

Office de la Propriété
Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2867412 A1 2013/09/19

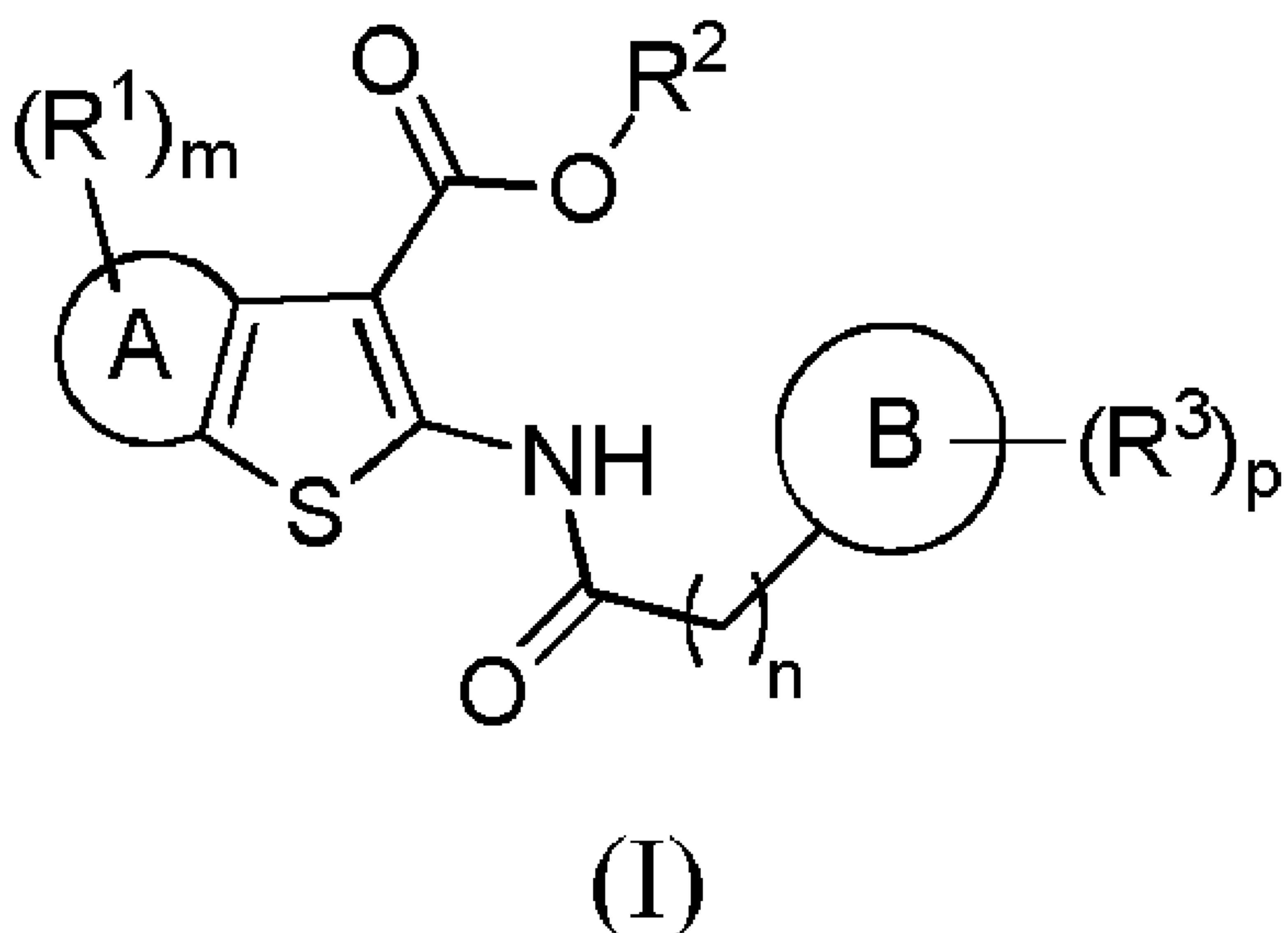
(21) **2 867 412**

(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

(86) **Date de dépôt PCT/PCT Filing Date:** 2013/03/14
(87) **Date publication PCT/PCT Publication Date:** 2013/09/19
(85) **Entrée phase nationale/National Entry:** 2014/09/15
(86) **N° demande PCT/PCT Application No.:** EP 2013/055218
(87) **N° publication PCT/PCT Publication No.:** 2013/135803
(30) **Priorités/Priorities:** 2012/03/16 (EP12159969.0);
2012/03/16 (US61/611,684); 2012/09/07 (US61/697,879)

(51) **Cl.Int./Int.Cl. A61K 31/381** (2006.01),
A61K 31/496 (2006.01), **A61P 3/10** (2006.01),
A61P 9/10 (2006.01)


(71) **Demandeur/Applicant:**
GLUCOX BIOTECH AB, SE

(72) **Inventeurs/Inventors:**
WILCKE, MONA, SE;
WALUM, ERIK, SE;
WIKSTROM, PER, SE

(74) **Agent:** SMART & BIGGAR

(54) **Titre : COMPOSES A BASE DE THIOPHENE PRESENTANT UNE ACTIVITE INHIBITRICE DE NOX4 ET LEUR UTILISATION EN THERAPIE**

(54) **Title: THIOPHENE- BASED COMPOUNDS EXHIBITING NOX4 INHIBITORY ACTIVITY AND USE THEREOF IN THERAPY**

(I)

(57) **Abrégé/Abstract:**

A compound of formula (I) for use in the treatment of a condition or disorder associated with nicotinamide adenine dinucleotide phosphate oxidase.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2013/135803 A1

(43) International Publication Date
19 September 2013 (19.09.2013)

(51) International Patent Classification:

A61K 31/381 (2006.01) *A61P 9/10* (2006.01)
A61P 3/10 (2006.01) *A61K 31/496* (2006.01)

(21) International Application Number:

PCT/EP2013/055218

(22) International Filing Date:

14 March 2013 (14.03.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/611,684 16 March 2012 (16.03.2012) US
12159969.0 16 March 2012 (16.03.2012) EP
61/697,879 7 September 2012 (07.09.2012) US

(71) Applicant: **GLUCOX BIOTECH AB** [SE/SE]; c/o Wilcke, Wollmar Yxkullsgatan 7, S-11850 Stockholm (SE).

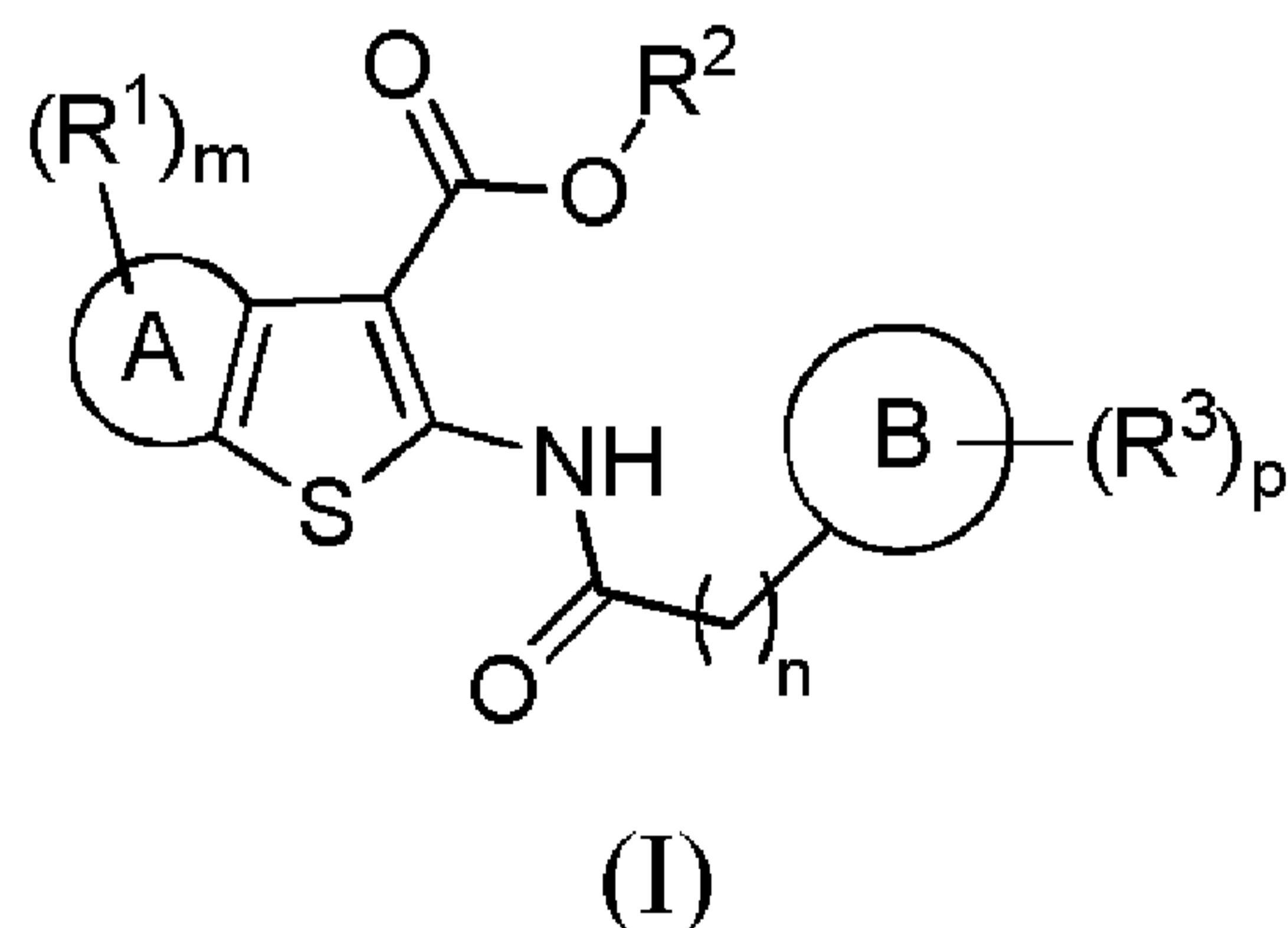
(72) Inventors: **WILCKE, Mona**; Wollmar Yxkullsgatan 7, S-118 50 Stockholm (SE). **WALUM, Erik**; Gjörwellsgatan 49, S-112 60 Stockholm (SE). **WIKSTRÖM, Per**; Tegelvägen 1b, S-194 36 Upplands Väsby (SE).

(74) Agent: **BRANN AB**; P.O. Box 12246, S-10226 Stockholm (SE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))

(54) Title: THIOPHENE-BASED COMPOUNDS EXHIBITING NOX4 INHIBITORY ACTIVITY AND USE THEREOF IN THERAPY

(I)

(57) Abstract: A compound of formula (I) for use in the treatment of a condition or disorder associated with nicotinamide adenine dinucleotide phosphate oxidase.

THIOPHENE- BASED COMPOUNDS EXHIBITING NOX4 INHIBITORY ACTIVITY AND USE THEREOF IN THERAPY

FIELD OF THE INVENTION

The present invention relates to thiophene derivatives for use in the treatment of a condition or disorder associated with nicotinamide adenine dinucleotide phosphate oxidase (Nox). More specifically, the present invention relates to thiophene derivatives as Nox inhibitors for use in the treatment of various diseases that are caused or driven by elevated Nox activity. In particular the invention relates to compounds having a selectivity for Nox4.

10 BACKGROUND OF THE INVENTION

The definition of oxidative stress is an *in vivo* imbalance between the formation and elimination of reactive oxygen. Changes of the normal redox state in the cell or tissues can produce harmful radicals that may damage components of the cellular machinery, including DNA, proteins and lipids. If the cellular components are chemically altered that cause genetic changes, this has generally been considered to promote formation of cancer or other serious diseases.

20 Sources of oxygen radicals - Numerous *in vivo* generators of oxygen radicals (O_2^- , H_2O_2 and OH^-) that potentially can cause oxidative stress have been identified: complex I and III in the mitochondria and NAD(P)H oxidase, xanthine oxidase, cytochromes P450, metal ions (cobalt, vanadium, chromium, copper and iron) and some organic compounds that can redox cycle.

25 General antioxidants - There also are numerous endogenously cellular antioxidants such as superoxide dismutase (SOD), catalase, glutathione peroxidase, peroxiredoxins and sulfiredoxin. Vitamins provided by the food are also considered as an important part of the protection of the organism from harmful oxygen radicals, and recent discovery of important antioxidants present in many sources of food has increased the arsenal of antioxidants.

30 Antioxidants as therapeutics - It is very clear that some antioxidants can be helpful in preventing diseases and promote health. What is much less clear is what type of antioxidants can be used. Many of the antioxidants present in natural food are redox active. If these types of redox active substances are isolated and provided as complementary pharmaceuticals – this may end up being more harmful than helpful. Clinical trials have shown that untargeted application of antioxidants, which broadly scavenge oxygen radicals, are not only ineffective

but may even be harmful. This was illustrated in a study made with sixty-seven randomized trials with 232,550 participants including healthy and patients with various diseases (Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Cochrane Database Syst Rev. 2008 Jul 16; (3):CD004183. Epub 2008 Jul 16).

5

Thus general antioxidants that are redox active may actually be adding to the cellular damage, by mediating a harmful redox cycle. Other general antioxidants will harmfully block normal cellular *in vivo* activity necessary to maintain bodily function.

10 *Source and role of reactive oxygen* - What has become increasingly clear is that what is causing excessive production and accumulation of reactive oxygen, in a number of pathological conditions, such as inflammation, type 2 diabetes, diabetes complications, polycystic ovary syndrome, stroke, detrimental neurological conditions and cancer, is not generally leaking oxygen radicals such as complex I or III in the mitochondria – rather it is
15 up-regulated powerful producers of oxygen radicals – that are part of the normal cellular signal transduction system. Thus the definition of oxidative stress need not be oxygen radicals that will irreversibly alter DNA, protein or lipids, but instead increasingly interfere, if up regulated with “normal” signal transduction creating an imbalance on a cellular level that eventually may alter other tissues and whole bodily function. A typical example of this is the
20 metabolic syndrome, connected to vascular disease, diabetes 2, stroke, nephropathy, neuropathy, heart failure, and stroke with insulin resistance as the initiating factor (Reaven, “Role of insulin resistance in human disease”, Diabetes 37(12), 1988). Insulin resistance in itself is also part of normal bodily function as a tool to direct storage of energy selectively to a suitable receiving organ. However, when metabolic changes occur, such as in overfeeding, or
25 other disturbances such as acromegaly with excess growth hormone production or malfunctioning leptin as in ob/ob-mice, this will induce a harmful condition with an uncontrolled insulin resistance that may cause organ failure connected to the metabolic syndrome. The common denominator to the uncontrolled insulin resistance is overproduction of local and systemic oxygen radicals (Houstis et al., Nature 440, 2006; Katakam et al., J
30 cereb blood Flow Metab, 2012 Jan 11).

One of the most interesting candidates for this overproduction is a family of trans-membrane proteins (enzymes), referred to as NAD(P)H oxidase (Nox). There are seven family members of Nox identified (Nox 1-5 and Duox 1-2) that very often are being recognized as a major or

key source of reactive oxygen and that also play a major role in a number of cellular events as part of the normal cellular signal transduction system, including proliferation (Brar et al., Am J Physiol Lung Cell Mol Physiol, 282, 2002), growth (Brar et al., Am J Physiol Cell Physiol, 282, 2002), fibrosis (Grewal et al., Am J Physiol, 276, 1999), migration (Sundaresan et al., Science, 270, 1995), apoptosis (Lundqvist-Gustafsson et al., J Leukoc Biol, 65, 1999), differentiation (Steinbeck et al., J Cell Physiol, 176, 1998), cytoskeletal rearrangement (Wu et al., J Virol, 78, 2004) and contraction (Rueckschloss et al., Exp Gerontol, 45, 2010).

10 *NADPH oxidase and disease* - Some genetic conditions with decreased NADPH oxidase activity have been identified – defect Nox2 decreases immunologic response to kill and neutralize microbial attacks (Chronic granulomatous disease) – defect Nox3 in inner ear renders defective gravity perception and dual NAD(P)H oxidase Duox2 having deficient enzymatic activity in the thyroid gland gives rise to hypothyroidism.

15 There is however a much larger list of publications that also seems to grow exponentially, that witness of strong evidence that increased Nox activity is part of or even causative of a number of diseases (Lambeth JD, Review Article “*Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy*”, Free Radical Biology & Medicine 43, 2007; Takac I et al., “*The Nox Family of NADPH Oxidases: Friend or Foe of the Vascular System*”, Curr Hypertens Rep. 2011 Nov 10; Montezano AC, “*Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5*”, Clin Sci London 2011; Bedard K et al., “*The Nox family of ROS-generating NADPH oxidases: physiology and pathophysiology*” Physiol Rev. 2007; Camici M et al., “*Obesity-related glomerulopathy and podocyte injury: a mini review*”, Front Biosci 2012; Nabeebaccus A et al., “*NADPH oxidases and cardiac remodeling*” Heart Fail Rev. 2011; Kuroda J et al., “*NADPH oxidase and cardiac failure*” J Cardiovasc Transl Res. 2010; Kuroda J et al., “*NADPH oxidase 4 is a major source of oxidative stress in the failing heart*” Proc Natl Acad Sci USA 2010; Maejima Y et al., “*Regulation of myocardial growth and death by NADPH oxidase*” J Mol Cell Cardiol. 2011; Barnes JL et al., “*Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases*” Kidney international, 2011; Alison Cave “*Selective targeting of NADPH oxidase for cardiovascular protection*” Current Opinion in Pharmacology 2009; Albert van der Vliet “*Nox enzymes in allergic airway inflammation*” Biochimica et Biophysica Acta 1810, 2011; Pendyala S et al., “*Redox regulation of Nox proteins*” Respiratory Physiology & Neurobiology 174, 2010; Nair D et al., “*Intermittent Hypoxia-Induced Cognitive Deficits Are Mediated by NADPH oxidase Activity*

in a Murine Model of Sleep Apnea” PLoS ONE, vol. 6, Issue 5, May 2011; Chia-Hung Hsieh et al., “*NADPH oxidase Subunit 4-Mediated Reactive Oxygen species Contribute to Cycling Hypoxia-Promoted Tumor Progression in Glioblastoma Multiforme*” PLoS ONE, vol 6, issue 9, September 2011; Sedeek M et al., “*Molecular mechanisms of hypertension: role of nox family NADPH oxidase*” Current Opinion in Nephrology and Hypertension 2009; Augusto C et al., “*Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5*” Clinical Science 2011; Briones AM et al., “*Differential regulation of Nox1, Nox2 and Nox4 in vascular smooth muscle cells from WKY and SHR*” Journal of the American Society of Hypertension 5:3, 2011).

10 It has been recently shown that the Nox enzymes and particularly Nox 4 and NAD(P)H-oxidase are highly involved in pulmonary fibrosis. The function of oxidative stress in fibrosis are well recognized (Kinnula VL, Fattman CL, Tan RJ, Oury TD (2005) Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med 172:417–422), as there is a substantial and growing body of evidence indicating that oxidative stress plays an important role in the pathological development of lung fibrosis as well as 15 fibrosis in multiple organ systems (Kuwano K, Nakashima N, Inoshima I, Hagimoto N, Fujita M, Yoshimi M, Maeyama T, Hamada N, Watanabe K, Hara N (2003) Oxidative stress in lung epithelial cells from patients with idiopathic interstitial pneumonias. Eur Respir J 21:232–240). Thus, Nox enzymes and particularly Nox4 appear to be involved also in lung 20 infections, acute lung injury, pulmonary arterial hypertension, obstructive lung disorders, fibrotic lung disease, and lung cancer.

NADPH oxidase isoenzymes, similarities, differences and function - All the seven isoenzymes of NADPH oxidase (identified) are similar in the way of having NADPH and FAD binding site and six trans-membrane domains and in that they include two heme complexes. 25 All the NADPH oxidase forms use the same basic mechanism to generate reactive oxygen, but the subcellular localizations and the modes of actions differ significantly.

The reactive oxygen species produced by the enzymatic Nox-family are either superoxide O_2^- or hydrogen peroxide H_2O_2 . Nox1 and 2 are constitutively attached to p22phox and to activate 30 the enzyme complex other components such as Rac, p47phox, p67phox are required for full Nox1 activity. Nox2 needs Rac, p40phox, p47phox and p67phox for full activation. Nox1 and 2 generate O_2^- when activated. Nox3 also needs to assemble cytosolic proteins to be active

(Cheng et al., J Biol Chem, 279(33), 2004). Nox4 is also associated with p22phox, and is constitutively active in this form. Nox4 activity is, however, regulated through expression – not through assembly or ligand activation, which distinguishes this isoform from other isoforms (Serrander et al., Biochem J. 406, 2007). When induced, Nox4 is generally expressed at higher level than Nox1 and 2 (Ago et al., Circulation, 109, 2004). Nox4 seems to mainly generate H_2O_2 instead of O_2^- as the other Nox-variants (Takac et al., J. Biol. Chem. 286, 2011). This makes this isoform unique because H_2O_2 has the ability to cross membranes and thus to act at longer distance than O_2^- that has a very short half-life. Nox5, Doux1 and Doux2 are activated by Ca^{2+} (De Deken, Wang et al., J.Biol Chem., 275(30), 2000).

10

Nox4 and diseases - The uniqueness of Nox4 in comparison to the other isoforms is also connected to uniqueness as a therapeutic target as it seems to be involved in a number of different diseases when overexpressed.

15 Nox4 is ubiquitously expressed in many cell-types although at a very low level until induced. It is, however mainly found in kidney, endothelial cells, adventitial fibroblasts, placenta, smooth muscle cells, osteoclasts and is the predominant Nox that is expressed in tumors (Chamseddine et al., Am J Physiol Heart Circ Physiol. 285, 2003; Ellmark et al., Cardiovasc Res. 65, 2005; Van Buul et al., Antioxid Redox Signal. 7, 2005; Kawahara et al., BMC Evol Biol. 7, 2007; Krause et al., Jpn J Infect Dis. 57(5), 2004; Griendling, Antioxid Redox Signal. 8(9), 2006). It was found that Nox4 was overexpressed in the majority of breast cancer cell-lines and primary breast tumors. Overexpression of Nox4 in already transformed breast tumor cells showed increased tumorigenicity, and Nox4 was here identified in the mitochondria. Nox4 was suggested as a target to treat breast cancer (Graham et al., Cancer Biol Ther 10(3), 25 2010).

