

PYRROLOPYRIMIDINE DERIVATIVES AS JAK3 INHIBITORS

Field of the invention

5 The present invention relates to a new series of pyrrolopyrimidine derivatives, as well as to processes for their preparation, to pharmaceutical compositions comprising them and to their use in therapy.

Background of the invention

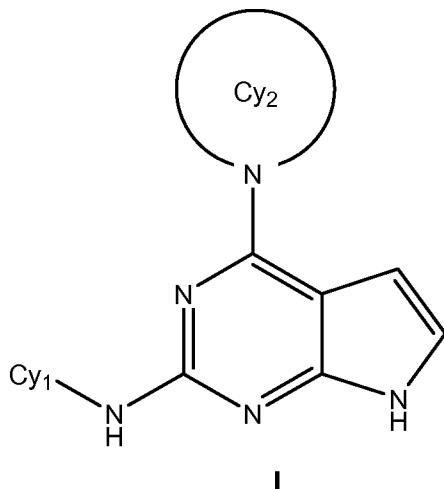
10

The Janus kinases (JAKs) are cytoplasmic protein tyrosine kinases that play pivotal roles in pathways that modulate cellular functions in the lympho-hematopoietic system that are critical for cell proliferation and cell survival. JAKs are involved in the initiation of cytokine-triggered signaling events by activating 15 through tyrosine phosphorylation the signal transducers and activators of transcription (STAT) proteins. JAK/STAT signaling has been implicated in the mediation of many abnormal immune responses such as transplant rejection and autoimmune diseases, as well as in solid and hematologic malignancies such as leukemias and lymphomas and in myeloproliferative disorders, and has thus 20 emerged as an interesting target for drug intervention.

Four members of the JAK family have been identified so far: JAK1, JAK2, JAK3 and Tyk2. Unlike JAK1, JAK2 and Tyk2, whose expression is ubiquitous, JAK3 is mainly found in hematopoietic cells. JAK3 is associated in a non-covalent manner with the γc subunit of the receptors of IL-2, IL-4, IL-7, IL-9, IL-13 and IL-25 15. These cytokines play an important role in the proliferation and differentiation of T lymphocytes. JAK3-deficient mouse T cells do not respond to IL-2. This cytokine is fundamental in the regulation of T lymphocytes. In this regard, it is known that antibodies directed against the IL-2 receptor are able to prevent transplant rejection. In patients with X severe combined immunodeficiency (X-SCID), very 30 low levels of JAK3 expression as well as genetic defects in the γc subunit of the receptor have been identified, which indicates that immunosuppression is a consequence of an alteration in the JAK3 signaling pathway.

Animal studies have suggested that JAK3 not only plays a critical role in T and B lymphocyte maturation, but also that JAK3 is required to maintain lymphocyte function. Modulation of the immunological activity through this new mechanism can prove useful in the treatment of T cell proliferative disorders such 5 as transplant rejection and autoimmune diseases.

JAK3 has also been shown to play an important role in mast cells, because antigen-induced degranulation and mediator release have been found to be substantially reduced in mast cells from JAK3 deficient mice. JAK3 deficiency does not affect mast cell proliferation nor IgE receptor expression levels. On the 10 other hand, JAK3-/- and JAK3+/+ mast cells contain the same intracellular mediators. Therefore, JAK3 appears to be essential in the IgE-induced release of mediators in mast cells and its inhibition would be, thus, an effective treatment for allergic reactions.


In conclusion, JAK3 kinase inhibitors have been recognised as a new class 15 of effective immunosuppressive agents useful for transplant rejection prevention and in the treatment of immune, autoimmune, inflammatory and proliferative diseases such as psoriasis, psoriatic arthritis, rheumatoid arthritis, multiple sclerosis, inflammatory bowel diseases, systemic lupus erythematosus, type I diabetes and complications from diabetes, allergic reactions and leukemia (see 20 e.g. O'Shea J.J. et al, *Nat. Rev. Drug. Discov.* 2004, 3(7):555-64; Cetkovic-Cvrlje M. et al, *Curr. Pharm. Des.* 2004, 10(15):1767-84; Cetkovic-Cvrlje M. et al, *Arch. Immunol. Ther. Exp. (Warsz)*, 2004, 52(2):69-82).

Accordingly, it would be desirable to provide novel compounds that are capable of inhibiting JAK/STAT signaling pathways, and in particular which are 25 capable of inhibiting JAK3 activity, and which are good drug candidates. Compounds should exhibit good activity in *in vivo* pharmacological assays, good oral absorption when administered by the oral route, as well as be metabolically stable and exhibit a favourable pharmacokinetic profile. Moreover, compounds should not be toxic and exhibit few side effects.

30

Description of the invention

One aspect of the invention relates to a compound of formula I

wherein:

Cy₁ represents phenyl or a 5- or 6-membered aromatic heterocycle bonded 5 to the NH group through a C atom, each of which can be optionally fused to a 5- or 6-membered saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring, wherein Cy₁ can contain from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms of the optional 5- or 6-membered fused ring can be optionally oxidized forming CO, SO or SO₂ groups, and wherein 10 Cy₁ can be optionally substituted with one or more R₁;

Cy₂ represents a 3- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein the ring which contains the N atom which is bonded to the pyrrolopyrimidine moiety is saturated or partially unsaturated, wherein Cy₂ contains from 1 to 4 heteroatoms selected from N, O and S, wherein one or more 15 C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂;

each R₁ and R₂ independently represent C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, halogen, -CN, -NO₂, -COR₃, -CO₂R₃, -CONR₃R₃, -COCONR₃R₃, -OR₃, -OCOR₄, -OCONR₄R₄, -OCO₂R₄, -SR₃, -SOR₄, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, 20 -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅CO₂R₄, -NR₅SO₂R₄, -C(=N-OH)R₄ or Cy₃, wherein C₁₋₄alkyl, C₂₋₄alkenyl and C₂₋₄alkynyl can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇;

R₃ represents hydrogen or R₄;

R₄ represents C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, or Cy₄, wherein C₁₋₄alkyl, 25 C₂₋₄alkenyl and C₂₋₄alkynyl can be optionally substituted with one or more R₆ and Cy₄ can be optionally substituted with one or more R₈;

R₅ represents hydrogen or C₁₋₄alkyl;

R₆ represents halogen, -CN, -NO₂, -COR₉, -CO₂R₉, -CONR₉R₉, -OR₉, -OCOR₁₀, -OCONR₁₀R₁₀, -OCO₂R₁₀, -SR₉, -SOR₁₀, -SO₂R₁₀, -SO₂NR₉R₉, -SO₂NR₅COR₁₀, -NR₉R₉, -NR₅COR₉, -NR₅CONR₉R₉, -NR₅CO₂R₁₀, -NR₅SO₂R₁₀,

5 -C(=N-OH)R₁₀ or Cy₄, wherein Cy₄ can be optionally substituted with one or more R₈;

R₇ represents C₁₋₄alkyl that can be optionally substituted with one or more R₁₁, or R₇ represents any of the meanings described for R₁₂;

10 R₈ represents C₁₋₄alkyl, haloC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, cyanoC₁₋₄alkyl or any of the meanings described for R₁₂;

R₉ represents hydrogen or R₁₀;

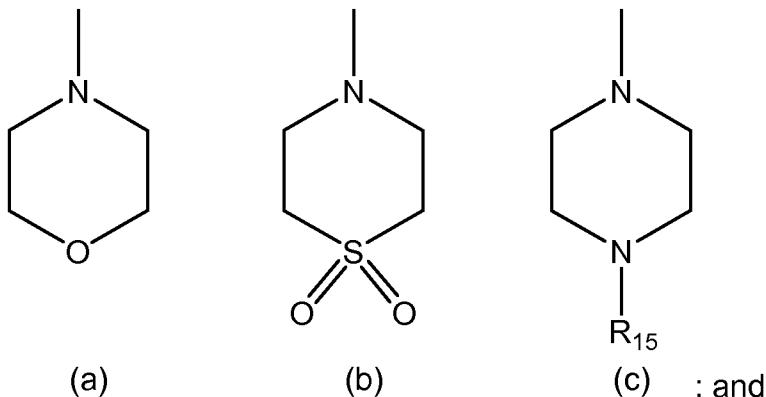
R₁₀ represents C₁₋₄alkyl, haloC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, cyanoC₁₋₄alkyl, Cy₅-C₁₋₄alkyl or Cy₄, wherein Cy₄ can be optionally substituted with one or more R₈;

15 R₁₁ represents halogen, -CN, -NO₂, -COR₉, -CO₂R₉, -CONR₉R₉, -OR₉, -OCOR₁₀, -OCONR₁₀R₁₀, -OCO₂R₁₀, -SR₉, -SOR₁₀, -SO₂R₁₀, -SO₂NR₉R₉, -SO₂NR₅COR₁₀, -NR₉R₉, -NR₅COR₉, -NR₅CONR₉R₉, -NR₅CO₂R₁₀, -NR₅SO₂R₁₀, or -C(=N-OH)R₁₀;

20 R₁₂ represents halogen, -CN, -NO₂, -COR₁₃, -CO₂R₁₃, -CONR₁₃R₁₃, -OR₁₃, -OCOR₁₄, -OCONR₁₄R₁₄, -OCO₂R₁₄, -SR₁₃, -SOR₁₄, -SO₂R₁₄, -SO₂NR₁₃R₁₃, -SO₂NR₅COR₁₄, -NR₁₃R₁₃, -NR₅COR₁₃, -NR₅CONR₁₃R₁₃, -NR₅CO₂R₁₄, -NR₅SO₂R₁₄ or -C(=N-OH)R₁₄;

R₁₃ represents hydrogen or R₁₄;

25 R₁₄ represents C₁₋₄alkyl, haloC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl or hydroxyC₁₋₄alkyl;

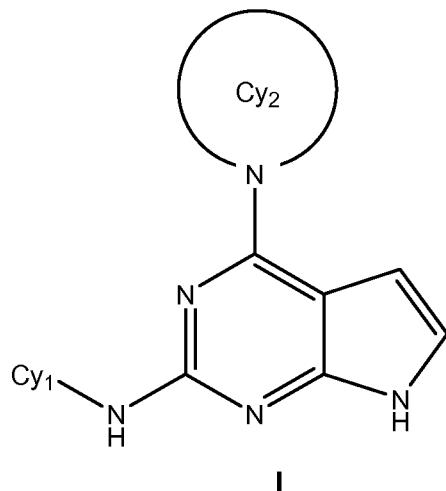

or two R₁₃ groups or two R₁₄ groups on the same N atom can be bonded completing, together with the N atom, a 5- or 6-membered saturated ring, which can additionally contain one or two heteroatoms selected from N, S and O and which can be optionally substituted with one or more C₁₋₄alkyl groups;

30 each Cy₃ and Cy₄ independently represent a 3- to 7-membered monocyclic or 6- to 11-membered bicyclic ring which can be carbocyclic or heterocyclic, in which case it can contain from 1 to 4 heteroatoms selected from N, S and O, wherein each Cy₃ and Cy₄ can be saturated, partially unsaturated or aromatic, and

can be bonded to the rest of the molecule through any available C or N atom, and wherein one or more C or S atoms of the ring can be optionally oxidized forming CO, SO or SO₂ groups;

Cy₅ represents a ring selected from (a)-(c):

5


R₁₅ represents hydrogen or C₁₋₄alkyl.

The present invention also relates to the salts and solvates of the 10 compounds of formula I.

Some compounds of formula I can have chiral centers that can give rise to various stereoisomers. The present invention relates to each of these stereoisomers and also mixtures thereof.

The compounds of formula I are JAK, particularly JAK3, kinase inhibitors 15 and therefore can be useful for the treatment of any disease mediated by this kinase.

Thus, another aspect of the invention relates to a compound of formula I

wherein:

Cy₁ represents phenyl or a 5- or 6-membered aromatic heterocycle bonded to the NH group through a C atom, each of which can be optionally fused to a 5- or 6-membered saturated, partially unsaturated or aromatic carbocyclic or

5 heterocyclic ring, wherein Cy₁ can contain from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms of the optional 5- or 6-membered fused ring can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₁ can be optionally substituted with one or more R₁;

Cy₂ represents a 3- to 7-membered monocyclic or 6- to 11-membered 10 bicyclic heterocycle, wherein the ring which contains the N atom which is bonded to the pyrrolopyrimidine moiety is saturated or partially unsaturated, wherein Cy₂ contains from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂;

15 each R₁ and R₂ independently represent C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, halogen, -CN, -NO₂, -COR₃, -CO₂R₃, -CONR₃R₃, -COCONR₃R₃, -OR₃, -OCOR₄, -OCONR₄R₄, -OCO₂R₄, -SR₃, -SOR₄, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅CO₂R₄, -NR₅SO₂R₄, -C(=N-OH)R₄ or Cy₃, wherein C₁₋₄alkyl, C₂₋₄alkenyl and C₂₋₄alkynyl can be optionally substituted 20 with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇;

R₃ represents hydrogen or R₄;

R₄ represents C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, or Cy₄, wherein C₁₋₄alkyl, C₂₋₄alkenyl and C₂₋₄alkynyl can be optionally substituted with one or more R₆ and Cy₄ can be optionally substituted with one or more R₈;

25 R₅ represents hydrogen or C₁₋₄alkyl;

R₆ represents halogen, -CN, -NO₂, -COR₉, -CO₂R₉, -CONR₉R₉, -OR₉, -OCOR₁₀, -OCONR₁₀R₁₀, -OCO₂R₁₀, -SR₉, -SOR₁₀, -SO₂R₁₀, -SO₂NR₉R₉, -SO₂NR₅COR₁₀, -NR₉R₉, -NR₅COR₉, -NR₅CONR₉R₉, -NR₅CO₂R₁₀, -NR₅SO₂R₁₀, -C(=N-OH)R₁₀ or Cy₄, wherein Cy₄ can be optionally substituted with one or more

30 R₈;

R₇ represents C₁₋₄alkyl that can be optionally substituted with one or more R₁₁, or R₇ represents any of the meanings described for R₁₂;

R₈ represents C₁₋₄alkyl, haloC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl,

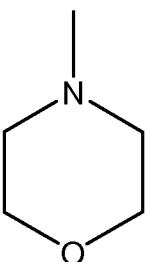
cyanoC₁₋₄alkyl or any of the meanings described for R₁₂;

R₉ represents hydrogen or R₁₀;

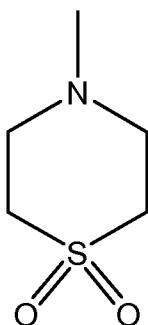
R₁₀ represents C₁₋₄alkyl, haloC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, cyanoC₁₋₄alkyl, Cy₅-C₁₋₄alkyl or Cy₄, wherein Cy₄ can be optionally substituted with 5 one or more R₈;

R₁₁ represents halogen, -CN, -NO₂, -COR₉, -CO₂R₉, -CONR₉R₉, -OR₉, -OCOR₁₀, -OCONR₁₀R₁₀, -OCO₂R₁₀, -SR₉, -SOR₁₀, -SO₂R₁₀, -SO₂NR₉R₉, -SO₂NR₅COR₁₀, -NR₉R₉, -NR₅COR₉, -NR₅CONR₉R₉, -NR₅CO₂R₁₀, -NR₅SO₂R₁₀, or -C(=N-OH)R₁₀;

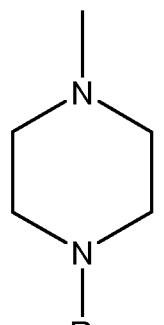
10 R₁₂ represents halogen, -CN, -NO₂, -COR₁₃, -CO₂R₁₃, -CONR₁₃R₁₃, -OR₁₃, -OCOR₁₄, -OCONR₁₄R₁₄, -OCO₂R₁₄, -SR₁₃, -SOR₁₄, -SO₂R₁₄, -SO₂NR₁₃R₁₃, -SO₂NR₅COR₁₄, -NR₁₃R₁₃, -NR₅COR₁₃, -NR₅CONR₁₃R₁₃, -NR₅CO₂R₁₄, -NR₅SO₂R₁₄ or -C(=N-OH)R₁₄;


R₁₃ represents hydrogen or R₁₄;

15 R₁₄ represents C₁₋₄alkyl, haloC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl or hydroxyC₁₋₄alkyl;


or two R₁₃ groups or two R₁₄ groups on the same N atom can be bonded completing, together with the N atom, a 5- or 6-membered saturated ring, which can additionally contain one or two heteroatoms selected from N, S and O and 20 which can be optionally substituted with one or more C₁₋₄alkyl groups;

each Cy₃ and Cy₄ independently represent a 3- to 7-membered monocyclic or 6- to 11-membered bicyclic ring which can be carbocyclic or heterocyclic, in which case it can contain from 1 to 4 heteroatoms selected from N, S and O, wherein each Cy₃ and Cy₄ can be saturated, partially unsaturated or aromatic, and 25 can be bonded to the rest of the molecule through any available C or N atom, and wherein one or more C or S atoms of the ring can be optionally oxidized forming CO, SO or SO₂ groups;


Cy₅ represents a ring selected from (a)-(c):

(a)

(b)

(c) ; and

R₁₅ represents hydrogen or C₁₋₄alkyl,
for use in therapy.

5 Another aspect of the invention relates to a pharmaceutical composition which comprises a compound of formula I or a pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable excipients.

10 Another aspect of the present invention relates to the use of a compound of formula I or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment of a disease mediated by JAKs, particularly JAK3.

15 Another aspect of the present invention relates to the use of a compound of formula I or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment of at least one disease selected from transplant rejection, immune, autoimmune and inflammatory diseases, neurodegenerative diseases, and proliferative disorders. In a preferred embodiment, the disease is selected from transplant rejection and immune, autoimmune and inflammatory diseases.

20 Another aspect of the present invention relates to the use of a compound of formula I or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment of a disease selected from transplant rejection, rheumatoid arthritis, psoriatic arthritis, psoriasis, type I diabetes, complications from diabetes, multiple sclerosis, systemic lupus erythematosus, atopic dermatitis, mast cell-mediated allergic reactions, leukemias, lymphomas, and thromboembolic and allergic complications associated with leukemias and lymphomas.

25 Another aspect of the present invention relates to a compound of formula I or a pharmaceutically acceptable salt thereof for the treatment of a disease

mediated by JAKs, particularly JAK3.

Another aspect of the present invention relates to a compound of formula I or a pharmaceutically acceptable salt thereof for the treatment of at least one disease selected from transplant rejection, immune, autoimmune and inflammatory diseases, neurodegenerative diseases, and proliferative disorders. In a preferred embodiment, the disease is selected from transplant rejection and immune, autoimmune and inflammatory diseases.

Another aspect of the present invention relates to a compound of formula I or a pharmaceutically acceptable salt thereof for the treatment of a disease selected from transplant rejection, rheumatoid arthritis, psoriatic arthritis, psoriasis, type I diabetes, complications from diabetes, multiple sclerosis, systemic lupus erythematosus, atopic dermatitis, mast cell-mediated allergic reactions, leukemias, lymphomas, and thromboembolic and allergic complications associated with leukemias and lymphomas.

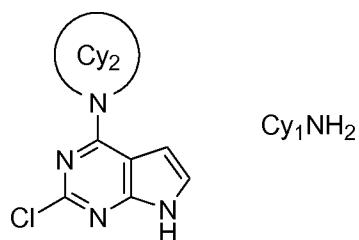
Another aspect of the present invention relates to the use of a compound of formula I or a pharmaceutically acceptable salt thereof for the treatment of a disease mediated by JAKs, particularly JAK3.

Another aspect of the present invention relates to the use of a compound of formula I or a pharmaceutically acceptable salt thereof for the treatment of at least one disease selected from transplant rejection, immune, autoimmune and inflammatory diseases, neurodegenerative diseases, and proliferative disorders. In a preferred embodiment, the disease is selected from transplant rejection and immune, autoimmune and inflammatory diseases.

Another aspect of the present invention relates to the use of a compound of formula I or a pharmaceutically acceptable salt thereof for the treatment of a disease selected from transplant rejection, rheumatoid arthritis, psoriatic arthritis, psoriasis, type I diabetes, complications from diabetes, multiple sclerosis, systemic lupus erythematosus, atopic dermatitis, mast cell-mediated allergic reactions, leukemias, lymphomas, and thromboembolic and allergic complications associated with leukemias and lymphomas.

Another aspect of the present invention relates to a method of treating a disease mediated by JAKs, particularly JAK3, in a subject in need thereof, especially a human being, which comprises administering to said subject a

compound of formula I or a pharmaceutically acceptable salt thereof.


Another aspect of the present invention relates to a method of treating at least one disease selected from transplant rejection, immune, autoimmune and inflammatory diseases, neurodegenerative diseases, and proliferative disorders in

5 a subject in need thereof, especially a human being, which comprises administering to said subject a compound of formula I or a pharmaceutically acceptable salt thereof. In a preferred embodiment, the disease is selected from transplant rejection and immune, autoimmune and inflammatory diseases.

Another aspect of the present invention relates to a method of treating a disease selected from transplant rejection, rheumatoid arthritis, psoriatic arthritis, psoriasis, type I diabetes, complications from diabetes, multiple sclerosis, systemic lupus erythematosus, atopic dermatitis, mast cell-mediated allergic reactions, leukemias, lymphomas, and thromboembolic and allergic complications associated with leukemias and lymphomas in a subject in need thereof, especially a human being, which comprises administering to said subject a compound of formula I or a pharmaceutically acceptable salt thereof.

Another aspect of the present invention relates to a process for the preparation of a compound of formula I as defined above, which comprises:

(a) reacting a compound of formula **IV** with a compound of formula **V**

20

IV

v

wherein Cy_1 and Cy_2 have the previously described meaning; or

(b) converting, in one or a plurality of steps, a compound of formula I into another compound of formula I.

In the above definitions, the term C₁₋₄ alkyl, as a group or part of a group, means a straight or branched alkyl chain which contains from 1 to 4 carbon atoms and includes the groups methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and *tert*-butyl.

A C₂₋₄alkenyl group means a straight or branched alkyl chain which

contains from 2 to 4 C atoms, and also contains one or two double bonds. Examples include the groups ethenyl, 1-propenyl, 2-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl and 1,3-butadienyl.

A C₂₋₄alkynyl group means straight or branched alkyl chain which contains 5 from 2 to 4 C atoms, and also contains one or two triple bonds. Examples include the groups ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl and 1,3-butadiynyl.

A C₁₋₄alkoxy group, as a group or part of a group, means a group of formula 10 -OC₁₋₄alkyl, wherein the C₁₋₄alkyl moiety has the same meaning as previously described. Examples include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy and *tert*-butoxy.

Halogen or its abbreviation halo means fluoro, chloro, bromo or iodo.

A C₁₋₄alkoxyC₁₋₄alkyl group means a group resulting from the replacement 15 of one or more hydrogen atoms from a C₁₋₄alkyl group with one or more C₁₋₄alkoxy groups as defined above, which can be the same or different. Examples include, among others, the groups methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxymethyl, butoxymethyl, isobutoxymethyl, sec-butoxymethyl, *tert*-butoxymethyl, dimethoxymethyl, 1-methoxyethyl, 2-methoxyethyl, 2-ethoxyethyl, 1,2-diethoxyethyl, 1-butoxyethyl, 2-sec-butoxyethyl, 3-methoxypropyl, 2-butoxypropyl, 1-methoxy-2-ethoxypropyl, 3-*tert*-butoxypropyl and 4-methoxybutyl.

A haloC₁₋₄alkyl group means a group resulting from the replacement of one or more hydrogen atoms from a C₁₋₄alkyl group with one or more halogen atoms (i.e. fluoro, chloro, bromo or iodo), which can be the same or different. Examples include, among others, the groups trifluoromethyl, fluoromethyl, 1-chloroethyl, 2-chloroethyl, 1-fluoroethyl, 2-fluoroethyl, 2-bromoethyl, 2-iodoethyl, 2,2,2-trifluoroethyl, pentafluoroethyl, 3-fluoropropyl, 3-chloropropyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, 4-fluorobutyl and nonafluorobutyl.

A hydroxyC₁₋₄alkyl group means a group resulting from the replacement of 30 one or more hydrogen atoms from a C₁₋₄alkyl group with one or more hydroxy groups. Examples include, among others, the groups hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1,2-dihydroxyethyl, 3-hydroxypropyl, 2-hydroxypropyl, 1-hydroxypropyl, 2,3-dihydroxypropyl, 4-hydroxybutyl, 3-

hydroxybutyl, 2-hydroxybutyl and 1-hydroxybutyl.

A cyanoC₁₋₄alkyl group means a group resulting from the replacement of one or more hydrogen atoms from a C₁₋₄alkyl group with one or more cyano groups. Examples include, among others, the groups cyanomethyl, dicyanomethyl,

5 1-cyanoethyl, 2-cyanoethyl, 3-cyanopropyl, 2,3-dicyanopropyl and 4-cyanobutyl.

