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(57) ABSTRACT 

A data processing system is provided that comprises a pro 
cessor, a random access memory for storing data and pro 
grams for execution by the processor, and computer readable 
instructions stored in the random access memory for execu 
tion by the processor to perform a method for obtaining a 
shape interpolated representation of shapes of clusters in an 
image of a clustered dataset. The method comprises generat 
ing a density estimate value of each grid point of a set of grid 
points sampled from the image at a specified resolution for 
each cluster using a kernel density function; evaluating the 
density estimate value of each grid point for each cluster to 
identify a maximum density estimate value of each grid point 
and a cluster associated with the maximum density estimate 
value; and adding each grid point for which the maximum 
density estimate value exceeds a specified threshold to the 
associated cluster to form a shape interpolated representation. 
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DATA CLASSIFICATION BY KERNEL 
DENSITY SHAPE INTERPOLATION OF 

CLUSTERS 

CROSS-REFERENCE TO RELATED 
APPLICATION 

0001. This application is a continuation of U.S. patent 
application Ser. No. 1 1/940,739, filed Nov. 15, 2007, the 
disclosure of which is incorporated by reference herein in its 
entirety. 

BACKGROUND OF THE INVENTION 

0002 1. Field of the Invention 
0003 Exemplary embodiments of the present invention 
relate to data classification, and more particularly, to shape 
interpolation of clustered data. 
0004 2. Description of Background 
0005 Data mining involves sorting through large amounts 
of data and extracting relevant predictive information. Tradi 
tionally used by business intelligence organizations and 
financial analysts, data mining is increasingly being used in 
the Sciences to extract information from the enormous 
datasets that are generated by modern experimental and 
observational methods. Data mining can be used to identify 
trends within data that go beyond simple analysis through the 
use of Sophisticated algorithms. 
0006. Many data mining applications depend on the par 
titioning data elements into related Subsets. Therefore, clas 
sification and clustering are important tasks in data mining. 
Clustering is the unsupervised categorization of objects into 
different groups, or more precisely, the organizing of a col 
lection of patterns (usually represented as a vector of mea 
Surements, or a point in a multidimensional space) into clus 
ters based on similarity. A cluster is a collection of objects that 
are “similar between them and “dissimilar to the objects 
belonging to other clusters. The goal of clustering is to deter 
mine an intrinsic grouping, or structure, in a set of unlabeled 
data. Clustering can be used to perform statistical data analy 
sis in many fields, including machine learning, data mining, 
document retrieval, pattern recognition, medical imaging and 
other image analysis, and bioinformatics. 
0007 Classification is a statistical procedure in which 
individual items are placed into groups based on quantitative 
information on one or more traits inherent in the items and 
based on a training set of previously labeled (or pre-classi 
fied) patterns. As with clustering, a dataset is divided into 
groups based upon proximity Such that the members of each 
group are as "close as possible to one another, and different 
groups are as “far as possible from one another, where dis 
tance is measured with respect to specific trait(s) that are 
being analyzed. 
0008. An important difference should be noted when com 
paring clustering and classification. In classification, a col 
lection of labeled patterns is provided, and the problem is to 
label a newly encountered, yet unlabeled, pattern. Typically, 
the given training patterns are used to learn the descriptions of 
classes, which in turn are used to label a new pattern. In the 
case of clustering, the problem is to group a given collection 
of unlabeled patterns into meaningful clusters. In a sense, 
clusters can be seen as labeled patterns that are obtained 
solely from the data. Therefore, classification often succeeds 
clustering, although classification may also be performed 
without explicit clustering (for example, Support Vector 
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Machine classification, described below). In situations in 
which classification is performed once the clusters have been 
identified, new data is typically classified by projecting the 
data into the multidimensional space of clusters and classify 
ing the new data point based on proximity, that is, distance, to 
the nearest cluster centroid. The centroid of cluster having a 
finite set of points can be computed as the arithmetic mean of 
each coordinate of the points. 
0009. The variety of techniques for representing data, 
measuring proximity between data elements, and grouping 
data elements has produced a rich assortment of classification 
and clustering methods. 
(0010. In Support Vector Machine classification (SVM), 
when classifying a new data point based on proximity, the 
distance is taken to the nearest data points coming from the 
clusters (even though there is no explicit representation of the 
cluster) called Support vectors. Each new data point is repre 
sented by a p-dimensional input vector (a list of p numbers) 
that is mapped to a higher dimensional space where a maxi 
mal separating hyperplane is constructed. Each of these data 
points belongs to only one of two classes. Two parallel hyper 
planes are constructed on each side of the hyperplane that 
separates the data. SVMaims to separate the classes with a “p 
minus 1'-dimensional hyperplane. To achieve maximum 
separation between the two classes, a separating hyperplane 
is selected that maximizes the distance between the two par 
allel hyperplanes. That is, the nearest distance between a 
point in one separated hyperplane and a point in the other 
separated hyperplane is maximized. 
0011. In fuzzy clustering, data elements can belong to 
more than one cluster, and cluster membership is based on 
proximity test to each cluster. Associated with each element is 
a set of membership levels that indicate the strength of the 
association between that data element and the particular clus 
ters of which it is a member. The process of fuzzy clustering 
involves assigning these membership levels and then using 
them to assign data elements to one or more clusters. Thus, 
points on the edge of a cluster may be in the cluster to a lesser 
degree than points in the center of cluster. 
0012. In categorical classification methods based on deci 
sion tree variants, the classification is based on the likelihood 
of the data point coming from any of the clusters based on the 
sharing of attribute values. Using a decision tree model, 
observations about an item are mapped to conclusions about 
its target cluster. In these tree structures, leaves represent 
classifications and branches represent conjunctions of fea 
tures that lead to those classifications. 
0013 Classification using proximity to either centroids of 
clusters or support vectors is generally inadequate to properly 
classify data points. To provide for more accurate classifica 
tion, the shape of the cluster should be taken into account. 
FIG. 1, illustrating an exemplary clustering of a dataset, dem 
onstrates this problem. The points along the direction of the 
cluster indicated by W should be more likely to be classified 
as belonging to this cluster than the set of points indicated by 
X that are the same distance from the centroid as the points 
indicated by W. Points lateral to the cluster should be less 
likely to belong to the cluster than the points at the top edge, 
even when they have the same proximity to the centroid or 
Support vectors of this cluster. 

