(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2017/099579 A1

(43) International Publication Date 15 June 2017 (15.06.2017)

(51) International Patent Classification:

C12N 15/11 (2006.01) A61K 48/00 (2006.01)

C12N 15/113 (2010.01) A61K 38/47 (2006.01)

(21) International Application Number:

PCT/NL2015/050849

(22) International Filing Date:

7 December 2015 (07.12.2015)

(25) Filing Language:

English

(26) Publication Language:

English

- (71) Applicant: ERASMUS UNIVERSITY MEDICAL CENTER ROTTERDAM [NL/NL]; Dr. Molewaterplein 50, 3015 GE Rotterdam (NL).
- (72) Inventors: VAN DER WAL, Erik; c/o Dr. Molewaterplein 50, 3015 GE Rotterdam (NL). BERGSMA, Atze Jacobus; c/o Dr. Molewaterplein 50, 3015 GE Rotterdam (NL). PIJNAPPEL, Wilhelmus Wenceslaus Matthias; c/o Dr. Molewaterplein 50, 3015 GE Rotterdam (NL). VAN DER PLOEG, Antje Tjitske; c/o Dr. Molewaterplein 50, 3015 GE Rotterdam (NL). REUSER, Arnoldus; c/o Dr. Molewaterplein 50, 3015 GE Rotterdam (NL).
- (74) Agents: JANSEN, C.M. et al.; V.O., Carnegieplein 5, 2517 KJ Den Haag (NL).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

Title: ENZYMATIC REPLACEMENT THERAPY AND ANTISENSE THERAPY FOR POMPE DISEASE

5

10

15

20

25

30

The invention is related to a combination of enzymatic replacement therapy (ERT) or gene therapy and antisense oligonucleotides for the treatment of Pompe disease and to pharmaceutical compositions comprising the antisense oligonucleotides and enzymes. The invention is also related to a method to modulate the splicing of pre-mRNA of the GAA gene and to treatment of Pompe disease.

Background

Pompe disease also known as acid maltase deficiency or Glycogen storage disease type II is an autosomal recessive metabolic disorder which damages many cells throughout the body and in particular muscle cells and nerve cells, but also other cells throughout the body. The damage is caused by an accumulation of glycogen in the lysosome due to a deficiency of the lysosomal enzyme acid alpha-glucosidase. The build-up of glycogen and the consequences thereof affect various body tissues, particularly, skeletal muscles, heart muscles and smooth muscles of various organs and body parts such as blood vessels, gastrointestinal tract, uterus, bladder, the liver; and the central and perferal nervous system. As a consequence the clinical symptoms are broad. Progressive skeletal muscle weakness (myopathy) is a hallmark of the disease.

In Pompe disease, a protein, acid alpha-glucosidase (EC 3.2.1.20), also known as acid maltase, which is a lysosomal hydrolase, is defective. The protein is an enzyme that normally degrades the alpha -1,4 and alpha -1,6 linkages in glycogen, maltose and isomaltose and is required for the degradation of 1–3% of cellular glycogen. The deficiency of this enzyme results in the accumulation of structurally normal glycogen in lysosomes.

 $\mathbf{2}$

The defective metabolism of glycogen in the lysosomes may also lead to (secondary) storage of glycogen in the cytoplasm and autophagic build-up. Excessive glycogen storage within lysosomes may interrupt normal functioning of other organelles and lead to cellular injury.

5

10

15

20

25

The defective alpha-glucosidase protein or reduced amount of alpha-glucosidase protein and activity is the result of mutations (or variations) with in the GAA gene. Some of these GAA mutations may lead to alternative splicing and thereby to absent or a reduced amount of alpha-glucosidase protein or activity. The GAA gene is located on long arm of chromosome 17 at 17q25.2-q25.3 (base pair 75,689,876 to 75,708,272). The gene spans approximately 20 kb and contains 20 exons with the first exon being noncoding.

