NEW COMPETENCE STIMULATING PEPTIDE

Inventors: Rozenn Gardan, Jouy-en-Josas (FR); Véronique Monnet, Montigny-le-Bretonneux (FR)

Application No.: 13/266,103
PCT Filed: Apr. 28, 2010
PCT No.: PCT/EP2010/055692

Abstract

The present invention concerns a new competence stimulating peptide identified in Firmicutes, in particular Streptococcus, and more preferably S. thermophilus and methods of producing transformation competent Firmicutes, in particular Streptococcus, and more preferably S. thermophilus bacteria.
Figure 1
Figure 2
Figure 3
NEW COMPETENCE STIMULATING PEPTIDE

DOMAIN OF THE INVENTION

[0001] The present invention relates to Firmicutes, in particular Streptococcus, and more preferably S. thermophilus, competence, and more specifically to a new competence stimulating peptide.

BACKGROUND OF THE INVENTION

[0002] Many species of bacteria control gene expression on a community-wide scale by producing, secreting, detecting and responding to extracellular signaling molecules (sometimes called 'autoinducers' or 'pheromones') that accumulate in the environment. This phenomenon is termed 'quorum sensing' (QS) as gene expression is triggered by the 'sensing' of the pheromone when its concentration has reached a 'quorum'. In Gram-positive bacteria, the signaling molecules are mainly short peptides acting either from the outside part of bacteria or from the inside, after internalization via oligopeptide transport systems called Opp or Ami.

[0003] Several bacterial functions such as the virulence in Staphylococcus aureus and Enterococcus faecalis, the competence in Bacillus subtilis or the production of bacteriocin in Lactococcus lactis are controlled by peptides acting at the surface of bacteria. However, the paradigm for mechanisms involving peptides detected from the outside is the regulation of the competence state for natural transformation by chromosomal donor DNA in Streptococcus pneumoniae. In this bacterium, the signaling peptide, called Csp (Competence Stimulating Peptide) and encoded by the gene comC, is secreted and matured by an ABC transporter, ComAB. The detection of the extracellular CSP at the surface of the bacterium is achieved by a two component system (TCS). Firstly, the membrane embedded histidine kinase, ComD, autophosphorylates in response to CSP and further phosphorylates its cognate response regulator, ComE, which activates transcription of a few genes, the early CSP-induced genes, including comCDE, comAB and comX. ComX is an alternative competence specific sigma factor required for expression of late CSP-induced genes, which comprise genes encoding the DNA uptake machinery.

[0004] Concerning signaling peptides that are active after internalization by an oligopeptide transporter, three groups have been described in detail: (i) Phr peptides in B. subtilis involved in the control of sporulation, competence, and production of degradative enzymes and antibiotics, (ii) PapR peptides involved in the control of virulence of bacteria belonging to the Bacillus cereus group and (iii) peptides involved in the control of plasmid transfer in Enterococcus faecalis. All these extracellular short peptides interact with either Rap phosphatases (in B. subtilis) or transcriptional regulators (Pic in B. cereus or PrgX in E. faecalis) to elicit a physiological response.

[0005] Oligopeptide transport systems involved in these signaling pathways belong to the superfamily of ATP-binding cassette (ABC) transporters. They are composed of five subunits: an extracellular oligopeptide-binding protein, OppA that specifically captures the substrates, two transmembrane proteins, OppB and OppC that form the pore and two membrane-bound cytoplasmic ATP-binding proteins, OppD and OppF that provide the energy for peptide translocation. Several copies of the opp operon and/or of the genes encoding the oligopeptide-binding proteins can be present in a single genome. The genome of Streptococcus thermophilus encodes one oligopeptide transport system and depending on the strain, two (strain LMD-9 and CNZR1066) or three (strain LMG18311) oligopeptide-binding proteins. In Gram-positive bacteria, two main functions have been attributed to the Opp transporters: nutrition and sensing. The nutritional role has been well studied in lactic acid bacteria such as Lactococcus lactis or S. thermophilus. During growth in milk, the Opp transporters supply these auxotrophic bacteria with peptides that serve as amino acid sources. The sensing function is more complex and is poorly documented, particularly in non-pathogenic bacteria.

[0006] Among the non-pathogenic bacteria, S. thermophilus is of major importance for the food industry since it is massively used for the manufacture of yoghurt and Swiss or Italian-type cheeses with an annual market value of approximately $40 billion making S. thermophilus a species of major economic importance. The industry is continuously working to improve the properties of S. thermophilus starter strains. Even though the fermentation properties of this bacterium have been gradually improved by classical methods, there is great potential for further improvement through genetic engineering.

[0007] However, until now, only genetic tools based on genetically modified bacteria exist. For example, Havarstein has disclosed an inducible system (sib system) that permits the srexpression of proteins in S. thermophilus (Blomvist T. et al. “Pheromone-induced expression of recombinant proteins in Streptococcus thermophilus” Arch Microbiol. 2006 December; 186(6):645-73. Epub 2006 Aug. 24). In particular, this article discloses that a possible peptide-pheromone (STP) regulates bacteriocin production in S. thermophilus LMG 18311, and shows that the ShABCHR (system that regulates bacteriocin production) quorum-sensing system can be exploited for inducible expression of recombinant proteins in this bacterial species.

[0008] Thus, there is a need for an efficient method that allows obtaining improved Firmicutes, in particular Streptococcus, and more preferably S. thermophilus by natural processes of gene transfer, and not artificial gene transfer. This is particularly important for the food industries, for example the dairy industries which do not want to use GMO in their products.

[0009] Regarding this need of genetic tools, competence is poorly understood in S. thermophilus. In fact, regarding QS systems, only one of them has been yet described, which QS system (called sib or blp) controls the production of a bacteriocin.

[0010] The sequencing of the genome of three strains of S. thermophilus, CNZR1066, LMG18311 and LMD-9, has revealed the presence of comX and of 14 proteins with strong similarities with the 14 proteins known to be required for competence in S. pneumoniae and encoded by late CSP-induced genes (Bolotin et al., Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus, Nat. Biotechnol. 22:1554-1558, 2004; Makarova et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA., 103(42):15611-6, 2006). Except comX, no ortholog of the early CSP-induced genes of S. pneumoniae have been detected in the genome of S. thermophilus. It has been shown that overexpression of comX induces the competent state in S. thermophilus LMG18311.
SUMMARY OF THE INVENTION

The present invention relates to an isolated polypeptide comprising the amino acids sequence SEQ ID No 1 (LKT.KIPFLSLLAIL.P-yard), or derivatives or fragments thereof capable of stimulating competence in Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus*.

The present invention also relates to an isolated polypeptide comprising the amino acid sequence SEQ ID No 7 (IAIL.P-yard) or derivatives or fragments thereof capable of regulating competence in Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus*.

The present invention also relates to a vector comprising said nucleic acid operably linked to a gene expression sequence.

The present invention still relates to a host cell genetically engineered with said vector.

The present invention also relates to a culture medium comprising an effective amount of said isolated polypeptide and nutrients that allow the growing of Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus*.

The present invention further relates to the use of said polypeptide, said nucleic acid, said vector, said host cell, or said culture medium for stimulating competence in Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus*.

The present invention still relates to a method of producing transformation competent Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus* bacteria comprising the step (i) of contacting said Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus* bacteria with an effective amount of an isolated polypeptide as defined in any one of claims 1 to 5 for obtaining said transformation competent Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus* bacteria.

DESCRIPTION OF THE FIGURES

FIG. 1: Development of competence during growth of strain LMD-9 in CDM using pG7host9 plasmid as transformant DNA.

FIG. 2: Development of competence during growth of strain LMD-9 in CDM using chromosomal DNA of strain TIL.1192 as transformant DNA.

FIG. 3: Relative expression levels of comX, recA, dprA and comGA between *S. thermophilus* LMD-9 and strain TIL.883 (LMD9 ΔamiCDE) or strain TIL.1196 (LMD-9 comX::erm).

DETAILED DESCRIPTION OF THE INVENTION

Surprisingly, the inventors have established that the Ami oligopeptide transport system is implicated in the control of competence in *Streptococcus*, in particular *S. thermophilus*. This transport system functions with several oligopeptide binding proteins. In strain LMD9 where two oligopeptide binding proteins are present, AmiA3 and AmiA1, AmiA3 plays the major role in the control of competence.

