alternative wird nun anhand der Fig. 4 und 5 beschrieben. Für Gegenstände, die denen in den vorherigen Ausführungsbeispielen entsprechen, werden im folgenden die gleichen Bezugszeichen verwendet und bezüglich der genaueren Beschreibung auf das obige Ausführungsbeispiel verwiesen.

In Fig. 4 trägt ein Fahrzeug 10 zur Überwachung des Bereichs vor dem Fahrzeug einen Laserscanner 12 und ein Videosystem 42 mit einer Stereokamera 44. In dem Fahrzeug 10 befindet sich weiterhin eine mit dem Laserscanner 12 und dem Videosystem 42 verbundene Datenverarbeitungseinrichtung 46. In Fahrtrichtung vor dem Fahrzeug befindet sich wieder ein Pfahl 20.
Während der Laserscanner 12 wie im ersten Ausführungsbeispiel aufgebaut ist und seinen Sichtbereich 22 in gleicher Weise abstastet, ist bei dem vorliegendenAusführungsbeispiel statt eines Videosystems mit einer monokularen Videokamera das Videosystem 42 mit der Stereokamera 44 vorgesehen, das zur Erfassung tiefenaufgelöster Bilder ausgebildet ist. Die Stereokamera wird dabei durch zwei an den vorderen äußeren Kanten des Fahrzeugs 10 angebrachten monokularen Videokameras 48a und 48b und eine Auswerteinrichtung 50 gebildet, die mit den Videokameras 48a und 48b verbunden ist und deren Signale zu tiefenaufgelösten, dreidimensionalen Videobildern verarbeitet.

Die monokularen Videokameras 48a und 48b sind jeweils wie die Videokamera 16 des ersten Ausführungsbeispiels aufgebaut und in einer fest vorgegebenen Geometrie so gegeneinander orientiert, dass deren Sichtbereiche 52a und 52b sich überschneiden. Der Überschneidungsbereich der Sichtbereiche 52a und 52b bildet den Sichtbereich 32 der Stereokamera 44 bzw. des Videosystems 42.


Der Überwachungsbereich 34 ist wie beim ersten Ausführungsbeispiel durch die Sichtbereiche 22 und 32 des Laserscanners 12 bzw. des Videosystems 42 gegeben.
Der Laserscanner erfasst mit hoher Genauigkeit Bildpunkte 26', 36' und 38', die den Gegenständspunkten 26, 36 und 38 auf dem Pfahl 20 entsprechen.

Das Videosystem erfasst Bildpunkte in drei Dimensionen. Die in Fig. 4 gezeigten, von dem Videosystem 42 erfassten, den Gegenständspunkten 26, 36 und 38 entsprechenden Bildpunkte 26", 36" und 38" weisen aufgrund des zur Erfassung verwendeten Verfahrens größere Lageungenaigkeiten in Richtung der Tiefe des Bildes auf. Das heißt, dass die durch die Lagekoordinaten eines Bildpunktes gegebenen Abstände von dem Videosystem nicht sehr genau sind.

In Fig. 5 sind weitere Bildpunkte 54 des tiefenaufgelösten Videobildes dargestellt, die unmittelbar keinen Bildpunkten in dem Tiefenbild des Laserscanners 12 entsprechen, da sie sich nicht in oder nahe der Erfassungsebene befinden, in der die Gegenständspunkte 26, 36 und 38 liegen. Der Übersichtlichkeit halber wurden weitere Bildpunkte weggelassen.


In dem Segment des Videobildes, das im Beispiel die in den Fig. 4 und 5 gezeigten Bildpunkte 26", 36", 38" und 54 sowie weitere nicht gezeigte Bildpunkte umfasst, werden die Bildpunkte bestimmt, die einen vorgegebenen maximalen Abstand von der Errassungsebene aufweisen, in dem sich das Strahlungsbündel bewegt. Geht man davon aus, dass die tiefenaufgelösten Bilder in der Richtung senkrecht zur Erfassungsebene entsprechend der Struktur der CCD-Flächensensoren der Videokameras 48a und 48b Schichten von Bildpunkten aufweisen, kann der maximale Abstand beispielsweise durch den Abstand der Schichten gegeben sein.

