(54) 发明名称
装置协作系统和功能提供方法

(57) 摘要
公开了装置协作系统和功能提供方法。第一装置包括用于确定分配给第一装置的第一数量和分配给第二装置的第二数量的确定单元，用于存储用户能够利用第一装置输出的第一可能性的第一存储装置，用于当第一数量小于第一可能性时输出第一数量的对象的第一输出单元，和用于根据由第一装置输出的输出数量来更新第一可能性的第一更新单元。第二装置包括用于当第二数量小于第二可能性时输出第二数量的对象的第二输出单元，并用于当用户认证成功时根据由第二装置输出的输出数量更新第二可能性的第二更新单元。
1. 一种具有图像数据处理功能的多功能装置的协作系统，包括：

经由网络连接的多个所述多功能装置，多个所述多功能装置部分负责提供所述多个装置的功能，其特征在于，

由用户操作的第一装置包括：
第一认证单元，用于对所述用户进行认证，
获取单元，用于获取作为输出目标的图像数据，
输出条件接收单元，用于接收在所述第一装置和至少一个第二装置输出图像数据时使用的输出条件；

第一操作控制单元，用于基于所述输出条件控制所述第一装置的输出操作，并将输出请求发送到所述至少一个第二装置；

第一存储单元，用于存储所述用户能够利用所述第一装置输出的第一可能使用量，
分配数量确定单元，用于确定要分配给所述第一装置的第一输出数量和要分配给所述至少一个第二装置的第二输出数量，

数据通信单元，用于将所述图像数据、所述第二输出数量和所述用户的用户信息发送到所述至少一个第二装置，

第一输出单元，用于当所述第一输出数量小于或等于所述第一可能使用量时，输出与所述第一输出数量对应的输出对象，以及

第一可能使用量更新单元，用于根据由所述第一装置输出的输出数量，更新所述第一可能使用量，并且

所述至少一个第二装置包括：
第二认证单元，用于基于从所述第一装置接收到的用户信息，对所述用户进行认证，
第二存储单元，用于存储所述用户能够利用所述至少一个第二装置输出的第二可能使用量，

第二操作控制单元，用于当所述第二认证单元确定对所述用户的认证成功时，响应于来自所述第一装置的输出请求，控制所述至少一个第二装置的输出操作，

第二输出单元，用于当所述第二输出数量小于或等于所述第二可能使用量时，输出与所述第二输出数量对应的输出对象，以及

第二可能使用量更新单元，用于仅当所述第二认证单元确定对所述用户的认证成功时，根据由所述至少一个第二装置输出的输出数量，更新所述第二可能使用量。

2. 如权利要求1所述的协作系统，其特征在于，

当所述第二认证单元确定对所述用户的认证不成功时，所述第二认证单元将所述认证不成功报告给所述第一装置，

当所述第一输出数量和所述第二输出数量的总和小于或等于所述第一可能使用量时，所述第一操作控制单元通过所述第一输出单元输出与所述第一输出数量和所述第二输出数量的总和对应的输出对象，并且

所述第一可能使用量更新单元根据由所述第一装置输出的输出量，更新所述第一可能使用量。

3. 如权利要求1所述的协作系统，其特征在于，当所述第二认证单元确定对所述用户的认证不成功时，所述第二认证单元将所述认证不成功报告给所述第一装置。
所述第二操作控制单元通过所述第二输出单元输出与所述第二输出单元相对应的输出对象，而无关于所述第二输出数量是否小于或等于所述第二可能使用量，所述第二可能使用量更新单元不更新所述第二可能使用量，并且
所述第一可能使用量更新单元根据由所述第一装置输出的输出数量，更新所述第一可能使用量，并且根据分配给所述至少一个第二装置并由所述至少一个第二装置输出的输出数量，更新所述第一可能使用量。

4. 如权利要求1所述的协作系统，其特征在于，所述第二存储单元存储任意用户能够利用所述至少一个第二装置输出的任意用户可能使用量，
当所述第二认证单元确定所述用户的认证不成功时，所述第二认证单元将所述认证不成功报告给所述第一装置，所述第二操作控制单元响应于来自所述第一装置的所述任意用户可能使用量的输出请求，通过控制所述至少一个第二装置的输出操作来输出所述第二输出数量，并且
s所述第二可能使用量更新单元根据分配给所述至少一个第二装置并由所述至少一个第二装置输出的输出数量，更新所述任意用户可能使用量。

5. 如权利要求1所述的协作系统，其特征在于，当所述第二认证单元确定所述用户的认证不成功时，所述第二认证单元将所述认证不成功报告给所述第一装置，并且
所述第一操作控制单元取消所述第一装置的输出操作，并且不将所述输出请求发送给所述至少一个第二装置。

6. 如权利要求1所述的协作系统，其特征在于，当所述第二认证单元确定所述用户的认证不成功时，所述第二认证单元将所述认证不成功报告给所述第一装置，并且
所述第一操作控制单元向所述用户询问是否取消所述输出操作。

7. 如权利要求6所述的协作系统，其特征在于，当接收到继续所述输出操作并且不取消所述输出操作的指令时，所述第一操作控制单元向所述用户询问是否利用所述第一装置输出与所述第一输出数量和所述第二输出数量相对应的输出对象。

8. 如权利要求1到7中的任意一项所述的协作系统，其特征在于，所述获取单元是所述的装置、或从所述终端获取图像数据的数据通信装置。

9. 如权利要求8所述的协作系统，其特征在于，所述第一输出单元和所述第二输出单元是在记录介质上形成图像的打印装置、或经由电话线路或IP网络发送图像数据的传真发送装置。

10. 一种功能提供方法，通过所述功能提供方法，经由网络连接的多个具有图像数据处理功能的多功能装置部分负责提供所述多个具有图像数据处理功能的多功能装置的功能，所述功能提供方法包括：
通过第一认证单元实施对操作第一装置的用户进行认证；
通过获取单元实施获取作为输出目标的图像数据；
通过输出条件接收单元实施接收在所述第一装置和至少一个第二装置输出所述图像数据时使用的输出条件；

通过第一操作控制单元实施基于所述输出条件控制所述第一装置的输出操作，并将输出请求发送到所述至少一个第二装置；

通过分配数量单元实施确定要分配给所述第一装置的输出数量和要分配给所述至少一个第二装置的第二输出数量；

当所述第一输出数量小于或等于在第一存储单元中存储的第一可能使用量时，通过第一输出单元实施输出与所述第一输出数量对应的输出对象，所述第一可能使用量是所述用户能够利用所述第一装置输出的量；

通过数据通信单元实施将所述图像数据、所述第二输出数量和所述用户的用户信息发送到所述至少一个第二装置；

通过第一可能使用量更新单元实施根据由所述第一装置输出的输出数量，更新所述第一可能使用量；

通过所述至少一个第二装置的第二认证单元实施从所述第一装置获取所述用户的用户信息并对所述用户进行认证；

当所述第二认证单元确定对所述用户的认证成功时，通过第二操作控制单元实施响应于来自所述第一装置的输出请求，控制所述至少一个第二装置的输出操作；

当所述第二输出数量小于或等于第二存储单元中存储的第二可能使用量时，通过第二输出单元实施输出与所述第二输出数量对应的输出对象，所述第二可能使用量是所述用户能够利用所述至少一个第二装置输出的量；以及

仅当所述第二认证单元确定对所述用户的认证成功时，通过第二可能使用量更新单元实施根据由所述至少一个第二装置输出的输出数量，更新所述第二可能使用量。
装置协作系统和功能提供方法

技术领域
[0001] 本发明涉及装置协作系统。在所述装置协作系统中，经由网络连接的多个装置部分负责提供装置的功能。

背景技术
[0002] 已知被称作为装置协作的处理方式，通过这样的处理方式，经由网络连接的多个装置相互协作来执行多个任务。装置协作意味着例如多个装置部分负责提供由从输入开始到输出的一系列过程构成的多个任务所需的功能。
[0003] 图1说明了通过装置协作执行任务的示例。MFP（多功能外设）1和MFP2经由网络相互连接。MFP 1并不具有传真功能，但MFP 2具有传真功能。用户Q希望通过传真发送图像数据，但由于MFP 1并不具有传真功能，用户Q使用MFP 1来通过扫描仪功能扫描原始文档，并使用MFP 2的传真功能来通过传真发送图像数据。
[0004] 图2说明了通过装置协作执行任务的另一示例。MFP 1和MFP 2具有打印功能。用户Q希望打印出图像数据的多个拷贝。可以仅利用MFP 1来完成打印操作，然而，通过使得MFP 2部分负责打印操作，能够快速地完成打印操作。用户Q可以操作MFP 1来利用扫描功能扫描原始文档，并将图像数据和打印条件发送到MFP 2，从而由MFP 1和MFP 2来共享打印操作。
[0005] 此外，由在办公室中的许多用户来共享MFP。因此，传统上，存在具有针对每个用户设置复制和打印的时间和数量的功能的MFP，从而特定的个人并不能无限制地使用复制和打印功能（例如参见专利文献1）。专利文献1公开了以下的业务执行装置。业务执行装置将服务器发送的认证信息的使用请求和要使用的纸张的预定页数的使用请求。当向服务器所要求的要使用的纸张的预定页数小于或等于用户能够使用的纸张页数时，业务执行装置基于要使用的纸张的预定页数被设置为上限的用户指令来执行任务。
[0006] 然而，在专利文献1中，尽管可以通过服务器认证用户从而立即执行对多个装置的认证，但除非存在服务器，否则无法认证用户Q。也就是说，在各个装置要认证用户而不是服务器进行认证的情况下，必须考虑MFP 2如何认证用户Q。例如，当用户Q并不具有权限来使用MFP 2时，用户Q并不被允许在装置协作中使用MFP 2。此外，即使用户Q具有权限来使用MFP 2，如果MFP 2不能认证用户Q，则无法计数或限制用户Q的使用量。相应地，在传统装置协作系统中，当执行装置协作时，无法准确地限制用户的使用量。
[0007] 专利文献1：日本专利公开No.2010-074431。

