A portable, hydraulic extremity pump apparatus for treatment of edema is disclosed. The apparatus consists of a flexible compression unit (24) configured to wrap around an individual's extremity. The compression unit (24) has a plurality of annular compartments (42, 44, 46, 48, 50, 52). Each compartment contains a prefill bladder (56) and a compression bladder (58) which are connected to a hydraulic pump (28) for pressurizing the bladders. Prefill control valves (72) are inserted between the pump (28) and each prefill bladder (56) and similarly compression control valves (70) are inserted between the hydraulic pump (28) and each compression bladder (58). Pressure sensors (76) are connected to prefill bladders (56). The control valves (70, 72) and pressure sensors (76) are connected to a programmable control processor (26) to operate the valving and monitor the bladder pressures. The prefill bladders (56) are pressurized by way of operating the hydraulic pump (28) and opening the prefill valves (72) until an appropriate pressurization is achieved. The prefill valves (72) are then closed and the pump (28) shut down with the compression unit (24) molded around the extremity. The occurrence of edema is then detected by the monitoring of the pressure in the prefill bladders by way of the pressure sensors (76) and control processor (26). Upon detecting an increase in pressure, the control processor (26) activates the pump and opens the compression control valves (70) in a sequential manner beginning with the control valve connected to the most distal bladder (52) with respect to the extremity. This causes a sequential pressurization and creates a wave of compression moving proximally on the extremity.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>AU</td>
<td>Australia</td>
<td>BB</td>
<td>Barbados</td>
<td>BE</td>
<td>Belgium</td>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>BJ</td>
<td>Benin</td>
<td>BR</td>
<td>Brazil</td>
<td>BY</td>
<td>Benin</td>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>CG</td>
<td>Congo</td>
<td>CH</td>
<td>Switzerland</td>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>CM</td>
<td>Cameroon</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>CS</td>
<td>Czechoslovakia</td>
<td>CZ</td>
<td>Czech Republic</td>
<td>DE</td>
<td>Germany</td>
<td>DK</td>
<td>Denmark</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
<td>FI</td>
<td>Finland</td>
<td>FR</td>
<td>France</td>
<td>GA</td>
<td>Gabon</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
<td>GN</td>
<td>Guinea</td>
<td>GR</td>
<td>Greece</td>
<td>HU</td>
<td>Hungary</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
<td>JP</td>
<td>Japan</td>
<td>KE</td>
<td>Kenya</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republic of Korea</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td>MG</td>
<td>Madagascar</td>
<td>ML</td>
<td>Mali</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
<td>MW</td>
<td>Malawi</td>
<td>NE</td>
<td>Niger</td>
<td>NL</td>
<td>Netherlands</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
<td>PL</td>
<td>Poland</td>
<td>PT</td>
<td>Portugal</td>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
<td>SI</td>
<td>Slovenia</td>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>US</td>
<td>United States of America</td>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXTREMITY PUMP APPARATUS

BACKGROUND OF THE INVENTION

The human cardiovascular system is composed of the heart and blood vessels through which blood moves nutrients to cells, tissues and organs, and carries metabolic products away for use or disposal. Since the capillaries are porous, there is a continual exchange of nutritive and waste materials between the blood stream and the body tissues. There is also a continual net flow of plasma fluid out through the capillary walls, adding to the tissue fluid. The blood vessels in the microcirculation region can reabsorb some of the lost fluid, but excess fluid and some plasma protein is returned to the venous circulation path via an elaborate system of collecting vessels, called the lymphatic system. Proper functioning of the lymphatic and muscle pump systems ensures that excessive lymph will not accumulate in the lower extremities. This is important since accumulation of lymph leads to edema with side effects of pain, fibrotic tissue changes, dermal ulceration, infection and, possibly, loss of limb. When trauma or paralysis prevents a patient from exercising the legs, the natural pumping action of the calf muscles is lost, and the result can be lymphedema and tissue fibrosis. Thus, people who are most likely to have lymphedema are sedentary adults such as those recovering from surgeries and those with spinal cord injuries. Lymphedema can also lead to more serious effects such as venous stasis with secondary deep venous thrombosis (DVT). In turn, DVT may lead to life threatening pulmonary embolism. Since DVT has the greatest possibility of occurring in a patient within 90 days of a spinal cord injury, it is advantageous for treatment of edema begin during this period. Generally, it is highly advantageous to treat edema as it is occurring or as soon as possible thereafter.
Where the treatment for edema is not commenced upon occurrence, treatment to reduce the swelling can be lengthy and uncomfortable for patients.