A Cy₅-C₁₋₄alkyl group means a group resulting from the replacement of one hydrogen atom from a C₁₋₄alkyl group with one Cy₅ group. Examples include, among others, the groups (morpholin-4-yl)methyl, 2-(morpholin-4-yl)ethyl, 3-(morpholin-4-yl)propyl, 4-(morpholin-4-yl)butyl, (piperazin-1-yl)methyl, (4-

10 methylpiperazin-1-yl)methyl, 2-(4-methylpiperazin-1-yl)ethyl, 3-(4-methylpiperazin-1-yl)propyl, 4-(4-methylpiperazin-1-yl)butyl, (4-ethylpiperazin-1-yl)methyl, (4-propylpiperazin-1-yl)methyl, (4-butylpiperazin-1-yl)methyl, (1,1-dioxothiomorpholin-4-yl)methyl, 2-(1,1-dioxothiomorpholin-4-yl)ethyl, 3-(1,1-dioxothiomorpholin-4-yl)propyl and 4-(1,1-dioxothiomorpholin-4-yl)butyl.

15 A Cy₄-C₁₋₄alkyl group means a group resulting from the replacement of one hydrogen atom from a C₁₋₄alkyl group with one Cy₄ group as defined above.

A group NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, R₉CO-C₁₋₄alkyl, NR₉R₉-C₁₋₄alkyl, R₁₀SO₂NR₅-C₁₋₄alkyl or NR₉R₉CONR₅-C₁₋₄alkyl means a group resulting from the replacement of one

20 hydrogen atom from a C₁₋₄alkyl group with one -SO₂NR₉R₉, -CONR₉R₉, -SO₂NR₅COR₁₀, -NR₅COR₉, -COR₉, -NR₉R₉, -NR₅SO₂R₁₀ or -NR₅CONR₉R₉ group, respectively. For example, examples of a group NR₉R₉SO₂-C₁₋₄alkyl include, among others, the groups sulfamoylmethyl, 1-sulfamoyleethyl, 2-sulfamoyleethyl, 1-sulfamoylpropyl, 2-sulfamoylpropyl, 3-sulfamoylpropyl, 1-sulfamoylbutyl, 2-sulfamoylbutyl, 3-sulfamoylbutyl, 4-sulfamoylbutyl, N-methylsulfamoylmethyl, N,N-dimethylsulfamoylmethyl and N-ethyl-N-methylsulfamoylmethyl.

25 The term Cy₁ refers to a phenyl group or a 5- or 6-membered aromatic heterocycle that must be bonded to the NH group through a C atom, wherein both the phenyl group and the 5- or 6-membered aromatic heterocycle can be optionally fused to a 5- or 6-membered carbocycle or heterocycle which can be saturated, partially unsaturated or aromatic. The Cy₁ group, as a whole, can contain from 1 to 4 heteroatoms in total selected from N, O and S. When the second ring, i.e. the optional 5- or 6-membered carbocyclic or heterocyclic fused

ring, is saturated or partially unsaturated, one or more C or S atoms of said ring can be optionally oxidized forming CO, SO or SO₂ groups. The Cy₁ group can be optionally substituted as disclosed above in the definition of a compound of formula I; said substituents can be the same or different and can be placed on any 5 available position of any of the rings. Examples of Cy₁ groups include, among others, phenyl, naphthyl, thienyl, furyl, pyrrolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, tetrazolyl, 1,3,4-oxadiazolyl, 1,3,4-thiadiazolyl, 1,2,4-oxadiazolyl, 1,2,4-thiadiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, benzimidazolyl, benzooxazolyl, benzofuranyl, 10 isobenzofuranyl, indolyl, isoindolyl, benzothiophenyl, benzothiazolyl, quinolinyl, isoquinolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, cinolinyl, naphthyridinyl, indazolyl, imidazopyridinyl, pyrrolopyridinyl, thienopyridinyl, imidazopyrimidinyl, imidazopyrazinyl, imidazopyridazinyl, pyrazolopyrazinyl, pyrazolopyridinyl, pyrazolopyrimidinyl, 15 benzo[1,3]dioxolyl, phtalimidyl, 1-oxo-1,3-dihydroisobenzofuranyl, 1,3-dioxo-1,3-dihydroisobenzofuranyl, 2-oxo-2,3-dihydro-1H-indolyl, 1-oxo-2,3-dihydro-1H-isoindolyl, 1,2,3,4-tetrahydroquinolinyl, 1,2,3,4-tetrahydroisoquinolinyl, 1-oxo-1,2,3,4-tetrahydroisoquinolinyl, 1-oxo-1,2-dihydroisoquinolinyl and 4-oxo-3,4-dihydroquinazolinyl.

The term Cy₂ refers to a 3- to 7-membered monocyclic or a 6- to 11-membered bicyclic heterocycle, with the proviso that the ring directly bonded to the pyrrolopyrimidine is saturated or partially unsaturated. When Cy₂ is bicyclic, the second ring can be saturated, partially unsaturated or aromatic. Cy₂ contains from 1 to 4 heteroatoms in total selected from N, O and S including the N atom bonding Cy₂ to the pyrrolopyrimidine ring, so that Cy₂ always contains at least one 20 N atom. When Cy₂ is a bicyclic ring, this can be formed by two rings fused through two adjacent C or N atoms, or through two non-adjacent C or N atoms forming a bridged ring, or else it can be formed by two rings sharing a C atom as a single common atom thus forming a spiro ring. In Cy₂ one or more C or S atoms in any 25 saturated or partially unsaturated ring can be optionally oxidized forming CO, SO or SO₂ groups. The Cy₂ group can be optionally substituted as disclosed above in the definition of a compound of formula I; said substituents can be the same or different and can be placed on any available position of the ring system. Examples 30 of Cy₂ groups include, among others, azepanyl, aziridinyl, azetidinyl, 1,4-

diazepanyl, pyrrolidinyl, imidazolidinyl, isoxazolidinyl, oxazolidinyl, pyrazolidinyl, thiazolidinyl, isothiazolidinyl, imidazolinyl, pyrrolinyl, pyrazolinyl, piperidinyl, homopiperidinyl, morpholinyl, thiomorpholinyl, 1,1-dioxothiomorpholinyl, piperazinyl, homopiperazinyl, 2-oxo-azepanyl, 2-oxo-azetidinyl, 2-oxo-1,4-
5 diazepanyl, 2-oxo-pyrrolidinyl, 2-oxo-piperazinyl, 2-oxo-piperidinyl, 3-oxo-piperidinyl, 4-oxo-piperidinyl, 2-oxo-imidazolidinyl, 2-oxo-oxazolidinyl, 2-oxo-1,2-dihydropyridinyl, 2-oxo-1,2-dihydropyrazinyl, 2-oxo-1,2-dihydropyrimidinyl, 3-oxo-2,3-dihydropyridazinyl, 1,2,3,6-tetrahydropyridinyl, perhydroisoquinolinyl, 1-oxo-1,2-dihydroisoquinolinyl, 4-oxo-3,4-dihydroquinazolinyl, 5-aza-
10 bicyclo[2.1.1]hexanyl, 2-aza-bicyclo[2.2.1]heptanyl, 6-aza-bicyclo[3.2.1]octanyl, octahydro-pyrrolo[1,2-a]pyrazinyl, 2H-spiro[benzofuran-3,4'-piperidinyl], 3H-spiro[isobenzofuran-1,4'-piperidinyl], 2,8-diazaspiro[4.5]decan-1-onyl, 2,7-diazaspiro[4.5]decan-1-onyl, 2-aza-bicyclo[2.2.1]heptan-6-onyl and 6-aza-bicyclo[3.2.1]octan-7-onyl.

15 The term Cy₃ or Cy₄ refers to a 3- to 7-membered monocyclic or 6- to 11-membered bicyclic carbocyclic or heterocyclic ring. When heterocyclic, it can contain from 1 to 4 heteroatoms selected from N, S and O. Bicyclic rings may be formed either by two rings fused through two adjacent C or N atoms, or through two non-adjacent C or N atoms forming a bridged ring, or else they can be formed
20 by two rings bonded through a single common C atom forming a spiro ring. A Cy₃ or Cy₄ group can be saturated, partially unsaturated or aromatic. Cy₃ and Cy₄ can be bonded to the rest of the molecule through any available C or N atom. In Cy₃ or Cy₄ one or more C or S atoms of a saturated or partially unsaturated ring can be optionally oxidized forming CO, SO or SO₂ groups. Cy₃ and Cy₄ can be optionally
25 substituted as disclosed above in the definition of a compound of formula I; if substituted, said substituents can be the same or different and can be placed on any available position of the ring system. Examples of Cy₃ or Cy₄ groups include, among others, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, azetidinyl, aziridinyl, oxiranyl, oxetanyl, imidazolidinyl, isothiazolidinyl,
30 isoxazolidinyl, oxazolidinyl, pyrazolidinyl, pyrrolidinyl, thiazolidinyl, dioxanyl, morpholinyl, thiomorpholinyl, 1,1-dioxothiomorpholinyl, piperazinyl, homopiperazinyl, piperidinyl, pyranyl, tetrahydropyranyl, homopiperidinyl, oxazinyl, oxazolinyl, pyrrolinyl, thiazolinyl, pyrazolinyl, imidazolinyl, isoxazolinyl,

isothiazolinyl, 2-oxo-pyrrolidinyl, 2-oxo-piperidinyl, 4-oxo-piperidinyl, 2-oxo-piperazinyl, 2-oxo-1,2-dihdropyridinyl, 2-oxo-1,2-dihdropyrazinyl, 2-oxo-1,2-dihdropyrimidinyl, 3-oxo-2,3-dihdropyridazyl, phenyl, naphthyl, thienyl, furyl, pyrrolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl, 1,2,3-5 triazolyl, 1,2,4-triazolyl, tetrazolyl, 1,3,4-oxadiazolyl, 1,3,4-thiadiazolyl, 1,2,4-oxadiazolyl, 1,2,4-thiadiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, benzimidazolyl, benzoxazolyl, benzofuranyl, isobenzofuranyl, indolyl, isoindolyl, benzothiophenyl, benzothiazolyl, quinolinyl, isoquinolinyl, phtalazinyl, quinazolinyl, quinoxalinyl, cinolinyl, naphthyridinyl, indazolyl, imidazopyridinyl, pyrrolopyridinyl, 10 thienopyridinyl, imidazopyrimidinyl, imidazopyrazinyl, imidazopyridazinyl, pyrazolopyrazinyl, pyrazolopyridinyl, pyrazolopyrimidinyl, benzo[1,3]dioxolyl, phtalimidyl, 1-oxo-1,3-dihydroisobenzofuranyl, 1,3-dioxo-1,3-dihydroisobenzofuranyl, 2-oxo-2,3-dihydro-1*H*-indolyl, 1-oxo-2,3-dihydro-1*H*-isoindolyl, perhydroquinolinyl, 1-oxo-perhydroisoquinolinyl, 1-oxo-1,2-15 dihydroisoquinolinyl, 4-oxo-3,4-dihydroquinazolinyl, 2-aza-bicyclo[2.2.1]heptanyl, 5-aza-bicyclo[2.1.1]hexanyl, 2*H*-spiro[benzofuran-3,4'-piperidinyl], 3*H*-spiro[isobenzofuran-1,4'-piperidinyl], 2,8-diazaspiro[4.5]decan-1-onyl and 2,7-diazaspiro[4.5]decan-1-onyl.

In the above definitions of Cy₁, Cy₂, Cy₃ and Cy₄, when the examples listed 20 refer to a bicycle in general terms, all possible dispositions of the atoms are included. Thus, for example, the term pyrazolopyridinyl can include groups such as 1*H*-pyrazolo[3,4-*b*]pyridinyl, 1*H*-pyrazolo[1,5-*a*]pyridinyl, 1*H*-pyrazolo[3,4-*c*]pyridinyl, 1*H*-pyrazolo[4,3-*c*]pyridinyl and 1*H*-pyrazolo[4,3-*b*]pyridinyl, the term imidazopyrazinyl can include groups such as 1*H*-imidazo[4,5-*b*]pyrazinyl, 25 imidazo[1,2-*a*]pyrazinyl and imidazo[1,5-*a*]pyrazinyl and the term pyrazolopyrimidinyl can include groups such as 1*H*-pyrazolo[3,4-*d*]pyrimidinyl, 1*H*-pyrazolo[4,3-*d*]pyrimidinyl, pyrazolo[1,5-*a*]pyrimidinyl and pyrazolo[1,5-*c*]pyrimidinyl.

When in the definitions used throughout the present specification for cyclic 30 groups the examples given refer to a radical of a ring in general terms, for example pyridyl, thienyl or indolyl, all the available bonding positions are included, unless a limitation is indicated in the corresponding definition for said cyclic group, for example that the ring is bonded through a C atom in Cy₁ or through a N atom

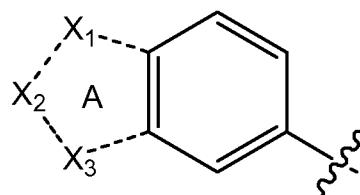
in Cy₂, in which case such limitation applies. Thus for example, in the definitions of Cy₃ and Cy₄, which do not include any limitation regarding the bonding position, the term pyridyl includes 2-pyridyl, 3-pyridyl and 4-pyridyl; thienyl includes 2-thienyl and 3-thienyl; and indolyl includes 1-indolyl, 2-indolyl, 3-indolyl, 4-indolyl, 5-indolyl, 6-indolyl and 7-indolyl.

The expression "optionally substituted with one or more" means that a group can be substituted with one or more, preferably with 1, 2, 3 or 4 substituents, more preferably with 1, 2 or 3 substituents, and still more preferably with 1 or 2 substituents, provided that said group has enough positions susceptible of being substituted. The substituents can be the same or different and can be placed on any available position.

When a non-aromatic ring is present as a substituent of a non-aromatic ring, it can replace one hydrogen atom, or it can replace two hydrogen atoms on the same C atom thus forming a spiro ring. Likewise, when a non-aromatic ring is present as a substituent of an alkyl, alkenyl or alkynyl group, it can either replace one hydrogen atom, or it can replace two hydrogen atoms on the same C atom.

When in the definition of a substituent two or more groups with the same numbering are indicated (e.g. -NR₅CONR₃R₃, -NR₉R₉, -CONR₁₃R₁₃, etc.), this does not mean that they must be the same. Each of them is independently selected from the list of possible meanings given for said group, and therefore they can be the same or different.

In certain embodiments of the invention, Cy₁ represents a phenyl group substituted at one or two of positions 3, 4 and 5 with a R₁ group. This means that the phenyl group is either substituted with one R₁ group at position 3, 4 or 5 of the phenyl ring, or with two R₁ groups (which can be the same or different) at positions 3 and 4, positions 4 and 5 or positions 3 and 5 of the phenyl ring.


Throughout the present specification, the expressions "treatment" of a disease, "treating" a disease and the like refer both to curative treatment as well as palliative treatment or prophylactic treatment of said disease. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation or amelioration of one or more symptoms, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing the disease from occurring in a patient that is predisposed or does not yet display symptoms of

the disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total). Those in need of treatment include those already with the disease or disorder as well as those prone to have the disease or disorder or those in which the disease or disorder is
5 to be prevented.

The invention thus relates to the compounds of formula I as defined above.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₁ represents phenyl or pyridyl, which can be optionally fused to a 5- or 6-membered saturated, partially unsaturated or aromatic carbocyclic or
10 heterocyclic ring, wherein Cy₁ can contain from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms of the 5- or 6-membered fused ring can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₁ can be optionally substituted with one or more R₁.

In another embodiment, the invention relates to the compounds of formula I
15 wherein Cy₁ represents phenyl, pyridyl or a ring of formula Cy_{1a},

Cy_{1a}

20

wherein in ring A X₁, X₂ and X₃ are selected from C, N, O and S and the dashed lines represent single or double bonds, wherein one or two C or S atoms of ring A can be optionally oxidized forming CO, SO or SO₂ groups, and wherein the phenyl, pyridyl and Cy_{1a} groups can be optionally substituted with one or more
25 R₁.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₁ represents phenyl, 3-pyridyl, 4-pyridyl or a ring of formula Cy_{1a}, each of which can be optionally substituted with one or more R₁.

In another embodiment, the invention relates to the compounds of formula I
30 wherein Cy₁ represents phenyl, pyridyl, benzo[1,3]dioxolyl or benzooxazolyl, each

of which can be optionally substituted with one or more R₁.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₁ represents phenyl, 3-pyridyl, 4-pyridyl, 5-benzo[1,3]dioxolyl or 6-benzoazolyl, which can be optionally substituted with one or more R₁.

5 In another embodiment, the invention relates to the compounds of formula I wherein Cy₁ represents phenyl optionally substituted with one or more R₁.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₁ represents phenyl substituted with one or more R₁.

10 In another embodiment, the invention relates to the compounds of formula I wherein Cy₁ represents phenyl substituted with one, two or three R₁.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₁ represents phenyl substituted with one or two R₁.

15 In another embodiment, the invention relates to the compounds of formula I wherein Cy₁ represents phenyl substituted at one or two of positions 3, 4 and 5 with an R₁.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₁ represents phenyl substituted with one R₁, which is placed at position 3 or 4 of the phenyl ring.

20 In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, halogen, -CN, -NO₂, -COR₃, -CO₂R₃, -CONR₃R₃, -COCONR₃R₃, -OR₃, -OCOR₄, -OCONR₄R₄, -OCO₂R₄, -SR₃, -SOR₄, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅CO₂R₄, -C(=N-OH)R₄ or Cy₃, wherein C₁₋₄alkyl, C₂₋₄alkenyl and C₂₋₄alkynyl can be optionally substituted with one or more R₆ and Cy₃ can be 25 optionally substituted with one or more R₇.

25 In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -COCONR₃R₃, -OR₃, -SR₃, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein the C₁₋₄alkyl group can be 30 optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃,

-COCONR₃R₃, -OR₃, -SR₃, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃ or Cy₃, wherein the C₁₋₄alkyl group can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇.

5 In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, halogen, -CN, -OR₃, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅SO₂R₄ or Cy₃, wherein the C₁₋₄alkyl group can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇.

10 In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, halogen, haloC₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, -CN, -OR₃, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅SO₂R₄ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇.

15 In another embodiment, the invention relates to the compounds of formula I wherein Cy₃ in R₁ represents Cy_{3a}, and Cy_{3a} represents a 5- or 6-membered saturated monocyclic heterocycle which contains 1 or 2 heteroatoms selected from N, S and O, wherein said ring can be bonded to the rest of the molecule through any available C or N atom, and wherein one or more C or S atoms of the 20 ring can be optionally oxidized forming CO, SO or SO₂ groups, wherein said Cy_{3a} can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₃ in R₁ represents Cy_{3b}, and Cy_{3b} represents a 5- or 6-membered saturated monocyclic heterocycle which contains 1 or 2 heteroatoms selected 25 from N, S and O with the proviso that it contains at least 1 N atom, wherein said ring is bonded to the rest of the molecule through a N atom, wherein one or more C or S ring atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein said Cy_{3b} can be optionally substituted with one or more R₇.

30 In another embodiment, the invention relates to the compounds of formula I wherein Cy₄ in R₁ represents Cy_{4a}, and Cy_{4a} represents a 5- or 6-membered saturated monocyclic heterocycle which contains 1 or 2 heteroatoms selected from N, S and O and which can be bonded to the rest of the molecule through any available C or N atom, wherein one or more C or S ring atoms can be optionally

oxidized forming CO, SO or SO₂ groups, and wherein said Cy_{4a} can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein the C₁₋₄alkyl group can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy_{3a}, wherein the C₁₋₄alkyl group can be optionally substituted with one or more R₆ and Cy_{3a} can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy_{3b}, wherein the C₁₋₄alkyl group can be optionally substituted with one or more R₆ and Cy_{3b} can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄₋C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄₋C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy_{3a}, wherein Cy_{3a} can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy_{4a-}C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄,

-NR₅COR₃ or Cy_{3a}, wherein Cy_{3a} can be optionally substituted with one or more R₇ and wherein Cy_{4a} can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy_{4a}-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy_{3b}, wherein Cy_{3b} can be optionally substituted with one or more R₇ and wherein Cy_{4a} can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy_{3a}, wherein Cy_{3a} can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy_{4a}-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy_{3a}, wherein Cy_{3a} can be optionally substituted with one or more R₇ and wherein Cy_{4a} can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein each R₁ represents hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy_{4a}-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy_{3b}, wherein Cy_{3b} can be optionally substituted with one or more R₇ and wherein Cy_{4a} can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I

wherein each R_1 represents C_{1-4} alkyl, halogen, halo C_{1-4} alkyl, hydroxy C_{1-4} alkyl, C_{1-4} alkoxy C_{1-4} alkyl, -CN, -OR₃, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅SO₂R₄ or Cy_{3a}, wherein Cy_{3a} can be optionally substituted with one or more R₇.

5 In another embodiment, the invention relates to the compounds of formula I wherein R₃ in R₁ represents hydrogen or R₄ and R₄ in R₁ represents C_{1-4} alkyl or Cy₄, wherein C_{1-4} alkyl can be optionally substituted with one or more R₆ and wherein Cy₄ can be optionally substituted with one or more R₈.

10 In another embodiment, the invention relates to the compounds of formula I wherein R₃ in R₁ represents hydrogen or R₄ and R₄ in R₁ represents C_{1-4} alkyl, Cy₄- C_{1-4} alkyl, hydroxy C_{1-4} alkyl, C_{1-4} alkoxy C_{1-4} alkyl or Cy₄, wherein any Cy₄ can be optionally substituted with one or more R₈.

15 In another embodiment, the invention relates to the compounds of formula I wherein:

15 Cy₁ represents phenyl substituted with one or more R₁, preferably one or two R₁; and

each R₁ represents C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, halogen, -CN, -NO₂, -COR₃, -CO₂R₃, -CONR₃R₃, -COCONR₃R₃, -OR₃, -OCOR₄, -OCONR₄R₄, -OCO₂R₄, -SR₃, -SOR₄, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃,

20 -NR₅CONR₃R₃, -NR₅CO₂R₄, -C(=N-OH)R₄ or Cy₃, wherein C_{1-4} alkyl, C_{2-4} alkenyl and C_{2-4} alkynyl can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein:

25 Cy₁ represents phenyl substituted with one or more R₁, preferably one or two R₁; and

each R₁ represents C_{1-4} alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -COCONR₃R₃, -OR₃, -SR₃, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein the C_{1-4} alkyl group can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one or more R₁, preferably one or two R₁; and

each R₁ represents C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein the C₁₋₄alkyl group can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇.

5 In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one or more R₁, preferably one or

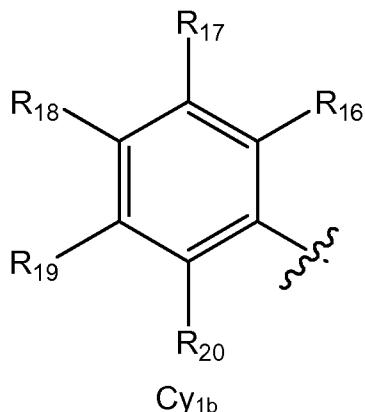
10 two R₁; and

each R₁ represents C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy_{3a}, wherein the C₁₋₄alkyl group can be optionally substituted with one or more R₆ and Cy_{3a} can be optionally substituted with one or more R₇.

15 In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one or more R₁, preferably one or two R₁; and

each R₁ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.


25 In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one or more R₁, preferably one or two R₁; and

each R₁ represents C₁₋₄alkyl, halogen, haloC₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, -CN, -OR₃, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅SO₂R₄ or Cy_{3a}, wherein Cy_{3a} can be optionally substituted with one or more R₇.

30 In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents a ring of formula Cy_{1b}:

one of R₁₇, R₁₈ or R₁₉ represents hydroxyC₁₋₄alkyl, -CN, -OR₃, -SO₂R₄,

5 -SO₂NR₃R₃, -NR₅COR₃, -NR₅SO₂R₄ or Cy_{3a}, wherein Cy_{3a} can be optionally substituted with one or more R₇; and

the remainder of R₁₇, R₁₈ and R₁₉ as well as R₁₆ and R₂₀ are selected from hydrogen, C₁₋₄alkyl, halogen and C₁₋₄alkoxy.

In another embodiment, the invention relates to the compounds of formula I

10 wherein:

Cy₁ represents phenyl substituted at one or two of positions 3, 4 and 5 with an R₁; and

each R₁ represents C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, halogen, -CN, -NO₂, -COR₃, -CO₂R₃, -CONR₃R₃, -COCONR₃R₃, -OR₃, -OCOR₄, -OCONR₄R₄, 15 -OCO₂R₄, -SR₃, -SOR₄, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅CO₂R₄, -C(=N-OH)R₄ or Cy₃, wherein C₁₋₄alkyl, C₂₋₄alkenyl and C₂₋₄alkynyl can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I

20 wherein:

Cy₁ represents phenyl substituted at one or two of positions 3, 4 and 5 with an R₁; and

each R₁ represents C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein the C₁₋₄alkyl group can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I

wherein:

Cy₁ represents phenyl substituted at one or two of positions 3, 4 and 5 with an R₁; and

each R₁ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one R₁, which is placed at position 3 or 4 of the phenyl ring; and

R₁ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one R₁, which is placed at position 3 or 4 of the phenyl ring; and

R₁ represents hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one R₁, which is placed at position 3 or 4 of the phenyl ring; and

R₁ represents hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy_{4a}-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy_{3b},

wherein Cy_{3b} can be optionally substituted with one or more R₇ and wherein Cy_{4a} can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein:

5 Cy₁ represents phenyl substituted with one R₁, which is placed at position 3 or 4 of the phenyl ring;

R₁ represents hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, 10 wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈;

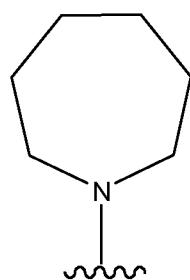
R₃ in R₁ represents hydrogen or R₄; and

R₄ in R₁ represents C₁₋₄alkyl or Cy₄, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆ and wherein Cy₄ can be optionally substituted with one or more R₈.

