(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
18 October 2001 (18.10.2001) PCT WO 01/77822 A2
(51) International Patent Classification’: GOG6F 9/44 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
(21) International Application Number: PCT/EP01/04095 DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
(22) International Filing Date: 10 April 2001 (10.04.2001) LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English
(26) Publication Language: English (84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
(30) Priority Data: patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
2000-109978 11 April 2000 (11.04.2000) JP patent (AT, BE, CH, CY, DE, DK, ES, FL, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

(71) Applicant (for all designated States except US): SAP AK- CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

TIENGESELLSCHAFT [DE/DE]; Matthias Zahn, Intel-)
lectual Property Department, Neurottstr. 16, 69190 Wall- Published:
dorf (DE). — without international search report and to be republished

upon receipt of that report
(72) Inventor; and
(75) Inventor/Applicant (for US only): HAWLEY, David For two-letter codes and other abbreviations, refer to the "Guid-
[CA/IP]; 503 Harvest Hill, 72-7 Minori-dai, Matsudo-shi, ance Notes on Codes and Abbreviations" appearing at the begin-
Chiba-ken, Chiba 271 (JP). ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND COMPUTER PROGRAM FOR RENDERING ASSEMBLIES OBJECTS ON USER-INTERFACE TO
PRESENT DATA OF APPLICATION

APPLICATION SPECIFICATION | ~ 240
DOCUMENT
] 245 2
P %
200-1 218 201 200-2
CLIENT-SIDE DATA SERVER-SIDE INTERPRETER
INTERPRETER SYNCHRONI- DATA
ZATION SOURCE
MICROBROWSER VOICE THEME
THEME SERVICES THEME THEME (GENERAL)
45 3451 345-2 \ 253
901 902 903-1
v Z Z 903-2
<
(@]
o PORTABLE PHONE TELEPHONE PERSONAL \903.3
s WITH MICROBROWSER COMPUTER/
ll: DEVICE
: (57) Abstract: A user-interface (963) of a device (903) renders a first object (360) and a second object (360), each object with data

of a business application (300). The device (903) ist either of a first type (953-1) or of a second type (953-2). In the device (903), an
interpreter (200) receives an application specification document (240) with a statement (245). The statement indicates to render the
first an second objects in an assembly (360/370). The interpreter (200) identifies a presentation pattern (295/296) for the assembly
(360, 370) from predefined first and second presentation patterns (295/296) according to the type of the device (903) so that the
assembly (360, 370) is rendered according to the presentation pattern (295/296).

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

METHOD AND COMPUTER PROGRAM FOR RENDERING ASSEMBLIES
OBJECTS ON USER-INTERFACE TO PRESENT DATA OF
APPLICATION

Field of the Invention

The present invention relates generally to the creation
of applications for computing devices, and more
particularly to presenting the applications on
different computing devices that have different user-
interfaces (e.g., size and shape), to creating
applications which can be used in on-line or off-line
operating modes of the computing device, and to
defining classes of applications, wherein the

applications share common user-interface models.

Background of the Invention

Recent technology development created an opportunity to
hand over low-cost, low-maintenance small mobile
("pervasive") computing devices to professional and
non-professional workers who are not always, or perhaps
never, within reach of a desktop computer.

Such pervasive devices must be able to integrate
with corporate data systems (such as SAP R/3 by SAP
Aktiengesellschaft, Walldorf (Baden), Germany) and
business processes that are enabled by information
technology (IT).

When presenting the application, the devices render
objects to the user-interface of the device. For
example, the devices visually render screen objects
(e.g., tiles) on a screen, or aurally render voice to a
loudspeaker. Often layout information for each object
and for each device ig specified (i.e. "hard-coded")

into the application specification. However, it is not

-1 -
CONFIRMATION COPY

10

15

20

25

30

WO 01/77822

PCT/EP01/04095

desired to specify for each device type and for each
object.

Furthermore, the current state of communication
reliability, communication costs, and device battery
capacity make it necessary to support disconnected
("off-line") as well as connected ("on-line") operating
modes (of the computing device). Unfortunately, there
is a shortage of tools to meet these requirements.

From the standpoint of application development,
maintenance and deployment, there is.a further
additional challenge of supporting different computing
devices. The computing devices are, for example,
consumer devices with the Windows CE operating system
(available for at least 4 different screen sizes),
wireless telephones with micro-browsers, and
traditional wire-bound telephones. As a further medium,
voice can deliver corporate content via interactive
voice response systems using telephone push buttons or
voice-recognition and voice-synthesis.

Hence, there is a need to create customizable
applications for pervasive computing devices. Further,
since communication infrastructures are developing
rapidly but unevenly throughout the world, the
development method should support mixed on-line and
off-line usage of the applications without imposing
large discontinuities and resultant training costs on
the users.

In other words, it is desired to provide server-
based layouts that supports multiple implementations of
different computing devices and that support multiple

media.

10

15

20

25

30

WO 01/77822 PCT/EP01/04095

Summary of the Invention

As in claim 1, the present invention provides a method
for rendering an assembly (i.e. a combination) of a
first object and a second object on a user-interface of
a device. The device is either of a first type or of a
second type; the first and second objects present data
of an application. The method comprises:
receiving an application specification document by the
device, the application specification document
having a statement with an indication to render the
first and second objects in the assembly;
interpreting the statement of the application
specification document to identify a presentation
pattern for the assembly from predefined first and
second presentation patterns according to the type
of the device; and
rendering the assembly of the first and second objects
on the user-interface according to the presentation
pattern identified in the interpreting step.
An indication to render the object in an assembly 1is
given in the receiving step. While in the prior art,
presentation statements include explicit presentation
data for each single object; the inventive presentation
statement is simplified and only indicates that the
objects are presented in an assembly. The presentation
statement (or "rendering statement") is sufficient to
identify a presentation pattern by interpreting the
statement when the user-interface of the device is
taken into account.
As in claim 2, preferably, prior to the receiving
step, the method further comprises specifying the
application in the application specification document

by a workbench in a development computer, and

10

15

20

25

30

35

WO 01/77822

PCT/EP01/04095

simulating the rendering step by a pre-viewer component
of the workbench.

Using the workbench allows the developer to confirm
the presentation without using the device. The
simulation presents a look-like of the objects. It also
enables the developer to first specify the application
for a device of the first type and then to adapt the
application for a device of the second type.

As in claim 3, preferably, in the rendering step,
the first object and the second object are rendered not
only according to the presentation pattern but also
according to a predefined hierarchy pattern.

The hierarchy pattern is convenient for rendering
objects that are related to each other in hierarchy.
For example, the first object can be supra-coordinated
over the second object. The hierarchy pattern can be
defined as a sequence for consecutively rendering
objects and as a definition of object locations (e.g.,
right - left, foreground - background).

As in claim 4, preferably, the specifying step
comprises writing the application in an application
specification language, providing an interpreter that
is specific for the application specification language,
and storing the interpreter in the device.

Having the interpreter adapted to the application
specification language and storing the interpreter in
the device, allows to present the objects of the
application even if the device is not coupled to an
application server computer (off-line mode).

As in claim 5, preferably, the predefined
presentation patterns are stored by the interpreter.
Storing the predefined presentation pattersA(or
"themes") by the interpreter alleviates the developer
from specifying presentation patterns in the statement
itself.

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

As in claim 6, preferably, the presentation pattern
is a display pattern, wherein the objects are rendered
to the user-interface being a screen, and wherein the
presentation pattern is identified according to the
screen size. In the embodiment of visual presentation,
screen sizes of different devices are distinguished.

As in claim 7, in the rendering step, the
presentation pattern is an audio pattern.

As in claim 8, the present invention provides a
computer-program product to visually render a first
object and a second object in an assembly on a screen
of a computing device. The objects present data of a
business application on a computer that is at least
temporarily coupled to the computing device. The device
is either of a first type or of a second type. The
computer-program product has instructions that cause a
processor of a computing device to perform the
following steps:

receiving an application specification document
from a computer, the application specification document
having a statement with an indication to render the
first and second objects in assembly; interpreting the
statement of the application specification document to
identify a visual presentation pattern for the assembly
from predefined first and second visual presentation
patterns according to the type of the device; and
rendering the assembly of the first and second objects
on the screen according to the visual presentation
pattern identified in the interpreting step.

It is an advantage that the computer must not be
permanently coupled to the computing device. It is
sufficient to transfer the application specification
document to the computing device before rendering the
objects. The computing device is either of a first type

or of a second type; the application specification

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

document does not need to distinguish the type. The
statement indicates to render the first and second
objects in an assembly. It is not necessary to indicate
details on how the objects are assembled. According to
the device type, the suitable visual presentation
patterns for the assembly is identified from predefined
patterns that are, preferably, stored in the computing
device.

As in claim 9, preferably, the computer-program
product is an interpreter that is located in the
device.

As in claim 10, optionally, the interpreter is
located in a further computer. This has the advantage
that devices with low computing power like conventional
phones can render the application as well.

As in claim 11, the computer-program product is,
optionally, embodied by a program signal that is
conveyed to the computing device.

As in claim 12, the computer-program product is,
optionally, embodied by a program carrier.

As in claim 13, the present invention also provides
a computer-program product that resides in a computing
device of either a first type or a second type, the
computer-program product for interpreting an
application specification document and causing a
processor of the computing device to render a first
object and a second object in combination to a user-
interface of the device, the computer-program product
having a plurality of instructions to control the
processor, the computer-program product characterized
in the following:

A first sub-plurality of instructions form a theme-
handler to evaluate a statement of the application
specification document, the statement instructing to

render the first and second objects in an assembly

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

according to a device type specific presentation
pattern for the assembly that is identified from
predefined first and second visual presentation

patterns

A second sub-plurality of instructions form a
navigation engine to select one of the first and second
objects for interaction with a user to create inter-
object relations with user-interface elements and data
cursors.

As in claim 14, the computer-program product is,
optionally, delivered to the device by a program
signal.

As in claim 15, the computer-program product is,
optionally, delivered to the device by a program
carrier.

As in claim 16, the present invention provides a
method to create an application system operating with a
computing device. The method comprises the following
steps:

a first step to define a user-interface model; a
second step to define an application specification
document by a meta-language; a third step to customize
a workbench component that identifies constraints on
the validity of the application specification document;
a fourth step to define layout themes for the computing
device; a fifth step to realize the user-interface
model in an interpreter component; and a sixth step to
realize the layout-themes in the interpreter component.

As in claim 17, preferably, the first step
comprises: determining the types of tiles and the
functionality of tiles; the tiles being elements of the
user-interface model; determining relationships between
the tiles in an assembly, and determining a navigation
state and the required user operations on the

navigation state.

10

i5

20

25

30

35

WO 01/77822 PCT/EP01/04095

As in claim 18, preferably, the second step
comprises: defining specifications to the types of
tiles; defining attributes to express properties of the
tiles; and defining attributes in the navigation state.

As in claim 19, preferably, the fourth step for
each computing device comprises: defining a
representation on the output media of device for each
element of the user-interface model; and defining the
user-interface model for each operation of the user-
interface model.

As in claim 20, preferably, the fifth step
comprises: creating models to specify the tiles and the
assembly; implementing constructors to create user-
interface instances from the application specification
document; and implementing the user-interface instances
from the models in a computer programming language.

As in claim 21, preferably, the sixth step
comprises for each theme: implementing each layout-
theme as a layout handler; and obtaining a selection of
the layout-theme by a developer and forwarding the

selection to the interpreter component.

In other words, solutions by the present inventions are

summarized as follows:

(a) It is a task of the present invention to define a
framework, wherein the framework defines classes of
applications (300) that share a common user-
interface model.

By defining a dedicated rendering statement
(245) in application specification language, and by
adapting an interpreter, the present invention
allows to create applications (300) for different
types of computing devices (901/902/903), even if
the device is not yet present when the application

is developed. Since the statement is not specific

10

15

20

25

30

WO 01/77822

to a single application, the statement can be re-
used for further applications (classes).

It is a further task of the present invention to
define a method for creating an application
development system (hereinafter "application
system" 200/250/260) for each particular user-
interface model.

In such a system, a workbench component (250)
assists the developer to build the application and
to simulate the application for a particular user- .
interface component of a particular device.

It is a further task of the present invention to
provide a method of defining computer-programming
languages (CP-languages) to specify particular
applications of the user-interface model.

The present invention takes advantage of
language definition schemes. The possibility of
creating content statements in schemes (e.g., XML
scheme) is used to create the rendering statement
(245) . The language corresponds to the user-
interface model with its components (e.g., tiles,
assemblies, navigation).

It is a further task of the present invention to
provide an interpreter component (200) for
different computing devices (901/902/903), wherein
the interpreter component (200) executes the
application (300) by implementing the user-
interface model.

The present invention allows to specify the
interpreter and to simulate the interpreter by the
workbench component (250). It is possible to build
a single interpreter for a plurality of different
devices, and also possible to build different

interpreters for each device type.

PCT/EP01/04095

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

(e)

(£)

(g)

(i)

It is a further task of the present invention to
provide a layout component (so-called "layout
theme" (345)) in the interpreter component (200),
wherein the layout component implements the user-
interface model (341) corresponding to each
computing device (901/902/903). In other words, the
themes are device-specific layouts for the user-
interfaces (96qg, e.g., screen, speaker) of the
devices (901/902/903).
It is a further task of the present invention to
provide for off-line, on-line and mixed operation
modes of the applications with the same user-
interface model (341) and implementation.
It is a further task of the present invention to
enable the interpreter component (200) to
synchronize data between the computing device
(901/902/903) and the server computer 900 (or
plurality of computers 900).

This is accomplished by data synchronization
services (218) in the interpreter (200).
It is a further task of the present invention to
enable the interpreter component (200) to reflect
data changes in the user-interface Without explicit
action by the user when a server computer (900)
initiates data.
It is a further task of the present invention to
provide techniques for improving the performance of
the interpreter component (200) on computing
devices (901/902/903) such as portable phones,
conventional phones, handheld computers. The
present invention can be used by such different

computing devices.

- 10 -

10

15

20

25

30

WO 01/77822

PCT/EP01/04095

Brief Description of the Drawings

FIG.

FIG.
FIG.

FIG.

FIG.

FIG.

FIG.

FIGS.

FIG.

FIG.

FIG.

FIG.

1

10

11

illustrates a simplified block diagram of a
computer network system having a plurality
of computers operating according to the
present invention;

is a simplified diagram of an application;
is an overview of the process for creating
the application;

is a simplified flow chart diagram of the
process of FIG. 3;

illustrates the range of deployment
configurations for the application;
illustrates an overview of the architecture
of the workbench component;

illustrates a view of a computer screen
showing a screen layout of the workbench
component;

illustrate presentations by pre-viewers
components in the workbench component of
FIG. 6 for different types of computing
devices;

illustrates the presentation of the pre-
viewer components for a first type of
computing device;

illustrates the presentation of the pre-
viewer components for a second type of
computing device;

illustrates the presentation of the pre-
viewer components for a third type of
computing device;

illustrates a view of the workbench
component during insertion of a new element

instance;

10

15

20

25

30

WO 01/77822

FIG.