Nox4 mediates oxidative stress and apoptosis caused by TNF-a in cerebral vascular endothelial cells (Basuroy et al., Am J Physiol Cell Physiol vol. 296, 2009). Its adverse effect following ischemic stroke is well demonstrated in animal models and human tissue.

30 Knockdown experiment, of Nox4, dramatically reduced the area of neuronal damage (Sedwick, PLoS Biology, vol.8 issue 9, 2010; Kleinschmitz et al., vol. 8 issue 9, 2010).

Ischemic stroke accounts for approximately 80% of all cases of stroke and is the second leading cause of death in the world. It has been shown with KO mouse, that Nox4 is an

effective therapeutic target in acute stroke. In a recent report (Kleinschnitz et al, *vide supra*) convincing data were published, showing that significant increase in Nox4 activity is the main cause of neuronal cell death that occurs in ischemic stroke. It was shown that upon ischemia, elevated Nox4 activity was induced in human as well as in mouse brain. A highly specific

5 Nox4 inhibitor has the possibilities to be a safe drug. Total Knock-out of Nox4 demonstrates no obvious phenotypes in mice. The KO however dramatically improves neuronal cell survival, in induced ischemic stroke with more than 70% compared to wild type. Treatment of the stroke patient could also be performed without any risk for other types of strokes such as hemorrhagic stroke, thus the treatment could be started without the need for CAT scan.

10

Further, it was demonstrated through knockdown and overexpression studies in both microvascular and umbilical vein endothelial cells that increased Nox4 activity plays an important role in proliferation and migration of endothelial cells (Datla et al., Arterioscler Thromb Vasc Biol. 27(11), 2007). Initially it was believed that Nox2 was responsible for the 15 angiogenic defects in diabetes but the focus has shifted more towards Nox4 (Zhang et al., PNAS, 107, 2010; Garriodo-Urbani et al., Plos One 2011; Takac et al., Curr Hypertens Rep, 14, 2012).

20 Nox4 play a key role in epithelial cell death during development of lung fibrosis (Camesecchi et al., Antiox Redox Signal. 1:15(3), 2011).

It was demonstrated that siRNA-mediated knockdown of Nox4 significantly reduces NADPH 25 oxidase activity in purified mitochondria from mesangial cells and kidney cortex. The knockdown blocked glucose-induced mitochondrial superoxide generation. It was suggested that Nox4 acts as a central mediator to oxidative stress that may lead to mitochondrial dysfunction and cell injury in diabetes (Block et al., PNAS vol. 106, no. 34, 2009).

It was demonstrated that Nox4 was systemically up-regulated at diet-induced obesity in rats (Jiang, redox rep, 16(6), 2011).

30 Nox4 has been strongly connected to the pathology in failing hearts. (Nabeebaccus A et al. “NADPH oxidases and cardiac remodeling” Heart Fail Rev. 2011; Kuroda J et al., “NADPH oxidase and cardiac failure Cardiovasc Transl Res. 2010; Kuroda J et al., “NADPH oxidase 4 is a major source of oxidative stress in the failing heart” Proc Natl Acad Sci USA 2010). A

connection between increased mitochondrial Nox4 activity and dysfunction of “the aging heart” has been suggested (Tetsuro Ago et al., AGING, December 2010, vol.2 No 12).

Extracellular matrix accumulation contributes to the pathology of chronic kidney disease. The 5 growth factor IGF-I activity is a major contributor to this process and Nox4 is a mediator in this process (New et al., Am J Physiol Cell Physiol. 302(1), 2012). The connection between chronic activation of the renin-angiotensin and the progression of kidney damage system is well established with Nox4 and Angiotensin II as collaborators in this process (Chen et al., Mol Cell Biol. 2012).

10

From the above, it thus appears that the Nox enzymes have several functions in the living body, and that they may also be involved in various disorders. Examples of such diseases and disorders are cardiovascular disorders, respiratory disorders, metabolism disorders, endocrine disorders, skin disorders, bone disorders, neuroinflammatory and/or neurodegenerative 15 disorders, kidney diseases, reproduction disorders, diseases affecting the eye and/or the lens and/or conditions affecting the inner ear, inflammatory disorders, liver diseases, pain, cancers, allergic disorders, traumatisms, septic, hemorrhagic and anaphylactic shock, diseases or disorders of the gastrointestinal system, angiogenesis, angiogenesis-dependent conditions. It also appears that especially Nox4 has been found to be involved in such disorders.

20

Consequently, it is considered that compounds capable of inhibiting Nox, and in particular compounds capable of selectively inhibiting Nox4, would be of great interest for use in the treatment of diseases and disorders involving Nox enzymes, and in particular Nox4.

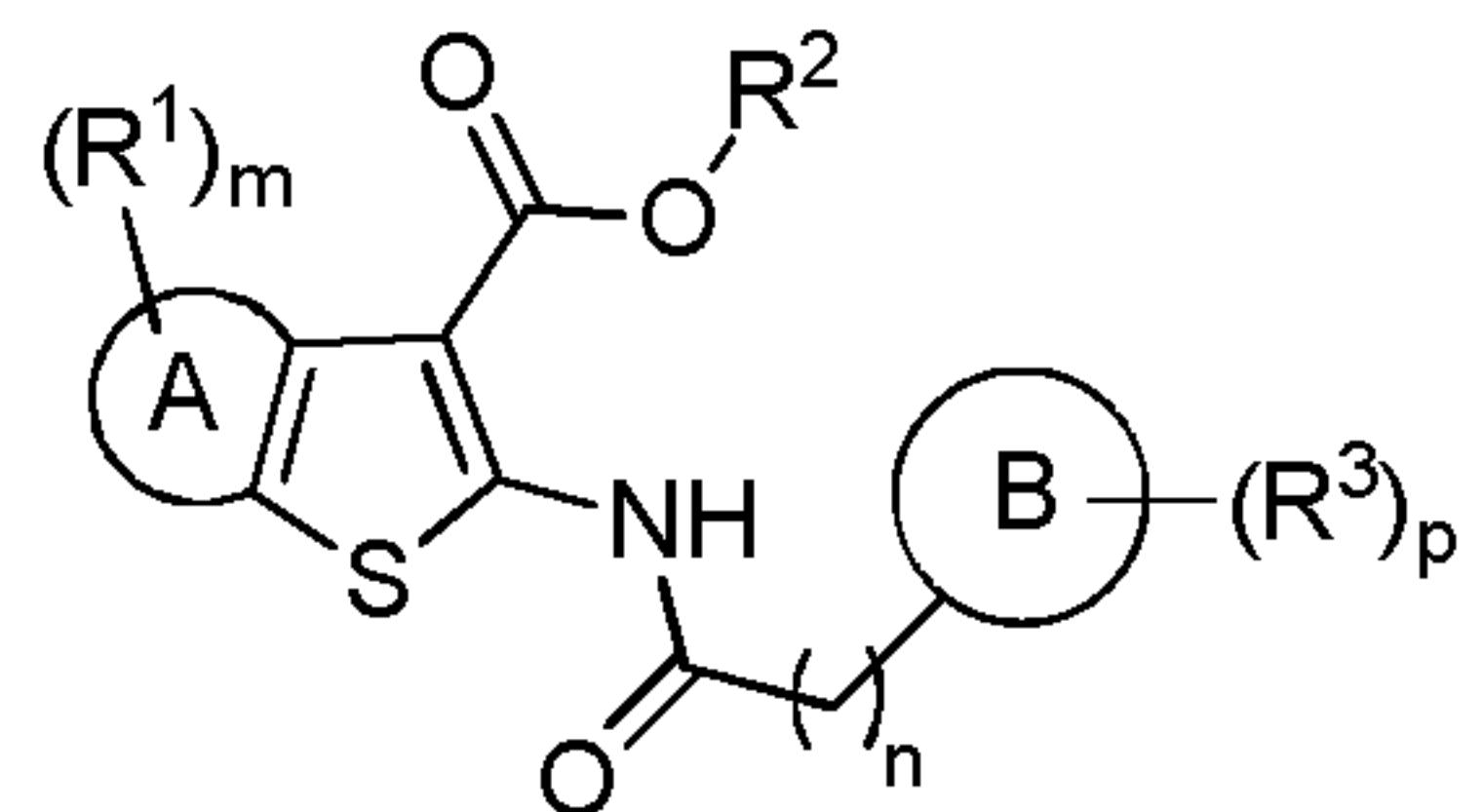
30

Several patent applications from GenKyoTex SA relate to various pyrazolo and pyrazoline derivatives for use as Nox inhibitors. Thus, PCT applications WO 2010/035217, WO 25 2010/035219, WO 2010/035220, WO 2010/035221, WO 2011/036651, WO2011/101804 and WO2011/101805, describe several conditions and disorders related to Nox and provide references to various sources of literature on the subject. The information contained in said applications and in the literature referred to therein is incorporated herein by reference.

The international application WO 2005/033102 titled “Thiophene-based compounds exhibiting ATP-utilizing enzyme inhibitory activity, and compositions, and uses thereof” relates to thiophene derivatives for use in the treatment of various diseases and disorders associated with “ATP-utilizing enzymes”, which said application defines as “enzymes that

catalyze the transfer of a phosphate group from an ATP molecule to a biomolecule such as a protein or carbohydrate”, i.e. kinases. Some of the compounds mentioned in WO 2005/033102 fall within the scope of the general formula (I) according to the present invention.

5


SUMMARY OF THE INVENTION

According to one aspect, compounds are provided that are Nox inhibitors, for use in therapy. More specifically, compounds that are Nox4 inhibitors are provided for use in therapy.

10 According to another aspect, compounds are provided that are effective in the treatment of diseases associated with, e.g. caused or driven by, elevated Nox activity, more specifically elevated Nox4 activity.

15 According to a further aspect, compounds are provided, that are Nox inhibitors, more specifically Nox4 inhibitors, for use in the treatment of disorders, associated with elevated Nox activity, more specifically elevated Nox4 activity.

Thus, according to the present invention, a compound is provided of formula (I)

20

(I)

wherein

A is a 5- or 6-membered heterocyclic or carbocyclic ring;

25 B is selected from 5- or 6-membered monocyclic heterocyclyl or carbocyclyl and 9- or 10-membered bicyclic heterocyclyl or carbocyclyl;

each R¹ is independently selected from halogen, R⁴O(CH₂)_q, R⁴S(CH₂)_q, R⁴R⁵N(CH₂)_q, CN(CH₂)_q, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;

R² is selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;

5 each R³ is independently selected from halogen, R⁶O(CH₂)_w, R⁶S(CH₂)_w, R⁶C(O)(CH₂)_w, R⁶S(O)₂(CH₂)_w, R⁶OC(O)(CH₂)_w, R⁶C(O)O(CH₂)_w, R⁶OC(O)O(CH₂)_w, R⁶OC(O)(CH₂)_w, R⁶C(O)O(CH₂)_w, R⁶OC(O)O(CH₂)_w, R⁸R⁹N(CH₂)_w, R⁸R⁹NC(O)(CH₂)_w, R⁸R⁹NS(O)₂(CH₂)_w, CN(CH₂)_w, R⁷(CH₂)_w, C1-C6 alkyl, C2-C6 alkenyl, and C2-C6 alkynyl, said alkyl, alkenyl and alkynyl optionally being substituted with at least one halogen;

10 each R⁴ is independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl; said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;

15 each R⁵ is independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl; said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;

20 each R⁶ is selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and 5- or 6-membered heterocyclyl or carbocyclyl, said alkyl, alkenyl, alkynyl, heterocyclyl and carbocyclyl optionally being substituted with at least one halogen;

25 each R⁷ is selected from 5- or 6-membered monocyclic heterocyclyl or carbocyclyl or 9- or 10-membered bicyclic heterocyclyl or carbocyclyl, said heterocyclyl and carbocyclyl optionally being substituted with at least one halogen;

each R⁸ is independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl;

30 each R⁹ is independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl;

m, n, p, each q and each w are independently selected from 0, 1, 2 and 3;

or a pharmaceutically acceptable salt thereof,

for use in the treatment of a condition or disorder associated with Nox, preferably Nox4.

5 Examples of such conditions and disorders e.g. are those mentioned herein above as related to or mediated by Nox, in particular Nox4, for example conditions and disorders selected from cardiovascular disorders, endocrine disorders, respiratory disorders, metabolism disorders, skin disorders, bone disorders, neuroinflammatory and/or neurodegenerative disorders, kidney diseases, reproduction disorders, endocrine disorders, diseases affecting the eye and/or the
10 lens and/or conditions affecting the inner ear, inflammatory disorders, liver diseases, pain, cancers, allergic disorders, traumas, septic, hemorrhagic and anaphylactic shock, diseases or disorders of the gastrointestinal system, angiogenesis, angiogenesis-dependent conditions, as well as lung infections, acute lung injury, pulmonary arterial hypertension, obstructive lung disorders, fibrotic lung disease, cerebrovascular accidents, and lung cancer.

15

As noted herein above, some of the compounds mentioned in WO 2005/033102 fall within the scope of the general formula (I) according to the present invention. The compounds of WO 2005/033102 however are said to be kinase inhibitors. In view of this difference, the person of ordinary skill, seeking to solve the problem of finding Nox inhibitors, as according
20 to the present invention, would have had no motivation to consult WO 2005/033102.

Nonetheless, in some embodiments, the compound of formula (I) is not:

methyl 2-(4-(tert-butyl)benzamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate,
ethyl 2-(benzofuran-2-carboxamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,
ethyl 2-(4-(tert-butyl)benzamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate,
25 ethyl 2-(3,5-dimethoxybenzamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,
ethyl 2-(4-chlorobenzamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,
ethyl 2-(2-fluorobenzamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,
ethyl 2-benzamido-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,
30 ethyl 2-(5-(benzo[d][1,3]dioxol-5-yl)-7-(trifluoromethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,
ethyl 2-(5-(benzo[d][1,3]dioxol-5-yl)-7-(trifluoromethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine-2-carboxamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,
ethyl 6-methyl-2-(5-phenyl-7-(trifluoromethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine-2-carboxamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate,

methyl 2-(3-morpholinopropanamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate
ethyl 6-methyl-2-(3-(4-methylpiperidin-1-yl)propanamido)-4,5,6,7-tetrahydrobenzo[b]-
thiophene-3-carboxylate,

5 ethyl 2-(4-(piperidin-1-ylsulfonyl)benzamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-
carboxylate,

ethyl 2-(2-(2,6-dimethylmorpholino)acetamido)-6-methyl-4,5,6,7-tetrahydrobenzo[b]-
thiophene-3-carboxylate,

methyl 2-(furan-2-carboxamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,

10 propyl 2-(2-(2,4-dichlorophenyl)-3-methylquinoline-4-carboxamido)-6-methyl-4,5,6,7-
tetrahydrobenzo[b]thiophene-3-carboxylate,

ethyl 5,5-dimethyl-2-(3-morpholinopropanamido)-5,7-dihydro-4H-thieno[2,3-c]pyran-3-
carboxylate,

5,5-dimethyl-2-(2-phenylacetamido)-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylic acid

ethyl 2-(2-morpholinoacetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate,

15 isopropyl 2-(2-(3,4-dimethoxyphenyl)acetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-
carboxylate, or

ethyl 2-(nicotinamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate,

which are mentioned in WO 2005/033102.

20 According to one aspect, a compound according to formula (I) as defined herein above is
provided for inhibiting a nicotinamide adenine dinucleotide phosphate oxidase (Nox) in a
mammal, in particular Nox4, for use in the treatment of a disorder associated with the
expression of Nox, in particular Nox4.

25 According to one aspect, there is provided a method of inhibiting the activity of Nox, in
particular Nox4, in a mammal in need thereof, by administering to said mammal a compound
of formula (I) as defined herein above. The method is useful for the treatment of disorders
associated with Nox activity, in particular Nox4 activity, as defined herein above.

30 According to a further aspect, the use of a compound as defined herein above is provided, for
the manufacturing of a medicament for use in the treatment of disorders associated with Nox
activity, in particular Nox4 activity, as defined herein above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 shows dose-response curves for 4 different compound of the invention in Nox4-transfected TRex-293 cells, at 11 concentrations obtained by serial dilution 1:3 of a 200 μ M solution of tested compound: **A**) ethyl 2-(2-(4-benzylpiperazin-1-yl)acetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate, **B**) ethyl 2-(benzofuran-2-carboxamido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate, **C**) ethyl 2-(2-(4-(furan-2-carbonyl)piperazin-1-yl)acetamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate, and **D**) ethyl 5,5-dimethyl-2-(2-phenylacetamido)-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate.

10

FIGURE 2 is a graph showing isoluminol-dependent chemiluminescence as a measure of ROS production from Nox2 in **A**) PLB985 cells and **B**) PBMC cells, respectively, in the presence of a given concentration of ethyl 5,5-dimethyl-2-(2-phenylacetamido)-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate, in % compared to PMA (30ng/ml) controls (=100%).

15

FIGURE 3 is a graph showing isoluminol-dependent chemiluminescence as a measure of ROS production from Nox2 in **A**) PLB985 cells and **B**) PBMC cells, respectively, in the presence of a given concentration of ethyl 2-(4-methoxybenzamido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate, in % compared to PMA (30ng/ml) controls (=100%).

20

FIGURE 4 is a bar chart showing the infarct volume (mm³) in a mice model of stroke, where mice were treated with the inventive compound ethyl 2-(2-(4-(furan-2-carbonyl)piperazin-1-yl)acetamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate (“INVENTION”) or with vehicle (“CONTROL”).

25

DETAILED DESCRIPTION OF THE INVENTION

In general any term used herein shall be given its normal meaning as accepted within the field to which the present invention belongs. For the sake of clarity, however, some definitions will be given herein below, and shall apply throughout the specification and the appended claims, unless otherwise specified or apparent from the context.

30

The term "endocrine disorder" refers to disorders of the endocrine system and may be as well endocrine gland hyposecretion as hypersecretion, or tumors of endocrine glands. Diabetes and polycystic ovarian syndrome are examples of endocrine disorders.

5 The term "cardiovascular disorder or disease" comprises atherosclerosis, especially diseases or disorders associated with endothelial dysfunction including but not limited to hypertension, cardiovascular complications of Type I or Type II diabetes, intimal hyperplasia, coronary heart disease, cerebral, coronary or arterial vasospasm, endothelial dysfunction, heart failure including congestive heart failure, peripheral artery disease, restenosis, trauma caused by a

10 stent, stroke, ischemic attack, vascular complications such as after organ transplantation, myocardial infarction, hypertension, formation of atherosclerotic plaques, platelet aggregation, angina pectoris, aneurysm, aortic dissection, ischemic heart disease, cardiac hypertrophy, pulmonary embolus, thrombotic events including deep vein thrombosis, injury caused after ischemia by restoration of blood flow or oxygen delivery as in organ

15 transplantation, open heart surgery, angioplasty, hemorrhagic shock, angioplasty of ischemic organs including heart, brain, liver, kidney, retina and bowel.

The term "cerebrovascular accident" comprises cerebral stroke, e.g. ischemic stroke.

20 The term "ischemic stroke" comprises embolic stroke and thrombotic stroke.

The term "respiratory disorder or disease" comprises bronchial asthma, bronchitis, allergic rhinitis, adult respiratory syndrome, cystic fibrosis, lung viral infection (influenza), pulmonary hypertension, idiopathic pulmonary fibrosis and chronic obstructive pulmonary diseases (COPD).

The term "allergic disorder" includes hay fever and asthma.

The term "traumatism" includes polytraumatism.

30

The term "disease or disorder affecting the metabolism" includes obesity, metabolic syndrome and Type II diabetes.

The term "skin disease" or disorder" includes psoriasis, eczema, dermatitis, wound healing and scar formation.

5 The term "bone disorder" includes osteoporosis, osteoporosis, osteosclerosis, periodontitis, and hyperparathyroidism.

10 The term "neurodegenerative disease or disorder" comprises a disease or a state characterized by a central nervous system (CNS) degeneration or alteration, especially at the level of the neurons such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, epilepsy and muscular dystrophy. It further comprises neuro-inflammatory and demyelinating states or diseases such as leukoencephalopathies, and leukodystrophies.

15 The term "demyelinating" is referring to a state or a disease of the CNS comprising the degradation of the myelin around the axons. In the context of the invention, the term demyelinating disease is intended to comprise conditions which comprise a process that demyelinate cells such as multiple sclerosis, progressive multifocal leukoencephalopathy (PML), myelopathies, any neuroinflammatory condition involving autoreactive leukocyte within the CNS, congenital metabolic disorder, a neuropathy with abnormal myelination, drug induced demyelination, radiation induced demyelination, a hereditary demyelinating 20 condition, a prion induced demyelinating condition, encephalitis induced demyelination or a spinal cord injury. Preferably, the condition is multiple sclerosis.

25 The term "kidney disease or disorder" includes diabetic nephropathy, renal failure, glomerulonephritis, nephrotoxicity of aminoglycosides and platinum compounds and hyperactive bladder. In a particular embodiment, the term according to the invention includes chronic kidney diseases or disorders.

The term "reproduction disorder or disease" includes erectile dysfunction, fertility disorders, prostatic hypertrophy and benign prostatic hypertrophy.

30

The term "disease or disorder affecting the eye and/or the lens" includes cataract including diabetic cataract, re-opacification of the lens post cataract surgery, diabetic and other forms of retinopathy.

The term "conditions affecting the inner ear" includes presbyacusis, tinnitus, Meniere's disease and other balance problems, utriculolithiasis, vestibular migraine, and noise induced hearing loss and drug induced hearing loss (ototoxicity).