SUMMARY OF THE INVENTION 

0014. The shortcomings of the prior art can be overcome 
and additional advantages can be provided through exem 
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plary embodiments of the present invention that are related to 
a data processing system that comprises a processor, a ran 
dom access memory for storing data and programs for execu 
tion by the processor, and computer readable instructions 
stored in the random access memory for execution by the 
processor to perform a method for obtaining a shape interpo 
lated representation of shapes of one or more clusters in an 
image of a dataset that has been clustered. The method com 
prises generating a density estimate value of each grid point 
of a set of grid points sampled from the image at a specified 
resolution for each cluster in the image using a kernel density 
function; evaluating the density estimate value of each grid 
point for each cluster to identify a maximum density estimate 
value of each grid point and a cluster associated with the 
maximum density estimate value of each grid point; and 
adding each grid point for which the maximum density esti 
mate value exceeds a specified threshold to the cluster asso 
ciated with the maximum density estimate value for the grid 
point to form a shape interpolated representation of the one or 
more clusters. 
0015 The shortcomings of the prior art can also be over 
come and additional advantages can also be provided through 
exemplary embodiments of the present invention that are 
related to computer program products and methods corre 
sponding to the above-Summarized method are also described 
and claimed herein. 

0016. Additional features and advantages are realized 
through the techniques of the present invention. Other 
embodiments and aspects of the invention are described in 
detail herein and are considered a part of the claimed inven 
tion. For a better understanding of the invention with advan 
tages and features, refer to the description and to the draw 
1ngS. 