FIG.

FIG.

FIGS.

FIG.

FIG.

FIGS.

FIG.

FIG.

FIG.

FIG.

FIG.

12

13

14

15-16

15

16

17-20

17

18

19

20

21

PCT/EP01/04095

illustrates a view of the workbench
component during setting an attribute
value;

illustrates a view of the workbench
component with an element attribute panel;
illustrates further a view of the workbench
component with the element attribute panel;
illustrate an interpreter component;
illustrates an overview of the architecture
of the interpreter component;

illustrates a detail of the operation of a
parsing services component of the
interpreter component;

illustrate a series of views on computer
screens of computing devices of different
types;

illustrates a series of views of a computer
screen of a computing device of a first
type, for example, a personal computer;
illustrates a series of views of a computer
screen of a computing device of a second
type, for example, a further personal
computer;

illustrates a series of views of a computer
screen of a computing device of a third
tvpe, for example, a still further personal
computer;

is a seriesg of views of a simulated display
of a wireless telephone with micro-browser
illustrating the server-side interpreter
components WAP-theme;

illustrates predefined patterns by symbols:
presentation patterns and a hierarchy

pattern;

10

15

20

25

30

WO 01/77822 PCT/EP01/04095

FIG. 22 illustrates a simplified flow chart diagram
of a method for rendering a first object
and a second object on a user-interface of
the device;

FIG. 23 illustrates the screen of the device of the
first type, the screen rendering two
objects adjacent (first predefined
presentation pattern);

FIG. 24 illustrates the screen of the device of the
second type, the screen rendering two
objects overlapping (second predefined
presentation pattern) ;

FIG. 25 is a transcript of a dialog conducted over
a telephone between a user and on the
interpreter component operating on a server
computer with a voice theme executing the
an application; and

FIG. 26 is a screen shot of a computing device;

FIGS. 27,28 illustrates a method to create an

application system.

Detailed Description of the Present Invention

For convenience, a list of reference numbers is
provided prior to the claims.

As used herein, the term "developer" refers to a
person who creates application 300 by interacting with
workbench component 250 to create and assemble
instances of language elements that form an application
specification document 240. Preferably, the developer
interacts with computer 900 (cf. FIG. 1). As used
herein, the term "user" refers to a person who accesses
application 300 on a computing device (such as computer

901/902/903, cf. FIG. 1, computer 903).

- 13 -

10

15

20

25

30

WO 01/77822 PCT/EP01/04095

As used herein, the terms "theme" refers to the
design of user-interface objects that create a distinct
visual appearance, audible environment and behavior of
the user-interface model. The theme comprises, for
example, a presentation pattern and a hierarchy
pattern.

Method steps are explained by function of
components. Persons of skill in the art are able to
implement method steps as computer program
instructions, in a programming language, such as C++.

The present invention allows to specify application
300 at a high level, and optionally to specify
applications 300 for a particular medium (or "form-
factor") and device.

For this purpose, a family (or "class") of
declarative application specification languages (AS-
language) is created. The AS-language expresses: data-
model component 204, integration of data-model
component 204 with corporate data (e.g., in database
201), and user—interface component 340.

For each AS-language, interpreter component 200
(cf. FIG. 1) interprets an application specification
document 240 and presents application 300 to the user
by using user-interface component 340 in device
901/902/903. Interpreter component 200 provides a basic
user-interface framework. The framework comprises a
navigation model, binding data to user-interface
elements, data-services such as validation, inter-
object relationships and navigation, data-event
control, and capture of data changes, and middleware-
services such as data synchronization, and virtual
request-reply.

The functionality of built-into interpreter

component 200 is enhanced by common scripting

- 14 -

10

15

20

25

30

WO 01/77822 PCT/EP01/04095

languages, or is enhanced by custom object components
on COM or similar technologies.

Interpreter component 200 comprises data
synchronization services 218 (cf. FIG. 5) to provide
integration between the computing device and the
server.

While the basic operating mode of device
901/902/903 is off-line, interpreter component 200
supports the combination of off-line and on-line modes.
Interpreter component 200 simulates the "request-
response" style of interaction that the user expects
from an on-line connection between computing device
901/902/903 and server computer 900.

Interpreter component 200 presents this appearance
by ensuring data-synchronization in near real-time
("RealTimeDataSync") and ensuring that data changes
that result from synchronization are reflected on the
user-interface ("change reflection") without an
explicit user action (as the results become available).

Interpreter component 200 provides data
synchronization through meséaging services and
communication services of computing devices
901/902/903; such services are available in standard
device configurations.

Interpreter component 200 accommodates changes by a
data synchronization layer that is coupled to a user-
interface data-event layer. When the server changes
data, the changes are automatically propagated to the

elements of the user-interface.

FIG. 1 illustrates a simplified block diagram of the

computer network system 999 having a plurality of

computers 900, 901, 902 (or 90q, with g=0...0-1, Q any

number) .

- 15 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

Computers 900-902 are coupled via inter-computer
network 990. Computer 900 comprises processor 910,
memory 920, bus 930, and, optionally, input device 940
and output device 950 (I/0 devices, user-interface
960). As illustrated, the invention is present by
computer program product 100 (CPP), program carrier 970
and program signal 980, collectively "program".

In respect to computer 900, computer 901/902 is
sometimes referred to as "remote computer", computer
901/902 is, for example, a server, a router, a peer
device or other common network node, and typically
comprises many or all of the elements described
relative to computer 900. Hence, elements 100 and
910-980 in computer 900 collectively illustrate also
corresponding elements 10g and 91g-98g (shown for g=0)
in computers 90g.

Computer 900 is, for example, a conventional
personal computer (PC), a desktop and hand-held device,
a multiprocessor computer, a pen computer, a
microprocessor-based or programmable consumer
electronics, a minicomputer, a mainframe computer, a
personal mobile computing device, a mobile phone, a
portable or stationary personal computer, a palmtop
computer or the like.

Processor 910 is, for example, a central processing
unit (CPU), a micro-controller unit (MCU), digital
signal processor (DSP), or the like.

Memory 920 symbolizes elements that temporarily or
permanently store data and instructions. Although
memory 920 is conveniently illustrated as part of
computer 900, memory function can also be implemented
in network 990, in computers 901/902 and in processor
910 (e.g., cache, register), or elsewhere. Memory 920
can be a read only memory (ROM), a random access memory

(RAM), or a memory with other access options. Memory

- 16 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

920 is physically implemented by computer-readable
media, such as, for example: (a) magnetic media, like a
hard disk, a floppy disk, or other magnetic disk, a
tape, a cassette tape; (b) optical media, like optical
disk (CD-ROM, digital versatile disk - DVD); (c)
semiconductor media, like DRAM, SRAM, EPROM, EEPROM,
memory stick, or by any other media, like paper.

Optionally, memory 920 is distributed across
different media. Portions of memory 920 can be
removable or non-removable. For reading from media and
for writing in media, computer 900 uses devices well
known in the art such as, for example, disk drives,
tape drives.

Memory 920 stores support modules such as, for
example, a basic input output system (BIOS), an
operating system (0S), a program library, a compiler,
an interpreter, and a text- processing tool. Support
modules are commercially available and can be installed
on computer 900 by those of skill in the art. For
simplicity, these modules are not illustrated.

CPP 100 comprises program instructions and -
optionally - data that cause processor 910 to execute
method steps of the present invention. Method steps are
explained with more detail below. In other words, CPP
100 defines the operation of computer 900 and its
interaction in system network system 999. For example
and without the intention to be limiting, CPP 100 can
be available as source code in any programming
language, and as object code ("binary code") in a
compiled form. Persons of skill in the art can use CPP
100 in connection with any of the above support modules
(e.g., compiler, interpreter, operating system).

Although CPP 100 is illustrated as being stored in
memory 920, CPP 100 can be located elsewhere. CPP 100

can also be embodied in carrier 970.

- 17 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

Carrier 970 is illustrated outside computer 900.
For communicating CPP 100 to computer 900, carrier 970
is conveniently inserted into input device 940. Carrier
970 is implemented as any computer readable medium,
such as a medium largely explained above (cf. memory
920). Generally, carrier 970 is an article of
manufacture comprising a computer readable medium
having computer readable program code means embodied
therein for executing the method of the present
invention. Further, program signal. 980 can also embody
computer program 100. Signal 980 travels on network 990
to computer 900.

Having described CPP 100, program carrier 970, and
program signal 980 in connection with computer 900 is
convenient. Optionally, program carrier 971/972 (not
shown) and program signal 981/982 embody computer
program product (CPP) 101/102 to be executed by
processor 911/912 (not shown) in computers 901/902,
respectively.

Input device 940 symbolizes a device that provides
data and instructions for processing by computer 900.
For example, device 940 is a keyboard, a pointing
device (e.g., mouse, trackball, cursor direction keys),
microphone, joystick, game pad, scanner. Although the
examples are devices with human interaction, device 940
can also operate without human interaction, such as, a
wireless receiver (e.g., with satellite dish or
terrestrial antenna), a sensor (e.g., a thermometer), a
counter (e.g., goods counter in a factory). Input
device 940 can serve to read carrier 970.

Output device 950 symbolizes a device that presents
instructions and data that have been processed. For
example, a monitor or other type of display, (cathode
ray tube (CRT), flat panel display, liquid crystal
display (LCD), a speaker, a printer, a plotter, a

- 18 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

vibration alert device. Similar as above, output device
950 communicates with the developer, but it can also
communicate with further computers.

Input device 940 and output device 950 can be
combined to a single device; any device 940 and 950 can
be provided optional.

Bus 930 and network 990 provide logical and
physical connections by conveying instruction and data
signals. While connections inside computer 900 are
conveniently referred to as -"bus 930", connections
between computers 900-902 are referred to as "network
990". Devices 940 and 950 are coupled to computer 900
by bus 930 (as illustrated) or by network 990
(optional). While the signals inside computer 900 are
mostly electrical signals, the signals in network are
electrical, magnetic, optical or wireless (radio)
signals.

Networking environments (as network 990) are
commonplace in offices, enterprise-wide computer
networks, intranets and the Internet (i.e. world wide
web) . The physical distance between a remote computer
and computer 900 is not important. Network 990 can be a
wired or a wireless network. To name a few network
implementations, network 990 is, for example, a local
area network (LAN), a wide area network (WAN), a public
switched telephone network (PSTN); a Integrated
Services Digital Network (ISDN), an infra-red (IR)
link, a radio link, like Universal Mobile
Telecommunications System (UMTS), Global System for
Mobile Communication (GSM), Code Division Multiple
Access (CDMA), or satellite link.

Transmission protocols and data formats are know,
for example, as transmission control protocol/internet
protocol (TCP/IP), hyper text transfer protocol (HTTP),

secure HTTP, wireless application protocol, unique

- 19 -

L]

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

resource locator (URL), a unique resource identifier
(URI), hyper text markup language HTML, extensible
markup language (XML), extensible hyper text markup
language (XHTML), wireless application markup language
(WML) , etc.

Interfaces coupled between the elements are also
well known in the art. For simplicity, interfaces are
not illustrated. An interface can be, for example, a
serial port interface, a parallel port interface, a
game port, a universal serial bus (USB) interface, an
internal or external modem, a video adapter, or a sound
card.

Computer and program are closely related. As used
hereinafter, phrases, such as "the computer provides"
and "the program provides", are convenient abbreviation
to express actions by a computer that is controlled by
a program.

Computer 900 is also referred to as "server
computer"

Computer 900 stores database 201 (c¢f. FIG. 5, "data
source") that supplies data for application 300.
Preferably, computer 900 stores database 201 in memory
920.

Computer 901/902/903 is hereinafter referred to as
"computing device" 901/902/903. For simplicity,
reference numbers are sometimes left out. Computing
device 901/902/903 can be of different types.

Computing device 901 is a portable phone with a
micro-browser, computing device 902 is a conventional
phone without a browser (portable or fixed-wired
phone), and computing device 903 is a personal computer
(cft. FIG. 5). Where convenient for explanation (in
connections with FIGS. 17, 18, 19), personal computer

903 is distinguished into computers 903-1, 903-2 and
903-3.

- 20 -

10

15

20

25

30

35

WO 01/77822

Computer 900 and device 901/902/903 are in a
client-server relation. For convenience of explanation,
device 901/902/903 is regarded as the "client" and
computer 900 is regarded as the "server". Usually,
computer 900 and device 901/902/903 are located
separately; this is sometimes expressed by the term
"remote" in connection with computer 900.

Among other things, the present invention has the
advantage to provide the desired server-based layout
that support multiple implementations of different
computing devices and that support multiple media.

A further advantage of the present invention is in
the following: When device 901/902/903 presents an
application to the user, device 901/902/903 can operate
either in an on-line operating mode (exchange data with
computer 900) or in an off-line operating mode (no data
exchange). Both operating modes can be combined
("mixed" mode).

A further advantage of the present invention is in
a data-centric approach. Database 201 in computer 900
operates independently from application system
200/250/260 of the invention. Changes of the
application system 200/250/260 do not require changes
of database 201.

Having described hardware implementations in FIG. 1 is
convenient for further explanation of computer program
product 10g. To distinguish software from hardware, the
term "component" and "model" refers to portions of
computer program product 10g. For example, a "user-
interface component" is therefore a sequence of code
that cause processor 91q and user-interface 96g to
operate. Throughout the following, terms in single
gquotation marks ‘ ‘' indicates non-limiting examples of

content. In the figures, names, email-addresses and the

- 21 -

PCT/EP01/04095

10

15

20

25

30

35

WO 01/77822

PCT/EP01/04095

like are abbreviated using ellipsis; other content data
is symbolized by lowercase alphabetic triples like
"abe’, 'def’ and the like.

FIG. 2 is a simplified diagram of application 300.
Application 300 is a combination of several related
components, in accordance with the following.
Application 300 is a combination of data-model
component 204, middleware-model component 320,
business-logic component 330, and user-interface
component 340, that is:
application 300 =
data-model component 204 (cf. FIG. 15)
+ middleware-model component 320
+ Dbusiness-logic component 330
+ user-interface component 340
Application specification languages (AS-languages)
address each of these components 204, 320, 330, 340 of
application 300.

In application 300, it is not necessary for all of
these components 204, 320, 330, 340 to be present.

The components are now explained with more detail:

Data-model component 204 defines local data on
which application 300 acts. Data-model component 204
comprises tables 311, 312, and interrelation 315
between tables 311, 312.

Middleware-model component 320 defines content of
messages 321 that are exchanged between computing
device 901/902/903 and server computer 900 to
accomplish data synchronization, and defines relations
322 between messages 321 and tables 311, 312 of data-
model component 204.

Business-logic component 330 comprises a pool of
functions 331 and scripts 332 that are associated with

various application events.