5 The term "inflammatory disorder or disease" means inflammatory bowel disease, sepsis, septic shock, adult respiratory distress syndrome, pancreatitis, shock induced by trauma, bronchial asthma, allergic rhinitis, rheumatoid arthritis, chronic rheumatoid arthritis, arteriosclerosis, intracerebral hemorrhage, cerebral infarction, heart failure, myocardial infarction, psoriasis, cystic fibrosis, stroke, acute bronchitis, chronic bronchitis, acute 10 bronchiolitis, chronic bronchiolitis, osteoarthritis, gout, myelitis, ankylosing spondylitis, Reuter syndrome, psoriatic arthritis, spondylarthritis, juvenile arthritis or juvenile ankylosing spondylitis, reactive arthritis, infectious arthritis or arthritis after infection, gonococcal arthritis, syphilitic arthritis, Lyme disease, arthritis induced by "angiitis syndrome," polyarteritis nodosa, anaphylactic angiitis, Luegenec granulomatosis, rheumatoid 15 polymyalgia, articular cell rheumatism, calcium crystal deposition arthritis, pseudogout, non-arthritic rheumatism, bursitis, tendosynovitis, epicondyle inflammation (tennis elbow), carpal tunnel syndrome, disorders by repetitive use (typing), mixed form of arthritis, neuropathic arthropathy, hemorrhagic arthritis, vascular peliosis, hypertrophic osteoarthropathy, multicentric reticulohistiocytosis, arthritis induced by specific diseases, blood pigmentation, 20 sickle cell disease and other hemoglobin abnormality, hyperlipoproteinemia, dysgammaglobulinemia, hyperparathyroidism, acromegaly, familial Mediterranean fever, Bechet's disease, systemic autoimmune disease erythematosus, multiple sclerosis and Crohn's disease or diseases like relapsing polychondritis, chronic inflammatory bowel diseases (IBD) or the related diseases which require the administration to a mammal in a therapeutic effective 25 dose of a compound expressed by Formula (I) in a sufficient dose to inhibit NADPH oxidase.

The term "liver diseases or disorders" include liver fibrosis, alcohol induced fibrosis, steatosis and non alcoholic steatohepatitis.

30 The term "arthritis" means acute rheumatic arthritis, chronic rheumatoid arthritis, chlamydial arthritis, chronic absorptive arthritis, anchylous arthritis, arthritis based on bowel disease, filarial arthritis, gonorrhreal arthritis, gouty arthritis, hemophilic arthritis, hypertrophic arthritis, juvenile chronic arthritis, Lyme arthritis, neonatal foal arthritis, nodular arthritis, ochronotic arthritis, psoriatic arthritis or suppurative arthritis, or the related diseases which

require the administration to a mammal in a therapeutic effective dose of a compound expressed by Formula (I) in a sufficient dose to inhibit NADPH oxidase.

The term "pain" includes hyperalgesia associated with inflammatory pain.

5

The term "cancer" means carcinoma (e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endothelium sarcoma, lymphangiosarcoma, lymphangioendothelioma, periosteoma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, 10 ovarian cancer, renal cancer, prostatic carcinoma, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinoma, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatocellular carcinoma, cholangiocarcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, 15 cervical cancer, orchioncus, lung cancer, small-cell lung cancer, lung adenocarcinoma, bladder cancer or epithelial cancer) or the related diseases which require the administration to a mammal in a therapeutic effective dose of a compound expressed by the Formula (I) in a sufficient dose to inhibit NADPH oxidase.

20 The term "disease or disorders of the gastrointestinal system", includes gastric mucosa disorders ischemic bowel disease management, enteritis/colitis, cancer chemotherapy, or neutropenia.

The term "angiogenesis" includes sprouting angiogenesis, intussusceptive angiogenesis, 25 vasculogenesis, arteriogenesis and lymphangiogenesis. Angiogenesis is the formation of new blood vessels from pre-existing capillaries or post-capillary venules and occurs in pathological conditions such as cancers, arthritis and inflammation. A large variety of tissues, or organs comprised of organized tissues, can support angiogenesis in disease conditions including skin, muscle, gut, connective tissue, joints, bones and the like tissue in which blood 30 vessels can invade upon angiogenic stimuli. As used herein, the term "angiogenesis-dependent condition" is intended to mean a condition where the process of angiogenesis or vasculogenesis sustains or augments a pathological condition. Vasculogenesis results from the formation of new blood vessels arising from angioblasts which are endothelial cell precursors. Both processes result in new blood vessel formation and are included in the meaning of the

term angiogenesis-dependent conditions. Similarly, the term "angiogenesis" as used herein is intended to include de novo formation of vessels such as those arising from vasculogenesis as well as those arising from branching and sprouting of existing vessels, capillaries and venules.

5 The term "angiogenesis inhibitory," means which is effective in the decrease in the extent, amount, or rate of neovascularization. Effecting a decrease in the extent, amount, or rate of endothelial cell proliferation or migration in the tissue is a specific example of inhibiting angiogenesis. Angiogenesis inhibitory activity is particularly useful in the treatment of any cancers as it targets tumor growth process and in the absence of neovascularization of tumor
10 tissue, the tumor tissue does not obtain the required nutrients, slows in growth, ceases additional growth, regresses and ultimately becomes necrotic resulting in killing of the tumor. Further, an angiogenesis inhibitory activity is particularly useful in the treatment of any cancers as it is particularly effective against the formation of metastases because their formation also requires vascularization of a primary tumor so that the metastatic cancer cells
15 can exit the primary tumor and their establishment in a secondary site requires neovascularization to support growth of the metastases.

As used herein, "treatment" and "treating" and the like generally mean obtaining a desired pharmacological and physiological effect. The effect may be prophylactic in terms of
20 preventing or partially preventing a disease, symptom or condition thereof and/or may be therapeutic in terms of a partial or complete cure of a disease, condition, symptom or adverse effect attributed to the disease. The term "treatment" as used herein covers any treatment of a disease in a mammal, particularly a human, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed
25 as having it; (b) inhibiting the disease, i.e., arresting its development; or relieving the disease, i.e., causing regression of the disease and/or its symptoms or conditions.

The term "subject" as used herein refers to mammals. For examples, mammals contemplated by the present invention include human, primates, domesticated animals such as cattle, sheep,
30 pigs, horses and the like.

"An effective amount" refers to an amount of a compound that confers a therapeutic effect on the treated subject. The therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect).

The term "inhibitor" used in the context of the invention is defined as a molecule that inhibits completely or partially the activity of Nox, in particular Nox4, and/or inhibits or reduces the generation of reactive oxygen species (ROS).

5 "Pharmaceutically acceptable" means being useful in preparing a pharmaceutical composition that is generally safe, non-toxic and neither biologically nor otherwise undesirable and includes being useful for veterinary use as well as human pharmaceutical use.

10 The term "heteroaromatic ring" refers to an aromatic ring containing at least one heteroatom in the ring. Examples of 5- or 6-membered heteroaromatic rings according to the invention are pyrrole, pyrazole, imidazole, furane, thiofene, oxadiazole, thiadiazole, thiazole, oxazole, triazole, tetrazole, isoxazole, isothiazole, pyridine, pyrazine, pyrimidine, pyridazine etc.

15 The term "heteroaryl" refers to a heteroaromatic ring radical. Examples of 5- or 6-membered heteroaryl moieties according to the invention are pyrrolyl, pyrazolyl, imidazolyl, furyl, thienyl, oxadiazolyl, thiadiazolyl, thiazolyl, oxazolyl, triazolyl, tetrazolyl, isoxazolyl, isothiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl etc.

20 The term C_n, where n is an integer, specifies that a radical or moiety contains n carbon atoms.

The term C_n-C_m, where m and n are both integers, and m>n, refers to a radical or moiety containing n, n+1, n+2,...or m carbon atoms.

25 Thus, the term C₁-C₆ alkyl refers to an alkyl radical that may contain 1, 2, 3, 4, 5 or 6 carbon atoms.

The term C₀ alkyl refers to a covalent bond.

30 An alkyl moiety according to the invention may be branched or linear, e.g. selected from methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl, n-pentyl, 2-methylbutyl, 2,2-dimethylpropyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl.

A C1-C6 alkyl according to the invention more particularly may be selected from C1-C5 alkyl, e.g. from C1-C4 alkyl, from C1-C3 alkyl, from C1-C2 alkyl, or from methyl.

The term "C2-C6 alkenyl" refers to a straight or branched chain alkenyl having from 2 to 6 carbon atoms in the chain and that may have any available number of double bonds in any available positions. The configuration of the double bond may be (E) or (Z). Examples are vinyl, allyl, isopropenyl, 1-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-ethyl-1-butenyl, 3-methyl-2-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 4-methyl-3-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, and 5-hexenyl. A C2-C6 alkenyl according to the invention, more specifically may be a C2-C4 alkenyl, or a C2-C3 alkenyl.

The term "C2-C6 alkynyl" refers to a straight or branched chain alkynyl having from 2 to 6 carbon atoms in the chain and that may have any available number of triple bonds in any available positions. Examples are ethynyl, 1-propynyl, 2-propynyl, 2-butynyl, and 2-pentene-4-ynyl. A C2-C6 alkynyl according to the invention, more specifically may be a C2-C4 alkynyl, or a C2-C3 alkynyl.

The term "C3-C6 cycloalkyl" refers to a cyclic alkyl radical having from 3 to 6 ring carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.

By "substituted with at least one halogen" is meant that at least one hydrogen is replaced by a halogen, e.g. F. An example of an alkyl substituted with at least one halogen is trifluoromethyl.

As used herein, and unless otherwise specified, the term "halogen" (or "halo") means fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).

As used herein, the term "carbocyclyl" refers to a cyclic moiety containing only carbon atoms, while the term "heterocyclyl" refers to a cyclic moiety containing not only carbon atoms, but also at least one other atom in the ring structure, e.g. a nitrogen, sulphur or oxygen atom.

As used herein with respect to any carbocyclyl or heterocyclyl, the term monocyclic refers to a cyclic moiety containing only one ring, such as phenyl or pyridyl. The term bicyclic refers to a cyclic moiety containing two rings, fused to each other, such as naphthyl or quinolyl.

- 5 Unless otherwise indicated or apparent from the context, any cyclyl, whether carbocyclyl or heterocyclyl, may be saturated or unsaturated, and aromatic or non-aromatic. Thus, for example, cyclohexyl, cyclohexenyl and phenyl are all examples of monocyclic C6 carbocyclyl.
- 10 The term “aromatic”, as used herein, refers to an unsaturated cyclic (carbocyclic or heterocyclic) moiety that has an aromatic character, while the term “non-aromatic”, as used herein, refers to a cyclic moiety, that may be unsaturated, but that does not have an aromatic character.
- 15 In a bicyclic ring system, as referred to herein, the two rings, fused to each other, may be both saturated or both unsaturated, e.g. both aromatic. The rings may also be of different degrees of saturation, and one ring may be aromatic whereas the other is non-aromatic. The rings also may comprise different numbers of atoms, e.g. one ring being 5-membered and the other one being 6-membered, forming together a 9-membered bicyclic ring.

20 In a bicyclic heterocyclyl (or heterocycle or heterocyclic moiety, etc.), as referred to herein, one or both of the rings may contain one or several, e.g. 1, 2, 3 or 4 heteroatoms. By heteroatom according to the invention is meant N, O and S. For example, one ring may contain one or several heteroatoms, and the other may be a carbocycle.

25 An n-membered cyclic moiety as referred to herein contains n ring (or cyclic) atoms.

The term “monounsaturated” as used herein, refers to a moiety containing one double bond only. Thus, e.g. a monounsaturated 5-membered carbocyclic ring is cyclopentene, and a

30 monounsaturated 6-membered carbocyclic ring is cyclohexene.

In a compound of formula (I) as defined herein above, the ring A (herein generally referred to simply as “A”) is a 5-membered heterocyclic or carbocyclic ring.

The ring A may be monounsaturated or polyunsaturated. It should be realized that since A is fused with the thiophene ring and shares a double bond with this latter ring, A is at least monounsaturated. The ring A may also be polyunsaturated, and in this case may be aromatic or non-aromatic.

5

In some embodiments, A is non-aromatic. In some embodiments, A is monounsaturated, i.e. the only double bond in A is the one shared with the thiophene ring to which A is condensed.

10 In some embodiments, A is a 5- or 6-membered carbocycle, e.g. a 5- or 6-membered non-aromatic carbocycle, such as cyclopentene or cyclohexene.

In some embodiments, A is a 5- or 6-membered heterocycle, e.g. a 5- or 6-membered non-aromatic heterocycle.

15 When A is a heterocycle, it e.g. may contain 1-3 heteroatoms, such as 1 or 2 heteroatoms, or 1 heteroatom, said heteroatom(s) being independently selected from N, O and S; e.g. O and S; or O.

20 In some embodiments, A is a 5- or 6-membered heterocycle containing an O in the ring and optionally one or more further heteroatoms, e.g. A is dihydro-2H-pyran, including 3,6-dihydro-2H-pyran and 3,4-dihydro-2H-pyran.

25 In some embodiments, A is a 5- or 6-membered heterocyclic ring containing one heteroatom in the ring or a 5- or 6-membered carbocyclic ring. E.g. A may be selected from a monounsaturated 5- or 6-membered heterocyclic ring containing one heteroatom in the ring or a monounsaturated 5- or 6-membered carbocyclic ring.

30 In some embodiments, A is a 5- or 6-membered oxygen-containing heterocyclic ring or a 5- or 6-membered carbocyclic ring, e.g. A is selected from cyclopentene, cyclohexene and dihydro-2H-pyran, e.g. from cyclopentene, cyclohexene and 3,6-dihydro-2H-pyran.

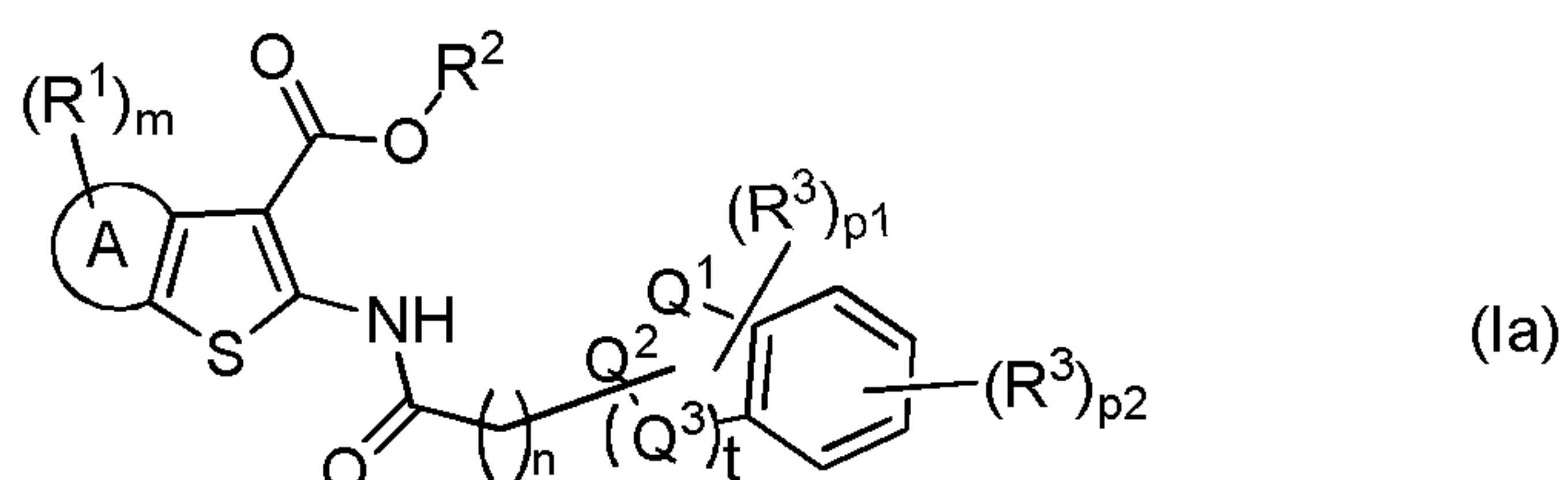
In some embodiments, A is as defined herein above, but is 5-membered and not 6-membered.

In some other embodiments, A is as defined herein above, but is 6-membered and not 5-membered.

The ring B (herein generally referred to simply as “B”) is selected from 5- or 6-membered monocyclic heterocyclyl or carbocyclyl and 9- or 10-membered bicyclic heterocyclyl or carbocyclyl.

5 In some embodiments, B is selected from 5- or 6-membered monocyclic heterocyclyl, 5- or 6-membered monocyclic carbocyclyl, and 9- or 10-membered bicyclic heterocyclyl; e.g. B may be selected from 5- or 6-membered monocyclic heterocyclyl, 9- or 10-membered bicyclic heterocyclyl and phenyl.

10 B may be saturated or unsaturated, and in the latter case may be aromatic or non-aromatic.

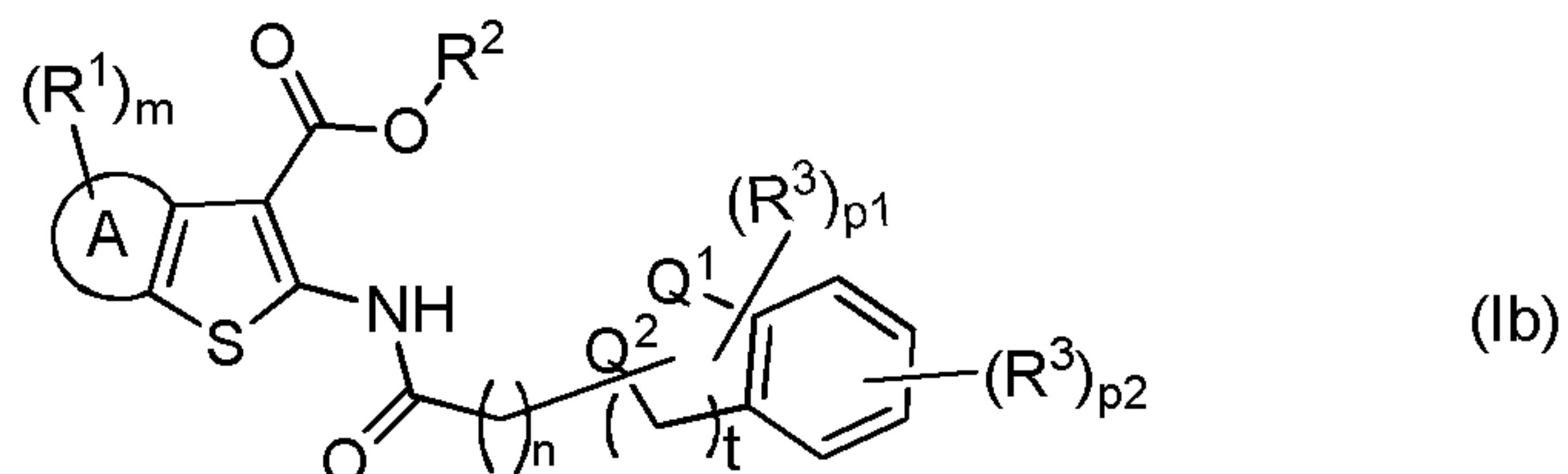

When B is 5- or 6-membered, B more particularly may be 6-membered. When B is 9- or 10-membered, B more particularly may be 9-membered.

15 In some embodiments, B is heterocyclic, i.e. B is selected from 5- or 6-membered monocyclic heterocyclyl and 9- or 10-membered bicyclic heterocyclyl. In this case, B e.g. may comprise 1- 3 heteroatoms; such as 1 or 2 heteroatoms, independently selected from N, O and S.

20 In some embodiments, B is selected from 9- or 10-membered bicyclic heterocyclyl. For example, B may be selected from 9- or 10-membered bicyclic heterocyclyl, wherein one cycle is aromatic and the other one is aromatic or non-aromatic. In some of these embodiments, one cycle in the bicycyl is benzene. For example, B may be a bicycyl containing a benzene ring fused to another, 5- or 6-membered ring, which may be aromatic or non-aromatic.

25

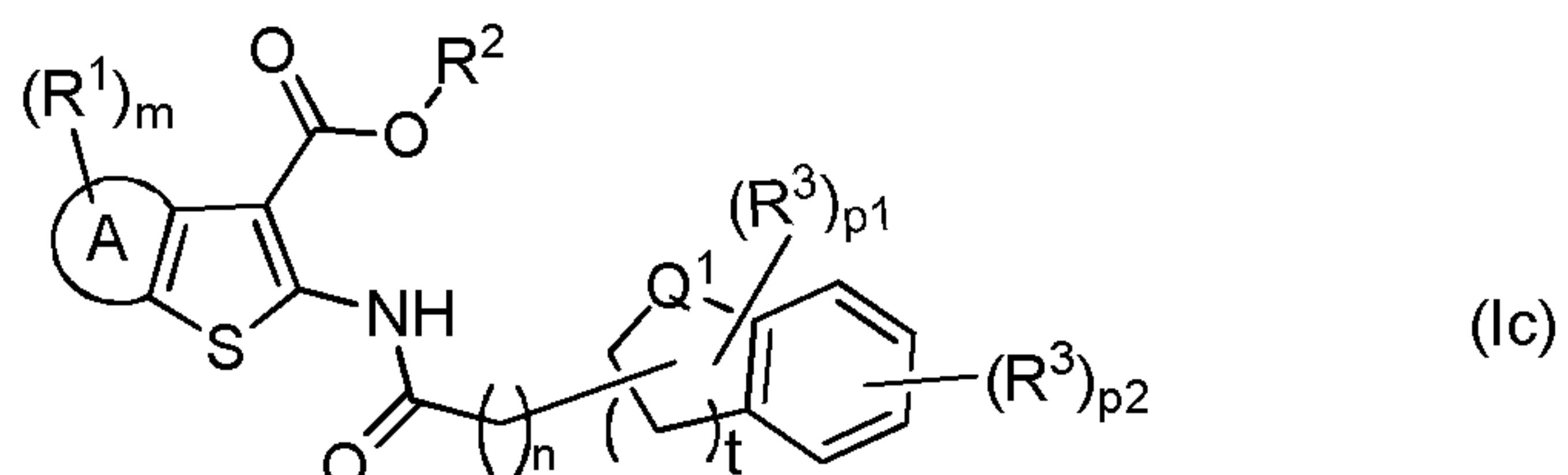
In some embodiments, when B is 9- or 10-membered bicycyl containing a 5- or 6-membered ring fused with a benzene ring, the compound of formula (I) may be represented by formula (Ia)



30 wherein A, R¹, R², R³, m and n are as defined herein above;
 Q¹, Q² and Q³ are independently selected from C, N, O and S;

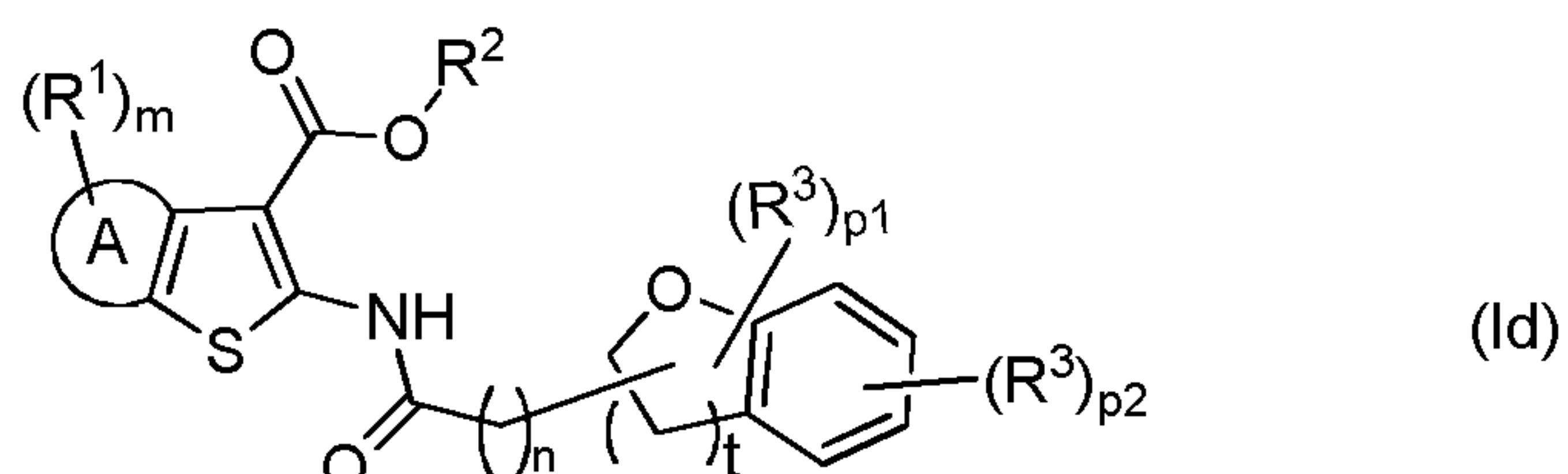
t is 1 or 2; and

p1 and p2 are integers from 0 to 3 such that p1+p2 is an integer from 0 to 3.