All prior art compression devices known to the inventors operate pneumatically, are bulky, are not portable, and are not responsive to edema levels. That is, none of the devices function to monitor the edema or sense the occurrence of edema for initiating the compression.

SUMMARY OF THE INVENTION

A portable, hydraulic extremity pump apparatus for treatment of edema is disclosed. The apparatus consists of a flexible compression unit configured to wrap around an individual's extremity. The compression unit has a plurality of annular compartments. Each compartment contains a prefill bladder and a compression bladder which are connected to a hydraulic pump for pressurizing the bladders. Prefill control valves are inserted between the pump and each prefill bladder and similarly compression control valves are inserted between the hydraulic pump and each compression bladder. Pressure sensors are connected to prefill bladders. The control valves and pressure sensors are connected to a programmable control processor to operate the valving and monitor the bladder pressures. The prefill bladders are pressurized by way of operating the hydraulic pump and opening the prefill valves until an appropriate pressurization is achieved. The prefill valves are then closed and the pump shut down with the compression unit molded around the extremity. The occurrence of edema is then detected by the monitoring of the pressure in the prefill bladders by way of the
pressure sensors and control processor. Upon detecting an increase in pressure, the control processor activates the pump and opens the compression control valves in a sequential manner beginning with the control valve connected to the most distal bladder with respect to the extremity. This causes a sequential pressurization and creates a wave of compression moving proximally on the extremity. After each sequence the compression control valves are opened and the compression control valves are depressurized. The pressure sensors and control processor continue to monitor the pressures after each wave of compression to detect any reduction in the edema to determine whether to continue additional sequential pressurizations. The characteristics of the pumping action and the edema detection are controllable and programmable by way of the control processor for meeting individual patient needs.

A principal feature and advantage of the invention is that the compression of the extremity is provided by hydraulic means as opposed to pneumatic means providing easier maintenance, quieter operation and facilitating the portable nature of the apparatus. Leaks are readily detectable and easily repaired.

An additional feature and advantage of the invention is that the invention continually monitors the edema and controls the operation of the device based on the existence of edema.

A feature of the invention is that the pumping parameters are sequencing are easily programmable into the apparatus and readily changeable.
A principal feature and advantage of the invention is that the invention provides sequential pumping action to create a wave of compression moving proximally on the extremity.

An additional advantage and feature of the device is that it is programmable to provide a gradient of pressure in the different bladders, with the more distal bladders having the higher pressures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a perspective of the extremity compression apparatus in position on an individual’s leg.

FIG. 2 shows a diagrammatic view of the apparatus including a cross-sectional view of the compression unit showing the prefill bladders and compression bladders.

FIG. 3 shows an elevational view of the compression unit in an expanded view revealing the inside face that contacts the individual’s extremity.

FIG. 4 shows an elevational view of the outside of the compression unit exposing valves and tubing.

FIG. 5 shows a cross-sectional of the compression unit take at line 5-5 of FIG. 4.

FIG. 6 shows a cross-sectional view of the compression unit taken at line 6-6 of FIG. 4.

FIGS. 7A, 7B, and 7C shows a schematic diagram of the control processor unit.
FIG. 7D shows a schematic of the pressure sensor circuitry.

FIG. 8 shows a flow chart diagram of a suitable program for the microcontroller.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1, a perspective view of the portable, hydraulic extremity pump apparatus is shown, designated by the numeral 20, and is shown as it is intended to be placed on an individual’s extremity. The apparatus is comprised principally of a compression unit 24, a control processor unit 26, a pump unit 28, a fluid reservoir 30, and a battery 32 to provide power to the control processor unit 26 and pump unit 28. Also shown is tubing 34 connecting the reservoir 30 with the pump unit 28 and the compression unit 24. Similarly, cables 36 connect the compression unit 24 to the control processor unit 26.