- 22 -

10

15

20

25

30

35

WO 01/77822

PCT/EP01/04095

User-interface component 340 defines how the user
interacts with application 300. User-interface
component 340 comprises the following elements: user-
interface model 341, and theme 345. User-interface
model 341 comprises tile 342, assemblies 343, and
navigation state 344. It is an advantage of the present
invention, that model 341 is not specific to
application 300; in other words, model 341 can be used
for a plurality of different applications. Tile 342 is
a view of an application-level object, such as
customer, contact etc.

Assemblies 343 are pluralities of tiles 342 and
interrelations between tiles 342, for example, a
plurality of views of related business objects.
Navigation state 344 is a model of the state and
operations of user-interface model 341, with access,
instantiation and transition between tiles 342 and
assemblies 343. Optionally, navigation state 344
memorizes previous states. Theme 345 is a presentation
of user-interface model 341 on a particular type of
computing device.

The realization of theme 345 may require additional
"state" information to represent the status of the
presentation (of application 300) at runtime; this
information is logically associated with navigation
state 344 and extends navigation state 344.

‘The above definitions of application 300 (cf. FIG.
2) define a family of application models parameterized
by concrete definitions of tile 342, assemblies 343 and
navigation states 344.

The developer chooses particular tile 342,
assemblies 342 and navigation state 344. When choosing,
the developer thereby sets the requirements for the AS-
language to specify application 300 in compliance with

corresponding user-interface model 341. Resulting

- 23 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

application 300 is presented on different computing
devices (and media) in accordance with theme 345
suitable for each particular computing device (and

medium) .

In the following, user-interface model 341 is described
in first and second implementations 341-1, 341-2. For
convenience, indices 1 and 2 are added to reference
numbers 341-345.

The first implementation 341-1 of user-interface model
341 is the so-called MDF-model or "tile-set stack
model"”. As mentioned, user-interface model 341 is
defined by tile 342-2, assembly 343-1 and navigation
state 344-1.

Tile 342-1 combines user-interface elements that
are displayed in fields within a particular business
object type. For example, tile 342-1 ’customer detail’
belongs to the business object type ’‘customer’.
Individual user-interface elements of tile 342-1 belong
to fields such as ’‘customer number’, ‘name’, and
"industry type’.

Assembly 343-1 is a plurality of tiles 342-1 that
are organized in a hierarchy (or collection of
hierarchies). One or more tiles 342-1 are designated as
main tile; each main tile is the root of a tree of sub
tiles. A sub tile is related to main tile (parent) by a
query on the set of all data items that are associated
with the sub tile. The query is parameterized by
properties of the currently selected item in the main
tile. For example, when the user selects ’customer’ in
the main tile, related ’‘sales orders’ in a sub tile are
automatically selected and displayed. Hierarchy is
generally explained in connection with FIG. 21 (pattern

299, main object 360, sub object 370).

- 24 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

Navigation state 344-1 comprises instantiated
assemblies 343-1 that are displayed as a stack (cf.
navigation stack 402 in FIG. 17B). Conveniently,
assembly 342-1 displayed at the top of the stack is the
current assembly 342-1. Preferably, the user can
interact only with current assembly 343-1. Logically,
all tiles 342-1 are presented to the user
simultaneously. However, theme 345 for a particular
computing device may require the user to explicit
perform some action to access individual tiles 342-1.
Such actions do not affect navigation stack 402 (ct.
FIG. 17B). Executing a hyperlink (cf. 403 in FIG. 17C)
in one of tiles 342 can create a new instance of a tile
assembly. In that case, the new instance is pushed onto
the top of the stack. Discarding the top of the stack
can reverse this operation. Some tile assemblies are
distinguished as top-level tile assemblies; instances
of such tile assemblies are created directly, in which
case the stack is cleared prior to creating the new
instance. User-interface model 341, and the
corresponding AS-language, is a preferred embodiment.
Table 1 (cited at end of specification) explains an

example AS-language for this model.

The second implementation 341-2 of user-interface model
341 is a so-called "pervasive workflow model" or
"dialog model". Implementation 341-2 is suitable for
simple workflow applications 300, where the user is
required to make a choice step at a particular point in
application 300.

As used herein, the term "workflow" is a sequence
of predefined interactions of the user with device
901/902/903. For example for a workflow ’‘vacation
request approval’, the user (who likes to regquest

vacation) first inputs his/her name (as ’'requestor’),

- 25 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

second inputs the desired vacation dates (as ’‘date’),
third inputs a ‘reason’, and so on. The choice step is
based on a small amount of predetermined data. The
choice step can be presented on a mobile computing
device (e.g., device 901 or 903).

User-interface model 341-2 for this scenario is
described by the following definitioms:

Tile 342-2 is a plurality of user-interface
elements that are displayed in fields on a workflow
container. For example, the workflow container for
'vacation request approval’ would have user-interface
elements such as ’'requestor’, ’‘date’, and ’'reason’.
Since assembly 343-2 preferably, comprises only a
single tile 342-2, assembly 343-2 and tile 342-2 are
not distinguished.

Navigation state 344-2 comprises a single
instantiated tile 342-2, designated by the user as the
"current tile". The user can only interact with this
"current tile". In order to designate an instantiated
tile 342-2 as "current tile", all tiles 342-2 are
available in a pool that the user can access.

The user may return an instance back to the pool by
selecting another instance from the pool. Optionally,
the user indicates that processing of the tile instance
is complete, whereupon the tile is logically removed
from the pool. the user may also initiate a new tile
instance and add it to the pool, by selecting from a
list of tiles defined in application 300. User-
interface model 340 can be elaborated to manage a tile
instance pool of more complexity; for example, the
workflow represented by each tile instance could have

an associated priority or additional states.

FIG. 3 shows the steps in creating an application by

the developer. Application 300 is defined in the

- 26 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

context, and by usage, of components of application
system 200/250/260. Workbench component 200 assists the
developer in creating an application specification
document 240. Application specification document 240 is
compliant with the AS-language 260 and thus compliant
with the application model (including the specific
panel-, assembly- and navigation-specific user-
interface model 341). The method of developing
application 300 comprises the following steps: creating
application specification document 240; -encoding (cf.
FIG. 3, 240-2) application specification document 240
into interpreter-readable document 241; and storing
interpreter-readable document 242. Preferably, the
steps are performed by computer 900.

In step creating application specification document
240 (cf. FIG. 3), the developer interacts with
workbench component 250 of application system
200/250/260 to specify application 300 in application
specification document 240. Step creating optionally
comprises to specialize application specification
document 240 for particular device 901/902/903 (cf.
FIG. 3, "specializing for particular device" 240-1).

In step encoding, workbench component 250
transforms application specification document 240 into
interpreter-readable document 241 (cf. FIG. 3).

In step storing, workbench component 250 stores
interpreter-readable document 241 in storage system 242
(cfE. FIG. 3) so that interpreter component 200 can
retrieve and execute document 241 upon request.

Application specification document 240 is an XML-
document that conforms to a particular AS-language 260.
Such AS-languages are specified in a meta-language.
Examples for meta-languages are "document type
definition" (DTD) or "XML schema", both well known in

the art. The preferred embodiment of the present

- 27 -

10

15

20

25

30

35

WO 01/77822

invention uses "XML schema". Preferably, workbench
component 250 is an XML document editor that assists
the developer in creating application specification
document 240.

The editor validates application specification
document 240 and edits context-sensitive to ensure
compliance with the AS-language. The developer creates
a new application specification document 240 by
invoking a start command from a menu in workbench
component 250.

Subsequently, the developer modifies the document
by adding or deleting XML-elements, or by adding,
modifying, or deleting attributes of these elements.
Operations on elements are performed through user-
interface actions on the tree-viewer, while operations
on element attributes are performed through element
attribute panel 254 (cf. FIGS. 6, 7, 13, 14).

FIG. 4 is a simplified flow chart diagram of process

600 (cf. FIG. 3). Process 600 comprises:

601 defining an application specification language (AS-
language) in application language definition
document 230 (cf. FIG. 6). This step is optional,
once defined, the AS-language can be used for
different applications.

602 providing workbench component 250 (cf. FIG. 6).
Preferably, this step is performed once. The step
can be repeated for new AS-language definitions.

603 providing an application specification document 240
(with statement 245) by using application language
definition document 230 and workbench component
250. Typically, this step is performed by the
developer.

604 specializing application specification document 240

for computing device 901/902/903. This step is

- 28 -

PCT/EP01/04095

10

15

20

25

30

35

WO 01/77822

typically performed by workbench compohent 250 in
interaction with the developer.

605 encoding application specification document 240
into interpreter-readable document 241 (cf. FIG.
3). The format might vary for each interpreter, so
this step is optional. Application specification
document 240 can also be prepared in interpreter-
readable form.

606 storing interpreter-readable document 241. The
developer creates the application at a different
time as the user uses the application.

607 interpreting interpreter-readable document 241 by
interpreter component 200 to present application
300 to the user of device 901/902/903.

FIG. 5 illustrates the range of deployment
configurations for an application. Not all elements in
FIG. 5 are actually required. The configuration
comprises client-side interpreter component 200-1;
micro-browser theme 345-1, voice theme 345-2, theme
345-3 (collectively theme 345, synonym "presentation
pattern"), computing device 901 (wireless, portable
phone), data synchronization services 218, database 201
("data source"), server-side interpreter component 200-
2, application specification document 240 (with
statement 245).

As arrows 1 and 2 indicate, application
specification document 240 is read by client-side
interpreter component 200-1 or by server-side
interpreter component 200-2. For simplicity, optional
formatting document 240 into interpreter-readable
document 241 is not illustrated. The distinction
between client-side and server-side is convenient, but
not necessary for the present invention. Preferably,

client-side interpreter 200-1 resides in memory

- 29 -

PCT/EP01/04095

10

15

20

25

30

WO 01/77822 PCT/EP01/04095

921/922/923 of device 901/902/903 and controls how
processor 911/912/913 of device 901/902/903 executes
the application (cf. FIG. 1). Server-side interpreter
component 200-2 symbolizes that devices 901/902/903 do
not need to have interpreter component 200 and that
interpreter component 200 is optionally installed on a
separate computer (not illustrated here). This is
convenient, when the computing capacities of device
901/902/903 are limited. In other words, it is not
important where interpreter component 200 is actually
located and executed: in the device or in the separate
computer (not shown). Since the location of interpreter
is not important, interpreters 200-1 and 200-2 are
collectively referred to as "interpreter component
200". Interpreter component 200 is part of computer
program product 101/102/103. As indicated in the boxes
of interpreters 200, themes are associated with
interpreter component 200. For convenience, the term,
"component" is sometimes omitted. In case that
interpreter 200 serves device 901 (wireless, portable
phone), theme 345 is a micro-browser theme. In case
that interpreter 200 serves device 902 (conventional

telephone), theme 345 is voice theme 345-2.

The following description explains an "application
system"” 200/250/260 as a tool to create applications
that share particular user-interface model 341.
Application system 200/250/260 comprises: an
application specification language 260 (AS-language),
workbench component 250 (cf. FIG. 6), and interpreter
component 200 (cf. FIG. 3).

AS-language 260 defines the language elements
required to express application 300 in user-interface
model 341.

- 30 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

As mentioned above; the developer uses workbench
component 250 to create and assemble instances of
elements of AS-language 260 to form the application
specification. Interpreter component 200 executes the
application specification and presents the user-

interface on the computing device.

A preferred embodiment of the syntax of the AS-language
is the "eXtensible Markup Language" (XML). The use of
the term "XML" in this context refers to the World Wide
Web Consortium specification of XML, as well as
encoding schemes for XML into binary or other forms
that preserve the XML structure (cf. FIG. 3 encoding
240-2) .

Another preferred embodiment of the syntax is a
binary encoding (240-2) of XML, "WAP binary XML
encoding". For defining the AS-language, preferably,

the meta-language is "XML schema".

FIGS. 6-14 illustrate workbench component 250. As
mentioned, workbench component 250 is the tool by that
the developer creates applications. Document browsing
and editing functions of workbench component 250 comply
with the AS-language.

Optionally, customization of workbench component 250
may be required to realize document validity criteria
not adequately expressed by the meta-language (in which
the AS-language is defined).

FIG. 6 illustrates an overview of the architecture of
workbench component 250. Preferably, workbench
component 250 comprises the following components and
documents: typed document component 251; document
cursor component 252 associated to the typed document;

tree-viewer component 253; element attribute panel

- 31 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

component 254 for browsing and editing typed document
251; application language definition document 230; as
well as a plurality of pre-viewers components 255 for
simulating the final presentation of document 251 by
computing device 901/902/903.

Typed document component 251 uses the AS-language
definition: to understand the structure of application
specification document 240 and to determine valid edit
operations on each element and attribute.

Typed document component 251 provides application
programming interfaces (API, not shown in FIG. 6): to
load AS-language 260, to create, to load and to save
(in storage 242) application specification document
240, and to provide information on valid edit
operations to other components to control their
operation.

Any changes to application specification document
240 are broadcasted to all other components. The other
components update their internal state and displays
accordingly.

Component 252 contains a reference to a
distinguished element in the application specification
document 240 to designate this distinguished element as
"current element" ("current element reference").

Tree-viewer component 253 and pre-viewer components
255 browse the elements of document 251. Components
253, 255 update current element references by calling a
document cursor API. Document cursor component 252
broadcasts the updated current element reference to all
components 253, 254, 255. Components 253, 254, 255
update their internal state and screen displays
accordingly.

Tree-viewer component 253 displays document typed
document 251 in a hierarchy that mirrors the actual

structure of document 251. Tree-viewer component 253

- 32 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

has context-sensitive menus to delete elements from
document 251 or to insert elements into document 251.

Element attribute panel component 254 displays the
attributes that are defined for the current element.
Panel component 254 displays the attributes according
to their types and according to meta-attributes.

Pre-viewer components 255 present application
specification document 240 in a form that approximates
the presentations of document 240 by interpreter
component 200 (cf. FIG. 3). In other words, each pre-
viewer component 255 implements a different concrete
presentation (i.e. different theme 345). Examples for
presentations of pre-viewer component 255 for first,
second, and third types of computing devices are
illustrated in FIGS. 8, 9 and 10, respectively. The
developer can open each pre-viewer component 255
separately through separate user-interfaces (not shown)
for each pre-viewer component 255. Preferably, these
separate user-interfaces are part of workbench
component 250.

Fach open pre-viewer component 255 shows (makes
visible and highlights) these elements that correspond
té user-interface elements. When the developer selects
a representation of a user-interface element, open pre-
viewer component 255 causes that element to become the
current element. As a result, tree-viewers 253 and pre-
viewer components 255 update their displays

accordingly.

FIG. 7 illustrates a view of a computer screen (e.g.,
display 950 of computer 900) showing a screen layout of
workbench component 250.

In the example of FIG. 7, tree-viewer component 253
is on the left side, and element attribute panel

component 254 is on the right side. Component 253 shows

- 33 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

graphical user interface elements like (cf. FIG. 2)
data-model component 204, middleware-model component
320, tiles 342, and tile assemblies 343 (here called

"tile sets").