For example, in some embodiments, one of Q¹ and Q² is a heteroatom, and the other one of Q¹ and Q² is C; and each Q³ is C. The compound may then be represented by formula (Ib)

wherein A, R¹, R², R³, m, n, p1, p2 and t are as defined herein above; one of Q¹ and Q² is a heteroatom, and the other one is C.

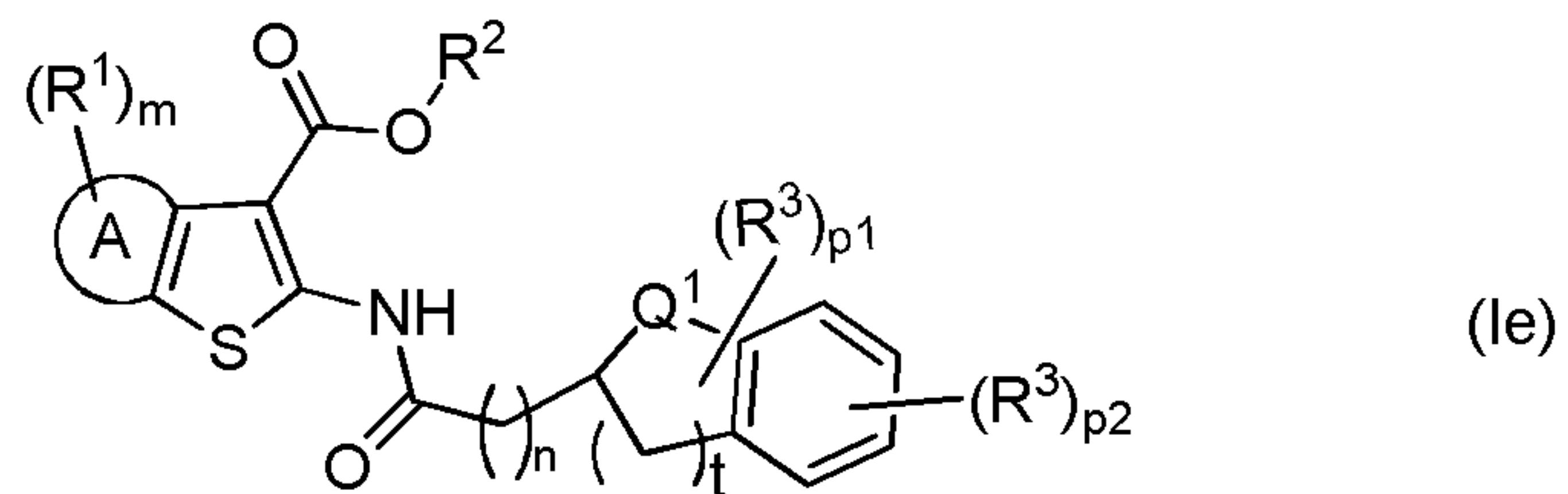
10


For example, in some embodiments, Q¹ is a heteroatom and Q² is C and the compound may then be represented by formula (Ic)

wherein A, R¹, R², R³, m, n, p1, p2 and t are as defined herein above; and Q¹ is a heteroatom.

15

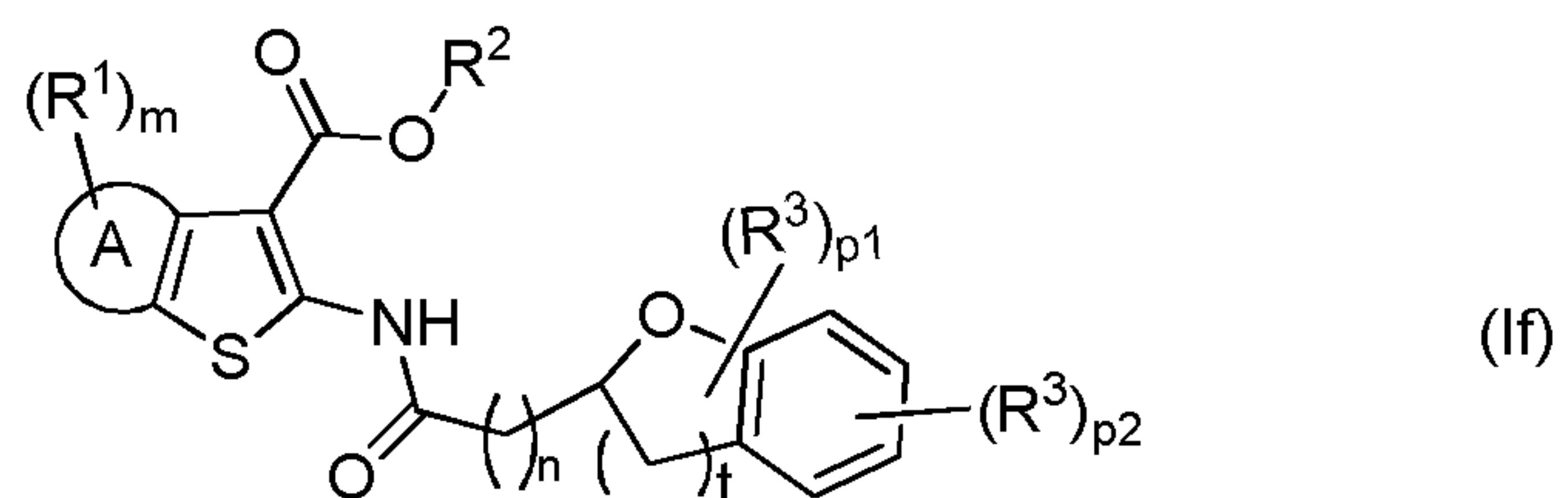
In some embodiments, one of Q¹ and Q² is O and the other one is C. For example, when Q¹ is O and Q² is C, the compound may be represented by formula (Id)



wherein A, R¹, R², R³, m, n, p1, p2 and t are as defined herein above.

20

In any of formulae (Ia), (Ib), (Ic), and (Id) the point of attachment of -NHC(O)-(CH₂)_n- to the bicyclic ring (B) may be either at the benzene ring or at the Q¹, Q², Q³-containing ring. In some embodiments, the point of attachment is at the Q¹, Q², Q³-containing ring.


For example, in some embodiments of a compound of formula (Ic) the point of attachment is at the carbon atom adjacent to Q^1 . In these embodiments, the compound may be represented by formula (Ie)

5 wherein A, R^1 , R^2 , R^3 , m, n, p1, p2 and t are as defined herein above.

Likewise, in some embodiments of a compound of formula (Id) the point of attachment is at the carbon atom adjacent to the oxygen atom. In these embodiments, the compound may be represented by formula (If)

10

wherein A, R^1 , R^2 , R^3 , m, n, p1, p2 and t are as defined herein above.

In any of the formulae (Ia) to (If), t is 1 or 2. In some embodiments, t is 1.

15

Both integers p1 and p2 in any of the formulae (Ia) to (If) may vary from 0 to 3, provided that their total sum is 0 to 3. In some embodiments, p1 is 0. In some embodiments, both p1 and p2 are 0.

20

It should be noted that in those cases where a ring contains N as a heteroatom, and said N is attached to 2 neighbouring ring atoms through single bonds, the N will also either carry a hydrogen atom, or a substituent R^3 , e.g. a C1-C6 alkyl.

25

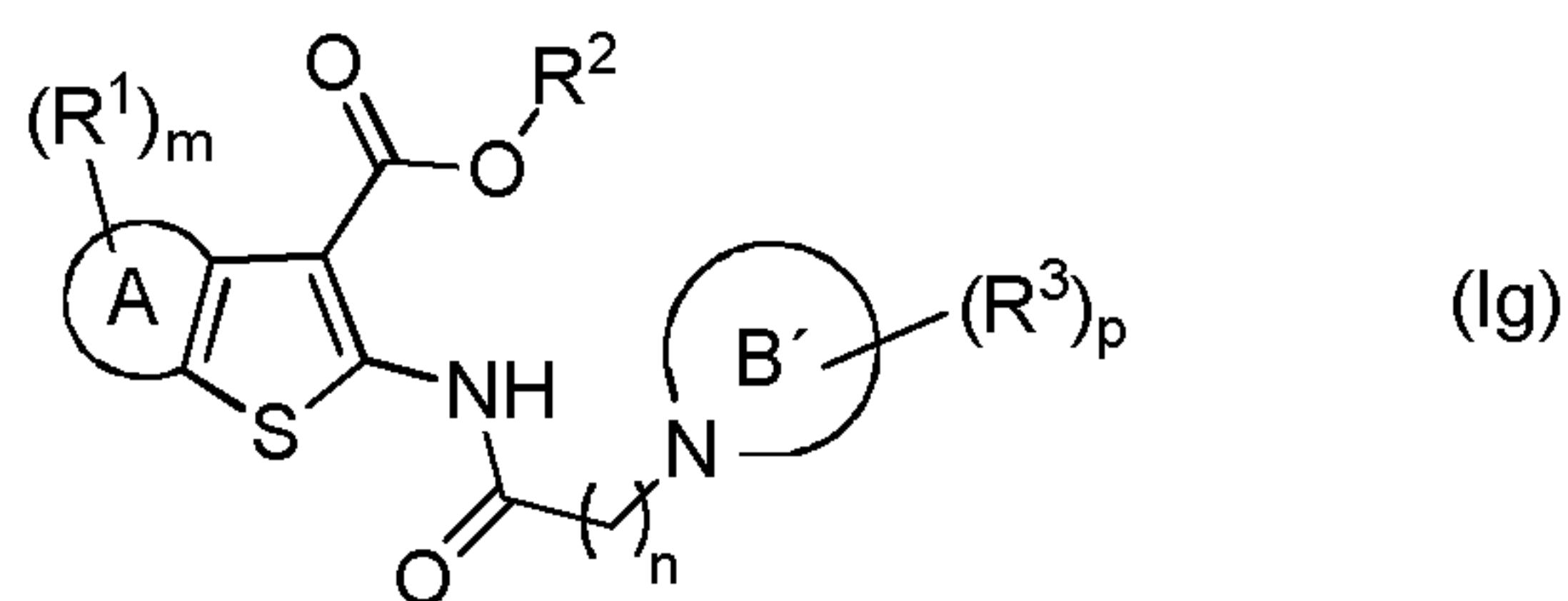
In some embodiments, B is selected from 5- or 6-membered monocyclic heterocyclyl or carbocyclyl, e.g. non-aromatic 5- or 6-membered monocyclic heterocyclyl or carbocyclyl or aromatic 5- or 6-membered monocyclic heterocyclyl or carbocyclyl.

For example, B may be selected from 5- or 6-membered aromatic or non-aromatic monocyclic heterocyclyl and phenyl.

In some embodiments, B is selected from 5- or 6-membered monocyclic heterocyclyl, e.g.

5 non-aromatic 5- or 6-membered monocyclic heterocyclyl, such as saturated 5- or 6-membered monocyclic heterocyclyl.

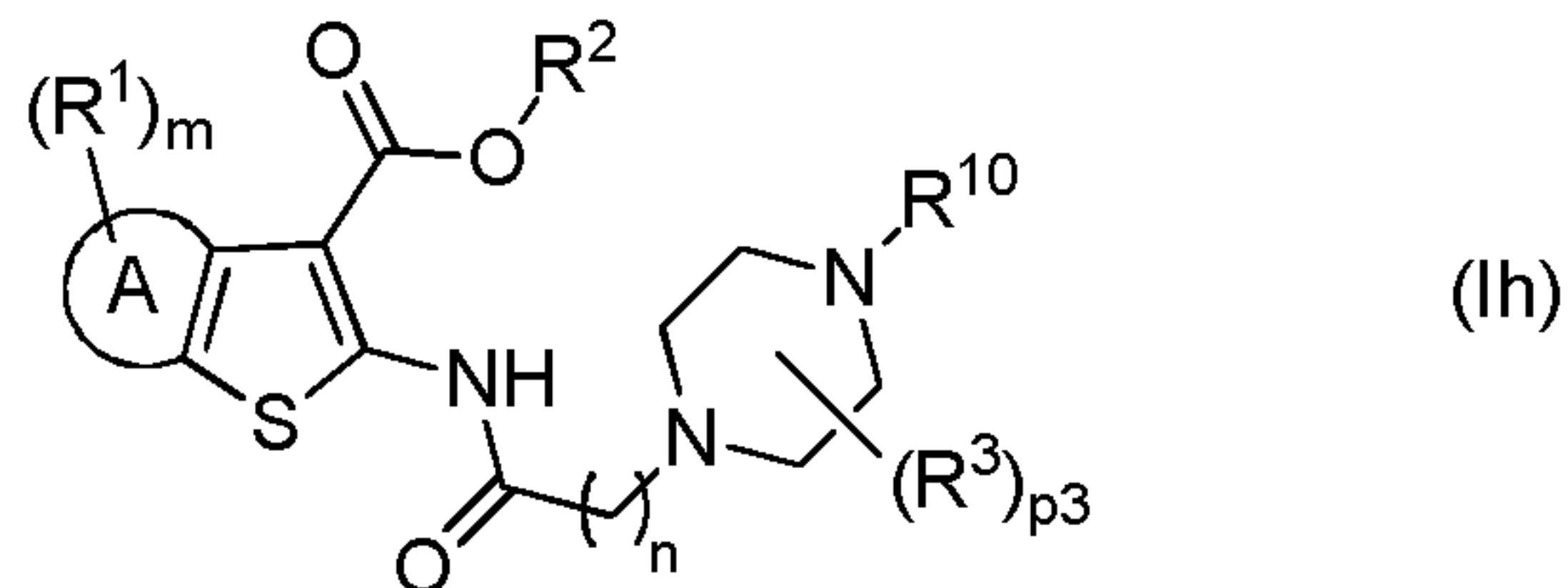
In some embodiments, B is 5- or 6-membered monocyclic heterocyclyl, e.g. non-aromatic 5-


10 or 6-membered monocyclic heterocyclyl, such as saturated 5- or 6-membered monocyclic

heterocyclyl, e.g. comprising 1 or 2 cyclic heteroatoms.

In some particular embodiments, B is 6-membered monocyclic heterocyclyl, e.g. non-aromatic 6-membered monocyclic heterocyclyl, such as saturated 6-membered monocyclic heterocyclyl, e.g. comprising 1 or 2 cyclic heteroatoms.

15

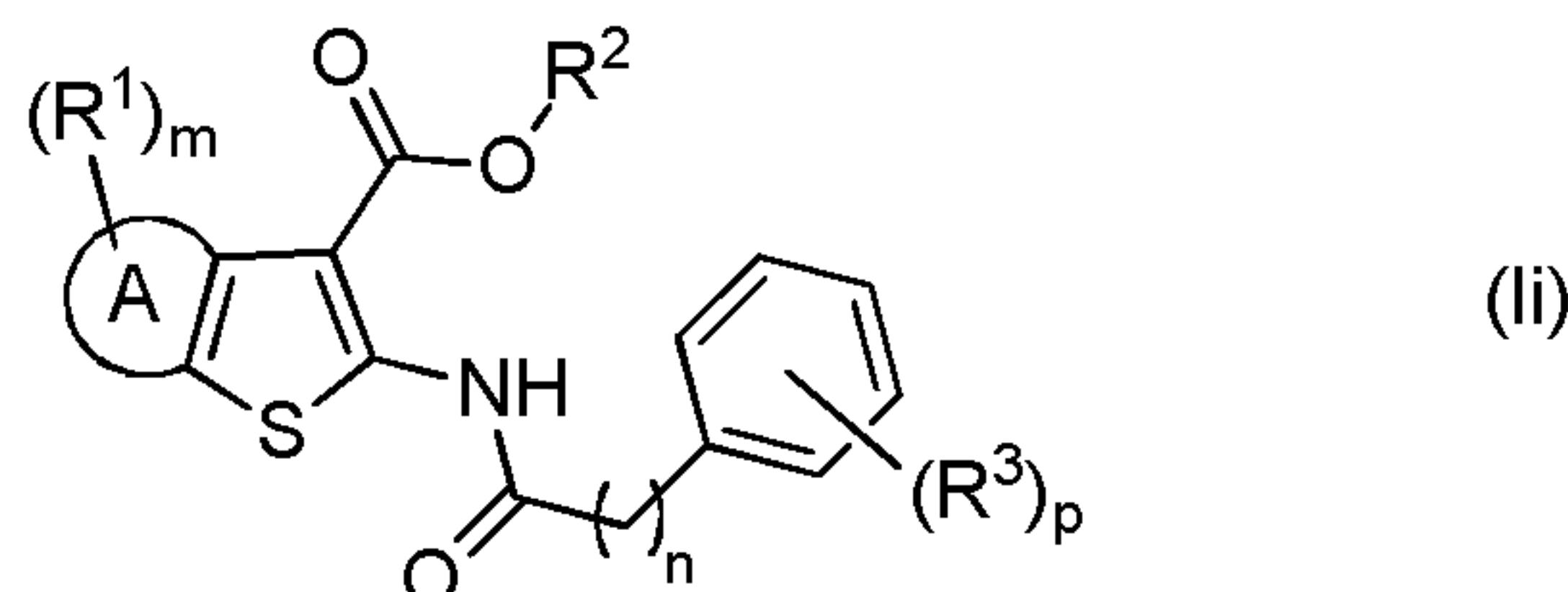

For example, B may be a 5- or 6-membered monocyclic heterocyclyl comprising a cyclic N to which the -NHC(O)-(CH₂)_n- is attached, and optionally comprising at least one further cyclic heteroatom. The compound may then be represented by formula (Ig)

20 wherein A, R¹, R², R³, m, n, and p are as defined herein above and B' is a 5- or 6-membered heterocyclyl optionally comprising one further cyclic heteroatom.

In some embodiments of formula (Ig), n is 1.

25 In some embodiments, B is piperazinyl. In some embodiments where B is piperazinyl, the compound may be represented by formula (Ih)

wherein A, R¹, R², R³, m, and n are as defined herein above;


R^{10} is H or R^3 ; and

p3 is an integer from 0 to 3 when R^{10} is H, and p3 is an integer from 0 to 2 when R^{10} is R^3 .

In some embodiments, in a compound of formula (Ih) R^{10} is selected from 1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl and C3-C6 cycloalkyl, e.g. R^{10} is C1-C6 alkyl, such as C1-C3 alkyl.

In some embodiments, in particular when R^{10} is R^3 , p3 is 0.

In some embodiments, B is 5- or 6-membered monocyclic carbocyclyl, such as phenyl. In 10 those embodiments, the compound may be represented by formula (Ii)

wherein A, R^1 , R^2 , R^3 , m, n and p are as defined herein above.

In formula (I), n is an integer from 0 to 3. Preferably, n is from 0 to 2, more preferably n is 0 15 or 1, e.g. n is 1.

The ring A is optionally substituted with 1, 2 or 3 moieties R^1 , e.g. 1 or 2 moieties R^1 , each R^1 being independently selected from halogen, $R^4O(CH_2)_q$, $R^4S(CH_2)_q$, $R^4R^5N(CH_2)_q$, $CN(CH_2)_q$, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, 20 alkynyl and cycloalkyl optionally being substituted with at least one halogen.

In some embodiments, each R^1 is independently selected from halogen, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen. For example, R^1 may be selected from 25 halogen, C1-C3 alkyl, C2-C3 alkenyl, C2-C3 alkynyl, and C3-C5 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen; or from C1-C3 alkyl, C2-C3 alkenyl, C2-C3 alkynyl, and C3-C5 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen.

30 In some embodiments, each R^1 is selected from C1-C6 alkyl, such as C1-C3 alkyl, e.g. methyl.

When R^1 is $R^4O(CH_2)_q$, $R^4S(CH_2)_q$, or $R^4R^5N(CH_2)_q$, R^4 is independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl; said alkyl, alkenyl, alkynyl heterocyclyl and carbocyclyl optionally being substituted with at least one halogen. For example, R^4 may be independently selected from H, C1-C3 alkyl, C2-C3 alkenyl, C2-C3 alkynyl, and C3-C5 cycloalkyl, or H and C1-C3 alkyl, e.g. C1-C3 alkyl, such as methyl.

In $R^4R^5N(CH_2)_q$, R^5 is selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl; said alkyl, alkenyl, alkynyl heterocyclyl and carbocyclyl optionally being substituted with at least one halogen. For example, R^5 may be independently selected from H, C1-C3 alkyl, C2-C3 alkenyl, C2-C3 alkynyl, and C3-C5 cycloalkyl, or H and C1-C3 alkyl, e.g. C1-C3 alkyl, such as methyl.