More specifically, the inventors have identified one new polypeptide and fragments thereof implicated in the control of competence.

In a first aspect, the present invention relates to an isolated polypeptide comprising the amino acids sequence SEQ ID No 1 (LKT.KIPFLSLLAIL.P-yard), or derivatives or fragments thereof capable of stimulating competence in Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus*.

The isolated polypeptide of the invention has the ability to stimulate the competence in Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus* strains.

According to the present invention, the length of the isolated polypeptide of the invention is less than 100 amino acids, preferably less than 50 amino acids.

In a preferred embodiment, the isolated polypeptide of the present invention consists of the amino acids sequence SEQ ID No 1 (LKT.KIPFLSLLAIL.P-yard), or derivatives or fragments thereof, said derivatives and fragments being capable of stimulating competence in Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus*.

In another preferred embodiment, the isolated polypeptide of the present invention comprises, preferably consists in, a fragment of the amino acids sequence SEQ ID No 1 capable of stimulating competence in Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus*.

In still another embodiment, the isolated polypeptide of the present invention comprises, preferably consists in, the amino acids sequence SEQ ID No 7 (IAIL.P-yard) or derivatives or fragments thereof, said derivatives and fragment being capable of stimulating competence in Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus*.

As used herein, the term “fragment” refers to the products of the chemical, enzymatic, or physical breakdown of a polypeptide. Such fragments may for example be obtained through enzymatic reaction, such as degradation by protease and/or aminopeptidases.

Preferably, the length of such fragment is comprised between 3 and 17 amino acids, preferably from 4 to 15 amino acids, and more preferably from 6 to 12 amino acids.

In another preferred embodiment, the isolated polypeptide of the present invention further comprises an amino acid sequence corresponding to a signal peptide.

Signal peptide allows the secretion of the polypeptide of the invention in the extracellular medium when said polypeptide is expressed in a prokaryotic or an eukaryotic cell, preferably in a prokaryotic cell, such as in a bacteria from the *Streptococcus* genus, more preferably in a Firmicutes, in particular *Streptococcus*, and more preferably *S. thermophilus* bacteria.

Such signal peptides are well known from the skilled person.

As used herein, the term “derivatives” refer to an amino acid sequence having a percentage of identity of at least 70% with the amino acid sequence SEQ ID No: 1, as an example at least 85% (i.e. 3 amino acids substitution), pref-
semblably of at least 90% (i.e. 2 amino acids substitution), and more preferably of at least 95% (i.e. 1 amino acids substitution).

[0037] As an example of derivative, one can cite the polypeptide of sequence SEQ ID No 5 (MGKTLKIFV1FS-LLIAILPYFAGCL), which is disclosed in the examples.

[0038] As used herein, “percentage of identity” between two amino acids sequences, means the percentage of identical amino-acids, between the two sequences to be compared, obtained with the best alignment of said sequences, this percentage being purely statistical and the differences between these two sequences being randomly spread over the amino acids sequences. As used herein, “best alignment” or “optimal alignment”, means the alignment for which the determined percentage of identity (see below) is the highest. Sequences comparison between two amino acids sequences are usually realized by comparing these sequences that have been previously aligned according to the best alignment; this comparison is realized on segments of comparison in order to identify and compared the local regions of similarity. The best sequences alignment to perform comparison can be realized, beside by a manual way, by using computer softwares using such algorithms (GAP, BESTFIT, BLAST P, BLAST N, FASTA, TFASTA). The identity percentage between two sequences of amino acids is determined by comparing these two sequences optimally aligned, the amino acids sequences being able to comprise additions or deletions in respect to the reference sequence in order to get the optimal alignment between these two sequences. The percentage of identity is calculated by determining the number of identical position between these two sequences, and dividing this number by the total number of compared positions, and by multiplying the result obtained by 100 to get the percentage of identity between these two sequences

[0039] As used herein an amino acid sequence having the ability to stimulate the competence in Firmicutes, in particular Streptococcus, and more preferably S. thermophilus strains can simply be identified by one of skilled in the art in view of the following examples. As an example, the skilled person can screen for polypeptides derived from SEQ ID No 1 inducing competence in Firmicutes, in particular Streptococcus, and more preferably S. thermophilus when present in the culture medium.

[0040] It will also be understood that natural amino acids may be replaced by chemically modified amino acids. Typically, such chemically modified amino acids enable to increase the polypeptide half-life.

[0041] In a second aspect the present invention relates to an isolated nucleic acid encoding for the isolated polypeptide as described above.

[0042] Said nucleic acid corresponds to RNA or DNA, preferably to DNA.

[0043] According to a preferred embodiment, said isolated nucleic acid comprises a nucleic acid sequence selected in the group comprising TIGAAAACCCGTTAAAAATTTTCAC- CAGGATTGCTTCTTA (SEQ ID No 2) and ATGGG- GAAAACCCGTTAAAAATTTTCAC- CAGGATTGCTTCTTA (SEQ ID No 6).

[0044] In a third aspect, the present invention relates to a vector comprising the nucleic acid encoding for the isolated polypeptide of the invention as described above operably linked to a gene expression sequence.

[0045] Said gene expression sequence directs the expression of said nucleic acid within a prokaryotic or an eukaryotic cell, preferably within a prokaryotic cell, and more preferably within Firmicutes, in particular Streptococcus, and more preferably S. thermophilus bacteria. The “gene expression sequence” is any regulatory nucleotide sequence, such as a promoter sequence or promoter-enhancer combination, whichfacilitates the efficient transcription and translation of the nucleic acid to which it is operatively linked. The gene expression sequence may be a constitutive or inducible promoter.

[0046] Such promoters are well known in the art. Promoters for use in the invention are preferably strong promoters, i.e. on induction in the relevant cell yield high levels of transcription of the downstream gene. Examples of strong inducible promoters include by examples promoters, from bacteria, involved in the production of bacteriocins such as the sb promoter.

[0047] In general, the gene expression sequence shall include, as necessary, 5’ non-transcribing and 5’ non-translating sequences involved with the initiation of transcription and translation, respectively. The gene expression sequences optionally include enhancer sequences or upstream activator sequences as desired.

[0048] As used herein, the nucleic acid sequence encoding the polypeptide of the invention and the gene expression sequence are said to be “operably linked” when they are covalently linked in such a way as to place the expression or transcription and/or translation of the polypeptide of the invention coding sequence under the influence or control of the gene expression sequence. Two DNA sequences are said to be operably linked if induction of a promoter in the 5’ gene expression sequence results in the transcription of the polypeptide of the invention and if the nature of the linkage between the two DNA sequences does not result in the introduction of a frame-shift mutation, interfere with the ability of the promoter region to direct the transcription of the polypeptide of the invention, or interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a gene expression sequence would be operably linked to a nucleic acid sequence coding for the polypeptide of the invention if the gene expression sequence was capable of effecting transcription of that nucleic acid sequence such that the resulting transcript is translated into the desired polypeptide.

[0049] Preferred vectors are plasmid vectors, which have been extensively described in the art and are well known to those of skilled in the art. See e.g., SAMBROOK et al., “Molecular Cloning: A Laboratory Manual,” Second Edition, Cold Spring Harbor Laboratory Press, 1989.

[0050] The vector of the invention can include a selectable marker that is active in bacteria.

[0051] In a forth aspect, the present invention relates to a host cell genetically engineered with the vector described previously.

[0052] As used herein, the term “host cell genetically engineered” relates to host cells which have been transformed with the vector described previously.

[0053] Said host cell is preferably a bacterial cell, such as a bacteria belonging to the Firmicutes phylum, preferably the Streptococcus genus, and more preferably a Streptococcus thermophilus bacteria.
in particular Streptococcus, and more preferably S. thermo-
philus bacteria comprising the step (i) of culturing said Firmi-
cutes, in particular Streptococcus, and more preferably S. ther-
mosphilus bacteria in a peptide free medium allowing the
growth of said bacteria to an OD600 comprised between 1.5 and
2.5 preferably about 2 and (i') diluting said culture to an OD600
comprised between 0.01 and 0.1, preferably about 0.05.