FIGS. 8, 9 and 10 illustrate presentations of pre-
viewers components 255 in workbench component 250 for
first, second, and third types of computing devices by
way of example. As pre-viewer 255 simulates the visual
appearance of objects on the screen of the devices, the
presentation of objects by pre-viewer 255 and by
display 953 are equivalent. In all cases, objects are
rendered with fields (e.g., ‘Request’, ’'Customer’,
'Model’, ’'Equipment’) and content fields with texts.
Depending on the type of device, different presentation
patterns are identified so that each rendering is

different.

FIG. 8 illustrates the presentation of pre-viewer
component 255-1 for a first type of computing device
(903-1) . Boxes indicate content data by lowercase
alphabetic triples like ’‘abe’, ’'def’ and the like.
Similar as in FIG. 24, on the right side, object 360 is
a presentation concerning a ‘customer’, content field
362 of object overlaps (OVERLAP theme) content field of
object 370. Title fields 361 ‘cust’ and 371 ’'hist’ are
tabs. A presentation that relates to ’'general’ data is
presented adjacent to the other objects ‘cust’ 360,
'hist’ 370, and ’‘report’ (ADJACENT theme).

FIG. 9 illustrates the presentation of pre-viewer
component 255-2 for a second type of computing device
(903-2) . Boxes indicate content data by lowercase
alphabetic triples like ‘abc’, ’‘def’ and the like. The
OVERLAP theme is applied for all 4 different

- 34 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

presentation objects: ’‘general’, ‘cust’, ‘hist’, and

‘report’. Displayed in detail is ’‘general’ only.

FIG. 10 illustrates the presentation of pre-viewer
component 255-3 for a third type of computing device
(903-3).

FIG. 11 illustrates a view of the workbench component
250 during insertion of a new element instance. To
insert a new instance of an element into the document,
the developer selects an element in the tree-viewer 255
(XML-tree-viewer), and invokes pop-up menu 259. From
pop-up menu 259, the developer specifies whether the
element is to be added before (259-1) the selected
element (at the same level), or after the selected
element (not shown), or as a child (259-2).

In the example of FIG. 11, the developer has
selected the element "ListViewTile" (illustrated by
hatching) and has specified the insertion of a child
element (259-2).

FIG. 12 illustrates workbench component 250 during
setting an attribute value. FIG. 12 illustrates the
operation of workbench component 250 in continuation of
FIG. 1l. Tree-viewer 255 is illustrated on the left
side (also illustrating main and sub tiles, cf.
hierarchy pattern 299 of FIG. 21).

Workbench component 250 responds with a dialog box
showing list 258 of the candidate elements at this
location of the document; the candidate elements are
determined automatically by inspection of the AS-
language 260.

To set the value of an attribute of a particular
element, the developer selects the element in tree-

viewer 255 (cf. FIG. 6, FIG. 11). Workbench component

- 35 -

10

15

20

25

30

WO 01/77822 PCT/EP01/04095

250 determines the list of all possible attributes for
this element by inspection of AS-Language 260, and
displays them in element attribute panel 255 of
workbench component 250.

Information on the type and other meta-attributes
of each attribute determines visual appearance of the
attribute in attribute panel 254 (cf. FIG. 6). An
attribute defined as an "enumerated type" is displayed
as a dropdown list containing the set of enumerated
values.

Using workbench component 250, the developer
creates application specification document 240. For
"prototyping", user-interface 341 is created first
(enhances end-user understanding and feedback on the
design) . Data-model component 204 is created later. In
another preferred embodiment, when data-model component
250 is known a priori, its portion of the document is
created first, followed by the creation of the User-
interface portion.

The prototyping embodiment is enabled by pre-viewer
components 255, which are capable of approximating the
presentation of the application on interpreter
component 200. Pre-viewer component 255 may effect this
simulation with documents that are incomplete and
therefore not capable of execution by interpreter
component 200 itself. Since each pre-viewer 255
realizes the simulation of a particular layout Theme,
and since pre-viewers 255 can be displayed
simultaneously, the developer may confirm the
presentations of the application on each of devices
901/902/903 at the same time. Since the architecture of
workbench component 250 also provides that any changes
to the application document are broadcast to all

components, the confirmation of the presentation on

- 36 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

each device 901/902/903 can be done while the
application is being created or modified.

After completing the creation of the application
specification document, the developer uses the
validation function of workbench component 250 to
ensure that interpreter component 200 can correctly
execute the document. The validation function is also
driven by definition of AS-language 260.

Finally the document is transformed and encoded
(see FIG. 3), and then stored ready for use by

interpreter component' 200.

The following describes a preferred embodiment of the
application system 200/250/260 for devices 901 and 903
that are mobile devices. In other words, system
200/250/260 is a mobile data application framework
(MDF) system. For convenience, the acronym "MDF" is
added to reference numbers.

Application specification language (AS-language)
260-MDF corresponds to user-interface model 341.

Table 1 cites an example for AS-language 260-MDF.
AS-language 260-MDF is an XML-compliant language, in
other words, language definition document 230-MDF is an
"XML schema". Workbench component 250-MDF provides
context-sensitive guidance to the developer.

"Candidate elements" are illustrated in FIG. 12 in
popup menu with list 258. The menu responds to an
"insert node" command by the developer (cf. FIG. 11).
Workbench component 250 determines a list of candidates

by inspecting the language definition document 230-MDF.
FIGS. 13-14 illustrate views of workbench component 250

with element attribute panel 254 (right) and tree-

viewer component 253 (left).

- 37 -

10

15

20

25

30

WO 01/77822

FIG. 15 illustrates an overview of the architecture of
interpreter component 200. Illustrated from left to
right, interpreter component 200 has the following sub-
systems: XML sub-system 202-206, runtime sub-system
210/212/214/216/218/220, and device services 208.
Parsing services component 215 (PARSER) is native to
interpreter component 200.

Sub-system 202-206 for "XML Services" is of
particular importance. Sub-system 202-206 provides
access to the application specification. For
convenience of explanation, sub-system 202-206 is
illustrated separately (left side) as graphical user-
interface (GUI) definition 202 ("GUI"), data- model
component 204 ("DATA-MODEL"), and middleware-model
components 206 ("MIDDLEWARE").

Device native user-interface services 208 ("DEVICE
SERVICES", right side) are user-interface services
provided by a particular computing device, these are,
for example: window management (for device with
graphical display), and speech synthesis (for device
with voice interface).

Since services 208 can be provided by a person of
skill in the art without further explanation herein,
details for services 208 are not illustrated.

The other components of interpreter component 200
in FIG. 15 are collectively referred to as "runtime
sub-system" 210/212/214/216/218/220, cf. dashed frame,
these are: tile handler component 210 ("TILE HANDLER"),
tile assembly and navigation engine component 212
("TANE"), theme-handler component 214 ("THEME-
HANDLER"), data-event services component 216 ("DATA-
EVENT"), synchronization services component 218
("SYNCHRONIZATION"), and data store services component
220 ("STORE") .

- 38 -

PCT/EP01/04095

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

Tile handler component 210 implements the
collection of tile types and the collection of any
user-interface elements that a tile may contain.
Component 210 creates or destroys tile instances and
any user-interface elements in the tile instances.
Component 210 is controlled by component 212.

Tile assembly and navigation engine component 212
("TANE component") implements the user-interface model
341. When component 212 creates an assembly, component
212 creates inter-tile relations by setting up a data-
event propagation network. The Network is formed by
user-interface elements and data cursors.

Theme-handler component 214 maps user-interface
model 340 and TANE component 212 to a concrete user-
interface. Theme-handler component 214 acts as a bridge
between TANE component 212 on one side and the user on
the other side. When requested by the theme, theme-
handler component 214 shows or hides individual tiles
(or equivalents in non-graphical user-interfaces).

Data-event services component 216 ties individual
tiles, user-interface elements, and synchronization
services together. Component 216 has data cursor
objects to implement the notion of a sequence of
objects and of a distinguished position in the
sequence. The distinguished position is referred to as
"cursor"; and the object at the cursor is referred to
as the "current object". Objects in data-event services
component 216 propagate events that relate to the data-
store among the data cursors and user-interface
elements.

Synchronization services component 218 is
responsible for the synchronization of the data-stores
between device 901/902/903 and server computer 900
(remote server). Component 218 intercepts changes to

the data-store originating from tile handler component

- 39 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

210, records and assembles them into messages that are
eventually sent to server computer 900. In the other
direction, synchronization services component 218
receives changes from server computer 900 in the form
of messages from the server requesting the changes, and
applies them to data store component 220; the receiving
action is completed by issuing data-events into data-
event services component 216 corresponding to the
changes.

Data store services component 220 is the data-
storage of computing device 901/902/903. Preferably,
component 220 is a relational database management
system. For example, component 220 1s a database
commercially available in the Microsoft Windows CE
operating system.

Application document services component (not
illustrated in FIG. 15) is responsible for reading
interpreter-readable document 241 from storage 242
(encoded version of application specification document
240) and presents documents 241 to the other

components.

FIG. 16 illustrates a detail of the operation of a
parsing services component 215 of the interpreter
component 200. FIG. 16 illustrates the interpretation
of application fragments by the application document
services component. Steps are illustrated by arrows. As
in FIG. 16, runtime sub-system 210/212/214/216/218/220
(cf. FIG. 15) requests (arrow 1) the specification of a -
tile definition, and receives (arrow 2) an object
representation (circle symbol) of the tile definition
in reply from constructor 219. Parser services
component 215 (cf. FIG. 15) (a) reads (arrow 3) the
tile definition and (b) simultaneously issues (arrow 4)

parser events to constructor object 217. Constructor

- 40 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

object 217 is specific to the element at the root of
the fragment, (i.e. the tile element). Constructor
object creates an object representation (circle symbol
at arrow 8) of the tile definition in memory 921/922 of
device 901/902/903, and delivers (arrow 7) this object
representation back to sub-system
210/212/214/216/218/220 of interpreter component 200.

In application system 200/250/260, interpreter
component 200 is optionally specialized for special
environments or system configurations. In the
following, first and second embodiment of interpreter
component 200 are explained.

In both embodiments, the server-side interpreter
component is implemented on mainly on server computer
900 and the presentation layer is implemented on
computing device 901/902/903. Synchronization services
component 218 (cf. FIG. 15) is not required.

In the first embodiment, device 901 is the portable
phone with micro-browser. Theme 345 (cf. FIG. 2) is a
micro-browser theme (cf. 342-1). In cooperation with
interpreter component 200, the micro-browser of device
901 realizes a wireless markup language (WAP)
presentation. Details are explained in connection with
FIG. 20.

In the second embodiment, device 902 is the
conventional phone. Theme 345 (cf. FIG. 2) is a voice
theme (cf. 345-2) in user-interface 340 that supports
voice-recognition and voice-gsynthesis. The presentation
layer here is the audio input and audio output on the

telephone.

FIGS. 17-19 illustrate series of view of computer
screens of computing devices 903-1, 903-2, and 903-3

that are handheld personal computers, such as personal

- 41 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

digital assistants (PDA). Devices 903-1, 903-2, and
903-3 are devices of first, second, and third types,
respectively. In other words, a single MDF application
definition is shown with three graphical user-interface
themes: half-VGA handheld personal computer 903-1, Palm
personal computer 903-2, and VGA Handheld personal
computer 903-3, applicable to Windows CE devices with

corresponding screen sizes.

FIG. 17 illustrates a series of views of computer
screen 953-1 of computing device 903-1 of the first
type. In the example of FIG. 17, the device of the
first type is handheld personal computer 901-1 with
half-VGA size display (240 pixels high by 640 pixels
wide). The mapping of the generic user-interface model
to theme 345 is illustrated as a sequence of events in
FIG. 17A, FIG. 17B, FIG. 17C, and FIG. 17D:

As in FIG. 17A, titles of the top-level tile set
assemblies (e.g., ‘customers’, ’‘notifications’,
’‘installations’) are displayed as navigation bar 401 on
the upper-left.

As in FIG. 17B, navigation stack 402 is exposed as
a list on the lower-left (’customers’). Clicking on an
entry in stack 402 removes from the stack all entries
deeper than the selected entry. Additionally, a
backward-pointing arrow (similar to arrow 407 in FIG.
18) removes the element at the top of stack 402.

As in FIG. 17C and FIG. 17D, list wview tiles (and
frame tile textbox elements, not shown) optionally have
associated hyperlinks 403. Clicking on hyperlink 403
(e.g., ’'scratches one the surface’) creates a new tile
set (e.g., notification) that is added to the top of
navigation stack 402 (FIG. 17D). The old current tile
set is hidden and a new current tile set is displayed.

Main tile 404 of the current tile set is shown

- 42 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

immediately, for example, in the middle window right to
navigation bar 401. As in FIG. 17D, sub tiles 405 are
shown in a tab strip at the right.

FIG. 18 illustrates a series of views of computer
screen 953-2 of computing device 903-2 of the second
type. In the example of FIG. 18, the device of the
second type is handheld personal computer 903-2, such
as a Palm personal computer (320 pixels high by 240
pixels wide). In contrast to personal computer 903-1 of
the first type (FIG. 17, handheld personal theme), that
uses navigation bar 401; computing device 903-2 of the
second type accesses the list of top-level tile sets
through menu 406 (FIG. 18A).

A navigation stack is not exposed as a visible
control although as in handheld personal computer 903-1
(Half-VGA) it can be manipulated via the back arrow 407
on toolbar 408. The main tile of the current tile
assembly is shown as the leftmost tab 410 in tab-strip
409, and sub-tiles 411 (’detail’, ’equipment’, etc.)
follow to the right.

FIG. 19 illustrates a series of views of computer
screen 953-3 of a computing device 953-3 of the third
type. In the example of FIG. 19, the device of a third
type is handheld personal computer 903-3 having a full
VGA-size display (640 pixels high by 480 pixels wide).

The third type moves away from using tab-strip 409
to organize the tiles, and instead displays the tiles
simultaneously in one or more fixed locations 412-415
(or "slots") on the screen.

In detail, the mapping of the user-interface model
to third type theme 345-3 is similar to that of first
type theme (345-1, half-VGA). The screen is split into
4 areas 412-415 (slots).

- 43 -

10

15

20

25

30

35

WO 01/77822

An additional attribute, the target-frame
attribute, is defined on the main tile and sub tile of
each tile assembly and specifies which slots 412, 413,
414 or 415 to occupy on screen 953-3. A single'tile can
occupy one or more slots.

The target frame attribute can be empty; in that case,
the tiles are shown in minimized form to be maximized
on request by the user.

The number of tiles per slot as well as the number
of slots per tile may vary. For example, the columns of
a ‘list view’ tile have an associated importance
attribute that is used to determine which columms to
suppress in order to fit the available space. The
illustration of FIG. 19B shows the upper tile ‘customer
list’ 417 reduced to half width (cf. customer list 416
in FIG. 19A, slot 415 only) in response to co-opting of
slot 412 allocation by a tile ’'customer detail’ 418.

FIG. 20ABC is a series of views of a simulated display
of wireless telephone 901 with micro-browser
illustrating the server-side interpreter components
WAP-theme 945-1. The view appear as in pre-viewer 255
that presents simulation 951’ of display 951 in device
901. Preferably, interpreter component 200 is located
on a server computer (server-side interpreter 200-2,
cf. FIG. 5).