发明内容
[0008] 本发明提供了消除了上述缺陷中的一个或多个的装置协作系统和功能提供方法。
[0009] 本发明的优选实施例提供了装置协作系统和功能提供方法，通过这样的装置协作系统和功能提供方法，即使不存在用于认证的服务器的情况下，当执行装置协作时，也能够限制用户的使用量。
[0010] 根据本发明的一个方面，提供了一种装置协作系统，包括由网络连接的多个装置，所述多个装置部分负责提供所述多个装置的功能，其中由用户操作的第一装置包括：第一认证单元，用于对所述用户进行认证；获取单元，用于获取作为输出目标的图像数据；输出条件接收单元，用于接收在所述第一装置和至少一个第二装置输出所述图像数据时使用的输出条件；第一操作控制单元，用于基于所述输出条件控制所述第一装置的输出操作，并将输出请求发送到所述至少一个第二装置；第一存储单元，用于存储所述用户能够利用所述第一装置输出的第一可能输出量；分配数据确定单元，用于确定要分配给所述第一装置的第一输出数据和要分配给所述至少一个第二装置的第二输出数据；数据通信单元，用于将所述输出数据发送到所述至少一个第二装置；第一输出单元，用于当所述第一输出数据小于等于所述第一可能输出量时，输出与所述第一输出数据对应的输出对象；以及第一可能输出量更新单元，用于根据由所述第一装置输出的输出数据，更新所述第一可能输出量，并且所述至少一个第二装置包括：第二认证单元，用于基于所述第一装置接收到的用户信息，对所述用户进行认证；第二存储单元，用于存储所述用户能够利用所述至少一个第二装置输出的第二可能输出量；第二操作控制单元，用于当所述第二认证单元确定所述用户对所述用户的认证成功时，响应于来自所述第一装置的输出请求，控制所述至少一个第二装置的输出操作；第二输出单元，用于当所述第二输出数据小于等于所述第二可能输出量时，输出与所述第二输出数据对应的输出对象；以及第二可能输出量更新单元，用于仅当所述第二认证单元确定所述用户对所述用户的认证成功时，根据由所述至少一个第二装置输出的输出数据，更新所述第二可能输出量。

[0011] 根据本发明的另一方面，提供了一种功能提供方法，通过所述功能提供方法，经由网络连接的多个装置部分提供所述多个装置的功能，所述功能提供方法包括：通过第一认证单元实施对操作第一装置的用户进行认证；通过获取单元实施获取作为输出目标的图像数据；通过输出条件接收单元实施接收在所述第一装置和至少一个第二装置输出所述图像数据时使用的输出条件；通过第一操作控制单元实施基于所述输出条件控制所述第一装置的输出操作，并将输出请求发送到所述至少一个第二装置；通过分配数据确定单元实施确定要分配给所述第一装置的输出数据和要分配给所述至少一个第二装置的第二输出数据；当所述第一输出数据小于等于所述第一可能输出量时，通过第一输出单元实施输出与所述第一输出数据对应的输出对象，所述第一可能输出量是所述用户能够利用所述第一装置输出的量；通过数据通信单元实施将所述图像数据、所述第二输出数据和所述用户的用户信息发送到所述至少一个第二装置；通过第一可能输出量更新单元实施根据由所述第一装置输出的输出数据，更新所述第一可能输出量；通过所述至少一个第二装置的认证单元实施从所述第一装置获取所述用户的用户信息，并对所述用户进行认证；当所述第二认证单元确定所述用户对所述用户的认证成功时，响应于来自所述第一装置的输出请求，控制所述至少一个第二装置的输出操作；当所述第二输出数据小于等于所述第二可能输出量时，通过第二输出单元实施输出与所述第二输出数据对应的输出对象，所述第二可能输出量是所述用户能够利用所述至少一个第二装置输出的量；以及仅当所述第二认证单元确定所述用户对所述用户的认证成功时，通过第二可能输出量更新单元实施根据由所述至少一个第二装置输出的输出数据，更新所述第二可能输出量。
附图说明
[0012] 结合附图并根据以下的描述，本发明的其他目的、特征和优点将变得更加明显，在附图中：
[0013] 图1说明了通过装置协作执行任务的示例；
[0014] 图2说明了通过装置协作执行任务的另一示例；
[0015] 图3A和3B示例性地说明了装置协作系统；
[0016] 图4A到4D说明了在各个应用中MFP 1和MFP 2的装置协作的形式的示例；
[0017] 图5说明了装置协作系统的配置；
[0018] 图6说明了MFP 1、2的硬件配置；
[0019] 图7是MFP的功能框图；
[0020] 图8说明了使用量限制信息的示例；
[0021] 图9说明了装置管理信息的示例；
[0022] 图10说明了当MFP 1和MFP 2执行装置协作时的块之间的关系；
[0023] 图11A和11B说明了通信可能装置的列表的示例；
[0024] 图12是指示由MFP 1和MFP 2执行的用于认证用户Q的流程的流程图的示例；
[0025] 图13说明了在显示单元上显示的装置协作任务的菜单的示例；
[0026] 图14A到14C说明了在显示单元上显示的装置协作任务的菜单的示例；
[0027] 图15A到15E说明了任务信息的示例；
[0028] 图16A和16B是说明了由MFP 1和MFP 2实施的认证用户Q和执行装置协作任务的时序图；
[0029] 图17是说明了由MFP 1和MFP 2实施的认证用户Q和执行装置协作任务的过程的时序图（认证NG）；
[0030] 图18A和18B是说明了由MFP 1和MFP 2实施的认证用户Q和执行装置协作任务的过程的时序图（认证NG）；
[0031] 图19A和19B是说明了由MFP 1和MFP 2实施的认证用户Q和执行装置协作任务的过程的时序图（认证NG）；以及
[0032] 图20A和20B是说明了由MFP 1和MFP 2实施的认证用户Q和执行装置协作任务的过程的时序图（认证NG）。

具体实施方式
[0033] 以下参照附图，描述本发明的实施例。
[0034] 图3A和3B示例性地说明了根据本实施例的装置协作系统200。MFP（多功能外设）1和MFP 2（在下文中，当彼此之间不区分时称为“MFP 100”）能够通过彼此协作来执行单个任务。多个装置在彼此之间提供功能的该系统被称为装置协作系统200。由彼此协作的两个或更多个MFP执行的任务被称作为装置协作任务。
[0035] 图3A示例性地说明了由用于执行复印应用的装置协作任务的MFP 1和MFP 2执行的过程。MFP 1和MFP 2分别在使用量限制信息中存储可能的使用量，在所述可能的使用量中，登记了用户Q能够使用的剩余页数。MFP 1的可能的使用量例如是用户Q能够利用
MFP 1 输出的页数 MFP 2 的可能的使用量例如是用户 Q 能够利用 MFP 2 输出的页数。在本实施例中，与纸张的一面相对应的图像数据被称为一页，而无关于是否组合多页或者使用的墨粉数，并且纸张材料的最小单元被称为一页，而无关于单面打印或双面打印。

(2) 在用户 Q 操作 MFP 1 来执行其中 MFP 1 和 MFP 2 执行打印的装置协作任务的情况下，首先，MFP 1 认证用户 Q。

(3) 当 MFP 2 将认证结果发送给 MFP 1，MFP 2 能够利用用户信息来认证用户 Q。MFP 2 将认证结果发送给 MFP 1，因此如果认证成功，则 MFP 1 执行装置协作任务。如上所述，各个装置认证用户，并且因此即使并未提供用于认证的服务器向装置协作任务提供功能的装置也能够认证用户。

(4) 当用户 Q 操作 MFP 1 来执行用于利用 MFP 1 和 MFP 2 实施打印的装置协作任务时，MFP 1 将多个页分配给 MFP 1 和 MFP 2（在下文，分配的页数）。当 MFP 1 确定 MFP 2 的分配的页数时，MFP 1 使用 MFP 2 的装置管理信息来确定 MFP 2 的所分配的页数，以实现最小的打印时间或有效功耗。

(5) MFP 1 和 MFP 2 在相应的可能的使用量内执行所分配的页数的打印。

(6) MFP 1 和 MFP 2 从其自身的可能的使用量中减去所分配的页数（打印的页数），并且 MFP 2 从其自身的可能的使用量中减去所分配的页数（打印的页数）。按照这种方式，各个装置认证用户，并且因此每个装置能够准确地计数或限制使用量。

(7) 在打印机应用的情况下，PC（个人计算机）向 MFP 1 请求装置协作任务。PC 将装置协作任务的图像数据和打印条件发送到 MFP 1，并且随后 MFP 1 执行如在复印操作的情况下处理。

图 3B 示意性地说明了由用于执行传真应用的装置协作任务的 MFP 1 和 MFP 2 执行的过程。在本实施例中，MFP 1 确定分配，并且 MFP 1 和 MFP 2 具有传真功能。因此，即使 MFP 1 并不具有传真功能，如果 MFP 3（未示出）具有传真功能，MFP 1 也确定要被分配给 MFP 2 和 MFP 3 的页数。

(9) 在传真应用的情况下，与复印应用类似，MFP 1 认证用户 Q，MFP 2 认证用户 Q，分配使用量，并且在可能的使用量的范围内实施传真发送。因此，即使对于不同的应用，根据本实施例的认证方法和使用量限制也是可应用的。

(10) 下面描述装置协作。装置协作包括一个 MFP 使用另一个 MFP 的功能的所有形式。也就是说，并未执行任务或者并未进行操作的情况也被称作为装置协作。然而，MFP 1 和 MFP 2 往往针对每个应用进行操作，因此通过将应用作为示例来进行描述。在描述中，假定由用户操作的装置是 MFP 1。

(11) 应用识别 MFP 的多个输入单元之一和 MFP 的多个输出单元之一的组合，并且基于所识别出的组合控制装置并提供功能。

(12) 图 4A 到 4D 说明了 MFP 1 和 MFP 2 的装置协作的到的形式的例示。图 4A 到 4D 说明了复印应用，扫描仪应用和发送应用；然而，也可以通过使得 MFP 1 和 MFP 2 在彼此之间提供功能来实现其他的应用。在复印应用中，单独任务经历通过扫描仪功能对原始文档进行扫描，图像处理，打印和后处理（修整）的过程。图像处理例如是 OCR 处理和机密打印处理。后处理例如是打孔和装订。这些处理过程并不被频繁使用。
在扫描仪应用中，单个任务经历通过扫描仪功能扫描原始文档，图像处理和发送的过程。图像处理例子是 OCR 处理、PDF 转换和加密处理。这些处理过程并不被频繁使用。发送包括例如通过电子邮件进行发送或发送到用户 Q 的文件夹的处理过程。

在发送应用中，单个任务经历通过扫描仪功能扫描原始文档，图像处理和传真发送的处理过程。图像处理例子是 OCR 处理和机密打印处理。这些处理过程并不被频繁使用。传真发送例子是使用电话线路或 IP 网络的传真发送。