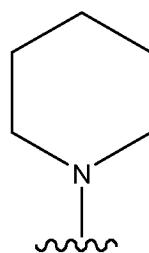
In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents a 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein the ring which contains the N atom which is bonded to the pyrrolopyrimidine is saturated or partially unsaturated, wherein Cy₂ contains

20 from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

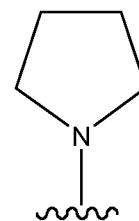
In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents a 5- to 7-membered monocyclic or 6- to 11-membered


25 bicyclic heterocycle, wherein the ring which contains the N atom which is bonded to the pyrrolopyrimidine moiety is saturated, wherein Cy₂ contains from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

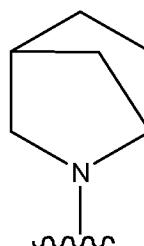
30 In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents a saturated 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein Cy₂ contains from 1 to 3 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally

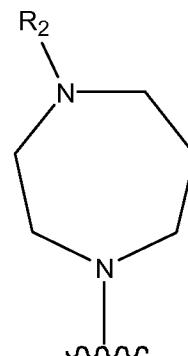

oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

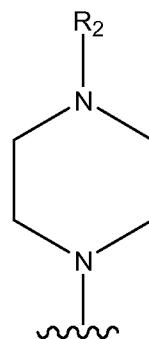
In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents a saturated 5- to 7-membered monocyclic heterocycle which contains from 1 to 2 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

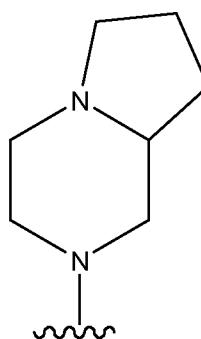

In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ is selected from (a)-(i):

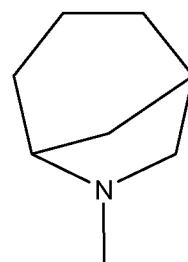
(a)


(b)

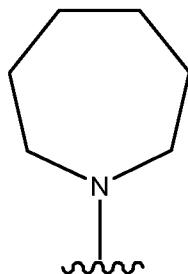

(c)

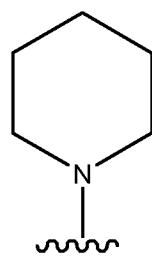

(d)


(e)

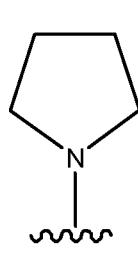

(f)

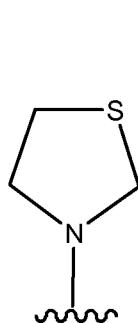
(g)

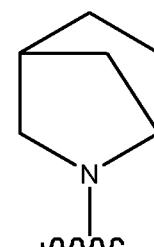

(h)

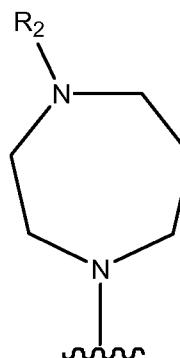

(i)

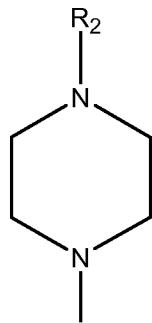
wherein one or more C or S atoms of Cy_2 can be optionally oxidized forming CO, SO or SO_2 groups, and wherein Cy_2 can be optionally substituted with one or more R_2 .


In another embodiment, the invention relates to the compounds of formula I
5 wherein Cy_2 is selected from (a)-(g):

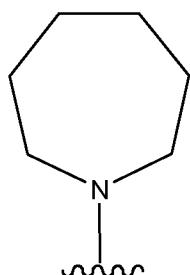

(a)

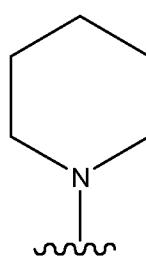

(b)


(c)

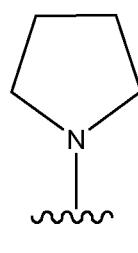

(d)

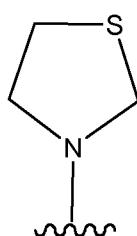
(e)

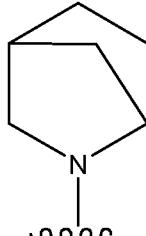

(f)

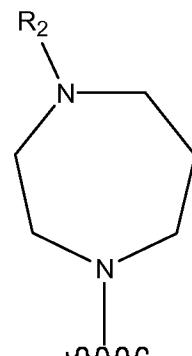

(g) ,

wherein Cy_2 can be optionally substituted with one or more R_2 .


In another embodiment, the invention relates to the compounds of formula I
wherein Cy_2 is selected from (a)-(f):

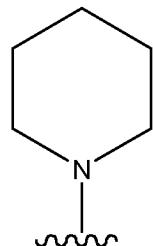

(a)


(b)

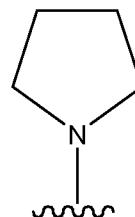

(c)

(d)

(e)



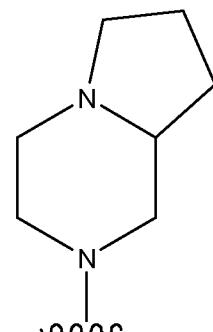
(f)

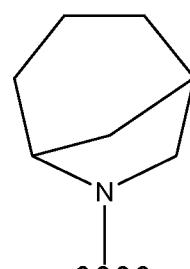

,

wherein Cy₂ can be optionally substituted with one or more R₂.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ is selected from (b), (c), (d), (e), (h) and (i):

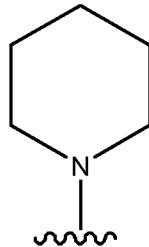
(b)


(c)


(d)

(e)

(h)

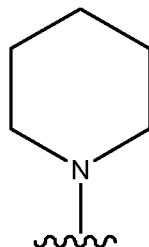

(i)

,

wherein one or more C or S atoms of Cy₂ can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

In another embodiment, the invention relates to the compounds of formula I

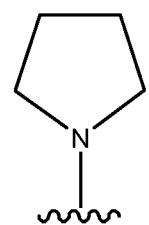
5 wherein Cy₂ represents (b):



(b) ,

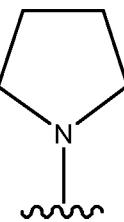
wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

In another embodiment, the invention relates to the compounds of formula I


10 wherein Cy₂ represents (b):

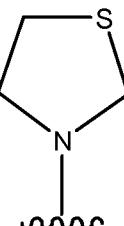
(b) ,

which can be optionally substituted with one or more R₂.


In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (c):

(c) ,

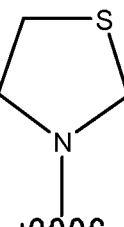
wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.


In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (c):

(c) ,

which can be optionally substituted with one or more R₂.

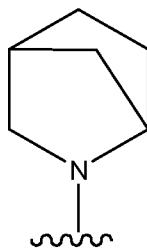
5 In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (d)



(d) ,

wherein one or more C or S atoms of Cy₂ can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more

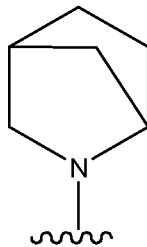
10 R₂.


In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (d)

(d) ,

which can be optionally substituted with one or more R₂.

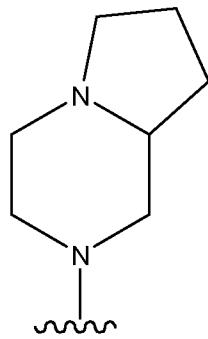
15 In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (e):



(e) ,

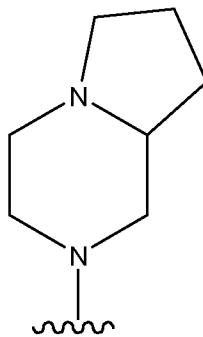
wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

In another embodiment, the invention relates to the compounds of formula I


5 wherein Cy₂ represents (e):

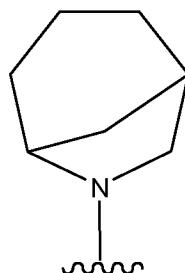
(e) ,

which can be optionally substituted with one or more R₂.


In another embodiment, the invention relates to the compounds of formula I
wherein Cy₂ represents (h):

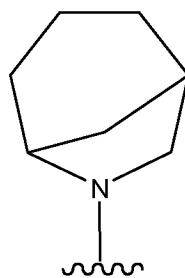
10 (h) ,

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.


In another embodiment, the invention relates to the compounds of formula I
wherein Cy₂ represents (h):

(h) ,

which can be optionally substituted with one or more R_2 .


In another embodiment, the invention relates to the compounds of formula I wherein Cy_2 represents (i):

(i) ,

wherein one or more C atoms of Cy_2 can be optionally oxidized forming CO groups, and wherein Cy_2 can be optionally substituted with one or more R_2 .

In another embodiment, the invention relates to the compounds of formula I wherein Cy_2 represents (i):

(i) ,

which can be optionally substituted with one or more R_2 .

In another embodiment, the invention relates to the compounds of formula I wherein Cy_2 is optionally substituted with one, two, three or four R_2 .

In another embodiment, the invention relates to the compounds of formula I wherein each R_2 represents C_{1-4} alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃,

15

-OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆ and wherein Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I

5 wherein Cy₃ in R₂ represents Cy_{3c}, and Cy_{3c} represents a saturated 3- to 7-membered monocyclic or 6- to 11-membered bicyclic ring which can be carbocyclic or heterocyclic, in which case it can contain from 1 to 4 heteroatoms selected from N, S and O, wherein Cy_{3c} can be bonded to the rest of the molecule through any available C or N atom, wherein one or more C or S atoms of the ring
10 can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy_{3c} can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein each R₂ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy_{3c}, wherein C₁₋₄alkyl
15 can be optionally substituted with one or more R₆ and wherein Cy_{3c} can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, haloC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, R₉CO-C₁₋₄alkyl, NR₉R₉-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl,
20 R₁₀SO₂NR₅-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, NR₉R₉CONR₅-C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I

25 wherein each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, haloC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, R₉CO-C₁₋₄alkyl, NR₉R₉-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, R₁₀SO₂NR₅-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, NR₉R₉CONR₅-C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy_{3c}, wherein Cy_{3c} can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein each R₂ represents C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein C₁₋₄alkyl can be optionally substituted with

one or more R₆.

In another embodiment, the invention relates to the compounds of formula I wherein each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, haloC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, R₉CO-C₁₋₄alkyl, NR₉R₉-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, 5 R₁₀SO₂NR₅-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, NR₉R₉CONR₅-C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein Cy₄ can be optionally substituted with one or more R₈.

In another embodiment, the invention relates to the compounds of formula I wherein each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, 10 haloC₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, haloC₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃ 15 or Cy_{3a}, wherein Cy_{3a} can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein each R₂ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, haloC₁₋₄alkyl, halogen, -COR₃, -CONR₃R₃, -OR₃ or -NR₃R₃.

In another embodiment, the invention relates to the compounds of formula I 20 wherein R₃ in R₂ represents represents hydrogen or R₄ and R₄ in R₂ represents C₁₋₄alkyl optionally substituted with one or more R₆.

In another embodiment, the invention relates to the compounds of formula I wherein R₃ in R₂ represents hydrogen or R₄ and R₄ in R₂ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl or haloC₁₋₄alkyl.

25 In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₂ represents a 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein the ring which contains the N atom which is bonded to the pyrrolopyrimidine moiety is saturated, wherein Cy₂ contains from 1 to 4 30 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃,

-OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆ and wherein Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I

5 wherein:

Cy₂ represents a 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein the ring which contains the N atom which is bonded to the pyrrolopyrimidine moiety is saturated, wherein Cy₂ contains from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be 10 optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, haloC₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇.

15 In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₂ represents a 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein the ring which contains the N atom which is bonded to the pyrrolopyrimidine moiety is saturated, wherein Cy₂ contains from 1 to 4 20 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein C₁₋₄alkyl can be optionally substituted with 25 one or more R₆.

In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₂ represents a saturated 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein Cy₂ contains from 1 to 3 heteroatoms 30 selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃,

-OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆ and wherein Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I

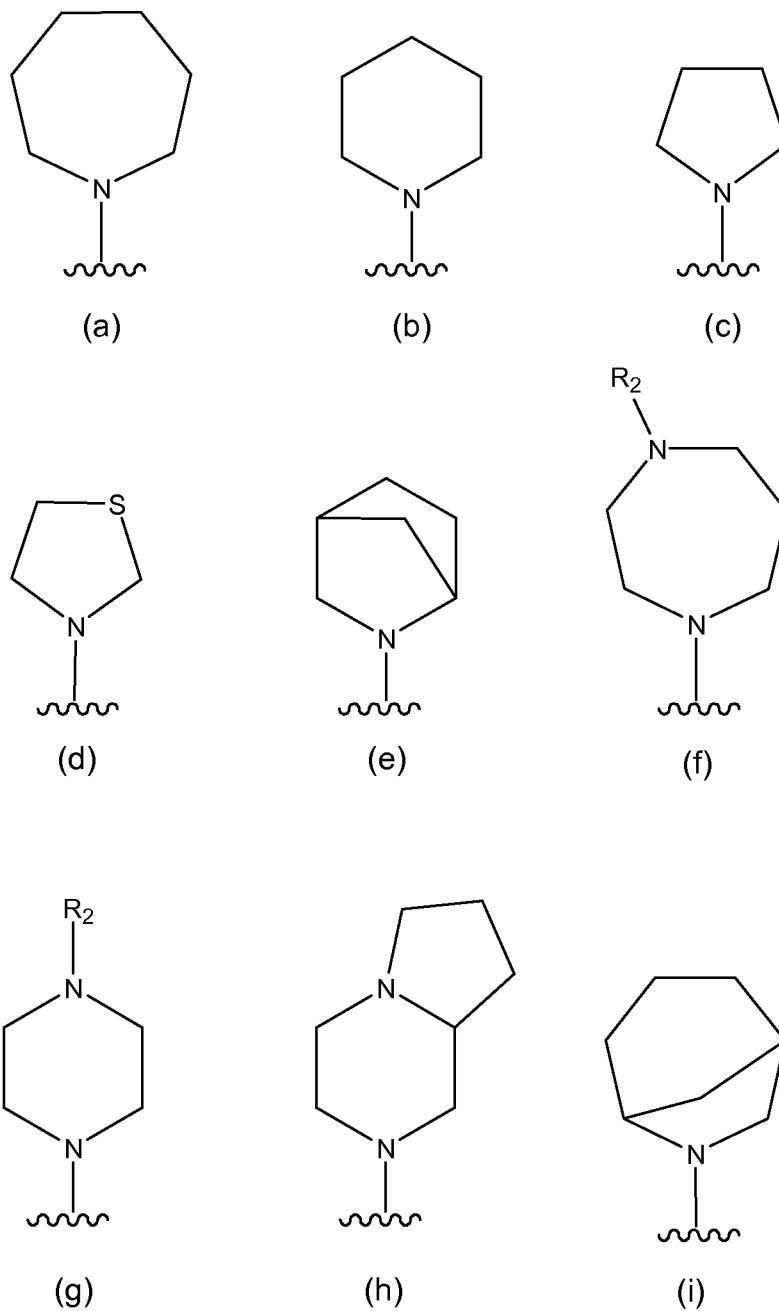
5 wherein:

Cy₂ represents a saturated 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein Cy₂ contains from 1 to 3 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally 10 substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, haloC₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I

15 wherein:

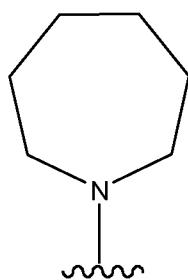

Cy₂ represents a saturated 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein Cy₂ contains from 1 to 3 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally 20 substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆.

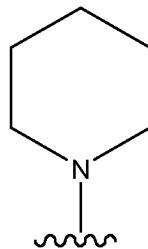
In another embodiment, the invention relates to the compounds of formula I

25 wherein:

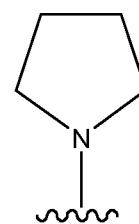
Cy₂ is selected from (a)-(i):

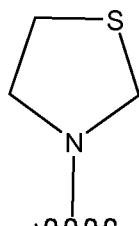

wherein one or more C or S atoms of Cy₂ can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

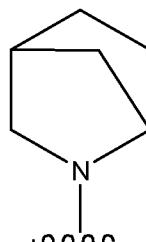
5 each R_2 represents $C_{1-4}alkyl$, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein $C_{1-4}alkyl$ can be optionally substituted with one or more R_6 and wherein Cy₃ can be optionally substituted with one or more R_7 .

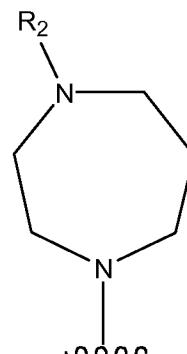

In another embodiment, the invention relates to the compounds of formula I

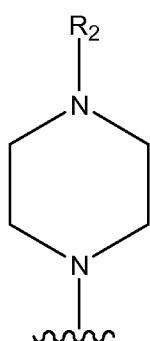
10 wherein:

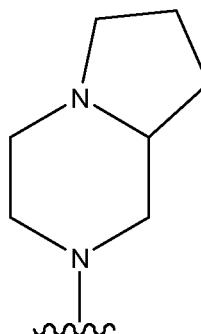

Cy₂ is selected from (a)-(i):

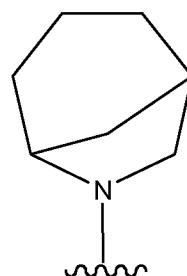

(a)


(b)


(c)


(d)


(e)

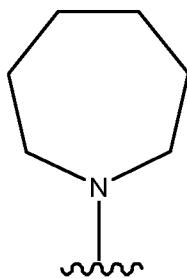

(f)

(g)

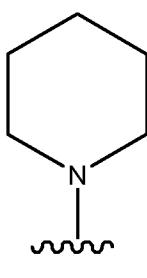
(h)

(i)

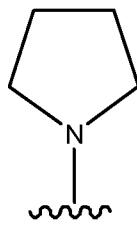
wherein one or more C or S atoms of Cy₂ can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with

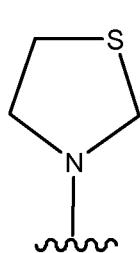

5 one or more R₂; and

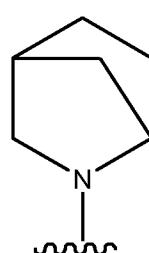
each R₂ represents C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆.

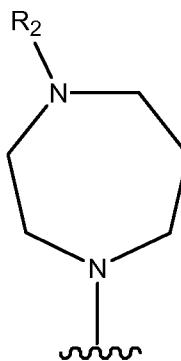

In another embodiment, the invention relates to the compounds of formula I

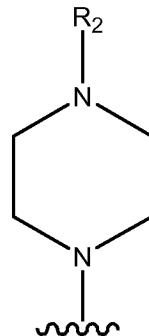
10 wherein:


Cy₂ is selected from (a)-(g):


(a)

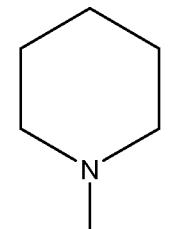

(b)


(c)

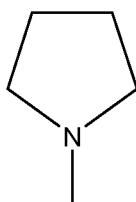

(d)

(e)

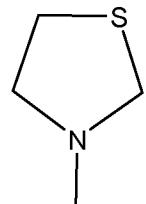
(f)

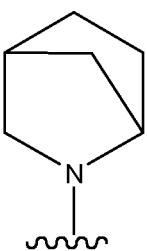

(g) ,

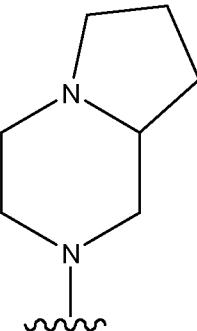
wherein Cy₂ can be optionally substituted with one or more R₂; and

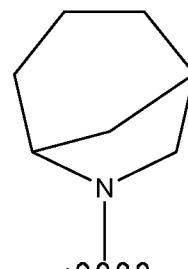

each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl,

5 haloC₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇.


In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ is selected from (b), (c), (d), (e), (h) and (i):

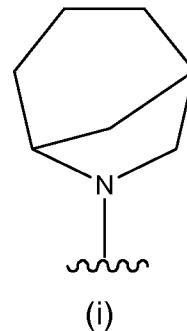
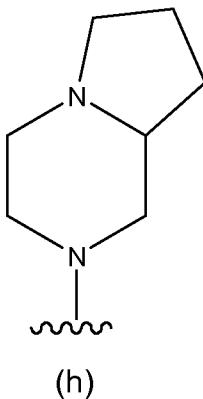

(b)

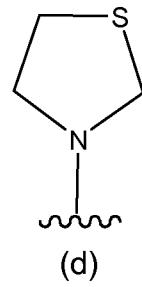
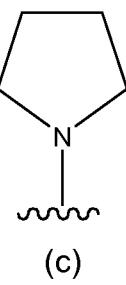
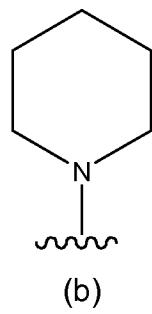

(c)


(d)

(e)

(h)

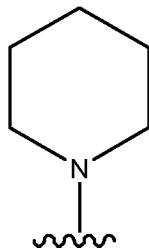






(i)

,

wherein one or more C or S atoms of Cy₂ can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

5 each R₂ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆ and wherein Cy₃ can be optionally substituted with one or more R₇.

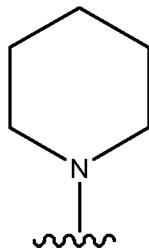

10 In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ is selected from (b), (c), (d), (e), (h) and (i):

wherein one or more C or S atoms of Cy₂ can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

5 each R₂ represents C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (b):

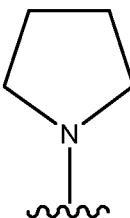
10


(b) ,

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

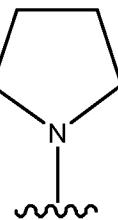
each R₂ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein C₁₋₄alkyl

can be optionally substituted with one or more R_6 and wherein Cy_3 can be optionally substituted with one or more R_7 .


In another embodiment, the invention relates to the compounds of formula I wherein Cy_2 represents (b):

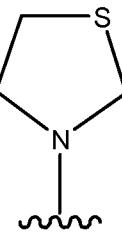
5 (b) ,

wherein one or more C atoms of Cy_2 can be optionally oxidized forming CO groups, and wherein Cy_2 can be optionally substituted with one or more R_2 ; and each R_2 represents C_{1-4} alkyl, $-COR_3$, $-OR_3$, $-NR_3R_3$, $-NR_5COR_3$, $-NR_5CONR_3R_3$ or $-NR_5SO_2R_4$, wherein C_{1-4} alkyl can be optionally substituted with 10 one or more R_6 .


In another embodiment, the invention relates to the compounds of formula I wherein Cy_2 represents (c):

(c) ,

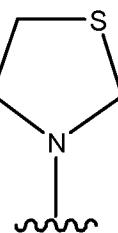
wherein one or more C atoms of Cy_2 can be optionally oxidized forming CO groups, and wherein Cy_2 can be optionally substituted with one or more R_2 ; and each R_2 represents C_{1-4} alkyl, halogen, $-CN$, $-COR_3$, $-CO_2R_3$, $-CONR_3R_3$, $-OR_3$, $-NR_3R_3$, $-NR_5COR_3$, $-NR_5CONR_3R_3$, $-NR_5SO_2R_4$ or Cy_3 , wherein C_{1-4} alkyl can be optionally substituted with one or more R_6 and wherein Cy_3 can be optionally substituted with one or more R_7 .


20 In another embodiment, the invention relates to the compounds of formula I wherein Cy_2 represents (c):

(c) ,

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and each R₂ represents C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃, 5 -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (d)

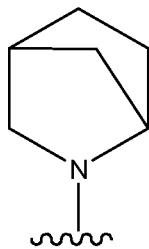

(d) ,

10 wherein one or more C or S atoms of Cy₂ can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein C₁₋₄alkyl 15 can be optionally substituted with one or more R₆ and wherein Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (d)

45

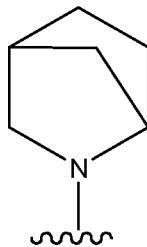


(d) ,

wherein one or more C or S atoms of Cy₂ can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

5 each R₂ represents C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (e):

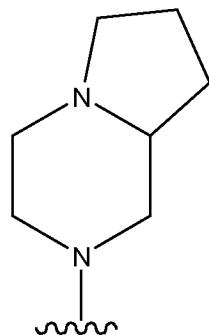


10 (e) ,

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆ and wherein Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (e):

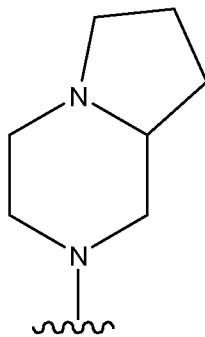

(e) ,

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃,

5 -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (h)

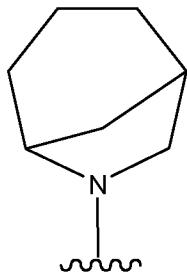

(h) ,

10 wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆ and wherein Cy₃ can be

15 optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (h)

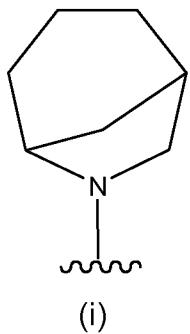

(h) ,

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃,

5 -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (i)


(i) ,

10 wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and

each R₂ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆ and wherein Cy₃ can be

15 optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein Cy₂ represents (i)

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂; and each R₂ represents C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃, 5 -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆.