FIG. 2 shows a block diagrammatic view of the apparatus 20 including a sectional diagram of the compression unit 24. The compression unit 24 is depicted in the hollow, substantially cylindrical or frustoconical shape designed to suit the individual extremity as it would appear in place on an individual’s extremity. The compression unit 24 is shown to have six compartments 42, 44, 46, 48, 50, 52 including a most distal compartment 52 and a most proximal compartment 42. Each compartment contains a dual bladder 55 comprising an outer prefill bladder 56 and an inner compression bladder 58. The prefill bladders 56 and the compression bladder 58 are connected to the hydraulic pump 28 by way of connecting
line 62, manifold 64, prefill flow line 66, and compression flow lines 68. Compression control valves 70 are inserted in the compression flow lines 68 to control the pressurization of the compression bladders 58. Similarly, prefill control valves 72 are inserted in the prefill flow lines 66 providing for control of the pressurization of the prefill bladders 56. The compression control valves 70 and the prefill control valves 72 are electrically connected to and controlled by the control processor unit 26 by way of electrical cables 74. Also connected to the prefill bladders are pressure sensors 76 which are connected by way of flow lines or tubes 78. The pressure sensors also are electrically connected to the control processor unit by way of electric cables 80. Three-way valves 81, 82 connect to the inlet 83 and outlet 84 of the pump unit 28 to alternately allow either filling or draining of the bladders and reservoir 30.

Referring to FIG. 3, the compression unit 24 that wraps around the individual’s extremity is shown in an unwrapped position. The compression unit is depicted showing its inside face 85 which comes into contact with the extremity. The compression unit includes a securing flap 86 with a zipper 88 attached to the end and a cover flap 90 which is attached on the side opposite the inside surface 84. The flow line 62 and the connecting cables 74, 80 are shown extending upwardly from the side opposite the inner surface 84. Also depicted in FIG. 3 is the configuration of the compartments in the compression unit 24 which in cross section are roughly parallelogram or trapezoidal in shape. Notably each compartment and bladder axially overlap the adjacent compartment and bladder.
Referring to FIG. 4, the outside surface 92 of the compression unit 24 is shown. Positioned on the outside surface 92 of the compression unit 24 is the manifold 64, the prefill control valves 72, the compression control valves 70, and the pressure sensors 76. The valves, sensors, and manifold may be mounted on the inside surface by any convenient method such as straps or hook and loop material. The cover 90, shown in an open position, folds over to cover the valve sensors, tubing and wiring. The cover may be fastened by any convenient means such as hook and loop material 94 attached to the flap with cooperating hook and loop material 94 on the inside surface 92. Also mounted on the inside surface of the compression unit 24 are zipper strips 98 allowing for adjustability in the wrapping of the compression unit around the extremity. Hook and loop material may be substituted for the zipper straps.

Continuing to refer to FIG. 4, the tubes extending from the pressure sensors 76 attach into the prefill bladder connecting point 100 by way of flow lines 78. The prefill control valves 72 connect into the prefill bladder at connecting points 102 by way of flow lines 68. The compression control valves 70 are connected into the compression bladders 58 at connecting points 104 by way of the flow lines 66. The pressure sensors 76 are shown mounted on a circuit board 106. The compression unit may be comprised of a fabric such as fine nylon or similar materials for fabrication of the compartments 42, 44, 46, 48, 50, 52 flap 86 and cover 90.

Referring to FIGS. 5 and 6, cross-sectional views are shown of the compression unit 24 taken at lines 5-5 and
6-6 respectively. These views further detail the configuration of the compartments, the prefill bladders 56 and the compression bladders 58. The bladders are generally annular in shape when wrapped around the extremity and may be fabricated out of flexible sheet material such as a 12 gage frosty clear, 2-S hand polyvinyl-chloride. In the preferred embodiment the bladder material is substantially inelastic. When hydraulically pressurized the bladder expands primarily by filling the bladder and maximizing its volume. Elastic expansion of the bladder material is considered to be minimal. The overlap of each bladder with the adjacent bladder functions to smooth out the compression wave created by the sequential pressurizations of the compression bladders.