[0065] Preferably, the present invention relates to a method
of producing transformation competent Firmicutes, in par-
cular Streptococcus, and more preferably S. thermophilus
bacteria comprising the step (i) of culturing said Firmi-
cutes, in particular Streptococcus, and more preferably S. ther-
mosphilus bacteria in M17 lactose (10 g/l) for 8 hours and (i')
diluting said culture 50 fold in a peptide free medium. The
diluted culture is then incubated at 4° C. for 10 hours and
further incubated at 42° C. for 6 hours allowing the growth of
said bacteria to an OD600 comprised between 1.5 and 2.5
preferably about 2, and (i") diluting said culture in a peptide
free medium to an OD600 comprised between 0.01 and 0.1,
preferably about 0.05.

[0066] For example, said peptide free medium comprises:

<table>
<thead>
<tr>
<th>Lactose Buffer</th>
<th>g/mol</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>lactose</td>
<td>360.32</td>
<td>10</td>
</tr>
<tr>
<td>Na acetate</td>
<td>82.03</td>
<td>1</td>
</tr>
<tr>
<td>ammonium citrate</td>
<td>243.2</td>
<td>0.6</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>136.09</td>
<td>3</td>
</tr>
<tr>
<td>K2HPO4</td>
<td>174.18</td>
<td>2.5</td>
</tr>
<tr>
<td>urea</td>
<td>60.06</td>
<td>0.240</td>
</tr>
<tr>
<td>Vitamins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Ascorbic acid</td>
<td>176.13</td>
<td>0.5</td>
</tr>
<tr>
<td>2 pyridoxamin</td>
<td>241.1</td>
<td>5</td>
</tr>
<tr>
<td>3 nicotinic acid</td>
<td>123.1</td>
<td>1</td>
</tr>
<tr>
<td>4 riboflavin</td>
<td>376.4</td>
<td>1</td>
</tr>
<tr>
<td>5 pantothenic acid</td>
<td>238.3</td>
<td>1</td>
</tr>
<tr>
<td>6 thiamine</td>
<td>337.3</td>
<td>1</td>
</tr>
<tr>
<td>7 pyridoxin</td>
<td>205.6</td>
<td>2</td>
</tr>
<tr>
<td>8 aminobenzoic acid</td>
<td>137.1</td>
<td>10</td>
</tr>
<tr>
<td>9 biotin</td>
<td>244.3</td>
<td>10</td>
</tr>
<tr>
<td>10 folic acid</td>
<td>441.4</td>
<td>1</td>
</tr>
<tr>
<td>11 B12</td>
<td>1355.4</td>
<td>1</td>
</tr>
<tr>
<td>12 coelic acid</td>
<td>156.1</td>
<td>5</td>
</tr>
<tr>
<td>13 thymidine</td>
<td>242.2</td>
<td>5</td>
</tr>
<tr>
<td>14 inositol</td>
<td>268.23</td>
<td>5</td>
</tr>
<tr>
<td>15 DL-6,8-thioctic ac</td>
<td>206.3</td>
<td>2.5</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgCl2—6H2O</td>
<td>203.3</td>
<td>0.200</td>
</tr>
<tr>
<td>CaCl2—2H2O</td>
<td>147.02</td>
<td>0.050</td>
</tr>
<tr>
<td>FeCl2</td>
<td>198.81</td>
<td>0.005</td>
</tr>
<tr>
<td>ZnSO4</td>
<td>287.54</td>
<td>0.005</td>
</tr>
<tr>
<td>CuSO4</td>
<td>249.7</td>
<td>0.000</td>
</tr>
<tr>
<td>CoCl2</td>
<td>237.9</td>
<td>0.003</td>
</tr>
<tr>
<td>MnSO4</td>
<td>169</td>
<td>0.028</td>
</tr>
<tr>
<td>Amino Acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L aspartic acid</td>
<td>133.1</td>
<td>0.455</td>
</tr>
<tr>
<td>L glutamic acid</td>
<td>147.13</td>
<td>0.398</td>
</tr>
<tr>
<td>L asparagine</td>
<td>132.1</td>
<td>0.350</td>
</tr>
<tr>
<td>L glutamine</td>
<td>146.1</td>
<td>0.390</td>
</tr>
<tr>
<td>L histidine</td>
<td>155.16</td>
<td>0.150</td>
</tr>
<tr>
<td>L arginine</td>
<td>174.2</td>
<td>0.350</td>
</tr>
<tr>
<td>L lysine</td>
<td>146.2</td>
<td>0.440</td>
</tr>
<tr>
<td>L serine</td>
<td>105.1</td>
<td>0.225</td>
</tr>
<tr>
<td>L threonine</td>
<td>119.1</td>
<td>0.175</td>
</tr>
<tr>
<td>glycine</td>
<td>75.07</td>
<td>0.175</td>
</tr>
</tbody>
</table>

[0054] The introduction of the vector described previously
into the host cell can be effected by method well known from
one of skilled in the art such as calcium phosphate transfe-
sion or electroporation.

[0055] In a fifth embodiment, the present invention relates to
a culture medium comprising an effective amount of the
isolated polypeptide as described above and nutrients that
allow the growing of Firmicutes, in particular Streptococcus,
and more preferably S. thermophilus.

[0056] According to the present invention, an “effective
amount” of said isolated polypeptide is one which is sufficient
to achieve a desired biological effect, in this case stimulating
competence in Firmicutes, in particular Streptococcus, and
more preferably S. thermophilus. As an example, said effective
amount is comprised between 0.1 ng/ml and 1 mg/ml,
preferably between 0.5 ng/ml and 1 mg/ml, and more prefer-
ably between 1 ng/ml and 100 ng/ml.

[0057] Nutrients of the culture medium are well known
from the skilled person and include, as for example lactose,
sodium acetate, ascorbic acid, potassium phosphate. Prefer-
ably, the medium culture does not contain any nutritional
peptides, such as those provided by casein or yeast extract.

[0058] There are numerous causes of peptide instability or
degradation, including hydrolysis and denaturation. This
result may entail diminution of the induction of the com-
petence in Firmicutes, in particular Streptococcus, and more
preferably S. thermophilus. Stabilizers may be added to
lessen or prevent such problems.

[0059] According to a specific embodiment, the culture
medium of the invention further comprises at least one stabili-
zer.

[0060] Stabilizers include cycloextrin and derivatives
thereof (see U.S. Pat. No. 5,730,969). Suitable preservatives
such as sucrose, mannitol, sorbitol, trehalose, dextran and
glycerin can also be added to stabilize the final formulation.
Polysaccharides may degrade a peptide, and are water-miscible
or water-soluble. Suitable polysaccharides may be poly-
hydroxyalkanols, monosaccharides and disaccharides includ-
ing mannitol, glycerol, ethylene glycol, propylene glycol, trimethyl glycol,
viny pyrrolidone, glucose, fructose, arabinose, mannose,
maltose, sucrose, and polymers thereof. Various excipients
may also stabilize peptides, including serum albumin, amino
acids, lipids, fatty acids and phospholipids.

[0061] In a sixth aspect, the present invention relates to the
use of a polypeptide as described above, a nucleic acid as
described previously, a vector comprising such a nucleic acid,
a host cell as defined previously, or a culture medium as
described previously for stimulating competence in Firmi-
cutes, in particular Streptococcus, and more preferably S. ther-
mosphilus.

[0062] In a seventh aspect, the present invention relates to a
method of producing transformation competent Firmicutes,
in particular Streptococcus, and more preferably S. thermo-
philus bacteria comprising the step (i) of contacting said
Firmicutes, in particular Streptococcus, and more preferably S. ther-
mosphilus bacteria with an effective amount of an iso-
lated polypeptide as described previously for obtaining said
transformation competent Firmicutes, in particular Strepto-
coccus, and more preferably S. thermophilus bacteria.

[0063] Preferably, the method of the invention is performed
in a culture medium as described previously.

[0064] In an eighth aspect, the present invention relates to a
method of producing transformation competent Firmicutes,
comprising a nucleic acid sequence coding for a reporter protein (preferably GFP, β-galactosidase, etc.) under the control of all or part of a promoter preceded by the inverted repeat sequence recognized by the PI1CR-like regulator (Stet0316 in strain LMD9, str0270 in strain CNRZ1066, stru0270 in strain LMG18311) ATAGTGACATAGTACGTTTCTTCT (SEQ ID No 3) or GTAGTGACATAGTACGTTTCTTCT (SEQ ID No 4);

[0077] ii) selecting the compound that stimulates the expression of said reporter protein.