Although over 460 GAA mutations have been described (http://cluster15.erasmusmc.nl/klgn/pompe/mutations.html), only a few splicing mutations have been characterized. Severe mutations that completely abrogate GAA enzyme activity cause the classic infantile form of Pompe disease with onset of symptoms shortly after birth, hypertrophic cardiomyopathy, general skeletal muscle weakness, and respiratory failure and death within the first 1.5 years of life if left untreated. Milder mutations leave partial GAA enzyme activity and result in a milder phenotype with onset of symptoms varying from childhood to adulthood. In general, a higher residual alpha-glucosidase activity in primary fibroblasts is associated with later onset of Pompe disease.

Enzyme replacement therapy (ERT) has been developed for Pompe disease, in which recombinant human GAA protein is administered intravenously every two weeks. This treatment is aimed to increase the intracellular level of alpha-glucosidase activity in affected cells and tissues and thereby reduce or prevent glycogen storage and eventually symptoms of the disease. The treatment can rescue the lives of classic infantile patients

3

and delay disease progression of later onset patients, but the effects are heterogeneous.

Pompe disease is an autosomal recessive inheritable disorder. One of the most common mutation in Pompe disease is the IVS1 mutation, c.-32-13T>G, a transversion (T to G) mutation and occurs among infants, children, juveniles and adults with this disorder. This mutation interrupts a site of RNA splicing.

5

10

15

20

25

30

Antisense oligonucleotides (antisense oligomeric compounds) are currently being tested in clinical trials for their ability to modulate splicing. A classical example is Duchenne muscular dystrophy. In this disease, mutation hotspots are present in certain exons. Using antisense oligomeric compounds, the mutated exon is skipped and the mutation is bypassed. This results in a slightly shorter protein that is still partial functional. It is straightforward to induce exon skipping using antisense oligomeric compounds, because it is evident that the antisense oligomeric compound must be targeted to the relevant splice site. Also in Epidermolysis bullosa (WO2013053819) and in Leber congenital amaurosis symptoms (WO2012168435) antisense oligonucleotides are used for exon skipping.

For the IVS1 mutation in Pompe, such a strategy does not work.

The IVS mutation causes a skipping of exon 2 resulting in the deletion of the canonical translation start side and leads to non-sense mediated decay and thus no protein is transcribed. For antisense therapy to work for the IVS1 mutation in Pompe disease, it needs to induce exon inclusion. However, it is very difficult to induce exon inclusion, because it relies on targeting a splicing repressor sequence, which cannot be reliably predicted. For the IVS1 mutation, an antisense oligomeric compound that blocks a splicing repressor sequence may promote exon 2 inclusion in the presence of the IVS1 mutation. It is known that such repressor sequences may be present anywhere in the gene, either in an exon (termed exonic splicing silencer or ESS) or in an intron (termed intronic splicing silencer or ISS)

4

and maybe close to the mutation or far away or maybe close to the affected splice site or far away from it.

Although a number of antisense compounds that are capable of modulating splicing of a target gene in vitro have been reported, there remains a need to identify compounds that may modulate the splicing of the GAA gene.

5

10

15

20

25

30

Enzyme replacement therapy (ERT) with acid alpha-glucosidase (GAA), has been used for infantile, childhood and adult Pompe patients also called classic infantile or infantile onset and late onset forms. The ERT modifies the natural course of the disease, however targeting of the main target tissues and cells is a challenge. For example 15-40% of the body is composed of skeletal muscle and to be corrective each individual cell in the body needs to reached. The enzyme needs to be taken up by cells via endocytosis, which seems most efficient when it is targeted to receptors on the cell surface such as the mannose 6-phosphate/IGF II receptor. This mannose 6-phosphate/IGF II receptor recognizes various ligands such as mannose 6-phosphate, IGF II and Gluc-NAC. Thus ERT with these ligands show a better uptake. The current registered ERT is targeted at the M6P part of the M6P/IGF II receptor, but there is also ERT underdevelopment with an increased amount of M6P ligands or with IGF II linked to it. Another problem with ERT is that some patients develop antibodies to the administered GAA enzyme reducing the effect of ERT and these patients respond poorly to the treatment. In addition, ERT requires purified recombinant human GAA which is difficult to make and is expensive. Furthermore, recombinant human GAA is has a relative short half life ranging and therefore must be administered intravenously every 2 weeks (or every week), which is cumbersome for patients.

