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METHOD FOR SOLVING IMPLICIT RESERVOIR SIMULATION
MATRIX EQUATION
BACKGROUND

Field of Inventions

[0001] Embodiments of the present inventions generally relate to exploitation and
development of hydrocarbons in an underground reservoir and, more preferably, to an
improved process for predicting the behavior of a subterranean, hydrocarbon-bearing

formation.
Description of Related Art

[0002] Reservoir simulation is a process of inferring the behavior of a real
reservoir from the performance of a model of that reservoir. Because mass transfer
and fluid flow processes in petroleum reservoirs are so complex, reservoir simulations
are done using computers. Computer programs that perform calculations to simulate
reservoirs are called reservoir simulators. The objective of reservoir simulation is to
understand the complex chemical, physical, and fluid flow processes occurring in a
petroleum reservoir sufficiently well to be able to predict future behavior of a
reservoir and to maximize recovery of hydrocarbons. The reservoir simulator can
solve reservoir problems that are generally not solvable in any other way. For
example, a reservoir simulator can predict the consequences of reservoir management
decisions. Reservoir simulation often refers to the hydrodynamics of flow within a
reservoir, but in a larger sense it also refers to the total petroleum system which

includes the reservoir, the surface facilities, and any interrelated significant activity.

[0003] Figure 1 illustrates schematically four basic steps in one example of a
reservoir simulation of a petroleum reservoir. The first step (step 1) is to construct a
mathematical model of a real reservoir based on the chemical, physical, and fluid flow
processes occurring in the reservoir. That mathematical model may include a set of
nonlinear partial differential equations. The second step (step 2) involves
discretization of the reservoir in both time and space. Space is discretized by dividing

the reservoir into suitable gridcells with each gridcell having a set of nonlinear finite
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difference equations. The third step (step 3) is to linearize the nonlinear terms that
appear in the nonlinear finite difference equations and, based on this linearization,
construct linear algebraic equations assembled in a matrix equation. The fourth step
(step 4) is to solve the linear algebraic equations assembled in the matrix equation.
The simulation proceeds in a series of timesteps, and steps 3 and 4 are performed at
each timestep. The simulation provides a prediction of reservoir behavior, which
enables a petroleum engineer to predict reservoir performance, including the rate at
which the reservoir can be produced. The accuracy of the model can be checked
against the history of the reservoir after the model has been subjected to a simulated

recovery process.

[0004] However, many simulation methods have been proposed. The method
chosen can affect the stability and accuracy of the solution. Some methods require
more computational work than other methods on a per-timestep basis. The methods
differ primarily on how they treat the way the reservoir variables (such as pressure
and saturation) vary in time. Most methods involve variations of the following two

procedures:

(1) Explicit procedures use mobilities and capillary pressures computed as
functions of saturations at the beginning of a timestep. The saturations are known
from the previous timestep calculations. The mobilities and capillary pressures are
assumed to maintain the same values during a timestep that they had at the beginning

of the timestep.

(2) Implicit procedures use mobility and capillary pressure calculated as
functions of saturation at the end of the timestep. The values are not known until
calculations for the timestep have been completed. As a result, they must be

determined using an iterative process.

[0005] The Fully Implicit method is a commonly used implicit procedure. This
method is unconditionally stable because it treats both pressure and saturations
implicitly. Flow rates are computed using phase pressures and saturations at the end

of each timestep. In this method, saturations cannot fall below zero because a fluid
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can flow only if it is mobile at the end of a timestep. Fluids are mobile only for
saturations greater than zero. The calculation of flow rates, pressure and saturation
solutions involves the solution of nonlinear equations using a suitable iterative
technique. Once the pressures and saturations are solved, these terms will continue to
be updated using the new values of pressure and saturation. The iteration process

terminates when the convergence criteria are satisfied.

[0006] The main drawback of the Fully Implicit method is the amount of
computer time that it requires. In terms of computing cost, the method is generally
satisfactory in models of single wells or parts of a reservoir, but it can be quite
expensive to use in models of entire reservoirs. Several attempts have been made to
reduce the computations required, possibly at the cost of accepting a method that does
not permit the timestep sizes of the Fully Implicit method. The sequential implicit
method, the adaptive implicit method, and the Cascade method have been proposed as
ways of reducing the computational time. However, those methods have their own
drawbacks. The largest consumer of computational time in the Fully Implicit method
is the equation solving step (Step 4 of Figure 1). This typically consumes about three-

fourths of the total computational time.

[0007] Accordingly, a need exists for a more computationally efficient method for

solving the linear algebraic equations arising in Fully Implicit reservoir simulation.
SUMMARY

[0008] Various embodiments of the inventidn are directed to a method for solving
a matrix equation AX=B, wherein A represents a block sparse matrix, B represents a
right hand side block vector and X represents a solution block vector. In one
embodiment, the method includes receiving the block sparse matrix and the right hand
side block vector, constructing a reduced transformed block sparse mairix from the
block sparse matrix, constructing a reduced transformed residual block vector from
the block sparse matrix and the right hand side block vector, and solving for the
solution block vector using the reduced transformed block sparse matrix and the

reduced transformed residual block vector.
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[0009] In another embodiment, the method includes constructing a reduced
transformed block sparse matrix from the block sparse matrix, constructing a reduced
transformed residual block vector from the block sparse matrix and the right hand side
block vector, solving for a reduced transformed solution change block vector using
the reduced transformed block sparse matrix and the reduced transformed residual
block vector, converting the reduced transformed solution change block vector to a
solution change block vector having one or more changes in mass unknowns and one
or more changes in pressure unknowns, and adding the solution change block vector

to a current estimate of the solution block vector to update the solution block vector.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Figure 1 illustrates a schematic diagram of the basic steps in an illustrative

reservoir simulation process.

[0011] Figure 2 illustrates a method for solving one or more linear algebraic

equations in a matrix in accordance with one or more embodiments of the invention.

[0012] Figure 3 illustrates a computer network into which one or more

embodiments of the invention may be implemented.

DETAILED DESCRIPTION

Introduction and Definitions

[0013] A detailed description will now be provided. Each of the appended claims
defines a separate invention, which for infringement purposes is recognized as
including equivalents to the various elements or limitations specified in the claims.
Depending on the context, all references below to the “invention” may in some cases
refer to certain specific embodiments only. In other cases it will be recognized that
references to the “invention” will refer to subject matter recited in one or more, but
not necessarily all, of the claims. Each of the inventions will now be described in
greater detail below, including specific embodiments, versions and examples, but the
inventions are not limited to these embodiments, versions or examples, which are

included to enable a person having ordinary skill in the art to make and use the
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inventions, when the information in this patent is combined with available
information and technology. Various terms as used herein are defined below. To the
extent a term used in a claim is not defined below, it should be given the broadest
definition persons in the pertinent art have given that term as reflected in one or more

printed publications or issued patents.