[0078] Methods for testing the stimulation of Firmicutes, in particular Streptococcus, and more preferably S. thermophilus competence are well known from the skilled person. Examples of such methods are disclosed in the examples.

[0079] In a preferred embodiment, the method of the invention can further comprises the steps of:

[0080] iii) contacting said compound with Firmicutes, in particular Streptococcus, and more preferably S. thermophilus in the presence of DNA (plasmids, chromosomal DNA, etc.); and

[0081] iv) selecting the compounds that effectively enhance competence.

[0082] In the following, the invention is described in more detail with reference to amino acid sequences, nucleic acid sequences and the examples. Yet, no limitation of the invention is intended by the details of the examples. Rather, the invention pertains to any embodiment which comprises details which are not explicitly mentioned in the examples herein, but which the skilled person finds without undue effort.

EXAMPLES

1) The Anti Transporter Controls the Synthesis of Several Proteins Essential for Natural Transformation in Streptococci

[0083] In order to find physiological functions controlled by signaling peptides that are internalized by the Ami transporter, we compared the proteome of the wild type LMD-9 strain and its isogenic mutant deleted for the ami operon, LMD-9 ΔamiCDE (Till883; IBRAHIM et al., J. Bacteriol., vol. 189, p. 8844-8854, 2007).

[0084] In order to by-pass the nutritional function of the Ami transporter, cells were grown in CDM, a free-peptide chemically-defined medium (CDM), containing only amino acids as nitrogen source, as described by Letort & Julliard, Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus, J. Appl. Microbiol., vol. 91, p. 1023-1029, 2001. Optical density at 600 nm (OD_600) of the cultures was measured using a spectrophotometer UVIKON 931 (KONTRON).

[0085] Proteins were prepared from cells grown in CDM and harvested at OD_600 0.7 in two independent cultures for each strain. Bacteria were mechanically disrupted and the supernatants were ultracentrifuged at 220,000 g for 30 min at 4°C to enrich the ‘cell envelope pellets’ in cell-envelope proteins. Finally the pellet was resuspended in disruption buffer and sonicated for 15 min at 4°C in an ultrasonic bath. The cell-envelope pellet fractions (10 g) were separated by 1D electrophoresis. Each 1D electrophoresis lane was cut into 26 pieces of gel (2 mm width). In-gel digestion of the proteins was performed with the Progest system (Genomic Solution) according to the following protocol.
Gel pieces were washed firstly, in two successive baths of (i) 10% acetic acid 40% ethanol and (ii) 100% acetonitrile (ACN) and secondly, in two successive baths of (i) 25 mM NH₄HCO₃ and (ii) 100% ACN. Gel pieces were further incubated in 10 mM DTT in 25 mM NH₄HCO₃, 30 mM at 55°C and in 50 mM iodoacetamide in 25 mM NH₄HCO₃, 45 mM at room temperature for cysteine reduction and alkylation, respectively. Digestion was subsequently performed for 6 h at 37°C with 125 ng of modified trypsin (PROMEGA) dissolved in 20% methanol and 20 mM NH₄HCO₃ per gel piece. The peptides were extracted successively with (i) 0.5% trifluoroacetic acid (TFA) 50% ACN and (ii) with 100% ACN. The resulting peptide extracts were dried in a vacuum centrifuge and suspended in 25 μl of 0.08% TFA, and 2% ACN.

Fractions enriched in cell envelope proteins were then analyzed by a label-free comparative proteomic approach combining 1D electrophoresis with LC-MS/MS analysis.

LC-MS/MS analysis was performed on Ultimate 3000 LC system (DIONEX) connected to LTQ Orbitrap mass spectrometer (THERMO FISHER) by nanoelectrospray ion source. Tryptic peptide mixtures (4 μl) were loaded at flow rate 20 μl min⁻¹ onto precolumn Pepmap C18 (0.3×5 mm, 100 Å, 5 μm; DIONEX). After 4 mM, the precolumn was connected with the separating nanocolumn Pepmap C18 (0.075×15 cm, 100 Å, 3 μm) and the linear gradient was started from 2 to 36% of buffer B (0.1% formic acid, 80% acetonitrile) in buffer A (0.1% formic acid, 2% acetonitrile) at 300 nl min⁻¹ over 50 min. Ionization was performed on liquid junction with a spray voltage of 1.3 kV applied to non-coated capillary probe (PicoTip EMITTER 10 μm tip ID; NEW OBJECTIVE). Peptides ions were automatically analyzed by the data dependent method as follows: full MS scan (m/z 300-1600) on Orbitrap analyser and MS/MS on the 4 most abundant precursor on the LTQ linear ion trap. In this study only +2 and +3 charged peptides were subjected to MS/MS experiments with an exclusion window of 1.5 min, with classical peptides fragmentation parameters: Qz=0.22, activation time=50 ms, collision energy=35%.

The raw data produced on LTQ-Orbitrap mass spectrometer were first converted in mzXML file with ReADW (http://sashimi.sourceforge.net) and in a second step, protein identification was performed with X!Tandem software (X!Tandem tornado 2008.02.01.3, http://www.thegpm.org) against a protein database of S. thermophilus LMD-9 (GenBank: CP000419.1), associated to a proteomic contaminant database. The X!Tandem search parameters were: trypsin specificity with one missed cleavage, fixed alkylation of cysteine and variable oxidation of methionine. The mass tolerance was fixed to 10 ppm for precursor ions and 0.5 Da for fragment ions. For all proteins identified with a protein E-value <0.01 in the first step, we searched for additional peptides to reinforce identification using similar parameters except that semi-tryptic peptides and protein N-terminal acetylations were accepted. All peptides identified with an E-value <0.1 were conserved. All results for each piece of gel were merged with an home-made program written in java by Benoit Valot at the PAPPSO platform (http://moulon.iura.fr/PAPPSO). The final search results were filtered using a multiple threshold filter applied at the protein level and consisting of the following criteria: protein E-value <10⁻³ identified with a minimum of two different peptides sequences, detected in at least one piece of gel, with an peptide E-value <0.05.

We focused our attention on proteins that were detected in the extracts prepared from strain LIVID-9 and that completely disappeared in the extracts prepared from strain TILL83. The identified proteins are disclosed in the Table I.

For each protein detected, we calculated an abundance factor defined as the total number of spectra detected per protein in each gel lane normalized by the theoretical number of peptides having a mass ranging between 800 and 2500 Da. Proteins that were detected in the two repetitions performed for strain LMD-9 and absent in the two repetitions performed for strain TILL83 (abundance factor=0) were taken into account.

<table>
<thead>
<tr>
<th>GenBank</th>
<th>MW</th>
<th>Protein identification</th>
<th>LMD-9</th>
<th>TILL83</th>
</tr>
</thead>
<tbody>
<tr>
<td>STER1521</td>
<td>24400</td>
<td>DNA uptake protein or related DNA-binding protein, ComEA</td>
<td>0.63-0.50</td>
<td>0-0</td>
</tr>
<tr>
<td>STER0922</td>
<td>31100</td>
<td>Predicted Rossmann fold nucleotide-binding protein involved in DNA uptake, DptA</td>
<td>1.12-1.12</td>
<td>0-0</td>
</tr>
<tr>
<td>STER1821</td>
<td>14700</td>
<td>Single-stranded DNA-binding protein, SsbB</td>
<td>0.50-0.83</td>
<td>0-0</td>
</tr>
<tr>
<td>STER1840</td>
<td>11800</td>
<td>Competence protein ComGC</td>
<td>1.75</td>
<td>0-0</td>
</tr>
<tr>
<td>STER1841</td>
<td>33800</td>
<td>Type II secretory pathway/ competence component, ComGB</td>
<td>0.64-0.82</td>
<td>0-0</td>
</tr>
<tr>
<td>STER1842</td>
<td>35300</td>
<td>Type II secretory pathway/ competence component, ATPase, ComGA</td>
<td>0.95-0.79</td>
<td>0-0</td>
</tr>
<tr>
<td>STER0089</td>
<td>20100</td>
<td>ComX</td>
<td>0.57-0.14</td>
<td>0-0</td>
</tr>
</tbody>
</table>