Durch diesen Schritt wird ein Teilsegment des Segments des Videobildes mit den Bildpunkten 26", 36" und 38" bereitgestellt, das dem Segment des Tiefenbildes entspricht.

Durch Bestimmung einer optimalen Translation und/oder einer optimalen Rotation des Teilsegments wird nun die Lage des Teilsegments an die wesentlich genauer bestimmt Lage des Tiefensegments angepasst. Dazu wird die Summe der quadratischen Abstände der Lagekoordinaten aller Bildpunkte des Segments des Tiefenbildes von den durch eine Translation
und/oder Rotation transformierten Lagekoordinaten aller Bildpunkte des Teilsegments als Funktion der Translation und/oder Rotation minimiert.

Zur Korrektur der Lagekoordinaten des gesamten Segments des Videobildes werden die Lagekoordinaten mit der so bestimmten optimalen Translation und/oder Rotation transformiert. Dadurch wird das gesamte Segment des Videobildes in der Erfassungsebene so ausgerichtet, dass es in dem Bereich, in dem es die Erfassungsebene schneidet, die in bezug auf das durch den Laserscanner bestimmte Segment des Tiefenbildes optimale Lage in der Erfassungsebene aufweist.

Bei einer anderen Ausführungsform des Verfahrens kann auch ausgehend von einem Segment des Tiefenbildes ein geeignetes Segment des Videobildes bestimmt werden, wobei nach der Anpassung wiederum ein genaues dreidimensionales tiefenaufgelöstes Bild bereitgestellt wird.

Während bei dem erfindungsgemäßen Verfahren nach der ersten Alternative also eine Ergänzung der Bildinformation des Tiefenbildes durch das Videobild oder umgekehrt erfolgt, wird bei dem erfindungsgemäßen Verfahren nach der zweiten Alternative durch Korrektur eines tiefenaufgelösten dreidimensionalen Videobildes ein dreidimensionales tiefenaufgelöstes Bild mit hoher Genauigkeit der Tiefeninformation zumindest in der Erfassungsebene bereitgestellt.
Bezugszeichenliste

10 Fahrzeug
12 Laserscanner
5 14 Videosystem
16 monokulare Videokamera
18 Datenverarbeitungseinrichtung
20 Pfahl
22 Sichtbereich des Laserscanners
10 24 Laserstrahlungsbündel
26, 26', 26" Gegenstandspunkt, Bildpunkt
28 CCD-Flächensensor
30 Linse
32 Sichtbereich des Videosystems
15 34 Überwachungsbereich
36, 36', 36" Gegenstandspunkt, Bildpunkt
38, 38', 38" Gegenstandspunkt, Bildpunkt
39 berechnete Bildpunkte
40 Bildpunkte
20 42 Videosystem
44 Stereokamera
46 Datenverarbeitungseinrichtung
48a, b Videokameras
50 Auswerteeinrichtung
25 52a, b Sichtbereiche
54 Bildpunkte
Ansprüche

1. Verfahren zur Bereitstellung von Bildinformationen über einen Überwachungsbereich, der im Sichtbereich (22) eines optoelektronischen Sensors (12), insbesondere eines Laserscanners, zur Erfassung der Lage von Gegenständen (20) in wenigstens einer Erfassungsebene und im Sichtbereich (32) eines Videosystems (14) mit mindestens einer Videokamera (16) liegt, bei dem

- von dem optoelektronischen Sensor (12) erfasste Tiefenbilder, die jeweils Gegenstands punkten (26, 36, 38) auf einem oder mehreren erfassten Gegenständen (20) in dem Überwachungsbereich entsprechende Bildpunkte (26', 36', 38') mit Lagekoordinaten der entsprechenden Gegenstandspunkte (26, 36, 38) enthalten, und von dem Videosystem (14) erfasste Videobilder eines die Gegenstandspunkte (26, 36, 38) enthaltenden Bereichs, die Bildpunkte (26'', 36'', 38'', 54) mit von dem Videosystem (14) erfassten Daten umfassen, bereitgestellt werden,
- auf der Basis der erfassten Lagekoordinaten wenigstens eines der Gegenstandspunkte (26, 36, 38) wenigstens ein dem Gegenstandspunkt (26, 36, 38) entsprechender, von dem Videosystem (14) erfasster Bildpunkt (26'', 36'', 38'', 54) bestimmt wird, und
- dem Bildpunkt (26'', 36'', 38'', 54) des Videobildes entsprechende Daten und der Bildpunkt (26', 36', 38') des Tiefenbildes und/oder die Lagekoordinaten des Gegenstandspunkts (26, 36, 38) einander zugeordnet werden.