In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one or more R₁; and

10 Cy₂ represents a 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein the ring which contains the N atom which is bonded to the pyrrolopyrimidine is saturated or partially unsaturated, wherein Cy₂ contains from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ 15 can be optionally substituted with one or more R₂.

In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one or more R₁; and

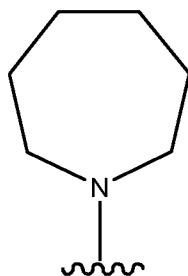
20 Cy₂ represents a 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein the ring which contains the N atom which is bonded to the pyrrolopyrimidine moiety is saturated, wherein Cy₂ contains from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

25 In another embodiment, the invention relates to the compounds of formula I wherein:

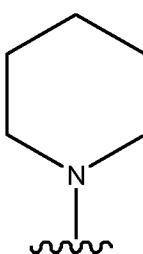
Cy₁ represents phenyl substituted with one or more R₁; and

Cy₂ represents a saturated 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein Cy₂ contains from 1 to 3 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

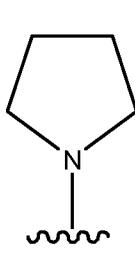
5 In another embodiment, the invention relates to the compounds of formula I wherein:

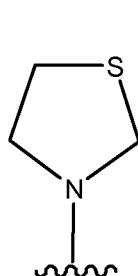

Cy₁ represents phenyl substituted with one or more R₁; and

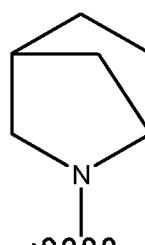
10 Cy₂ represents a 5- to 7-membered saturated monocyclic heterocycle which contains from 1 to 2 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

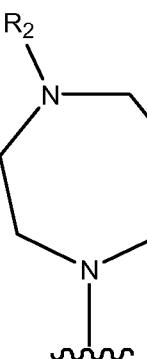

In another embodiment, the invention relates to the compounds of formula I wherein:

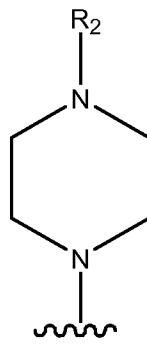
15 Cy₁ represents phenyl substituted with one or more R₁; and


Cy₂ is selected from (a)-(g):


(a)

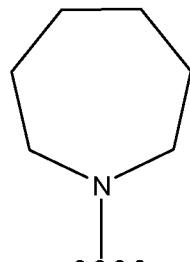

(b)


(c)

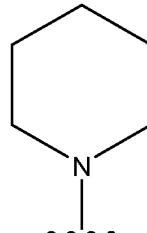

(d)

(e)

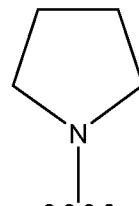
(f)

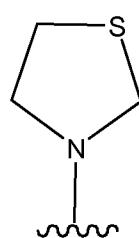

(g)

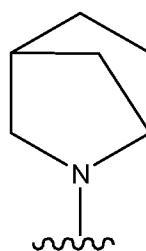
wherein Cy₂ can be optionally substituted with one or more R₂.

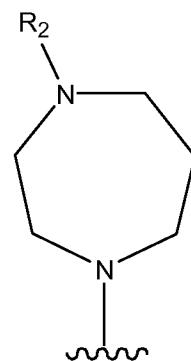

In another embodiment, the invention relates to the compounds of formula I wherein:

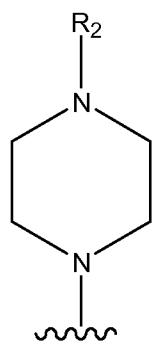
Cy_1 represents phenyl substituted with one or more R_1 ; and

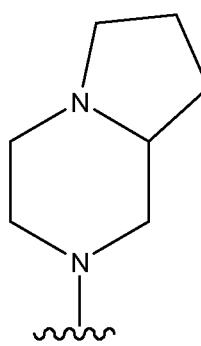

Cy_2 is selected from (a)-(i):

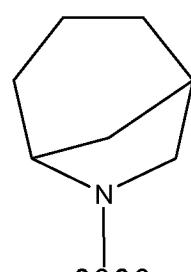

(a)


(b)


(c)


(d)


(e)

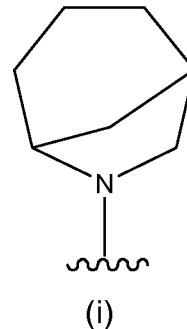
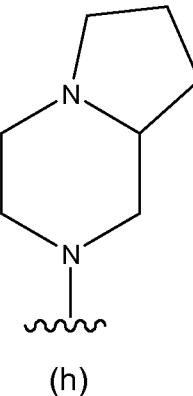
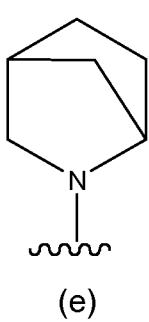
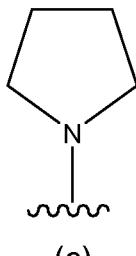
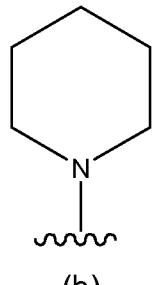

(f)

(g)

(h)

(i)

5

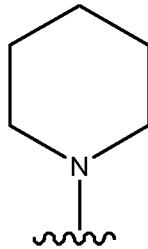





wherein one or more C or S atoms of Cy_2 can be optionally oxidized forming CO, SO or SO_2 groups, and wherein Cy_2 can be optionally substituted with one or more R_2 .

In another embodiment, the invention relates to the compounds of formula I

10 wherein:

Cy₁ represents phenyl substituted with one or more R₁; and

Cy₂ is selected from (b), (c), (d), (e), (h) and (i):


wherein one or more C or S atoms of Cy₂ can be optionally oxidized

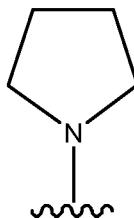
5 forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one or more R₁; and

10 Cy₂ represents (b):

(b)

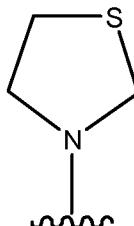

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

In another embodiment, the invention relates to the compounds of formula I

wherein:

Cy₁ represents phenyl substituted with one or more R₁; and

Cy₂ represents (c):

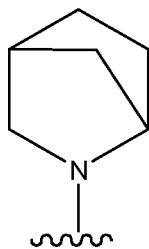

(c) ,

5 wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one or more R₁; and

10 Cy₂ represents (d)


(d) ,

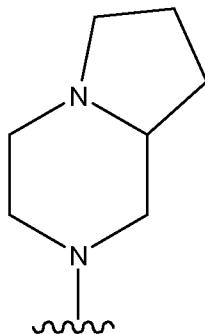
wherein one or more C or S atoms of Cy₂ can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

15 In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one or more R₁; and

Cy₂ represents (e):

(e) ,


wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

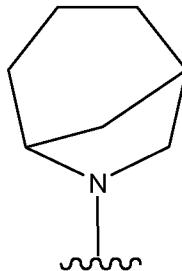
In another embodiment, the invention relates to the compounds of formula I

5 wherein:

Cy₁ represents phenyl substituted with one or more R₁; and

Cy₂ represents (h)

(h) ,


wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO

10 groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

In another embodiment, the invention relates to the compounds of formula I
wherein:

Cy₁ represents phenyl substituted with one or more R₁; and

Cy₂ represents (i):

(i) ,

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

In another embodiment, the invention relates to the compounds of formula I wherein:

5 Cy₁ represents phenyl substituted with one or more R₁;

Cy₂ represents a saturated 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein Cy₂ contains from 1 to 3 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂;

10 each R₁ represents C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein the C₁₋₄alkyl group can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇; and

15 each R₂ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆ and wherein Cy₃ can be optionally substituted with one or more R₇.

In another embodiment, the invention relates to the compounds of formula I wherein:

Cy₁ represents phenyl substituted with one or more R₁;

Cy₂ represents a saturated 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein Cy₂ contains from 1 to 3 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂;

25 each R₁ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈; and

30 each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, haloC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, R₉CO-C₁₋₄alkyl, NR₉R₉-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl,

$R_{10}SO_2NR_5-C_{1-4}alkyl$, $NR_9R_9CO-C_{1-4}alkyl$, $NR_9R_9CONR_5-C_{1-4}alkyl$, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

5 Furthermore, the present invention covers all possible combinations of the particular and preferred embodiments described above.

In another embodiment, the invention relates to a compound of formula I, which provides more than 50% inhibition of JAK3 activity at 10 μ M, more preferably at 1 μ M and still more preferably at 0.1 μ M, in a JAK3 assay such as 10 the one described in example 14.

In another embodiment, the invention relates to a compound of formula I selected from the list of compounds described in examples 1 to 13.

The compounds of the present invention contain one or more basic 15 nitrogens and may, therefore, form salts with organic or inorganic acids. Examples of these salts include: salts with inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, perchloric acid, sulfuric acid or phosphoric acid; and salts with organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, fumaric acid, oxalic acid, acetic acid, maleic acid, ascorbic 20 acid, citric acid, lactic acid, tartaric acid, malonic acid, glycolic acid, succinic acid and propionic acid, among others. Some of the compounds of the present invention may contain one or more acidic protons and, therefore, they may also form salts with bases. Examples of these salts include: salts with inorganic cations 25 such as sodium, potassium, calcium, magnesium, lithium, aluminium, zinc, etc; and salts formed with pharmaceutically acceptable amines such as ammonia, alkylamines, hydroxylalkylamines, lysine, arginine, N-methylglucamine, procaine and the like.

There is no limitation on the type of salt that can be used, provided that these are pharmaceutically acceptable when they are used for therapeutic 30 purposes. The term pharmaceutically acceptable salt represents those salts which are, according to medical judgment, suitable for use in contact with the tissues of humans and other mammals without undue toxicity, irritation, allergic response and the like. Pharmaceutically acceptable salts are well known in the art.

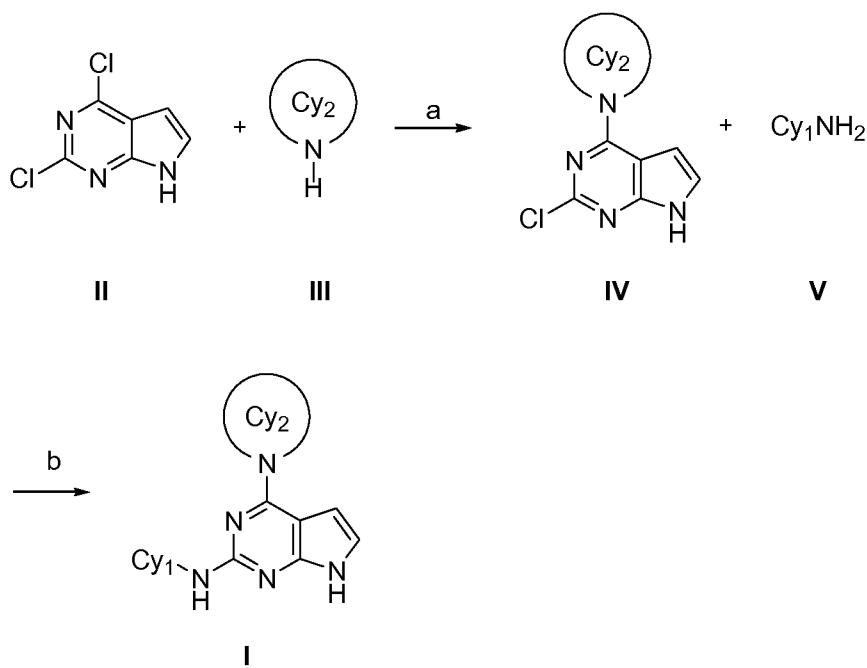
The salts of a compound of formula I can be obtained during the final isolation and purification of the compounds of the invention or can be prepared by treating a compound of formula I with a sufficient amount of the desired acid or base to give the salt in the conventional manner. The salts of the compounds of 5 formula I can be converted into other salts of the compounds of formula I by ion exchange using ionic exchange resins.

The compounds of formula I and their salts may differ in some physical properties but they are equivalent for the purposes of the present invention. All salts of the compounds of formula I are included within the scope of the invention.

10 The compounds of the present invention may form complexes with solvents in which they are reacted or from which they are precipitated or crystallized. These complexes are known as solvates. As used herein, the term solvate refers to a complex of variable stoichiometry formed by a solute (a compound of formula I or a salt thereof) and a solvent. Examples of solvents include pharmaceutically 15 acceptable solvents such as water, ethanol and the like. A complex with water is known as a hydrate. Solvates of compounds of the invention (or salts thereof), including hydrates, are included within the scope of the invention.

20 The compounds of formula I may exist in different physical forms, i.e. amorphous and crystalline forms. Moreover, the compounds of the invention may have the ability to crystallize in more than one form, a characteristic which is known as polymorphism. Polymorphs can be distinguished by various physical 25 properties well known in the art such as X-ray diffraction pattern, melting point or solubility. All physical forms of the compounds of formula I, including all polymorphic forms ("polymorphs") thereof, are included within the scope of the invention.

Some of the compounds of the present invention may exist as several diastereoisomers and/or several optical isomers. Diastereoisomers can be separated by conventional techniques such as chromatography or fractional 30 crystallization. Optical isomers can be resolved by conventional techniques of optical resolution to give optically pure isomers. This resolution can be carried out on any chiral synthetic intermediate or on products of formula I. Optically pure isomers can also be individually obtained using enantiospecific synthesis. The present invention covers all individual isomers as well as mixtures thereof (for


example racemic mixtures or mixtures of diastereomers), whether obtained by synthesis or by physically mixing them.

The compounds of formula I can be obtained by following the processes described below. As it will be obvious to one skilled in the art, the exact method

5 used to prepare a given compound may vary depending on its chemical structure. Moreover, in some of the processes described below it may be necessary or advisable to protect the reactive or labile groups with conventional protecting groups. Both the nature of these protecting groups and the procedures for their introduction and removal are well known in the art (see for example Greene T.W.
10 and Wuts P.G.M, "Protecting Groups in Organic Synthesis", John Wiley & Sons, 3rd edition, 1999). As an example, as protecting group of an amino function the *tert*-butoxycarbonyl (BOC) group can be used. Whenever a protecting group is present, a later deprotection step will be required, which can be performed under standard conditions in organic synthesis, such as those described in the above-
15 mentioned reference.

Unless otherwise stated, in the methods described below the meanings of the different substituents are the meanings described above with regard to a compound of formula I.

In general, compounds of formula I can be obtained in two steps by the
20 method described in Scheme 1:

Scheme 1

wherein Cy₁ and Cy₂ have the meaning previously described in relation with a
5 compound of formula I.

In a first step (step a), the reaction between a compound of formula II and a compound of formula III may be carried out in the presence of a base such as triethylamine, K₂CO₃, Cs₂CO₃ or diisopropylethylamine, a solvent such as ethanol, tetrahydrofuran/H₂O or any polar solvent, and heating preferably at reflux to obtain
10 a compound of formula IV.

Step b may be carried out by the reaction between a compound of formula IV and an amine of formula V in the presence of 4M dioxane/HCl_(g) solution, a solvent such as n-butanol or methoxyethanol, and irradiating with a microwave oven preferably at around 170 °C to obtain a compound of formula I.

15 Alternatively, step b may be carried out by the reaction between a compound of formula IV and an amine of formula V in the presence of a Pd catalyst such as Pd₂(dba)₃, a phosphine such as 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl, and a base such as potassium carbonate, in a solvent such as tert-butanol, and heating preferably at reflux to obtain a compound of formula I.

20 The compounds of formula II, III and V are commercially available or can be prepared by well-known methods described in the literature, and can be protected with suitable protecting groups.

25 Furthermore, some compounds of the present invention can also be obtained from other compounds of formula I by appropriate conversion reactions of functional groups in one or several steps, using well-known reactions in organic chemistry under the standard experimental conditions.

Said transformations can be carried out upon Cy₁ or Cy₂ groups and include, for example:

30 the reduction of a nitro group to give an amino group, for example by treatment with hydrogen, hydrazine or formic acid in the presence of a suitable catalyst such as Pd/C; or by treatment with sodium borohydride in the presence of NiCl₂, or SnCl₂;

the substitution of a primary or secondary amine by treatment with an

alkylating agent under standard conditions, or by reductive amination, i.e. by treatment with an aldehyde or a ketone in the presence of a reducing agent such as sodium cyanoborohydride or sodium triacetoxyborohydride;

the conversion of an amine into a sulfonamide by reaction with a sulfonyl

5 halide, such as sulfonyl chloride, optionally in the presence of catalytic amounts of a base such as 4-dimethylaminopyridine, in a suitable solvent such as dioxane, chloroform, dichloromethane or pyridine, optionally in the presence of a base such as triethylamine or pyridine;

the conversion of an amine into an amide, carbamate or urea under

10 standard conditions;

the alkylation of an amide by treatment with an alkylating agent under basic conditions;

the conversion of an alcohol into an ether, ester or carbamate under standard conditions;

15 the alkylation of a thiol to give a thioether under standard conditions;

the partial or total oxidation of an alcohol to give ketones, aldehydes or carboxylic acids under standard oxidizing conditions;

the reduction of an aldehyde or a ketone to an alcohol by treatment with a reducing agent such as sodium borohydride;

20 the reduction of a carboxylic acid or a carboxylic acid derivative to an alcohol by treatment with a reducing agent such as diisobutylaluminium hydride or LiAlH_4 ;

the oxidation of a thioether to a sulfoxide or sulfone under standard conditions;

25 the conversion of an alcohol into a halogen by reaction with SOCl_2 , PBr_3 , tetrabutylammonium bromide in the presence of P_2O_5 , or PI_3 ;

the conversion of a halogen atom into an amine by reaction with an amine, optionally in the presence of a suitable solvent, and preferably heating;

30 the conversion of a primary amide into a $-\text{CN}$ group or vice versa, under standard conditions.

Likewise, any of the aromatic rings of the compounds of the present invention can undergo electrophilic aromatic substitution reactions or nucleophilic aromatic substitution reactions, widely described in the literature.

Some of these interconversion reactions are explained in greater detail in the examples.

As it will be obvious to those skilled in the art, these interconversion reactions can be carried out upon the compounds of formula I as well as upon any 5 suitable synthesis intermediate thereof.

As mentioned above, the compounds of the present invention act by inhibiting JAK/STAT signaling pathways, particularly by inhibiting JAK3 activity. Therefore, the compounds of the invention are expected to be useful to treat diseases in which JAKs, particularly JAK3, play a role in mammals, including 10 human beings. These diseases include, but are not limited to, transplant rejection; immune, autoimmune and inflammatory diseases; neurodegenerative diseases; and proliferative disorders (see e.g. O'Shea J.J. et al, *Nat. Rev. Drug. Discov.* 2004, 3(7):555-64; Cetkovic-Cvrlje M. et al, *Curr. Pharm. Des.* 2004, 10(15):1767-84; Cetkovic-Cvrlje M. et al, *Arch. Immunol. Ther. Exp. (Warsz)*, 2004, 52(2):69-15 82).

Acute or chronic transplant rejection reactions that can be treated with the compounds of the present invention include any kind of cell, tissue or organ xenotransplants or allografts, such as of heart, lung, liver, kidney, pancreas, uterus, joints, pancreatic islets, bone marrow, limbs, cornea, skin, hepatocytes, 20 pancreatic beta cells, pluripotential cells, neuronal cells and myocardial cells, as well as graft-versus-host reactions (see e.g. Rousvoal G. et al, *Transpl. Int.* 2006, 19(12):1014-21; Borie DC. et al, *Transplantation* 2005, 79(7):791-801; Paniagua R. et al, *Transplantation* 2005, 80(9):1283-92; Higuchi T. et al, *J. Heart Lung Transplant.* 2005, 24(10):1557-64; Säemann MD. et al, *Transpl. Int.* 2004, 25 17(9):481-89; Silva Jr HT. et al, *Drugs* 2006, 66(13):1665-1684).

Immune, autoimmune and inflammatory diseases that can be treated with the compounds of the present invention include among others, rheumatic diseases (e.g. rheumatoid arthritis and psoriatic arthritis), autoimmune hematological disorders (e.g. hemolytic anemia, aplastic anemia, idiopathic thrombocytopenia, 30 and neutropenia), autoimmune gastritis and inflammatory bowel diseases (e.g. ulcerative colitis and Crohn's disease), scleroderma, type I diabetes and complications from diabetes, type B hepatitis, type C hepatitis, primary biliary cirrhosis, myasthenia gravis, multiple sclerosis, systemic lupus erythematosus,

psoriasis, atopic dermatitis, contact dermatitis, eczema, skin sunburns, suppression of HIV replication, infertility of autoimmune origin, autoimmune thyroid disease (Grave's disease), interstitial cystitis, and mast cell-mediated allergic reactions such as asthma, angiodema, anaphylaxis, bronchitis, rhinitis and

5 sinusitis (see e.g. Sorbera LA. et al, Drugs of the Future 2007, 32(8):674-680; O'Shea J.J. et al, Nat. Rev. Drug. Discov. 2004, 3(7):555-64; Cetkovic-Cvrlje M. et al, Curr. Pharm. Des. 2004, 10(15):1767-84; Muller-Ladner U. et al, J. Immunol. 2000, 164(7): 3894-3901; Walker JG. et al, Ann. Rheum. Dis. 2006, 65(2):149-56; Milici AJ. et al, Arthritis Rheum. 2006, 54 (9, Suppl): abstr 789; Kremer JM. et al, 10 Arthritis Rheum. 2006, 54, 4116, presentation no. L40; Cetkovic-Cvrlje M. et al, Arch Immunol. Ther. Exp. (Warsz), 2004, 52(2):69-82; Malaviya R. et al, J. Pharmacol. Exp. Ther. 2000, 295(3):912-26; Malaviya R. et al, J. Biol. Chem. 1999, 274(38):27028-38; Wilkinson B et al, Ann. Rheum. Dis. 2007, 66(Suppl 2): Abst. THU0099; Matsumoto M. et al, J. Immunol. 1999, 162(2):1056-63).

15 Neurodegenerative diseases that can be treated with the compounds of the present invention include, among others, amyotrophic lateral sclerosis and Alzheimer's disease (see e.g. Trieu VN. et al, Biochem. Biophys. Res. Commun. 2000, 267(1):22-5).

20 Proliferative disorders that can be treated with the compounds of the present invention include, among others, leukemias, lymphomas, glioblastoma multiforme, colon carcinoma, as well as thromboembolic and allergic complications associated with these diseases (see e.g. Sudbeck EA. et al, Clin. Cancer Res. 1999, 5(6):1569-82; Narla RK. et al, Clin. Cancer Res. 1998, 4(10):2463-71; Lin Q. et al, Am J. Pathol. 2005, 167(4):969-80; Tibbles HE. et al, 25 J. Biol. Chem. 2001, 276(21):17815-22).

30 Biological assays that can be used to determine the ability of a compound to inhibit JAKs, particularly JAK3, are well known in the art. For example, a compound to be tested can be incubated in the presence of JAK3 to determine whether inhibition of JAK3 enzymatic activity occurs, as described in the assay of example 14. Other *in vitro* useful assays that can be used to measure JAK3-inhibitory activity include cellular assays, for example IL-2-induced proliferation of human T lymphocytes. The immunosuppressive activity of the compounds of the invention can be tested using standard *in vivo* animal models for immune and

autoimmune diseases, which are well known in the art. For example, the following assays can be used: delayed-type hypersensitivity (DTH) (see e.g. the method disclosed in Kudlacz E. et al, Am J. Transplant. 2004, 4(1):51-7, the contents of which are incorporated herein by reference), rheumatoid arthritis models such as

5 collagen-induced arthritis (see e.g. the method disclosed in Holmdahl R et al, APMIS, 1989, 97(7):575-84, the contents of which are incorporated herein by reference), multiple sclerosis models such as experimental autoimmune encephalomyelitis (EAE) (see e.g. the method disclosed in González-Rey et al, Am. J. Pathol. 2006, 168(4): 1179-88, the contents of which are incorporated

10 herein by reference) and transplant rejection models (see e.g. the various animal models disclosed in the references listed above in relation to the treatment of transplant rejection, incorporated herein by reference).

For selecting active compounds, testing at 10 μ M must result in an activity of more than 50% inhibition of JAK3 activity in the test provided in example 14.

15 More preferably, when tested in this assay compounds should exhibit more than 50% inhibition at 1 μ M, and still more preferably, they should exhibit more than 50% inhibition at 0.1 μ M.