此外，如上所述，可以在不执行装置协作任务的情况下实施装置协作。在这种情况下，用户 Q 可以在 MFP 1 中输入指令以从 MFP 1 读取在 MFP 2 中存储的图像数据，并处理图像数据。该处理过程可以包括打印、电子邮件发送和传真发送。此外，这个处理过程可以包括通过 MFP 1 删除 MFP 2 的图像数据、和通过 MFP 1 显示 MFP 2 的图像数据的预览。如上所述，即使 MFP 1 和 MFP2 不执行装置协作任务，也创建了装置协作的形式。

此外，图 4A 到 4D 说明了两个 MFP 的装置协作；当然，可能存在三个或更多个 MFP 实施装置协作的情况。在由三个或更多个 MFP 实施装置协作的情况下，负责编辑和输出的 MFP 的组合增加。

配置示例

图 5 说明了装置协作系统 200 的配置。LAN 1 和 LAN 2 形成单个 WAN。LAN 1 和 LAN 2 通过 L3 交换机或路由器（未示出）连接。当 LAN 的数量可以是一个或三个或更多时，可以实施装置协作。MFP 1 到 MFP 4 之间的通信、服务器 1 和 2 之间的通信、和 MFP 1 到 MFP 4 与服务器 300（在下文中，当需要进行区分时，被称为服务器 1 或 2）之间的通信可以是有线的或无线的。

此外，在 LAN 1 中，MFP 1 到 3 通过集线器或 LAN 交换机形成网络，并且通过 IEEE 1394 接口来连接 MFP 2 和 MFP 3。如上所述，在装置协作系统 200 中，MFP 中的一个或全部可以（对等方式）本地连接。此外，连接接口可以是 USB 或 LAN 线缆，只要能够在 MFP 之间执行通信即可。通过本地连接 MFP，并不通过 LAN 1.2 发送图像数据，因此能够减小网络负荷。此外，图像数据并不流经 LAN 1.2，因此增强了安全性。

此外，可以利用服务器 1.2 来实施装置协作。
[0061] 图 6 说明了 MFP 1、2 的硬件配置。MFP 100 包括控制器 120，操作面板 130，FCU(传真控制单元 140)，扫描仪引擎 150 和绘图仪引擎 160。

[0062] 控制器 120 包括 CPU 101，ASIC 113，NB(北桥)102，SB(南桥)106，MEM—P(系统存储器)103，MEM—C(本地存储器)104，HDD(硬盘驱动器)105，存储卡槽 111，NIC(网络接口控制器)107，USB 装置 108，IEEE 1394 装置 109 和中央电子装置 110。

[0063] CPU 101 是用于通过诸如 UNIX(注册商标)之类的 OS 执行各种信息处理的 IC，并执行用于提供以处理过程为单位的并行的应用和业务的程序。ASIC113 是用于图像处理的 IC。NB 102 是用于连接 CPU 101 和 ASIC 113 的桥。SB106 是用于将 NB 102 与外设相连接的桥。ASIC 113 和 NB 102 经由 AGP(加速图像端口)连接。

[0064] MEM—P 103 是连接到 NB 102 的存储器。MEM—C 104 是连接到 ASIC 113 的存储器。HDD 105 是连接到 ASIC 113 的存储装置，并用来存储图像数据、文档数据、程序、字体数据和表格数据。

[0065] 存储卡槽 111 连接到 SB 106，并用于设置(插入)存储卡 112。存储卡 112 是诸如 USB 存储器之类的闪速存储器，并用于分发程序 115。可以通过从预定服务器将程序 115 下载到 MFP 100 来分发程序 115。

[0067] 操作面板 130 是由用户在 MFP 100 中输入信息的硬件组件(操作单元)。操作面板 130 包括显示单元 170，该显示单元 170 是为 MFP 100 将可视信息提供给操作者的硬件组件。操作面板 130 连接到 ASIC 113。FCU 140，扫描仪引擎 150 和绘图仪引擎 160 经由 PCI 总线 114 连接到 ASIC 113。

[0068] 扫描仪引擎 150 光学地放置在接触玻璃上的原始文档，通过对来自原始文档的反射光进行 A/D 转换来实施图像处理，并生成具有预定分辨率的数字数据(在下文中，图像数据)。

[0069] 绘图仪引擎 160 包括例如串行型光导鼓，并通过基于从用户 PC 接收的图像数据和 PDL 数据对激光光束进行调节和扫描光导鼓来形成像。与通过将墨粉施加到潜象上而显著地一页相对应的图像被通过热和压力转印到纸张上。绘图仪引擎 160 并不限于电子照相型的绘图仪。绘图仪引擎 160 可以是喷墨型的，用于通过喷射液滴来形成图像。

[0070] FCU 140 经由 NIC 107 连接到网络，并根据例如规范 T.37 和 T.38 来通过通信过程发送和接收图像数据。或者，FCU 140 连接到公共通信网络，并根据例如规范 G3 和 G4 来通过通信过程发送和接收图像数据。此外，在接收到图像数据的同时 MFP 100 的电源关闭时，可以激活绘图仪引擎 160 并将图像数据打印到纸上。

[0071] 图 7 是 MFP 100 的功能框图。MFP 100 包括 UI 单元，控制单元和硬件。UI 单元和硬件如上所述。存储器 201 对应于 MEM—P 103 和 MEM—C104，引擎 202 对应于 FCU 140，扫描仪引擎 150 和绘图仪引擎 160。

[0072] 控制单元包括复印应用 11，打印机应用 12，传真应用 13，资源管理模块 14，通信管
理模块 15、引擎管理模块 16、任务管理模块 17、认证模块 18 和计数器管理模块 19。此外，HDD 105 存储例如使用量限制信息 20 和装置管理信息 21。

【0073】 密钥应用 11、打印机应用 12 和传真应用 13 是应用的示例。当用户 Q 通过操作面板 130 来选择复印按钮 (未示出) 时，复印应用 11 开始操作，并且当用户 Q 通过操作面板 130 来选择打印机按钮 (未示出) 时，打印机应用 12 开始操作，并且当用户 Q 通过操作面板 130 来选择传真按钮 (未示出) 时，传真应用 13 开始操作。OS 22 是诸如 UNIX (注册商标) 之类的通用操作系统，并且作为并行的处理过程执行模块和应用软件。

【0074】 任务管理模块 17 从应用获取通过用户 Q 设置的装置协作任务的任务信息，并管理任务的执行。具体而言，任务管理模块 17 请求资源管理模块 14 来获取基于任务信息控制资源，并控制屏幕显示、应用管理、操作面板等，同时从资源管理模块 14 接收进程状态。任务管理模块 17 检测输出纸张的当前数量，并在操作面板 130 上显示数量。

【0075】 此外，任务管理模块 17 包括使用量确定单元 32、分配数量确定单元 31 和用户信息发送单元 33，这些单元可以设置在控制单元中的任何位置处。分配数量确定单元 31 以打印时间和功耗的方式，在使用量限制信息 20 的限制内将使用量分配给各个协作装置。在打印机应用 12 和复印应用 11 的情况下，使用量是页数，并且在传真应用 13 的情况下，使用量是发送目的地的数量。使用量确定单元 32 确定要输出的预定页数是否小于或等于可能的使用量。用户信息发送单元 33 将用户信息发送给要执行装置协作任务的 MFP 2。下面给出处理过程的细节。

【0076】 资源管理模块 14 管理资源。当从任务管理模块 17 接收到对使用诸如操作面板 120、FCU 140、扫描仪引擎 150、存储器 201、HDD 105、NIC 107、USB 装置 108、IEEE 1394 装置 109 和中央电子装置 110 之类的硬件资源的请求时，资源管理模块 14 在应用之间进行调整并控制应用。具体而言，资源管理模块 14 确定是否能够使用 (根据另一请求而不使用) 所请求的硬件资源，并且当能够使用时，资源管理模块 14 向任务管理模块 17 报告能够使用所请求的硬件资源。此外，资源管理模块 14 反映于来自任务管理模块 17 的请求，执行硬件资源的使用调度，并控制引擎管理模块 16。

【0077】 引擎管理模块 16 根据资源管理模块 14 保护和创建的使用调度来控制引擎。相应地，扫描仪引擎、绘图仪引擎 (单色行式打印机、彩色行式打印机) 和 FCU 实际执行任务。

【0078】 通信管理模块 15 是用于提供能够相对于需要网络的应用被公共使用的业务 (例如装置协作) 的模块。通信管理模块 15 将通过协议从网络接收的数据分配给各个应用，并从接收的数据发送到网络。具体而言，通信管理模块 15 包括诸如 ftpd、httpd、lpd、snmpd、telnetd 和 smtpd 之类的服务器监控程序 (server daemon) 和相同协议的客户端功能。

【0079】 认证模块 18 是用于执行用户认证的模块。在下述使用量限制信息 20 中，除了每个用户的可能的使用量之外，还登记用户名和口令。认证模块 18 基于由用户 Q 输入到操作面板 130 中的用户名和口令的组合是否被存储在装置协作系统 200 中来认证用户 Q。或者，认证模块 18 可以通过利用 IC 卡读取器 (未示出) 读取在由用户 Q 保持的 IC 卡中存储的用户 ID 来认证用户 Q。

【0080】 当服务器 1 或服务器 2 用作认证服务器时，认证模块 18 并不需要被安装在 MFP 中。在每个 MFP 中的认证模块 18 认证用户的情况被称为 “本地认证”。服务器 1 或服务器 2 认
证用户Q的情况被称为“网络认证”。仅在实施认证的MFP中，本地认证的认证结果才是有效的，而在网络认证的情况下，在事先定义的网络中的MFP中，认证结果是有效的。

【0081】确认模块18向应用报告认证是否成功。当认证成功时，应用接收任务的执行条件的设置，而当认证不成功时，应用在显示单元170上显示诸如“认证不成功”之类的消息。

【0082】计数器管理模块19对使用量进行计数，并更新使用量限制信息20中的使用量。下面给出使用量限制信息20的描述。

【0083】控制单元中的应用和模块是具有作为OS 22上的处理过程执行的一个或多个方法的对象。以一个或多个线程为单位执行处理过程，并且OS 22将这些线程分配给CPU。OS 22根据诸如优先级和循环（round-robin）之类的逻辑，管理线程的状态（执行状态，等待状态，可执行状态等），并控制在作为执行状态的线程中的要被分配给CPU的线程。相应地，并行执行的处理速度高于通过切换处理过程执行的并行执行的处理速度。应用和模块通过执行方法，经由过程间通信来发送和接收消息。