TECHNICAL EFFECTS 

0017. As a result of the summarized invention, technically 
we have achieved a solution that can be implemented to 
interpolate cluster shapes by utilizing kernel density estima 
tion to create a smoother approximation in a manner that is 
able to preserve the overall perception of the shapes given by 
the data points in a multidimensional feature space. Exem 
plary embodiments can be implemented to perform precise 
classification by more accurately identifying outlier data 
points. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0018. The subject matter that is regarded as the invention 
is particularly pointed out and distinctly claimed in the claims 
at the conclusion of the specification. The foregoing and other 
objects, features, and advantages of the invention are apparent 
from the following detailed description of exemplary 
embodiments of the present invention taken in conjunction 
with the accompanying drawings in which: 
0019 FIG. 1 is a graph illustrating an exemplary cluster 
ing of a dataset. 
0020 FIG. 2 is a flow diagram illustrating an exemplary 
embodiment of a shape interpolation process in accordance 
with the present invention. 
0021 FIGS. 3a-3c are graphs illustrating stages of an 
exemplary embodiment of a shape interpolation process per 
formed in accordance with the present invention. 
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0022 FIG. 4 is a block diagram illustrating an exemplary 
hardware configuration or a computer system within which 
exemplary embodiments of the present invention can be 
implemented. 
0023 The detailed description explains exemplary 
embodiments of the present invention, together with advan 
tages and features, by way of example with reference to the 
drawings. The flow diagrams depicted herein are just 
examples. There may be many variations to these diagrams or 
the steps (or operations) described therein without departing 
from the spirit of the invention. For instance, the steps may be 
performed in a differing order, or steps may be added, deleted, 
or modified. All of these variations are considered a part of the 
claimed invention. 