The present invention also relates to a pharmaceutical composition that comprises a compound of the present invention (or a pharmaceutically acceptable

20 salt or solvate thereof) and one or more pharmaceutically acceptable excipients. The excipients must be "acceptable" in the sense of being compatible with the other ingredients of the composition and not deleterious to the recipients thereof.

The compounds of the present invention can be administered in the form of any pharmaceutical formulation, the nature of which, as it is well known, will

25 depend upon the nature of the active compound and its route of administration. Any route of administration may be used, for example oral, parenteral, nasal, ocular, rectal and topical administration.

Solid compositions for oral administration include tablets, granulates and capsules. In any case the manufacturing method is based on a simple mixture, dry

30 granulation or wet granulation of the active compound with excipients. These excipients can be, for example, diluents such as lactose, microcrystalline cellulose, mannitol or calcium hydrogenphosphate; binding agents such as for example starch, gelatin or povidone; disintegrants such as sodium carboxymethyl

starch or sodium croscarmellose; and lubricating agents such as for example magnesium stearate, stearic acid or talc. Tablets can be additionally coated with suitable excipients by using known techniques with the purpose of delaying their disintegration and absorption in the gastrointestinal tract and thereby provide a

5 sustained action over a longer period, or simply to improve their organoleptic properties or their stability. The active compound can also be incorporated by coating onto inert pellets using natural or synthetic film-coating agents. Soft gelatin capsules are also possible, in which the active compound is mixed with water or an oily medium, for example coconut oil, mineral oil or olive oil.

10 Powders and granulates for the preparation of oral suspensions by the addition of water can be obtained by mixing the active compound with dispersing or wetting agents; suspending agents and preservatives. Other excipients can also be added, for example sweetening, flavoring and colouring agents.

Liquid forms for oral administration include emulsions, solutions, suspensions, syrups and elixirs containing commonly used inert diluents, such as purified water, ethanol, sorbitol, glycerol, polyethylene glycols (macrogols) and propylene glycol. Said compositions can also contain coadjuvants such as wetting, suspending, sweetening, flavoring agents, preservatives and buffers.

Injectable preparations, according to the present invention, for parenteral administration, comprise sterile solutions, suspensions or emulsions, in an aqueous or non-aqueous solvent such as propylene glycol, polyethylene glycol or vegetable oils. These compositions can also contain coadjuvants, such as wetting, emulsifying, dispersing agents and preservatives. They may be sterilized by any known method or prepared as sterile solid compositions, which will be dissolved in water or any other sterile injectable medium immediately before use. It is also possible to start from sterile materials and keep them under these conditions throughout all the manufacturing process.

For the rectal administration, the active compound can be preferably formulated as a suppository on an oily base, such as for example vegetable oils or solid semisynthetic glycerides, or on a hydrophilic base such as polyethylene glycols (macrogol).

The compounds of the invention can also be formulated for their topical application for the treatment of pathologies occurring in zones or organs

accessible through this route, such as eyes, skin and the intestinal tract. Formulations include creams, lotions, gels, powders, solutions and patches wherein the compound is dispersed or dissolved in suitable excipients.

For the nasal administration or for inhalation, the compound can be 5 formulated as an aerosol and it can be conveniently released using suitable propellants.

The dosage and frequency of doses will depend upon the nature and severity of the disease to be treated, the age, the general condition and body weight of the patient, as well as the particular compound administered and the 10 route of administration, among other factors. A representative example of a suitable dosage range is from about 0.01 mg/Kg to about 100 mg/Kg per day, which can be administered as a single or divided doses.

The following examples illustrate the scope of the invention.

15 Examples

The following abbreviations have been used in the examples:

AcN: acetonitrile

20 n-BuOH: 1-butanol

DIEA: *N,N*-diisopropylethylamine

DMAP: 4-(dimethylamino)pyridine

DMF: *N,N*-dimethylformamide

EDC: *N*-[3-(dimethylamino)propyl]-*N'*-ethylcarbodiimide

25 EtOAc: ethyl acetate

EtOH: ethanol

HBTU: O-(benzotriazol-1-yl)-*N,N,N',N'*-tetramethyluronium hexafluorophosphate

HOBT: 1-hydroxybenzotriazole

HPLC: high performance liquid chromatography

30 LC-MS: liquid chromatography-mass spectroscopy

MeOH: methanol

Pd₂(dba)₃: tris(dibenzylideneacetone)dipalladium(0)

TEA: triethylamine

THF: tetrahydrofuran

t_R: retention time

X-Phos: 2-dicyclohexylphosphino-2',4',6'-triisopropyl-biphenyl

5 LC-MS spectra have been performed using the following chromatographic methods:

Method 1: Column X-Terra, MS C18 5 µm (100 mm x 2.1 mm), temperature: 30 °C, flow: 0.35 mL/min, eluent: A = AcN, B = NH₄HCO₃ 10 mM, gradient: 0 min

10 10% A; 10 min 90% A; 15 min 90% A; 15.01 min 10% A.

Method 2: Column Waters Acquity UPLC BEH C18 (1.7 µm, 2.1 mm x 50 mm), temperature: 40 °C, flow: 0.5 mL/min, eluent: ACN (A) / ammonium bicarbonate 10mM (B), gradient: 0 min 10% A – 3.75 min 90% A.

Method 3: Column Tracer Excel 120, ODSB 5 µm (10 mm x 0.21 mm), temperature: 30 °C, flow: 0.35 mL/min, eluent: A = AcN, B = 0.1% HCOOH, gradient: 0 min 10% A - 10 min 90% A.

Method 4: Column YMC, 3 µm (50 mm x 4.6), temperature: 30 °C, flow: 2.6 mL/min, eluent: A = H₂O (0.1% HCOOH) B = AcN (0.1% HCOOH), gradient: 0 min 5% B; 4.8 min 95% B; 6 min 95% B.

20 Method 5: Column Symmetry C₁₈ 3.5 µm (4.6 x 75 mm), temperature: 30 °C, flow: 1.0 mL/min, eluent: A = H₂O (0.1% HCOOH) B = AcN (0.07% HCOOH), gradient: 0 min 5% B; 7 min 100% B.

REFERENCE EXAMPLE 1

25 [4-(3-Hydroxypiperidin-1-yl)phenyl]amine

a) 4-(3-Hydroxypiperidin-1-yl)nitrobenzene

To a 4-fluoronitrobenzene solution (1 g, 7.09 mmol) in AcN (16 mL), 30 3-hydroxypiperidine hydrochloride (1.04 g, 7.57 mmol) and DIEA (1.32 mL, 7.57 mmol) were added. The mixture was stirred and refluxed for 18 h. The resulting mixture was cooled until room temperature and concentrated to dryness. The crude product obtained was chromatographed over silica gel using hexane/EtOAc

mixtures of increasing polarity as eluent, to afford 1.15 g of the desired compound (51 % yield).

b) Title compound

5

To a $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$ (222 mg, 0.93 mmol) suspension in MeOH (50 mL) NaBH_4 (74 mg, 1.95 mmol) was added at room temperature and a solution of the compound obtained in the previous section (0.51 g, 2.33 mmol) in THF (30 mL). The resulting mixture was stirred for 1 h at room temperature and concentrated to dryness. The 10 residue obtained was divided between a 1N NaOH solution and EtOAc. Phases were separated and the aqueous phase was extracted with EtOAc. The combined organic phases were dried over Na_2SO_4 and concentrated to dryness. The crude product obtained was chromatographed over silica gel using hexane/EtOAc mixtures of increasing polarity as eluent, to afford 450 mg of the desired 15 compound (99 % yield).

LC-MS (method 1): $t_R = 3.06$ min; $m/z = 193$ (MH^+).

Following a similar procedure to that described in reference example 1, but using in each case the corresponding starting materials, these compounds are obtained:

20

Reference Example	Compound name	Starting Material	HPLC method	t_R (min)	m/z
1a	[4-(3- <i>tert</i> -butoxycarbonylaminopyrrolidin-1-yl)phenyl]amine	3- <i>tert</i> -butoxycarbonylaminopyrrolidine	1	5.41	308
1b	[4-(3-hydroxypyirrolidin-1-yl)phenyl]amine	3-hydroxypyirrolidine	1	2.53	179

REFERENCE EXAMPLE 2

4-(4-aminophenyl)-1-[2-(trimethylsylanyl)ethoxymethyl]-pyrazol

25 a) 4-(4-nitrophenyl)-1-[2-(trimethylsylanyl)ethoxymethyl]-pyrazol

To a 4-(4-nitrophenyl)-1*H*-pyrazol (0.2 g, 1.05 mmol) and DIEA (0.55 mL, 3.15 mmol) solution in CHCl₃ (3 mL) (2-trimethylsilyl)ethoxymethyl chloride is added.

The resulting mixture was stirred for 18 h at room temperature. H₂O was added and extracted thrice with CHCl₃. The organic phase was dried over Na₂SO₄ and

5 concentrated to dryness. The crude product obtained was chromatographed over silica gel using hexane/EtOAc mixtures of increasing polarity as eluent, to afford 320 mg of the desired compound (95 % yield).

b) Title compound

10

Following a similar procedure to that described in reference example 1 section b, but starting with the compound obtained in previous section, the desired compound was obtained (83 % yield).

LC-MS (method 1): t_R = 8.31 min; m/z = 290 (MH⁺).

15

Following a similar procedure to that described in reference example 2, but using in each case the corresponding starting materials, these compounds are obtained:

Reference Example	Compound name	Starting material	HPLC method	t _R (min)	m/z
2a	3-(4-aminophenyl)-1-[2-(trimethylsilyl)ethoxymethyl]-pyrazol	3-(4-nitrophenyl)-1 <i>H</i> -pyrazol	1	8.54	290.17

20

REFERENCE EXAMPLE 3

N-(3-Aminophenyl)-N-methylacetamide

a) N-(3-Nitrophenyl)-N-methylacetamide

To a solution of 3-nitro-N-methylaniline (650 mg, 4.27 mmol) in CH₂Cl₂ (10 mL)

25 under Ar-atmosphere, acetyl chloride (0.33 mL, 4.7 mmol), a catalytic amount of DMAP and DIEA (1.49 mL, 8.5 mmol) were added. The resulting mixture was stirred at room temperature overnight. The resulting residue was diluted with H₂O, the phases were separated and the aqueous phase extracted with CH₂Cl₂. The

combined organic phases were dried over Na_2SO_4 and concentrated to dryness. The crude product thus obtained was directly used in the next step.
 LC-MS (method 5): $t_R = 1.43$ min; $m/z = 195$ (MH^+).

5 **b) Title compound**

To a solution of the compound obtained in the previous section (0.96 g, 4.97 mmol) in MeOH (13 mL) under Ar-atmosphere, 10 % Pd/C (128 mg) was added at room temperature. The resulting mixture was stirred under H_2 overnight, filtered and the filtrate was concentrated to dryness. The crude product thus obtained was 10 chromatographed over silica gel using Hexane/EtOAc mixtures of increasing polarity as eluent, to afford 0.45 g of the desired compound (56 % yield).

LC-MS (method 2): $t_R = 1.02$ min; $m/z = 165$ (MH^+).

Following a similar procedure to that described in reference example 3, but using 15 the corresponding starting material, the following compound was obtained:

Reference example	Compound name	Starting material	HPLC method	t_R (min)	m/z
3a	N-(3-aminophenyl)-N-methylcyclopropanecarboxamide	cyclopropane carbonyl chloride	5	1.38	191

REFERENCE EXAMPLE 4
4-(Imidazol-1-ylmethyl)piperidine

20

a) 4-Piperidylmethanol

To a mixture of LiAlH_4 (8.82 g, 0.23 mol) and THF (125 mL), cooled at 0 °C, a solution of ethyl isonipecotate (18 mL, 0.117 mol) in THF (325 mL) was added dropwise under Ar-atmosphere, the mixture was stirred at room temperature 25 overnight. A mixture of H_2O (12.03 mL) and THF (25 mL), followed by a mixture of 15 % NaOH (10.03 mL) and H_2O (32.4 mL) were slowly added at 0 °C. The resulting mixture was washed with THF, filtered and concentrated to dryness. The residue was partitioned between H_2O and CHCl_3 , the phases were separated, the aqueous phase was extracted with CHCl_3 and the combined organic phases were

dried over Na_2SO_4 and concentrated to afford 8.2 g of the desired product (61 % yield).

b) (1-*tert*-Butoxycarbonylpiperidin-4-yl)methanol

5 To a solution of the compound obtained in the previous section (15.3 g, 133 mmol) in DMF (160 mL), at 0 °C and under Ar-atmosphere, di-*tert*-butyl dicarbonate (29 g, 133 mmol) in DMF (80 mL) was added. The solution was stirred at room temperature overnight, and concentrated to dryness. The residue was dissolved in a mixture of THF (100 mL), MeOH (100 mL) and 1N NaOH (100 mL) and stirred at 10 room temperature for 18 h. The organic phase was evaporated and the aqueous phase was extracted thrice with CHCl_3 . The combined organic phases were dried over Na_2SO_4 and concentrated to dryness to afford 23.0 g of the desired product (80 % yield).

15 **c) (1-*tert*-Butoxycarbonylpiperidin-4-yl)methyl mesylate**

To a solution of the product obtained in the previous section (6.8 g, 31 mmol) and DIET (5.75 mL, 33 mmol) in CH_2Cl_2 (50 mL), at 0 °C and under Ar-atmosphere, methanesulfonyl chloride (2.4 mL, 31 mmol) was added dropwise. The reaction mixture was stirred at room temperature overnight and treated with H_2O , the 20 phases were separated and the aqueous phase was extracted with CH_2Cl_2 . The combined organic phases were dried over Na_2SO_4 and concentrated to afford the title compound in quantitative yield.

25 ^1H NMR (300 MHz, CDCl_3) δ (TMS): 4.12 (broad d, J = 11.8 Hz, 2 H), 4.04 (d, J = 6.5 Hz, 2 H), 2.98 (s, 3 H), 2.69 (broad t, J = 12.4 Hz, 2 H), 1.89 (m, 1 H), 1.72 (broad d, J = 12.9 Hz, 2 H), 1.43 (s, 9 H), 1.25 (m, 2 H).

d) 1-*tert*-Butoxycarbonyl-4-(imidazol-1-ylmethyl)piperidine

To a solution of the compound obtained in the previous section (400 mg, 1.36 mmol) in THF (5 mL), K_2CO_3 (188 mg, 1.36 mmol) and imidazole (93 mg, 1.36 30 mmol) were added. The mixture was stirred and refluxed overnight. The crude product obtained was partitioned between EtOAc and 0.05 N aqueous NaOH solution. The phases were separated and the organic phase was dried over Na_2SO_4 and concentrated to dryness. The crude product thus obtained was

chromatographed over silica gel using CHCl₃/MeOH/NH₃ mixtures of increasing polarity as eluent, to afford 170 mg of the desired product (47 %).

e) Title compound

5 The compound obtained in the previous section (170 mg, 0.64 mmol) and a 4 M dioxane/HCl_(g) mixture (5 mL) were mixed in a flask under Ar-atmosphere. The mixture was stirred at room temperature overnight and concentrated to dryness, to afford the title compound in quantitative yield.

10 ¹H NMR (300 MHz, MeOD) δ (TMS): 8.96 (s, 1H), 7.61 (s, 1H), 7.53 (s, 1H), 4.18 (d, J = 7.2 Hz, 2 H), 3.36-3.32 (m, 2H), 2.95-2.87 (m, 2H), 2.25-2.10 (m, 1H), 1.78-1.74 (m, 2H), 1.49-1.44 (m, 2H).

REFERENCE EXAMPLE 5

N-tert-Butyl-N'-(4-piperidylmethyl)urea hydrochloride

15

a) 4-Aminomethyl-1-tert-butoxycarbonylpiperidine

To a solution of 4-(aminomethyl)piperidine (100 g, 0.88 mol) in CHCl₃ (550 mL), cooled at 0 °C and under Ar-atmosphere, a solution of di-*tert*-butyl dicarbonate (98 g, 0.45 mol) in CHCl₃ (350 mL) was added. The resulting mixture was stirred at 20 room temperature for 48 h, washed with H₂O and the aqueous phase extracted with CHCl₃. The combined organic phases were dried over Na₂SO₄ and the solvents were removed to afford 84.5 g of the title compound (88 % yield).

¹H NMR (80MHz, CDCl₃) δ (TMS): 4.11 (broad d, J = 13.4 Hz, 2 H), 2.69 (m, 4 H), 1.45 (s, 9 H), 1.8-0.8 (complex signal, 7 H).

25

b) N-tert-Butyl-N'-(1-tert-butoxycarbonylpiperidin-4-yl)methyl]urea

To a solution of 4-aminomethyl-1-*tert*-butoxycarbonylpiperidine (5 g, 23 mmol) obtained in the previous section in DMF (20 mL), *tert*-butyl isocyanate (2.63 mL, 23 mmol) was added dropwise under Ar-atmosphere. The reaction mixture was 30 stirred at room temperature overnight and concentrated to dryness to afford the desired compound in quantitative yield.

c) Title compound

Following a similar procedure to that described in section e of reference example 4, but using the compound obtained in the previous section, the title compound of the example was obtained in quantitative yield.

¹H NMR (300 MHz, CD₃OD) δ (TMS): 4.92 (s, 4 H), 3.37 (m, 2 H), 2.97 (m, 4 H),
5 1.95 (m, 2 H), 1.80 (m, 1 H), 1.43 (m, 2 H), 1.31 (s, 9 H).

REFERENCE EXAMPLE 6

4-Hydroxy-2-methylpiperidine

10 To a solution of 2-methyl-4-piperidone (250 mg, 2.21 mmol) in MeOH (8 mL), NaBH₄ (175 mg, 4.62 mmol) was added at 0 °C. The resulting mixture was stirred at room temperature overnight. The crude product was partitioned between H₂O and EtOAc and the phases were separated. The organic phase was dried over Na₂SO₄ and concentrated to dryness to afford the desired compound in
15 quantitative yield.

LC-MS (method 2): t_R = 0.31 min; m/z = 116 (MH⁺). 1807/78

REFERENCE EXAMPLE 7

(6*S*,8*R*)-8-Hydroxy-1,4-diazabicyclo[4.3.0]nonane dihydrochloride

20 **a) (2*S*,4*R*)-N-*tert*-Butoxycarbonylaminoacetyl-4-hydroxyproline methyl ester**
To a mixture of *N*-(*tert*-butoxycarbonyl)glycine (950 mg, 5.368 mmol), DIEA (2.82 mL, 16.10 mmol) and HBTU (2.07 g, 5.368 mmol) in 30 mL DMF at 0 °C, *L*-4-
25 hydroxyproline methyl ester hydrochloride (995 mg, 5.368 mmol) was added and the suspension thus obtained was stirred at room temperature overnight. The mixture was concentrated to dryness and partitioned between CHCl₃ and 0.2 M NaHCO₃ solution. The combined organic phases were dried over Na₂SO₄ and concentrated to dryness to afford the desired compound (80 %).

30 LC-MS (method 2): t_R = 1.25 min; m/z = 303.3 (MH⁺).

b) (6*S*,8*R*)-2,5-Dioxo-8-hydroxy-1,4-diazabicyclo[4.3.0]nonane

To a solution of the compound obtained in the previous section (1.3 g, 4.30 mmol) in CH₂Cl₂ (2 mL), trifluoroacetic acid (1 mL) was added. The solution was stirred at

room temperature for 2 h. A 2N aqueous NaHCO₃ solution (2 mL) was added and the mixture evaporated to dryness. The crude product was diluted with a mixture of CHCl₃/MeOH/NH₃ (10:5:1, 10 mL) and the solution thus obtained was filtered over silica gel. The filtrate was concentrated to dryness to afford the desired 5 compound in quantitative yield.

LC-MS (method 2): t_R = 0.28 min; m/z = 171.2 (MH⁺).

c) Title compound

A solution of the compound obtained in the previous section (914 mg, 5.37 mmol) 10 in THF (10 mL) was added to a solution of LiAlH₄ (815 mg, 21.48 mmol) in THF (21 mL) and under Ar-atmosphere. The resulting mixture was refluxed for 1 h and stirred at room temperature overnight. H₂O (0.82 mL), 15 % aqueous NaOH solution (0.82 mL) and H₂O (2.45 mL) were added in this order to the resulting 15 solution. The resulting suspension was stirred for 1 h at room temperature and after the addition of THF (9 mL) the resulting solid was filtered and washed with EtOH. The filtrate was neutralized with a mixture of 2N HCl and Dowex 50w x 8 (10 g), and stirred at room temperature overnight. The suspension thus obtained 20 was filtered and washed with a mixture of H₂O/MeOH. NH₄OH/25 % MeOH (75 mL) was added stirred for 2 h at room temperature. The resulting suspension was filtered and washed with MeOH. The resulting crude product was redisolved in 4M HCl in 1,4-dioxane (5 mL) and concentrated to dryness to afford the desired product (26 %).

LC-MS (method 2): t_R = 0.28 min; m/z = 143 (MH⁺).

25 Following a similar procedure to that described in reference example 7 sections a, b, and c, but using the corresponding starting materials, the next compounds were obtained:

Reference Example	Compound name	Reagents for step a)	HPLC method	t_R (min)	m/z
7a	(S)-1,4-diazabicyclo[4.3.0]nonane dihydrochloride	L-proline methyl ester hydrochloride <i>N</i> -(<i>tert</i> -butoxycarbonyl)glycine	2	0.34	127

7b	(6 <i>S</i> ,3 <i>S</i>)-3-methyl-1,4-diazabicyclo[4.3.0]nonane dihydrochloride	<i>L</i> -proline methyl ester hydrochloride <i>N</i> -(<i>tert</i> -butoxycarbonyl)- <i>L</i> -alanine	2	0.35	141
----	--	---	---	------	-----

EXAMPLE 1

2-[4-(4-morpholino)phenyl]amino-4-(piperidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine

5

a) 2-Chloro-4-(piperidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine

To a 2,4-dichloro-7*H*-pyrrolo[2,3-d]pyrimidine solution (0.16 g, 0.86 mmol) in EtOH (2 mL), piperidine (0.085 mL, 0.86 mmol) and TEA (0.24 mL, 1.7 mmol) were

10 added. The reaction was stirred and refluxed for 18 h. The resulting mixture was cooled until room temperature and evaporated to dryness. The crude product obtained was chromatographed over silica gel using hexane/EtOAc mixtures of increasing polarity as eluent, to afford 0.18 g of the desired compound (88 % yield).

15

b) Title compound

A mixture of the compound obtained in previous section (90 mg, 0.38 mmol), [4-(4-morpholino)phenyl]amine (123 mg, 0.57 mmol) and a 4M dioxane/HCl_(g) solution

20 (0.1 mL) in n-BuOH (2 mL) was irradiated in a microwave oven at 170 °C for 40 min. n-BuOH was evaporated and the residue was purified by preparative HPLC. 26.5 mg (18% yield) of the title compound was obtained

LC-MS (method 1): t_R = 8.03 min; m/z = 379 (MH⁺).