FIG. 5 shows the pressure sensors 76 mounted on the circuit board 106 hydraulically connected to the prefill bladders 56 by way of the tubes 78 and nipples 108 which extend into the interior 110 of the prefill bladders 56. The compartments 42, 44 are sized for the prefill bladders 56 and allow an overlap of adjacent prefill bladders. The circuit board 106 on which the pressure sensors 76 are mounted may be attached to the outside surface 92 of the compression unit 24 by any suitable means such as straps or hook and loop material.

FIG. 6 shows two of the prefill control valves 72 and two of the compression control valves 70 connected in the flow lines 66 to control the communication between the bladders and the manifold 64. Flow lines 66 connect to the nipples 110 at the connecting points 102, 104. The flow lines may be fabricated from plastic tubing such as
the TYGON® brand manufactured by Norton Performance
Plastics Corporation, P.O. Box 3660, Akron, OH 44309-3660.

FIGS. 7A, 7B, 7C and 7D comprise a schematic diagram
of the control processor unit. The heart of the circuitry
is a 68HC11E2FN microcontroller manufactured by Motorola
and designated by the numeral 116. The control processor
unit 26 monitors signals from the pressure sensors 76 and
generates control signals in accordance with the provided
programming to the microcontroller 116 for operating the
pump unit 28B, the compression control valves 70, the
prefill control valves 72, and the three-way valves. The
pressure sensors 76 connect to connector CON1 118 to
provide the input for the microcontroller 116. An
appropriate pressure sensor is a Model 1210B-002G-3L
sensor manufactured by ICSensors located at 1701 McCarthy
Blvd., Milpitas, CA 95035-7416. Each pressure sensor has
a connected instrumentation amplifier manufactured by
Linear Technology, Model LT1101CS shown in FIG. 7D set at
a gain of 100 to provide amplified pressure signals to the
analog digital inputs to the microcontroller via signal
lines 124 as shown on FIG. 7A. Regulated 5 volt DC power
for the pressure sensors 76 and the instrumentation
amplifier is provided by a conventional 78L05 regulator
chip also shown in FIG. 7D.

An 8 MHz crystal oscillator 128 sets the clocking
speed for the microcontroller 116. The microcontroller
116 controls the prefill control valves 72 by way of
signal lines 132 which go to metal-oxide-semiconductor-
field-effect-transistor (MOSFET), switches 136 which
switch on the light emitting diodes (LED’s) for providing
indicator lights. The signal lines 132 also connect to
high-power MOSFETS 138 such as an IRF510 available from
Motorola or other conventional sources. The high-power MOSFETS 138 connect to connector 142 on the schematics. The connector 142 mates with a cooperating connector, not shown, and connects to the cable 62 which goes to the prefill control valves 72 on the compressor unit 24. An appropriate valve for the prefill control valves would be an ASCO Model AL4112 available through Angar Scientific Company Inc., 52 Horse Hill Road, Cedar Knolls, New Jersey 07927-2098.

Continuing to refer to FIGS. 7A, 7B and 7C, output from the microcontroller 116 controls the three-way valves 81, 82 by way of signal lines 144 going to the MOSFET 146 to operate the LED's 148 as an indicator light and additionally to the high-power MOSFET 150 which then goes to the connector 142. The connector 142 mates with a cooperating connector, not shown, that connects to cabling which goes to the 3-way valves. The suitable three-way valves, Model No. D311 manufactured by SIRAI Elettromeccanica, located at Strada Per Cernusco, 19-20060 Bussero-Milano, Italy.

Additionally, the pump unit 28 which is comprised of a hydraulic motor, not specifically shown, which is operated by the microcontroller 116 by way of a signal line 148 which controls the high-power switching MOSFET 150 with an output connected to connector 142. Said signal line 148 also goes to a switching MOSFET 152 connected to a light-emitting diode 154 to provide an indicator signal as to when the pump is operating. A suitable hydraulic motor is a TUFFY Jr. Series 1000 pump available from Smart Products, Inc. 2365 Paragon Drive, Unit H, San Jose, CA 95151.
The circuitry for the compression control valves 70 is similar to that for the prefill control valves 72. Signal lines 156 control the MOSFETS 158 which operate the LED's which provide an indicator signal as to which control valves are operating. The compression control valve signal line 156 also connects to the high-power MOSFETS 162 which then output to the connector 164 on the schematic. The MOSFETS that control the light emitting diodes may be a Si995504 manufactured by Siliconix Incorporated.