【0084】使用量限制信息

【0085】图8说明了使用量限制信息20的示例。如上所述，使用量限制信息20包括用户信息。在用户信息中，登记“用户名称”，“用户ID”，“登录名称”，和“口令”。“用户名称”是通过其能够容易地识别用户Q的名称或别名。“用户ID”是在装置协同系统中确保其唯一性的一个或多个数字，符号或字母字符，或者它们的组合。“登录名称”是通过一个字符的字母和数字形成的适合于计算机处理的用于登录到MFP的标识名称。“口令”是MFP通过其认证用户Q的一个或多个数字，符号，或字母字符，或者它们的组合。

【0086】在使用量限制信息20中，登记“上限使用量”，“使用量”和“可能的使用量”。根据管理信息，针对彩色和单色登记“上限使用量”，“使用量”和“可能的使用量”。

【0087】“上限使用量”是用户Q能够使用的使用量。“上限使用量”是针对特定时间段（例如一年，半年，一季度，一个月和一星期）为每个用户定义的。“使用量”是用户在针对“上限使用量”定义的时间段内已经使用的量。“可能的使用量”是用户Q在所述时间段内能够使用的量。满足“可能的使用量”=“上限使用量”-“使用量”的关系。

【0088】例如每次用户Q使用打印功能等时更新“可能的使用量”。当“可能的使用量”变为零时，管理模块17禁止打印。在图9中，登记“上限使用量”，“使用量”和“可能的使用量”。然而，只要存在“可能的使用量”，或者“上限使用量”和“使用量”，就能够管理使用量。当用户Q登录到MFP中并操作操作面板130时，在显示单元170上显示使用量限制信息20，并且因此用户Q能够确认“可能的使用量”。

【0089】装置管理信息

【0090】图9说明了装置管理信息21的示例。在装置管理信息21中，登记了MFP自身的功能。例如，对于“扫描”功能，登记在扫描时能够设置的可读颜色（全彩色，黑白，双色，或单色），分辨率（100到600dpi），和扫描时扫描对应的原始文档类型（字符，照片，字符/照片）。

【0091】作为编辑功能，登记多页组合（2台1/4合1/8台1），用于以标记格式在原始文档上打印字符和符号的标记打印，用于防止非法打印的拷贝保护，用于通过图像处理进行缩小/放大的缩放（25%到200%），用于字符识别的OCR和用于对图像数据的文件格式进行转换的PDF。

【0092】作为输出功能，登记传真和打印。此外，在传真功能中，登记存储发送功能。在打
印功能中，登记打印速度（60页/分钟），能够输出的颜色（彩色、黑白、双色或单色）、能够输出的纸张尺寸（自动/A4/B4/A3）、功耗（黑白打印、彩色打印、待机时间）、装订、打孔和2折叠。对于装订和打孔，还登记纸张上用于实施这些功能的位置。

【0093】MFP 1和MFP 2交换它们的装置管理信息21，从而能够在MFP 1和MFP 2处理管理MFP 1能够向MFP 2进行请求的处理过程和MFP 2能够向MFP 1进行请求的处理过程。MFP 1和MFP 2获取在如上所述的通信装置的列表中登记的MFP的装置管理信息21，并在HDD 105中保存所获取的信息。

【0094】在协作期间的功能块的处理过程

【0095】图10说明了当MFP 1和MFP 2实施装置协作时的块之间的关系。在图10中，通过相同的附图标记来标注与图7中的要素相同的要素，并且不再对它们进行说明。可选托盘24是26是额外附加的纸张托盘，并且修整器25是用于执行装订、打孔、分类和捆绑的装置。

【0096】通信可能装置的列表

【0097】通信管理模块15包括确认被激活的其他MFP和服务器的通信可能装置23的列表。存在以下两种用于获取通信可能装置的列表的方法。

【0098】1）管理员事先在MFP 1中登记可能与之进行装置协作的MFP 2到4，并且MFP 1在通信可能装置的列表中登记所登记的MFP 2到4中的可能与其进行通信的MFP。

【0099】图11A说明了可能进行装置协作的MFP的IP地址的示例。为了能够实施装置协作，MFP需要具有装置协作的功能。此外，管理员并不有意地从装置协作的目标中排除MFP，或者MFP要被增加作为装置协作的目标。在下文中，能够实施装置协作的MFP被称为“装置协作使用MFP”。在每个MFP中，登记从其自身看到的装置协作使用MFP的IP地址。

【0100】例如，当MFP 1被激活时，MFP 1向在其自身和网络中登记的装置协作使用MFP报告MFP 1已经被激活。相应地，当装置协作使用MFP被激活时，装置协作使用MFP发送响应，并且因此MFP 1在通信可能装置的列表中登记从其接收到响应的装置协作使用MFP能够进行通信。同时，已经激活的装置协作使用MFP接收MFP 1已经被激活，并在它们相应的通信可能装置的列表中登记MFP 1。

【0101】图11B说明了通信可能装置的列表的示例。通信管理模块15在通信可能装置的列表中登记装置协作使用MFP中被确认为能够进行通信的MFP的IP地址。对于未被确认作为能够进行通信的MFP的IP地址，登记诸如“-”号之类指示未能被确认作为能够进行通信的数据。

【0102】2）MFP 1在网络中检测到能够实施装置协作的MFP 2到4。

【0103】例如，当MFP 1被激活时，MFP 1广播某广播分组，该广播分组请求将IP地址报送给能够实施装置协作的MFP。所有传输地址为“1”的广播分组能够向LAN 1中的所有装置查询是否能够进行装置协作。

【0104】此外，例如通过指明有向广播地址，可以向具有无关于路由器而指明的网络地址的MFP查询是否可以进行装置协作。能够执行装置协作的MFP所属的网络中的网络地址为管理员所知，并且因此能够容易地识别搜索范围。

【0105】更具体而言，对1）和2）进行组合，以检测能够执行装置协作的MFP。MFP 1在网络可能装置的列表中登记所检测到的MFP 2到4的IP地址。
用户认证

通过上述操作，用户根据通信可能装置的列表识别能否执行装置协作任务的 MFP 100，并且将用户信息从 MFP 1 发送到 MFP 2 到 4 被识别。这里，假设 MFP 2 执行来认证用户 Q 的过程的描述，其中假定 MFP 1 和 MFP 2 执行装置协作任务。

图 12 是指示由 MFP 1 和 MFP 2 执行的用于认证用户 Q 的过程的流程图的示例。

当用户 Q 操作 MFP 1 来执行装置协作任务时，用户 Q 登录到 MFP 1 中。相应地，复印应用 11 将认证请求发送到认证模块 18。认证请求包括由用户 Q 输入的用户名和口令。

认证模块 18 基于用户名和口令的组合是否被登记在使用量限制信息中，确定用户 Q 是否能够被成功认证（步骤 S1）。

当认证不成功时（步骤 S2 中的否），用户 Q 并不具有使用 MFP 1 的权限，因此图 12 的处理过程结束。

当认证成功时（步骤 S2 中的是），MFP 1 的用户信息发送单元 33 将用户 Q 的用户信息发送到 MFP 2（步骤 S3）。要被发送的用户信息包括作为必要信息的用户认证所需的用户名和口令、登录日期、登录装置、用户类型和认证方法。登录日期是用户 Q 已经登录到 MFP 1 中的日期（当认证成功时），登录装置是用户 Q 已经登录到的 MFP 1 的标识信息（例如 IP 地址），用户类型是指示诸如管理员之类的用户 Q 的权限的信息，并且认证方法指示本地认证或网络认证。此外，还可以发送用户 ID 和登录名称。

在用户被成功认证后发送用户信息的时机可以不是立即在成功认证之后，该时机可以是在确定用于执行装置协作任务的装置之后。

MFP 2 接收用户 Q 的用户信息（步骤 S5）。MFP 2 的任务管理模块 17 将认证请求发送到认证模块 18。

MFP 2 的认证模块 18 基于用户名和口令的组合是否被登记在使用量限制信息中来确定用户 Q 是否能被成功认证（步骤 S6）。

用户 Q 将认证结果发送到 MFP 1（步骤 S7）。MFP 1 接收认证结果（步骤 S4）。

认证结果可以指示认证 OK 或认证 NG。当 MFP 1 接收到认证 OK 时，MFP 1 能够将页码分配给 MFP 2 并开始执行装置协作任务。下面描述 MFP 1 接收到认证 NG 的情况。

当 MFP 1 与两个或更多个 MFP 执行装置协作任务时，MFP 1 的用户信息发送单元 33 将用户信息发送到所有的 MFP。

任务设置

任务播放时，复印应用 11 接收任务的执行条件的设置。

图 13 说明了在显示单元 170 上显示的装置协作任务的菜单的示例。例如，当用户 Q 通过装置协作任务命令进行复印时，用户 Q 按下操作面板 130 上的复印按钮，或者调用装置协作任务的设置屏幕。

例如在操作面板 130 中，显示了装置搜索按钮 301 和功能搜索按钮 302。装置搜索按钮 301 是用于使得 MFP 1 在通信可能装置的列表中搜索 MFP 的按钮。也就是说，装置协作任务是在装置协作任务之前，通信管理模块 15 通过与通信可能装置的列表中的 MFP 的通信，确认装置协作任务是可能的。并且，功能搜索按钮 302 是用于使得 MFP 1 从通信可能装置的列表中的 MFP 中，搜索能够提供由用户 Q 设置的功能的 MFP 2 到 4。
列表”屏幕的示例。MFP 1 显示在通信可能装置的列表中的 MFP 中已经响应为能够执行装置协作任务的 MFP 2 到 4 的列表（图 13 中为两个）。响应的 MFP 将其装置名称和 IP 地址发送到 MFP 1。此时，响应的 MFP 发送装置管理信息 21。用户 Q 确认具有期望功能的目标 MFP 位于列表中，并按下条件设置按钮 311。

[0124] 图 13 (d) 是当用户 Q 按下条件设置按钮 311 时显示的“协作任务 - 扫描设置”屏幕的示例。在该屏幕中，为每个 MFP 显示扫描设置菜单。如图 13 (d) 中所示，装置名称在标签 321 中被显示为“自有装置（参见 MFP 1）”、“IMAGiCS（MFP 2）”和“IPUKS（MFP 3）”。用户 Q 能够通过选择标签 321 来选择用于进行扫描设置的 MFP。