In $R^4O(CH_2)_q$, $R^4S(CH_2)_q$, and $R^4R^5N(CH_2)_q$, q is an integer of from 0 to 3, e.g. q may be 0 or 1. In some embodiments, q is 0, i.e. $R^4O(CH_2)_q$, $R^4S(CH_2)_q$, and $R^4R^5N(CH_2)_q$ are R^4O , R^4S , and R^4R^5N , respectively.

The compound of formula (I) comprises a group -COOR². In said group, R² is selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen. For example, R² may be selected from H, C2-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen; or from H, C1-C3 alkyl, C2-C3 alkenyl, C2-C3 alkynyl, and C3-C5 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen.

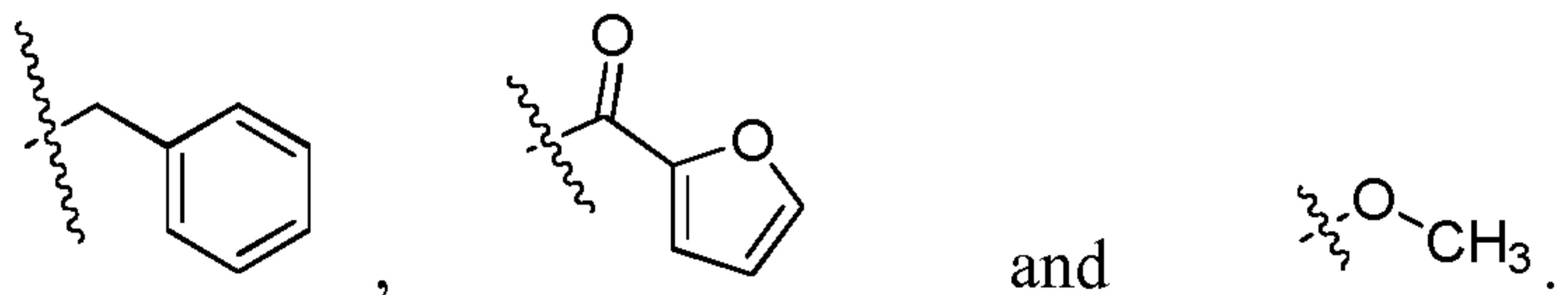
In some embodiments, R² is as defined herein above, but is not H. In some other embodiments, R² is selected from H and C1-C6 alkyl, e.g. from H and C1-C3 alkyl, e.g. R² is ethyl.

The ring B is optionally substituted with 1, 2 or 3 moieties R³, each R³ being independently selected from halogen, $R^6O(CH_2)_w$, $R^6S(CH_2)_w$, $R^6C(O)(CH_2)_w$, $R^6S(O)_2(CH_2)_w$, $R^6OC(O)(CH_2)_w$, $R^6C(O)O(CH_2)_w$, $R^6OC(O)O(CH_2)_w$, $R^6OC(O)(CH_2)_w$, $R^6C(O)O(CH_2)_w$, $R^6OC(O)O(CH_2)_w$, $R^7(CH_2)_w$, $R^8R^9N(CH_2)_w$, $R^8R^9NC(O)(CH_2)_w$, $R^8R^9NS(O)_2(CH_2)_w$, $CN(CH_2)_w$, and, C1-C6 alkyl, C2-C6 alkenyl, and C2-C6 alkynyl, said alkyl, alkenyl and alkynyl optionally being substituted with at least one halogen.

In some embodiments, each R^3 is selected from halogen, $R^6O(CH_2)_w$, $R^6S(CH_2)_w$, $R^6C(O)(CH_2)_w$, $R^7(CH_2)_w$, C1-C6 alkyl, C2-C6 alkenyl, and C2-C6 alkynyl, said alkyl, alkenyl and alkynyl optionally being substituted with at least one halogen.

5 In some other embodiments, each R^3 is selected from $R^6O(CH_2)_w$, $R^6C(O)(CH_2)_w$, and $R^7(CH_2)_w$.

Each moiety R^6 is selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and 5- or 6-membered heterocyclyl or carbocyclyl, said alkyl, alkenyl, alkynyl heterocyclyl and carbocyclyl optionally being substituted with at least one halogen. In some embodiments, 10 each R^6 is selected from C1-C3 alkyl, C2-C3 alkenyl, C2-C3 alkynyl, and 5- or 6-membered heterocyclyl or carbocyclyl. For example, R^6 is selected from C1-C3 alkyl.


In some embodiments, R^6 is selected from 5- or 6-membered heterocyclyl or carbocyclyl. 15 When R^3 is $R^7(CH_2)_w$, R^7 is selected from 5- or 6-membered monocyclic heterocyclyl or carbocyclyl or 9- or 10-membered bicyclic heterocyclyl or carbocyclyl, said heterocyclyl and carbocyclyl optionally being substituted with at least one halogen. In some embodiments, the carbocyclyl or heterocyclyl is aromatic.

20 In some embodiments, R^7 is selected from 5- or 6-membered monocyclic heterocyclyl or carbocyclyl, e.g. aromatic heterocyclyl, such as furyl, or aromatic carbocyclyl, such as phenyl.

In $R^8R^9N(CH_2)_w$, $R^8R^9NC(O)(CH_2)_w$, and $R^8R^9NS(O)_2(CH_2)_w$, R^8 and R^9 are independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl; said alkyl, alkenyl, alkynyl heterocyclyl and carbocyclyl optionally being substituted with at least one halogen. For example, R^8 and R^9 may be independently selected from H, C1-C3 alkyl, C2-C3 alkenyl, C2-C3 alkynyl, and C3-C5 cycloalkyl, or H and C1-C3 alkyl, e.g. C1-C3 alkyl, such as methyl.

30

In some embodiments, R^3 is selected from

When R^3 is $R^6O(CH_2)_w$, $R^6S(CH_2)_w$, $R^6C(O)(CH_2)_w$, $R^6S(O)_2(CH_2)_w$, $R^6OC(O)(CH_2)_w$, $R^6C(O)O(CH_2)_w$, $R^6OC(O)O(CH_2)_w$, $R^6OC(O)(CH_2)_w$, $R^6C(O)O(CH_2)_w$, $R^6OC(O)O(CH_2)_w$, $R^8R^9N(CH_2)_w$, $R^8R^9NC(O)(CH_2)_w$, $R^8R^9NS(O)_2(CH_2)_w$, $CN(CH_2)_w$, or $R^7(CH_2)_w$, w is an integer of from 0 to 3, e.g. from 0 to 2, or 0 or 1.

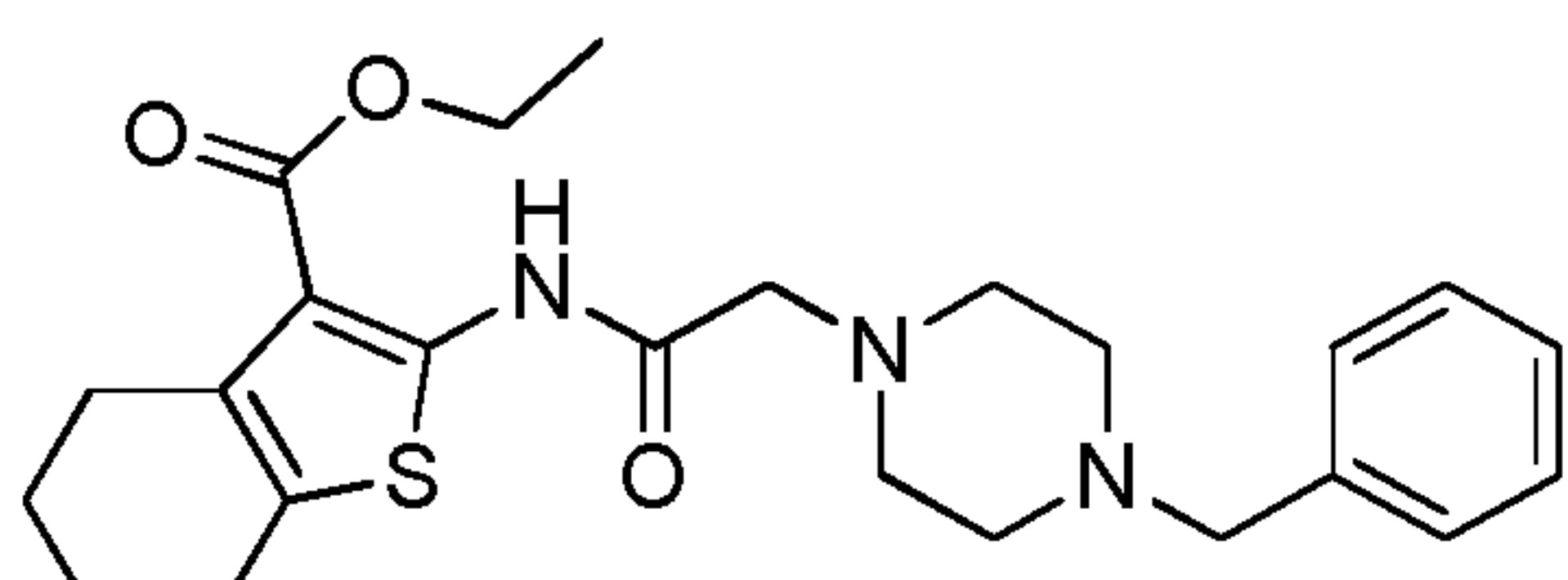
5

In some embodiments of a compound of formula (I):

A is a 5- or 6-membered monounsaturated heterocyclic or carbocyclic ring;

10 B is selected from 5- or 6-membered monocyclic heterocyclyl or carbocyclyl and 9- or 10-membered bicyclic heterocyclyl;

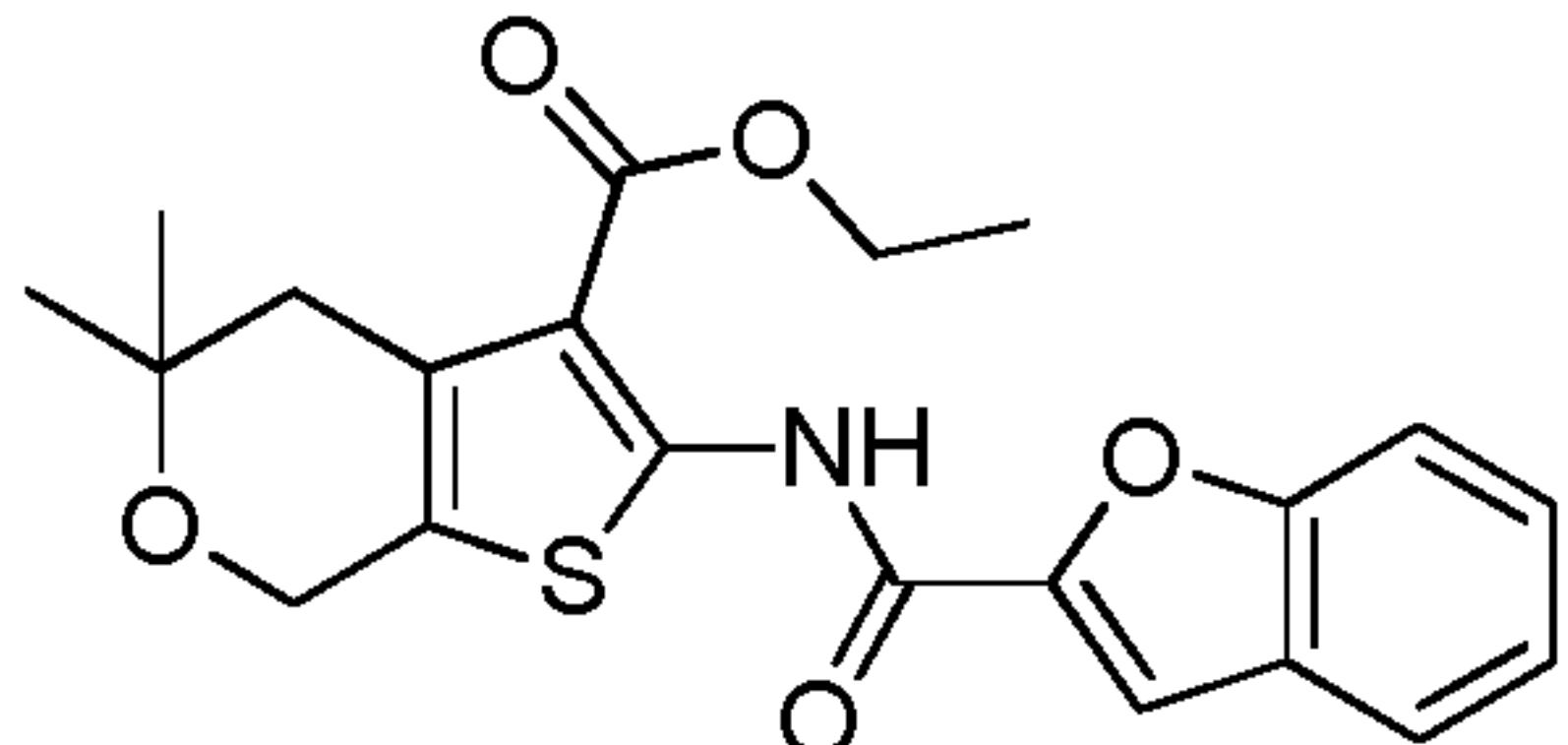
each R^1 is independently selected from halogen, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted 15 with at least one halogen;


R^2 is selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;

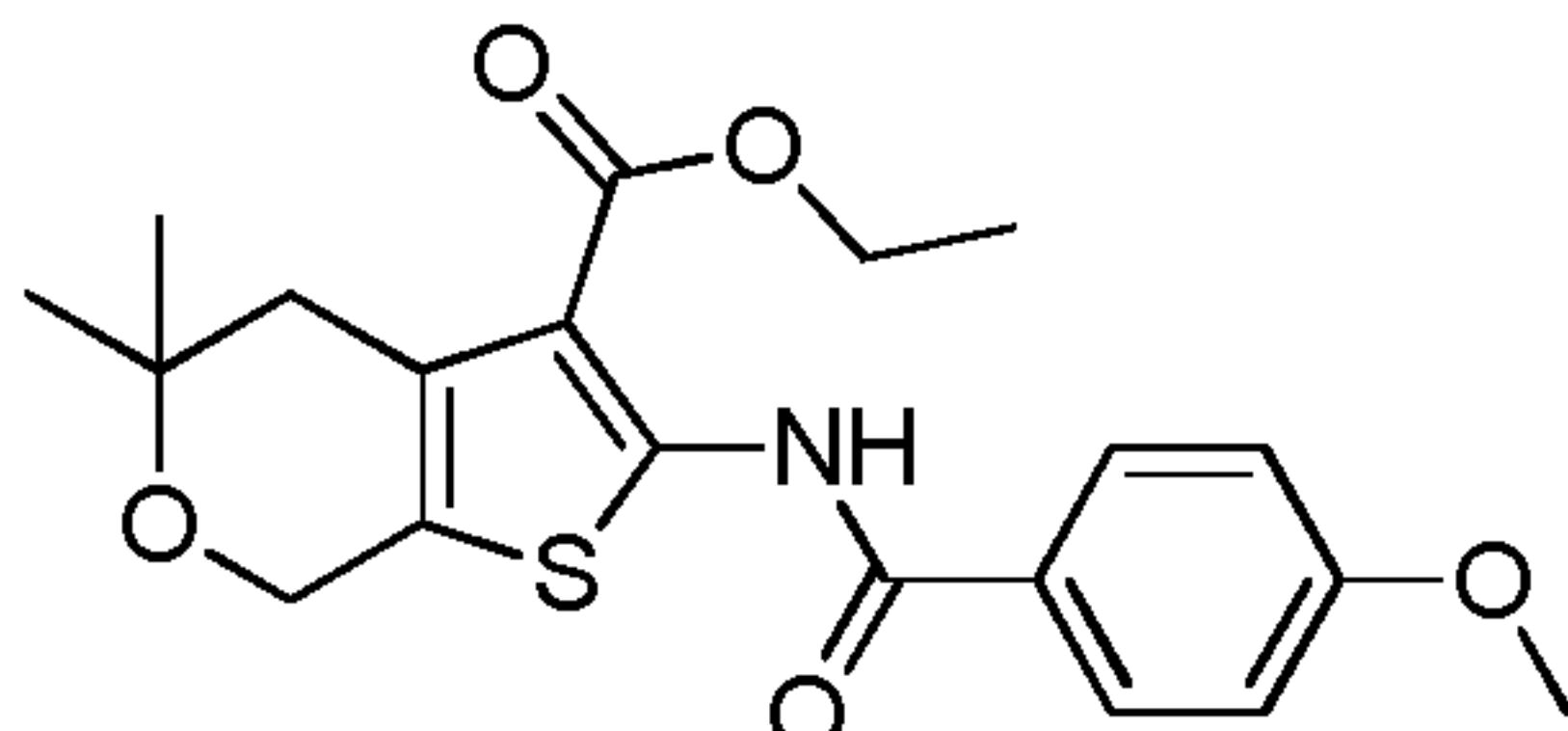
20 R^3 is selected from halogen, $R^6O(CH_2)_q$, $R^6S(CH_2)_q$, $R^6C(O)(CH_2)_q$, $R^7(CH_2)_q$, C1-C6 alkyl, C2-C6 alkenyl, and C2-C6 alkynyl, said alkyl, alkenyl and alkynyl optionally being substituted with at least one halogen; and


n is 0 or 1.

25


In some embodiments, the compound for use as defined herein is selected from


ethyl 2-(2-(4-benzylpiperazin-1-yl)acetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate,


ethyl 2-(2-(4-(furan-2-carbonyl)piperazin-1-yl)acetamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,

5 ethyl 2-(benzofuran-2-carboxamido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate,

ethyl 5,5-dimethyl-2-(2-phenylacetamido)-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate, and

10

ethyl 2-(4-methoxybenzamido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate, or a pharmaceutically acceptable salt of any of these.

The above compounds have not hitherto been used in therapy. Thus, in some embodiments, a
15 compound for use in therapy is provided, selected from

ethyl 2-(2-(4-benzylpiperazin-1-yl)acetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate,

ethyl 2-(2-(4-(furan-2-carbonyl)piperazin-1-yl)acetamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,

20 ethyl 2-(benzofuran-2-carboxamido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate,

ethyl 5,5-dimethyl-2-(2-phenylacetamido)-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate, and

ethyl 2-(4-methoxybenzamido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate, or a pharmaceutically acceptable salt of any of these.

5

The compounds of formula (I) can be prepared by methods well known in the art, from readily available starting materials using general methods and procedures. Some compounds of formula (I) are commercially available, e.g. from Vitas-M Laboratory, Ltd. Room 84, Hodynski blv.15, Moscow, 125252, Russia (<http://www.vitasmlab.com/>).

10

Depending on the process conditions the end products of formula (I) are obtained either in neutral or salt form. Both the free base and the free acid, as well as the salts of these end products are within the scope of the invention. Acid addition salts of the inventive compounds may in a manner known per se be transformed into the free base using basic agents such as alkali or by ion exchange. The free base obtained may also form salts with organic or inorganic acids. Alkali addition salts of the inventive compounds may in a manner known per se be transformed into the free acid by using acidic agents such as acid or by ion exchange. The free acid obtained may also form salts with organic or inorganic bases.

20 In the preparation of acid or base addition salts, preferably such acids or bases are used which form suitably therapeutically acceptable salts. Examples of such acids are hydrohalogen acids, sulfuric acid, phosphoric acid, nitric acid, aliphatic, alicyclic, aromatic or heterocyclic carboxylic or sulfonic acids, such as formic acid, acetic acid, propionic acid, succinic acid, glycolic acid, lactic acid, malic acid, tartaric acid, citric acid, ascorbic acid, maleic acid, 25 hydroxymaleic acid, pyruvic acid, p-hydroxybenzoic acid, embonic acid, methanesulfonic acid, ethanesulfonic acid, hydroxyethanesulfonic acid, halogenbenzenesulfonic acid, toluenesulfonic acid or naphthalenesulfonic acid. Base addition salts include those derived from inorganic bases, such as ammonium or alkali or alkaline earth metal hydroxides, carbonates, bicarbonates, and the like, and organic bases such as alkoxides, alkyl amides, 30 alkyl and aryl amines, and the like. Examples of bases useful in preparing salts of the present invention include sodium hydroxide, potassium hydroxide, ammonium hydroxide, potassium carbonate, and the like.

There may be several stereoisomers of the compounds of the invention, including enantiomers and diastereomers. Enantiomers can be present in their pure forms, or as racemic (equal) or unequal mixtures of two enantiomers. Diastereomers can be present in their pure forms, or as mixtures of diastereomers. Diastereomers also include geometric isomers, which can be 5 present in their pure cis or trans forms or as mixtures of those.

Pharmaceutical formulations are usually prepared by mixing the active substance, i.e. a compound of the invention, or a pharmaceutically acceptable salt thereof, with conventional pharmaceutical excipients. The formulations can be further prepared by known methods such 10 as granulation, compression, microencapsulation, spray coating, etc. The formulations may be prepared by conventional methods in the dosage form of tablets, capsules, granules, powders, syrups, suspensions, suppositories or injections. Liquid formulations may be prepared by dissolving or suspending the active substance in water or other suitable vehicles. Tablets and granules may be coated in a conventional manner.

15

For clinical use, the compounds of the invention are formulated into pharmaceutical formulations for oral, rectal, parenteral or other mode of administration. These pharmaceutical preparations are a further object of the invention.

20 Usually the effective amount of active compounds is between 0.1-95% by weight of the preparation, preferably between 0.2-20% by weight in preparations for parenteral use and preferably between 1 and 50% by weight in preparations for oral administration.

25 The dose level and frequency of dosage of the specific compound will vary depending on a variety of factors including the potency of the specific compound employed, the metabolic stability and length of action of that compound, the patient's age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the condition to be treated, and the patient undergoing therapy. The daily dosage may, for example, range from about 0.001 mg to about 100 mg per kilo of body weight, administered 30 singly or multiply in doses, e.g. from about 0.01 mg to about 25 mg each. Normally, such a dosage is given orally but parenteral administration may also be chosen.

In the preparation of pharmaceutical formulations containing a compound of the present invention in the form of dosage units for oral administration the compound selected may be

mixed with solid, powdered ingredients, such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose derivatives, gelatin, or another suitable ingredient, as well as with disintegrating agents and lubricating agents such as magnesium stearate, calcium stearate, sodium stearyl fumarate and polyethylene glycol waxes. The mixture is then
5 processed into granules or pressed into tablets.