DETAILED DESCRIPTION OF EXEMPLARY 
EMBODIMENTS 

0024. While the specification concludes with claims 
defining the features of the invention that are regarded as 
novel, it is believed that the invention will be better under 
stood from a consideration of the description of exemplary 
embodiments in conjunction with the drawings. It is of course 
to be understood that the embodiments described herein are 
merely exemplary of the invention, which can be embodied in 
various forms. Therefore, specific structural and functional 
details disclosed in relation to the exemplary embodiments 
described herein are not to be interpreted as limiting, but 
merely as a representative basis for teaching one skilled in the 
art to variously employ the present invention in virtually any 
appropriate form. Further, the terms and phrases used herein 
are not intended to be limiting but rather to provide an under 
standable description of the invention. 
0025 Exemplary embodiments of the present invention 
described herein can be implemented to perform data classi 
fication using shape interpolation of clusters. Shape interpo 
lation is the process of transforming one object continuously 
into another. Modeling of cluster shapes has thus far been 
limited to representations either as a collection of isolated 
points within the same cluster label or through global para 
metric models such as mixtures of Gaussians. Cluster struc 
ture, however, cannot adequately be described as collection of 
isolated points, and the parametric models typically operate 
to smooth the arbitrary distributions that characterize clusters 
by approximately fitting the distributions to a geometric 
shape having pre-determined boundaries and therefore also 
cannot accurately represent the perceptible regions of the 
shape of a cluster. All parametric densities are unimodal, that 
is, they have a single local maximum, while many practical 
problems involve multimodal densities. Furthermore, tradi 
tional Surface interpolation methods used in computer vision 
are not applicable to considerations of higher-dimensional 
point distributions. 
0026 Exemplary embodiments described herein can be 
implemented to interpolate cluster shapes in a manner that is 
able to preserve the overall perception of the shapes given by 
the data points in a multidimensional feature space. In exem 
plary embodiments of the present invention, to generate a 
continuous manifold characterizing a cluster, the given 
sample points already present in the cluster are treated as 
anchor points and a probability density function, which is a 
function that represents a probability distribution in terms of 
integrals, is hypothesized from observed data. More specifi 
cally, exemplary embodiments can be implemented to repre 
sent cluster shapes using a model that is based on density 
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estimation. Density estimation involves the construction of an 
estimate, based on observed data, of an unobservable under 
lying probability density function. The unobservable density 
function is viewed as the density according to which a large 
population is distributed, and the data are usually thought of 
as a random sample from that population. 
0027. Because of the sparseness of multidimensional 
datasets in comparison to feature space dimensions, it can be 
useful for exemplary embodiments to first obtain a clustering 
of the dataset that provides dense representation of the shapes 
of the clusters in which the clusters are viewed as regions of 
the pattern space in which the patterns are dense, separated by 
regions of low pattern density. Clusters can then be identified 
by searching for regions of high density, called modes, in the 
pattern space. The close fit provided by a dense representation 
of the cluster shapes would help in later classification of new 
data points, as the classification would be based on member 
ship within multidimensional manifolds rather than distance 
alone. 
0028. Even more specifically, exemplary embodiments as 
described herein utilize kernel density estimation, which is a 
method of estimating the probability density function of a 
random variable. Kernel density estimation is a nonparamet 
ric technique for density estimation in which a known density 