[0125] 当用户 Q 选择装置名称的标签 321 时，MFP 1 基于装置管理信息 21，仅显示用于所选择的 MFP 的 (能够被选择的) 有效菜单。

[0126] 用户 Q 能够根据所选择的 MFP 的有效菜单，设置诸如颜色选择、原始文档类型和密度之类的扫描条件。当用户 Q 设置用于扫描原始文档的 MFP 和扫描条件时，用户 Q 顺序地选择编辑设置按钮 322 和打印设置按钮 323。当用户 Q 选择编辑设置按钮 322 时，为每个 MFP 显示用于选择装置能够提供的编辑功能的菜单。类似地，当用户选择打印设置按钮 323 时，为每个 MFP 显示用于选择装置能够提供的打印功能的菜单。对于扫描设置，用户 Q 能够为单个 MFP 设置条件，但是对于打印设置和编辑设置，用户 Q 能够为多个 MFP 或服务器设置条件。最后，通过按下执行按钮 324，开始装置协作任务。

[0127] 此外，图 13 (c) 是当用户 Q 按下功能搜索按钮 302 时显示的“协作任务 - 功能搜索”示例。MFP 1 根据在该搜索的其他 MFP 的装置管理信息 21，显示能够针对“扫描条件”、“编辑条件”和“打印条件”的处理过程中的每一个设置的菜单。用户 Q 选择适当的标签作为搜索关键字的“扫描条件”、“编辑条件”和“打印条件”。

[0128] 在设置条件后，当用户 Q 按下搜索按钮 331 时，MFP 1 相关于“扫描条件”、“编辑条件”和“打印条件”，搜索从另一个 MFP 获取的装置管理信息 21。通过这样做，可以识别能够根据由用户 Q 设置的“扫描条件”来实施扫描的 MFP，能够根据“编辑条件”实施编辑的 MFP 或服务器和能够根据“打印条件”的实施打印的 MFP。

[0129] 存在搜索命令中匹配“扫描条件”的多个装置、匹配“编辑条件”的多个装置和匹配“打印条件”的多个装置的情况。在这种情况下，如图 13 (b) 所示，MFP 1 可以显示针对“扫描条件”、“编辑条件”和“打印条件”中的每个的装置，或者可以将装置的数量缩减为小于或等于预定数量。为了将装置的数量缩减为小于或等于预定数量，可以实施如下方法，即对装置自身（例如 MFP1）做出优先的方法，对减少资源负荷的 MFP 做出优先的方法和对被放置在接近装置自身的位置（物理间距或通信间距）处的 MFP 做出优先的方法。

[0130] MFP 1 显示对所与图 13 (d) 的屏幕类似的屏幕进行搜索而命中的一个或多个 MFP。也就是说，MFP 1 通过“扫描设置”、“编辑设置”和“打印设置”，显示匹配条件的 MFP。在图 13 (c) 中设置“扫描条件”、“编辑条件”和“打印条件”，因此用户 Q 无需再次设置条件。用户 Q 在确认条件和处理过程的 MFP 后，按下“执行”按钮。相应地，MFP 1 开始装置协作任务。

[0131] 图 14A 说明了当用户 Q 按下图 13 (d) 中的打印设置按钮 323 时的打印设置的第一屏幕的示例。在图 14A 中，用户可以选择是对于多个 MFP 设置公共的打印条件还是对于各个 MFP 设置独立的打印条件。在选择公共设置的情况下，用户 Q 选择多于一个 MFP。在选
选择独立设置的情况下，用户可以选择 MFP 的打印条件设置在下一屏幕中。

此外，当用户选择复制应用或打印机应用时，MFP 可以从通信可能装置的列表中获取从第一打印操作的经过的时间和用于恢复能够打印的温度 (打印温度) 的功耗。因此，如果用户选择了具有自最后操作起的经过时间的 MFP 或选择具有用于恢复打印机的温度的低功耗的 MFP，则可以减小功耗。

图 14B 说明了用于打印条件中的公共设置的屏幕的示例。当用户选择公共设置时，用户可以选择设置对于各个 MFP 公共的打印条件，例如白色 / 黑白、纸张尺寸、复印数量和缩放。公共打印条件是与从通信可能装置的列表中的 MFP 接收的装置管理信息的最大公共特征 (largest common denominator) 相对应的内容。例如，当 MFP 可以执行彩色打印和黑白打印两者并且 MFP 仅能够执行黑白打印时，在图 14B 的“彩色 / 黑白”菜单中不显示彩色。类似地，在“纸张尺寸”菜单中，仅显示在 MFP 1 和 MFP 2 中均能够选择的纸张尺寸。在“缩放”菜单中，仅设置在 MFP 1 和 MFP 2 中均能够选择的缩放范围。仅当 MFP 1 和 MFP 2 中能够选择分类和装订时，才显示分类和装订。

此外，拷贝的数量 (页数) 被分配给作为公共设置的目标 MFP。用户可以选择设置是否分配多个拷贝或多页。

图 14C 说明了打印条件中的独立设置的屏幕的示例。当用户选择独立设置时，可以针对每个 MFP 设置诸如纸张尺寸、拷贝数量和缩放之类的通用打印条件。相应的 MFP 打印出设置的拷贝数量。

数数使用量

数数器管理模块 19 通过预先设置的方法来对使用量进行计数。以下的计数方法仅是例示性的，装置可以使用不同的计数方法。

(1) 复印应用、打印机应用

(i) 独立地对彩色打印和黑白打印进行计数

(ii) 将一页的打印计数为一页

(iii) 将在大于或等于预定纸张尺寸的纸张 (例如 A3) 上进行的打印计数为两页

(2) 传真应用 (使用由管理员设置的以下内容中的任意一种)

(i) 对发送时的页数进行计数 (在传真发送中很少使用彩色打印，并且在传真发送中大于或等于 A3 的纸张尺寸也很少见)

(ii) 将一个发送目的地计数为一个，而无关于被发送的页数

(iii) 对发送的页的总数量 (发送 x 个目的地时的页数) 进行计数

在复印应用或打印应用的情况下，或者管理模块 16 或资源管理模块 14 通过每一行来对打印数量进行计数。每次打印一图时或当任务完成时，任务管理模块 17 获取打印的页的数量，根据上述计数方法对打印数量进行计数，并更新使用量限制信息 20 中的使用量和可能的使用量。类似地，在传真应用 13 中，任务管理模块 16 或任务管理模块 17 对扫描的原始文档的页数或图像数据的页数进行计数。任务管理模块 17 获取任务完成时的页数，并更新使用量限制信息 20 中的使用量和可能的使用量。

任务信息

当接收任务执行条件的设置时，图 10 中的复印应用 11 将任务执行请求发送到
任务管理模块 17。任务管理模块 17 根据执行条件生成任务信息。

【0149】图 15A 到 15E 说明了任务信息的示例。装置协作任务是按 “1. 输入→ 2. 编辑→ 3. 输出”的顺序执行的。对于每个处理过程，登记“主管装置”，并登记输入条件、编辑条件和输出条件。

【0150】复制应用

【0151】图 15A 说明了作为比较而示出的其中仅 MFP 1 实施打印的复制应用 11 的任务的示例。在复制应用中，主管输入的装置是 MFP 1，主管编辑的装置是 MFP 2，而主管输出（打印）的装置是 MFP 1。

【0152】图 15B 说明了由 MFP 1 和 MFP 2 打印的复制应用 11 的装置协作任务的示例。在复制应用中，主管输入的装置是 MFP 1，主管编辑的装置是 MFP 2，而主管输出（打印）的装置是 MFP 1 和 MFP 2。如上所述，为了划分 MFP 1 和 MFP 2 的打印操作，在“打印设置”中选择“公共装置”。

【0153】分配数量确定单元 31 将多个拷贝分配给相应的主管装置（打印数量）。下面描述确定所分配的页数的方法。图 15C 说明了其打印数量被分配给 MFP 1 和 MFP 2 的装置协作任务的示例。与图 15B 相比，创建了两个输出处理过程，并且 MFP 1 和 MFP 2 被设置为相应的主装置。下面描述确定分配的页数的方法。任务管理模块 17 向 MFP 2 发送主管输出的装置为 MFP 2 的打印请求以及任务信息（可发送整个任务信息）。在“打印设置”中，当用户选择“独立设置”时，直接生成图 15C 的任务信息。这里不描述用户认证。

【0154】下面描述在图 15C 的情况下的复印应用 11 的过程的总结。

【0155】1. 首先，任务管理模块 17 将装置自身的扫描仪引擎的使用请求发送到资源管理模块 14。资源管理模块 14 确认扫描仪引擎的使用标志并指示“在使用中”，并保护扫描仪引擎。接下来，资源管理模块 14 从任务管理模块 17 获取扫描条件（双面扫描、原始文档类型（字符）、300dpi、黑白），将扫描任务设置在扫描仪引擎中，并扫描原始文档。资源管理模块 14 利用传感器检测在 ADF（自动文档馈送器）中不再有原始文档，并将扫描的完成报告给任务管理模块 17。原始文档的所生成的图像数据被存储在 HDD 105 中。当已知图像数据的页数时，能够确定所分配的页数。

【0156】2. 由于主管编辑的装置是 MFP 2，因此任务管理模块 17 将图像数据和编辑条件经由通信管理模块 15 发送到 MFP 2。MFP 2 对图像数据执行 4 合 1 处理过程（将四页组合到一页纸张上），并将经过处理的图像数据发送到 MFP 1。通信管理模块 15 向任务管理模块 17 报告已经从 MFP 2 接收到了图像数据。

【0157】任务管理模块 17 将其主管装置为 MFP 2 的任务信息和图像数据发送到 MFP 2。

【0158】3. MFP 1 和 2 的任务管理模块 17 至少在打印所有页之前，确认所分配的页数是否小于或等于使用量限制信息 20 中的可能的使用量。具体而言，计数器管理模块 19 对要打印的页数进行计数，并将其与可能的使用量进行比较。当所计数的分配的页数大于可能的使用量时，实施以下的控制操作。在 MFP 1 的设置中定义实施以下控制操作中的哪一个。

【0159】- 根据被设置为上限的可能的使用量来打印多个页

【0160】- 放弃装置协作任务而不打印任何页

【0161】4. MFP 1 和 MFP 2 的任务管理模块 17 将装置自身的扫描仪引擎的使用请求发送到资源管理模块 14。资源管理模块 14 确认扫描仪引擎的使用标志并不指示“在使用中”，并
保护绘图仪引擎。接下来，资源管理模块 14 从任务管理模块 17 获取打印条件（黑白、三个
拷贝（MFP 1）或两个拷贝（MFP 2），A4，打孔），在绘图仪引擎中设置打印条件，并执行打印。
资源管理模块 14 向任务管理模块 17 报告已经完成了所有页的打印。