Push button switches 164, 166, 168 shown on FIG. 7B control the operation of the extremity pump apparatus 20 by way of activating the microcontroller. The power to the apparatus may be provided by a 12 volt battery source offering portability or other suitable conventional 12 volt power supply.

FIG. 7B also shows an audio beeper switched by a MOSFET connected to an output of the microcontroller 116. The microcontroller can be programmed to provide an audio signal upon the occurrence of any particular sensing parameters, such as an increase in pressure due to edema, or to signal a specific function of the apparatus, such as the pump unit start up.

The 68HC11E2FN microcontroller 116 is conventionally programmed as desired to perform the various functions. Technical specification and programming instruction are available in the technical data book for the 68HC11EFN available from Motorola Literature Distribution, P.O. Box 20912, Phoenix, Arizona 85036. One suitable program would follow the flow diagram of FIG. 8.
The flow diagram is generally self-explanatory. Necessary inputs would be the pressure parameters P2, P3, and P4. P2 refers to the prefill bladder pressure which molds the compressor unit 24 to the extremity. P3 refers to the pressure level which is specified to indicate an occurrence of edema. P4 is the compression pressure, that is, the pressure level in the prefill bladder when the extremity is compressed. SX and S1, S2, S3, S4, S5, S6 refer to the pressure level measurements from the pressure sensors 76. Note that sequential operation of the compression bladders 58 commencing with the most distal bladder and proceeding to the most proximal bladder occurs in box 180 under "sequence."

The extremity pump apparatus 20 operates as follows: Referring to FIGS. 4 and 1, the compression unit 24 is wrapped around and secured to an individual's extremity. The zipper strip 88 is engaged with the appropriate cooperating zipper strip 98 to facilitate a snug fit around the extremity. Flap 90 closes to cover the valves, tubing, and sensors on the compression unit. With power applied to the unit, the unit is activated. Controlled by the microcontroller 116, the hydraulic motor is turned on, prefill control valves 72 open and the three-way valves 81, 82 are set to a fill position or mode to direct the hydraulic fluid to the bladders from the pump unit 28. The prefill bladders 56 are filled and thereby pressurized to a specified pressure as measured by the pressure sensors 76 at which point the prefill control valves 72 are then closed sustaining the pressure in the prefill bladders 56. In that the compression unit 24 and bladders encompass the extremity, the compressive pressure applied to the extremity is substantially the pressure in the adjacent prefill bladder. The extremity pump apparatus 20
is then ready to detect the existence of any increase in pressure indicating the existence of edema. An edema causes an increase in diameter of the extremity thus compressing outward the surrounding bladder causing an increase in the pressure levels in the bladders.

Upon sensing of a specified increase in pressure the pressurization sequence is commenced. The microcontroller operates to sequentially open the compression control valves 70 beginning with the control valve 70 attached to the most distal compression bladder. Each compression control valve 70 remains open until a specified compressive pressure is obtained in the respective prefill bladder as measured by the pressure sensors 76 and monitored by the control processor unit 26. The compression control valves are sequentially opened preceding up to the compression control valve positioned most proximally to create a compressive wave that moves proximally. After a specified delay the compression control valves 70 are then opened, the 3-way valves are switched to a drain position or mode to relieve the pressure from the compression bladders by way of pumping the fluid into the reservoir 30. After a specified delay the sequence is repeated.

Note that the pressure sensors 76 are utilized to both control the level of pressurization of the bladders and to detect any edema in the extremity. Each prefill bladder thus constitutes an edema sensing bladder.

The pressure sensors 76 monitor the edema intermediate each compression sequence. When the readings of the pressure sensors 76 are reduced to substantially the original or other specified pressure level indicating
that the edema has been reduced, the compression sequences cease until further edema is sensed.

The pressure sensors in combination with the control processor unit thus constitutes an edema sensing or monitoring means.

The apparatus 20 may be programmed to provide a pressure gradient on the extremity where each prefill bladder has a pressure slightly higher than the adjacent more proximal prefill bladder. Correspondingly, the more distal veins and lymphatics are pressurized to a higher level than the more proximal veins and lymphatics. This gradient can be provided during the compression sequence and/or during the period the compression sequence is not occurring.