It is therefore an object of the invention to provide an improved treatment for Pompe Disease. Another object of the invention is to provide an improved ERT treatment of Pompe Disease. Another object of the

5

invention is to provide an antisense compound that is capable of targeting exonic splicing silencer (ESS) or in an intronic splicing silencer (ISS). Yet another object of the invention is to provide a antisense compound that is capable of targeting the IVS-1 mutation. It is further an object of the invention to improve the enzyme replacement therapy of GAA enzyme in patients. The present invention meets one or more of the objects.

The present invention combines two strategies which are different. ERT or gene therapy enhances the activity of glycogen breakdown administration of administration of a foreign GAA enzyme, whereas antisense therapy improves or enhances the intracellular production of the patients own GAA enzyme.

Summary of the invention

5

10

15

20

25

30

The present invention is directed to a composition for use for the treatment of Pompe disease, said composition comprising an enzyme or nucleic acid encoding for said enzyme suitable for Enzyme Replacement Therapy for Pompe disease, wherein said treatment is a combination of the administration of said enzyme or said nucleic acid encoding for said enzyme and the administration of an antisense oligomeric that modulates the splicing of acid alpha-glucosidase (GAA) enzyme.

The present invention is directed to a treatment of Pompe disease by administration of an enzyme or nucleic acid encoding for said enzyme suitable for Enzyme Replacement Therapy for Pompe disease in combination with the administration of an antisense oligomeric compound that modulates the splicing of acid alpha-glucosidase (GAA) enzyme gene.

Optionally the enzyme suitable for Enzyme Replacement
Therapy for Pompe disease is an enzyme that breaks down glycogen such as
acid alpha glycosidase (GAA). The nucleic acid encoding for said enzyme
suitable for Enzyme Replacement Therapy for Pompe disease may be used
in gene therapy. Optionally the nucleic acid is in a vector or other means

5

10

15

20

25

that enables the translation of the enzyme. Optionally the modulation of the splicing is to increase the activity of glycogen break-down. Optionally the modulation of the splicing is to increase the activity of acid alphaglucosidase (GAA) enzyme gene. Optionally the modulation of the splicing is to increase the activity of GAA to at least 120% of the activity of GAA enzyme without the modulation of the splicing of the GAA gene. Optionally the modulation of the splicing is to increase the activity of GAA to at least 25%% of the activity of a wild type GAA enzyme.

Optionally the antisense oligomeric compound modulates abherent splicing of acid alpha-glucosidase (GAA) enzyme gene.

Optionally the antisense oligomeric compound modulates splicing by an activity selected from the group consisting of promotion of exon inclusion, inhibition of a cryptic splicing site, inhibition of intron inclusion, recovering of reading frame, inhibition of splicing silencer sequence, activation of spicing enhancer sequence or any combination thereof. Optionally the antisense oligomeric compound modulates splicing by promotion of exon inclusion, optionally exon 2, or exon 6.

Optionally the antisense oligomeric compound modulates splicing by inhibition of a cryptic splicing site.

Optionally the antisense oligomeric compound modulates splicing by inhibition of intron inclusion.

Optionally the antisense oligomeric compound modulates splicing by recovering of the reading frame.

Optionally the antisense oligomeric compound modulates splicing by inhibition of splicing silencer sequence.

Optionally the antisense oligomeric compound modulates splicing by activation of spicing enhancer sequence.

Optionally the antisense oligomeric compound targets a nucleic acid sequence of the GAA gene selected from the group consisting of SEQ ID

7

NO: 1, 37-40, 1584-1589 and nucleotide polymorphism of SEQ ID NO: 1, 37-40, 1584-1589.