25 Following a similar procedure to that described in example 1, but using in each case the corresponding starting materials, these compounds are obtained:

Example	Compound name	Reagent for step a)	Reagent for step b)	HPLC method	t _R (min)	m/z
1a	4-(4-methylpiperidin-1-yl)-2-[4-(4-morpholino)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	[4-(4-morpholino)phenyl]amine	1	8.69	393.2
1b	2-(3-amino sulfonylphenyl)amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	1	7.62	387.1
1c	2-(3- <i>tert</i> -butylaminosulfonylphenyl)amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	1	9.44	443.2
1d	2-[4-(3-hydroxypyrrolidin-1-yl)phenyl]amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	Reference example 1b	1	8.10	393.2
1e	4-(4-methylpiperidin-1-yl)-2-[4-(piperidin-3-yl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	<i>N</i> - <i>tert</i> -butoxycarbonyl-3-(4-aminophenyl)piperidine	1	8.14	391.2
1f	2-(3-methyltiophenyl)amino-4-(piperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	piperidine	3-methyltiophenylamine	1	9.56	340.1
1g	2-(3-ethoxyphenyl)amino-4-(piperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	piperidine	3-ethoxyphenylamine	1	9.41	338.1
1h	2-[4-(3-aminopyrrolidin-1-yl)phenyl]amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	Reference example 1a	1	7.50	392.2
1i	2-(3-amino sulfonylphenyl)amino-4-(piperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	piperidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	1	6.99	373.1
1j	2-(3- <i>tert</i> -butylaminosulfonylphenyl)amino-4-(piperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	piperidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	1	8.87	429.1

1k	2-[4-(3-aminopyrrolidin-1-yl)phenyl]amino-4-(piperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	piperidine	Reference example 1a	1	6.99	378.2
1l	2-[4-(3- <i>tert</i> -butoxycarbonyl aminopyrrolidin-1-yl)phenyl]amino-4-(piperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	piperidine	Reference example 1a	1	9.69	478.2
1m	4-(piperidin-1-yl)-2-[4-(3-piperidinil)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	piperidine	<i>N</i> - <i>tert</i> -butoxycarbonyl-3-(4-aminophenyl)piperidine	1	7.45	377.2
1n	2-[3-acetylphenyl]amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3-acetylphenylamine	3	6.99	350.2
1o	4-(4-methylpiperidin-1-yl)-2-[(3-piperidin-1-yl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3-(piperidin-1-yl)phenylamine	1	10.75	391.2
1p	4-(4-methylpiperidin-1-yl)-2-[3-(4-morpholino)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	[3-(4-morpholino)phenyl]amine	1	8.94	393.2
1q	2-(3-cyanophenyl)amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3-aminobenzonitrile	1	9.37	333.1
1r	4-(4-methylpiperidin-1-yl)-2-(3,4-dimethoxyphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3,4-dimethoxyphenylamine	1	8.60	368.1
1s	2-[(3,4-methylendioxy)phenyl]amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3,4-(methylendioxy)phenylamine	1	9.22	352.1
1t	2-[(3-acetylamino)phenyl]amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	(3-acetylamino)phenylamine	1	7.70	365.1

1u	2-(4-aminosulfonylphenyl)amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	4-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	1	7.56	387.0
1v	2-[(4-carbamoyl)phenyl]amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	(4-carbamoyl)phenyl amine	1	7.05	351.1
1w	4-(4-acetyl)piperazine-1-yl)-2-(3-aminosulfonylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	1-acetyl)piperazine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	4	1.43	416.2
1x	2-(3-aminosulfonylphenyl)amino-4-(2-methyl-1-pyrrolidinyl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-methylpyrrolidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	1	1.8	373.2
1y	2-(3-aminosulfonylphenyl)amino-4-(4-phenyl)piperazine-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	1-phenylpiperazine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	1	7.72	449.9
1z	2-(3-aminosulfonylphenyl)amino-4-(4-phenyl-1,2,3,6-tetrahydropyridin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-phenyl-1,2,3,6-tetrahydropyridine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	1	8.31	446.9
1aa	2-[4-(2-hydroxyethyl)phenyl]amino-4-(homopiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	homopiperidine	2-(4-aminophenyl)ethanol	1	7.73	352.0
1ab	2-[4-(3-piperidinyl)phenyl]amino-4-(homopiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	homopiperidine	<i>N</i> - <i>tert</i> -butoxycarbonyl-3-(4-aminophenyl)piperidine	1	7.07	391.1
1ac	2-(3-aminosulfonylphenyl)amino-4-(homopiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	homopiperidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	1	7.43	387.0

1ad	2-(3-aminosulfonylphenyl)amino-4-(3-acetamidopiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-acetamidopiperidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	4	1.42	430.2
1ae	2-(3-aminosulfonylphenyl)amino-4-([1,4]diazepan-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	homopiperazine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	1	4.19	388.0
1af	2-(3-aminosulfonylphenyl)amino-4-(4-hydroxypiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-hydroxypiperidine	3-amino-benzenesulfonamide	4	1.32	389.2
1ag	2-(3-aminosulfonylphenyl)amino-4-(3-hydroxypiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-hydroxypiperidine	3-amino-benzenesulfonamide	4	1.43	389.2
1ah	2-(3-aminosulfonylphenyl)amino-4-(4-hydroxymethylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-hydroxymethylpiperidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	2	1.41	403
1ai	2-(3-aminosulfonylphenyl)amino-4-(4-benzylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-benzylpiperidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	4	2.58	463.2
1aj	2-(3-aminosulfonylphenyl)amino-4-(4-phenylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-phenylpiperidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	4	2.43	449.2
1ak	2-(3-aminosulfonylphenyl)amino-4-(3-hydroxymethylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-hydroxymethylpiperidine	3-amino-benzenesulfonamide	4	1.50	403.2
1al	2-(3-aminosulfonylphenyl)amino-4-(2-azabicyclo[2.2.1]heptan-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-azabicyclo[2.2.1]heptane	3-amino-benzenesulfonamide	4	1.80	385.2

1am	2-(3-aminosulfonylphenyl)amino-4-(perhydroisoquinolin-2-yl)-7H-pyrrolo[2,3-d]pyrimidine	perhydroisoquinoline	3-amino-benzenesulfonamide	4	2.52	427.2
1an	2-[(4- <i>N,N</i> -diethylamine)phenyl]amino-4-(4-methylpiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	<i>N,N</i> -diethyl-1,4-phenylenediamine	1	10.39	379.2
1ao	4-(3-methylpiperidin-1-yl)-2-[4-(4-morpholino)phenyl]amino-7H-pyrrolo[2,3-d]pyrimidine	3-methylpiperidine	[4-(4-morpholino)phenyl]amine	1	8.64	393
1ap	2-(3-aminosulfonylphenyl)amino-4-(3-methylaminoazetidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine	3-(<i>N</i> - <i>tert</i> -butoxycarbonyl- <i>N</i> -methylamino)azetidine	3-amino-benzenesulfonamide	2	1.23	374.3
1aq	2-[4-(3-hydroxypiperidin-1-yl)phenyl]amino-4-(piperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine	piperidine	Reference example 1	1	7.49	393.1
1ar	2-[4-(3-hydroxypiperidin-1-yl)phenyl]amino-4-(4-methylpiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	Reference example 1	1	8.13	407.1
1as	2-(3-phenylaminophenyl)amino-4-(4-methylpiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3-(phenylaminophenyl)amine	1	10.34	399.1
1at	2-(4-hydroxyphenyl)amino-4-(4-methylpiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	4-aminophenol	1	7.62	324.1
1au	2-[4-(2-hydroxyethyl)phenyl]amino-4-(4-methylpiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	2-(4-aminophenyl)ethanol	1	7.84	352.1

1av	4-(4-methylpiperidin-1-yl)-2-[4-(piperidin-1-yl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	4-(piperidin-1-yl)aniline	1	10.51	391.1
1aw	4-(4-methylpiperidin-1-yl)-2-[3-(pyridin-4-yl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3-(pyridin-4-yl)aniline	1	9.00	385.1
1ax	2-(3-hydroxyphenyl)amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3-aminophenol	1	8.05	324.1
1ay	2-(benzofuran-5-yl)amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	(benzofuran-5-yl)amine	1	9.49	348.1
1az	2-(3-aminosulfonylphenyl)amino-4-[(<i>R</i>)-3-hydroxypyrrolidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>R</i>)-3-hydroxypyrrolidine	3-amino-benzenesulfonamide	4	1.27	375.1
1ba	4-(4-methylpiperidin-1-yl)-2-[4-(1,1-dioxotiomorpholin-4-yl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	4-(1,1-dioxotiomorpholin-4-yl)aniline	1	8.10	441.1
1bb	2-(3-aminosulfonylphenyl)amino-4-(pyrrolidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	pyrrolidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	4	1.63	359.2
1bc	4-(4-methylpiperidin-1-yl)-2-[4-(methylsulfonyl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	4-(methylsulfonyl)aniline	1	8.24	386.1
1bd	4-(4-methylpiperidin-1-yl)-2-[3-(methylsulfonyl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3-(methylsulfonyl)aniline	1	8.12	386.0

1be	4-(4-methylpiperidin-1-yl)-2-[3-(methylsulfonylamino)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	<i>N</i> -(3-aminophenyl)methanesulfonamide	1	8.06	401.0
1bf	2-(4-cyanophenyl)amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	4-aminobenzonitrile	1	9.33	333.1
1bg	4-(4-methylpiperidin-1-yl)-2-[4-(pirazol-4-yl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	Reference example 2	1	7.99	374.1
1bh	4-(4-methylpiperidin-1-yl)-2-[4-(pirazol-3-yl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	Reference example 2a	1	8.22	374.1
1bi	2-(3-aminosulfonylphenyl)amino-4-(4-trifluoromethylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-trifluoromethylpiperidine	3-amino-benzenesulfonamide	4	2.23	441.2
1bj	2-(3-aminosulfonylphenyl)amino-4-[3-(n-butoxycarbonyl)pyrrolidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-(n-butoxycarbonyl)pyrrolidine	3-amino-benzenesulfonamide	4	2.22	459.2
1bk	2-(3-aminosulfonylphenyl)amino-4-[4-(ethoxymethyl)piperidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-(ethoxymethyl)piperidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	4	1.98	431.2
1bl	2-(3-hydroxyphenyl)amino-4-(homopiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	homopiperidine	(3-hydroxyphenyl)amine	1	7.84	324.1
1bm	2-(3-acetylaminophenyl)amino-4-(homopiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	homopiperidine	(3-acetylaminophenyl)amine	2	2.14	365

1bn	2-(3-aminosulfonylphenyl)amino-4-[4-(2-hydroxyethyl)piperidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-(2-hydroxyethyl)piperidine	3-amino-benzenesulfonamide	4	1.52	417.2
1bo	2-(3-aminosulfonylphenyl)amino-4-[(S)-2-(hydroxymethyl)pyrrolidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(S)-2-(hydroxymethyl)pyrrolidine	3-amino-benzenesulfonamide	4	1.45	389.2
1bp	2-(3-aminosulfonylphenyl)amino-4-(4,4-difluoropiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4,4-difluoropiperidine	3-amino-benzenesulfonamide	4	2.13	409.2
1bq	2-(3-acetylaminophenyl)amino-4-(3-acetylpyrrolidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-acetylpyrrolidine	3-acetylaminophenylamine	2	1.75	393.3
1br	2-(3-aminosulfonylphenyl)amino-4-[(S)-3-hydroxypiperidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(S)-3-hydroxypiperidine	3-amino-benzenesulfonamide	4	1.42	389.2
1bs	2-(3-aminosulfonylphenyl)amino-4-(4-methoxypiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methoxypiperidine	3-amino-benzenesulfonamide	4	1.67	403.1
1bt	2-(3-aminosulfonylphenyl)amino-4-[(R)-3-hydroxypiperidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(R)-3-hydroxypiperidine	3-amino-benzenesulfonamide	4	1.43	389.2
1bu	2-(3-aminosulfonylphenyl)amino-4-[(R)-2-(hydroxymethyl)pyrrolidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(R)-2-(hydroxymethyl)pyrrolidine	3-amino-benzenesulfonamide	4	1.45	389.2

1bv	2-(3-aminosulfonylphenyl)amino-4-(thiazolidin-3-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	thiazolidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	2	1.72	377.2
1bw	4-(3-acetylpiriperidin-1-yl)-2-(3-aminosulfonylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-acetylpiriperidine	3-amino- <i>N</i> - <i>tert</i> -butylbenzenesulfonamide	1	6.26	415
1bx	2-(3-aminosulfonylphenyl)amino-4-(4-fluoropiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-fluoropiperidine	3-amino-benzenesulfonamide	4	1.83	391.1
1by	2-(3-aminosulfonylphenyl)amino-4-(4-hydroxyethylpiriperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-hydroxyethylpiridine	3-amino-benzenesulfonamide	4	1.70	431
1bz	2-(3-aminosulfonylphenyl)amino-4-(3-dimethylaminopyrrolidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-dimethylamino pyrrolidine	3-amino-benzenesulfonamide	2	1.46	402
1aa	2-(3-acetylaminophenyl)amino-4-(thiazolidin-3-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	thiazolidine	3-aminoacetanilide	2	1.78	355

EXAMPLE 2

4-(2-Azabicyclo[2.2.1]heptan-2-yl)-2-(3-fluoro-4-methoxyphenyl)amino-7*H*-pyrrolo[2,3-d]pyrimidine

5

a) 4-(2-Azabicyclo[2.2.1]heptan-2-yl)-2-chloro-7*H*-pyrrolo[2,3-d]pyrimidine

Following a similar procedure to that described in example 1 section a, but using 2-aza-bicyclo[2.2.1]heptane hydrochloride instead of piperidine, the desired 10 compound was obtained (78 % yield).

LC-MS (method 2): $t_R = 2.04$ min; $m/z = 249$ (MH^+).

b) Title compound

To a solution of the compound obtained in the previous section (100 mg, 0.402 mmol) in *tert*-butanol (2 mL), K₂CO₃ (167 mg, 1.20 mmol), X-Phos (19 mg, 0.04 mmol), Pd₂(dba)₃ (18 mg, 0.02 mmol) and 3-fluoro-4-methoxyphenylamine (69 mg, 0.48 mmol) were added at room temperature and under Ar-atmosphere. The reaction mixture was heated at 100 °C overnight and the crude product thus obtained was diluted with MeOH and filtered over Celite®. The filtrate was concentrated to dryness and chromatographed over silica gel using CHCl₃/MeOH mixtures of increasing polarity as eluent, to afford 24 mg of the desired compound (17 % yield).

LC-MS (method 2): t_R = 2.53 min; m/z = 354 (MH⁺).

Following a similar procedure to that described in example 2, but using in each case the corresponding starting materials, the following compounds were obtained:

Example	Compound name	Regeant for step a)	Regeant for step b)	HPLC method	t _R (min)	m/z
2a (1)	2-(3-aminosulfonylphenyl)amino-4-(2-benzyl-2,8-diaza-spiro[4.5]decan-1-one-8-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-benzyl-2,8-diaza-spiro[4.5]decan-1-one hydrochloride	3-amino-benzenesulfonamide	4	2.22	532
2b (1)	2-(3-aminosulfonylphenyl)amino-4-(2-methyl-2,8-diaza-spiro[4.5]decan-1-one-8-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-methyl-2,8-diaza-spiro[4.5]decan-1-one hydrochloride	3-amino-benzenesulfonamide	4	1.60	456
2c (1)	2-[4-(2-hydroxyethylaminosulfonyl)phenyl]amino-4-(4-hydroxymethylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-hydroxymethyl piperidine	4-amino-1-(2-hydroxyethyl)benzenesulfonamide	4	1.47	447

2d (1)	4-(4-hydroxymethylpiperidin-1-yl)-2-[4-(2-(morpholin-4-yl)ethylaminosulfonyl)phenyl]amino-7H-pyrrolo[2,3-d]pyrimidine	4-hydroxymethyl piperidine	4-amino-N-(2-(morpholin-4-yl)ethyl)benzenesulfonamide	4	1.28	516
2e (1)	(S)-2-(3-aminosulfonylphenyl)amino-4-[(2-methoxy carbonyl)pyrrolidin-1-yl]-7H-pyrrolo[2,3-d]pyrimidine	(S)-methyl pyrrolidine-2-carboxylate hydrochloride	3-amino-benzenesulfonamide	4	1.70	417
2f (1)	2-(4-(1,1-dioxothiomorpholin-4-yl)phenyl)amino-4-(4-hydroxymethylpiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine	4-hydroxymethyl piperidine	4-(1,1-dioxothiomorpholin-4-yl)-phenylamine	4	1.58	457
2g (1)	2-(3-acetylaminophenyl)amino-4-(4-hydroxymethylpiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine	4-hydroxymethyl piperidine	3-aminoacetanilide	4	1.48	381
2h (1)	4-(4-hydroxymethylpiperidin-1-yl)-2-(3-(1,3-oxazol-5-yl)phenyl)amino-7H-pyrrolo[2,3-d]pyrimidine	4-hydroxymethyl piperidine	3-(1,3-oxazol-5-yl)phenylamine	4	1.78	391
2i (1)	4-(4-hydroxymethylpiperidin-1-yl)-2-(3-(1H-imidazol-1-ylmethyl)phenyl)amino-7H-pyrrolo[2,3-d]pyrimidine	4-hydroxymethyl piperidine	3-(1H-imidazol-1-ylmethyl)phenylamine	4	1.17	404
2j (1)	(R)-2-(3-aminosulfonylphenyl)amino-4-(3-dimethylaminopyrrolidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine	(R)-3-dimethylamino pyrrolidine	3-amino-benzenesulfonamide	4	0.90	402

2k	2-[4-(2-hydroxyethylaminosulfonyl)phenyl]amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	4-amino-1-(2-hydroxyethyl)benzenesulfonamide	2	2.13	431
2l	2-(4-(4-methylpiperazin-1-yl)phenyl)amino-4-(4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	4-(4-methylpiperazino)phenylamine	2	2.34	406
2m	4-(4-methylpiperidin-1-yl)-2-(3-pyrrolidin-1-ylmethylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-methylpiperidine	3-pyrrolidin-1-ylmethylphenylamine	2	2.50	391
2n	4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-(3-pyrrolidin-1-ylmethylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-aza-bicyclo[2.2.1]heptane hydrochloride	3-pyrrolidin-1-ylmethylphenylamine	2	2.26	389
2o (1)	4-(4-hydroxymethylpiperidin-1-yl)-2-(4-(4-methylpiperazin-1-yl)phenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-hydroxymethylpiperidine	4-(4-methylpiperazino)phenylamine	4	1.13	422
2p (1)	2-(3-hydroxyethylphenyl)amino-4-(4-hydroxymethylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-hydroxymethylpiperidine	3-hydroxyethylphenylamine	4	1.58	368
2q (1)	2-(3-aminosulfonylphenyl)amino-4-(4-[(2-methyl-1 <i>H</i> -imidazol-1-yl)methyl]piperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-[(2-methyl-1 <i>H</i> -imidazol-1-yl)methyl]piperidine	3-amino-benzenesulfonamide	4	1.18	467
2r (1)	4-(4-hydroxymethylpiperidin-1-yl)-2-[3-(N-methylaminosulfonyl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-hydroxymethylpiperidine	3-amino-N-methylbenzenesulfonamide	4	1.60	417

2s (1)	4-(4-(3-hydroxypropylpiperidin-1-yl)-2-(3-pyrrolidin-1-ylmethylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-(3-hydroxypropyl)piperidine	3-pyrrolidin-1-ylmethylphenylamine	4	1.45	435
2t (1)	(<i>R</i>)-2-(3-aminosulfonylphenyl)amino-4-(2-methylpyrrolidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>R</i>)-2-methylpyrrolidine	3-amino-benzenesulfonamide	4	1.83	373
2u (1)	(<i>S</i>)-2-(3-aminosulfonylphenyl)amino-4-[(2-methyl)piperidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>S</i>)-2-methylpiperidine	3-amino-benzenesulfonamide	4	2.03	387
2v	2-(3-aminosulfonylphenyl)amino-4-(1,4-diazabicyclo[4.3.0]nonan-4-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	1,4-diazabicyclo[4.3.0]nonane	3-amino-benzenesulfonamide	2	1.62	414
2w (1)	2-(3-aminosulfonylphenyl)amino-4-[(3,3-dimethyl)piperidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3,3-dimethylpiperidine	3-amino-benzenesulfonamide	4	2.27	401
2x (1)	(<i>S</i>)-4-(2-hydroxymethylpyrrolidin-1-yl)-2-(4-pyrrolidin-1-ylmethylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>S</i>)-2-hydroxymethylpyrrolidine	4-pyrrolidin-1-ylmethylphenylamine	4	1.25	393
2y (1)	(<i>R</i>)-2-(3-aminosulfonylphenyl)amino-4-[(2-methyl)piperidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>R</i>)-2-methylpiperidine	3-amino-benzenesulfonamide	4	2.12	387
2z (1)	(<i>S</i>)-2-[(3-cyclopropylcarbonyl amino)phenyl]amino-4-(3-hydroxypiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>S</i>)-3-hydroxypiperidine	<i>N</i> -(3-aminophenyl)cyclopropanecarboxamide	4	1.75	393

2aa (1)	(<i>S</i>)-4-(3-hydroxypiperidin-1-yl)-2-(3-pyrrolidin-1-ylmethylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>S</i>)-3-hydroxypiperidine	3-pyrrolidin-1-ylmethylphenylamine	4	1.18	393
2ab	4-(homopiperidin-1-yl)-2-(3-pyrrolidin-1-ylmethylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	homopiperidine	3-pyrrolidin-1-ylmethylphenylamine	2	2.42	391
2ac	4-(homopiperidin-1-yl)-2-[4-(4-methylpiperazin-1-yl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	homopiperidine	4-(4-methylpiperazin-1-yl)phenylamine	2	2.27	406
2ad (1)	2-[3-(aminosulfonylmethyl)phenyl]amino-4-(4-hydroxymethylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-hydroxymethylpiperidine	(3-amino-phenyl)methanesulfonamide	4	1.47	417
2ae	4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-(4-hydroxyethylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-aza-bicyclo[2.2.1]heptane hydrochloride	4-hydroxyethylphenylamine	2	2.09	350
2af	4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-(3-hydroxyethylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-aza-bicyclo[2.2.1]heptane hydrochloride	3-hydroxyethylphenylamine	2	2.12	350
2ag (1)	(<i>R</i>)-4-(3-(<i>N,N</i> -dimethylamino)pyrrolidin-1-yl)-2-(3-methylamino-sulfonylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>R</i>)-3-(<i>N,N</i> -dimethylamino)pyrrolidine	3-amino- <i>N</i> -methylbenzenesulfonamide	4	1.03	416
2ah (1)	(<i>R</i>)-2-(3-acetylaminophenyl)amino-4-(3-(<i>N,N</i> -dimethylamino)pyrrolidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>R</i>)-3-(<i>N,N</i> -dimethylamino)pyrrolidine	3-aminoacetanilide	4	0.9	380

2ai (1)	(<i>R</i>)-2-[3-(phenylamino)phenyl]amino-4-(3-(<i>N,N</i> -dimethylamino)pyrrolidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>R</i>)-3-(<i>N,N</i> -dimethylamino)pyrrolidine	3-(phenylamino)phenylamine	4	1.47	414
2aj (1)	(<i>R</i>)-4-(3-(<i>N,N</i> -dimethylamino)pyrrolidin-1-yl)-2-[4-(morpholin-4-yl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>R</i>)-3-(<i>N,N</i> -dimethylamino)pyrrolidine	[4-(4-morpholino)phenyl]amine	4	0.92	408
2ak (1)	(<i>R</i>)-4-(3-(<i>N,N</i> -dimethylamino)pyrrolidin-1-yl)-2-(3-fluoro-4-methoxyphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>R</i>)-3-(<i>N,N</i> -dimethylamino)pyrrolidine	3-fluoro-4-methoxyphenylamine	4	1.03	371
2al	4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-[4-(morpholin-4-yl)methylphenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-aza-bicyclo[2.2.1]heptane hydrochloride	4-(morpholin-4-yl)methylphenylamine	2	2.23	405
2am	4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-(4-(1-methylpiperazin-4-yl)methylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-aza-bicyclo[2.2.1]heptane hydrochloride	4-(1-methylpiperazin-4-yl)methylphenylamine	2	1.99	418
2an	4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-[3-(<i>N</i> -methylacetamido)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-aza-bicyclo[2.2.1]heptane hydrochloride	Reference example 3	2	2.11	377
2ao	4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-[3-(<i>N</i> -methylcyclopropane carbonylamino)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-aza-bicyclo[2.2.1]heptane hydrochloride	Reference example 3a	2	2.32	404

2ap (1), (2)	4-(4-hydroxymethylpiperidin-1-yl)-2-[4-(piperidin-4-yl)-phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-hydroxymethyl piperidine	4-(1- <i>tert</i> -butoxycarbonylpiperidin-4-yl)-phenylamine	4	1.18	407
2aq	2-(3-amino sulfonylphenyl)amino-4[4-(imidazol-1-ylmethyl)piperidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	Reference example 4	3-amino-benzenesulfonamide	2	1.51	453
2ar	2-(3-amino sulfonylphenyl)amino-4-[4-[(N'- <i>tert</i> -butylureido)methyl]piperidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	Reference example 5	3-amino-benzenesulfonamide	1	6.48	501
2as	4-(3-acetamidopyrrolidin-1-yl)-2-(3-amino sulfonylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-acetamidopyrrolidine	3-amino-benzenesulfonamide	2	1.24	416
2at	2-(3-amino sulfonylphenyl)amino-4-(3,3-dimethyl-4-hydroxypiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3,3-dimethylpiperidin-4-ol (3)	3-amino-benzenesulfonamide	2	1.57	417
2au	4-(1'-acetyl-[4,4']-bipiperidin-1-yl)-2-(3-amino sulfonylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	1-(4,4'-bipiperidin-1-yl)ethanone	3-amino-benzenesulfonamide	4	1.85	498
2av	4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-(4-[4-methylpiperazin-1-yl]phenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-aza-bicyclo[2.2.1]heptane hydrochloride	4-(4-methylpiperazin-1-yl)phenylamine	2	2.07	404
2aw	4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-[4-(piperazin-1-yl)phenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-aza-bicyclo[2.2.1]heptane hydrochloride	4-(piperazin-1-yl)phenylamine	2	1.78	390

2ax	4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-[4-(2-(pyrrolidin-1-yl)ethoxyphenyl)amino]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-aza-bicyclo[2.2.1]heptane hydrochloride	4-(2-pyrrolidin-1-yl)ethoxyaniline	2	2.11	419
2ay	(<i>S</i>)-2-(3-aminosulfonylphenyl)amino-4-[3-(<i>tert</i> -butoxycarbonylaminomethyl)pyrrolidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>S</i>)-3-(<i>tert</i> -butoxycarbonylaminomethyl)pyrrolidine	3-amino-benzenesulfonamide	2	1.99	488
2az	<i>trans</i> -2-(3-aminosulfonylphenyl)amino-4-(4-dimethylamino-3-hydroxypyrrolidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	<i>trans</i> -4-dimethylamino pyrrolidin-3-ol (4)	3-amino-benzenesulfonamide	2	1.22	418
2ba	(<i>R</i>)-2-(3-aminosulfonylphenyl)amino-4-(3-methylpyrrolidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>R</i>)-3-methylpyrrolidine	3-amino-benzenesulfonamide	4	1.85	373
2bb	(<i>R</i>)-2-(3-aminosulfonylphenyl)amino-4-[3-(N- <i>tert</i> -butoxycarbonyl-N-methylamino)pyrrolidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-(<i>R</i>)-(N- <i>tert</i> -butoxycarbonyl-N-methylamino)pyrrolidine	3-amino-benzenesulfonamide	2	2.14	488
2bc	(<i>R</i>)-4-[3-(N- <i>tert</i> -butoxycarbonyl-N-methylamino)pyrrolidin-1-yl]-2-(3-fluoro-4-methoxyphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-(<i>R</i>)-(N- <i>tert</i> -butoxycarbonyl-N-methylamino)pyrrolidine	3-fluoro-4-methoxyphenylamine	4	2.50	457
2bd	(<i>R</i>)-2-(3-aminosulfonylphenyl)amino-4-[3-(N- <i>tert</i> -butoxycarbonylaminoo)pyrrolidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-(<i>R</i>)-(N- <i>tert</i> -butoxycarbonyl amino)pyrrolidine	3-amino-benzenesulfonamide	2	1.98	474