[0014] As used herein, the term “gridcell” is defined as a unit or block that
defines a portion of a three dimensional reservoir model. As such, a three
dimensional reservoir model may include a number of gridcells, ranging from tens
and hundreds to thousands and millions of gridcells. Each gridcell may in certain
cases represent a specifically allocated portion of the three dimensional reservoir
model. An entire set of gridcells may constitute a geologic model that represents a
subsurface earth volume of interest. Each gridcell preferably represents a unique
portion of the subsurface. Such gridcells preferably do not overlap each other.
Dimensions of the gridcells are preferably chosen so that the reservoir properties
within a gridcell are relatively homogeneous, yet without creating an excessive
number of gridcells. These gridcells have sides ranging from a smaller than a meter
to a few hundred meters. Preferably, each gridcell is square or rectangular in plan
view and has a thickness that is either constant or variable. However, it is
contemplated that other shapes may alternatively be used. Gridcells may be
visualized as well-stirred tanks with permeable sides. The contents of a gridcell,
therefore, may be considered uniformly distributed within the gridcell and the rates at
which fluids flow in or out maybe determined by the permeabilities of the sides of the
gridcell and the pressure differences between adjacent gridcells. As such, the

mathematical problem is reduced to a calculation of flow between adjacent gridcells.

[0015]  As used herein, the term “singular value decomposition” is defined as a
mathematical technique for decomposing a rectangular matrix into three factors.
Given an M by N matrix 4, where M > N, using at least certain types of singular value

decomposition, matrix A can be rewritten as:
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where W is a diagonal matrix having “singular values” entries. The columns of
matrix U and the rows of matrix ¥7 (or, equivalently, columns of matrix V) are
orthonormal. That is, for example, if U; is a column of matrix U and Uj; is another

column of matrix U, then

Ulu, =1
Ulu,=0,j=#i

[0016] The equivalent is true for the square matrix 7, i.e., the inverse of matrix V’
is matrix ¥X. The columns of matrix U, diagonal entries of matrix W, and rows of
matrix V7 are customarily arranged such that w; > w; > ... > wy, where w; is the
diagonal entry in row i of matrix W. The diagonal elements of matrix W are the
singular values of matrix 4. For purposes of illustrating various embodiments of the
invention, it is more convenient to place them in the opposite order, such that w; <
W< ... < wy, and reorder the columns of U and ¥ accordingly. Matrix ¥ may be
referred to as the right matrix and the vectors comprised therein as the right singular

vectors.

[0017] Given the above definitions, matrix 4 can be approximated using a subset
containing the last few columns of matrix U, entries of matrix /7, and rows of matrix

VZ. Thus, matrix 4 can be rewritten as:

AR

W

4

c
@
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[0018] As used herein, the term “timestep” is defined as an increment of time into
which the life of a reservoir is discretized. For at least certain types of timesteps, a
reservoir simulator computes changes in each gridcell (flow, pressure, etc.) over a
timestep for many timesteps. Typically, conditions are defined only at the beginning
and end of a timestep, and nothing is defined at any intermediate time within a
timestep. Consequently, conditions within each gridcell may change abruptly from
one timestep to the next. Usually, timesteps are chosen to be small enough to limit
sizes of these abrupt changes to acceptable limits. The size of the timesteps depends
on accuracy considerations and stability constraints. Generally, the smaller the
timestep, the more accurate the solution, however, smaller timesteps require more

computational work.

[0019] As used herein, the term “identity matrix” is defined as a square matrix of
any dimension whose elements are ones on its northwest-to-southeast diagonal and
zeroes everywhere else. Any square matrix multiplied by the identity matrix with

those dimensions equals itself.

[0020] As used herein, the term “volume constraint” is an equation based on the
principle that a gridcell must contain the amount of fluid required to fill the gridcell at
a given time. For example, if a reservoir contains liquid hydrocarbon and water

phases, then:

Liquid Hydrocarbon Volume + Water Volume = Gridcell Volume.

[0021] As used herein, the term “unknown” is defined as an unknown variable for
which the linear algebraic equations assembled in the matrix equation are solved. For
a reservoir containing oil and water, the linear algebraic equations are solved for
various unknown variables, including pressure and mass. Other quantities may be

derived from these variables.

[0022]  As used herein, the term “block sparse matrix” is defined as a matrix

whose elements are mostly null or zeroes and submatrices as the remainder.
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However, all of the submatrices along its diagonal are present, i.e., not null. For

example, a block sparse matrix A may be expressed as:

4, 4, .. 4,

4y Ay . 4,
A, .. 4,

[0023] Each submatrix, e.g., 4;, may be expressed as:

M) @) (i)
iy Ao e G
@) @ @)
| 9 Ay Gy
4,=
@) (&) ()
am,+1,1 am,- +,2 my+i,m;+1

where m; is the number of mass balance equations in row i and m; is the number of
mass change unknowns in column j. Each submatrix has m; + 1 rows and m; + 1
columns. The first m; rows contain coefficients of the mass balance equations. The
bottom row (row m; + 1) contains coefficients relating to the volume constraint
equation. The coefficients in the first m; columns are configured to be multiplied by
mass variables and the coefficients in the right-most column (column m; + 1) are
configured to be multiplied by pressure variables. As such, each submatrix has a

particular structure.

[0024] The mass variables can take several forms. Generally, the mass variables
are changes over a Newton iteration. But, they can also be changes over a timestep or
end-of-timestep masses, and not changes. They also can be expressed in terms of
other measures of masses, such as saturations or mole/mass fractions. Similarly,
pressure variables are generally changes over a Newton iteration, but can also be end-
of-timestep pressures. These variable choices are interchangeable in the sense that
one set of variables can be easily converted to another. For simplicity, the description

that follows uses end-of-timestep masses and pressures.

[0025] For an off diagonal submatrix, where i # j, 4; may be expressed as:
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1(117) figij) 1(;{12 ¢1(:y)
LR

f(u) f(’l) f(y) (p(ij)
0 0o .. 0 0

where f'and ¢ coefficients relate to the flows between gridblocks. The f coefficients,
which occupy the first m; columns of 4, are configured to be multiplied by mass
changes. Thus, they may be referred to as mass change terms coefficients. The ¢
coefficients, which occupy the column m;+; of Ay, are configured to be multiplied by
pressure changes. Thus, the ¢ coefficients may be referred to as pressure change
terms coefficients. The f coefficients are used in the singular value decomposition,

while the @ coefficients are not.