FIG. 21 illustrates predefined patterns by symbols.
Presentation pattern 295, 296, 297 define relations
between at least two objects 360 and 370 to each other.
The examples of FIG. 21 are intended to be non-
limiting; persons of skill in the art are able to
define further patterns without departing from the
scope of the present invention. Adding further objects

is possible. FIG. 21 also illustrates the patterns by

- 44 -

PCT/EP01/04095

10

i5

20

25

30

35

WO 01/77822 PCT/EP01/04095

graphical symbols. Pattern 295 indicates visual
rendering objects 360 and 370 on a screen, wherein
objects 360 and 370 are ADJACENT. Pattern 296 indicates
visual rendering objects 360 and 370 on a screen,
wherein objects 360 and 370 OVERLAP.

Pattern 297 indicates aurally rendering objects 360 and
370 on by a speaker (part of user-interface 963),
wherein objects 360 and 370 are consecutively
presented.

Hierarchy pattern 299 is optionally provided. In
the example of FIG. 21, object 360 is the main object
("M") and object 370 is the sub-coordinate object
("sS"). Plain lines with the acronyms "M" and "S"

indicate this.

FIG. 22 illustrates a simplified flow chart diagram of
method 500 for rendering a first object (360, cf. FIG.
23, 22) and a second object (370, cf. FIG. 23, 24) on
user-interface 963 of device 903. As mentioned, device
903 is either of a first type (device 953-1) or of a
second type (device 953-2). The first and second
objects presents data of a business application. Method
500 comprises the following steps:

540 receiving application specification document 240

(with statement 245) by device 903;

550 interpreting statement 245 to identify presentation
pattern 295/296; and
560 rendering assembly 360/370.

In step receiving 540, application specification
document 240 is received with statement 245 having an
indication to render first object 360 and second object
370 in assembly 360/370. In step interpreting 550,
presentation pattern 295/296 for assembly 360/370 is
identified from predefined first presentation pattern

295 and second presentation pattern 296 according to

- 45 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

the type 903-1/903-2 of the device 903 (i.e. pattefn
295 for type 903-1, pattern 296 for type 903-2). In
step rendering 560, assembly 360/370 of first object
360 and second object 370 is rendered on user-interface
963 according to presentation pattern 295/296
identified in step interpreting 550.

As indicated by dashed frame 501, steps 540, 550
and 560 are performed by interpreter component 200 in
device 901/902/902. Optional further steps (preferably,
performed by computer 900) are explained in the
following.

Preferably, prior to step receiving step 540,
further steps are:

530 specifying the application by workbench 250 in
development computer 900; and
539 simulating the application by pre-viewer component

255 of workbench 250.

Preferably, in step 560, rendering, first object 360
and second object 370 are rendered according to
presentation pattern 295/296 and to predefined
hierarchy pattern 299 (c¢f. FIG. 21).

Preferably, in rendering step 560, first object 360
and second object 370 are rendered not only according
to presentation pattern 295/296, but also according to
predefined hierarchy pattern 299.

Preferably, specifying step 530 comprises:

532 writing the application in an application
specification language (AS-language) ;

534 providing interpreter 200 specific for the
application specification language; and

536 storing interpreter 200 in device 903.

Preferably, method 500 further comprises: storing
538 predefined presentation patterns 295/296 by
interpreter 200 (cf. themes 345 in FIG. 5). Step 538 is

performed prior to step 540, for example, after step

- 46 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

539. Preferably, presentation pattern 295/296 is a
display pattern, wherein the objects are rendered to
user-interface 563 being screen 953, and wherein
presentation pattern 295/296 is identified according to
the size (e.g., width) of screen 953. Optionally, in
rendering step 560, presentation pattern 297 is an

audio pattern.

FIGS. 23 and 24 help to illustrate method 500 by a
simplified first example. In the example, a business
application renders two objects in an assembly on a
screen. Despite the different appearance of the two
objects on the different screens, rendering statement
245 in application specification document 240 is the
same. Interpreter components 200 in the different
devices 903 select the suitable rendering form {(i.e.,
presentation pattern). It is not important whether each
device has its own interpreter or not. Each device can
have its own interpreter component 200: device 903-1
has interpreter 200-1, and device 903-2 has interpreter
200-2; or all devices have the same interpreter 200. In
both cases it is sufficient that interpreter 200
identifies the predetermined presentation patter (i.e.
theme) and that theme handler 214 can use the pattern.

FIGS. 23 and 24 illustrate simplified screen 953 of
device 903 in different type configurations. Devices
903-1 and 903-2 are of first and second types,
respectively, and also screens 953-1 and 953-2 are of
first and second types, respectively.

Both screens 953-1 and 953-2 each render first
object 360 and second object 370 in assembly 360/370.
Objects 360 and 370 each comprise title fields 361 and
371 and content fields 362 and 372. According to the
invention, location and shape of objects 360/370 are

modified; the content of content fields 362/372 is

- 47 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

determined by the application. In other words, what

happens inside content fields 362/372 (e.g., display of

" business data) is independent from what happens

outside.

For convenience of further explanation, Cartesian
coordinate system (X, Y) is illustrated with the origin
in the left bottom.

For simplicity of further explanation, screens
953-1 and 953-2 are distinguished by the screen widths
only (X-dimension): screen 953-1 in FIG. 23 is "large",
and screen 953-2 in FIG. 24 is "small®". The width of
content fields 362/372 is equal for both screens. The
Y-dimension is also important and considered in the way

as the X-dimension.

FIG. 23 illustrates screen 953-1 of device 903-1 (first
type) . Screen 953-1 has a screen width of 640 pixels
(cf. explanation of FIG. 17). Screen 953-1 is
associated with the theme ADJACENT. First object 360
has title field 361 and content field 362. Similar,
second object 370 has title field 371 and content field
372. As displayed on screen 953-1, title fields 361/371
and content fields 362/372 have the same field width,
for example, 300 pixels. Screen 953-1 renders objects
360 and 370 adjacent to each other. This is possible
because the screen width is larger that the sum of the
field widths, that is 640 pixel > 300 pixel + 300

pixel.

FIG. 24 illustrates screen 953-2 of device 903-2
(second type). Screen 953-2 has a width of 240 pixels
(cf. explanation of FIG. 18). Screen 953-2 is
associated with the theme OVERLAP. Similar as in FIG.
23, first object 360 has title field 361 and content
field 362 and second object 370 has title field 371 and

- 48 -

10

15

20

25

30

WO 01/77822

content field 372. However, content field 362 overlaps
content field 372; in other words, content field 362
hides content field 372. Title fields 361 and 371 are
placed as so-called tabs. As displayed on screen 953-2,
titles fields 361/371 are less wide than content fields
362/372.

In the prior art, the application specification

document (that causes the interpreter in each device to

. render the objects) needs to state location data for

each object. For example, for device 903-1, a prior art
application specification document comprises: "display
(object 1, object 2, attribute 1, attribute 2)",
wherein "display" indicates to render an object on the
screen, "object 1" stands for object 360, "object 2"
stands for object 370, "attribute 1" stands for a
layout attribute with (X, Y) coordinates of object 1 on
screen 953-1, "attribute 2" stands for the layout
attribute with (X, Y) coordinates of object 2 on screen
953-1.

Since the coordinates are different for each
object, objects 360 and 370 appear adjacent. In other
words, the theme "adjacent" is contained in the
rendering statement implicitly.

Similar, for example, for device 903-2, a prior art
application specification document comprises a similar
rendering statement, but with different layout
attributes. The (X, Y) coordinates are indicates such
that object 360 overlaps object 370. The rendering
statement indicates the OVERLAP theme implicitly.

- 49 -

PCT/EP01/04095

10

15

20

25

WO 01/77822 PCT/EP01/04095

It is an advantage of the present invention that the
theme must not longer be included into application
specification document 240. Application specification
document 240 states the following rendering statement
245 (cf. FIG. 5):

display (object 1, object 2, assembly)

In the example, statement 245 has 4 portions: "display"
indicates to visually render objects on a screen;
"object 1" stands for object 360 to be rendered;
"object 2" stands for object 370 to be rendered; and
"assembly" indicates that objects 360 and 370 are
rendered in combination.

Direct or indirect inclusion of a theme (e.g.,
ADJACENT or OVERLAP) is not required by the invention.
Interpreter 200 for device 903-1 (cf. FIG. 23) reads
rendering statement 245 and identifies the presentation
pattern (e.g., theme-handler 214) by comparing screen
types. Depending on the screen width, the patterns are

identified as ADJACENT or OVERLAP.

.FIGS. 23 and 24 also help to illustrate a simplified

second example. Objects 360 and 370 are rectangular
("tile-shaped", synonym to "frame-shaped"). Objects 360
and 370 are arranged in hierarchy with main tile 360
and sub tile 370. Statement 245 is part of application
specification document 240 and is written in AS-
language XML. Statement 245 comprises sub-statements

that are conveniently numbered (1) to (8).

- 50 -

10

15

20

25

30

WO 01/77822 PCT/EP01/04095

(245)
(1) < Tiles >
(2) < FrameTile idTile = "SN_General" title = >
(3) < TextBox i1d="c:00000H ">
(4) < FrameTile idTile = "Cust_General" title = >
(5) < TextBox i1d="c:11000H ">
(6) < TileSet title = "Notification" >
(7) < MainTile refTile = “SN_General" >
(8) < SubTile refTile = "Cust_General" >

(1) Object definitions follow.

(2) Object 360 is a rectangular tile identified by
"SN_General"

(3) Object 360 has content field 362 that displays a
first text stored at a first address.

(4) Object 370 is a rectangular tile identified by
"Cust_General".

(5) Object 370 has content field 372 that displays a
second text stored at a second address.

(6) Assembly definitions follow; in the second example,
an assembly is referred to as "tile set". The
assembly belongs to an assembly type "notification”
with hierarchical object rendering.

(7) Object 360 is the "main tile".

(8) Object 370 is the "sub tile"

Returning back to FIGS. 23 and 24, tiles 360 and 370
are rendered together as an assembly. Content fields
362 and 372 (i.e. texts or other attributes) are
rendered with respect to the (X, Y) position of tiles
360 and 370, respectively. Content field 362 is
rendered without consideration of content field 372,

and vice versa.

- 51 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

Depending on the presentation pattern und depending
on the hierarchy, tile 360 (main) is rendered on the
left side (FIG. 23) or in the foreground (FIG. 24), and
tile 370 (sub) is rendered on the right side (FIG. 23)
or in the background (FIG. 24).

In the following, it will be explained how further
different devices present the same application. The
devices are a conventional telephone (cf. 902 in FIG.
5, cf. FIG. 25) and device 903 with display 953 (cf.
FIG. 26).

FIG. 25 i1s a transcript of a dialog conducted over
telephone (i.e. device 902) between the user and
interpreter component 200. Conveniently, interpreter
component operates on server computer 900 or operated
on a further computer. The presentation pattern for
device 902 is voice theme 345. In FIG. 25, the user is
symbolized by a face; the arrangement of "speaking" and
"listening" computer is symbolized by a square.

(1) Interpreter 200 starts an interactive voice
synthesis/recognition system. The synthesis part of
the system converts the following text-object
(e.g., from data store services component 220) into
voice:

'Welcome to the telephony sales force automation
system. Please select an item from the main menu.
They are customers, contacts and activities.’

(2) The user selects ’contacts’, preferably, by
speaking this word.

(3) As confirmation, the synthesis part converts the
following further text-object into voice: ‘The
selected item is Contacts’.

(4) The user instructs by ‘search items with F’,

preferably, by speaking this phrase.

- 52 -

10

15

20

25

30

WO 01/77822 PCT/EP01/04095

(5)

(6)

The synthesis part converts the following further

text-object into voice: 'There is one item. Item 1

. of The overview of the selected contact is
as follows: The contact name is The email
address is ... What would you like to do now? You

can obtain information about the contact history
for this contact. You can also obtain more
information about this contact. Alternatively, you
can go back to the main menu, or ask for repeating-
what you just heard.’

The user instructs by ‘check the contact detail’,

preferably, by speaking this phrase.

FIG. 26 is a screen shot of a computing device (e.g.,

device 903, screen 953).

(1)

Interpreter 200 starts similar as with the
telephone. The presentation pattern for this device
is a tile stack theme (similar to 401/402 in FIG.
17). While the data is read, preferably, from the
same application, rendering is different. Rendered
is a first tile 421 with content ’‘customers’, a
second tile 422 with content ’‘contacts’ and a third
tile 423 with content ‘activities’. The assembly of
this tiles is a navigation bar.

The user selects ’‘contacts’, preferably, by double-
clicking the tile ’‘contacts’ (symbolized by cursor
arrow in FIG. 26 pointing to 422).

As confirmation, device 903 highlights the second
tile ‘contacts’. In other words, a highlight
attribute is set so that the color of the second

tile is different from the color of the first and

chird tiles. In FIG. 26, the color change is

symbolized by hatching tile 422.

- 53 -

10

15

20

25

30

WO 01/77822 PCT/EP01/04095

(4)

(5)

Device 903 presents in graphic form essentially the
same information as above (name, city, email-

address, further options)

The user selects ‘contact ... '

FIGS. 27 and 28 illustrate method 700 to create

application system 200/250/260; method 700 comprises

the

following steps:

First step 710 is to define user-interface model 341

and comprises the following sub-steps:

711

712

713

determining the types and functionality of tiles
342 and of user-interface elements contained on
tiles 342;

determining the cardinality (e.g., main-to-sub-
hierarchy) and relationships between tiles 342 in
assemblies 343, and, optionally, determining any
particular requirements for operations between
tiles 342 in certain specialized assemblies 342
(cf. FIG. 13 "SetAttributevValue"); and

determining navigation state 344, and the required

user operations on a navigation state 344.

Second step 720 is to define the application

721

722

specification by a meta-language and comprises the
following sub-steps:

defining elements that specify the types of tiles
342, optionally defining user-interface elements
(if contained in tiles 342), optionally defining
containment relationships between the elements, and
optionally defining attributes to express
referential relationships between the elements;
defining attributes of the elements to express

properties of tiles 342 and user-interface 340; and

- 54 -

10

15

20

25

30

WO 01/77822 PCT/EP01/04095

723 defining attributes on the elements in navigation
state 344.

Third step 730 is to customize workbench component 250
and comprises to create event handlers that identify
constraints on the validity of application
specification document 240. Events that can not be

represented by the meta-language are not wvalid.