Proteins induced by the competence state but not essential for transformation

<table>
<thead>
<tr>
<th>GenBank</th>
<th>MW</th>
<th>Protein identification</th>
<th>LMD-9</th>
<th>TILL83</th>
</tr>
</thead>
<tbody>
<tr>
<td>STER0057</td>
<td>30100</td>
<td>Surface antigen, CbpD</td>
<td>0.75-0.75</td>
<td>0-0</td>
</tr>
<tr>
<td>STER1430</td>
<td>25700</td>
<td>DNA repair protein, RadC</td>
<td>0.25-0.33</td>
<td>0-0</td>
</tr>
<tr>
<td>GenBank</td>
<td>MW</td>
<td>Protein identification</td>
<td>LMD-9</td>
<td>TIL.883</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>STER_1407</td>
<td>34600</td>
<td>ABC-type dipeptide/oligopeptide/nickel transport system, permease component, AmiD</td>
<td>2.17-2.33</td>
<td>0.00</td>
</tr>
<tr>
<td>STER_1408</td>
<td>55000</td>
<td>ABC-type dipeptide/oligopeptide/nickel transport system, permease component, AmiC</td>
<td>1.41-1.12</td>
<td>0.00</td>
</tr>
<tr>
<td>STER_1406</td>
<td>39800</td>
<td>ABC-type dipeptide/oligopeptide/nickel transport system, ATPase component, AmiE</td>
<td>1.28-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>STER_1356</td>
<td>56500</td>
<td>Radical SAM superfamily enzyme</td>
<td>1.55-1.65</td>
<td>0.00</td>
</tr>
<tr>
<td>STER_1652</td>
<td>50300</td>
<td>lactococcus A ABC transporter permease protein, PmbB</td>
<td>0.60-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>STER_0329</td>
<td>32200</td>
<td>Urease accessory protein UreR</td>
<td>0.57-0.57</td>
<td>0.00</td>
</tr>
<tr>
<td>STER_0123</td>
<td>18500</td>
<td>Predicted RNA-binding protein containing a PIN domain</td>
<td>0.60-0.40</td>
<td>0.00</td>
</tr>
<tr>
<td>STER_0329</td>
<td>45700</td>
<td>Permease of the major facilitator superfamily</td>
<td>0.57-0.29</td>
<td>0.00</td>
</tr>
<tr>
<td>STER_0331</td>
<td>29100</td>
<td>ABC-type cobalt transport system, permease component ChiQ or related transporter</td>
<td>0.23-0.46</td>
<td>0.00</td>
</tr>
<tr>
<td>STER_1779</td>
<td>12200</td>
<td>Thioredoxin domain containing protein</td>
<td>0.33-0.33</td>
<td>0.00</td>
</tr>
<tr>
<td>STER_1834</td>
<td>43200</td>
<td>Acetate kinase</td>
<td>0.26-0.32</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The abundance factor is the ratio between the total number of spectra obtained during the protein identification process on the theoretical number of peptides ranging between 800 and 2500. Two repetitions were performed for each strain leading to two values.

[0092] The results show that in addition to the subunits C, D and E of the Ami transporter, which were absent from the mutant, as expected, seventeen proteins fulfilled this criterion (Table 1). Eight were encoded by genes of the orthologues of which were identified as late CSP-induced genes in S. pneumoniae. Among them, six have also been identified as essential for natural transformation (Peterson et al., Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 51:1051-1070, 2004). The ComX protein involved in the regulation of the competence state was also detected in strain LMD-9 but not in strain TIL.883.

[0093] These results suggest that the Ami transporter is involved in the regulatory pathway that controls the induction of the competence state in S. thermophilus and also that natural transformation can be turned on in CDM during the exponential growth phase.

[0094] The S. thermophilus LMD-9 is Naturally Transformable in CDM.

[0095] To check the hypothesis formulated on the basis of our proteomic results, we first tested the natural transformability of S. thermophilus using the pG*host9 plasmid.

[0096] An overnight culture of strain LMD-9 grown in CDM at 42°C was diluted in CDM to OD600 0.05. 2 ml of this diluted culture were distributed in 2-ml tubes and incubated in a water bath at 42°C. Once each hour for four hours, a sample was used to measure the OD600 and 100 µl were mixed with 1 µg of plasmid DNA. Cells with DNA were incubated for 2 hours at 28°C before being plated on M17 medium (DIFCO) supplemented with 10 g liter⁻¹ lactose (M17lac) with erythromycin (5 µg for S. thermophilus).

[0097] The FIG. 1 shows the development of competence during growth of strain LMD-9 in CDM using pG*host9 plasmid as transformant DNA. Optical density (OD600 x, dashed line) was used to measure cell numbers and count of cells resistant to erythromycin (Ery resistant cells) (●, plain line) was used to assess competence. 1 µg of plasmid DNA was mixed with 100 µl of cells. The mean of three independent experiments are presented and error bars indicate standard deviation.

[0098] We obtained erythromycin resistant cells (transformants) but only in samples harvested one hour after dilution (FIG. 1). We observed a mean of 1.2×10⁸ transformants per ml (standard error, ±7.2×10⁷ transformants per ml; n=3). The presence of the plasmid pG*host9 in these bacteria was checked on several colonies by PCR.

[0099] This result indicates that bacteria were able to take up the plasmid but only at a specific growth stage corresponding to the beginning of the exponential phase (OD600 0.2-0.3).

[0100] To confirm the transformability of S. thermophilus, to demonstrate its ability to take up linear DNA (PCR fragment or chromosomal DNA) and to incorporate it by homologous recombination in its chromosome and also to assess the kinetics of the transformation rate more precisely, we needed chromosomal DNA containing an antibiotic resistant marker.

[0101] For that purpose, we constructed strain TIL.1192 (LMD-9 fecB::erm) containing an erythromycin (erm) resistant cassette introduced into the chromosome of strain LMD-9 at the fec locus. Integration of a PCR fragment by homologous recombination in the chromosome of strain LMD-9 was demonstrated in the framework of this construction.
Chromosomal DNA of strain TIL1192 was further used as donor DNA to study the timing of the triggering of the competence state during growth in CDM.

An overnight culture of strain LMD-9 grown in CDM at 42°C was diluted in CDM to OD_{600} 0.05. 2 ml of this diluted culture were distributed in 2-ml tubes and incubated in a water bath at 42°C. Once twenty minutes for two hours, a sample was used to measure the OD_{600} and 100 μl were mixed with 1 μg of chromosomal DNA. Cells with DNA were incubated for 2 hours at 42°C before being plated on M17 medium (DIFCO) supplemented with 16 g liter^{-1} lactose (M17lac) with erythromycin (5 μg ml^{-1} or kanamycin 1000 μg ml^{-1} for S. thermophilus).

The FIG. 2 shows the development of competence during growth of strain LMD-9 in CDM using chromosomal DNA of strain TIL1192 as transformant DNA. Optical density (OD_{600} (x, dashed line) was used to measure cell number and count of cells resistant to erythromycin (Ery resistant cells)) (●, plain line) was used to assess competence. 1 μg of chromosomal DNA was mixed with 100 μl of cells. The mean of four independent experiments are presented and error bars indicate standard deviation.

The kinetics of transformation obtained from four independent experiments (FIG. 2) confirmed that natural competence is a short transient state. Transformability rose sharply 20 min after dilution (OD_{600} 0.06), reached an optimum one hour after dilution (OD_{600} 0.17-0.2) and then rapidly declined. One hundred min after dilution (OD_{600} 0.4-0.5), cells were no longer transformable. At the optimum, the average transformation rate was 3.8 × 10^{-7} (standard error, ±4.6 × 10^{-7}; n = 4).

We also tested the transformability of strain TIL883 (ΔamiCDE) with chromosomal DNA of TIL1192 under the same conditions. No transformants were obtained during the growth of this strain in CDM.

In order to confirm that antibiotic resistant clones obtained from the previous experiments were the result of a natural transformation involving ComEC and most probably a transformosome complex similar to the one described in S. pneumoniae, we constructed strain TIL1195 (LMD-9 comEC::erm). ComEC is one of the proteins of the DNA uptake machinery essential for natural transformation in S. pneumoniae and B. subtilis.