2be	(<i>R</i>)-4-(3-acetamidopyrrolidin-1-yl)-2-(3-aminosulfonylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	3-(<i>R</i>)-acetamidopyrrolidine	3-amino-benzenesulfonamide	2	1.27	416
2bf	2-(3-aminosulfonylphenyl)amino-4-(4-hydroxy-2-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	Reference example 6	3-amino-benzenesulfonamide	2	1.46	403
2bg	<i>trans</i> -2-(3-aminosulfonylphenyl)amino-4-(3-hydroxy-4-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	<i>trans</i> -4-methylpiperidin-3-ol (5)	3-amino-benzenesulfonamide	5	3.13	403
2bh	<i>cis</i> -2-(3-aminosulfonylphenyl)amino-4-(3-hydroxy-2-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	<i>cis</i> -2-methylpiperidin-3-ol (6)	3-amino-benzenesulfonamide	5	3.04	403
2bi	<i>cis</i> -2-(3-aminosulfonylphenyl)amino-4-(3-hydroxy-6-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	<i>cis</i> -6-methylpiperidin-3-ol (6)	3-amino-benzenesulfonamide	5	3.09	403
2bj	<i>cis</i> -2-(3-aminosulfonylphenyl)amino-4-(3-hydroxy-5-methylpiperidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	<i>cis</i> -5-methylpiperidin-3-ol (6)	3-amino-benzenesulfonamide	5	3.22	403
2bk	(6 <i>S</i> ,8 <i>R</i>)-2-(3-aminosulfonylphenyl)amino-4-(8-hydroxy-1,4-diazabicyclo[4.3.0]nonan-4-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	Reference example 7	3-amino-benzenesulfonamide	2	1.20	555.6
2bl	(<i>S</i>)-2-(3-aminosulfonylphenyl)amino-4-(1,4-diazabicyclo[4.3.0]nonan-4-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	Reference example 7a	3-amino-benzenesulfonamide	2	1.62	414.4

2bm	(<i>S</i>)-2-(4-hydroxyethylphenyl)amino-4-(1,4-diazabicyclo[4.3.0]nonan-4-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	Reference example 7a	4-hydroxyethylphenylamine	2	1.70	379.5
2bn	(6 <i>S</i> ,3 <i>S</i>)-2-(3-aminosulfonylphenyl)amino-4-(3-methyl-1,4-diazabicyclo[4.3.0]nonan-4-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	Reference example 7b	3-amino-benzenesulfonamide	2	1.88	428.4
2bo	2-(3-aminosulfonylphenyl)amino-4-[(2-methyl)piperidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-methylpiperidine	3-amino-benzenesulfonamide	4	2.05	387.3
2bp	2-(3-aminosulfonylphenyl)amino-4-[(2-hydroxymethyl)piperidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2-(hydroxymethyl)piperidine	3-amino-benzenesulfonamide	4	1.62	403.2
2bq	4-[(4-hydroxymethyl)piperidin-1-yl]-2-[4-(methoxyethyl)aminosulfonylphenyl]amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-(hydroxymethyl)piperidine	4-amino-N-(2-methoxyethyl)benzenesulfonamide	4	1.67	461.3
2br	4-[(4-hydroxymethyl)piperidin-1-yl]-2-(3-pyrrolidin-1-ylmethylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	4-(hydroxymethyl)piperidine	3-pyrrolidin-1-ylmethylphenylamine	4	1.18	407.3

(1) First step using 1,4-dioxane instead of ethanol

(2) An additional deprotection step was necessary: over a solution of the product obtained, 4M dioxane/ HCl_(g) (2 mL) were added to afford the desired product.

(3) Described in WO/2005/026145

5 (4) Described in WO/2007/146759

(5) Described in WO/2001/087866

(6) Described in WO/2007/122103

EXAMPLE 3

10 (*R*)-2-(3-Aminosulfonylphenyl)amino-4-(3-(1-methylureido)pyrrolidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine

a) (R)-2-(3-Aminosulfonylphenyl)amino-4-(3-(N-methylamino)pyrrolidin1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine

A mixture of the compound obtained in example 2bb (390 mg, 0.8 mmol), 4M

5 dioxane/HCl_(g) (7 mL), and methanol (3 mL) was stirred under Ar-atmosphere for 2 h at room temperature. The resulting mixture was concentrated to dryness and the residue thus obtained was partitioned between 0.2 N NaHCO₃ and CHCl₃. The phases were separated and the combined organic phases were dried over Na₂SO₄ and concentrated to dryness to afford 225 mg of the desired product.

10 LC-MS (method 2): t_R = 1.27 min; m/z = 388 (MH⁺).

b) Title compound

To a solution of the compound obtained in the previous section (40 mg, 0.1 mmol) in DMF (1 mL), trimethylsilyl isocyanate (14 mg, 0.12 mmol) was added under Ar-

15 atmosphere and the mixture was stirred at room temperature overnight. The resulting solution was concentrated to dryness, diluted with EtOAc and washed twice with NH₄Cl saturated aqueous solution. The combined organic phases were dried over Na₂SO₄ and concentrated to dryness. The crude product thus obtained was chromatographed over silica gel using EtOAc/MeOH/NH₃ mixtures of

20 increasing polarity as eluent, to afford 18 mg of the desired compound (43 % yield).

LC-MS (method 2): t_R = 1.23 min; m/z = 431 (MH⁺).

Following a similar procedure to that described in example 3, but using the

25 corresponding starting material, the following compounds were obtained:

Example	Compound name	Reagent for step a)	Reagent for step b)	HPLC method	t _R (min)	m/z
3a	(<i>R</i>)-2-(3-amino-4-(3-(N-methylmethanesulfonyl)amino)pyrrolidin1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	Example 2bb	methanesulfonyl chloride (1)	2	1.55	466

3b	(<i>R</i>)-2-(3-aminosulfonylphenyl)amino-4-[3-(N-phenoxy carbonyl amido)pyrrolidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	Example 2bh	phenyl chloroformate (1)	2	1.91	494
3c	(<i>R</i>)-2-(3-aminosulfonylphenyl)amino-4-[3-(N-methanesulfonyl amido)pyrrolidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	Example 2bh	methanesulfonyl chloride	2	1.38	452
3d	(<i>R</i>)-2-(3-aminosulfonylphenyl)amino-4-(3-ureidopyrrolidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	Example 2bh	trimethylsilyl isocyanate	2	1.15	417

(1) Using pyridine instead of DMF as a solvent

EXAMPLE 4

(*R*)-2-(3-Aminosulfonylphenyl)amino-4-(3-(3-methylureido)pyrrolidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine

To a solution of the compound obtained in example 3c (27 mg, 0.05 mmol) in pyridine (2 mL), a 2 M solution of methylamine in THF (0.27 mL, 0.54 mmol) was added under Ar-atmosphere. The resulting mixture was heated at 100 °C overnight and concentrated to dryness. The crude product thus obtained was chromatographed over silica gel using CHCl₃/MeOH/NH₃ mixtures of increasing polarity as eluent, to afford the desired compound in quantitative yield.

LC-MS (method 2): t_R = 1.24 min; m/z = 431 (MH⁺).

Following a similar procedure to that described in example 4, but using the corresponding starting material, the following compound were obtained:

Example	Compound name	Starting material	HPLC method	t _R (min)	m/z
4a	(<i>R</i>)-2-(3-aminosulfonylphenyl)amino-4-[3-(3-(2,2,2-trifluoro)ethylureido)pyrrolidin-1-yl]-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	2,2,2-trifluoroethylamine	2	1.58	499

4b	(<i>R</i>)-2-(3-aminosulfonylphenyl)amino-4-(3-((3,3-diethylureido)pyrrolidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	diethylamine	2	1.65	473
----	--	--------------	---	------	-----

EXAMPLE 5

(*S*)-2-(3-Aminosulfonylphenyl)amino-4-(3-aminomethylpyrrolidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine

5

Following a similar procedure to that described in example 3 section a, but using 2ay instead of example 2bb, the product was obtained (44 % yield).

LC-MS (method 2): t_R = 1.08 min; m/z = 388.3 (MH^+).

10

EXAMPLE 6

2-(3-Acetylaminosulfonylphenyl)amino-4-(4-methylpiperidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine

15 A mixture of the compound obtained in example 1b (34 mg, 0.088 mmol), acetic anhydride (0.025 mL, 0.264 mmol) and triethylamine (0.011 mL, 0.088 mmol) in $CHCl_3$ (2 mL) was stirred at room temperature overnight. The resulting solution was diluted with $CHCl_3$ and washed with water and brine. The combined organic phases were dried over Na_2SO_4 and concentrated to dryness. The crude product 20 obtained was chromatographed over silica gel using $CH_2Cl_2/MeOH$ mixtures of increasing polarity as eluent, to afford 25 mg of the desired compound (55 % yield).

LC-MS (method 2): t_R = 1.71 min; m/z = 429 (MH^+).

25 Following a similar procedure to that described in example 6, but using the corresponding starting material, the following compound is obtained:

Example	Compound name	Starting material	HPLC method	t _R (min)	m/z
6a	4-(4-methylpiperidin-1-yl)-2-(3-propionylaminosulfonylphenyl)amino-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	propionyl chloride	2	1.75	443.5

EXAMPLE 7

2-(3-Acetylaminosulfonylphenyl)amino-4-(4-methylpiperidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine sodium salt

5

To a solution of example 6 (16 mg, 0.039 mmol) in EtOH (1.5 mL), a 0.05 M aqueous solution of NaOH in EtOH (0.78 mL) was added. The mixture was stirred at room temperature for 30 min and concentrated to dryness to afford 18 mg of the desired product (100% yield).

10 LC-MS (method 2): t_R = 1.71 min; m/z = 429 (MH⁺).

EXAMPLE 8

(2*S*,4*S*)-2-(3-Aminosulfonylphenyl)amino-4-(2-hydroxymethyl-4-hydroxypyrrolidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine

15

a) (2*S*,4*S*)-2-Chloro-4-(2-methoxycarbonyl-4-hydroxypyrrolidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine

Following a similar procedure to that described in example 1 section a, but using (2*S*, 4*S*)-methyl-4-hydroxy-2-pyrrolidincarboxylate instead of piperidine the desired 20 product was obtained (61%).

LC-MS (method 2): t_R = 1.19 min; m/z = 297 (MH⁺).

b) (2*S*,4*S*)-2-(3-Amino-N-*tert*-butylsulfonylphenyl)amino-4-(2-methoxycarbonyl-4-hydroxypyrrolidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine

25 Following a similar procedure to that described in example 2 section b, but using 3-amino-N-*tert*-butylbenzenesulfonamide instead of 3-fluoro-4-methoxyphenylamine, the desired product was obtained (52 % yield).

LC-MS (method 2): t_R = 1.78 min; m/z = 489.3 (MH⁺).

c) (2*S*,4*S*)-2-(3-Amino-N-*tert*-butylsulfonylphenyl)amino-4-(2-hydroxymethyl-4-hydroxypyrrolidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine

A solution of the compound obtained in the previous section (357 mg, 0.731 mmol)

5 in THF (8 mL) was added to a suspension of LiAlH₄ (56 mg, 1.462 mmol) in THF (4 mL) under Ar-atmosphere. The mixture was refluxed overnight, cooled and diluted with CH₂Cl₂ (0.766 mL). The resulting mixture was treated with a saturated solution of sodium tartrate (0.076 mL). The organic phase was dried over Na₂SO₄ and concentrated to dryness. The crude product thus obtained was 10 chromatographed over silica gel using hexane/EtOAc mixtures of increasing polarity as eluent, to afford 79 mg of the desired compound (35 % yield).

LC-MS (method 2): t_R = 1.67 min; m/z = 461 (MH⁺).

d) Tiltle compound

15 A mixture of the compound obtained in the previous section (107 mg, 0.233 mmol), THF (2 mL) and 6N HCl_(g) (4 mL) was stirred at reflux overnight. The solvent was concentrated and the residue was diluted with EtOAc and washed with saturated aqueous NaHCO₃. The combined organic phases were dried over Na₂SO₄ and concentrated to dryness. The crude product thus obtained was 20 chromatographed over silica gel using hexane/EtOAc mixtures of increasing polarity as eluent, to afford 25 mg of the desired compound (25 % yield).

LC-MS (method 2): t_R = 1.22 min; m/z = 405 (MH⁺).

Following a similar procedure to that described in example 8 but using the 25 corresponding starting material, the following compound is obtained:

Example	Compound name	Reagent for step a)	Reagent for step b)	HPLC method	t _R (min)	m/z
8a	(<i>R</i>)-2-(3-amino-1-tert-butylsulfonylphenyl)amino-4-(3-hydroxymethylpyrrolidin-1-yl)-7 <i>H</i> -pyrrolo[2,3-d]pyrimidine	(<i>R</i>)-methyl 3-pyrrolidinecarboxylate	3-aminobenzenesulfonamide	4	1.42	389

EXAMPLE 9

2-(3-Aminosulfonylphenyl)amino-4-[3-(1-hydroxyliminoethyl)piperidin-1-yl]-7*H*-pyrrolo[2,3-d]pyrimidine

a) 2-Chloro-4-(3-acetylH-pyrrolo[2,3-d]pyrimidine

5 Following a similar procedure to that described in example 1 section a, but using 1-(piperidin-3-yl)ethanone instead of piperidine, the desired product was obtained (39 %).

LC-MS (method 2): $t_R = 1.75$ min; $m/z = 279$ (MH^+).

10 **b) 4-(3-AcetylH-pyrrolo[2,3-d]pyrimidine**

Following a similar procedure to that described in example 2 section b, but using 3-aminobenzenesulfonamide, instead of 3-fluoro-4-methoxyphenylamine the product was obtained (37 % yield).

15 LC-MS (method 1): $t_R = 6.26$ min; $m/z = 415$ (MH^+).

c) Title compound

To a solution of the compound obtained in previous section (96 mg, 0.233 mmol) in MeOH (3 mL) hydroxylamine hydrochloride (16.2 mg, 0.233 mmol) and sodium acetate (4 mg, 0.023 mmol) were added under Ar-atmosphere. The mixture was stirred at room temperature overnight and the resulting solution was evaporated to dryness, diluted with EtOAc and washed twice with H_2O . The combined organic phases were dried over Na_2SO_4 and concentrated to dryness. The crude product thus obtained was chromatographed over silica gel using hexane/EtOAc mixtures of increasing polarity as eluent, to afford 17 mg of the desired compound (13 % yield).

LC-MS (method 1): $t_R = 6.13$ min; $m/z = 430$ (MH^+).

EXAMPLE 10

30 **(S)-2-(3-Aminosulfonylphenyl)amino-4-(2-methoxymethylpyrrolidin-1-yl)-7*H*-pyrrolo[2,3-d]pyrimidine**

a) (S)-2-Chloro-4-(2-methoxymethylpyrrolidin-1-yl)-7*H*-pyrrolo[2,3-

d]pyrimidine

Following a similar procedure to that described in example 1 section a, but using (S)-2-methoxymethylpyrrolidine, instead of piperidine, and 1,4-dioxane instead of EtOH, 150 mg of the desired product were obtained (83 % yield).

5

b) (S)-2-(3-Amino-N-*tert*-butylsulfonylphenyl)amino-4-(2-methoxymethylpyrrolidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine

Following a similar procedure to that described in example 2 section b, but using

10 3-amino-N-*tert*-butylbenzenesulfonamide instead of 3-fluoro-4-methoxyphenylamine, the desired product was obtained (35 % yield).

c) Title compound

To a solution of the compound obtained in the previous section (0.088 g, 0.19 mmol) in AcN (2 mL), trifluoromethanesulfonic acid (0.16 mL) was added under Ar-atmosphere and the mixture was stirred at room temperature overnight. The resulting solution was concentrated to dryness, diluted with EtOAc and washed twice with H₂O. The organic phase was dried over Na₂SO₄ and concentrated to dryness. The crude product thus obtained was chromatographed over silica gel 20 using hexane/EtOAc mixtures of increasing polarity as eluent, to obtain 7 mg of the desired compound (22 % yield).

LC-MS (method 4): t_R = 1.77 min; m/z = 403 (MH⁺).

EXAMPLE 11**2-[4-(2-Hydroxyethylaminocarbonyl)phenyl]amino-4-(4-hydroxymethylpiperidin-1-yl)- 7H-pyrrolo[2,3-d]pyrimidine****a) 2-(4-Ethoxycarbonylphenyl)amino-4-(4-hydroxymethylpiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine**

30 Following a similar procedure to that described in example example 2 section b, but using the compound obtained in example 2c section a and ethyl 4-aminobenzoate instead of 4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-chloro-7H-

100

pyrrolo[2,3-d]pyrimidine and 3-fluoro-4-methoxyphenylamine, the desired compound was obtained.

b) 2-(4-Carboxyphenyl)amino-4-(4-hydroxymethylpiperidin-1-yl)- 7H-

5 pyrrolo[2,3-d]pyrimidine

To a solution of 354 mg of the compound obtained in the previous section in DME (9 mL), a solution of LiOH.H₂O (188 mg) in 4.5 mL of H₂O was added. The mixture was stirred at room temperature for 40 h. and cooled to 0 °C. A 1N aqueous HCl solution (4 mL) was added and the mixture was concentrated. The crude product 10 thus obtained was chromatographed over a SCX-2 column to afford 53 mg of the desired compound.

LC-MS (method 4): t_R = 1.55 min; m/z = 368 (MH⁺).

c) Title compound

15 To a solution of the compound obtained in the previous section (100 mg, 0.2 mmol) in DMF (3 mL), a mixture of EDC.HCl (117 mg, 0.60 mmol), HOBT (82 mg, 0.60 mmol), DIEA (87 μ L, 0.60 mmol) and 2-aminoethanol (61 μ L, 1.0 mmol) was added under Ar-atmosphere. The resulting mixture was stirred at room temperature overnight and concentrated to dryness. The crude product thus 20 obtained was chromatographed over silica gel using CH₂Cl₂/MeOH/NH₃ mixtures of increasing polarity as eluent, to afford 51 mg of the desired compound (62% yield).

LC-MS (method 4): t_R = 1.35 min; m/z = 411 (MH⁺)

Example	Compound name	Starting material	HPLC method	t_R (min)	m/z
11a	4-(4-hydroxymethylpiperidin-1-yl)-2-[4-(2-methoxyethylaminocarbonyl)phenyl]amino-7H-pyrrolo[2,3-d]pyrimidine	2-methoxyethylamine	4	1.53	425

11b	4-(4-hydroxymethylpiperidin-1-yl)-2-[(4-(2-(1-methylpyrrolidin-2-yl)ethyl)aminocarbonyl)phenyl]amino-7H-pyrrolo[2,3-d]pyrimidine	2-(2-aminoethyl)-1-methylpyrrolidine	4	1.25	478
11c	4-(4-hydroxymethylpiperidin-1-yl)-2-[(4-(2-(morpholin-4-yl)ethyl)aminocarbonyl)phenyl]amino-7H-pyrrolo[2,3-d]pyrimidine	4-(2-aminoethyl)morpholine	4	1.18	480

EXAMPLE 12

(S)-2-(3-Aminosulfonylphenyl)amino-4-(3-(2-hydroxypropan-2-yl)piperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine

5

a) (S)-2-Chloro-4-(3-ethoxycarbonylpiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine

Following a similar procedure to that described in example 1 section a, but using (S)-ethyl 3-piperidinecarboxylate instead of piperidine, the desired compound was obtained.

LC-MS (method 4): $t_R = 3.01$ min; $m/z = 309$ (MH^+).

b) (S)-2-(3-Aminosulfonylphenyl)amino-4-(3-ethoxycarbonylpiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidine

Following a similar procedure to that described in example 2 section b, but using the compound obtained in the previous section and 3-aminobenzenesulfonamide instead of 4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-chloro-7H-pyrrolo[2,3-d]pyrimidine and 3-fluoro-4-methoxyphenylamine, the desired compound was obtained.

LC-MS (method 4): $t_R = 2.05$ min; $m/z = 445$ (MH^+).

c) Title compound

To a solution of the compound obtained in the previous section (65 mg, 0.15 mmol) in THF (3 mL), a 1.4 M solution of methylmagnesium bromide in THF (0.75

mL, 1.05 mmol) was added at 0 °C. The resulting mixture was stirred under Ar-atmosphere at room temperature overnight. The mixture was concentrated to dryness and the residue thus obtained was chromatographed over silica gel using CH₂Cl₂/MeOH/NH₃ mixtures of increasing polarity as eluent, to afford 17 mg of the 5 desired compound (26% yield).

LC-MS (method 4): t_R = 1.78 min; m/z = 431 (MH⁺)

EXAMPLE 13

2-(3-Aminosulfonylphenyl)amino-4-(7-oxo-6-azabicyclo[3.2.1]octan-6-yl)-7H-10 pyrrolo[2,3-d]pyrimidine

a) 4-(3-Carboxycyclohexylamino)-2-chloro-7H-pyrrolo[2,3-d]pyrimidine

To a solution of 2,4-dichloro-7H-pyrrolo[2,3-d]pyrimidine (0.50 g, 2.66 mmol) in THF/H₂O (1:1) (7 mL), 3-aminocyclohexane carboxylic acid (0.38 g, 2.66 mmol) 15 and K₂CO₃ (0.55 g, 3.98 mmol) were added. The reaction was stirred at 110°C in a sealed tube for 10 h. The resulting mixture was diluted with H₂O and the phases were separated. Aqueous 1N HCl was added at 0 °C until pH = 3 and extracted thrice with EtOAc/MeOH (9:1). The combined organic phases were dried over Na₂SO₄ and concentrated to dryness and the crude product thus obtained was 20 directly used in the next step.

LC-MS (method 2): t_R = 0.94 min; m/z = 295 (MH⁺).

a) 2-Chloro-4-(7-oxo-6-azabicyclo[3.2.1]octan-6-yl)-7H-pyrrolo[2,3-d]pyrimidine

25 To a solution of the product obtained in the previous section in DMF (25 mL), HBTU (1.14 g, 3.00 mmol) and DIEA (0.65 mL, 3.73 mmol) were added. The reaction was stirred under Ar-atmosphere at room temperature for 18 h. The resulting mixture was concentrated to dryness and the residue was dissolved in DMF (20 mL). DIEA (0.65 mL, 3.73 mmol) was added and the mixture was stirred 30 overnight at 120 °C. The resulting mixture was evaporated to dryness and the crude product thus obtained was chromatographed over silica gel using CHCl₃/MeOH mixtures of increasing polarity as eluent, to afford 0.15 g of the desired compound (20 % yield).

LC-MS (method 2): t_R = 1.95 min; m/z = 277 (MH^+).

b) Title compound

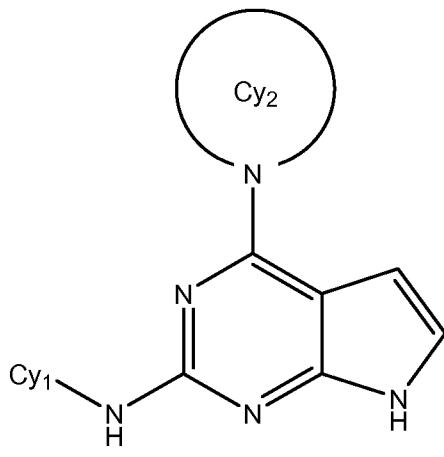
Following a similar procedure to that described in example 2 section b, but using

5 the compound obtained in the previous section, and 3-aminobenzenesulfonamide instead of 4-(2-azabicyclo[2.2.1]heptan-2-yl)-2-chloro-7*H*-pyrrolo[2,3-d]pyrimidine and 3-fluoro-4-methoxyphenylamine, the desired product was obtained (19% yield).

LC-MS (method 2): t_R = 1.72 min; m/z = 413 (MH^+).

10

EXAMPLE 14


Biological assay 1: JAK3 kinase inhibition

In a final volume of 50 μ L, 5 μ L of the test product dissolved in 10% DMSO (final 15 concentration, 0.001-10 μ M), was incubated with 4 μ g/mL of human JAK3 781-1124, 1 μ g/mL of Poly-L-Ala, L-Glu, L-Lys, L-Tyr and ATP (0.2 μ M, approximately 2 \times 10⁵ cpm of $\gamma^{33}P$ -ATP) in HEPES buffer (60 mM, pH 7.5) with Mg²⁺ chloride (3 mM), Mn²⁺ chloride (3 mM), sodium orthovanadate (3 μ M) and dithiotreitol (1.2 mM). The reaction was started by adding Mg²⁺[$\gamma^{33}P$ -ATP]. After incubation for 50 20 min at room temperature, the reaction was quenched by the addition of 50 μ L of 2% phosphoric acid solution. The reaction mixture was filtered in vacuo and washed three times with a 150 mM phosphoric acid solution. 200 μ L of liquid scintillation was added before drying it and counting it.