Soft gelatine capsules may be prepared with capsules containing a mixture of the active compound or compounds of the invention, vegetable oil, fat, or other suitable vehicle for soft gelatine capsules. Hard gelatine capsules may contain granules of the active compound. Hard
10 gelatine capsules may also contain the active compound in combination with solid powdered ingredients such as lactose, saccharose, sorbitol, mannitol, potato starch, corn starch, amylopectin, cellulose derivatives or gelatine.

Dosage units for rectal administration may be prepared (i) in the form of suppositories which
15 contain the active substance mixed with a neutral fat base; (ii) in the form of a gelatine rectal capsule which contains the active substance in a mixture with a vegetable oil, paraffin oil or other suitable vehicle for gelatine rectal capsules; (iii) in the form of a ready-made micro enema; or (iv) in the form of a dry micro enema formulation to be reconstituted in a suitable solvent just prior to administration.

20 Liquid preparations for oral administration may be prepared in the form of syrups or suspensions, e.g. solutions or suspensions containing from 0.2% to 20% by weight of the active ingredient and the remainder consisting of sugar or sugar alcohols and a mixture of ethanol, water, glycerol, propylene glycol and polyethylene glycol. If desired, such liquid
25 preparations may contain colouring agents, flavouring agents, saccharine and carboxymethyl cellulose or other thickening agent. Liquid preparations for oral administration may also be prepared in the form of a dry powder to be reconstituted with a suitable solvent prior to use.

Solutions for parenteral, e.g. intravenous, administration may be prepared as a solution of a
30 compound of the invention in a pharmaceutically acceptable solvent, preferably in a concentration from 0.1% to 10% by weight. These solutions may also contain stabilizing ingredients and/or buffering ingredients and are dispensed into unit doses in the form of ampoules or vials. Solutions for parenteral administration may also be prepared as a dry preparation to be reconstituted with a suitable solvent extemporaneously before use.

The compounds of the present invention may also be used or administered in combination with one or more additional therapeutically active agents. The components may be in the same formulation or in separate formulations for administration simultaneously or sequentially.

5

Accordingly, in a further aspect of the invention, there is provided a combination product comprising:

(A) a compound of the invention, as defined herein; and
10 (B) another therapeutic agent; whereby (A) and (B) is formulated in admixture with a pharmaceutically acceptable excipient.

Such combination products provide for the administration of a compound of the invention in conjunction with the other therapeutic agent, and may thus be presented either as separate formulations, wherein at least one of those formulations comprises a compound of the 15 invention, and at least one comprises the other therapeutic agent, or may be presented (i.e. formulated) as a combined preparation (i.e. presented as a single formulation including a compound of the invention and the other therapeutic agent).

Thus, there is further provided:

20 (1) a pharmaceutical formulation including a compound of the invention, as hereinbefore defined, another therapeutic agent, and a pharmaceutically acceptable excipient, e.g. an adjuvant, diluent or carrier; as well as

(2) a kit of parts comprising, as components:
25 (a) a pharmaceutical formulation including a compound of the invention, as defined herein, in admixture with a pharmaceutically acceptable excipient, e.g. an adjuvant, diluent or carrier; and
(b) a pharmaceutical formulation including another therapeutic agent in admixture with a pharmaceutically acceptable excipient, e.g. an adjuvant, diluent or carrier, which components
30 (a) and (b) are each provided in a form that is suitable for administration in conjunction with the other.

The compounds of the present invention may also be used or administered in combination with other modes of treatment such as irradiation for the treatment of cancer.

The compounds of the present invention are Nox inhibitors. More specifically, the compounds of the present invention are Nox4 inhibitors. The capacity of inhibiting predominantly one particular Nox isoform, i.e. Nox4, is considered to be an important advantage of the present compounds, in view of the fact that Nox isoforms not only are involved in diseases, as Nox4, 5 but also have various important biological functions in the living body. Therefore, according to one aspect, compounds as defined herein above are provided, for inhibiting Nox in a mammal patient in need of such inhibition. More particularly, compounds as defined herein above are provided, for inhibiting Nox4 in a mammal patient in need of such inhibition.

10 By inhibiting Nox activity, the inventive compounds are useful for the treatment of disorders and diseases associated with such activity, as mentioned herein above. Consequently, the compounds of the present invention are useful for the treatment of a mammal suffering from a disorder associated with expression (activity) of Nox, in particular of Nox4.

15 According to one aspect, therefore, there is provided a method of inhibiting the activity of Nox, in particular Nox4, in a patient in need thereof, by administering to said patient a therapeutically effective amount of a compound of formula (I) as defined herein. The patient may be any mammal, but preferably is a human.

20 The patient to be treated may be one suffering from a condition or disorder associated with an elevated activity of Nox, in particular Nox4, or a patient at risk of developing such a condition or disorder. Examples of such conditions and disorders are cardiovascular disorders, respiratory disorders, metabolism disorders, skin disorders, bone disorders, neuroinflammatory and/or neurodegenerative disorders, kidney diseases, reproduction 25 disorders, diseases affecting the eye and/or the lens and/or conditions affecting the inner ear, inflammatory disorders, liver diseases, pain, cancers, allergic disorders, traumatisms, septic, hemorrhagic and anaphylactic shock, diseases or disorders of the gastrointestinal system, angiogenesis, angiogenesis-dependent conditions, lung infections, acute lung injury, pulmonary arterial hypertension, obstructive lung disorders, fibrotic lung disease, and lung 30 cancer.

The invention will be illustrated by the following, non-limiting Examples.

EXAMPLES

Example 1**Cell-based assays and analytical chemistry***1 CELL VIABILITY*5 *1.1 Celltiter-Blue cell viability assay (Promega)*

The assay is based on the ability of the cells to reduce resazurin to resorufin as a measure of viability. TRExTM-293 Nox4 cells were cultured in a T-225 flask, collected by trypsinization and re-suspended in cell medium. 20,000 cells in 90 µl were seeded to 96-well cell culture plates (black with transparent bottom). One background plate with 90 µl cell medium only 10 was also prepared.

After 24 hours, 10 µl of compound, diluted to 10 times final concentration in 37° C cell medium, were added to cell and background plates. The compounds were tested in duplicate at a final concentration of 10 µM. Chlorpromazine, at a final concentration of 100 µM, was 15 added as positive control. After 24 hours of treatment, 20 µl of CellTiter-Blue reagent were added and the plate was incubated for 120 min at 37° C. Resorufin fluorescence was read in Victor2V plate reader. All experimental values were corrected for background before analysis of the cell viability.

20 *1.2 CytoTox 96® Non-radioactive Cytotoxicity Assay (Promega)*

The assay is based on lactate dehydrogenase (LDH) activity in surrounding cell medium as a measure of membrane integrity. Membrane integrity can be affected by apoptosis, necrosis or chemicals. TRExTM-293 Nox4 cells were cultured in a T-225 flask, collected by trypsinization and re-suspended in HBSS to 100,000 cells per ml. 90 µl of cell suspension were added to 25 each well of a V-bottom polypropylene 96-well plate. One background plate was prepared with HBSS only. Compounds were diluted in HBSS to 10 times final concentration and 10 µl was added per well. The compounds were tested in duplicate at a final concentration of 10 µM.

30 Plates were incubated 3 hours at 37° C. 45 minutes before end of incubation time, 10 µl of lysis solution (Triton X-100) were added to total control wells to estimate total LDH content of cells. Spontaneous LDH leakage was determined with un-treated cells.

Cell plates were centrifuged 250 x g for 5 minutes and 50 μ l of supernatant were transferred to 96-well Spectraplates. 50 μ l of reconstituted substrate mix were added and plates were incubated for 30 minutes at room temperature. 50 μ l of stop solution were added and plates were read in SpectraMax® at a wavelength of 490 nm. Compound specific background was subtracted and % cytotoxicity was calculated as:

$$[(\text{Experimental} - \text{Spontaneous}) / (\text{Total} - \text{Spontaneous})] * 100 \text{ \%}.$$

When tested in the two cell viability assays, none of the inventive compounds showed any significant cell toxicity effects.

2 DOSE-RESPONSE CURVES

Dose-response measurements with the Amplex® Red based assay were performed as follows: Compound serial dilution was carried out using the system based on the liquid handler Janus® (Perkin Elmer) and scheduling software Overlord (Process Analysis and Automation).

Starting with compound plates with 15 μ l 10 mM compound stock solution in DMSO, 10 μ l of DMSO were added to columns of compound plate (Flexdrop). Serial dilution was performed by adding 5 μ l compound solution to 10 μ l DMSO (1:3) to 11 concentrations. To each well of the compound plate 90 μ l of assay buffer were added. After mixing, 10 μ l were transferred from each well of the compound plate to wells of an assay plate, followed by addition of 20 μ l detection mix and 20 μ l of a suspension of TReX™-293 Nox4 cells. The assay plate then was incubated for 40-60 min at room temperature. Data was analyzed using a custom calculation template in Activitybase XE (IDBS). Raw fluorescence data was transformed to %inhibition using the built-in formula:

$$\% \text{ inhibition} = 100 - \frac{\text{RawData}_{\text{Compound}} - \text{RawData}_{\text{Low}}}{\text{RawData}_{\text{High}} - \text{RawData}_{\text{Low}}} \times 100$$

Dose-response curves were fitted using non-linear regression with four parameter logistic formula. In Figure 1A-C, dose-response curves for some compounds of the invention. These compounds have IC50 values ranging from about 3 μ M to about 11 μ M.

3 *IDENTITY, PURITY AND STABILITY (IPS) ANALYSIS*

DMSO solutions were diluted to a final concentration of 100 μ M in PBS, pH 7.4. Two samples were prepared, one for immediate analysis and a second to be stored at 37° C for 24 h. Analysis was performed on a reversed phase HPLC system with UV and ESI-MS detection. Purity was defined as the relative area of the sample peak at 220 nm. Identity was determined by the presence of a molecular ion in the MS of the sample chromatogram. Stability was the ratio of the relative area of the sample peak after 24 hours to that of the 0 hour chromatogram. Purity and stability values were truncated to be reported in 10% increments (*i.e.* 96% is reported as 90%). In the IPS analysis, tested compounds had positive identity, were 90% pure or more and had a stability of 80% or more.

Example 2

Activity of compounds of the invention vs Nox2

To evaluate the Nox4 specificity of compounds of the invention, a number of the compounds of the invention were tested for their potential inhibitory effect of on reactive oxygen species (ROS) production from Nox2.

1 STUDY DESIGN

On PLB985 cells (a human acute myeloid leukemia cell line) and human peripheral blood mononuclear cells (PBMC), inhibition of ROS production from Nox2 after stimulation with phorbol 12-myristate 13-acetate (PMA) (30ng/ml) was evaluated using Isoluminol enhanced chemiluminescence. The inventive compounds and diphenyleneiodonium chloride (DPI) were titrated in a 3-fold dilution series ranging from 200 μ M to 0,01 μ M. All samples were analyzed as duplicates.

25

2 ANALYSIS ASSAY

2.1 Isoluminol Assay

Levels of ROS were measured using isoluminol-dependent chemiluminescence (Dahlgren et al. 1999) Isoluminol is a hydrophobic dye unable to pass biological membranes. Hence, 30 extracellular ROS is measured using this method. Isoluminol is excited by ROS and the light emitted when excited molecules return to the ground state, relative to the amount of released ROS, is measured. This reaction is catalyzed and amplified by peroxidases. Naturally occurring peroxidases can achieve this, however secretions of such are limited and hence

additional peroxidases, in the present case horseradish peroxidase fraction II, need to be added.

2.2 *Data collection and analysis*

5 Luminescence was detected using a FluoStar Optima (BMG Labtech) and white 96-well plates. Measurements were performed during 23 cycles à 67 seconds, at 37°C with shaking. From the 23 cycles an Area Under Curve (AUC) value was calculated. Results were evaluated as percentage change compared to PMA stimulated cells without addition of inhibitor. Nonlinear regression and IC50 calculations were performed using Prism 5 for Mac OS X.

10

3 *MATERIALS AND METHODS*

3.1 *Human PBMC*

Human blood was purchased in one day-old buffy coats from Komponentlab, Sahlgrenska University hospital, Göteborg, Sweden.

15

3.1.1 *PBMC isolation*

Erythrocytes were removed from whole blood by Dextran sedimentation. The erythrocyte free fraction was separated by density gradient centrifugation using Ficoll-Paque Plus (supplemented with 0.75mg/ml NaCl) according to manufacturers instructions. PBMCs were 20 isolated from the interface between plasma and Ficoll-Paque Plus reagent. The PBMCs were washed in HBSS until contaminating platelets were removed. Cell count and viability were determined by trypan blue exclusion.

3.1.2 *Cryopreservation of PBMC*

25 Cells were cryopreserved according to Kreher et al. 2003. Briefly, isolated cells were resuspended at 20×10^6 cells/ml in room temperature freezing medium A (60% Fetal Bovine Serum, 40% RPMI 1640). An equal volume of room temperature freezing medium B (20% DMSO, 80% Fetal Bovine Serum) was added drop wise. 15×10^6 cells were aliquoted in cryo tubes and placed in a pre-chilled (4°C) Cryogenic Controlled-Rate Freezing Container in 30 -80°C. After 24h, samples were transferred to -150°C freezer for indefinite storage.

3.1.3 *Thawing of PBMC*

Cells were thawed quickly in 37°C water bath, pipetted into room temperature HBSS and centrifuged (250 x g, 20°C, 5min). After washing (2x) in HBSS, cells were resuspended in

HBSS at a concentration of 2×10^6 cells/ml. Cell count and viability were determined by Trypan Blue exclusion. One vial per assay plate was used, thawed and prepared just prior to analysis.

5 *3.1.4 Cell Count: Human PBMC*

Total Cell count (per vial): $9-9.75 \times 10^6$ cells

Viability: 92-95%

Assay concentration viable cells: 2×10^6 cells/ml

10 *3.2 PLB985*

PLB985 cells were cultured in RPMI 1640 supplemented with 10% Fetal Bovine Serum (FBS) and Penicillin/Streptomycin 100U/ml (= complete growth medium) at 37°C, 5% CO₂. Cells were passaged approximately twice a week. For differentiation towards neutrophils, cells were spun down (250g, 5min, RT) and resuspended in complete growth medium 15 supplemented with 1.25% DMSO for five days (Zhen et al.1993, Tucker et al.1987). At the day of analysis, differentiated cells were pelleted (250g, 5min, RT), washed twice in HBSS and resuspended in HBSS at 2×10^6 cells/ml. Cell count and viability were determined by Trypan Blue exclusion. Cells were stored in room temperature until use.

20 *3.2.1 Cell Count: PLB985*

Total Cell count: 94×10^6 cells

Viability: 92%

Assay concentration viable cells: 2×10^6 cells/ml

25 *3.3 Reagents*

Assay plates, white 96-well (Nunc 236108)

Dextran T500 (Pharmacosmos 5510 0500 4006)

DMSO (Sigma: D5879)

DPI

30 Fetal Bovine Serum (VWR: LONZ14-801F)

Ficoll Paque Plus (GE Healthcare 71-7167-00)

fMLF (Sigma: F3506)

HBSS (In house: 5.4mM KCl, 0.3mM Na₂HPO₄ x 2H₂O, 0.4mM KH₂PO₄, 4.2mM NaHCO₃, 1.3mM CaCl₂ x 2H₂O, 0.5mM MgCl₂ x 6H₂O, 0.6mM MgSO₄ x 7H₂O, 137mM NaCl, 5.6mM D-glucose)

HRP fraction II (Sigma P8250)

5 Isoluminol (4-Aminophthalhydrazide) (Sigma A8264)

PMA (Sigma P8139)

RPMI 1640 (VWR: LONZ12-702F/12)

3.4 *Tested compounds*

10 100mM DMSO stock solutions of compounds of the invention were used for the tests.

3.5 *Isoluminol buffer*

The isoluminol buffer contains isoluminol (0,0175mg/ml) and HRP fraction II (1,75U/ml).

The buffer was prepared by diluting these ingredients at 4x working concentration in HBSS.

15

4 *PROCEDURES*

4.1 *Substance preparation*

The compounds to be tested were diluted in DMSO at 100x working concentration and titrated in a 3-fold dilution series from 200µM to 0.01µM as final concentrations. DPI was 20 diluted at 100x working concentration and dose titrated in the same dilution series as the test compounds. DPI was also used at a final concentration of 1µM as control on all plates.

Dilution was then performed at 100x working concentration in DMSO. PMA was diluted in isoluminol buffer at 4x working concentration.

25 4.2 *Isoluminol Assay*

25µl of PMA diluted to 4x working concentration in isoluminol buffer were added to each well. To non-stimulated control wells only isoluminol buffer was added. Subsequently 24µl HBSS and 1µl of either the compound test solution or DPI solution were added to each well of the test plate (final DMSO concentration = 1.25%). Finally, 50µl of cell suspension (2x10⁶ 30 cells/ml) were added to each well, followed by immediate initiation of luminescence measurement.

5. RESULTS

The results are represented as luminescence obtained in the presence of a given concentration of the tested substance in % compared to luminescence in the presence of PMA. In Figure 2A and B and Figure 3A and B, results are shown for some compounds of the invention.

5

Example 3

In vivo test of activity in the treatment of stroke

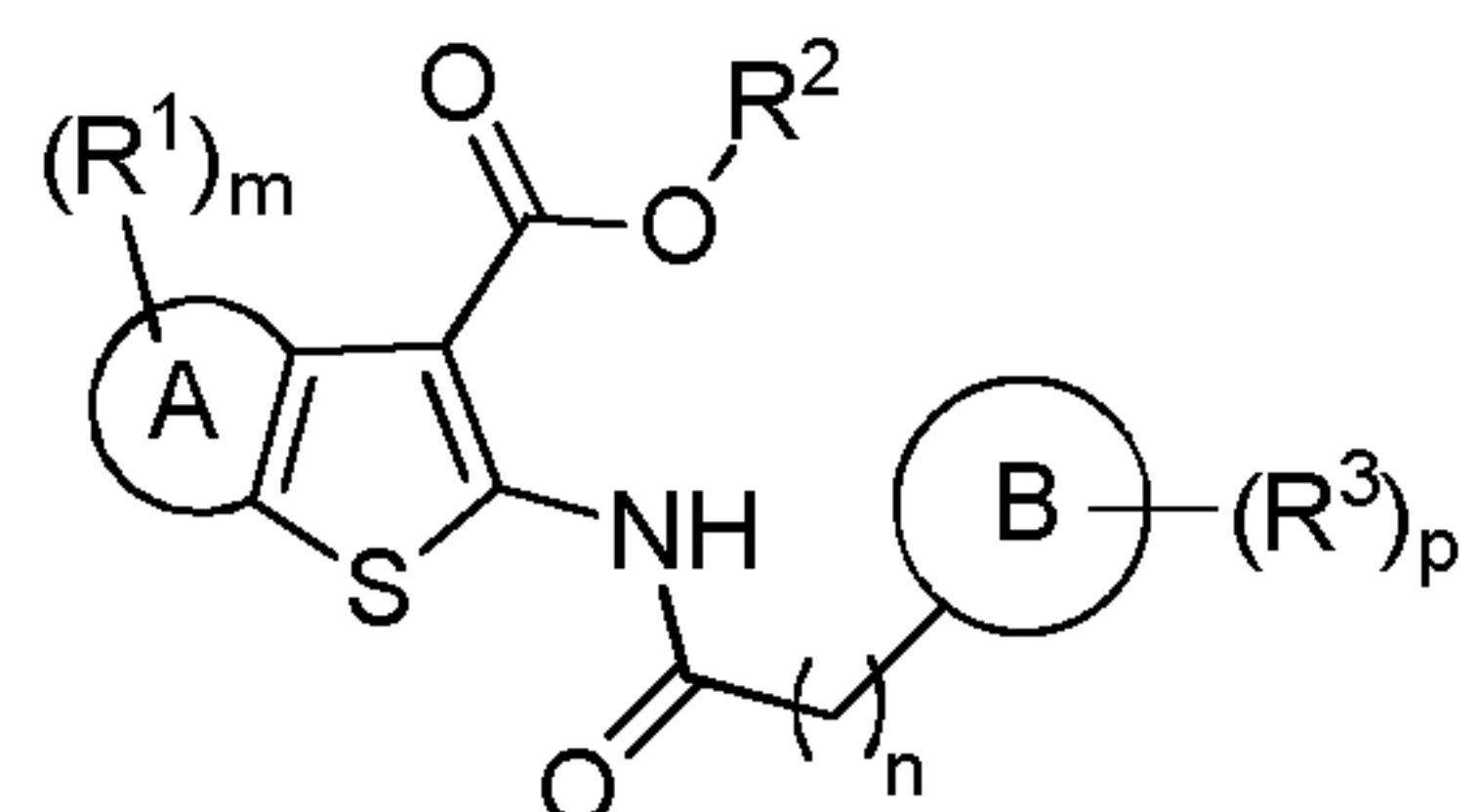
Stroke model

The stroke disease model used in this example was mice that were subjected to transient middle cerebral artery occlusion (tMCAO) to mimic the mechanisms of ischemic stroke. Male mice weighing 20g, was subjected to a 60min of tMCAO as previously described (Elevers M et al., Sci. Signal 3: ra1, 2010; Bena_Erro A et al., Sci Signal 2: ra67). Sham-operated mice were used as control.

15 *Administration*

For the i.p. administrations performed in this study, 3.5mg of ethyl 2-(2-(4-(furan-2-carbonyl)piperazin-1-yl)acetamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate was dissolved in 1ml of DMSO and 5ml of 20% Cremophor ELP in PBS then followed by additional PBS. The administered dose used in the experiment was 3.2mg/kg and in the 20 controls the same injection volume of vehicle was used. Administration was made at 2h and 12h for each mouse.

Stroke analysis


To determine infarct size and effect of Nox4 inhibitor, mice were sacrificed 24h after tCMCAO and lesion volumes of the brain were determined according to a previously 25 described methodology (Kleinschnitz et al, *vide supra*).

Results

The group of mice treated with the inventive compound demonstrated significantly lower 30 lesion volume of the brain (Figure 4).