We also constructed TIL1193 (LMD-9 fep::aphA3) as a chromosomal DNA source with a different antibiotic resistance than erythromycin. We checked that natural transformation of strain LMD-9 with chromosomal DNA of strain TIL1193 gave a similar transformation rate as with chromosomal DNA of strain TIL1192 (data not shown). Finally, we tried to naturally transform strain TIL1195 with chromosomal DNA of strain TIL1193. Samples of cells of TIL1195 grown in CDM were harvested every 30 min for 2 hours and tested for transformation.

We obtained no kanamycin-resistant clones.

In order to confirm that ComX is essential for natural transformation in S. thermophilus, we constructed strain TIL1196 (LMD-9 comX::erm). Samples of strain cells TIL1196 grown in CDM were harvested every 30 min for 2 hours and tested for transformation with chromosomal DNA of strain TIL1195 (LMD-9 comX::erm).

As expected, we obtained no kanamycin-resistant clones during this kinetic.

Finally, we have found a natural condition of growth that turns on the transformability of strain LMD-9. Using plasmid or chromosomal DNA as donor DNA, we showed that cells were transformable in CDM, during a narrow window, the optimum being one hour after the dilution of an overnight culture in CDM. The rates obtained made it possible to easily construct deletion mutants using PCR fragments and were much higher with plasmid DNA than with chromosomal DNA. This difference can be explained by two factors. First, the higher number of molecules of plasmid compared to the number of molecules of chromosome present in 1 μg DNA (around 450 fold more). Second, the pG+host plasmids generate linear plasmid multimers in Lactococcus lactis (Magin et al., Efficient insertion mutagenesis in lactococci and other gram-positive bacteria. J. Bacteriol. 178: 931-935, 1996). Such is probably also the case in S. thermophilus.

Among the proteins detected in strain LMD-9 and not in strain TIL883, three were chosen for a transcriptional study of the corresponding genes. These proteins were ComGA that is involved in the pore assembly, DprA, a recombination mediator protein that conveys incoming ssDNA to the recombinase RecA and the sigma factor ComX. Although the abundance factor of RecA did not reach zero in the strain TIL883 but decreased by a factor 4 (data not shown), we chose to follow its encoding gene because RecA is essential for transformation in many Gram-positive transformable species.

The FIG. 3 shows the relative expression levels of comX, recA, dprA and comGA between S. thermophilus LMD-9 and strain TIL883 (LMD-9 ΔamiCDE) or strain TIL1196 (LMD-9 comX::erm). Relative expression levels were computed using the comparative critical threshold method (2^{-ΔΔC T}) as described by Livak and Schmittgen (Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔ C(T)) Method. Methods, 25:402-408, 2001). Data are expressed as means from three independent experiments and were significant according to an analysis of variance (P<0.05).

As shown in FIG. 3, the level of expression of comGA and dprA of strain LMD-9 was higher than that of strain TIL883. To a lesser extent but with significant values (P<0.05), we obtained similar results with comX and recA that were 5-fold and 4-fold more highly expressed in strain LMD-9, respectively.

To confirm that the transcription of genes dprA, comGA and recA is under the control of ComX, we compared the expression of these genes in strain LMD-9 and strain TIL1196 (LMD9 comX::erm). As expected, the transcription of the three genes was significantly higher in strain LMD-9 than in strain TIL1196 (FIG. 3) confirming that their transcription is positively controlled by ComX.

4) The Oligopeptide-Binding Protein AmiA3 Plays the Major Role in the Control of Competence.

The genome of strain LMD-9 displays only two genes encoding oligopeptide-binding proteins, amiA1 (ster_1400), the first gene of the ami operon (ster_1408 to ster_1405) and amiA3 (ster_1411) that is flanked by two transposable encoding genes.

We constructed three strains, TIL1197 (amiA3::erm), TIL1198 (ΔamiA1) and TIL1199 (amiA3::erm).
AamiA1) corresponding to insertional mutagenesis of amiA3, deletion of amiA1 and a combination of both mutations, respectively.

[0121] The transformability of the three strains was tested using chromosomal DNA of strain TII.1193 and compared to that of strain LMD-9 at its optimum of competence, i.e. one hour after the dilution of the cells in CDM.

[0122] As expected, no kanamycin resistant cells were obtained after transformation of strain TII.1199. However, the percentage of the competence rate of strains TII.1197 (amiA3::erm) and TII.1198 (AamiA1) compared to that of strain LMD-9 were 1% (standard error±2) and 48% (standard error±4), respectively.

[0123] This result suggests that AamiA3 is more important in the triggering of the competence than AamiA1.

[0124] As our experiments were performed in a medium without peptides, we hypothesize that in S. thermophilus, the Ami3 oligopeptide-binding protein imports a peptide involved with a transcriptional regulator in the control of the expression of comX. This peptide could be a specific pheromone or a peptide resulting from the degradation of secreted proteins or proteins released by lysis of bacteria.

[0126] Kinetics of competence rate were performed with 1.5M-9 cells grown in M17lac and with pGHOST9 plasmid DNA or chromosomal DNA of strain TII.1192.

[0127] With both types of donor DNA, no erythromycin resistant transformants were obtained with cells harvested every 30 min for 2 hours.

[0128] We then compared the expression of comGA, dprA, recA and comX from RNA extracted from LMD-9 cells grown in CDM and M17lac medium and harvested at OD600 0.2.

[0129] We observed that these genes were respectively, 1.49, 2.24, 2.4 and 2.36 more highly expressed in CDM than in M17lac which was consistent with the absence of transformants during growth in M17lac.

[0130] 6) Strains CNRZ1066 and LMG18311 are not efficiently transformable in CDM.

[0131] We tested natural transformability of the two other S. thermophilus strains, CNRZ1066 and LMG18311.

[0132] For this purpose, we used the plasmid pGHOST9 as donor DNA and cells were harvested every 30 min for 2 hours.

[0133] We obtained no erythromycin resistant clones with strain CNRZ1066 and a few erythromycin resistant clones with strain LMG18311, one hour after dilution. However, we obtained 2.10^3 less transformants with strain LMG18311 than with strain LMD-9. We also used chromosomal DNA of strain TII.1195 (LMD-9 comEC::erm) as donor DNA because surrounding regions of gene comEC are highly conserved between strains LMD-9, CRY1066 and LMG18311 (more than 98% identity over 5 kb upstream and downstream comEC). Under this condition, we obtained no erythromycin resistant clones with both strains.

[0134] 7) Identification of a Competence Stimulating Peptide in S. thermophilus

[0135] During the proteomic approach described in paragraph 1, we noticed that the synthesis of a transcriptional regulator annotated Pcr, ster0316, decreased in the Ami mutant compared to the wild type strain. These regulators are known to be regulated by peptides that are secreted and imported back by Opp. As we suspected that the triggering of the competence state in S. thermophilus is controlled by a secreted peptide further imported by Opp also called Ami in this species, we thought that this regulator could be involved in the mechanism controlling the triggering of competence in S. thermophilus. We deleted ster0316 and replaced it by an erythromycin resistance cassette. The transformability of the mutant was assessed for three hours every thirty minutes using chromosomal DNA of strain TII.1193 (fep::phoA3). Three independent experiments were performed and no kanamycin resistant transformants were obtained indicating that ster0316 is involved in the triggering of competence in S. thermophilus.

[0136] A small CDS, papR-like, is located downstream of gene ster0316 and is not annotated in Genbank. As the activity of Pcr regulators is controlled by peptides, we suspected that the peptide encoded by this small papR-like CDS could be involved in the control of the activity of Ster0316. papR-like was deleted and replaced by a spectinomycin resistance cassette leading to the construction of a papR-like::spect mutant. The transformability of the mutant was assessed for three hours every thirty minutes using plasmid DNA (pGHOST9). Four independent experiments were performed and no erythromycin resistant transformants were obtained indicating that papR-like is most probably involved in the triggering of competence in S. thermophilus probably through the control of the activity of Ster0316.