A;; may also be expressed as:

F. @,
=¥ g
Aij l: 0 0 ]

fl(z/) flgij) f1(y) ¢1(ij)

where F, = fz(ly) fz(z") f( and @, = ¢2(y)
[/ iy

f(y) f(]) f(f‘j) A ¢(i1_')

[0026] The diagonal submatrix 4; may be expressed as

LS/ K A
VAL E L %
A,=| .
e, g
7o 1720') I/j,f:) ,

where fand ¢ coefficients relate to the flows between gridblocks, ¥ 's are fluid partial

volumes, and the c relates to compressibility.
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Aj;may also be expressed as:

[I+F;i @}

Aii = =

Vi G

R R Y

(it) if) () @ .
where F; = w St Som , Dy = 7 > Vj=[V1(‘) A V»E;)J and I

f(f'iz f(ii)2 f(f'i) ¢(iz‘)

is an identity matrix. The entries of I7j are multiphase partial volumes. They relate

the fluid volume in the gridcell to the amounts of the components in it. The ¢; term is

related to fluid compressibility. It relates the gridcell's fluid volume to its pressure.

[0027] As used herein, the term "column matrix" is defined as a matrix containing
the submatrices in a column of the block sparse matrix. For example, the ;™ column

matrix of 4 is

A

17
A, = Aoy

J

A4

nl,j

[0028] As used herein, the term “solution block vector” is defined as a block
vector comprised of subvectors X; ... Xn. For example, a solution block vector X

may be expressed as:
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xl(i) T P nl(i)’i
x m{) M
Each subvector may be expressed as: X, = or X,=| ... |or X, = [ Pi jl
x,(,,') m,(n’) i
_x;(;f,)ﬂ | Lp(i) ]

where m or M represents a mass unknown and p or P represents a pressure unknown.

[0029] In some instances, a solution change vector X may be of interest, as
opposed to the solution block vector X. The solution change vector dX may be

expressed as:

S EZd
Sel® o
& om; &M,
oX; = or oX; =| .. |ordX;= .
. . SP
N o
_5x,(,f,.)+1 | _517 @ J

[0030] As used herein, the term “right hand side block vector” is defined as the
right hand side of the equation 4X = B. For example, a subvector of the right hand

side block vector B may be expressed as:

[ 2O 7 M0
bl bM,l
(@) o
b, bM’2 B
M,i
B = .. |orB,=| .. |orB = I ’:|
b pd Vi
"; M ,m;
0] 0]
mei"'l_ L bVI 4

where the M subscript denotes a mass balance right-hand side, and a V' subscript

denotes a volume constraint right-hand side.

[0031]  As used herein, the term “residual block vector” is defined by R = B - 4x.

For example, a subvector of the residual block vector R may be expressed as:
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r?-(i) "1511?2 R
R=| .. |orR=| .. |orR=|""
O] 6 RV,i
rm,' rM,mi
@) (i
_rm,-+1_ L er) a

where the M subscript denotes a mass balance residual, and a 7 subscript denotes a

volume constraint residual.

[0032] As used herein, the term “mass balance equation” is defined as a
mathematical relationship between the contents of a gridcell and flow into and out of
the gridcell. It is based on the assumption that material is neither generated nor lost
from the system. Each chemical component in the reservoir fluids must satisfy mass
balance in each gridcell. For example, for a methane component, the mass of
methane in a particular gridcell at the end of a predetermined timestep must satisfy the

following equation:

Mass of Methane at New Time = Mass of Methane at Old Time + Mass of
Methane Flow In — Mass of Methane Flow Out

A similar relationship applies for any other chemical component present in the

reservoir fluids.

[0033] The mass balance equations for the entire reservoir model may be written

as:

IM +F, M +F,P=B, (1)

[0034] The F), and Fp matrices relate to flow between gridcells. M contains the
mass subvectors, P is the vector of pressures, and By, contains the mass balance right
hand side subvectors. If a one-dimensional model having five gridcells is assumed,

matrix Fi can be written as a block tridiagonal matrix as follows:



WO 2005/121840 PCT/US2005/012629

13
- T
mll Enlz
Fle Fm22 Ef123
F, = Fow Fuy Fo
‘F;n43 Fm44 Fm45
L En54 F, m55
where, in general,
Fyy == Fuy
i

Fp has the same structural form as F,,, We can write Eq. (1) as

—MJ —FMH Fyi, TMJ

M, Fyn Fun Fuos M,

M |+ Fyp Fup Fyu . M; |+ FpP=By
M, Fyuis Fuw Fus | M,

M| | Fysy  Fyss || Ms |

[0035] As used herein, the term "Frobenius norm" is defined as the square root of
the sum of the squares of the coefficients in a matrix. For example, the Frobenius

norm of the matrix, which is written as:

4y ap or
A = aZl a22 a2 n
aml amz amn

The Frobenius norm provides a useful estimate of the largest singular value in the

singular value decomposition of the matrix 4.
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Specific Embodiments

[0036] Various specific embodiments are described below, at least some of which

are also recited in the claims.

[0037] In at least one specific embodiment, a method for solving a matrix
equation AX=B, wherein A represents a block sparse matrix, B represents a right
hand side block vector and X represents a solution block vector, includes: receiving
the block sparse matrix and the right hand side block vector; constructing a reduced
transformed block sparse matrix from the block sparse matrix; constructing a reduced
transformed residual block vector from the block sparse matrix and the right hand side
block vector; and solving for the solution block vector using the reduced transformed

block sparse matrix and the reduced transformed residual block vector.

[0038] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the matrix equation represents a system of fluid flow
equations in one or more dimensions having one or more pressure change terms and
one or more mass change terms, wherein the block sparse matrix contains one or more
coefficients of the pressure change terms and one or more coefficients of the mass
change terms, and wherein constructing the reduced transformed block sparse matrix
comprises assembling the mass change terms coefficients from a column of the block

sparse matrix into a column matrix.

[0039]  In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the matrix equation represents a system of fluid flow
equations in one or more dimensions having one or more pressure change terms and
one or more mass change terms, wherein the block sparse matrix contains one or more
coefficients of the pressure change terms and one or more coefficients of the mass
change terms, and wherein constructing the reduced transformed block sparse matrix
includes assembling the mass change terms coefficients from a column of the block
sparse matrix into a column matrix; and performing a singular value decomposition

on the column matrix to generate a left matrix, a diagonal matrix and a right matrix.
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[0040] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the matrix equation represents a system of fluid flow
equations in one or more dimensions having one or more pressure change terms and
one or more mass change terms, wherein the block sparse matrix contains one or more
coefficients of the pressure change terms and one or more coefficients of the mass
change terms, and wherein constructing the reduced transformed block sparse matrix
includes: assembling the mass change terms coefficients from a column of the block
sparse matrix into a column matrix; and performing a singular value decomposition
on the column matrix to generate a left matrix, a diagonal matrix and a right matrix,
wherein the diagonal matrix comprises one or more singular values arranged in

ascending order.