CLAIMS

1. A compound of formula (I)

5

wherein

A is a 5- or 6-membered heterocyclic or carbocyclic ring;

10

B is selected from 5- or 6-membered monocyclic heterocyclyl or carbocyclyl and 9- or 10-membered bicyclic heterocyclyl or carbocyclyl;

15 each R¹ is independently selected from halogen, R⁴O(CH₂)_q, R⁴S(CH₂)_q, R⁴R⁵N(CH₂)_q, CN(CH₂)_q, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;20 R² is selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;25 each R³ is selected from halogen, R⁶O(CH₂)_w, R⁶S(CH₂)_w, R⁶C(O)(CH₂)_w, R⁶S(O)₂(CH₂)_w, R⁶OC(O)(CH₂)_w, R⁶C(O)O(CH₂)_w, R⁶OC(O)O(CH₂)_w, R⁶OC(O)(CH₂)_w, R⁶C(O)O(CH₂)_w, R⁶OC(O)O(CH₂)_w, R⁸R⁹N(CH₂)_w, R⁸R⁹NC(O)(CH₂)_w, R⁸R⁹NS(O)₂(CH₂)_w, CN(CH₂)_w, R⁷(CH₂)_w, C1-C6 alkyl, C2-C6 alkenyl, and C2-C6 alkynyl, said alkyl, alkenyl and alkynyl optionally being substituted with at least one halogen;30 each R⁴ is independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl; said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;

each R⁵ is independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl; said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;

5 each R⁶ is selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and 5- or 6-membered heterocyclyl or carbocyclyl, said alkyl, alkenyl, alkynyl heterocyclyl and carbocyclyl optionally being substituted with at least one halogen;

each R⁷ is selected from 5- or 6-membered monocyclic heterocyclyl or carbocyclyl or 9- or 10-membered bicyclic heterocyclyl or carbocyclyl, said heterocyclyl and carbocyclyl optionally being substituted with at least one halogen;

each R⁸ is independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl;

15 each R⁹ is independently selected from H, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl;

m, n, p, each q and each w are independently selected from 0, 1, 2 and 3;

20 or a pharmaceutically acceptable salt thereof,

for use in the treatment of a condition or disorder associated with nicotinamide adenine dinucleotide phosphate oxidase, selected from endocrine disorders, cardiovascular disorders, 25 respiratory disorders, metabolism disorders, skin disorders, bone disorders, neuroinflammatory and/or neurodegenerative disorders, kidney diseases, reproduction disorders, diseases affecting the eye and/or the lens and/or conditions affecting the inner ear, inflammatory disorders, liver diseases, pain, cancers, e.g. lung cancer, allergic disorders, traumas, septic, hemorrhagic and anaphylactic shock, diseases or disorders of the 30 gastrointestinal system, angiogenesis, angiogenesis-dependent conditions, lung infections, acute lung injury, pulmonary arterial hypertension, obstructive lung disorders, cerebrovascular accidents, and fibrotic lung disease.

2. The compound according to claim 1, wherein A is a monounsaturated 5- or 6-membered heterocyclic or carbocyclic ring;
or a pharmaceutically acceptable salt thereof.

5 3. The compound according to claim 1 or claim 2, wherein B is selected from 5- or 6-membered monocyclic heterocyclyl and 9- or 10-membered bicyclic heterocyclyl;
or a pharmaceutically acceptable salt thereof.

10 4. The compound according to claim 3, wherein B is 5- or 6-membered monocyclic heterocyclyl;
or a pharmaceutically acceptable salt thereof.

15 5. The compound according to claim 1 or claim 2, wherein B is 5- or 6-membered monocyclic heterocyclyl or carbocyclyl;
or a pharmaceutically acceptable salt thereof.

20 6. The compound according to any one of the claims 1 to 5, wherein each R¹ is independently selected from halogen, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;
or a pharmaceutically acceptable salt thereof.

25 7. The compound according to any one of the claims 1 to 6, wherein R² is selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;
or a pharmaceutically acceptable salt thereof.

30 8. The compound according to any one of the claims 1 to 7, wherein each R³ is selected from halogen, R⁶O(CH₂)_q, R⁶S(CH₂)_q, R⁶C(O)(CH₂)_q, R⁷(CH₂)_q, C1-C6 alkyl, C2-C6 alkenyl, and C2-C6 alkynyl, said alkyl, alkenyl and alkynyl optionally being substituted with at least one halogen;
or a pharmaceutically acceptable salt thereof.

9. The compound according to any one of the claims 1 to 8, wherein n is 0 or 1; or a pharmaceutically acceptable salt thereof.

10. The compound according to claim 9, wherein n is 1; 5 or a pharmaceutically acceptable salt thereof.

11. The compound according to claim 1, wherein A is a 5- or 6-membered monounsaturated heterocyclic or carbocyclic ring;

10 B is selected from 5- or 6-membered monocyclic heterocyclyl or carbocyclyl and 9- or 10-membered bicyclic heterocyclyl;

15 each R¹ is independently selected from halogen, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;

R² is selected from C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, and C3-C6 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl optionally being substituted with at least one halogen;

20 R³ is selected from halogen, R⁶O(CH₂)_q, R⁶S(CH₂)_q, R⁶C(O)(CH₂)_q, R⁷(CH₂)_q, C1-C6 alkyl, C2-C6 alkenyl, and C2-C6 alkynyl, said alkyl, alkenyl and alkynyl optionally being substituted with at least one halogen; and

n is 0 or 1,

25 or a pharmaceutically acceptable salt thereof.

12. A compound according to claim 1, selected from ethyl 2-(2-(4-benzylpiperazin-1-yl)acetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate,

ethyl 2-(2-(4-(furan-2-carbonyl)piperazin-1-yl)acetamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,

ethyl 2-(benzofuran-2-carboxamido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate,

ethyl 5,5-dimethyl-2-(2-phenylacetamido)-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate, and

ethyl 2-(4-methoxybenzamido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate,

5 or a pharmaceutically acceptable salt thereof.

13. A compound according to any one of the claims 1 to 12, or a pharmaceutically acceptable salt thereof, wherein the disorder or condition is diabetes.

10 14. A compound according to any one of the claims 1 to 12, or a pharmaceutically acceptable salt thereof, wherein the disorder or condition is a cerebrovascular accident

15. A compound selected from

ethyl 2-(2-(4-benzylpiperazin-1-yl)acetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate,

ethyl 2-(2-(4-(furan-2-carbonyl)piperazin-1-yl)acetamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,

ethyl 2-(benzofuran-2-carboxamido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate,

20 ethyl 5,5-dimethyl-2-(2-phenylacetamido)-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate, and

ethyl 2-(4-methoxybenzamido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate,

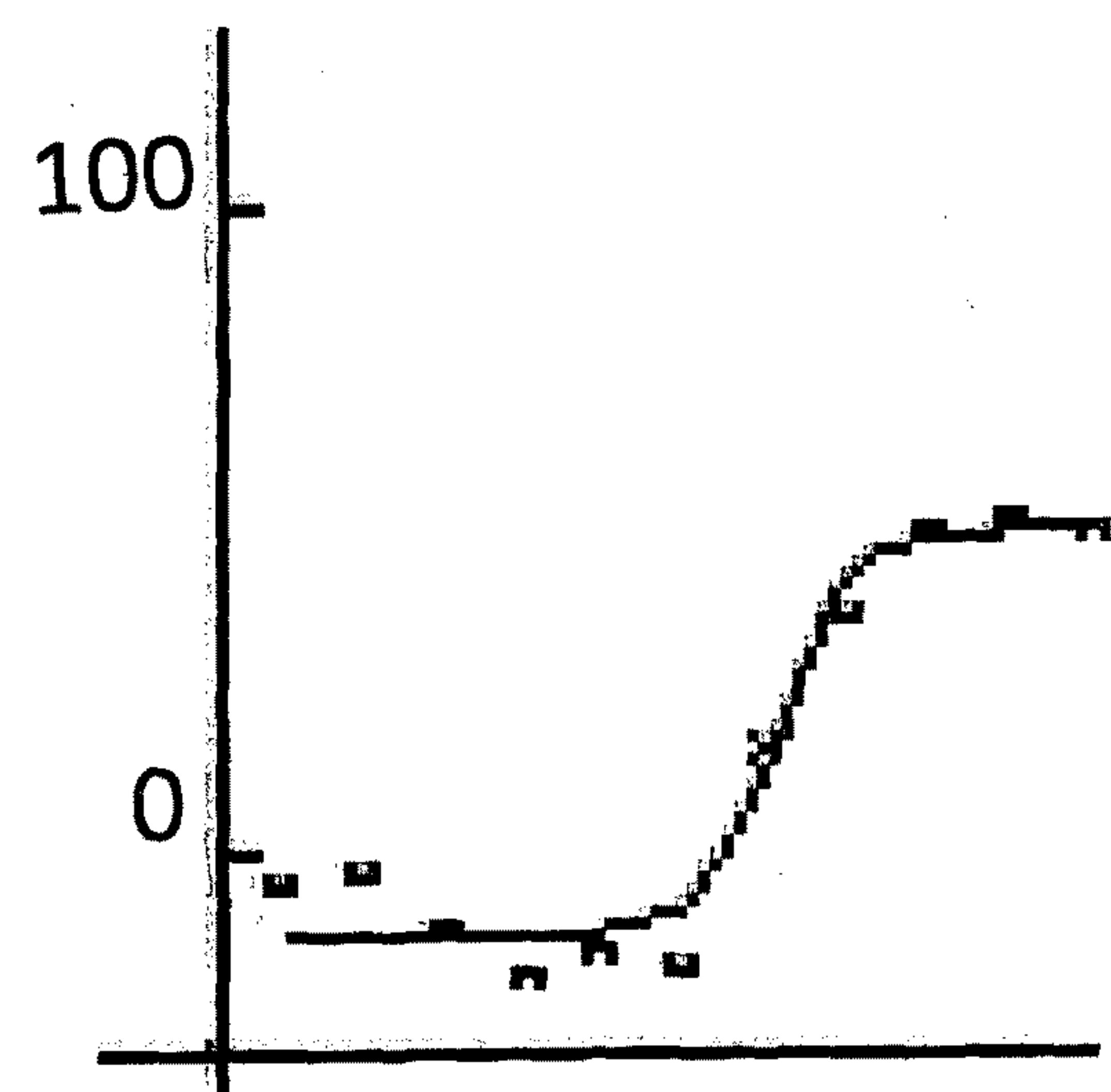
or a pharmaceutically acceptable salt thereof, for use in therapy.

25

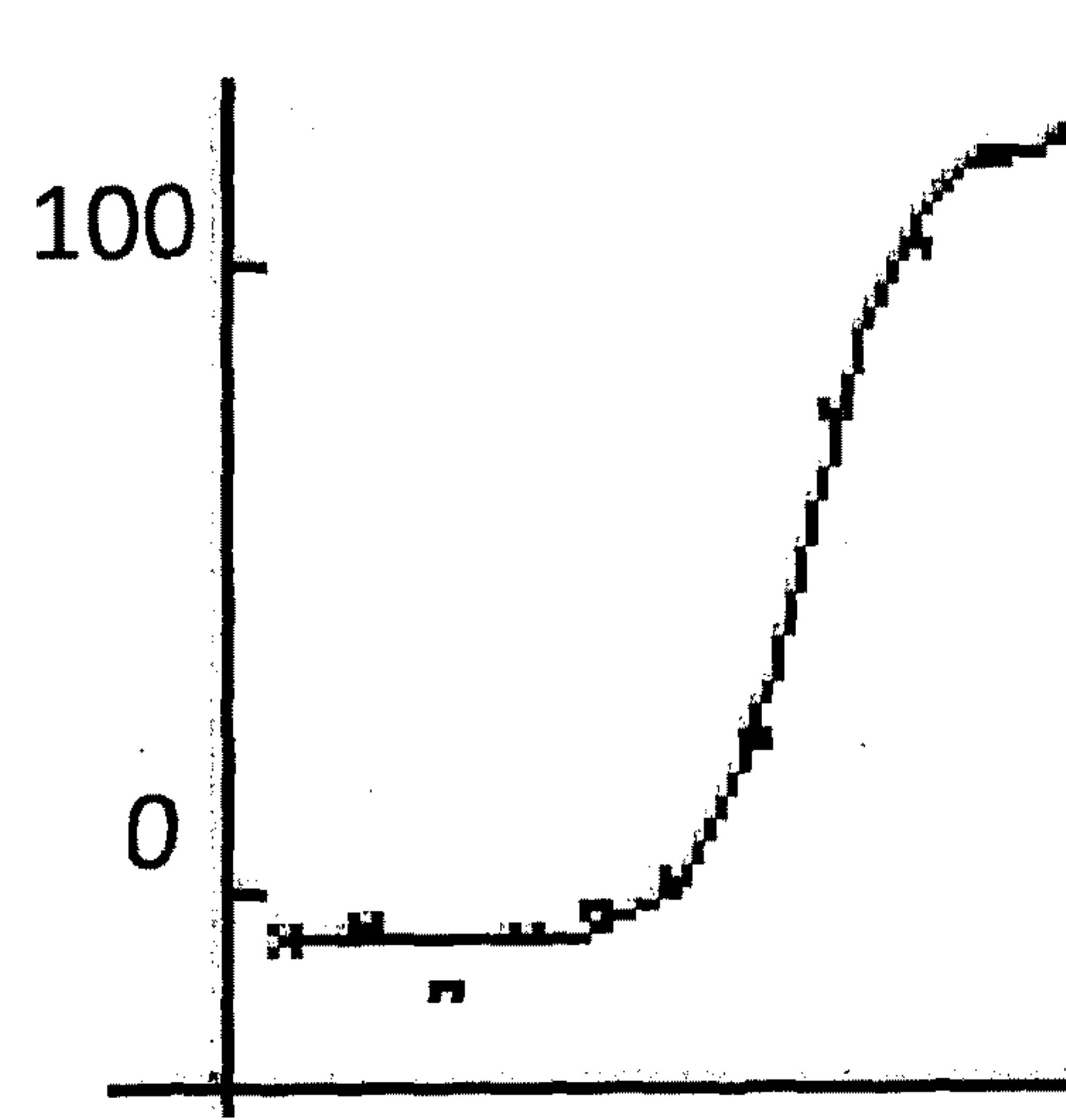
16. A pharmaceutical composition comprising a compound selected from

ethyl 2-(2-(4-benzylpiperazin-1-yl)acetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate,

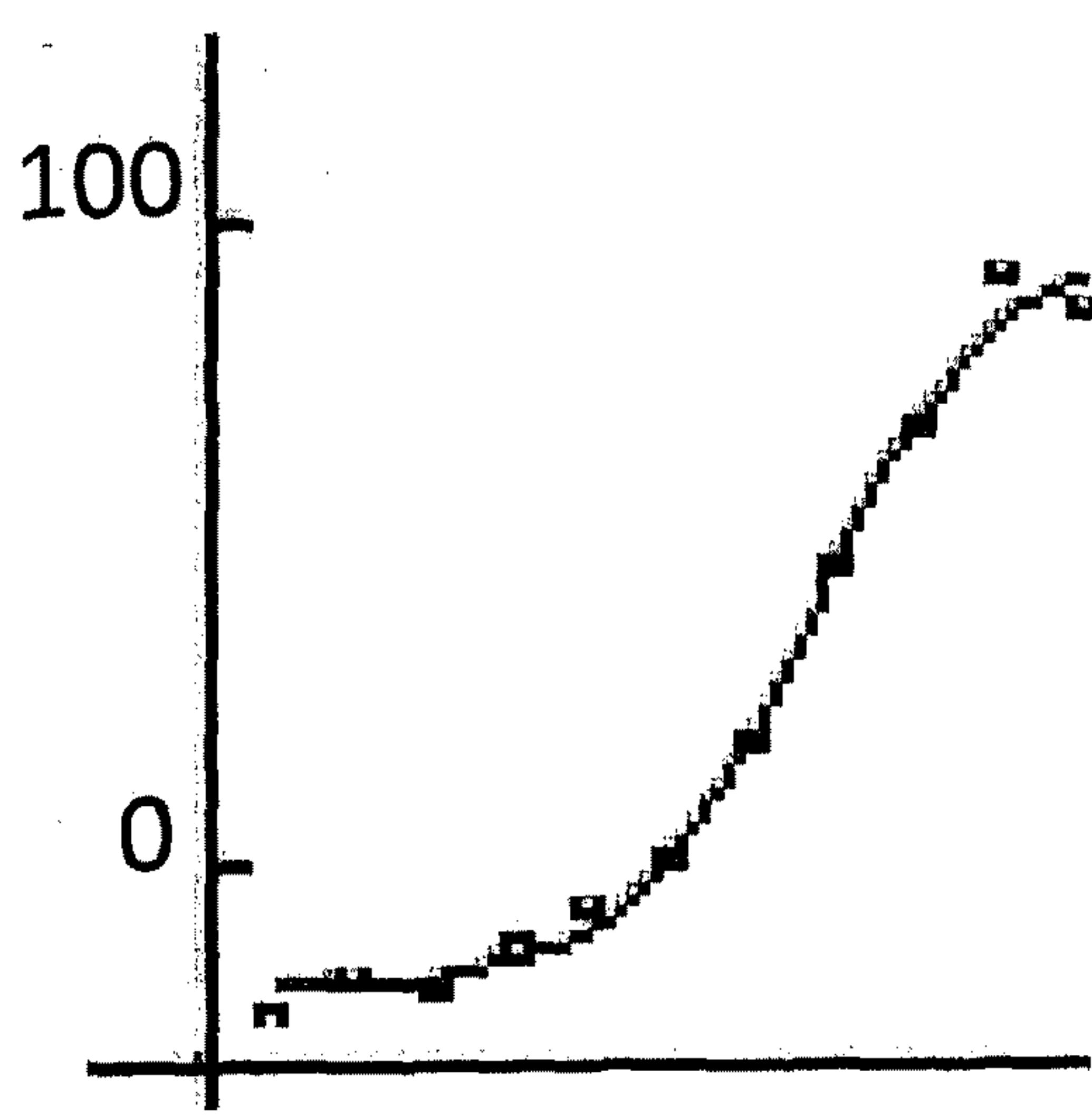
ethyl 2-(2-(4-(furan-2-carbonyl)piperazin-1-yl)acetamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate,


ethyl 2-(benzofuran-2-carboxamido)-5,5-dimethyl-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carboxylate,

or a pharmaceutically acceptable salt thereof,


and optionally at least one pharmaceutically acceptable excipient.

1/4


A

B

C

D

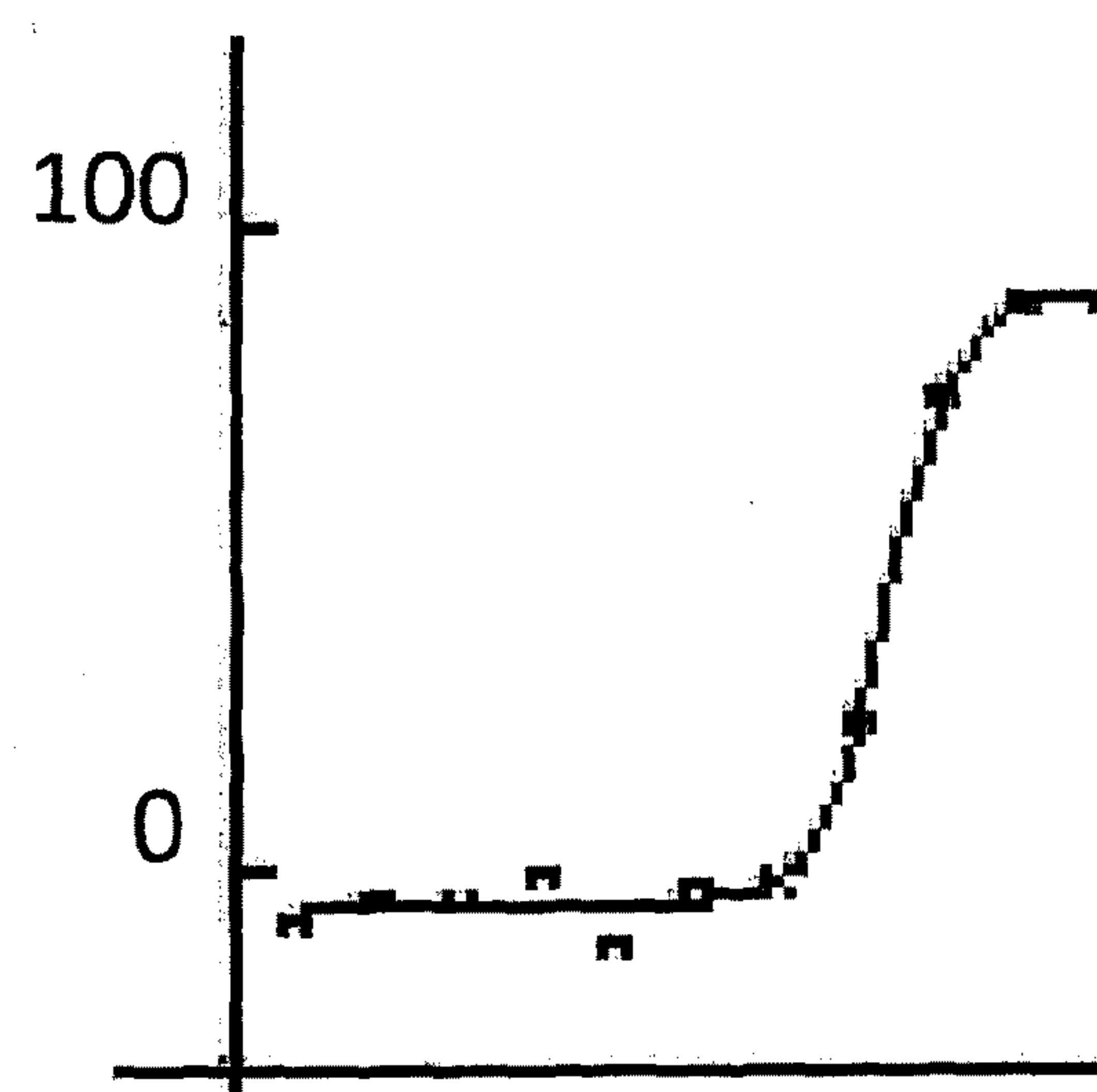
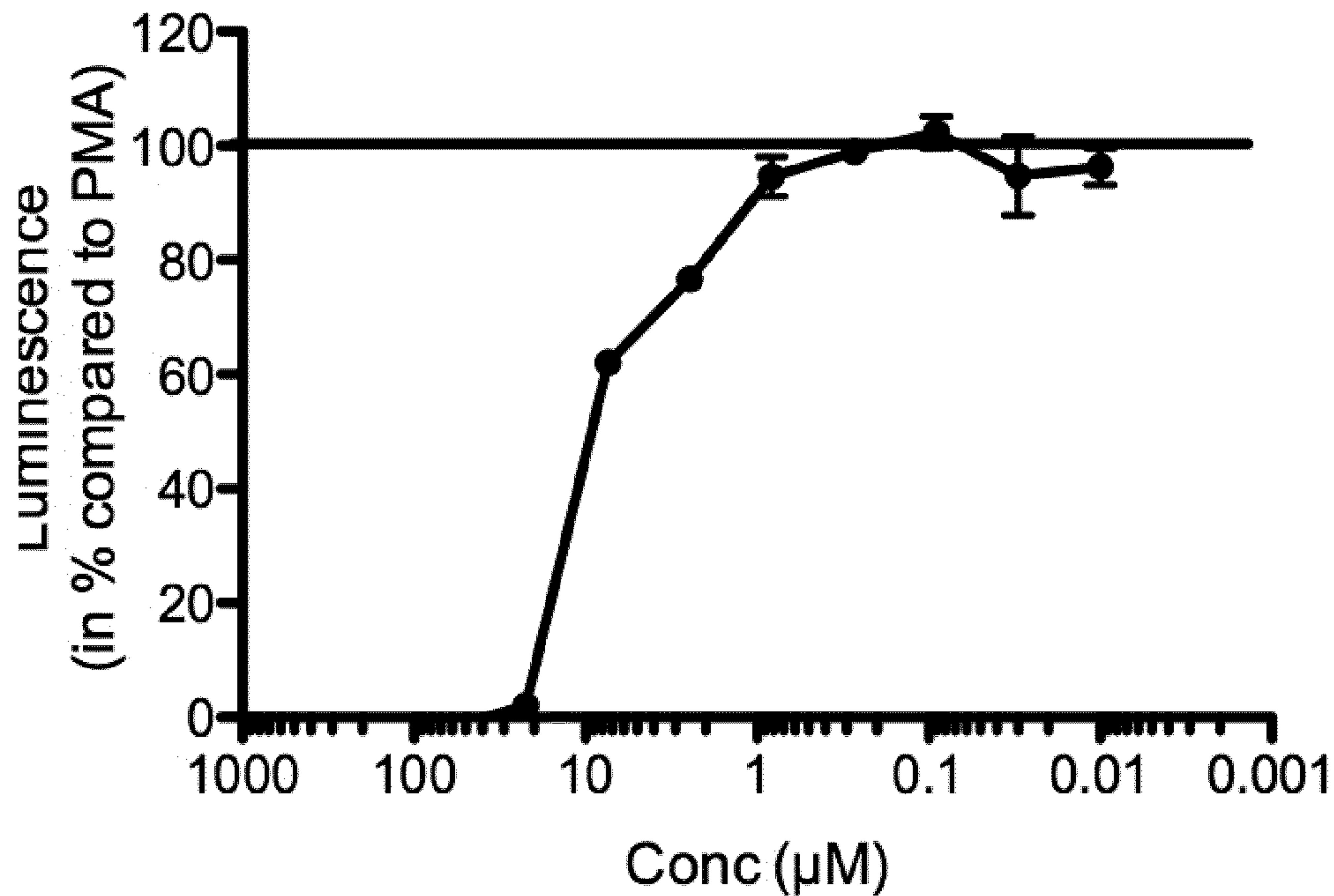