[0137] In order to check that the absence of transformability of the papR-like::spect mutant was the result of the absence of the papR-like gene and not the result of a polymorphic effect of the presence of the spectinomycin resistant cassette on upstream or downstream genes of papR-like, we cloned the papR-like gene in a plasmid in order to express it under the control of a strong constitutive promoter and introduced this plasmid by electroporation in the papR-like::spect mutant. The transformability of the mutant was assessed one hour after the dilution of the preculture in CDM using plasmid DNA (pGHOST9::kan). We obtained kanamycin resistant transformants indicating that the transformability of the papR-like::spect mutant was restored by the presence of papR and that the absence of transformability of the papR-like::spect mutant was the result of the absence of the papR-like gene.

[0139] As used herein, CSP refers to Pap-R like peptide or a fragment thereof.

[0140] S. thermophilus cells are grown overnight at 42°C in CDM. The culture is then diluted in CDM at an OD600 0.05. Sixty minutes after dilution, the competence stimulating peptide (CSP), which is the mature peptide comprising SEQ ID No 1 or fragments or derivatives of SEQ ID No 1 that allow to induce competence in S. thermophilus, is added to the culture at a final concentration of 1 μM. Ten minutes later, 100 μl of the culture containing the CSP is mixed with 1 ng of DNA and incubated for 2 hours at 28°C. When mixed with a thermosensitive replicative plasmid DNA or 1 hour at 42°C. When mixed with chromosomal DNA or PCR fragments, before being serially diluted and spread on M17lac plates with the appropriate antibiotic.

[0141] 9) Overexpression of the papR-like Gene Induces the Transformability of Strain LMG18311

[0142] Strain S. thermophilus LMG18311 is naturally poorly transformable. We introduced in this strain and by electroporation, the plasmid comprising the sequence SEQ
ID No 6 coding for the polypeptide derivatives having the sequence SEQ ID No 5, plasmid that allows the overexpression of the papR-like gene and that is described in paragraph 7. The transformability of the mutant was assessed one hour after the dilution of the culture of this mutant in CDM using plasmid DNA (pGh109::kanA). 100 μl of the culture was mixed with 1 μg of DNA. Cells were further incubated 2 hours at 30°C before being spread on M17lac plates containing the appropriate antibiotic. The LMG18311 wild type strain was used as a control. We obtained no kanamycin resistant trans-

forms with the control and many (>1000) with the mutant overexpressing the papR-like gene. This result indicates that the overexpression of the papR-like gene is able to stimulate the transformability of a poorly transformable strain.

0143 10 Transformation of S. thermophilus by a Plasmid that Allows the Overexpression of the papR-like Gene

0144 S. thermophilus cells are electroporated with a replicative plasmid where the papR-like gene is under the control of a strong constitutive promoter. Cells containing this plasmid are grown overnight at 42°C in CDM. The culture is then diluted in CDM at an OD₆₀₀ 0.05. One hour after dilution, 100 μl of the culture is mixed with 1 μg of DNA and incubated for 2 hours at 28°C when mixed with a thermosensitive replicative plasmid DNA or 1 hour at 42°C when mixed with chromosomal DNA or PCR fragments, before being serially diluted and spread on M17lac plates with the appropriate antibiotic. The transforms can further be easily cured of the replicative plasmid by growth in the absence of antibiotic.

0145 11 Identification of Different Fragments of SEQ ID No 1

0146 SEQ ID No 1 is the precursor of shorter peptides that are secreted. These shorter peptides, corresponding to fragments of SEQ ID No 1, are active peptides that trigger the competence state in S. thermophilus.

0147 For identifying the sequence of these shorter active peptides, the inventors have used two strains, one that is deleted for the papR-like gene (referred as "deleted strain" thereafter) and one that overexpresses the papR-like gene and that is unable to import peptides because deleted for genes encoding the oligopeptide transporter Ami (referred as "overproducing strain" thereafter). In the overproducing strain, the sequence of the peptide that is overproduced is SEQ ID No 5.

0148 Using LC-MS/MS analysis, the inventors have searched for peptide masses corresponding to fragments of SEQ ID No 1 in the culture supernatant of the overproducing strain that were absent in that of the deleted strain. Culture supernatants were treated in order to be enriched in peptides with the following method:

0149 (1) ultrafiltration (10 kDa cut-off),

0150 (2) injection of the ultrafilter (<10 kDa) on Sep-

pack C18 with a 30% acetonitrile washing step and a 40% acetonitrile elution step. Eluted fractions were fur-

ther dried and resuspended with 0.1% trifluoroacetic acid 2% acetonitrile.

0151 Three masses corresponding to masses of five different fragments of SEQ ID No 1 (present in the overproduc-

ing strain and absent in the deleted strain) have been iden-

tified, with different retention times (RT) during the HPLC runs (A-natural peptides, below). The inventors thus identified sequences of fragments of SEQ ID No 1 that match with the m/z measurements.

0152 The results are shown herebelow:

<table>
<thead>
<tr>
<th>m/z (Ze−1)</th>
<th>Rt (min)</th>
<th>Identified Sequences</th>
<th>SEQ ID No</th>
<th>Competence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Natural peptides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1180,6434</td>
<td>45,94</td>
<td>IAILPYFAGCL</td>
<td>7</td>
<td>YES</td>
</tr>
<tr>
<td>1067,5594</td>
<td>42,56</td>
<td>IAILPYFAGCL</td>
<td>8</td>
<td>NT</td>
</tr>
<tr>
<td>996,5223</td>
<td>40,56</td>
<td>IAILPYFAGCL</td>
<td>9</td>
<td>NT</td>
</tr>
<tr>
<td>1237,6649</td>
<td>42,98</td>
<td>IAILPYFAGCL*L</td>
<td>10</td>
<td>NT</td>
</tr>
<tr>
<td>1124,5800</td>
<td>39,72</td>
<td>IAILPYFAGCL*L</td>
<td>11</td>
<td>NT</td>
</tr>
<tr>
<td>1053,5437</td>
<td>37,66</td>
<td>IAILPYFAGCL*L</td>
<td>12</td>
<td>NT</td>
</tr>
</tbody>
</table>

NT, not tested
*alkylated form of the cysteine

0153 At this step, peptide ion fragmentation was not possible due to the weakness of the mass spectrometry signals. In order to confirm the presence of a cysteine residue in the different fragments, alkylation of the supernatants of the deleted and the overproducing strains was performed with iodoacetamide with the following protocol: 150 μl of NaOH 5M were added to 30 ml of supernatant. Alkylation was performed with iodoacetamide at a final concentration of 20 mM for 30 min in the dark. Samples were enriched in peptides as described above with the following modification, 50 μl of formic acid was added to adjust the pH to 6.5 after the ultra-

filtration step.

0154 Masses corresponding to alkylation forms of all fragments (B-alkylated peptides) were detected, with the expected shift in HPLC retention times, in the supernatant of the overproducing strain and not detected in the deleted strain confirming that these fragments contain a cysteine amino acid.

0155 Alkylation increased the peptide signals in mass spectrometry and allowed the fragmentation of the longer one. Fragmentation of the peptide validated the IAILPYFAGCL sequence of the 1237,6649 mass (SEQ ID No 7).

0156 In conclusion, the inventors have shown that SEQ ID No 1 is the precursor of peptides that are secreted in the supernatant of the overproducing S. thermophilus LMD9 strain. The inventors identified 3 masses corresponding to 5 different fragments of SEQ ID No 1. The inventors validated the amino acids sequence SEQ ID No 7 (AILPYFAGCL), which is an active competence peptide. The inventors have
also showed that the shorter sequences are products of degradation of SEQ ID No 7 by proteases and/or aminopeptidases.

[0057] Biologic Activity of Fragments of SEQ ID No 1

[0058] The inventors tested the activity of fragments of SEQ ID No 1 using a strain deleted for the papR gene using the protocol described in part 8. The inventors thus synthesized different fragments of SEQ ID No 1 in order to test their biological activity. Fragments were synthesized as below:

<table>
<thead>
<tr>
<th>Transforming DNA</th>
<th>SEQ ID No 7</th>
<th>SEQ ID No 12</th>
<th>SEQ ID No 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosomal</td>
<td>24</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>Plasmid</td>
<td>284 \times 10^7</td>
<td>780 \times 10^2</td>
<td>0</td>
</tr>
</tbody>
</table>

[0059] To test the biological activity of those fragments, peptides were added to a culture of a strain deleted for the papR gene at a final concentration of 1 \(\mu M \), 1 hour after the dilution of the culture at an OD_{600} of 0.05 in a chemical defined medium (CDM). Transformation assays were performed with 100 \(\mu l \) of cells with 1 \(\mu g \) of plasmid and or chromosomal DNA.