[0041] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the mairix equation represents a system of fluid flow
equations in one or more dimensions having one or more pressure change terms and
one or more mass change terms, wherein the block sparse matrix contains one or more
coefficients of the pressure change terms and one or more coefficients of the mass
change terms, and wherein constructing the reduced transformed block sparse matrix
includes: assembling the mass change terms coefficients from a column of the block
sparse matrix into a column matrix; performing a singular value decomposition on the
column matrix to generate a left matrix, a diagonal matrix and a right matrix; and
discarding one or more singular values that are less than a predetermined threshold
value to generate a reduced diagonal matrix. The predetermined threshold value is

typically set to a quantity between 0.01 and 0.1, but other values can be used.

[0042] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the matrix equation represents a system of fluid flow
equations in one or more dimensions having one or more pressure change terms and
one or more mass change terms, wherein the block sparse matrix contains one or more
coefficients of the pressure change terms and one or more coefficients of the mass
change terms, and wherein constructing the reduced transformed block sparse matrix
includes: assembling the mass change terms coefficients from a colummn of the block

sparse matrix into a column matrix; performing a singular value decomposition on the
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column matrix to generate a left matrix, a diagonal matrix and a right matrix;
discarding one or more singular values that are less than a predetermined threshold
value to generate a reduced diagonal matrix; and multiplying the left matrix with the

reduced diagonal matrix to generate a temporary column matrix.

[0043] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the matrix equation represents a system of fluid flow
equations in one or more dimensions having one er more pressure change terms and
one or more mass change terms, wherein the block sparse matrix contains one or more
coefficients of the pressure change terms and one or more coefficients of the mass
change terms, and wherein constructing the reduced transformed block sparse matrix
includes: assembling the mass change terms coefficients from a column of the block
sparse matrix into a column matrix; performing a singular value decomposition on the
column matrix to generate a left matrix, a diagonal matrix and a right matrix;
discarding one or more singular values that are less than a predetermined threshold
value to generate a reduced diagonal matrix; multiplying the left matrix with the
reduced diagonal matrix to generate a temporary column matrix having a plurality of
mass change terms coefficients; and assembling the mass change terms coefficients of
the temporary column matrix into one or more temporary mass change terms
coefficient submatrices that correspond to the mass change terms coefficients of the

column matrix.

[0044] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the matrix equation represents a system of fluid flow
equations in one or more dimensions having one or more pressure change terms and
one or more mass change terms, wherein the block sparse matrix contains one or more
coefficients of the pressure change terms and one or more coefficients of the mass
change terms, and wherein constructing the reduced transformed block sparse matrix
includes: assembling the mass change terms coefficients from a column of the block
sparse matrix into a column matrix; performing a singular value decomposition on the
column matrix to generate a left matrix, a diagonal matrix and a right matrix;
discarding one or more singular values that are less than a predetermined threshold

value to generate a reduced diagonal matrix; multiplying the left matrix with the
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reduced diagonal matrix to generate a temporary column matrix having a plurality of
mass change terms coefficients; assembling the mass change terms coefficients of the
temporary column matrix into one or more telﬁporary mass change terms coefficient
submatrices that correspond to the mass change terms coefficients of the column
matrix; and premultiplying each temporary mass change terms coefficient submatrix
with the transpose of the right matrix to generate a transformed temporary mass

change terms coefficient submatrix.

[0045] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the matrix equation represents a system of fluid flow
equations in one or more dimensions having one or more pressure change terms and
one or more mass change terms, wherein the block sparse matrix contains one or more
coefficients of the pressure change terms and one or more coefficients of the mass
change terms, and wherein constructing the reduced transformed block sparse matrix
comprises: assembling the mass change terms coefficients from a column of the block
sparse matrix into a column matrix; performing a singular value decomposition on the
column matrix to generate a left matrix, a diagonal matrix and a right matrix;
discarding one or more singular values that are less than a predetermined threshold
value to generate a reduced diagonal matrix; multiplying the left matrix with the
reduced diagonal matrix to generate a temporary column matrix having a plurality of
mass change terms coefficients; assembling the mass change terms coefficients of the
temporary column matrix into one or more temporary mass change terms coefficient
submatrices that correspond to the mass change terms coefficients of the column
matrix; premultiplying each temporary mass change terms coefficient submatrix with
-the transpose of the right matrix to generate a transformed temporary mass change
terms coefficient submatrix; and premultiplying each subvector containing the
pressure change terms coefficients in the block sparse matrix by the transpose of the

right matrix to generate a transformed pressure change terms coefficients subvector.

[0046] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, constructing the reduced transformed block sparse matrix
further comprises constructing a transformed block sparse matrix having the same

block structure and submatrix form as the block sparse matrix.
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[0047] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the matrix equation represents a system of fluid flow
equations in one or more dimensions having one or more pressure change terms and
one or more mass change terms, wherein the block sparse matrix contains one or more
coefficients of the pressure change terms and one or more coefficients of the mass
change terms, and wherein constructing the reduced transformed block sparse matrix
includes: assembling the mass change terms coefficients from a column of the block
sparse matrix into a column matrix; performing a singular value decomposition on the
column matrix to generate a left matrix, a diagonal matrix and a right matrix;
discarding one or more singular values that are less than a predetermined threshold
value to generate a reduced diagonal matrix; multiplying the left matrix with the
reduced diagonal matrix to generate a temporary column matrix having a plurality of
mass change terms coefficients; assembling the mass change terms coefficients of the
temporary column matrix into one or more temporary mass change terms coefficient
submatrices that correspond to the mass change terms coefficients of the column
matrix; premultiplying each temporary mass change terms coefficient submatrix with
the transpose of the right matrix to generate a transformed temporary mass change
terms coefficient submatrix; premultiplying each subvector containing the pressure
change terms coefficients in the block sparse matrix by the transpose of the right
matrix to generate a transformed pressure change terms coefficients subvector; and
postmultiplying each fluid partial volumes subvector in the block sparse matrix by the

right matrix to generate a transformed fluid partial volumes vector.

[0048] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the matrix equation represents a system of fluid flow
equations in one or more dimensions having one or more pressure change terms and
one or more mass change terms, wherein the block sparse matrix contains one or more
coefficients of the pressure change terms and one or more coefficients of the mass
change terms, and wherein constructing the reduced transformed block sparse matrix
includes: assembling the mass change terms coefficients from a column of the block
sparse matrix into a column matrix; performing a singular value decomposition on the

column matrix to generate a left matrix, a diagonal matrix and a right matrix;
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discarding one or more singular values that are less than a predetermined threshold
value to generate a reduced diagonal matrix; multiplying the left matrix with the
reduced diagonal matrix to generate a temporary column matrix having a plurality of
mass change terms coefficients; assembling the mass change terms coefficients of the
temporary column matrix into one or more temporary mass change terms coefficient
submatrices that correspond to the mass change terms coefficients of the column
matrix; premultiplying each temporary mass change terms coefficient submatrix with
the transpose of the right matrix to generate a transformed temporary mass change
terms coefficient submatrix; premultiplying each subvector containing the pressure
change terms coefficients in the block sparse matrix by the transpose of the right
matrix to generate a transformed pressure change terms coefficients subvector;
postmultiplying each fluid partial volumes subvector in the block sparse matrix by the
right matrix to generate a transformed fluid partial volumes vector; and constructing a
transformed block sparse matrix from one or more of the transformed temporary mass
change terms coefficient submatrix, the transformed pressure change terms

coefficients subvector and the transformed fluid partial volumes vector.