【0162】

传真应用

【0163】图 15（d）说明了传真应用的装置协作任务的任意信息的示例。在图 15（d）中，主
管输入的装置是 MFP 1，主管编辑的装置是 MFP 1，并且主管输出（传真发送）的装置是 MFP
1 和 MFP 2。为了将传真发送操作划分到 MFP 1 和 MFP 2 中，用户 Q 在扫描仪应用的发送设
置中设置与复制应用的拷贝数量相对应的多个目的地（传真号码）。

【0164】当存在多个目的地时（在广播情况下），分配数量确定单元 31 以目的地为单位确定
每个主管装置的目的地。例如，当存在两个目的地并且存在两个主管传真发送的 MFP 时，每
个 MFP 变为主管一个目的地。当存在 N 个目的地并且存在 M 个主管传真发送的 MFP 时，每
个 MFP 变为主管 N/M 个目的地。

【0165】此外，将目的地分配给接近目的地的 MFP 是有效率的。例如，当 MFP 1 位于东京而
MFP 2 位于大阪时，相应的区域代码为 03 和 06，具有区域代码 03 的目的地被分配给 MFP 1，
而具有区域代码 06 的目的地被分配给 MFP 2。通过这样做，能够降低通信成本。在这种情况
下，制备要由每个 MFP 应对的目的区域代码的表格。

【0166】图 15E 说明了其目的地被分配给 MFP 1 和 MFP 2 的装置协作任务的示例。与图
15D 相比，创建了两个输出处理过程，并且 MFP 1 和 MFP 2 被分别设置为主管每个输出处理
过程的装置。任务管理模块 17 向 MFP 2 发送其主管输出的装置是 MFP 2 的任务信息（可以
发送整个任务信息）。

【0167】在图 15E 的情况下，下面简要描述传真应用的过程。在这里并不描述用户认证。

【0168】1. 输入处理过程相同于复印应用的情况下下的输入处理过程。在 HDD 105 中存储
通过扫描生成的原始文档的图像数据。

【0169】2. 由于主管编辑的装置是 MFP 1，因此任务管理模块 17 将图像数据放大 120%。

【0170】任务管理模块 17 向 MFP 2 发送其主管装置是 MFP 2 的任务信息和图像数据。

【0171】3. MFP 1 和 MFP 2 的任务管理模块 17 在开始传真发送之前，确认页数小于或等于
使用量限制信息 20 的可能的使用量。当页数大于可能的使用量时，实施以下的控制操作。
在 MFP 1 的设置中定义实施以下控制操作中的哪一个。

【0172】- 根据作为上限设置的可能的使用量实施传真发送

【0173】- 放弃装置协作任务，而不实施传真发送

【0174】4. MFP 1 和 MFP 2 的任务管理模块 17 将对使用装置自身的 FCU 140 的使用请
求发送到资源管理模块 14。资源管理模块 14 确认 FCU 140 的使用标记并不表示“在使用
中”，并保护 FCU 140。接下来，资源管理模块 14 从任务管理模块 17 获取传真发送条件（目
目的地的传真号码），在 FCU 140 中设置传真传输条件，并执行打印。资源管理模块 14 向任务
管理模块 17 报告已经完成了所有页的传真发送。

【0175】当 MFP 1 和 MFP 2 执行装置协作任务时的操作过程

【0176】图 16A 和 16B 是说明了由 MFP 1 和 MFP 2 实施的认证用户 Q 执行装置协作任务
的过程的时序图。这里，将复印应用 11 作为示例。

【0177】认证模块 18 认证用户 Q，并将认证结果报告给复印应用（步骤 S10）。

18
当认证成功时，用户Q设置任务执行条件。复印应用将对装置协作任务的任务执行请求发送到任务管理模块17（步骤S20）。

任务管理模块17与资源管理模块14和引擎管理模块16协作地执行输入处理过程（步骤S30）。通过扫描原始文档并生成图像数据，定义图像数据的页数。具体而言，当条件包括50页纸张的原始文档时，如下方式计算双面扫描、4合1合并、单面打印、打印五个拷贝和每个拷贝的页数。

50×2（双面）/4=25页
因此，在五个拷贝的情况下，如下方式计算页数。
25页×5个拷贝=125页
接下来，任务管理模块17请求计数器管理模块19来获取使用量限制信息20（步骤S40）。

计数器管理模块19从使用量限制信息20中读取可能的使用量，并将可能的使用量发送到任务管理模块17（步骤S50）。

接下来，用户信息发送单元33请求通信管理模块15认证MFP2的用户Q（步骤S60）。该请求包括用户信息。MFP1的通信管理模块15将对用户Q的认证请求发送到MFP2的通信管理模块15（步骤S70）。MFP2的通信管理模块15将对用户Q的认证请求发送到认证模块18（步骤S80）。

MFP2的认证模块18认证用户Q（步骤S90）。认证模块18将认证结果发送到MFP1的任务管理模块17（步骤S100到S120）。这里，假定认证成功。

接下来，任务管理模块17请求通信管理模块15从MFP2获取装置管理信息21（步骤S130）。通信管理模块15与MFP2的通信管理模块15进行通信（步骤S140）。MFP2的通信管理模块15请求资源管理模块14提供装置管理信息21（步骤S150）。在图16A和16B中并无示出资源管理模块14。资源管理模块14读取装置管理信息21，并将装置管理信息21发送到通信管理模块15（步骤S160）。MFP2的通信管理模块15将装置管理信息21发送到MFP1的通信管理模块15（步骤S170）。MFP1的通信管理模块15将MFP2的装置管理信息21发送到任务管理模块17（步骤S180）。

这里，如果需要，则任务管理模块17确定为MFP1和MFP2分配的页数。“如果需要”表示用户已经选择图14A中的公共设置时。当用户已经选择独立设置时，由用户来设置MFP1和MFP2的拷贝的数量，并且因此任务管理模块17并不需要确定为MFP1和MFP2分配的页数。

当确定分配的页数时，任务管理模块17的分配页数确定单元31基于MFP1和MFP2的装置管理信息21，确定为MFP2分配的页数（步骤S190）。例如，存在以下三种确定分配的页数的方法。

a) 基于打印速度确定要被分配的页数

分配页数确定单元31确定要分配给MFP2的页数，从而最快速地完成打印。当MFP1和MFP2基本上同时完成打印时，最快速地完成打印，并且因此可以通过以下公式来确定要分配给MFP2的页数。假定MFP1的打印速度是n1页纸张/每分钟，MFP2的打印速度是n2页纸/每分钟，并且总页数为N。结果被取整。

要分配给MFP2的页数 = \[N \times \left(\frac{n2}{n1+n2} \right) \]
当打印了多个拷贝时，N=页数（如上所述为25页）。当打印了多个拷贝时，N=拷贝的页数（如上所述为25页），或被除以该拷贝数时，其页数被分配给具有更少的打印速度的MFP，从而以拷贝为单位来分配页数。也就是说，5×2=205，并且因此两个拷贝被分配给MFP 1，三个拷贝被分配给MFP 2（当MFP 2具有更高的打印速度时）。

当打印了多个拷贝并且N=页数，并且被分配给MFP 2的页数并不是25页的整倍数时，与一个拷贝对应的25页被分配给MFP 1和MFP 2。也就是说，计算从被分配给MFP 2的页数÷25页得到的商和余数，以及从被分配给MFP 1的页数÷25页得到的商和余数。MFP 2打印与商对应的多个拷贝和与余数对应的多页（例如，小数量的页），并且MFP 1打印与商对应的多个拷贝和与余数对应的多页（例如，大数量的页）。

通过根据打印速度确定要被分配的页数，能够最小化完成任务花费的时间。

分配给MFP 1的页数 = $n_1 \times \frac{n_1}{(n_1+n_2+n_3)}$

分配给MFP 2的页数 = $n_2 \times \frac{n_2}{(n_1+n_2+n_3)}$

分配给MFP 3的页数 = $n_3 \times \frac{n_3}{(n_1+n_2+n_3)}$

b）基于打印功耗确定要被分配的页数

当在利用MFP和MFP 2进行打印的情况下功耗不同时，可以通过利用低功耗的MFP打印所有的页来以最小的功耗执行任务。在这种情况下，无论在多个MFP之间划分打印，并且因此打印时间更长。然而当以拷贝为单位在彩色打印和黑白打印之间切换打印时，能够利用针对彩色打印具有低功耗的MFP。通过打印被指明为彩色的拷贝，并利用针对黑白打印具有低功耗的MFP。通过打印被指明为黑白的拷贝，来最小化功耗。例如，当MFP 1的彩色打印的功耗为40W・h，MFP 1的黑白打印的功耗为10W・h。MFP 2的彩色打印的功耗为30W・h。例如，当MFP 2的黑白打印的功耗为13W・h时，分配页数确定单元31将被指明为彩色打印的拷贝分配给MFP 2，并将被指明为黑白打印的拷贝分配给MFP 1。

此外，当执行彩色或黑白的单色打印时，可以利用功耗来对打印速度进行加权以确定要被分配给MFP 2的页数。例如，假定MFP 1的彩色或黑白的功耗为w_1W・h。MFP 2的彩色或黑白的功耗为w_2W・h，如下方式计算加权的打印速度。也就是说，通过随着功耗越高而对利用越低的权重来对打印速度进行加权，可以降低分配给具有高功耗的MFP的页数。

MFP 1的打印速度 = $n_1 \times \frac{1}{(w_1+w_2)}$

MFP 2的打印速度 = $n_2 \times \frac{1}{(w_2+w_2)}$

c）基于均等分配来确定要被分配的页数

当均等地分配页数时，MFP 1并不需要获取MFP 2的装置信息，并且将总页数除以MFP的数量。

当确定了分配的页数时，任务管理模块17的使用量确定单元32确定分配给MFP 1的分配的页数是否小于或等于针对用户Q的MFP 1的可能的使用量（步骤S200）。当MFP 1的分配的页数小于或等于针对用户Q的MFP 1的可能的使用量时，MFP 1的任务管理模块17与资源管理模块14和引擎管理模块16协作来打印所分配的页数（步骤S240）。任务管理模块17以输出为单位将打印结果报告给计数器管理模块19（步骤S241）。计数器管理模块19以输出为单位更新MFP 1的可能的使用量（步骤S242）。例如当MFP 1的分配的页数并不小于或等于MFP 1的可能的使用量时，任务管理...
模块 17 在显示单元上显示出错消息，并向用户询问是部分地执行打印还是取消任务。