5

10

15

20

25

30

Optionally said enzyme or said nucleic acid encoding for said enzyme and the antisense oligomeric compound is administered simultaneously or separately. Optionally said nucleic acid encoding for said enzyme and said antisense oligomeric compound are administered simultaneously or in one treatment composition. Optionally said enzyme and said antisense oligomeric compound are administered simultaneously or in one treatment composition. Optionally said nucleic acid encoding for said enzyme and said antisense oligomeric compound are administered on separate occasions or in separate treatment compositions. Optionally said enzyme and said antisense oligomeric compound are administered on separate occasions or in separate treatment compositions. Optionally the treatment uses said enzyme and said nucleic acid encoding for said enzyme. Optionally said enzyme and said nucleic acid encoding for said enzyme are administered simultaneously or in one treatment composition. Optionally the treatment uses said enzyme and said nucleic acid encoding for said enzyme. Optionally said enzyme and said nucleic acid encoding for said enzyme are administered on separate occasions or in separate treatment compositions. Optionally said enzyme and said nucleic acid encoding for said enzyme and said antisense oligomeric compound are administered simultaneously or in one treatment composition.

Optionally the administration route is selected from the group consisting of oral, parenteral, intravenous, intra-arterial, subcutaneous, intraperitoneal, ophthalmic, intramuscular, buccal, rectal, vaginal, intraorbital, intracerebral, intradermal, intracranial, intraspinal, intraventricular, intrathecal, intracisternal, intracapsular, intrapulmonary, intranasal, transmucosal, transdermal, or via inhalation, or combinations thereof. Optionally the administration route for the enzyme or the nucleic acid encoding for said enzyme is intravenous. Optionally the administration

5

10

15

20

25

30

route of said enzyme or said nucleic acid encoding for said enzyme and the administration route of said antisense oligomeric compound are the same or different. Optionally the administration route for said antisense oligomeric compound is intravenous. Optionally the administration route for said antisense oligomeric compound is orally. Optionally the administration route for the enzyme or the nucleic acid encoding for said enzyme is orally. It is explicitly envisioned to combine various administration routes in the present invention.

Optionally said enzyme or said nucleic acid encoding for said enzyme is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 days. Optionally said enzyme or said nucleic acid encoding for said enzyme is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 weeks. Optionally said enzyme or said nucleic acid encoding for said enzyme is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 months. Optionally said enzyme or said nucleic acid encoding for said enzyme is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, years. It is explicitly envisioned that various frequencies of administration as indicated here are combined. For example 8 weeks of administration once every week and thereafter 24 weeks of administration of once every 2 weeks.

Optionally said antisense oligomeric compound is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 days. Optionally said antisense oligomeric compound is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 weeks. Optionally said antisense oligomeric compound is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 months. Optionally said antisense oligomeric compound is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, years. It is explicitly envisioned that various frequencies of

5

10

15

20

25

30

administration as indicated here are combined. For example 8 weeks of administration once every week and thereafter 24 weeks of administration of once every 2 weeks. 10. Also various combinations of the frequencies of administration of the antisense oligomeric compound in combination with various combination of the frequencies of administration of the said enzyme or said nucleic acid encoding for said enzyme are explicitly envisioned in the present invention. For example said enzyme is administered once every two weeks and the antisense oligomeric compound is administered once every 4 weeks.

Optionally said enzyme or said nucleic acid encoding for said enzyme is administered in a dose of about 1-100 mg/kg, optionally 2-90 mg/kg, 3-80 mg/kg, 5-75 mg/kg, 7-70 mg/kg, 10-60 mg/kg, 12-55 mg/kg, 15-50 mg/kg, 17-45 mg/kg, 20-40 mg/kg, 22-35 mg/kg, 25-30 mg/kg.

Optionally said antisense oligomeric compound is administered in a dose of about 0.05 to 1000 mg/kg, optionally about 0.1 to 900 mg/kg, 1-800 mg/kg, 2-750 mg/kg, 3-700 mg/kg, 4-600 mg/kg, 5-500 mg/kg, 7 to 450 mg/kg, 10 to 400 mg/kg, 12 to 350 mg/kg, 15 to 300 mg/kg, 17 to 250 mg/kg, 20 to 220 mg/kg, 22 to 200 mg/kg, 25 to 180 mg/kg, 30 to 150 mg/kg, 35 to 125 mg/kg, 40 to 100 mg/kg, 45 to 75 mg/kg, 50-70 mg/kg.