[0049] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the matrix equation represents a system of fluid flow
equations in one or more dimensions having one or more pressure change terms and
one or more mass change terms, wherein the block sparse matrix contains one or more
coefficients of the pressure change terms and one or more coefficients of the mass
change terms, and wherein constructing the reduced transformed block sparse matrix
includes: assembling the mass change terms coefficients from a column of the block
sparse matrix into a column matrix; performing a singular value decomposition on the
column matrix to generate a left matrix, a diagonal matrix and a right matrix;
discarding one or more singular values that are less than a predetermined threshold
value to generate a reduced diagonal matrix; multiplying the left matrix with the
reduced diagonal matrix to generate a temporary column matrix having a plurality of
mass change terms coefficients; assembling the mass change terms coefficients of the
temporary column matrix into one or more temporary mass change terms coefficient

submatrices that correspond to the mass change terms coefficients of the column
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matrix; premultiplying each temporary mass change terms coefficient submatrix with
the transpose of the right matrix to generate a transformed temporary mass change
terms coefficient submatrix; premultiplying each subvector containing the pressure
change terms coefficients in the block sparse matrix by the transpose of the right
matrix to generate a transformed pressure change terms coefficients subvector;
postmultiplying each fluid partial volumes subvector in the block sparse matrix by the
right matrix to generate a transformed fluid partial volumes vector; constructing a
transformed block sparse matrix from one or more of the transformed temporary mass
change terms coefficient submatrix, the transformed pressure change terms
coefficients subvector and the transformed fluid partial volumes vector; and
climinating one or more transformed fluid partial volumes that correspond to the
discarded singular values in the transformed block sparse matrix to generate the

reduced transformed block sparse matrix.

[0050] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the Frobenius norm of the column matrix is computed,
which is referred to as the column matrix norm or value. If the column matrix value
is equal to or less than a predetermined threshold value, the singular value
decomposition is not performed on the column matrix, the singular values are set to
zero, the right matrix is set equal to the identity matrix. As a result, certain
computations that use the right matrix are skipped or simplified because the right

matrix is equal to the identity matrix.

[0051] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, the reduced transformed block sparse matrix includes one
or more reduced transformed diagonal submatrices and one or more reduced
transformed off-diagonal submatrices, wherein each reduced transformed diagonal
submatrix includes mass change terms coefficients and pressure change terms
coefficients only within the bottom #7+1 rows and right most r+1 columns of each

transformed diagonal submatrix.

[0052] In a specific embodiment of the method identified above, or of a method

described elsewhere herein, the reduced transformed block sparse matrix includes one
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or more reduced transformed diagonal submatrices and one or more reduced
transformed off-diagonal submatrices, wherein each reduced transformed diagonal
submatrix includes mass change terms coefficients and pressure change terms
coefficients only within the bottom 7+1 rows and right most 7+1 columns of each
transformed diagonal submatrix and each reduced transformed off-diagonal submatrix
includes mass change terms coefficients and pressure change terms coefficients only
within the bottom 77+1 rows and the right most 7;+1 columns of each transformed off-

diagonal submatrix.

[0053] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, constructing the reduced transformed residual block

vector includes constructing a transformed residual block vector.

[0054] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, constructing the transformed residual block vector
includes constructing a transformed residual block vector having a transformed mass

balance residual subvector and a transformed volume constraint residual subvector.

[0055] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, constructing the reduced transformed residual block
vector includes premultiplying a mass balance residual subvector by the transpose of

the right matrix to generate a transformed mass balance residual subvector.

[0056] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, solving for the solution block vector includes solving for
a reduced transformed solution change block vector using the reduced transformed

block sparse matrix and the reduced transformed residual block vector.

[0057] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, solving for the solution block vector includes: solving for
a reduced transformed solution change block vector using the reduced transformed
block sparse matrix and the reduced transformed residual block vector; and
converting the reduced transformed solution change block vector to a solution change

block vector.
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[0058] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, solving for the solution block vector includes: solving for
a reduced transformed solution change block vector using the reduced transformed
block sparse matrix and the reduced transformed residual block vector; converting the
reduced transformed solution change block vector to a solution change block vector;
and adding the solution change block vector to a current estimate of the solution block

vector to update the solution block vector.

[0059] In a specific embodiment of the method identified above, or of a method
described elsewhere herein, solving for the solution block vector includes: solving for
a reduced transformed solution change block vector using the reduced transformed
block sparse matrix and the reduced transformed residual block vector; and
converting the reduced transformed solution change block vector to a solution change
block vector having one or more changes in mass unknowns and one or more changes

in pressure unknowns.

[0060] In at least one specific embodiment, a method for solving a matrix
equation AX=B, wherein A represents a block sparse matrix, B represents a right
hand side block vector and X represents a solution block vector, the method includes:
constructing a reduced transformed block sparse matrix from the block sparse matrix;
constructing a reduced transformed residual block vector from the block sparse matrix
and the right hand side block vector; solving for a reduced transformed solution
change block vector using the reduced transformed block sparse matrix and the
reduced transformed residual block vector; converting the reduced transformed
solution change block vector to a solution change block vector having one or more
changes in mass unknowns and one or more changes in pressure unknowns; and
adding the solution change block vector to a current estimate of the solution block

vector to update the solution block vector.
Specific Embodiments In Drawings

[0061] Specific embodiments shown in the drawings will now be described.
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[0062] Figure 2 illustrates a flow diagram of a method 200 for solving one or

more linear algebraic equations in a matrix equation in accordance with one

embodiment of the invention. At step 205, a block sparse matrix 4 and a block vector

B are received. The block sparse matrix 4 and the block vector B are used for solving

for a solution block vector X according to the implicit transport matrix equation AX =

B.