25 The compounds of all examples showed more than 50% of inhibition of JAK3 activity at 10 μ M in this assay.

CLAIMS

1.- A compound of formula I:

5

wherein:

Cy₁ represents phenyl or a 5- or 6-membered aromatic heterocycle bonded to the NH group through a C atom, each of which can be optionally fused to a 5- or 6-membered saturated, partially unsaturated or aromatic carbocyclic or heterocyclic ring, wherein Cy₁ can contain from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms of the optional 5- or 6-membered fused ring can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₁ can be optionally substituted with one or more R₁;

Cy₂ represents a 3- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein the ring which contains the N atom which is bonded to the pyrrolopyrimidine moiety is saturated or partially unsaturated, wherein Cy₂ contains from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂;

each R₁ and R₂ independently represent C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, halogen, -CN, -NO₂, -COR₃, -CO₂R₃, -CONR₃R₃, -COCONR₃R₃, -OR₃, -OCOR₄, -OCONR₄R₄, -OCO₂R₄, -SR₃, -SOR₄, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅CO₂R₄, -NR₅SO₂R₄, -C(=N-OH)R₄ or Cy₃, wherein C₁₋₄alkyl, C₂₋₄alkenyl and C₂₋₄alkynyl can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇;

R₃ represents hydrogen or R₄;

R_4 represents C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, or Cy_4 , wherein C_{1-4} alkyl, C_{2-4} alkenyl and C_{2-4} alkynyl can be optionally substituted with one or more R_6 and Cy_4 can be optionally substituted with one or more R_8 ;

R_5 represents hydrogen or C_{1-4} alkyl;

5 R_6 represents halogen, -CN, -NO₂, -COR₉, -CO₂R₉, -CONR₉R₉, -OR₉, -OCOR₁₀, -OCONR₁₀R₁₀, -OCO₂R₁₀, -SR₉, -SOR₁₀, -SO₂R₁₀, -SO₂NR₉R₉, -SO₂NR₅COR₁₀, -NR₉R₉, -NR₅COR₉, -NR₅CONR₉R₉, -NR₅CO₂R₁₀, -NR₅SO₂R₁₀, -C(=N-OH)R₁₀ or Cy_4 , wherein Cy_4 can be optionally substituted with one or more R_8 ;

10 R_7 represents C_{1-4} alkyl that can be optionally substituted with one or more R_{11} , or R_7 represents any of the meanings described for R_{12} ;

R_8 represents C_{1-4} alkyl, halo C_{1-4} alkyl, C_{1-4} alkoxy C_{1-4} alkyl, hydroxy C_{1-4} alkyl, cyano C_{1-4} alkyl or any of the meanings described for R_{12} ;

R_9 represents hydrogen or R_{10} ;

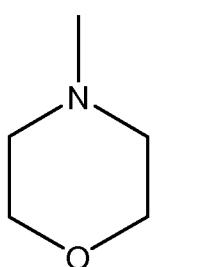
15 R_{10} represents C_{1-4} alkyl, halo C_{1-4} alkyl, C_{1-4} alkoxy C_{1-4} alkyl, hydroxy C_{1-4} alkyl, cyano C_{1-4} alkyl, Cy_5 - C_{1-4} alkyl or Cy_4 , wherein Cy_4 can be optionally substituted with one or more R_8 ;

20 R_{11} represents halogen, -CN, -NO₂, -COR₉, -CO₂R₉, -CONR₉R₉, -OR₉, -OCOR₁₀, -OCONR₁₀R₁₀, -OCO₂R₁₀, -SR₉, -SOR₁₀, -SO₂R₁₀, -SO₂NR₉R₉, -SO₂NR₅COR₁₀, -NR₉R₉, -NR₅COR₉, -NR₅CONR₉R₉, -NR₅CO₂R₁₀, -NR₅SO₂R₁₀, or -C(=N-OH)R₁₀;

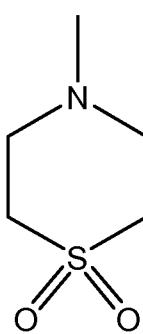
25 R_{12} represents halogen, -CN, -NO₂, -COR₁₃, -CO₂R₁₃, -CONR₁₃R₁₃, -OR₁₃, -OCOR₁₄, -OCONR₁₄R₁₄, -OCO₂R₁₄, -SR₁₃, -SOR₁₄, -SO₂R₁₄, -SO₂NR₁₃R₁₃, -SO₂NR₅COR₁₄, -NR₁₃R₁₃, -NR₅COR₁₃, -NR₅CONR₁₃R₁₃, -NR₅CO₂R₁₄, -NR₅SO₂R₁₄ or -C(=N-OH)R₁₄;

R_{13} represents hydrogen or R_{14} ;

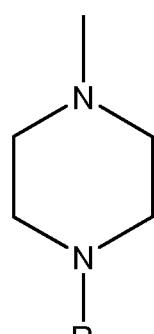
R_{14} represents C_{1-4} alkyl, halo C_{1-4} alkyl, C_{1-4} alkoxy C_{1-4} alkyl or hydroxy C_{1-4} alkyl;


30 or two R_{13} groups or two R_{14} groups on the same N atom can be bonded completing, together with the N atom, a 5- or 6-membered saturated ring, which can additionally contain one or two heteroatoms selected from N, S and O and which can be optionally substituted with one or more C_{1-4} alkyl groups;

each Cy_3 and Cy_4 independently represent a 3- to 7-membered monocyclic


or 6- to 11-membered bicyclic ring which can be carbocyclic or heterocyclic, in which case it can contain from 1 to 4 heteroatoms selected from N, S and O, wherein each Cy₃ and Cy₄ can be saturated, partially unsaturated or aromatic, and can be bonded to the rest of the molecule through any available C or N atom, and

5 wherein one or more C or S atoms of the ring can be optionally oxidized forming CO, SO or SO₂ groups;


Cy₅ represents a ring selected from (a)-(c):

(a)

(b)

(c) ; and

10

R₁₅ represents hydrogen or C₁₋₄alkyl;

or a salt thereof.

2.- A compound according to claim 1 wherein Cy₁ represents phenyl or pyridyl, which can be optionally fused to a 5- or 6-membered saturated, partially 15 unsaturated or aromatic carbocyclic or heterocyclic ring, wherein Cy₁ can contain from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms of the 5- or 6-membered fused ring can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₁ can be optionally substituted with one or more R₁.

20 3.- A compound according to claim 1 wherein Cy₁ represents phenyl optionally substituted with one or more R₁.

4.- A compound according to claim 1 wherein Cy₁ represents phenyl substituted with one or more R₁.

5.- A compound according to claim 1 wherein Cy₁ represents phenyl substituted 25 with one or two R₁.

6.- A compound according to claim 1 wherein Cy₁ represents phenyl substituted at

one or two of positions 3, 4 and 5 with an R₁.

7.- A compound according to claim 1 wherein Cy₁ represents phenyl substituted with one R₁, which is placed at position 3 or 4 of the phenyl ring.

8.- A compound according to any of claims 1 to 7 wherein each R₁ represents

5 C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, halogen, -CN, -NO₂, -COR₃, -CO₂R₃, -CONR₃R₃, -COCONR₃R₃, -OR₃, -OCOR₄, -OCONR₄R₄, -OCO₂R₄, -SR₃, -SOR₄, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅CO₂R₄, -C(=N-OH)R₄ or Cy₃, wherein C₁₋₄alkyl, C₂₋₄alkenyl and C₂₋₄alkynyl can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted

10 with one or more R₇.

9.- A compound according to any of claims 1 to 7 wherein each R₁ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -COCONR₃R₃, -OR₃, -SR₃, -SO₂R₄, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein the C₁₋₄alkyl group can be optionally substituted with

15 one or more R₆ and Cy₃ can be optionally substituted with one or more R₇.

10.- A compound according to any of claims 1 to 7 wherein each R₁ represents C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein the C₁₋₄alkyl group can be optionally substituted with one or more R₆ and Cy₃ can be optionally substituted with one or more R₇.

20 11.- A compound according to any of claims 1 to 7 wherein each R₁ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, halogen, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

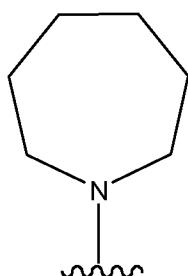
25 12.- A compound according to any of claims 1 to 7 wherein each R₁ represents hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, NR₉R₉SO₂-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, R₁₀CONR₅SO₂-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, -CONR₃R₃, -OR₃, -SO₂NR₃R₃, -SO₂NR₅COR₄, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

30 13.- A compound according to any of claims 1 to 12 wherein Cy₃ in R₁ represents Cy_{3a}, and Cy_{3a} represents a 5- or 6-membered saturated monocyclic heterocycle

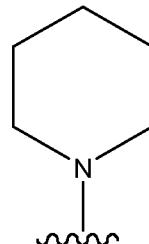
which contains 1 or 2 heteroatoms selected from N, S and O, wherein said ring can be bonded to the rest of the molecule through any available C or N atom, and wherein one or more C or S atoms of the ring can be optionally oxidized forming CO, SO or SO₂ groups, wherein said Cy_{3a} can be optionally substituted with one or more R₇.

5 14.- A compound according to any of claims 1 to 12 wherein Cy₃ in R₁ represents Cy_{3b}, and Cy_{3b} represents a 5- or 6-membered saturated monocyclic heterocycle which contains 1 or 2 heteroatoms selected from N, S and O with the proviso that it contains at least 1 N atom, wherein said ring is bonded to the rest of the 10 molecule through a N atom, wherein one or more C or S ring atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein said Cy_{3b} can be optionally substituted with one or more R₇.

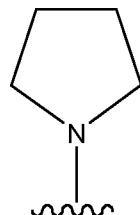
15 15.- A compound according to any of claims 1 to 14 wherein Cy₄ in R₁ represents Cy_{4a}, and Cy_{4a} represents a 5- or 6-membered saturated monocyclic heterocycle which contains 1 or 2 heteroatoms selected from N, S and O and which can be bonded to the rest of the molecule through any available C or N atom, wherein one or more C or S ring atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein said Cy_{4a} can be optionally substituted with one or more R₈.

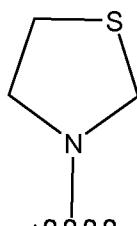

20 16.- A compound according to any of claims 1 to 15 wherein R₃ in R₁ represents hydrogen or R₄ and R₄ in R₁ represents C₁₋₄alkyl or Cy₄, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆ and wherein Cy₄ can be optionally substituted with one or more R₈.

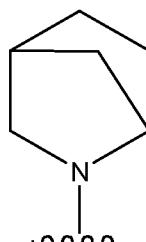
25 17.- A compound according to any of claims 1 to 15 wherein R₃ in R₁ represents hydrogen or R₄ and R₄ in R₁ represents C₁₋₄alkyl, Cy₄-C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl or Cy₄, wherein any Cy₄ can be optionally substituted with one or more R₈.

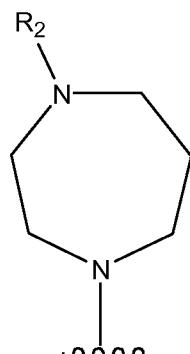

30 18.- A compound according to any of claims 1 to 17 wherein Cy₂ represents a 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein the ring which contains the N atom which is bonded to the pyrrolopyrimidine moiety is saturated, wherein Cy₂ contains from 1 to 4 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

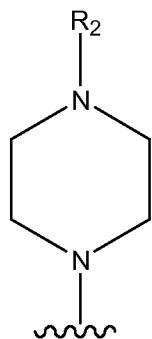
19.- A compound according to any of claims 1 to 17 wherein Cy_2 represents a saturated 5- to 7-membered monocyclic or 6- to 11-membered bicyclic heterocycle, wherein Cy_2 contains from 1 to 3 heteroatoms selected from N, O and S, wherein one or more C or S atoms can be optionally oxidized forming CO, SO or SO_2 groups, and wherein Cy_2 can be optionally substituted with one or more R_2 .

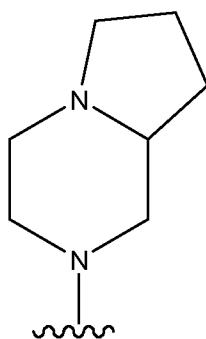

5 20.- A compound according to any of claims 1 to 17 wherein Cy_2 is selected from (a)-(i):

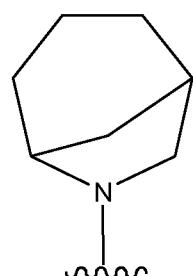

(a)


(b)


(c)

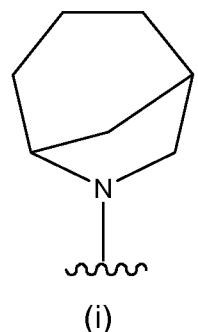
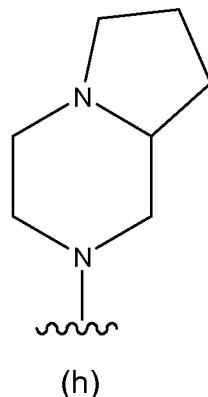
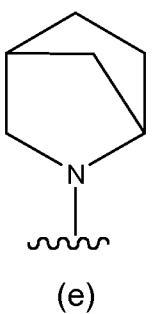
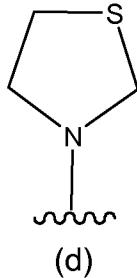
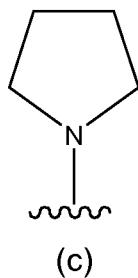
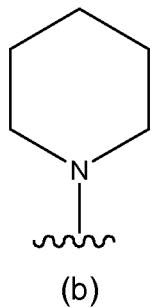

(d)


(e)


(f)

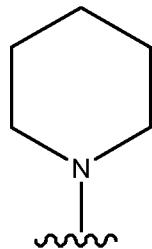
(g)

(h)







(i)

,

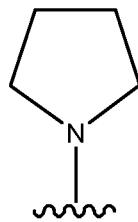
wherein one or more C or S atoms of Cy_2 can be optionally oxidized forming CO, SO or SO_2 groups, and wherein Cy_2 can be optionally substituted with one or more R_2 .


21.- A compound according to any of claims 1 to 17 wherein Cy_2 is selected from

5 (b), (c), (d), (e), (h) and (i):

wherein one or more C or S atoms of Cy_2 can be optionally oxidized forming CO, SO or SO_2 groups, and wherein Cy_2 can be optionally substituted with one or more R_2 .

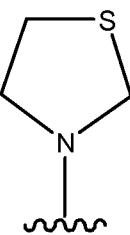
10 22.- A compound according to any of claims 1 to 17 wherein Cy_2 represents (b):



(b)

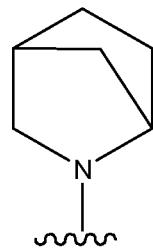
wherein one or more C atoms of Cy_2 can be optionally oxidized forming CO groups, and wherein Cy_2 can be optionally substituted with one or more R_2 .

23.- A compound according to any of claims 1 to 17 wherein Cy_2 represents (c):


111

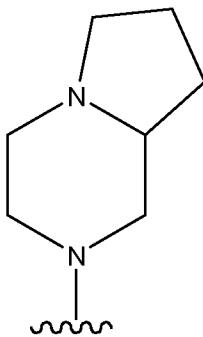
(c) ,

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.


24.- A compound according to any of claims 1 to 17 wherein Cy₂ represents (d):

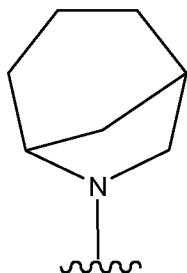
5 (d) ,

wherein one or more C or S atoms of Cy₂ can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy₂ can be optionally substituted with one or more R₂.


25.- A compound according to any of claims 1 to 17 wherein Cy₂ represents (e):

10 (e) ,

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.


26.- A compound according to any of claims 1 to 17 wherein Cy₂ represents (h)

(h) ,

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

27.- A compound according to any of claims 1 to 17 wherein Cy₂ represents (i):

5 (i) ,

wherein one or more C atoms of Cy₂ can be optionally oxidized forming CO groups, and wherein Cy₂ can be optionally substituted with one or more R₂.

28.- A compound according to any of claims 1 to 27 wherein each R₂ represents C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃,

10 -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆ and wherein Cy₃ can be optionally substituted with one or more R₇.

29.- A compound according to any of claims 1 to 27 wherein each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, haloC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, R₉CO-

15 C₁₋₄alkyl, NR₉R₉-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, R₁₀SO₂NR₅-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, NR₉R₉CONR₅-C₁₋₄alkyl, halogen, -CN, -COR₃, -CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃, -NR₅SO₂R₄ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇ and wherein Cy₄ can be optionally substituted with one or more R₈.

20 30.- A compound according to any of claims 1 to 27 wherein each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, haloC₁₋₄alkyl, halogen, -CN, -COR₃,

-CO₂R₃, -CONR₃R₃, -OR₃, -NR₃R₃, -NR₅COR₃ or Cy₃, wherein Cy₃ can be optionally substituted with one or more R₇.

31.- A compound according to any of claims 1 to 30 wherein Cy₃ in R₂ represents Cy_{3c}, and Cy_{3c} represents a saturated 3- to 7-membered monocyclic or 6- to 11-

5 membered bicyclic ring which can be carbocyclic or heterocyclic, in which case it can contain from 1 to 4 heteroatoms selected from N, S and O, wherein Cy_{3c} can be bonded to the rest of the molecule through any available C or N atom, wherein one or more C or S atoms of the ring can be optionally oxidized forming CO, SO or SO₂ groups, and wherein Cy_{3c} can be optionally substituted with one or more R₇.

10 32.- A compound according to any of claims 1 to 27 wherein each R₂ represents C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein C₁₋₄alkyl can be optionally substituted with one or more R₆.

33.- A compound according to any of claims 1 to 27 wherein each R₂ represents C₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkyl, haloC₁₋₄alkyl, Cy₄-C₁₋₄alkyl, R₉CO-

15 C₁₋₄alkyl, NR₉R₉-C₁₋₄alkyl, R₉CONR₅-C₁₋₄alkyl, R₁₀SO₂NR₅-C₁₋₄alkyl, NR₉R₉CO-C₁₋₄alkyl, NR₉R₉CONR₅-C₁₋₄alkyl, -COR₃, -OR₃, -NR₃R₃, -NR₅COR₃, -NR₅CONR₃R₃ or -NR₅SO₂R₄, wherein Cy₄ can be optionally substituted with one or more R₈.

34.- A compound according to any of claims 1 to 33 wherein R₃ in R₂ represents hydrogen or R₄ and R₄ in R₂ represents C₁₋₄alkyl optionally substituted with one or

20 more R₆.

35.- A compound according to any of claims 1 to 33 wherein R₃ in R₂ represents hydrogen or R₄ and R₄ in R₂ represents C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl or haloC₁₋₄alkyl.

36.- A pharmaceutical composition which comprises a compound of formula I

25 according to any of claims 1 to 35 or a pharmaceutically acceptable salt thereof and one or more pharmaceutically acceptable excipients.

37.- Use of a compound of formula I according to any of claims 1 to 35 or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment of a disease mediated by JAK3.


30 38.- Use of a compound of formula I according to any of claims 1 to 35 or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment of at least one disease selected from transplant rejection, immune, autoimmune and inflammatory diseases, neurodegenerative diseases, and

proliferative disorders.

39.- Use according to claim 38 wherein the disease is selected from transplant rejection, rheumatoid arthritis, psoriatic arthritis, psoriasis, type I diabetes, complications from diabetes, multiple sclerosis, systemic lupus erythematosus, 5 atopic dermatitis, mast cell-mediated allergic reactions, leukemias, lymphomas, and thromboembolic and allergic complications associated with leukemias and lymphomas.

40.- A process for the preparation of a compound of formula **I** according to claim 1, which comprises :

10 (a) reacting a compound of formula **IV** with a compound of formula **V**

wherein Cy_1 and Cy_2 have the meaning described in claim 1; or
(b) converting, in one or a plurality of steps, a compound of formula **I** into another compound of formula **I**.

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2008/053842

A. CLASSIFICATION OF SUBJECT MATTER
INV. C07D487/04 A61K31/519 A61P37/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 6 635 762 B1 (BLUMENKOPF TODD A [US] ET AL) 21 October 2003 (2003-10-21) column 1, paragraph 1 claim 1 -----	1-40
A	WO 99/65909 A (PFIZER PROD INC [US]; BLUMENKOPF TODD ANDREW [US]; FLANAGAN MARK EDWAR) 23 December 1999 (1999-12-23) page 1, paragraph 1 claim 1 -----	1, 40
A	WO 99/65908 A (PFIZER PROD INC [US]; BLUMENKOPF TODD ANDREW [US]; FLANAGAN MARK EDWAR) 23 December 1999 (1999-12-23) page 1, paragraph 1 claim 1 ----- -/-	1-40

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

10 September 2008

Date of mailing of the international search report

17/09/2008

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Fanni, Stefano

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2008/053842

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>WO 2006/096270 A (VERTEX PHARMA [US]; LEDEBOER MARK W [US]; PIERCE ALBERT C [US]; BEMIS) 14 September 2006 (2006-09-14) page 2, paragraph 105 claim 1</p> <p>-----</p>	1-40
X, P	<p>WO 2007/071393 A (NOVARTIS AG [CH]; NOVARTIS PHARMA GMBH [AT]; CAPRARO HANS-GEORG [CH];) 28 June 2007 (2007-06-28) page 1, paragraph 2 example 79 claim 1</p> <p>-----</p>	1-40

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2008/053842

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 6635762	B1	21-10-2003	US	2004058922 A1		25-03-2004
WO 9965909	A	23-12-1999	AP	1157 A		30-06-2003
			AT	270673 T		15-07-2004
			AU	758427 B2		20-03-2003
			AU	4054599 A		05-01-2000
			BG	65063 B1		31-01-2007
			BG	105122 A		31-10-2001
			BR	9912171 A		10-04-2001
			CA	2335186 A1		23-12-1999
			CN	1305479 A		25-07-2001
			CZ	20004726 A3		13-03-2002
			DE	69918552 D1		12-08-2004
			DE	69918552 T2		04-11-2004
			DK	1087971 T3		11-10-2004
			EG	23758 A		08-08-2007
			EP	1087971 A1		04-04-2001
			ES	2223172 T3		16-02-2005
			HK	1036800 A1		27-02-2004
			HR	20000886 A2		31-10-2001
			HU	0103472 A2		28-02-2002
			ID	27595 A		12-04-2001
			IS	5721 A		21-11-2000
			IS	5722 A		21-11-2000
			JP	3497823 B2		16-02-2004
			JP	2002518394 T		25-06-2002
			MA	26653 A1		20-12-2004
			NO	20006454 A		15-02-2001
			NZ	508034 A		28-11-2003
			OA	11571 A		01-07-2004
			PL	345118 A1		03-12-2001
			PT	1087971 T		29-10-2004
			SK	18992000 A3		06-08-2002
			TR	200003720 T2		21-03-2001
			TW	542834 B		21-07-2003
			UA	63013 C2		15-03-2001
			ZA	9904003 A		18-12-2000
WO 9965908	A	23-12-1999	AP	1021 A		09-11-2001
			AT	265458 T		15-05-2004
			AU	3951899 A		05-01-2000
			BG	65119 B1		30-03-2007
			BR	9911365 A		13-03-2001
			CA	2335492 A1		23-12-1999
			CN	1305480 A		25-07-2001
			CZ	20004727 A3		13-03-2002
			DE	69916833 D1		03-06-2004
			DE	69916833 T2		14-04-2005
			DK	1087970 T3		02-08-2004
			EA	5852 B1		30-06-2005
			EP	1087970 A1		04-04-2001
			ES	2219018 T3		16-11-2004
			HK	1036801 A1		16-04-2004
			HR	20000885 A2		31-10-2001
			HU	0102574 A2		28-11-2001
			ID	26698 A		01-02-2001
			JP	2002518393 T		25-06-2002
			JP	2007284455 A		01-11-2007

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2008/053842

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9965908	A	MA	26654 A1	20-12-2004
		NO	20006453 A	05-02-2001
		NZ	518444 A	30-04-2004
		OA	11572 A	01-07-2004
		PL	345123 A1	03-12-2001
		PT	1087970 T	30-06-2004
		SK	18982000 A3	06-08-2002
		TR	200003719 T2	21-03-2001
		TW	505646 B	11-10-2002
WO 2006096270	A	14-09-2006	AU 2006221065 A1	14-09-2006
			CA 2596830 A1	14-09-2006
			CN 101142218 A	12-03-2008
			EP 1844050 A1	17-10-2007
			JP 2008528705 T	31-07-2008
			KR 20070104641 A	26-10-2007
			NO 20074431 B	31-08-2007
WO 2007071393	A	28-06-2007	AR 058699 A1	20-02-2008
			AU 2006328948 A1	28-06-2007
			EP 1966210 A2	10-09-2008