Optionally said enzyme or said nucleic acid encoding for said enzyme or said antisense oligomeric compound is administered in combination with a chaperone such as an Active Site-Specific Chaperone (ASSC). Optionally said enzyme is administered in combination with a chaperone Optionally said nucleic acid encoding for said enzyme is administered in combination with a chaperone Optionally said antisense oligomeric compound is administered in combination with a chaperone Suitable chaperones are 1- deoxynojirimycin and derivatives thereof. Suitable examples of chaperones are 1-deoxynojirimycin N-(n-nonyl)deoxynojirimycin (NN-DNJ), N-(n-butyl)deoxynojirimycin (NB-DNJ), N-octyl-4-epi-8-valienamine, N-acetylglucosamine-thiazoline, N-(7-

10

oxadecyl)deoxynojirimycin (NO-DNJ) and N-(n-dodecyl)deoxynojirimycin (ND-DNJ), 1-deoxygalactonojirimycin, , N-alkylderivative of 1-deoxynojirimycin. 1- deoxynojirimycin and derivatives thereof are also suitable for substrate reduction.

5

10

15

20

25

30

Optionally the administration is in combination with genistein. Optionally in a dose of genistein of 1-100 mg/kg per day, optionally of 5-90 mg/kg per day, optionally 10-80- mg/kg per day, optionally 15-75 mg/kg per day, optionally 20-70 mg/kg per day, optionally 25-60 mg/kg per day, 30-55 mg/kg per day, 35-50 mg/kg per day, 40-45 mg/kg per day. Optionally said enzyme or said nucleic acid encoding for said enzyme or said antisense oligomeric compound is administered in combination with a genistein. Optionally said enzyme is administered in combination with a genistein optionally said nucleic acid encoding for said enzyme is administered in combination with a genistein optionally said antisense oligomeric compound is administered in combination with a genistein.

Optionally the administration is in combination with cell penetrating peptides. Optionally the administration is in combination with a targeting ligand. Optionally said cell penetrating peptide and/or targeting ligand is present on the antisense oligomeric compound. Optionally said cell penetrating peptide and/or targeting ligand is present on said nucleic acid encoding for said enzyme. Optionally said cell penetrating peptide and/or targeting ligand is present on said enzyme.

Optionally the enzyme is an acid alpha-glucosidase (GAA) enzyme. Optionally said enzyme is a modification, variant, analogue, fragment, portion, or functional derivative, thereof. Optionally said enzyme is a modification, variant, analogue, fragment, portion, or functional derivative of GAA enzyme. The present invention explicitly encompasses all forms of recombinant human acid alpha-glucosidase which may be based on all natural or genetically modified forms of either human GAA cDNA, or human GAA gene, or combinations thereof, including those forms that are

created by codon optimization. Suitable GAA enzyme include an enzyme selected from the group consisting of Myozyme and lysozyme, neo-GAA (carbohydrate modified forms of alglucosidase-alpha), BMN-701 (BioMarin: Gilt GAA for Pompe disease, in which rhGAA is fused with an IGF-II peptide) rhGGAA (Oxyrane: recombinant human acid alpha-glucosidase produced in genetically modified yeast cells and enriched in mannose 6-phosphate content), rhGAA modified by conjugation, for example to mannose-6-phosphate groups or to IGF-II peptides. said enzyme is selected from the group consisting of a recombinant human GAA, Myozyme, Lumizyme, neoGAA, Gilt GAA (BMN-701), or rhGGAA.

5

10

15

20

25

30

Optionally the composition or treatment comprises more than one antisense oligomeric compound. Optionally, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more different antisense oligomeric compounds are used for the composition and/or treatment.

Optionally the antisense oligomeric compound is selected from the group comprising SEQ ID NO: 2-33, 541-1583, 1590-1594, and sequences having at least 80% identity thereof. Optionally the antisense oligomeric compound is is selected from the group comprising SEQ ID NO: 2-33 and sequences having at least 80% identity thereof. Optionally the antisense oligomeric compound is SEQ ID NO: 12 or SEQ ID NO: 33 and sequences having at least 80% identity thereof.