Notably the programmability of the device offers extreme flexibility in detection of desired pressure increases for detecting edema and in pressurizing the bladders to desired specified pressures. Additionally, extreme flexibility is provided in the timing of the compression sequences. The compression unit may be configured to extend beyond the calf area of the individual’s leg, down to completely cover the lower extremity from any specified point. Similarly, the compression device may be configured and similarly utilized for the upper extremities.

For example, the invention may be practiced without the prefill bladders, utilizing only compression bladders with an initial pressurization to mold the compression unit around the extremity and then a second pressurization sequentially to each compression bladder to provide the
compression wave, the pressure sensors would be connected to the compression bladders in such a configuration.

Significantly, the control unit constitutes a signal means whereby any number of different signals may be generated when an edema is detected. For example, the signal may activate the compression sequence, or may activate an alarm or the beeper as shown in FIG. 7A.

The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof, and it is therefore desired that the present embodiment be considered in all respects as illustrative and not restrictive, reference being made to the appended claims rather than to the foregoing description to indicate the scope of the invention.
WHAT IS CLAIMED:

1. An extremity pump apparatus for providing compression to an extremity, the apparatus comprising:

 a flexible compression unit comprised of a flexible material configured to wrap around and engage an extremity;

 a plurality of compression bladders retained by the compression unit, the bladders expandable when hydraulically pressurized, whereby the extremity is compressed;

 a pump unit connected to the bladders for hydraulically pressurizing the bladders, whereby operation of the pump pressurizes and expands the bladders compressing the extremity.

2. The apparatus of claim 1 further comprising a means for selectively pressurizing the bladders.

3. The apparatus of claim 1, wherein each compression bladder is configured and positioned in the compression unit to extend circumferentially around the extremity, and wherein the compression bladders are sequentially positioned axially in the compression unit.
4. The apparatus of claim 1 further comprising a control processor unit, a plurality of connecting lines which connect the pump unit to each compression bladder, and further comprising a plurality of control valves connected in each control line intermediate the hydraulic pump and each bladder, each control valve connected to and operable by the control processor to open and close communication between the hydraulic pump and the respective bladder.

5. The apparatus of claim 3, wherein the bladders include a bladder most distally positioned and wherein the device further comprises a control means for operating the control valves whereby the compression bladders are pressurized sequentially commencing with the most distally positioned.

6. The apparatus of claim 5 further comprising a plurality of pressure sensors positioned within each compression bladder, the sensors responsive to detect an increase in pressure in the bladders, the pressure sensors connected to the control processor unit whereby the control valves are operable dependant upon said increase in pressure in the bladders.

7. The apparatus of claim 1 further comprising a plurality of prefill bladders, the prefill bladders expandable when hydraulically pressurized, the prefill bladders configured and positioned in the compression unit to extend circumferentially around the extremity, and wherein the prefill bladders are spaced longitudinally in the compression unit, the prefill bladders communicable with the hydraulic pump for pressurization, whereby pressurization of the prefill bladders molds the compression unit around the extremity.
8. The apparatus of claim 7, wherein each compression bladder is substantially contained within one of the prefill bladders whereby when the prefill bladders are pressurized, pressurization of the compression bladders further pressurizes the prefill bladders and compresses the extremity.

9. The apparatus of claim 8 further comprising a pressure sensor positioned within a prefill bladder, said bladder coupled with the extremity wherein any edema in the extremity which causes an increase in the diameter of the extremity causes an increase in the pressure in said bladder, the pressure sensor responsive to detect an increase in pressure in said bladder caused by the edema.

10. The apparatus of claim 9 further comprising a control processor unit connected to the pressure sensor, the control processor configured to activate the pump unit upon the sensing of an increase in pressure at the pressure sensor.