Figure 1

2/4

A

B

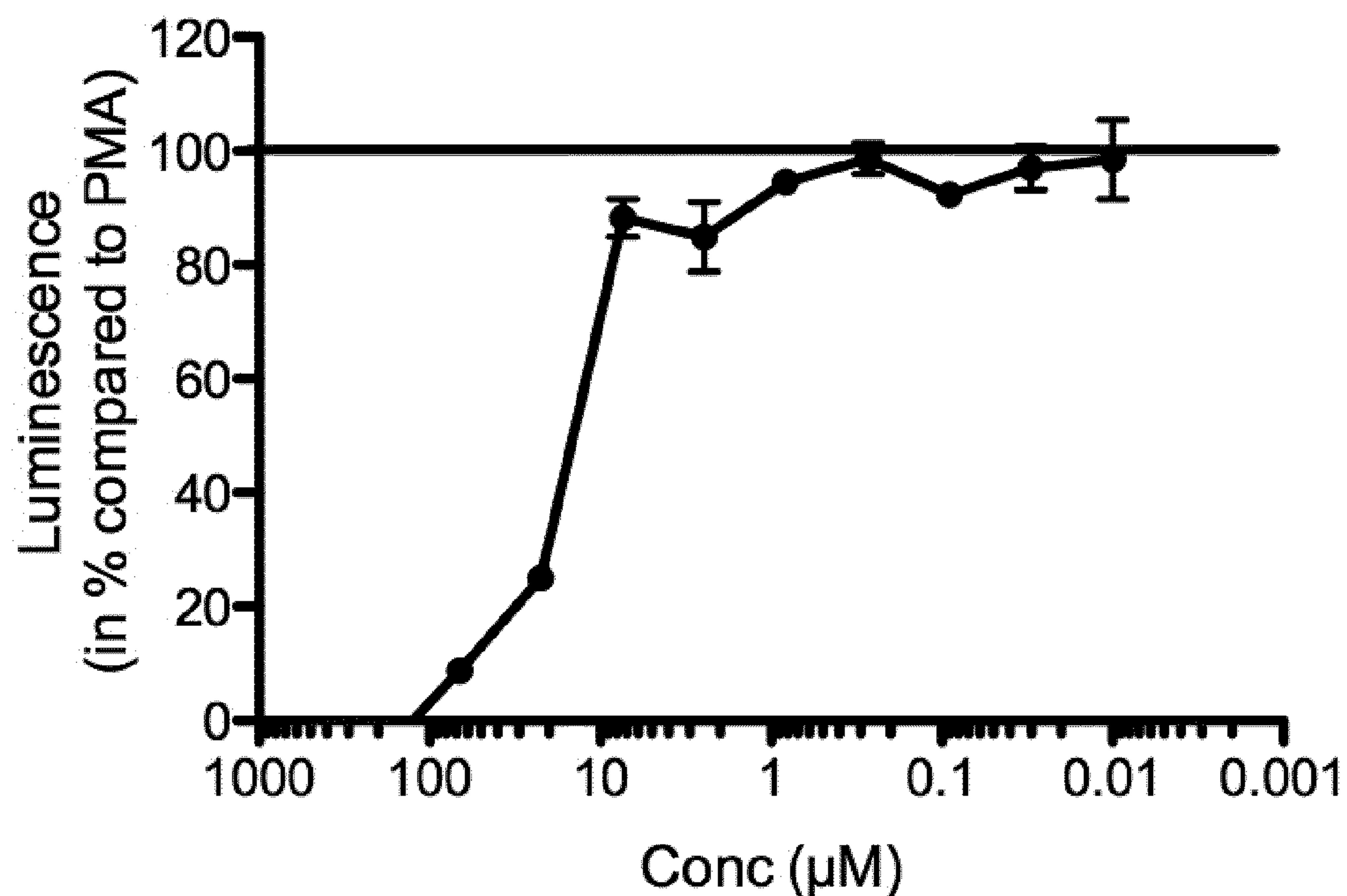
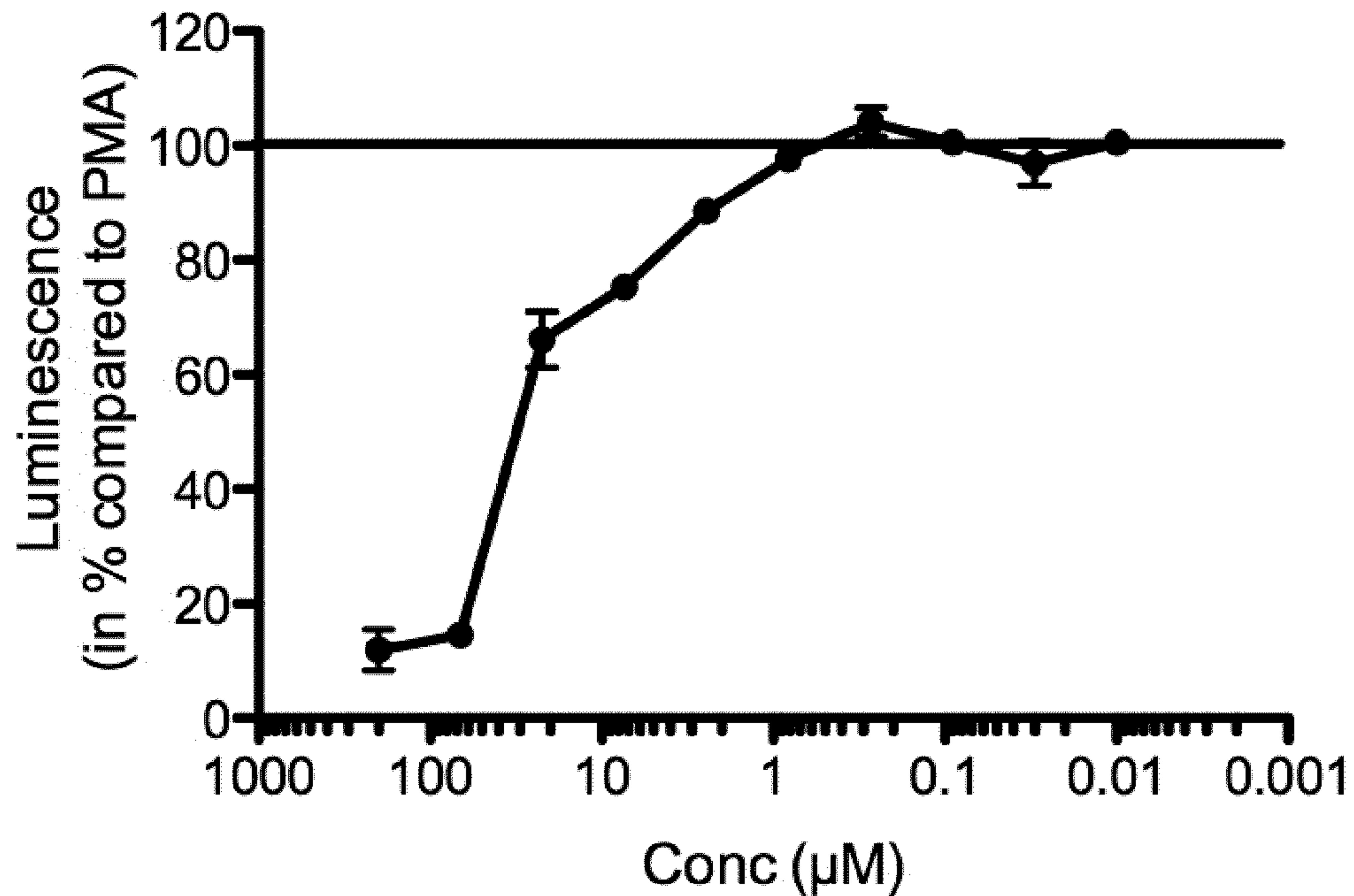



Figure 2

3/4

A

B

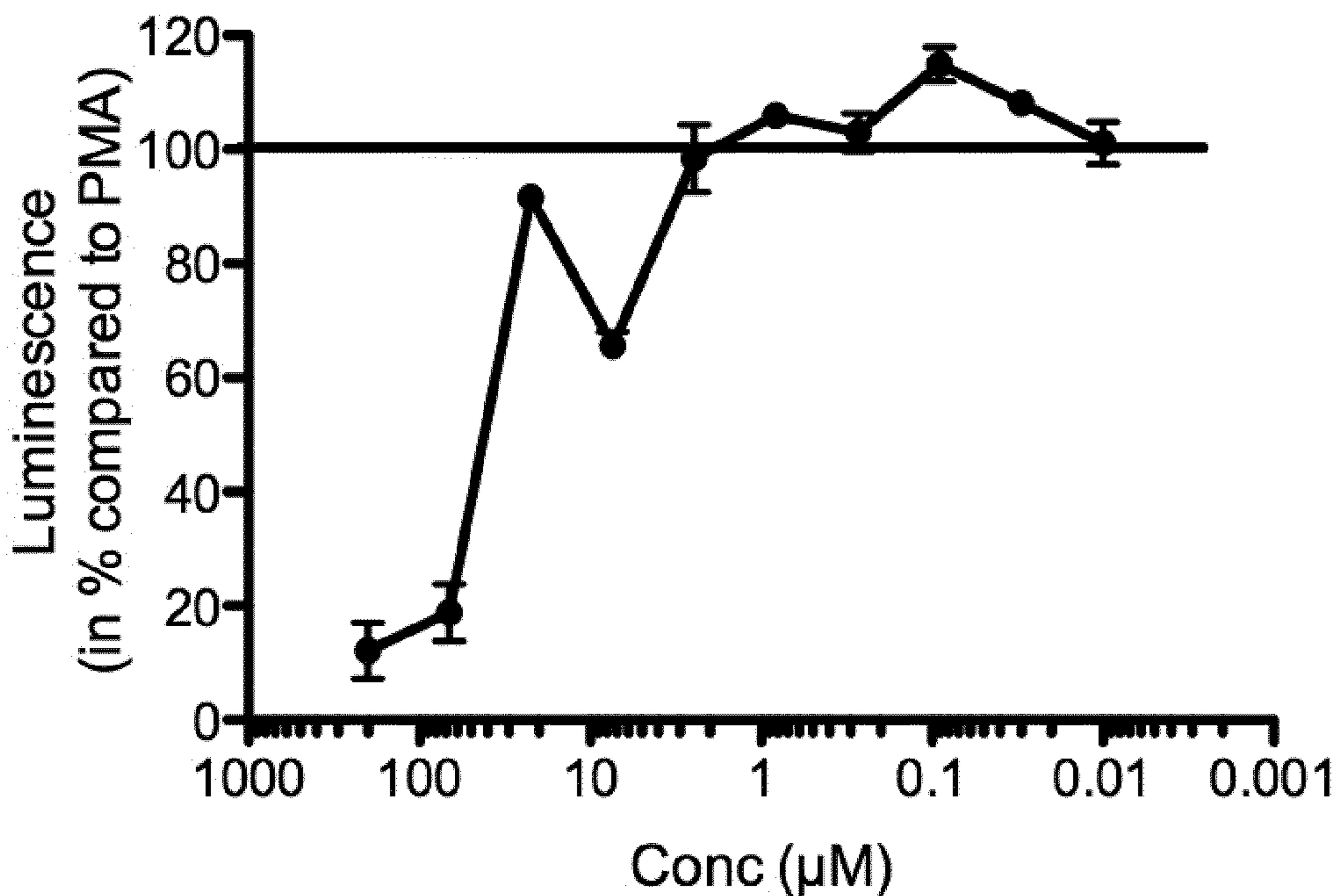


Figure 3

4/4

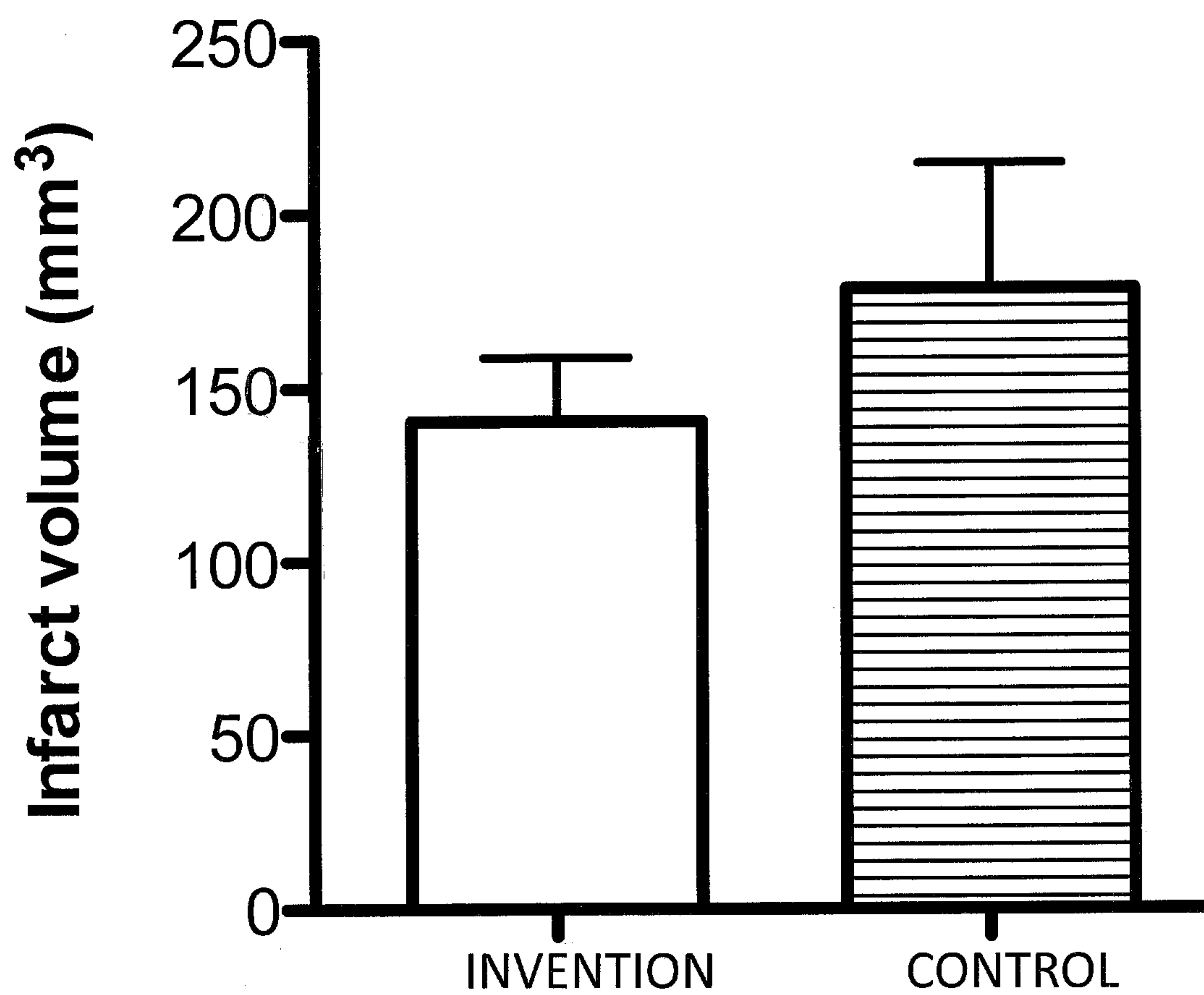
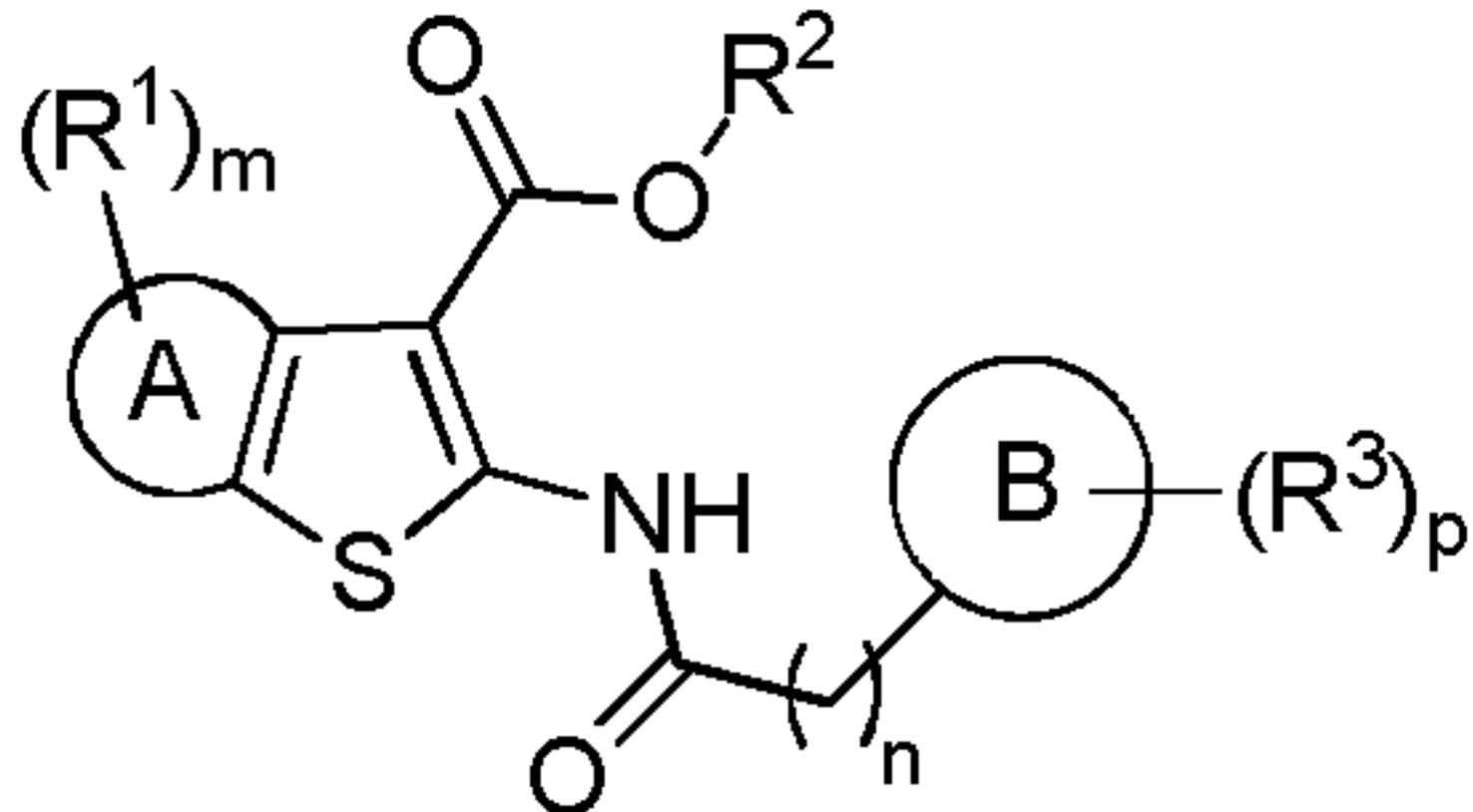



Figure 4

(I)