function, the kernel, is averaged across the observed data 
points to create a smooth approximation. Nonparametric pro 
cedures can be used with arbitrary distributions and without 
the assumption that the forms of the underlying densities are 
known. Although it is possible for less smooth density esti 
mators such as the histogram density estimator to be made to 
be asymptotically consistent, other density estimators are 
often either discontinuous or converge at slower rates than the 
kernel density estimator. Rather than grouping observations 
together in bins, the kernel density estimator can be thought 
of as placing Small "bumps' at each observation determined 
by the kernel function. As a result, the estimator consists of a 
'Sum of bumps' and creates a Smoother, finer approximation 
or the regions of cluster shapes that does not depend on end 
points or bounded, pre-determined shapes. 
0029 FIG. 2 illustrates a flow diagram of a process, indi 
cated generally at 100, for performing shape interpolation of 
clusters using a kernel density function in accordance with an 
exemplary embodiment of the present invention. Because the 
kernel density interpolation will be applied for purposes of 
representing cluster shapes, the initial clustering of a dataset 
first performed at block 110 using any clustering method, 
including, for example, any suitable partitional (e.g., 
k-means, k-mediod, nearest neighbor), overlapping (e.g., 
fuZZy c-means), hierarchical (e.g., agglomerative, divisive), 
probabilistic (e.g., Enhanced Model-based methods such as 
mixture of Gaussians), graph-theoretic (e.g., spectral cluster 
ing variants), and scale-space approaches. 
0030. In exemplary embodiments, to obtain a dense rep 
resentation of the shapes of the clusters at block 110, two 
stages of clustering can be performed. In the first stage, an 
unsupervised, non-parametric clustering method, such as, for 
example, perceptual clustering, can be performed on the ini 
tial dataset, to determine the number of cluster shapes. In the 
second stage, the data points in each separate cluster shape are 
clustered a second time using a Supervised, partitional clus 
tering method such as, for example, k-means or k-mediod 
algorithms, to partition each cluster shape into a desired num 
ber of Smaller cluster regions to provide a dense representa 
tion of the clusters. 
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0031. After clustering is performed in exemplary process 
100, a smooth interpolation of the shapes of the clusters is 
obtained at block 120 by using a kernel density function that 
will be described in greater detail below. First, however, some 
terminology for the model used in the present exemplary 
embodiment will be outlined. 

0032. In the model of the present exemplary embodiment, 
given n sample points X1,X2,... X, belonging to a cluster 
c, the contribution of each data point can be smoothed out 
over a local neighborhood of that data point. The contribution 
of data point X, to the estimate at Some point X depends on 
how apart X, and X are. The extent of this contribution is 
dependent upon the shape of the kernel function adopted and 
the bandwidth, which determines the range of the local esti 
mation neighborhood for each data point. In the present 
exemplary embodiment, denoting the kernel function as K 
and its bandwidth by h, the equation for determining the 
estimated density at any point X is provided by 

where ?K(t)dt=1 to ensure that the estimate P(x) integrates to 
1 

0033. In exemplary embodiments, the kernel function K 
can be chosen to be a Smooth unimodal function Such as a 
Gaussian kernel. It should be noted that choosing the Gaus 
sian as the kernel function is different from fitting the distri 
bution to a mixture of Gaussian model. In the present situa 
tion, the Gaussian is only used as a function that weights the 
data points. In exemplary embodiments, a multivariate Gaus 
sian could be used. In the present exemplary embodiment, a 
simpler approximation in terms of a product of one-dimen 
sional kernels is used. Thus, the shape of a cluster c consisting 
of sample points X1,X2,... X} at any arbitrary point X in 
the M-dimensional space is given by the approximation equa 
tion 

r 1 1 -(fil-fif 
P(X) = - - -, (X) W2in XII. 2hi? 