Optionally the antisense oligomeric compound is complementary to a sequence selected from the group comprising SEQ ID NO: 1, 37-40, 1584-1589, and sequences having at least 80% identity thereof.

Optionally at least one of the nucleotides of the is antisense oligomeric compound is modified. Optionally all of the nucleotides in the antisense oligomeric compound are modified. Optionally the modifications in the antisense oligomeric compound is the same for each nucleotide or different. Various combinations of modification of the nucleotides is explicitly envisioned in the present invention.

12

Optionally the sugar of one or more nucleotides of the is antisense oligomeric compound is modified. Optionally the sugar modification is 2'-O-methyl. Optionally the sugar modification2'-O-methoxyethyl.

Optionally the base of one or more nucleotides of the antisense oligomeric compound is modified.

5

10

15

20

25

Optionally the backbone of the antisense oligomeric compound is modified, Optionally the backbone of the antisense oligomeric compound is a morpholino phosphorothicate. Optionally the backbone of the antisense oligomeric compound is a morpholino phosphorodiamidate. Optionally the backbone of the antisense oligomeric compound is a tricyclo-DNA.

Optionally the antisense oligomeric compound and/or the enzyme or nucleic acid coding for said enzyme is present in a carrier selected from the group of exosomes, nanoparticles, micelles, liposomes, or microparticles. The carrier may enhance the uptake of the antisense oligomeric compound and/or the enzyme or nucleic acid coding for said enzyme into the cells. Optionally the composition or the treatment comprises compounds that enhance the uptake of the antisense oligomeric compound and/or the enzyme or nucleic acid coding for said enzyme into the cells. Suitable compounds that enhance the uptake into the cells are Polyethylimine, conjugated pluronic copolymers, lipids, e.g. patisiran, ICAM-targeted nanocariers, peptide Pip6a or cationic nanoemulsions. A skilled person is well suited to find compounds that enhance the uptake of the antisense oligomeric compound and/or the enzyme or nucleic acid coding for said enzyme into the cells.

The present invention is also directed to a pharmaceutical composition comprising at least one antisense oligomeric compound as defined in aspects of the present invention and/or embodiments thereof and a enzyme as defined in aspects of the present invention and/or embodiments thereof.

Optionally the pharmaceutical composition further comprises a pharmaceutical acceptable excipient and/or a cell delivery agent. Suitable cell delivery agents are carriers selected from the group of exosomes, nanoparticles, micelles, liposomes, or microparticles. Optionally the pharmaceutical composition comprises compounds that enhance the uptake of the antisense oligomeric compound and/or the enzyme or nucleic acid coding for said enzyme into the cells. Suitable compounds that enhance the uptake into the cells are Polyethylimine, conjugated pluronic copolymers, lipids, e.g. patisiran, ICAM-targeted nanocariers. peptide Pip6a or cationic nanoemulsions. A skilled person is well suited to find compounds that enhance the uptake of the antisense oligomeric compound and/or the enzyme or nucleic acid coding for said enzyme into the cells.

Optionally the pharmaceutical composition further comprises a chaperone such as a Active Site-Specific Chaperone (ASSC). Suitable chaperones are 1- deoxynojirimycin and derivatives thereof. Suitable examples of chaperones are 1-deoxynojirimycin N-(n-nonyl)deoxynojirimycin (NN-DNJ), N-(n-butyl)deoxynojirimycin (NB-DNJ), N-octyl-4-epi- β -valienamine, N-acetylglucosamine-thiazoline, N-(7-oxadecyl)deoxynojirimycin (NO-DNJ) and N-(n-dodecyl)deoxynojirimycin (ND-DNJ), 1-deoxygalactonojirimycin, , N-alkylderivative of 1-deoxynojirimycin. 1- deoxynojirimycin and derivatives thereof are also suitable for substrate reduction.