Fourth step 740 is to define layoﬁt themes 345 for
computing device 901/902/903. For each computing device
901/902/903; fourth step 740 comprises the following
sub-steps:

741 defining a representation on the output media
(e.g., screen, speaker) of device 901/902/903 for
each element of user-interface model 341;

742 defining user-interface model 340 for each
operation (on user-interface model 341); and

743 optionally, defining additional elements and
attributes in the AS-language (if required by the
output representation and by operation of user-

interface model 341)

Fifth step 750 is to realize user-interface model 341
in interpreter component 200. Fifth step 750 comprises
the following sub-steps:

751 creating models (preferably, object models) to
specify tiles 342 and assemblies 343, the models
hereinafter referred to as "definition objects";

752 implementing constructors (cf. FIG. 16) for the
definition objects, so that the objects create
object model instances from application
specification document 240 (or fragments thereof);

and

- 55 -

10

15

20

25

30

35

WO 01/77822

753 implementing user-interface instances from the
definition objects, in a computer programming

language (CP-language).

Sixth step 760 is to realize themes 345 in interpreter

component 200 and comprises for each theme 345 the sub-

steps of:

761 implementing each theme as layout handler 214 (in a
CP-language); and

762 obtaining a selection of theme 345 by the developer
and forwarding the selection to interpreter

component 200.

The present invention is now summarized as a computer-
program product 103 (i.e., interpreter 200) that
resides in computing device 903 (or 901,902) of either
first type 903-1 or second type 903-2. The computer-
program product 200 is provided for interpreting
application specification document 240 and causing
processor 913 of computing device 903 (cf. FIG. 1) to
render first object 360 and second object 370 in
combination (i.e. assembly, cf. FIGS. 23-24) to user-
interface 963 (cf. FIG. 1) of device 903. The computer-
program product has a plurality of instructions to
control processor 913 and is characterized in the
following:

A first sub-plurality of instructions form theme-
handler 214 to evaluate statement 245 of the
application specification document 240 (cf. FIG. 5),
statement 245 instructing processor 913 to render
objects 360 and 370 in an assembly 360/370 according to
device type specific presentation pattern 295/296 for
assembly 360, 370 that is identified from predefined
first and second visual presentation patterns 295/296.

A second sub-plurality of instructions form navigation

- 56 -

PCT/EP01/04095

WO 01/77822 PCT/EP01/04095

engine 212 to select one of objects 360 and 370 for
interaction with a user to create inter-object
relations with user-interface elements and data

cursors.

- 57 -

WO 01/77822 PCT/EP01/04095
Table 1 is and example for a MDF-application
specification language
Table 1
(k) Table 1 - Language Definition
(1) <!-- XML Schema Extensibility for MDF schemas --

>

(2) ... <I--Attribute to support subtyping of
document idrefs. Usage in schema:

(3) <AttnbuteType dt:type="idref" ext:refType="xxx"
ext:refScope="yyy">

(4) where xxx is/are the name(s) of tag(s) to which
the attribute can refer, and yyy is/are the
name (s) of the tag(s) which are the scope for
the reference. Ids will only be matched if
outside the innermost containing element with
nodename from the set of tags vvy.

(5) The document processing application is
responsible for enforcing the subtyping.

(6) <AttributeType name=refType" dt:type="strlng'/>
<AttributeType name=ref Scope dt:type="string"/>
<I-

(7) Support layout displayUnit: attributed to
containers that can be shown or hidden mergable
= could be combined with parent Elements
unmergable = never combined with parent elements

(8) <AttributeType name="displayUnit"
dt:type="enumeration dt:values="unmergable
mergable®/>

(9) <!-- Support for fragmentation -->
<AttributeType name="fragment"”
dt:type="boolean" />

(10) <I-- Support for translation --> <AttributeType
name="translatable" dt:type="boolean"/>

(11) <!-- Descriptive text --> <AttributeType
name="description" dt:typé="string“/>

- 58 -

WO 01/77822 PCT/EP01/04095

(k) Table 1 - Language Definition

(12) <!-- Support for allowing identification of
layout-related attributes and tags -->
<AttributeType name="layout" dt:type=enumeration
dt:values="all VGA HVGA PPC"/>

(13) <AttributeType name="length" dt:type="int"/>
<AttributeType name=minLength dt:type="int"/>
<AttributeType name="maxLength" dt:type="int"/>
<I-- Next extension-attribute, if present,
overrides dt:type --> <AttributeType name="type"
dt:type="enumeration" dt:values="bin.hex
bin.base64 filename Icon bitmap!>

(14) <!-- Elements to support data-binding. Usage in
schema:

(15) <ElementType name=aaa>

(16) SupportsType fieldType="xxx"/>

(17) SupportsType ..J>...

(18) indicates that aaa can be bound to fields with
type xxx, etc.

(19) <AttributeType name=databinding
dt:type="enumeration" dt:values="table field!>
<AttributeType name="control"
dt:type="boolean"/> <AttributeType
name="fieldType" dt:type="enumeration"

(20) dt:values="string number integer float boolean
date time datetime enumeration/>

(21) <ElementType name="SupportsType"> <attribute
type="£fleldType" required=yes/> </ElementType>
</Schema>

~ 59 -

WO 01/77822 PCT/EP01/04095

Table 2 is a simple Service Management demonstration
program, defined with the MDF application language. For
simplicity, table 2 has been abridged. For example,
where "AttributeType" (or other statements) are
repeated in consecutive line, the first 2 lines are

kept and the other lines are replaced by ellipsis.

Table 2
(k) Table 2 - Application Specification in XML
(1) <I-- MDF Application Schema, $Headers$ -->

...<Schema xmlns="um:schemas-microsoft-com:xml-
data" xmlns:dt="um:schemas-microsoft-com
datatypes" xmlns:ext="x-

schema: SchemaExtension.xml"

(2) <ElementType name=~ldMap
ext:description="Placeholder WBXML Id-Offset
map"> . |

<AttributeType name=pointers~ dt:type=string/>
...<attribute type=pointers required=yes/>
</ElementType> ...

(3) <AttributeType name="constraintType
dt:type="enumeration" dt:values="valldity foo
bar" !>

<ElementType name="Constraint"

content="eltanly"> <attribute ...

(4) <AttributeType name="functionName"
dt:type="string"/> <AttributeType name="event"
dt:type="string"/>

</ElementType> <ElementType name="Function"> ...

(5) <ElementType name="Functioncall"> ...

<attribute type="functionName" required="yes"/>

(6) <element type="Argument" minOccurs=" 1 I>
</ElementType> ...
(7) dt:values="mandatory high normal low"!> ...

<I-- Bitmap and Icon support --> ...

(8) <!-- new: Sorting -->

- 60 -

WO 01/77822

PCT/EP01/04095

(k)

Table 2 - Application Specification in XML

...<AttributeType name="order"
dt:type="enumeration" dt:values="ascending
descending" !>

<ElementType ...name="SortKey" content="empty">
<attribute type='"ref Field" required="yes"!>
<attribute type="order" required="yes"!>
<!ElementType> ...

<ElementType name="Search" content="eltOnly">
< ext:databindlng="£field"!>

<I-- START DataModel schema --> ...

(10)

<ElementType name="ConstantSelector"
content="empty"> <attribute type="ref Field"
required="yes" !> <attribute type="constant"”
requlred="yes" !> <!ElementType> ...

<ElementType name="ParameterSelector"
content="empty">

<attribute type="ref Field" required="yes"!> ...

(12)

<!group>
<!ElementType>
<I-- Model the relationships directly --> ...

(13)

<ElementType name=Relation" content="eltOnly">
<AttributeType name="tablel" dt:type="idref"
ext:refType="Table"!> <AttributeType
name="table2 dt:type="idref"
ext:refType="Table"i> ...

<AttributeType name="baseTable" dt:type="idref"
ext:refType="Table" !>

<AttributeType name="baseField" dt:type="idref™
ext:refType="Field"!> ..

type="baseTable" required="yes"!> <attribute
type="baseField" required="yesV> <attribute
type="referringTable" required="vyes"!>
<attribute type="referringField" requlred="yesV>
<!ElementType> ...

<AttributeType name="link" dt:type="idref"

ext:refType="ConstrainLForeignKeyV> ...

- 61 -

WO 01/77822 PCT/EP01/04095

(k) Table 2 - Application Specification in XML
(16) <1[CDATA[One way of handling Complex fields:
<Complex label="Address">

<Group compress="yes" separator="In">
<ComplexSub datafleld="Addrl"!> <Break!>
<ComplexSub datafield="Addr2"!> <Break!> <Group
comp ress= yes" separator=",">

<ComplexSub datafleld="City"!> <ComplexSub
datafleld="Region"!> ...

<!Group> <!Group> <!Complex>

...I1> <AttributeType name="idTile"
dt:type="id" !> <AttributeType name="text"
dttypeN"string" !> <AttributeType name="refTile"
dt:type="idref" ext:refType= Tile"!>
<AttributeType name="datafield" dt:type="idref"
ext:refType="Field" ext:databindin~j=1lield"!>

an"!> ...

(17) <I-- For element Row -->

...<AttributeType name="col" dt:type="int"
ext:layout="all"!>

<AttributeType name="colspan" dt:type="int"
ext:layout="all"!>

<AttributeType name="allgn"
dt:type="enumeration" dt:values="Ieft center
right" ext:layout="aIl"!> <AttributeType

name="hspace" dt:type="int" ext:layout="all"!>

(18) <I-- For element GridPage --> <AttributeType
name="wrap" dt:type="boolean" ext:layout="aIl"!>
<AttributeType name="cols" dt:type="int"
ext:layout="all"!> .

(19) <I-- Code --> <ElementType name="EventHandler
content="eltOnly">

<attribute type="event"!> <group order= one">
<element type="lnlineCode"!> <element
type="FunctionCall"!> 4group> <!ElementType> .
(20) <I-- Tilesets, Tiles, etc. -->

- 62 -

WO 01/77822 PCT/EP01/04095

(k) Table 2 - Application Specification in XML

<AttributeType name="targetFrame"
dt:type="enumeration" dt:values="1 2 12 34 34
1234" 1> <AttributeType name~dlsP~yGrouP"
dt:type="1lnt"!> ..

(21) <attribute type="title" required="yes"!>
<attribute type="id" required="no"!> <attribute

type="refTile" required="yes"!>

(22) <IElementType>
<ElementType name="MainTlIe">

<attribute type="title" requlred="yes"!> ..

(23) <l-- Controls --> <l~~ Next are advisory; may be
overriden by Layout or Engine components -->
<AttributeType name="minDisplayCharacters"”
dt:type="int"!> ...

(24) <ElementType name="Label" content="empty"
ext:control="1"> <l--#Extends (DataControl)-->
<attribute type="text" required="yes"!>
<!ElementType> ...

(25) <ElementType name="TextBox" content="eltOnly"
ext:control="1"> <l--#Extends (DataControl)-->

<attribute type="label" required="no"!> ...

(26) <I-- <attribute type="type" required="no"
default="string"!>

--> <attribute type="importance" required="no"
default="normal"!>...

(27) <I-- OptionGroups and Checkboxes -->
<ElementType name="Option" content="eltOnly"
ext:control=" 1"> <attribute type="text"

required="yes"!> .

(28) <!-- Special controls: Address -->
<AttributeType name="addrl" dt:type="string"!>
<AttributeType name="addr2" dt:type="string"!>
<AttributeType name="city"

(29) <ElementType name="Address" content="eltOnly"

ext:control="1"> <!--#Extends (DataControl) -->

<attribute type="id" required="vyes"!> <attribute

- 63 -

WO 01/77822 PCT/EP01/04095

(k) Table 2 - Application Specification in XML

type="importance" required="no"

default="normal" !>

(30) <!-- Shareable elements --> <ElementType
name="Row" content="eltOnly"
ext:displayUnit="mergable" ext:layout="all">
<group minOccurs="0" maxOccurs="~" order="many">
<I-- element type="DataControl® --> <element
type="Address" !> <element type="DateTime"!>
<element type="CheckBox"!> <element
type="ComboBox" !> </group> <!ElementType>
<ElementType name="Page" content="eltOnly"

ext:displayUnit="mergable" ext:layout="all">

(31) <I-- element type="DataControl" N> <element
type="Address" !> <element type="DateTime"!>
<element type="CheckBox"!> <element
type="ComboBox" !> <element <!ElementType>
<ElementType name="TiIe" content="eltOnly"
ext:displayUnit="unmergable" ext:fragment="1> ...
(32) <I-- Top level -->

<ElementType name="GUI" content="eltOnly">
<attribute type="title" required="yes"!>
<attribute type="iconFile" required="no"!>
<element type="DataModel" minOccurg="1"
maxOccurs="1!> <element type="Middleware"
minOccurs="0" maxOccurs="1 O!> <element

type=Tiles" minOccurs="1" maxOccurs="1"1!>

(33) <!Schema> <I-- <element type="SortSpec"

minOccurs="0"

(34) <l~~ Set field in new object --> <ElementType
name="Field Value" content="eltOnly"> <attribute

type="destField" required="yes"!> <attribute

type="value" required="yes"!> <!ElementType>...

- 64 -

WO 01/77822 PCT/EP01/04095

List of Reference Numbers

Reference Meaning FIG.
100, 10g computer program product 1
(g=0...3)

200 interpreter component 3, 15

200/250/260 application system

200-1 client-side interpreter 5
component

200-2 server-side interpreter 5
component

201 database 5

202 graphical user-interface 15
definition

202-206 XML-sub-system 15

204 data-model component 2, 7, 15

206 middleware-model components 15

208 device native user-interface 15
services

210 tile handler 15

210-220 runtime sub-system 15, 16

212 tile assembly and navigation 15
engine component

214 theme-handler component 15

215 parsing services component 15

216 data-event services component 15

217 constructor 16

218 data synchronization services 5, 15
component

219 constructor 16

220 data store services component 15

230 application language 6

definition document

240 application specification 3, 5, 6,

- 65 -

WO 01/77822

Reference

240-1

240-2
241
242
245
250

251
252
253

254

255
258
259
259-1
259-2
260

295

296

297

299

300

311

312
315

Meaning

document

specializing for particular
device

encoding

interpreter-readable document
storage system

statement

Workbench component

typed document component
document cursor component

tree-viewer component

element attribute panel
component

pre-viewer component

list

pop-up menu

menu item ’‘insert before’
menu item ‘insert as child’
application specification
language

predefined presentation
pattern (ADJACENT)
predefined presentation
pattern (OVERLAP)
predefined presentation
pattern (CONSECUTIVE)
hierarchy pattern (MAIN, SUB)
application

table

table

interrelations

- 66 -

PCT/EP01/04095
FIG.

16

3
3
3
5

3,6,11,
12,13,14

6
6,7,11,
12,13,14
6,7,11,
12,13,14
6

12

11

11

11

3

21
21

21

N DD NN

WO 01/77822 PCT/EP01/04095

Reference Meaning FIG.

320 middleware-model component 2, 7

321 ' content of messages 2

322 definition of relatiomns 2

330 business-logic component 2

331 functions 2

332 scripts 2

340 user-interface component 2

341 ‘ user-interface model 2

341-1 first implementation text

341-2 second implementation text

342 tile 2, 7

343 assemblies 2, 7

344 navigation state 2

345 theme, layout theme 5

345-1 micro-browser theme 5

345-2 voice theme 5

345-3 theme 5

360 first object 23, 24, 8

360/370 assembly of first and second 23, 24
objects

361 title tile of first object 23, 24, 8

362 content tile of first object 23, 24, 8

370 second object 23, 24

371 title tile of second object 23, 24, 8

372 content tile of second object 23, 24

401 navigation bar 17, 26

402 navigation stack 17

403 hyperlink 17

404 main tile 17

405 sub tiles 17

406 menu 18

407 back arrow 18

408 toolbar 18

67.