f 

where (fl. f. . . . f.) are the values along the feature 
dimensions and (fl. f. . . . f.) are the sample means along 
the respective dimensions. 
0034. In exemplary embodiments, any suitable choice of 
bandwidth that is not too small or too large for performing 
kernel density estimation can be used. In the present exem 
plary embodiment, the bandwidth estimation formula that is 
used is one that is typically adopted for most practical appli 
cations and can be expressed by the following equation: 

h = 1.06 m varf), 'A'), 

where f(t, f2, ... f.) are features assembled from dimen 
sion j for all samples in the cluster. Here, iqr(?) is the inter 
quartile range off, and n is the number of samples in the 
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cluster. This bandwidth may generally produce a less Smooth 
but more accurate density estimate. 
0035. At block 120 of exemplary process 100, the kernel 
density interpolation of the above approximation equation is 
applied by Sampling the image size on a neighborhood of a 
specified image resolution for each selected clustering level. 
To interpolate the shape of clusters, the multidimensional 
image can be sampled with a fine grid having as much reso 
lution as desired for the interpolation. For example, the image 
resolution could be specified as 256x256, 128x128, 64x64, 
etc. in exemplary embodiments. In the present exemplary 
embodiment, the sampling resolution is selected as 256x256 
so that a dense representation of shape will be obtained. This 
can eliminate Small, noisy samples that are in single con 
nected components, as the bandwidth will reduce to Zero 
when applying the kernel density approximation equation for 
Such samples. 
0036. In exemplary embodiments in which a two-stage 
clustering is performed at Step 110 to generate a number of 
cluster shapes and a desired number of smaller cluster regions 
for each cluster shape, the kernel density interpolation per 
formed at block 120 can be applied to interpolate the shape of 
each Smaller cluster region. A close fit estimation of the 
cluster shapes that resulted from the first clustering stage can 
then be obtained by uniting the interpolated shapes of the 
second-stage Smaller cluster regions for each first-stage clus 
ter shape. As a result, classification can be performed based 
upon more accurate approximations of regions of cluster 
shapes, rather simply based on proximity to a centroid or 
according to the boundary points of a pre-determined shape. 
0037. At block 130, after performing the kernel density 
interpolation, the kernel density estimate is evaluated from 
each cluster at each grid point using the above equation for 
determining the estimated density, and the maximum value of 
the estimate for each grid point is retained as an estimate 
along with the associated cluster label for the grid point. At 
block 140, for each grid point, if the maximum value of the 
density estimate for that grid point is above a chosen thresh 
old, the grid point is classified as belonging to the associated 
cluster and therefore added to that cluster. At block 150, for 
each cluster, the new shape of the cluster is formed as the set 
of gridpoints added to that cluster at block 140, along with the 
sample points of the cluster that were previously isolated at 
block 110. 
0038. As a result of the exemplary shape interpolation 
process described above, a dense representation of clusters 
can be obtained. The resulting shape of each cluster will 
resemble the original cluster shape and therefore can be more 
indicative of a classification region around the cluster than the 
use of support vectors alone. FIGS. 3a-3c are graphs illus 
trating a shape interpolation performed in accordance with 
exemplary process 100 on an exemplary image of a set of data 
upon which clustering has been performed. FIG.3a shows the 
original data. FIG. 3b illustrates the regions that were pro 
duced by interpolating the clusters of FIG. 3a using kernel 
density estimation. As can be seen, the interpolated shapes in 
FIG.3b are representative of the overall cluster shapes in FIG. 
3a and define halo' regions around the clusters. The data 
points that fall within these regions would be classified as 
belonging to the respective clusters. The perceptible shapes of 
the clusters are preserved in the interpolation. As a result, the 
spatial adjacency of the regions indicated by arrow Y in FIG. 
3b, as well as spatial disjointedness of the regions indicated 
by arrow Z, can both be easily spotted. In exemplary embodi 
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ments, the former pairs of regions and can be merged and the 
latter pairs of regions can be disconnected, and single sample 
clusters having no kernel density interpolation to form the 
region that were formed due to noise can be eliminated. FIG. 
3c illustrates the final result of clustering after any needed 
noise removal and cluster merging is performed. 
0039. Although the exemplary embodiments described 
thus far have involved performing an explicit computation, in 
other exemplary embodiments, shape interpolation using ker 
nel density estimation can be carried out dynamically during 
classification to find the nearest cluster. As a result, instead of 
using the centroid of the cluster as a prototypical member for 
computing the nearest distance, a new sample can be assigned 
to the cluster with the highest kernel density estimate. 
0040. The exemplary shape interpolation processes 
described above can be implemented to classify new data 
points by testing membership in a shape interpolated from a 
cluster of data points using kernel density estimation. Kernel 
density estimation as described herein utilizes a nonparamet 
ric function to provide a good dense interpolation of shape 
around a cluster. The details of the exemplary shape interpo 
lation process illustrated in FIG. 2 can be summarized as 
follows: 
0041 1. Perform clustering of the data points using any 
clustering algorithm. 
0042. 2. Let there be n sample points {X, X. 
belonging to a cluster c. 
0043. 3. Perform a dense shape interpolation using a ker 
nel density function. That is, at a point X in the multidimen 
sional space Surrounding c, the contribution of data point X, to 
the estimate at some point X depends on how apart X, and X 
are. The extent of this contribution is dependent upon the 
shape of the kernel function adopted and the bandwidth in 
exemplary embodiments. Denoting the kernel function as K 
and its bandwidth by h, the estimated density at any point X is 