[0063] At step 210, the fcoefficients in column j of the block sparse matrix 4 are

assembled into a block matrix M. The f coefficients that are assembled into the block

matrix M;may be expressed as:
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, Where Fj;, F;;, F;;

...are submatrices containing the f

coefficients in column j of the block sparse matrix 4. Column j represents the first

column of interest to be processed.
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[0064] At step 215, a singular value decomposition is performed on the matrix Mj
to generate matrices U;, W), and V;, where U; represents a first or left matrix
containing the left singular vectors, where W, represents a second or diagonal matrix
containing the singular values arranged in ascending (i.e., from small to large) order,
which is in reverse of the customary order, and where V; represents a third or right

matrix containing the right singular vectors. The singular value decomposition
ensures that M, =U joVjT , Where VJ.T is the transpose of right matrix ¥7j. The

columns of left matrix U; and right matrix V; are arranged in a manner such that each

entry of diagonal matrix W; is configured to multiply the appropriate column of left
matrix U; and the appropriate row of transposed right matrix VjT. Left matrix U; may

be expressed as:

. (5) (#) ()
My Uy Uim,
() (47) (#7)
Up' Uxp Usm,
() () (#)
um] 1 umj,Z umj,mj
(’1!) (ilj) (ilj)
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Jo| Uy V) U,
(CY) RN (Y) ()
Uy W Uy Upm,
(i27) () (i27)
umfz 1 um,2 2 my, ,m;
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Diagonal matrix /7;may be expressed as:
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Right matrix ¥; may be expressed as:

R )
po| v,

[0065] A more detailed description of the singular value decomposition is
provided in the definition section above. It should be noted that to enhance the
method, the Frobenius norm of the matrix M; may be computed in block 215. The
calculated Frobenius norm may be referred to as the column matrix norm. If the
Frobenius norm is greater than a predetermined threshold value, the singular value
decomposition is performed on the matrix Mj to generate matrices Uj, W}, and V}, as
noted above. However, if the Frobenius norm is not larger than the predetermined
matrix value, V; is set equal to the identity matrix, the entries of W; are set to zero, and
the entries of Uj are not computed. That is, the method reduces the computations
because the entries of U; do not influence the outcome. Accordingly, the method is

enhanced because certain computations are skipped or simplified.

[0066] At step 220, the singular values in diagonal matrix ; that are smaller than

a predetermined threshold value are discarded to generate reduced diagonal matrix
W;” . In one embodiment, the singular values are discarded by setting them to zero.
The number of remaining (or retained) singular values in diagonal matrix /¥; that have
not been discarded may be referred to as ;. As such, reduced diagonal matrix Wj(’)

may be expressed as:
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[0067] At step 225, left matrix Uj is multiplied by reduced diagonal matrix W to
generate a temporary column matrix M 5.’) . The right #; columns of temporary column
matrix M ¢ contain nonzero entries and the rest of the entries of temporary column

matrix M | are zeroes. Temporary column matrix M ) may be expressed as:

[ ) (#) 0, () ]
mp+l=r; M m; +1-r m; l,m
0 0 w ot , w Ju( ),
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o) (#) ), ()
0 wntj+1—rjunz(-,n1)j+1—rj wmj m(j,n;j
(/) hj (), i
0 .. 0 ij +1-r; },mj)--l-l—rj tt ij uE,mj)
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[0068] At step 230, the coefficients in temporary column matrix M 5.’) are

assembled into blocks corresponding to the original set of submatrices (e.g., Fy)

containing the f coefficients in column j of the block sparse matrix 4 that were

assembled into matrix M. That is, temporary column matrix M j(.’) may be expressed

as:
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where temporary submatrices F;” may be expressed as:
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[0069] At step 235, steps 210 through 230 are repeated for the rest of the columns
in block sparse matrix A4 to obtain the rest of temporary column matrices in the block

sparse matrix 4.

[0070] At step 240, for each i for which V; is not an identity matrix the temporary
submatrix F,” in temporary column matrix M 9 is premultiplied by transposed right
matrix 7 to generate a transformed version of submatrix F;” . The product may be
expressed as: £ =V F{. For each i with V; being an identity matrix, the product

y

e O
18 Fij —Fij .

[0071] At step 245, for each i for which ¥; is not an identity matrix the subvector

@; containing ¢ coefficients from submatrix 4; is premultiplied by transposed right

matrix V¥ to generate a transformed version of subvector ®;. The product may be
expressed as: 0 ;= VJ.T @, . For each i with V; being an identity matrix, the product is

D, =D;.

[0072] At step 250, for each j for which 7; is not an identity matrix the fluid

partial volumes vector I7j is postmultiplied by ¥, to generate a transformed version of
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fluid partial volumes vector 171 . The product may be expressed as: 171 = I7jVj. For

~

eachj with ¥ being an identity matrix, the product is I7j =V,.

[0073] At step 255, a transformed block sparse matrix A having the same block

structure and submatrix form as block sparse matrix 4 is constructed. As such, the

transformed off diagonal submatrix /Al,;,. , where i # j, may be expressed as:

e 4
A LA
1o o0

The transformed diagonal submatrix A, may be expressed as:
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[0074] At step 260, the transformed partial volumes that correspond to the

discarded singular values in transformed block sparse matrix A are eliminated. In

one embodiment, the transformed partial volumes V(’) " 7O that correspond to the

mp=r;

discarded singular values in the transformed diagonal submatrix 21,.,. are eliminated by

multiplying 7 by ... PP 6™ and  subtracting the result from

e,y

V(’) V(’) c., where k=1, ) -

myHl=ry 2 002 Doy 2 D tj.

A similar operation is performed on the

transformed off diagonal submatrix ,?Jﬁ by multiplying the transformed partial volumes
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V.9 with ]A”,C(”",Zj Hory oo fk(”'{zj , ¢ and subtracting the result from the bottom row of the

transformed off diagonal submatrix 21,] The elimination process may be repeated for

all rows of transformed block sparse matrix A . Once the transformed partial volumes

A

that correspond to the discarded singular values in transformed block sparse matrix A4

are eliminated, the transformed diagonal submatrix 1217.,. may be expressed as:
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The transformed off diagonal submatrix 21,] , where i # j, may be expressed as:
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[0075]

At step 265, a reduced transformed block sparse matrix A™ is constructed.

In the reduced transformed diagonal submatrices AP of the reduced transformed

block sparse matrix A™  the bottom #+1 rows contain nonzero coefficients in only the

right most 7+1 columns. These coefficients are placed in a matrix of smaller

dimension, resulting in the reduced transformed diagonal submatrix A, which may

be expressed as:
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[0076] The reduced transformed off-diagonal submatrices A(’) for the reduced

transformed block sparse matrix A contain only coefficients within the bottom 741

rows and the right most 77+1 columns. As such, the reduced transformed off diagonal

submatrix 4 may be expressed as:

" 2a) 230) NG)
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@ 23 A (5)
fm,-+1,mj +l-r; fmi +,m; ¢nx +1

[0077] At step 270, the residual block vector R is initialized by setting it equal to
the right-hand side vector B. That is, the initial residual block vector RO s set equal

to the right-hand side vector B.