WO 01/77822

Reference

409
410
411
412
413
414
415
417
418
421
422
423
500
501
530

532
534
536
538
539

540

550

560

600

601

602
603

Meaning

tab-strip

tab

sub-tiles

slot

slot

slot

slot

tile customer list

tile customer detail

tile

tile

tile

method

method steps by interpreter
specifying application by
workbench

writing in AS-language
providing interpreter
storing interpreter
storing presentation pattern
simulating by pre-viewer
component

receiving application
specification document
interpreting statement to
identify pattern
rendering assembly
process

defining application
specifiation language
providing workbench component
providing an application

specification document

- 68 -

PCT/EP01/04095

FIG.
18
18
18
19
19
19
19
19
19
26
26
26
22
22
22

22

22

22

22

22

22

22

22

WO 01/77822

Reference

604

605

606

607

700

710

711

712

713

720

721

722

723

730

740

741

742

743

Meaning

specializing application
specification document
encoding application
specification document
stdring interpreter-readable
document

interpreting interpreter-
readable document

method

defining user-interface model
determining the types and
functionality of tiles
determining cardinality
relationships between tiles in
assemblies

determining navigation state
defining application
specification by meta-language
defining elements to specify
types of tiles

defining attributes of the
elements in tiles

defining attributes of
elements in navigation state
customizing workbench
component

defining layout themes
defining representation for
elements of user-interface

model

defining
for each

defining

user-interface model
operation

further elements and

- 69 -

PCT/EP01/04095

FIG.

27-28

27-28

27-28

27-28

27-28

27-28

27-28

27-28

27-28

27-28

27-28

27-28

27-28

27-28

WO 01/77822

Reference

750

751

752

753

760

761

762

900,
901

901/902/903

902
903

903-1
903-2
903-3
910,

920,
930,
940,
950,

951"

953
953-1

90qg

91g
92g
93qg
94qg
95qg

Meaning

attributes in AS-language
realizing user-interface model
in interpreter

creating models

implementing constructors
implementing user-interface
instances

realizing themes in
interpreter component
implementing theme as layout
handler

obtaining a theme selection
computer

portable phone with micro-
browser

computing device, device
conventional phone

personal computer, device in
general

device in general, first type
device in general, second type

device in general, third type
processor (g=0...3)

memory (g=0...3)

bus (g=0...3)

input device (g=0...3)

output device, display, screen
(g=0...3)

pre-viewer simulation of
display

display

display (first type)

- 70 -

PCT/EP01/04095

FIG.

27-28
27-28
27-28
27-28
27-28
27-28

27-28

1, 5

=
oo

N = = = L € B

20

1, 26
23, 17

WO 01/77822 PCT/EP01/04095

Reference Meaning FIG.
953-2 display (second type) 24, 18
960, 96q user-interface (g=0...3) 1

970, 97qg program carrier 1

970, 97qg program carrier 1

980, 98¢ program signal 1

990 inter-computer network 1

999 computer network system 1

- 71 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

Claims

A method (500) for rendering an assembly (360/370)

of a first object (360) and a second object (360)

on a user-interface (963) of a device (903), the

device (903) being either of a first type (953-1)

or of a second type (953-2), the first (360) and

second (370) objects presenting data of an

application (300),

the method comprising the following steps:

receiving (540) an application specification
document (240) by the device (903), the
application specification document (240) having
a statement (245) with an indication to render
the first and second objects in the assembly
(360/370) ;

interpreting (550) the statement of the application
specification document (240) to identify a
presentation pattern (295/296) for the assembly
(360, 370) from predefined first and second
presentation patterns (295/296) according to
the type of the device (903); and

rendering (560) the assembly (360, 370) of the
first (360) and second (370) objects on the
user-interface (963) according to the
piesentation pattern (295/296) identified in
the interpreting step (550).

- 72 -

10

15

20

25

WO 01/77822

The method of claim 1, prior to the receiving step

(540) , further comprising:

specifying (530) the application (300) in the
application specification document (240) by a
workbench (250) in a development computer
(900); and

simulating (539) the rendering step (560) by a pre-

viewer component (255) of the workbench (250).

The method of claim 1, wherein in the rendering
step, the first (360) object and the second (370)
objects are rendered according to the presentation
pattern (295/296) and to a predefined hierarchy
pattern (299).

The method of claim 2, wherein the specifying step

(530) comprises:

writing (532) the application in an application
specification language;

providing (534) an interpreter (200) specific for
the application specification language; and

storing (536) the interpreter (200) in the device
(903).

The method of claim 4, further comprising:

storing (538) the predefined presentation patterns
(295/296) by the interpreter (200).

- 73 -

PCT/EP01/04095

10

WO 01/77822 PCT/EP01/04095

6. The method of claim 1, wherein the presentation
pattern is as a display pattern, wherein the
objects are rendered to the user-interface (563)
being a screen (953), and wherein the presentation
pattern is identified according to the size (X) of
the screen (953).

7. The method of claim 1, wherein in the rendering

step (560), the presentation pattern (297) is an

audio pattern.

- 74 -

10

15

20

25

30

35

WO 01/77822

8.

10.

PCT/EP01/04095

A computer-program product (103) to visually rénder
a first object (360) and a second object (370) in
an assembly on screen (953) of a computing device
(903), the objects presenting data of an
application (300) on a computer (900) that is at
least temporarily coupled to the computing device
(903), the device (903) being either of a first
type (903-1) or of a second type (903-2), the
computer-program product (103) having instructions
that cause a processor (913) of a computing device
(903) to perform the following steps:
receiving (540) an application specification
document (240) from the computer (900), the
application specification document (240) having
a statement (245) with an indication to render
the first and second objects in the assembly
(360/370) ;
interpreting (550) the statement of the application
specification document (240) to identify a
visual presentation pattern (295/296) for the
assembly (360, 370) from predefined first and
second visual presentation patterns (295/296)
according to the type of the device (903); and
rendering (560) the assembly (360, 370) of the
first (360) and second (370) objects on the
screen (953) according to the visual
presentation pattern (295/296) identified in
the interpreting step (550).

The computer-program product (103) of claim 8 being

an interpreter (200-1) located in the device.

The computer-program product (103) of claim 8 being
an interpreter (200-2) located in a further

computer (900).

- 75 -

WO 01/77822 PCT/EP01/04095

11.

12.

The computer-program product (103) of claim 8 being
embodied by a program signal (983) that is conveyed

to the computing device.

The computer-program product (103) of claim 8 being

embodied by a program carrier (973).

- 76 -

10

15

20

25

30

WO 01/77822

13.

14.

A computer-program product K103, 200) that resides
in a computing device (903) of either a first type
(903-1) or a second type (903-2), the computer-
program product (200) for interpreting an
application specification document (240) and
causing a processor (913) of the computing device
(903) to render a first object (360) and a second
object (370) in combination to a user-interface
(963) of the device (903), the computer-program
product (200) having a plurality of instructions to
control the processor (913), the computer-program
product (200) characterized in that
a first sub-plurality of instructions form a theme-
handler (214) to evaluate a statement (245) of
the application specification document (240),
the statement instructing to render the first
and second objects in an assembly (360/370)
according to a device type specific
presentation ﬁattern (295/296) for the assembly
(360, 370) that is identified from predefined
first and second visual presentation patterns
(295/296) ; and
a second sub-plurality of instructions form a
navigation engine (212) to select one of the
first and second objects (360, 370) for
interaction with a user to create inter-object
relations with user-interface elements and data

Cursors.
The computer-program product (103, 200) of claim 13

being delivered to the device by a program signal
(983).

- 77 -

PCT/EP01/04095

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

15.

16.

17.

The computer-program product (103, 200) of claim 13
being delivered to the device by a program carrier
(973) .

A method (700) to create an application system
operating with a computing device (901/902/903),
the method (700) comprises the following steps:

a first step (710) to define a user-interface model
(341);

a second step (720) to define an application
specification document (240) by a meta-
language;

a third step (730) to customize a workbench
component (250) that identifies constraints on
the validity of the application specification
document (240);

a fourth step (740) to define layout themes (345)
for the computing device (901/902/903);

a fifth step (750) to realize the user-interface
model (341) in an interpreter component (200);
and

a sixth step (760) to realize the layout-themes
(345) in the interpreter component (200).

The method of claim 16 wherein the first step

comprises:

determining (711) the types of tiles and the
functionality of tiles, the tiles being
elements of the user-interface model (341);

determining (712) relationships between the tiles
in an assembly; and

determining (713) a navigation state (344) and the
required user operations on the navigation

state (344).

- 78 -

10

15

20

25

30

35

WO 01/77822 PCT/EP01/04095

18.

19.

20.

21.

The méthod of claim 17 wherein the second step

(720) comprises:

defining (721) specifications to the types of tiles
(342);

defining (722) attributes to express properties of
the tiles (342); and

defining (723) attributes in the navigation state
(344).

The method of claim 18 wherein the fourth sﬁep

(740) for each computing device comprises:

defining (741) a representation on the output media
of device (901/902/903) for each element of the
user-interface model (341l); and

defining (742) the user-interface model for each

operation of the user-interface model.

The method of claim 19 wherein the fifth step (750)

comprises:

creating models (751) to specify the tiles (342)
and the assembly (343);

implementing (752) constructors to create user-
interface instances from the application
specification document (240); and

implementing (753) the user-interface instances
from the models in a computer programming

language.

The method of claim 20 wherein the sixth step (760)

comprises:

implementing (761) each layout-theme as a layout
handler (214); and

obtaining (762) a selection of the layout-theme
(345) by a developer and forwarding the

selection to the interpreter component (200).

- 79 -

PCT/EP01/04095

WO 01/77822

W3LSAS ¥3LNdNOD 666 096 FovauaiNiyasn L "OI4
\

€96 196 / N\
\Il\/|/ \I\r/
€G6 56 156 0.6
YUY
€L6 ¢L6 16 056 , 0¥6
cr6 Zv6 \¥6 1nd.LNo ~ 1NdNI .
e o T o T T T T i
“ P P! i !
o | | B 026 i
el il i i snd _
~! i i i i
- 5 | 5 w
i €0l b c0l b 0L) !
i | €26 L | 226 ti| 126 P 00} |
m | | |l “
m i i i 026 016 i
| €16 AT L1 e N AHOWZN ¥OSSA00Ud | |
_ i i i i
£06 || iizos || Gives il i L9086 FALndNOS
€86 TYNOIS || 786 TVNOIS 186 TVNOIS ?wm IYNSIS

066 MHOMLIN

SUBSTITUTE SHEET (RULE 26)

WO 01/77822

PCT/EP01/04095

¢ 9ld

231

LWE

A% TAAS A% :
GPE IWIHL ™~ ™~ ~
NOILY13Y
S1dINOS 40 J1avl
NOILINI43d
e '/
SNOILY13Y
~¥3INI| -G1E
e AVN
SIOVSSIN
SNOILONNA 40 TavlL
Zve L LINTLNOO
|1
1€C ~ AN ~ AR ~
7 7 7 \
0ve 91901 13AON Y02 1300w
3OV4YILNI ¥3SN ssaNIsNg I9YMITAdin Vivd

00¢

~

NOILVOI'ldd¥

SUBSTITUTE SHEET (RULE 26)

WO 01/77822

3/31

_ PCT/EP01/04095

APPLICATION SPECEFICATION
LANGUAGE

260
/

WORKBENCH COMPONENT

250

Vs

APPLICATION SPECEFICATION | 240
DOCUMENT
\
SPECIALIZING Ve 240-1
FOR PARTICULAR DEVICE
240-2
ENCODING T
241, 242
STORE T
200
INTERPRETER COMPONENT 7

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 01/77822 ~_ PCT/EP01/04095

431

1
DEFINING APPLICATION e o0

SPECIFICATION LANGUAGE

1

PROVIDING / 602
WORKBENCH COMPONENT.

PROVIDING AN APPLICATION / 603

SPECIFICATION DOCUMENT

SPECIALIZING APPLICATION Ve 604
SPECIFICATION DOCUMENT
605
ENCODING APPLICATION v

SPECIFICATION DOCUMENT

l

STORING v

INTERPRETER-READABLE DOCUMENT

606

INTERPRETING Ve 607

INTERPRETER-READABLE DOCUMENT

FIG. 4 600

SUBSTITUTE SHEET (RULE 26)

PCT/EP01/04095

WO 01/77822

401A3d

| /4ALNINOD MASMOYEOHOIN HLIM
€-€06~ TYNOS¥3d INOHdITAL 3INOHd J19V.LHOd ¢ 'Ol
¢-€06
_..mcm\ Nom\ _.cm\
EVE— TYE_ -SVE~__ SPE_
- (Tv43aN3o) JINTHL INIHL ‘
g SIDINMIS INTHL
= JINTHL 30I0A ¥ISMONEOHDIN HONA0S e
V.LVQ -INOMHONAS
YALIUdUILNI JAIS-YIANTS V1va mm_m%ﬂn_zmmﬁw_
N.SN\\ sm\\ 2«\ F.SN\
Z INANILYLS)
mﬁ\
IN3WN20d
vz 1 NOILYOIHIDAS NOILYOITddY

SUBSTITUTE SHEET (RULE 26)

_ PCT/EP01/04095

WO 01/77822

6/31

ININOdWOD (G2

9 'Old

HONIIMHOM
INTNND0a ININND0A QadAL INFNNS0T
w_m@}_%mwm_ - 7 NOILYDI4103dS
NOILYOITddV ¥0S¥NI LNINND0J NOILVOIddV
HIMIIA
-J¥d
1 TANVd
14 ALNGNMLLY ﬁw\m%
B ERE]
SN\\ mmm\

SUBSTITUTE SHEET (RULE 26)

WO 01/77822

_ PCT/EP01/04095

7131

L "9Old

uopugeqg N9 1seL | ORL

(uonejjeisui) 19S9|l L —
(suonejelsu]) 1989l L —F

aneASINQUNYISS (uoneouynoN) 1es9jll —H
(suoneoynoN) 19s9|l L —#
(1eawnisny) 1989l L —H
| (siownisn) 19S9|I L —F
as|e4 Buws 8|14 uodl €ve w%%wwk.u__kvl
eni] uouyd so| bBus al . <&
1 uonluyeq |noiseL buly i 2y sellL <
palinbay onep oadAl eweN 02¢ SIEMSIPPIN O
¥0Z [epow ejeq o—-
. — N9
TANYd ALNAR-ILLY INFNFTE
€62 — ¥IMIIA 33HL
7

0S¢ LININOdNOD HONIEMLOM

SUBSTITUTE SHEET (RULE 26)