11. The apparatus of claim 1 further comprising an edema sensing bladder, a pressure sensor connected to said edema sensing bladder, and a signal means for generating a signal connected to the pressure sensor, said bladder coupled with the extremity wherein an edema in the extremity causes an increase in the pressure in said bladder, whereby a signal is generated by the signal means upon occurrence of an edema.
12. A hydraulic extremity compression apparatus for application on an extremity, the device comprising:

a flexible compression unit to wrap around and engage an extremity;

a plurality of annular shaped compression bladders, each compression bladder is configured and positioned in the compression unit to extend circumferentially around the extremity, and wherein the compression bladders are sequentially and vertically aligned in the compression unit, the bladders expandable when hydraulically pressurized, whereby the extremity is compressed;

a pump unit for hydraulic pressurization and expansion of the prefill bladders and the compression bladders, the pump unit connected to the bladders;

a fluid source connected to the pump;

a valve means inserted intermediate the pump unit and the bladders, the valve means operational for controlling the hydraulic pressurization of the bladders;

a control means connected to the valve means for controlling the hydraulic pressurization of the bladders.
13. The apparatus of claim 12, further comprising a pressure sensing means within the compression unit for sensing hydraulic pressure within the bladders, the pressure sensing means connected to the control means whereby operation of the valves means is dependant upon the hydraulic pressure in said bladders.

14. The apparatus of claim 12, wherein the pressure sensing means comprises a plurality of pressure sensors vertically spaced in the compression unit at each compression bladder for sensing the hydraulic pressure at each compression bladder.

15. The apparatus of claim 12, wherein the compression bladders include a most distal bladder and a most proximal bladder and wherein the control processor is programmed to provide sequential hydraulic pressurization of compression bladders commencing with the most distal bladder proceeding to the most proximal bladder.

16. The apparatus of claim 12 further comprising an edema sensing bladder, a pressure sensor connected to said edema sensing bladder, and a signal means for generating a signal connected to the pressure sensor, said bladder coupled with the extremity wherein an edema in the extremity causes an increase in the pressure in said bladder, whereby a signal is generated by the signal means upon occurrence of an edema.
17. An extremity pump apparatus for providing compression to an extremity, the apparatus comprising:

a flexible compression unit comprised of a flexible material configured to wrap around and engage an extremity;

a plurality of compression bladders retained by the compression unit, the bladders expandable when pressurized, whereby the extremity is compressed;

a pressurization means connected to the bladders for pressurizing the bladders, whereby operation of the pump pressurizes and expands the bladders compressing the extremity;

an edema monitoring means for detecting edema contained within the compression unit;

a signal means connected to edema sensing means whereby the occurrence of edema generates a signal.

18. The apparatus of claim 17 further comprising a control processor, the control processor unit connected to the signal means and the pressurization means, the control processor configured to activate the pressurization means upon detection of edema.

19. The apparatus of claim 18, wherein the bladders include a most distal bladder and a most proximal bladder and wherein the control processor is programmed to provide sequential pressurization of compression bladders commencing with the most distal bladder proceeding to the most proximal bladder.
20. The apparatus of claim 17, wherein the signal is an audio alarm.
Fig. 7a.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6
- A61H23/04
- A61B5/107

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
- IPC 6 A61H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP, A, 0 542 383 (THE KENDALL COMPANY) 19 May 1993</td>
<td>1-5, 12, 13, 15, 6, 14, 17</td>
</tr>
<tr>
<td>A</td>
<td>see column 2, line 53 - column 4, line 28; figures</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>FR, A, 2 511 241 (MEGO AFEK INDUSTRIAL MEASURING INSTRUMENTS) 18 February 1983</td>
<td>1-5, 12, 13, 15</td>
</tr>
<tr>
<td></td>
<td>see page 11, line 7 - line 9; claim 1</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US, A, 4 865 020 (BULLARD) 12 September 1989</td>
<td>1-5, 12, 15</td>
</tr>
<tr>
<td>A</td>
<td>see abstract; claim 1; figures</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US, A, 4 122 838 (LEONARD) 31 October 1978</td>
<td>6, 11, 16, 17</td>
</tr>
<tr>
<td>A</td>
<td>see column 2, line 36 - line 51; figures</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 3 May 1995

Date of mailing of the international search report: 16.05.95

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2060, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer: Jones, T
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO,A,85 01868 (MICRODIALOGSYSTEM) 9 May 1985 see abstract; figures</td>
<td>7</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 2090392</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2071379</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 5269163</td>
</tr>
<tr>
<td>WO-A-8501868</td>
<td>09-05-85</td>
<td>SE-B- 445967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A,B 0189417</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 8305855</td>
</tr>
</tbody>
</table>