[0078] At step 275, a transformed residual block vector R, is constructed. The

transformed residual block vector R, may be expressed as:

The. transformed mass balance residual subvectorR,, may be expressed as:

R, =VIRY. . The transformed volume constraint residual subvector R, may be

computed by multiplying the transformed partial volumes 7 that correspond to the

discarded singular values in the transformed block sparse matrix A with 7O and
subtracting the result from the volume constraint residual subvector Ry, where k=1,

ey My =¥ = 1.
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[0079] At step 280, a reduced transformed residual block vector block vector R®

is constructed and expressed as:

~(0
rm,»+1——r,-

RV =|

i A(i)
I’mi
,c(t)

m;+1

where the values of the reduced transformed residual block vector block vector RO

are obtained from the transformed mass balance residual subvector R, , .

[0080] At step 282, the matrix equation AVSX™ = R is solved for a reduced

transformed solution change block vector 83X, which contains a reduced set of mass

and pressure unknowns.

[0081] At step 284, a partial transformed solution change vector X @is created

by setting each subvector as follows:

0
SHO =| 50

i my+l-r

(rsi)
&m,

L H?

The zeroes correspond to the discarded singular values.

[0082] At step 286, a transformed residual block vector R is computed using

the partial transformed solution change vector &£ and the following equation:

RO = R— 48RO
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[0083] At step 288, the values of the transformed solution change vector X , are

constructed as follows:
i ;l(o,i) ]

~(0,0)
mp=r

&K, =| & |,

i my+1-r;

()
é‘j‘\:m,

éﬁ(i)

where the values in the lower half of the transformed solution change vector 8X, are

obtained from the lower half of the partial transformed solution change vector XK@
and values in the upper half of the transformed solution change vector X ; are

obtained from the transformed residual block vector R® determined at step 286.

[0084] At 290, the mass changes dM; are computed according todM; =V, X

where V; represents the matrix containing the right singular vectors, as previously
described with reference to step 215 and 8X;,; represents a vector containing only the
mass unknown entries in &K, . At step 292, the mass changes d}; are then used to

assemble a solution change block subvector d.X; as follows:

[0085] At step 294, the solution change subvector dX; is then used to update the
solution subvector X; as follows X, =X, +68X,. At step 296, steps 290-294 are

repeated for each subvector of X. In this manner, an estimate for the current solution

block vector X is computed.

[0086] At step 297, an updated residual block vector R is computed according
toR=B—AX. At step 298, a determination is made as to whether the updated
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residual block vector R and the solution block vector X have satisfied a predetermined
stopping criteria. If the answer is in the negative, processing returns to step 275. If

the answer is in the affirmative, then processing ends.

[0087] Figure 3 illustrates a computer network 300, into which embodiments of
the invention may be implemented. The computer network 300 includes a system
computer 330, which may be implemented as any conventional personal computer or
workstation, such as a UNIX-based workstation. The system computer 330 is in
communication with disk storage devices 329, 331, and 333, which may be external
hard disk storage devices. It is contemplated that disk storage devices 329, 331, and
333 are conventional hard disk drives, and as such, will be implemented by way of a
local area network or by remote access. Of course, while disk storage devices 329,
331, and 333 are illustrated as separate devices, a single disk storage device may be
used to store any and all of the program instructions, measurement data, and results as

desired.

[0088] In one embodiment, the input data are stored in disk storage device 331.
The system computer 330 may retrieve the appropriate data from the disk storage
device 331 to solve the implicit reservoir simulation matrix equation according to
program instructions that correspond to the methods described herein. The program
instructions may be written in a computer programming language, such as C++, Java
and the like. The program instructions may be stored in a computer-readable
memory, such as program disk storage device 333. Of course, the memory medium
storing the program instructions may be of any conventional type used for the storage
of computer programs, including hard disk drives, floppy disks, CD-ROMs and other

optical media, magnetic tape, and the like.

[0089] According to a prefetred embodiment, the system computer 330 presents
output primarily onto graphics display 327, or alternatively via printer 328. The
system computer 230 may store the results of the methods described above on disk
storage 329, for later use and further analysis. The keyboard 326 and the pointing
device (e.g., a mouse, trackball, or the like) 225 may be provided with the system

computer 330 to enable interactive operation.
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[0090] The system computer 330 may be located at a data center remote from the
reservoir. While Figure 3 illustrates the disk storage 331 as directly connected to the
system computer 330, it is also contemplated that the disk storage device 331 may be
accessible through a local area network or by remote access. Furthermore, while disk
storage devices 329, 331 are illustrated as separate devices for storing input data and
analysis results, the disk storage devices 329, 331 may be implemented within a
single disk drive (either together with or separately from program disk storage device
333), or in any other conventional manner as will be fully understood by one of skill

in the art having reference to this specification.
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WHAT IS CLAIMED IS:

1. A method for solving a matrix equation AX=B, wherein A represents a block
sparse matrix, B represents a right hand side block vector and X represents a solution
block vector, the method comprising:
receiving the block sparse matrix and the right hand side block vector;
constructing a reduced transformed block sparse matrix from the block sparse
matrix;
constructing a reduced transformed residual block vector from the block sparse matrix
and the right hand side block vector; wherein constructing the reduced transformed
block sparse matrix comprises:
assembling one or more coefficients of one or more mass change terms
from a column of the block sparse matrix into a column matrix;
performing a singular value decomposition on the column matrix to
generate a left matrix, a diagonal matrix and a right matrix; and
discarding one or more singular values that are less than a
predetermined threshold value to generate a reduced diagonal matrix; and
solving for the solution block vector using the reduced transformed block

sparse matrix and the reduced transformed residual block vector.

2. The method of claim 1, wherein the matrix equation represents a system of
fluid flow equations in one or more dimensions having one or more pressure change
terms and the one or more mass change terms, wherein the block sparse matrix
contains one or more coefficients of the pressure change terms and the one or more

coefficients of the mass change terms.

3. The method of claim 1, wherein constructing the reduced transformed block
sparse matrix further comprises constructing a transformed block sparse matrix

having the same block structure and submatrix form as the block sparse matrix.

4. The method of claim 1, wherein the matrix equation represents a system of

fluid flow equations in one or more dimensions having one or more pressure change
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terms and the one or more mass change terms, wherein the block sparse matrix
contains one or more coefficients of the pressure change terms and the one or more
coefficients of the mass change terms, and wherein the diagonal matrix comprises one

or more singular values arranged in ascending order.

5. The method of claim 1, wherein the matrix equation represents a system of
fluid flow equations in one or more dimensions having one or more pressure change
terms and the one or more mass change terms, wherein the block sparse matrix
contains one or more coefficients of the pressure change terms and the one or more
coefficients of the mass change terms, and wherein constructing the reduced
transformed block sparse matrix comprises multiplying the left matrix by the reduced

diagonal matrix to generate a temporary column matrix.