[0060] The results are disclosed here below.

[0061] The numbers of transformants obtained with 100 \(\mu l \) of competent cells are as follows:

<table>
<thead>
<tr>
<th>Transforming DNA</th>
<th>SEQ ID No 7</th>
<th>SEQ ID No 12</th>
<th>SEQ ID No 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosomal</td>
<td>35</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Plasmid</td>
<td>70 \times 10^2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

[0062] Cysteyl residue is a reactive amino acid due to the presence of a free SH. In order to test the significance of this residue in the biological activity of the peptide, SEQ ID No 7 was alkylated, as described above, and its activity was tested.

[0063] The numbers of transformants obtained with 100 \(\mu l \) of competent cells are as follow:

<table>
<thead>
<tr>
<th>Transforming DNA</th>
<th>SEQ ID No 7</th>
<th>Alkylated SEQ ID No 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosomal</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Plasmid</td>
<td>70 \times 10^2</td>
<td>2</td>
</tr>
</tbody>
</table>

[0064] These results indicate that SEQ ID No 7 needs to have a free cysteyl residue to be active and that the oxydo-reduction state or the alkylation of the peptide influence the competence rate of \(S. thermophilus \) strains.

[0065] \(S. thermophilus \) strain LMG18311 is naturally poorly competent and strain CNRZ1066 is naturally not competent. However, complementation of both strains with a plasmid that overexpresses the papR gene makes them competent. The inventors tested the effect of the addition of SEQ ID No 7 on the competence of both strains in the same condition as described above for the LMD9 strain.

[0066] The numbers of transformants obtained with 100 \(\mu l \) of competent cells are as follow:

<table>
<thead>
<tr>
<th>Transforming DNA</th>
<th>LMG18311</th>
<th>CNRZ1066</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosomal</td>
<td>477</td>
<td>0</td>
</tr>
<tr>
<td>Plasmid</td>
<td>731 \times 10^3</td>
<td>274 \times 10^3</td>
</tr>
</tbody>
</table>

[0067] These results indicate that the addition of SEQ ID No 7 in a culture of \(S. thermophilus \) strain CNRZ1066 or LMG18311 renders them competent.

[0068] The inventors have thus shown that SEQ ID No 1 and fragments of SEQ ID No 1 (particularly SEQ ID No 7) are capable of stimulating competence in \(S. thermophilus \).
-continued

ttgaaaccc tggaaatatt tgtactatct tcaactatctt tgtctacttt gctttatattt 60
gcaggtgct tttaa 75

<210> SEQ ID NO 3
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Sequence recognized by P1cR like

<400> SEQUENCE: 3
atagtgcac atagtgcacct at 22

<210> SEQ ID NO 4
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: sequence recognized by P1cR like

<400> SEQUENCE: 4
gtgggtgacat aatgtcact at 22

<210> SEQ ID NO 5
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Derivative polypeptide of SEQ ID NO1

<400> SEQUENCE: 5
Met Gly Lys Thr Leu Lys Ile Phe Val Leu Phe Ser Leu Leu Ile Ala
 1 5
Ile Leu Pro Tyr Phe Ala Gly Cys Leu
 10 15 20 25

<210> SEQ ID NO 6
<211> LENGTH: 78
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: nucleic acid sequence coding for the polypeptide SEQ ID NO5

<400> SEQUENCE: 6
atggggaas ccoctgaasat atttgacta ttttgactac ttattgctat cttgacttat 60
ttgcaggt gttctttaa 78

<210> SEQ ID NO 7
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Streptococcus thermophilus

<400> SEQUENCE: 7
Ile Ala Ile Leu Pro Tyr Phe Ala Gly Cys Leu
 1 5
Ile Ala Ile Leu Pro Tyr Phe Ala Gly Cys Leu
 10

<210> SEQ ID NO 8
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Streptococcus thermophilus
1-17. (canceled)

18. An isolated polypeptide comprising the amino acid sequence of SEQ ID No. 7 (IAILPYFAGC), a derivative thereof having a percentage of identity of at least 70% with the amino acid sequence SEQ ID No. 7; or a fragment of SEQ ID No. 7, wherein said derivative or fragment is capable of stimulating competence in *Streptococcus*.

19. The isolated polypeptide of claim 18 wherein the derivative thereof has a percentage of identity of at least 95% with the amino acid sequence of SEQ ID No. 7.

20. The isolated polypeptide of claim 18 wherein said polypeptide consists of the amino acid sequence of SEQ ID No. 7 or consists of a derivative thereof having a percentage of identity of at least 70% with the amino acid sequence of SEQ ID No. 7.

21. The isolated polypeptide of claim 22 wherein the derivative thereof has a percentage of identity of at least 95% with the amino acid sequence of SEQ ID No. 7.

22. The isolated polypeptide of claim 18 wherein said polypeptide comprises the amino acid sequence of SEQ ID
No. 1 (LKTLKIFVFILFLLIAILPYFAGCL), a derivative thereof having a percentage of identity of at least 70% with the amino acid sequence SEQ ID No. 1; or a fragment of SEQ ID No. 1, wherein said derivative or fragment is capable of stimulating competence in *Streptococcus*.

23. The isolated polypeptide of claim 22 wherein the derivative thereof has a percentage of identity of at least 95% with the amino acid sequence of SEQ ID No. 1.

24. The isolated polypeptide of claim 18, wherein the length of said isolated polypeptide is less than 100 amino acids.

25. The isolated polypeptide of claim 18, further comprising an amino acid sequence corresponding to a signal peptide.

26. An isolated nucleic acid encoding the isolated polypeptide as defined in claim 18.

27. A vector comprising the nucleic acid as defined in claim 26 operably linked to a gene expression sequence.

28. A host cell genetically engineered with the vector as defined in claim 27.

29. A culture medium comprising an effective amount of the isolated polypeptide of claim 18 and nutrients for growth of a bacterium of the phylum Firmicutes.

30. The culture medium of claim 29, wherein said effective amount is between 0.1 ng/ml and 1 mg/ml.

31. The culture medium of claim 29 wherein the bacterium is of the genus *Streptococcus*.

32. The culture medium of claim 29 wherein the bacterium is of the species *Streptococcus thermophilus*.

33. A method of producing transformation competent bacteria of the phylum Firmicutes comprising the step of contacting said bacteria with an effective amount of the polypeptide of claim 18.

34. The method of claim 33 wherein the bacteria are of the genus *Streptococcus*.

35. A method of claim 34 wherein said contacting step comprises the steps of (i) culturing said bacteria in a peptide-free medium to an OD_{600} between 1.5 and 2.5 and (ii) diluting the culture of step (i) to an OD_{600} between 0.01 and 0.1, wherein said bacteria produce said polypeptide during step (i).

36. The method of claim 35 wherein the bacteria are of the species *Streptococcus thermophilus*.

37. The method of claim 33 wherein said method is performed in a culture medium comprising an effective amount of said polypeptide.

38. A method for producing a mutant bacterium of the phylum Firmicutes which comprises the steps of:

(a) producing transformation competent bacteria of the phylum Firmicutes by the method of claim 33; and

(b) contacting said transformation competent bacteria with homologous DNA under conditions to allow transformation of said bacteria with said homologous DNA.

39. The method of claim 38 further comprises the steps of selecting and/or amplifying the mutant bacteria thus generated.

40. A method for identifying a compound stimulating competence in a bacterium of the genus *Streptococcus* comprising the steps of:

i) contacting, with said compound, a host cell transformed with a nucleic acid comprising a nucleic acid sequence coding for a reporter protein under the control of all or part of a promoter preceded by the inverted repeat sequence recognized by the PlcR-like regulator:

\[
\text{ATAGTGACATATATGTCTCTAT} \quad \text{(SEQ ID N° 3)}
\]

\[
\text{GTGGTGACATAAATGTCACTAT} \quad \text{(SEQ ID N° 4)}
\]

and

ii) selecting the compound that stimulates the expression of said reporter protein.

41. The method of claim 40 wherein the host cell is a bacterial cell.

42. The method of claim 40 wherein the reporter protein is GFP or beta-galactosidase.