【0210】在打印之前或在打印的同时，任务管理模块 17 请求通信管理模块 15 发送图像数据（步骤 S210）。MFP 1 的通信管理模块 15 将图像数据发送到 MFP 2 的通信管理模块 15（步骤 S220）。MFP 2 的通信管理模块 15 将图像数据发送到任务管理模块 17（步骤 S230）。

【0211】MFP 1 的任务管理模块 17 请求通信管理模块 15 发送所有的任务信息中输出处理过程的任信息，包括 MFP 2 的分配的页数（步骤 S250）。通信管理模块 15 将任务信息发送到 MFP 2 的通信管理模块 15（步骤 S260）。MFP 2 的通信管理模块 15 将任务信息发送给任务管理模块 17（步骤 S270）。

【0212】MFP 2 的任务管理模块 17 请求计数器管理模块 19 获取使用量限制信息 20（步骤 S280）。计数器管理模块 19 从使用量限制信息 20 中读取可能的使用量，并将可能的使用量发送给任务管理模块 17（步骤 S290）。

【0213】MFP 2 的任务管理模块 17 的使用量确定单元 32 确定被分配给 MFP 2 的分配的页数是否小于或等于 MFP 2 的可能的使用量（步骤 S300）。

【0214】当 MFP 2 的分配的页数小于或等于 MFP 2 的可能的使用量时，任务管理模块 17 与资源管理模块 14 和引擎管理模块 16 协作来打印所分配的页数（步骤 S310）。

【0215】例如当 MFP 2 的所分配的页数小于或等于 MFP 2 的可能的使用量时，任务管理模块 17 将此报告给 MFP 1，并在显示单元上显示出错消息，并向用户询问是部分执行打印还是取消任务。

【0216】MFP 2 的任务管理模块 17 以输出为单位将打印结果报告给计数器管理模块 19（步骤 S311）。计数器管理模块 19 以输出为单位更新 MFP 2 的可能的使用量（步骤 S312）。

【0217】当完成了所分配的页数的打印时，MFP 2 的任务管理模块 17 将打印执行结果发送到通信管理模块 15（步骤 S320）。通信管理模块 15 将打印执行结果发送到 MFP 1 的通信管理模块 15（步骤 S330）。MFP 1 的通信管理模块 15 将打印执行结果发送到任务管理模块 17（步骤 S340）。

【0218】MFP 1 的任务管理模块 17 等待装置自己的打印结束，并将任务执行结果发送到复印应用（步骤 S350）。

【0219】如上所述，在根据本实施例的装置协作系统 200 中，并未直接由用户 Q 操作的 MFP 2 认证用户 Q，并且 MFP 2 减去用户 Q 的可能的使用量，并且因此能够在装置协作任务中管理使用量。

【0220】在图 16A 和 16B 中，将复印应用作为示例，但在传真应用的情况下也可以实施同量的过程，但确定分配的页数的方法是不同的。

【0221】MFP 2 无法认证用户 Q 的情况 - 部分 1-

【0222】下面描述 MFP 2 无法认证用户 Q 的情况。如果 MFP 2 无法认证用户 Q，则假定 MFP 2 并不会打印被分配给用户 Q 的分配的页数。相应地，下面描述装置协作系统，在该装置协作系统中，当 MFP 2 无法认证用户 Q 时，MFP 1 取消装置协作任务的执行。

【0223】图 17 是说明了由 MFP 1 和 MFP 2 实施的认证用户 Q 和执行装置协作任务的过程的时序图。在图 17 中，直至步骤 S120 的过程与图 16A 和图 16B 中的过程相同。

【0224】MFP 2 的认证模块 18 认证用户 Q（步骤 S90）。当认证不成功时，认证模块 18 将指示认证 NG 的认证结果发送到 MFP 1 的任务管理模块 17（步骤 S100 至 S120）。
由于认证不成功，MFP 1 的任务管理块 17 取消了任务（步骤 S121）。此外，任务管理块 17 在显示单元上显示出错消息（步骤 S122）。该消息的示例为“协作装置无法认证用户。任务将被取消”。用户 Q 观看到出错消息，并可以采取其他措施，例如选择另一装置（MFP 3）或仅利用 MFP 1 来执行任务。

根据图 17 中的处理过程，无法由 MFP 2 认证的用户被禁止使用 MFP 2，并且因此能够准确地限制使用量。

MFP 2 无法认证用户 Q 的情况 - 部分 2-

当 MFP 2 无法认证用户 Q 时，假定 MFP 2 并不会打印被分配给用户 Q 的分配的页数。然而，MFP 1 能够对使用量进行计数，并且因此在执行任务的 MFP 1 中并不存在问题。此外，如果用户 Q 在 MFP 1 处能够设置是否执行任务，则增强了便利性。相应地，给出了装置协作系统的描述，在该装置协作系统中，当 MFP 2 无法认证用户 Q 时，MFP 1 向用户 Q 询问要采取的措施。

图 18A 和 18B 是说明了由 MFP 1 和 MFP 2 实施的认证用户 Q 和执行装置协作任务的过程的时序图。在图 18A 和图 18B 中，直至步骤 S120 的过程与图 16A 和 16B 中的过程相同。

认证不成功，并且因此 MFP 1 的任务管理块 17 在显示单元上显示出错消息（步骤 S123）。消息例如是“协作装置无法认证用户。取消任务？请选择是或否”。

当用户 Q 选择“是”时，任务管理块 17 取消任务，如参照图 17 所述。

当用户 Q 选择“否”时，任务管理块 17 例如显示如下消息。

“利用该 MFP 执行全部任务？请选择是或否。”

当用户 Q 选择“否”时，任务管理块 17 取消任务，如参照图 17 所述。

当用户 Q 选择“是”时，任务管理块 17 利用单个 MFP 执行任务。当利用单个 MFP 执行任务时，任务管理块 17 的使用量确定单元 32 与资源管理块 14 和引擎管理块 16 协作来打印总页数（步骤 S240–2）。

任务管理块 17 以输出为单位将打印结果报告给计数器管理模块 19（步骤 S241）。计数器管理模块 19 以输出为单位更新 MFP 1 的可能的使用量（步骤 S242）。

MFP 1 的任务管理块 17 等待装置自己的打印结束，并将任务执行结果发送到复印件（步骤 S350）。

根据图 18A 和 18B 的处理过程，当 MFP 2 无法认证用户时，MFP 2 无法执行任务，并且因此能够准确地限制使用量。此外，用户能够利用 MFP 1 打印总页数，并且因此能够防止便捷性的变差。

MFP 2 无法认证用户 Q 的情况 - 部分 3-

当 MFP 2 无法认证用户 Q 时，MFP 2 无法打印被分配给用户 Q 的分配的页数，但可以存在仅在 MFP 2 中有效的修改过程。在这种情况下，如果用户 Q 能够使用 MFP 2，则是便捷的。同时，如果 MFP 2 执行打印，MFP 2 尚未认证用户 Q，并且因此无法从可能的使用量中减去打印的页数。相应地，给出装置协作系统的描述，在该装置协作系统中，MFP 2 无法认证用户 Q。MFP 1 和 2 执行装置协作任务，但 MFP 1 从 MFP 1 的可能的使用量中减去 MFP 1 和 MFP2 的使用量。

图 19A 和 19B 是说明了由 MFP 1 和 MFP 2 实施的认证用户 Q 和执行装置协作任务
的过程的时序图。在图 19A 和图 19B 中，直至步骤 S120 的过程与图 16A 和图 16B 中的过程相同。

MFP 2 的认证模块 18 认证用户 Q（步骤 S90）。当认证未成功时，认证模块 18 将指示认证 NG 的认证结果发送到 MFP 1 的任务管理模块 17（步骤 S100 到 S120）。

当认证未成功时，MFP 1 的任务管理模块 17 请求打印被分配给 MFP 2 的分配的页数而不限制使用量，并且从 MFP 1 的可能的使用量中减去打印的总页数。

首先，任务管理模块 17 请求通信管理模块 15 从 MFP 2 获取装置管理信息 21（步骤 S130）。通信管理模块 15 请求 MFP 2 的通信管理模块 15 发送装置管理信息 21（步骤 S140）。MFP 2 的通信管理模块 15 请求资源管理模块 14 提供装置管理信息 21（步骤 S150）。资源管理模块 14 并未在图 16A 和 16B 中示出。资源管理模块 14 提取装置管理信息 21，并将装置管理信息 21 发送到通信管理模块 15（步骤 S160）。MFP 2 的通信管理模块 15 将装置管理信息 21 发送到 MFP 1 的通信管理模块 15（步骤 S170）。MFP 1 的通信管理模块 15 将 MFP 2 的装置管理信息 21 发送到任务管理模块 17（步骤 S180）。

接下来，任务管理模块 17 的分配数量确定单元 31 根据 MFP 1 和 MFP 2 的装置管理信息 21，确定向 MFP 2 分配的页数（步骤 S190）。在上文中已经给出了细节，并且因此不再进行进一步的描述。

当确定了所分配的页数时，任务管理模块 17 的使用量确定单元 32 确定总页数是否小于或等于 MFP 1 的可能的使用量（步骤 S202）。

当总页数小于或等于 MFP 1 的可能的使用量时，任务管理模块 17 请求通信管理模块 15 发送图像数据（步骤 S210）。通信管理模块 15 将图像数据发送到 MFP 2 的通信管理模块 15（步骤 S220）。MFP 2 的通信管理模块 15 将图像数据发送到任务管理模块 17（步骤 S230）。

例如当总页数不小于或等于 MFP 1 的可能的使用量时，任务管理模块 17 在显示单元上显示出错消息，并向用户查询是部分地执行打印还是取消任务。

MFP 1 的任务管理模块 17 与响应管理模块 14 和引擎管理模块 16 协作来打印所分配的页数（步骤 S240）。任务管理模块 17 以输出为单位向计数器管理模块 19 报告打印结果（步骤 S241）。计数器管理模块 19 以输出为单位更新 MFP 1 的使用量（步骤 S242）。

在打印之前，或者在打印的同时，MFP 1 的任务管理模块 17 请求通信管理模块 15 发送所有任务信息中的输出处理过程的任务信息，包括 MFP 2 的所分配的页数（步骤 S250）。任务信息包括禁止减去使用量的指令。

通信管理模块 15 将任务信息发送到 MFP 2 的通信管理模块 15（步骤 S260）。MFP 2 的通信管理模块 15 将任务信息发送到任务管理模块 17（步骤 S270）。