2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
    dass der dem Gegenstandspunkt (26, 36, 38) entsprechende Bild-
punkte (26", 36", 38", 54) des Videobildes in Abhängigkeit von den Abbildungseigenschaften des Videosystems (14) bestimmt wird.

3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,

dass auf der Basis der Lagekoordinaten eines von dem optoelektronischen Sensor (12) erfassten Gegenstandspunkts (26, 36, 38) und der Lage des Videosystems (14) festgestellt wird, ob der Gegenstandspunkt (26, 36, 38) in dem von dem Videosystem (14) erfassten Videobild ganz oder teilweise verdeckt ist.

4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,

dass die Bestimmung von Gegenstandspunkten (26, 36, 38) entsprechenden Bildpunkten (26", 36", 38", 54) des Videobildes und die Zuordnung entsprechender Daten zu den Gegenstandspunkten (26, 36, 38) entsprechenden Bildpunkten (26', 36', 38') des Tiefenbildes für Gegenstandspunkte (26, 36, 38) in einem vorgegebenen Fusionsbereich erfolgt.

5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,

dass das Tiefenbild und das Videobild jeweils segmentiert werden, und

dass mindestens einem Segment in dem Tiefenbild wenigstens ein Segment des Videobildes zugeordnet wird, das Bildpunkte (26", 36", 38", 54) enthält, die wenigstens einigen der Bildpunkte (26', 36', 38') des Segments des Tiefenbildes entsprechen.

7. Verfahren zur Bereitstellung von Bildinformationen über einen Überwachungsbereich, der im Sichtbereich (22) eines optoelektronischen Sensors (12) zur Erfassung der Lage von Gegenständen (20) in wenigstens einer Erfassungsebene und im Sichtbereich (32) eines Videosystems (42) zur Erfassung tiefenaufgelöster, dreidimensionaler Videobilder mit mindestens einer Videokamera (44, 48a, 48b) liegt, bei dem
- von dem optoelektronischen Sensor (12) erfasste Tiefenbilder, die jeweils Gegenstandspunkten (26, 36, 38) auf einem oder mehreren erfassten Gegenständen (20) in dem Überwachungsbereich entsprechende Bildpunkte (26', 36', 38') enthalten, und von dem Videosystem (42) erfasste Videobildern eines die Gegenstandspunkte (26, 36, 38) enthaltenden Bereichs, die Bildpunkte (26", 36", 38", 54) mit Lagekoordinaten der Gegenstandspunkte (26, 36, 38) enthalten, bereitgestellt werden,
- Bildpunkte (26", 36", 38", 54) in dem Videobild, die sich nahe oder in der Erfassungsebene des Tiefenbildes befinden, durch eine Translation und/oder Rotation an entsprechende Bildpunkte (26', 36', 38') des Tiefenbildes angepasst werden, und
- die Lagekoordinaten dieser Bildpunkte (26", 36", 38", 54) des Videobildes entsprechend der bestimmten Translation und/oder Rotation korrigiert werden.

8. Verfahren nach Anspruch 7,
dadurch gekennzeichnet,
dass jeweils erfasste Bilder segmentiert werden,
dass mindestens ein Segment in dem Videobild, das Bildpunkte (26", 36", 38", 54) in oder nahe der Erfassungsebene des Tiefenbildes aufweist, wenigstens durch eine Translation und/oder Rotation an ein entsprechendes Segment in dem Tiefenbild angepasst wird, und dass die Lagekoordinaten dieser Bildpunkte (26", 36", 38", 54) des Segments des Videobildes entsprechend der Translation und/oder Rotation korrigiert werden.

9. Verfahren nach Anspruch 7 oder 8,
dadurch gekennzeichnet,
dass die Anpassung für alle Segmente des Tiefenbildes gemeinsam durchgeführt wird.

10. Verfahren nach Anspruch 7 oder 8,
dadurch gekennzeichnet,
dass die Anpassung nur für Segmente in einem vorgegebenen Fusionsbereich durchgeführt wird.

11. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die bereitgestellten Bildinformationen wenigstens die Lagekoordinaten von erfassten Gegenstandspunkten (26, 36, 38) enthalten und als tiefenaufgelöstes Bild verwendet werden.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Fusionsbereich auf der Basis eines vorgegebenen Ausschnittes des Videobildes und der Abbildungseigenschaften des Videosystems (14, 42) bestimmt wird.


14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Fusionsbereich anhand von Daten über die vermutliche Lage von Gegenständen (20) oder bestimmten Bereichen auf den Gegenständen (20) bestimmt wird.


16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass mehrere Tiefenbilder eines oder mehrerer optoelektronischer Sensoren (12) verwendet werden.

17. Verfahren nach Anspruch 16,

dadurch bekannt, dass die Anpassung für Segmente in wenigstens zwei der mehreren Tiefenbilder gleichzeitig erfolgt.

18. Verfahren nach einem der vorhergehenden Ansprüche,

dadurch bekannt, dass ein Tiefenbild verwendet wird, das dadurch erhalten wurde, dass bei einer Abtastung des Sichtbereichs (22) des optoelektronischen Sensors (12) die Bildpunkte (26', 36', 38') nacheinander erfasst wurden, und


19. Verfahren nach einem der vorhergehenden Ansprüche,

dadurch bekannt, dass Tiefenbilder verwendet werden, die dadurch erhalten wurden, dass bei einer Abtastung des Sichtbereichs (22) des optoelektronischen Sensors (12) die Bildpunkte (26', 36', 38') nacheinander erfasst wurden,
dass eine Folge von Tiefenbildern erfasst und eine Objekterkennung und/oder -verfolgung auf der Basis der Bildpunkte (26', 36', 38') der
Bilder des Überwachungsbereichs durchgeführt wird, wobei jedem erkannten Objekt Bildpunkte (26', 36', 38') und jedem dieser Bildpunkte (26', 36', 38') bei der Objektverfolgung berechnete Bewegungsdaten zugeordnet werden, und

20. Verfahren nach Anspruch 19,
dadurch gekennzeichnet,
 dass bei der Korrektur die Lagekoordinaten der Bildpunkte (26', 36', 38') entsprechend der ihnen zugeordneten Bewegungsdaten und der Differenz zwischen der Erfassungszeit der Bildpunkte (26', 36', 38') des Tiefenbildes und einem Bezugszeitpunkt korrigiert werden.

21. Verfahren nach einem der Ansprüche 18 bis 20,
 dadurch gekennzeichnet,
 dass der Bezugszeitpunkt der Zeitpunkt der Erfassung des Videobildes ist.

22. Verfahren zur Erkennung und Verfolgung von Objekten, bei dem Bildinformationen über einen Überwachungsbereich mit einem Verfahren nach einem der vorhergehenden Ansprüche bereitgestellt werden,
 und auf der Basis der bereitgestellten Bildinformationen eine Objekterkennung und -verfolgung durchgeführt wird.
23. Computerprogramm mit Programmcode-Mitteln, um ein Verfahren nach einem der Ansprüche 1 bis 22 durchzuführen, wenn das Programm auf einem Computer ausgeführt wird.

24. Computerprogrammprodukt mit Programmcode-Mitteln, die auf einem computer lesbaren Datenträger gespeichert sind, um ein Verfahren nach einem der Ansprüche 1 bis 22 durchzuführen, wenn das Computerprogrammprodukt auf einem Computer ausgeführt wird.

25. Vorrichtung zur Bereitstellung von tiefenaufgelösten Bildern eines Überwachungsbereichs, mit mindestens einem optoelektronischen Sensor (12) zur Erfassung der Lage von Gegenständen (20) in wenigstens einer Erfassungsebene, insbesondere einem Laserscanner, einem Videosystem (14, 42) mit mindestens einer Videokamera (16, 44, 48a, 48b) und einer mit dem optoelektronischen Sensor (12) und dem Videosystem (14, 42) verbundenen Datenverarbeitungseinrichtung (18, 46), die zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 22 ausgebildet ist.

26. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, dass das Videosystem (14, 42) eine Stereokamera (44, 48a, 48b) aufweist.

27. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, dass das Videosystem und der optoelektronische Sensor zu einem Sensor integriert sind.
28. Vorrichtung nach Anspruch 25 oder 27,
dadurch gekennzeichnet,
dass das Videosystem eine Anordnung von Photodetektionselementen aufweist,
dass der optoelektronische Sensor ein Laserscanner ist, und
dass die Anordnung von Photodetektionselementen synchron mit
einem zur Abtastung eines Sichtbereichs des Laserscanners ver-
wendeten Strahlungsbündel und/oder mindestens einem zur Detek-
tion von Strahlung dienenden Photodetektionselement des Laser-
scanners, insbesondere um eine gemeinsame Achse, verschwenkbar
ist.
Fig. 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7  G01S17/02  G01S17/89  G01S17/93

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched  (classification system followed by classification symbols)

IPC 7  G01S

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

WPI Data, PAJ, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 512 872 A (PEUGEOT ;CITROEN SA (FR)) 11 November 1992 (1992-11-11) abstract page 4, column 5, line 13 - page 8, column 14, line 4; figures 1-10</td>
<td>1,7, 22-25</td>
</tr>
<tr>
<td>A</td>
<td>US 5 966 678 A (LAM CHI-KIN) 12 October 1999 (1999-10-12) abstract column 3, line 44 - column 6, line 51; figures 1-4</td>
<td>1,7, 22-25</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

Date of the actual completion of the International search
14 October 2002

Date of mailing of the International search report
22/10/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HA RIJKEN
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer
Blondel, F
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 275 354 A (MINOR LEWIS G ET AL) 4 January 1994 (1994-01-04) abstract column 3, line 29 -column 8, line 36; figures 1-7</td>
<td>1, 7, 22-25</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69222083 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69222083 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5142349 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5296924 A</td>
</tr>
<tr>
<td>US 5966678</td>
<td>12-10-1999</td>
<td>NONE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP 6265620 A</td>
<td>22-09-1994</td>
</tr>
</tbody>
</table>
**INTERNATIONALER RECHERCHENBERICHT**

**A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES**

IPK 7 601517/02 601517/89 601517/93

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

**B. RECHERCHIERTE GEBIETE**

Recherchebiet Mindestprüfstand (Klassifikationssystem und Klassifikationssymbole)

IPK 7 6015

Recherchebiet aber nicht zum Mindestprüfstand gehörende Veröffentlichungen, soweit diese unter die rechercherten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

WPI Data, PAJ, EPO-Internal

**C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN**

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Beirr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Seite 4, Spalte 5, Zeile 13 - Seite 8, Spalte 14, Zeile 4; Abbildungen 1-10</td>
<td>2-5, 8-11, 18-21, 26-28</td>
</tr>
</tbody>
</table>

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilie

* Benutzerdefinierte Kategorien von angegebenen Veröffentlichungen:
  * X Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
  * E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
  * L Veröffentlichung, die gegeben ist, einer Prioritätsanspruch zweideutig erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchewerch beschriebenen Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
  * O Veröffentlichung, die sich auf eine mündliche Offenlegung, eine Benutzung, eine Erstellung oder andere Maßnahmen bezieht
  * P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beantragten Prioritätsdatum veröffentlicht worden ist

* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht konfliktierend, sondern nur zum Verständnis der Erfindung zugrundeliegendes Prinzip oder der ihr zugrundeliegende Theorie angegeben ist

* X Veröffentlichung von besonderer Bedeutung, die beantragte Erfindung auf dem Antraggrund diese Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

* Veröffentlichung von besonderer Bedeutung, die beantragte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

* X Veröffentlichung, die Mitglied derselben Patentfamilie ist


Abschließendes Datum des Internationalen Recherchenberichtes: 22/10/2002

Name und Postanschrift der Internationalen Recherchebehörde:

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk
Tel. (+31-70) 340-3040, Fax: 31 651 sp0 no, Fac: (+31-70) 340-3016

Bevollmächtigter Beisitzberater: Blondel, F

Fortschritt PCT/ISA/2010 (Eins Z) (Juli 1998)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Beibehaltenden Teile</th>
<th>Blt. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentfamilie</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69222083 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69222083 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5142349 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5296924 A</td>
</tr>
<tr>
<td>US 5966678 A</td>
<td>12-10-1999</td>
<td>KEINE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5275354 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0579187 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6265620 A</td>
</tr>
</tbody>
</table>