. . X, 

where ?K(t)dt=1 to ensure that the estimate P(x) integrates to 
1. In exemplary embodiments, the kernel function K is can be 
chosen to be a smooth unimodal function. 
0044. 4. Given any new point X, the class that X belongs is 
the one for which the value of the approximation equation 

is the maximum. 
0045. By approximating the shape of clusters at a chosen 
level through a dense kernel density function-based interpo 
lation of sparse datasets, noise and region merging inconsis 
tencies can also be removed in exemplary embodiments. 
0046. The capabilities of exemplary embodiments of 
present invention described above can be implemented in 
Software, firmware, hardware, or some combination thereof, 
and may be realized in a centralized fashion in one computer 
system, or in a distributed fashion where different elements 
are spread across several interconnected computer systems. 
Any kind of computer system—or other apparatus adapted 
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for carrying out the methods and/or functions described 
herein is suitable. A typical combination of hardware and 
Software could be a general purpose computer system with a 
computer program that, when being loaded and executed, 
controls the computer system such that it carries out the 
methods described herein. Exemplary embodiments of the 
present invention can also be embedded in a computer pro 
gram product, which comprises features enabling the imple 
mentation of the methods described herein, and which— 
when loaded in a computer system—is able to carry out these 
methods. 
0047 Computer program means or computer program in 
the present context include any expression, in any language, 
code or notation, of a set of instructions intended to cause a 
system having an information processing capability to per 
form a particular function either directly or after conversion 
to another language, code or notation, and/or reproduction in 
a different material form. 
0048. Therefore, one or more aspects of exemplary 
embodiments of the present invention can be included in an 
article of manufacture (for example, one or more computer 
program products) having, for instance, computer usable 
media. The media has embodied therein, for instance, com 
puter readable program code means for providing and facili 
tating the capabilities of the present invention. The article of 
manufacture can be included as apart of a computer system or 
sold separately. Furthermore, at least one program storage 
device readable by a machine, tangibly embodying at least 
one program of instructions executable by the machine to 
perform the capabilities of the exemplary embodiments of the 
present invention described above can be provided. 
0049. For instance, exemplary embodiments of the present 
invention can be implemented within the exemplary embodi 
ment of a hardware configuration provided for a computer 
system in FIG. 4. FIG. 4 illustrates an exemplary computer 
system 10 upon which exemplary embodiments of the present 
invention can be implemented. A processor or CPU 12 
receives data and instructions for operating upon from on 
board cache memory or further cache memory 18, possibly 
through the mediation of a cache controller 20, which can in 
turn receives such data from system read/write memory 
(“RAM) 22 through a RAM controller 24, or from various 
peripheral devices through a system bus 26. The data and 
instruction contents of RAM 22 will ordinarily have been 
loaded from peripheral devices such as a system disk 27. 
Alternative sources include communications interface 28, 
which can receive instructions and data from other computer 
systems. 
0050. The above-described program or modules imple 
menting exemplary embodiments of the present invention can 
work on processor 12 and the like to perform shape interpo 
lation. The program or modules implementing exemplary 
embodiments may be stored in an external storage medium. 
In addition to system disk 27, an optical recording medium 
Such as a DVD and a PD, a magneto-optical recording 
medium such as a MD, a tape medium, a semiconductor 
memory Such as an IC card, and the like may be used as the 
storage medium. Moreover, the program may be provided to 
computer system 10 through the network by using, as the 
recording medium, a storage device Such as a hard disk or a 
RAM, which is provided in a server system connected to a 
dedicated communication network or the Internet. 
0051 While exemplary embodiments of the present 
invention have been described, it will be understood that 
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those skilled in the art, both now and in the future, may make 
various modifications without departing from the spirit and 
the scope of the present invention as set forth in the following 
claims. These following claims should be construed to main 
tain the proper protection for the present invention. 
What is claimed is: 
1. A data processing system comprising: 
a processor; 
a random access memory for storing data and programs for 

execution by the processor; and 
computer readable instructions stored in the random access 
memory for execution by the processor to perform a 
method for obtaining a shape interpolated representation 
of shapes of one or more clusters in an image of a dataset 
that has been clustered, the method comprising: 
generating a density estimate value of each grid point of 

a set of grid points sampled from the image at a 
specified resolution for each cluster in the image 
using a kernel density function; 

evaluating the density estimate value of each grid point 
for each cluster to identify a maximum density esti 
mate value of each grid point and a cluster associated 
with the maximum density estimate value of each grid 
point; and 

adding each grid point for which the maximum density 
estimate value exceeds a specified threshold to the 
cluster associated with the maximum density estimate 
value for the grid point to form a shape interpolated 
representation of the one or more clusters. 

2. The data processing system of claim 1, wherein the 
dataset has been clustered using a two-stage clustering 
method, the two-stage clustering method comprising: 

clustering the dataset using an unsupervised, non-paramet 
ric clustering method to generate a set of cluster shapes 
each comprising a set of data points of the dataset; and 

clustering the data points of each cluster shape of the set of 
cluster shapes using a Supervised, partitional clustering 
method to partition each cluster shape into a specified 
number of cluster regions. 

3. The data processing system of claim 1, wherein the 
kernel density function is a Gaussian kernel. 

4. The data processing system of claim 1, wherein the 
method for obtaining a shape interpolated representation of 
shapes of one or more clusters in animage of a dataset that has 
been clustered further comprises merging any spatially adja 
cent clusters in the shape interpolated representation and 
removing any spatially disjointed clusters in the shape inter 
polated representation. 

5. The data processing system of claim 1, wherein the 
method for obtaining a shape interpolated representation of 
shapes of one or more clusters in animage of a dataset that has 
been clustered further comprises classifying a new data point 
by generating a density estimate value of the new data point 
for each cluster in the image using the kernel density function, 
evaluating the density estimate value of the new data point for 
each cluster to identify a maximum density estimate value of 
the new data point and a cluster associated with the maximum 
density estimate value, and adding the new data point to the 
cluster associated with the maximum density estimate value 
in the shape interpolated representation if the maximum den 
sity estimate value exceeds a specified threshold to classify 
the new data point. 