MFP 2 的任务管理模块 17 无需读取使用量限制信息或确定被分配给 MFP2 的所分配的页数是否小于或等于 MFP 2 的可能的使用量。

MFP 2 的任务管理模块 17 与资源管理模块 14 和引擎管理模块 16 协作来打印所分配的页数（步骤 S310）。

当打印所分配的页数完成时，MFP 2 的任务管理模块 17 将打印执行结果发送给通信管理模块 15（步骤 S320）。通信管理模块 15 将打印执行结果发送给 MFP 1 的通信管理模块 15（步骤 S330）。MFP 1 的通信管理模块 15 将打印执行结果发送给任务管理模块 17
（步骤 S340）。

[0255] 任务管理模块 17 将 MFP 2 的执行结果报告给计数器管理模块 19（步骤 S341），并且计数器管理模块 19 集中地更新 MFP 2 的可能的使用量（步骤 S342）。

[0256] MFP 1 的任务管理模块 17 监待装置自己的打印结束，并将任务执行结果发送给复印应用（步骤 S350）。

[0257] 根据图 19A 和 19B 中的过程，MFP 1 中地管理装置协作系统的使用量，并且因此即使 MFP 2 无法认证用户，MFP 1 和 MFP 2 也能够执行装置协作任务。

[0258] MFP 2 无法认证用户 Q 的情况下，部分 4。

[0259] 可能存在每个 MFP 管理客户的可能的使用量的情况。设置客户的可能的使用量，从而用户能够在例如商务旅行期间使用 MFP。

[0260] 当 MFP 2 无法通过使用客户的该可能的使用量认证用户 Q 时，MFP 2 可以打印所分配的页数。相应地，给出装置协作系统的描述，在该装置协作系统中，从客户的可能的使用量中减去使用量。

[0261] 图 20A 和 20B 是说明了通过 MFP 1 和 MFP 2 实施的认证用户 Q 和执行装置协作任务的过程的时序图。图 20A 和 20B，直到步骤 S120 的过程与图 16A 和 16B 中的过程相同。

[0262] MFP 2 的认证模块 18 认证用户 Q（步骤 S90）。当认证不成功时，认证模块 18 将指示认证 NG 的认证结果发送到 MFP 1 的任务管理模块 17（步骤 S100 到 S120）。

[0263] 当认证不成功时，MFP 1 的任务管理模块 17 请求 MFP 2 在客户的可能的使用量范围内打印所分配的打印页数。因此，后续过程与图 16A 和 16B 的过程相同，而不同之处在于减少的目标是客户的可能的使用量，而不是 MFP 2 的可能的使用量。

[0264] 也就是说，在步骤 S280 中，MFP 2 的任务管理模块 17 请求计数器管理模块 19 获取客户的使用量限制信息 20（步骤 S280）。计数器管理模块 19 从使用量限制信息 20 中取得客户的可能的使用量，并将可能的使用量发送到任务管理模块 17（步骤 S290）。

[0265] MFP 2 的任务管理模块 17 的使用量确定单元 32 确定被分配给 MFP 2 的分配的页数是否小于或等于客户的可能的使用量（步骤 S300）。

[0266] 当 MFP 2 的所分配的页数小于或等于客户的可能的使用量时，任务管理模块 17 与资源管理模块 14 和引擎管理模块 16 协作来打印所分配的页数（步骤 S310）。

[0267] MFP 2 的任务管理模块 17 以输出为单位将打印结果报告给计数器管理模块 19（步骤 S311）。计数器管理模块 19 以输出为单位更新客户的数据量（步骤 S312）。

[0268] 当打印所分配的页数完成时，MFP 2 的任务管理模块 17 将执行结果发送到通信管理模块 15（步骤 S320）。通信管理模块 15 从打印执行结果发送到 MFP 1 的通信管理模块 15（步骤 S330）。MFP 1 的通信管理模块 15 将打印执行结果发送到任务管理模块 17（步骤 S340）。

[0269] MFP 1 的任务管理模块 17 等待装置自己的打印结束，并将任务执行结果发送到复印应用（步骤 S350）。

[0270] 根据图 20A 和 20B 的处理过程，即使 MFP 2 无法认证用户 Q，MFP 1 和 MFP 2 也能够在客户的可能的使用量的范围内执行装置协作任务。

[0271] 根据本发明的一个实施例，提供了装置协作系统和功能提供方法。通过这样的装置协作系统和功能提供方法，当执行装置协作时，即使在没有用于认证的服务器的情况下，
也能够限制用户的使用量。
[0272] 装置协作系统和功能提供方法并不限于在这里描述的具体实施例，可以对其进行各种各样的修改和变更而不会偏离本发明的范围。
[0273] 本申请基于 2011 年 9 月 7 日提交的日本在先专利申请 No. 2011-194974，其全部内容通过引用方式并入到本文中。
图 2
<table>
<thead>
<tr>
<th>复印应用</th>
<th>扫描原稿文件</th>
<th>图像处理</th>
<th>扫描应用</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFP 1</td>
<td>MFP 1</td>
<td>MFP 1</td>
<td>MFP 1</td>
</tr>
<tr>
<td>MFP 2</td>
<td>MFP 2</td>
<td>MFP 2</td>
<td>MFP 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>打印</th>
<th>后处理</th>
<th>发送</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFP 2</td>
<td>MFP 1, MFP 2</td>
<td>MFP 2 电子邮件，发送到文件夹</td>
</tr>
<tr>
<td>MFP 1</td>
<td>MFP 2</td>
<td>MFP 2 电子邮件，发送到文件夹</td>
</tr>
<tr>
<td>MFP 1</td>
<td>MFP 2</td>
<td>MFP 2 电子邮件，发送到文件夹</td>
</tr>
<tr>
<td>MFP 1, MFP 2</td>
<td>MFP 2</td>
<td>MFP 2 电子邮件，发送到文件夹</td>
</tr>
</tbody>
</table>

图 4A

图 4B
<table>
<thead>
<tr>
<th>传真发送应用</th>
<th>图像处理</th>
<th>传真发送</th>
</tr>
</thead>
<tbody>
<tr>
<td>利用扫描仪扫描原始文件</td>
<td>MFP 1</td>
<td>MFP 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MFP 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MFP 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MFP 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MFP 2</td>
</tr>
</tbody>
</table>

图 4C
<table>
<thead>
<tr>
<th>存储MFP</th>
<th>图像处理</th>
<th>扫描内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFP 2</td>
<td>-</td>
<td>MFP 1进行读取和打印等</td>
</tr>
<tr>
<td>MFP 2</td>
<td>MFP 1或者2</td>
<td>MFP 1进行读取和打印等</td>
</tr>
</tbody>
</table>

图 4D
图 5
图6
<table>
<thead>
<tr>
<th>用户名称</th>
<th>用户ID</th>
<th>登录名称</th>
<th>口令</th>
<th>上限使用量</th>
<th>使用量</th>
<th>可能的使用量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>123456</td>
<td>a.xxx</td>
<td>a.yyy</td>
<td>打印</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>传真</td>
<td>100</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>彩色</td>
<td>54</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>单色</td>
<td>18</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>单色</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>

图8
<table>
<thead>
<tr>
<th>功能</th>
<th>扫描/图片/黑白/彩色</th>
<th>分辨率 100-600dpi</th>
<th>组合 1合/4合/1/8</th>
<th>放大 25-200%</th>
<th>扫描/图片/黑白/彩色</th>
<th>打印</th>
<th>打印速度 60/分钟</th>
<th>纸张尺寸 自动/A4/A3</th>
<th>功耗</th>
<th>功耗 10W/h</th>
<th>功耗 40W/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>传真</td>
<td>传真</td>
<td></td>
<td></td>
<td></td>
<td>传真</td>
<td>传真</td>
<td>传真</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>输出</td>
<td>输出</td>
<td>输出</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
装置协作使用MFP

<table>
<thead>
<tr>
<th>192.168.11.100 (MFP 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.11.101 (MFP 3)</td>
</tr>
<tr>
<td>192.168.11.102 (服务器 1)</td>
</tr>
<tr>
<td>192.168.12.100 (MFP 4)</td>
</tr>
<tr>
<td>192.168.12.101 (服务器 2)</td>
</tr>
</tbody>
</table>

图11A

通信可能装置

<table>
<thead>
<tr>
<th>192.168.11.100 (MFP 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.11.101 (MFP 3)</td>
</tr>
<tr>
<td>192.168.11.102 (服务器 1)</td>
</tr>
<tr>
<td>192.168.12.101 (服务器 2)</td>
</tr>
</tbody>
</table>

图11B
图 13
图14A

图14B
协同任务打印设置

分别设置

<table>
<thead>
<tr>
<th></th>
<th>扫描设置</th>
<th>编辑设置</th>
</tr>
</thead>
</table>

请设置打印条件

<table>
<thead>
<tr>
<th>自有装置</th>
<th>IMAGICS</th>
<th>IPUKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>彩色/黑白</td>
<td>彩色</td>
<td>黑白</td>
</tr>
<tr>
<td>纸张尺寸</td>
<td>自动</td>
<td>A4</td>
</tr>
<tr>
<td>拷贝数量</td>
<td>1</td>
<td>拷贝</td>
</tr>
<tr>
<td>缩放</td>
<td>分类</td>
<td>装订</td>
</tr>
</tbody>
</table>

图 14C
<table>
<thead>
<tr>
<th>输入/输出条件</th>
<th>主装置</th>
<th>输入/输出条件</th>
<th>主装置</th>
<th>输入/输出条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>单面扫描</td>
<td>MFP 1</td>
<td>单面扫描</td>
<td>MFP 2</td>
<td>MFP 1</td>
</tr>
<tr>
<td>单色</td>
<td>300dpi</td>
<td>单色</td>
<td>A4</td>
<td>打孔</td>
</tr>
<tr>
<td>2</td>
<td>4合1</td>
<td>3</td>
<td>输出</td>
<td></td>
</tr>
</tbody>
</table>

图15A

图15B

图15C
<table>
<thead>
<tr>
<th>主要装置</th>
<th>输入/输出条件</th>
<th>单面扫描结果</th>
<th>字符</th>
<th>3000dpi</th>
<th>黑白</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFP 1</td>
<td>MFP 1, MFP 2</td>
<td>120%</td>
<td>03-1234-5678</td>
<td>03-1234-5679</td>
<td></td>
</tr>
</tbody>
</table>

图 15D

图 15E
MFP 1

应用

认证模块

计数器
管理模块

任务
管理模块

通信
管理模块

显示出错消息

总页数≤MFP 1
的可能的使用量？

打印总页数

打印结果

更新可能的使用量

任务执行结果

S123

S202

S240-2

S241

S242

S350

MFP 2

通信
管理模块

任务
管理模块

装置
管理信息

认证模块

计数器
管理模块