~ PCT/EP01/04095

WO 01/77822

8 /31

8 Ol

09¢—"|

1-662 |

29¢ 19¢
1SN0 ol
LIS
s LSIH b SNOILYTIVLSNI
1d P |HaNoLSND | SNOILYOIAILON
ouw | ¥3IWOLSN? |LHod3Y ot | 1s3NO3¥ | SYINOLSND
MAMIIA-THd

SUBSTITUTE SHEET (RULE 26)

WO 01/77822 PCT/EP01/04095

9/31
PRE-VIEWER
GENERAL| CUST. | HIST. |REPORT
REQUEST b /255'2
abpc
%
CUSTOMER def
ghi
ik
FIG. 9 255.3
PRE-VIEWER

CUSTOMERS |REQUEST
NOTIFICATIONS
INSTALLATIONS | CUSTOMER

FIG. 10

SUBSTITUTE SHEET (RULE 26)

PCT/EP01/04095

WO 01/77822

Ll "Old

10 / 31

¢"659C —
1-69¢ —

anlj 1SN0} Jalpl 9|geye!l

onip IsITIsng pi 9L

paiinbay anjej adA | aweN
%«\

IsiHutely 3sn9Q) ejiLmaiaIsiT O—F
1817 NS 1snD) ajiLmaipnslT O—H]

(/[

— PIIYO uwnjo9>—
-alojeg [/MOSU|

S50 uwney o—
aised [MUIHEdAHO—

o
fdop | 108 O—

65z~ B meNSI] O—l
(jessussy isn)) sjiLeweld O—F]

SoflL

daMAIA 3341

ININOdINOD HONIGHHOM

SUBSTITUTE SHEET (RULE 26)

PCT/EP01/04095

WO 01/77822

11/ 31

¢l "Old

wmwf (A1oysiH) ajiLans O—
(3oeuo)) aLans G—
(sowoysn9) ojiLans S—
(lesous9) 9jiLans O—
NAM109 (sisenbay) spLuely SO—=
INJFANNOD (sysenbayeoinieg) 19s9lL O—
4Sv31d 103713S (ssowoisng) jegollL HO—
p[0] .
LS/ ININTT3 _ %
(1siHIuEN HS) alLmeIAsIT O
(jessusgy Isng) ejifsweld >
aniy 1SN} Jjaipl | 9|qeysi (uopdoseq) uwiniod
onil | 1sITI8ND pi | el (s1e@) utiniod
4 (1) uwnjon
palinbay anje) adA] ouweN o[LMOIAISIT
9lilsweld O—F]
ez ecz]
HIMIIA 33HL

05z LNANOdINOD HONIENHOM

SUBSTITUTE SHEET (RULE 26)

PCT/EP01/04095

WO 01/77822

¢l Old

12/ 31

<«

N 1] 1Aneulpies

SnIeA SINALRV o5 (** uequwnu uoneles) uoneRy >—
(** uequnu uopelel) uopeRy —
oni| u { uogesswnue | zANjeuIpiED (* uequinu uopejay) uoneey O—
anu| | | uonelawnus | L Ayjeuipied (- uequwnu uonejas) uoneley O—
SMIL | LINNISND NS $olp! cpIoy (- equnu uonelal) uoneEey O—

anl] jwnNisn) ‘1snd Jaipl Lpley
oni| NS 10Ip!I Zo|qe) (* :dequinu uonejay) uopeey H>—
o - pleld Jll

e
palinbay anjea adAL awepN () s1geL

\ Va (1oay9) ejgel. O—

144 €cZ

dAM3AIA 3341
05z INANOJINOD HONIENIOM

SUBSTITUTE SHEET (RULE 26)

PCT/EP01/04095

WO 01/77822

13731

¥l "Old

WNNSJON'NS+
9]e(dS}ON'NS

ONISPON'NS4

X1 BuoT NS
wnNuaswdinb3 NS4
WNNISND NS

£TA A

WNNISND NS4

cpisy
SNIEA SINGUIV 195 (- :dequinu uogejad) uoneey O>—
3 (- :equinu uonejal) uoney —
as|eq Jayyeu | uonesswnue | juspuadep
onJy u | uogelewnue | zAjeuipies (' uuequinu uopeel) uoneRy H>—
anuj | {uoneiswnua | LAyeuipied (- ueqwinu uopelas) uoneey O—
onil | wnNIsN) ‘NS jaipi FAYEL u uone
onil | wnNisno N0 Jo1p! plou A... .EQE:: onejal) uopejey O—
oniL NS Jolpl Z9|qE) (- :equinu uonejal) uoneey O—
"' pleld
pounbed oneA PdAL oHEN (Hed:) aiqeL
o8yn:1) a|qe
Va (toeyoy) eigel O—
€9¢
HIMAIA 3341
05z LNINOJINOD HONIEYHIOM

SUBSTITUTE SHEET (RULE 26)

PCT/EP01/04095

WO 01/77822

14] 31

gL "Old

A

002 ' 3Y0lS
0ze—
NOILVZINOYHONAS
8Lg—
INAZVLva | HOHTR
9lz—
LNIWI13
YITANVH ITIL | 3OVAHTLNI
NER
s3oInuas | 08—
ERIEL YL
ae—
, I TANVH-IWIHL
80z — re—— B

022-0LZ WILSAS-9NS INILNNY

1ddOIN
-JHVYMNATAAIN

T3dON
) -Y1va

90z — vz~

HISHYd
N9

Gz~ , w0z~

90Z-20Z WILSAS-9NS -TNX

SUBSTITUTE SHEET (RULE 26)

PCT/EP01/04095

WO 01/77822

15/ 31

91 "Old

H3SHvd

IN3INND0Ad
NOLLYOI4103dS
NOILVYOITddV

103rdo
NOILINIAdd
/N
HOLONYLSNOD
1S3N03Y
W3LSAS-ENS tm\
JNIINNY
104rdo
NOILINIF3d 3L
HOLONYLSNOD
NOILINI43d
AL
J71L "HO4 LS3aND3Y
—J
022 ‘812 ‘912 QN\

‘Yz ‘tiz‘ole

gle

1) 74

SUBSTITUTE SHEET (RULE 26)

WO 01/77822

16 / 31

PCT/EP01/04095

401

_

401

\

402

e | eo | TooLs
CUSTOMERS
NOTIFICATIONS
INSTALLATIONS
\ NAVIGATION BAR
FIG. 17A
FLE | EDIT | TooLs
CUSTOMERS NAME AREA
NOTIEICATIONS abc 123 ... 9
INSTALLATIONS def 456 ... 0
\ CUSTOMERS
~—~ NAVIGATION STACK

FIG. 17B

SUBSTITUTE SHEET (RULE 26)

953-1

953-1

WO 01/77822

17131

PCT/EP01/04095

401

\

402

401

.

402

FILE EDIT | TOOLS
CUSTOMERS DATE
NOTIFICATIONS 1999 ... Scratch ...
INSTALLATIONS /

403
HYPERLINK
\ CUSTOMERS
FIG. 17C
FILE EDIT | TOOLS
CUSTOMERS
NOTIFICATIONS
INSTALLATIONS
MAIN .
NOTIFICATION TILE 405
\\ CUSTOMERS)
k404

FIG. 17D

SUBSTITUTE SHEET (RULE 26)

953-1

953-1

WO 01/77822 PCT/EP01/04095

18/ 31
/

y4

406 <:£l 953-2

FILE | EDIT | TOOLS //
CUSTOMERS MENU

NOTIFICATIONS

407 408

~

INSTALLATIONS
FIG. 18A
} 953-2
FLE | EpiT | TooLs /
NAME AREA
N..S.. 8-9-7 def
H..S.. 5-9-10 stu
M..C... abc ...
409
CUSTOMERS| DETALL | EQUIP. | NOTIE. | HIST. |/
410 M1 A 41 41

FIG. 18B

SUBSTITUTE SHEET (RULE 26)

WO 01/77822 PCT/EP01/04095

19 1 31
] 953-2
FILE | EDIT | TooLS J
CUSTOMER # 777
NAME N..S..
abc
def ...

CUSTOMERS|/DETAILZ4 EQUIP. | NOTIF. HIST.

FIG. 18C

953-2
FILE EDIT | TOOLS /

Xyz 1234

CUSTOMERS| DETAIL pEQUIP.Z{ NOTIF. HIST.

FIG. 18D

SUBSTITUTE SHEET (RULE 26)

WO 01/77822

20/ 31

PCT/EP01/04095

FILE EDIT | TOOLS

DATE DESCRIPTION
CUSTOMERS| DETAIL | EQUIP. /NOTIF. HIST.
FIG. 18E

FILE EDIT | TOOLS

REQUEST

CUSTOMER

EQUIPMENT

CUSTOMERS| DETAIL | EQUIP. | REPORT

FIG. 18F

SUBSTITUTE SHEET (RULE 26)

953-2

953-2

WO 01/77822

21/ 31

PCT/EP01/04095

/416 CUSTOMER LIST

FILE EDIT TOOLS

L

cusTomErs | NAME [EA EA ADDRESS
NOTIFICATIONS 415 | 412 /
INSTALLATIONS| 1234 abcd Xyz mno
177 efg stu kim
MODEL ID DATE DESCRIPTION
414 413
FIG. 19A
FILE EDIT TOOLS
/CUSTOMERS CUSTOMER DEL/§|”5
NOTlFlCATlONS 415 412 /
INSTALLATIONS 1234
abcd
MODEL ID DATE DESCRIPTION
414 413
FIG. 19B
FILE EDIT TOOLS
/CUSTOMERS”
NOTIFlCATIONS 415 412 M
INSTALLATIONS
DESCRIPTION
414 413
FIG. 19C

SUBSTITUTE SHEET (RULE 26)

953-3

953-3

953-3

WO 01/77822 PCT/EP01/04095

22 [31

PRE - VIEWER

255
/

SAP MOBILE SERVICE

[CUSTOMERS]
[SERVICE REQUESTS |
[INSTALLATIONS]

[MODELS] %

951"
/

LINK

FIG. 20A

SUBSTITUTE SHEET (RULE 26)

WO 01/77822 PCT/EP01/04095

23/ 31

PRE - VIEWER

255
M

MENU CUSTOMERS
TO FIND, ENTER DATA
IN ONE OR MORE OF
THE FOLLOWING
SEARCH FIELDS: /951'

OK

FIG. 20B

SUBSTITUTE SHEET (RULE 26)

WO 01/77822 PCT/EP01/04095

24 | 31

PRE - VIEWER

255
/

SEARCH CUSTOMERS:
NAME
ABC

951’
/‘

OK ALPHA

FIG. 20C

SUBSTITUTE SHEET (RULE 26)

WO 01/77822 PCT/EP01/04095

25 [31

360 370 360 370
~ Z \

FIRST SECOND
OBJECT | | OBJECT

296
ADJACENT .\\\\\:i:::\ /{iiii///// OVERLAP

299

/ \.

360 370

—— TIME

297 CONSECUTIVE

FIG. 21

SUBSTITUTE SHEET (RULE 26)

WO 01/77822 PCT/EP01/04095

26 / 31

SPECIFYING APPLICATION BY WORKBENCH | 530

WRITING IN AS-LANGUAGE —532

]
PROVIDING INTERPRETER | _— 934
_/—536

STORING INTERPRETER

y

939
SIMULATING BY PRE-VIEWER T

A

538
STORING PRESENTATION PATTERN |

[_/501 (BY INTERPRETER)

A

RECEIVING APPLICATION | L340
SPECIFICATION DOCUMENT

\

INTERPRETING STATEMENT | L —930
TO IDENTIFY PATTERN

\

RENDERING ASSEMBLY -

FIG. 22 200

SUBSTITUTE SHEET (RULE 26)

WO 01/77822 PCT/EP01/04095

27 | 31
< 640 PIXEL >
¢——— 300 ———» ¢ 300 >
TITLE 361 TITLE 371
362 372
CONTENT CONTENT

Y
L “~360 360/370 370

X 9531
FIG. 23 ADJACENT SCREEN

N 240 >

361 3N

362 (372 HIDDEN)

CONTENT

Y
{ \—~360/370
X 9532

FIG' 24 OVERLAP SCREEN

SUBSTITUTE SHEET (RULE 26)

WO 01/77822 PCT/EP01/04095

28 [31

(1) Welcome to the telephony sales force automation
system. Please select an item from the main menu.
They are customers, contacts and activities.

(2) @ Contacts

(3) The selected item is contacts.

(4) @ Search item with F

(5) There is one item. ltem 1 ... of The overview
of the selected contact is as follows: The contact

name is F... . The email addressis F... @com.
What would you like to do now? You can obtain
information about the contact history for this
contact. You can also obtain more information
about this contact. Alternatively, you can go back
to the main menu, or ask for repeating what you
just heard.

(6) @ Check the contact detail.

FIG. 25

SUBSTITUTE SHEET (RULE 26)

PCT/EP01/04095

WO 01/77822

29 / 31

€466
™

9c -’

Oid

“® VNI Lo
g ey (2) SAILLIAILOY [ezy
133418 ... lomas XA[/S1oVINOO A —zzy
< m \ Z L
4 INYN (¢)” | s¥awoLsno [—zp
INVN LSuld TAVN (1)
d1aH | a3 | 34

SUBSTITUTE SHEET (RULE 26)

WO 01/77822

30/ 31

PCT/EP01/04095

DEFINING USER INTERFACE MODEL

DETERMINING THE TYPES
AND FUNCTIONALITY OF TILES

711

DETERMINING CARDINALITY RELATIONSHIPS
BETWEEN TILES IN ASSEMBLIES

712

\

DETERMINING NAVIGATION STATE

713

N

| -T10

A

DEFINING APPLICATION SPECIFICATION
BY META-LANGUAGE

DEFINING ELEMENTS
TO SPECIFY TYPES OF TILES

721

\

DEFINING ATTRIBUTES
OF THE ELEMENTS IN TILES

722

\

DEFINING ATTRIBUTES
OF ELEMENTS IN NAVIGATION STATE

723

\

120

A

CUSTOMIZING WORKBENCH COMPONENT

730

FIG. 27

SUBSTITUTE SHEET (RULE 26)

-~
[o]
o

|

WO 01/77822

31/ 31

PCT/EP01/04095

DEFINING LAYOUT THEMES

DEFINING REPRESENTATION FOR ELEMENTS
OF USER-INTERFACE MODEL

(L)

\

DEFINING USER-INTERFACE MODEL
FOR EACH OPERATION

742

DEFINING FURTHER ELEMENTS AND
ATTRIBUTES IN AS-LANGUAGE

743

740

A

REALIZING USER-INTERFACE MODEL IN INTERPRETER

CREATING MODELS

- 731

IMPLEMENTING CONSTRUCTORS

| 192

IMPLEMENTING USER-INTERFACE INSTANCES

133

150

A

REALIZING THEMES IN INTERPRETER COMPONENT

IMPLEMENTING THEME AS LAYOUT HANDLER

- 161

OBTAINING A THEME SELECTION

- 162

760

FIG. 28

SUBSTITUTE SHEET (RULE 26)

700

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