6. The method of claim 1, wherein the matrix equation represents a system of
fluid flow equations in one or more dimensions having one or more pressure change
terms and the one or more mass change terms, wherein the block sparse matrix
contains one or more coefficients of the pressure change terms and the one or more
coefficients of the mass change terms, and wherein constructing the reduced
transformed block sparse matrix comprises:

multiplying the left matrix by the reduced diagonal matrix to generate a
temporary column matrix having a plurality of mass change terms coefficients; and

assembling the mass change terms coefficients of the temporary column
matrix into one or more temporary mass change terms coefficient submatrices that

correspond to the mass change terms coefficients of the column matrix.

7. The method of claim 6, wherein constructing the reduced transformed block
sparse matrix comprises premultiplying each temporary mass change terms
coefficient submatrix by the transpose of the right matrix to generate a transformed

temporary mass change terms coefficient submatrix.
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8. The method of claim 7, wherein constructing the reduced transformed block
sparse matrix comprises premultiplying each subvector containing the pressure
change terms coefficients in the block sparse matrix by the transpose of the right

matrix to generate a transformed pressure change terms coefficients subvector.

9. The method of claim &, wherein constructing the reduced transformed block
sparse matrix comprises postmultiplying each fluid partial volumes subvector in the
block sparse matrix by the right matrix to generate a transformed fluid partial volumes

vector.

10.  The method of claim 9, wherein constructing the reduced transformed block
sparse matrix comprises constructing a transformed block sparse matrix from one or
more of the transformed temporary mass change terms coefficient submatrix, the
transformed pressure change terms coefficients subvector and the transformed fluid

partial volumes vector.

11.  The method of claim 10, wherein constructing the reduced transformed block
sparse matrix comprises eliminating one or more transformed fluid partial volumes
that correspond to the discarded singular values in the transformed block sparse

matrix to generate the reduced transformed block sparse matrix.

12.  The method of claim 1, wherein constructing the reduced transformed block
sparse matrix comprises:

determining a column matrix norm for the column matrix;

skipping the singular value decomposition if the column matrix norm is equal
to or less than the predetermined threshold value;

setting the singular values to zero if the column matrix norm is equal to or less
than the predetermined threshold value; and

setting the right matrix to the identity matrix if the column matrix norm is

equal to or less than the predetermined threshold value.



WO 2005/121840 PCT/US2005/012629

38

13.  The method of claim 12, wherein determining the column matrix norm

comprises calculating the Frobenius norm of the column matrix.

14.  The method of claim 1, wherein the reduced transformed block sparse matrix
comprises one or more reduced transformed diagonal submatrices and one or more
reduced transformed off-diagonal submatrices, wherein each reduced transformed
diagonal submatrix comprises mass change terms coefficients and pressure change
terms coefficients only within the bottom 7;+1 rows and right most 7+1 columns of

each transformed diagonal submatrix.

15. The method of claim 14, wherein each reduced transformed off-diagonal
submatrix comprises mass change terms coefficients and pressure change terms
coefficients only within the bottom 7/+1 rows and the right most r7+1 columns of each

transformed off-diagonal submatrix.

16.  The method of claim 1, wherein constructing the reduced transformed residual

block vector comprises constructing a transformed residual block vector.

17. The method of claim 1, wherein constructing the transformed residual block
vector comprises constructing a transformed residual block vector having a
transformed mass balance residual subvector and a transformed volume constraint

residual subvector.

18.  The method of claim 1, wherein constructing the reduced transformed residual
block vector comprises premultiplying a mass balance residual subvector by the
transpose of the right matrix to generate a transformed mass balance residual

subvector.

19.  The method of claim 1, wherein solving for the solution block vector
comprises solving for a reduced transformed solution change block vector using the
reduced transformed block sparse matrix and the reduced transformed residual block

vector.
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20. The method of claim 1, wherein solving for the solution block vector
comprises:

solving for a reduced transformed solution change block vector using the
reduced transformed block sparse matrix and the reduced transformed residual block
vector; and

converting the reduced transformed solution change block vector to a solution

change block vector.

21.  The method of claim 1, wherein solving for the solution block vector
comprises
adding the solution change block vector to a current estimate of the solution block

vector to update the solution block vector.

22.  The method of claim 1, wherein solving for the solution block vector
comprises:

solving for a reduced transformed solution change block vector using the
reduced transformed block sparse matrix and the reduced transformed residual block
vector; and

converting the reduced transformed solution change block vector to a solution
change block vector having one or more changes in mass unknowns and one or more

changes in pressure unknowns.

23. A method for solving a matrix equation AX=B, wherein A represents a block
sparse matrix, B represents a right hand side block vector and X represents a solution
block vector, the method comprising:

constructing a reduced transformed block sparse matrix from the block sparse
matrix;
constructing a reduced transformed residual block vector from the block sparse matrix

and the right hand side block vector;
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solving for a reduced transformed solution change block vector using the
reduced transformed block sparse matrix and the reduced transformed residual block
vector;

converting the reduced transformed solution change block vector to a solution
change block vector having one or more changes in mass unknowns and one or more
changes in pressure unknowns; and

adding the solution change block vector to a current estimate of the solution

block vector to update the solution block vector.

24. A method for solving a matrix equation AX=B, wherein A represents a block
sparse matrix, B represents a first block vector and X represents a solution block
vector, the method comprising:
receiving the block sparse matrix and the first block vector;
constructing a reduced transformed block sparse matrix from the block sparse
matrix;
constructing a reduced transformed residual block vector from the block sparse matrix
and the first block vector; wherein constructing the reduced transformed block sparse
matrix comprises:
assembling at least one coefficient associated with the at least one
mass change term from a column of the block sparse matrix into a column
matrix;
performing a singular value decomposition on the column matrix to
generate a first matrix, a second matrix and a third matrix; and
discarding each singular value less than a predetermined threshold
value to generate a reduced diagonal matrix; and
solving for the solution block vector using the reduced transformed block

sparse matrix and the reduced transformed residual block vector.

25.  The method of claim 24, wherein the matrix equation represents fluid flow
equations in a reservoir having at least one pressure change term and at least one mass

change term, wherein the block sparse matrix has at least one coefficient associated
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with the at least one pressure change term and at least one coefficient associated with

the at least one mass change term.

26.  The method of claim 24, wherein constructing the reduced transformed block
sparse matrix comprises: ‘

determining a column matrix norm for the column matrix;

skipping the singular value decomposition if the column matrix norm is equal
to or less than a predetermined threshold value;

setting the singular values to zero if the column matrix norm is equal to or less
than the predetermined threshold value; and

setting the third matrix to the identity matrix if the column matrix norm is

equal to or less than the predetermined matrix threshold.

27.  The method of claim 26, wherein determining the column matrix norm

comprises calculating the Frobenius norm of the column matrix.
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FIG. 2
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