Optionally the pharmaceutical composition further comprises genistein. Optionally the pharmaceutical composition further comprises genistein in a dose of of 1-100 mg/kg per day, optionally of 5-90 mg/kg per day, optionally 10-80- mg/kg per day, optionally 15-75 mg/kg per day, optionally 20-70 mg/kg per day, optionally 25-60 mg/kg per day, 30-55 mg/kg per day, 35-50 mg/kg per day, 40-45 mg/kg per day. Optionally the pharmaceutical composition comprises said enzyme or said nucleic acid encoding for said enzyme or said antisense oligomeric compound in

14

combination with a genistein. Optionally the pharmaceutical composition comprises said enzyme in combination with a genistein Optionally the pharmaceutical composition comprises said nucleic acid encoding for said enzyme in combination with a genistein Optionally the pharmaceutical composition comprises said antisense oligomeric compound in combination with a genistein.

5

10

15

20

25

30

Optionally the pharmaceutical composition further comprises cell penetrating peptides. Optionally the pharmaceutical composition further comprises a targeting ligand. Optionally said cell penetrating peptide and/or targeting ligand is present on the antisense oligomeric compound. Optionally said cell penetrating peptide and/or targeting ligand is present on said nucleic acid encoding for said enzyme. Optionally said cell penetrating peptide and/or targeting ligand is present on said enzyme.

Optionally in the pharmaceutical composition the enzyme is an acid alpha-glucosidase (GAA) enzyme. Optionally said enzyme is a modification, variant, analogue, fragment, portion, or functional derivative, thereof. Optionally said enzyme is a modification, variant, analogue, fragment, portion, or functional derivative of GAA enzyme. The present invention explicitly encompasses all forms of recombinant human acid alpha-glucosidase which may be based on all natural or genetically modified forms of either human GAA cDNA, or human GAA gene, or combinations thereof, including those forms that are created by codon optimization. Suitable GAA enzyme include an enzyme selected from the group consisting of Myozyme and lysozyme, neo-GAA (carbohydrate modified forms of alglucosidase-alpha), BMN-701 (BioMarin: Gilt GAA for Pompe disease, in which rhGAA is fused with an IGF-II peptide) rhGGAA (Oxyrane: recombinant human acid alpha-glucosidase produced in genetically modified yeast cells and enriched in mannose 6-phosphate content), rhGAA modified by conjugation, for example to mannose-6-phosphate groups or to IGF-II peptides, said enzyme is selected from the group consisting of a

recombinant human GAA, Myozyme, Lumizyme, neoGAA, Gilt GAA (BMN-701), or rhGGAA.

Optionally the pharmaceutical composition comprises the enzyme in an amount of about 1-50 mg/mL enzyme. Optionally the enzyme is present in the pharmaceutical composition in an amount of 2-45 mg/mL, 3-40 mg/mL, 5-35 mg/mL, 7-30 mg/mL, 10-25 mg/mL, 12-22 mg/mL, or 15-20, mg/mL.

5

10

15

20

25

30

Optionally the pharmaceutical composition comprises more than one antisense oligomeric compound. Optionally, the pharmaceutical composition comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more different antisense oligomeric compounds.

Optionally the pharmaceutical composition comprises the antisense oligomeric compound in an amount of about 1-50 mg/mL enzyme. Optionally the antisense oligomeric compound is present in the pharmaceutical composition in an amount of 2-45 mg/mL, 3-40 mg/mL, 5-35 mg/mL, 7-30 mg/mL, 10-25 mg/mL, 12-22 mg/mL, or 15-20, mg/mL.

Optionally the pharmaceutical composition comprises a carrier selected from the group consisting of exosomes, nanoparticles, micelles, liposomes, and microparticles.

The present invention is also directed to a sequences selected from the group comprising SEQ ID NO: 1590-1594 and sequences having at least 80% identity thereof.

The present invention is also directed to a sequences selected from the group comprising SEQ ID NO: 1590-1594 and sequences having at least 80% identity thereof for use in the treatment Pompe disease.

The present invention is also directed to a method of modulating splicing of GAA pre-mRNA in a cell comprising:

contacting the cell with an antisense oligomeric compound selected from the group comprising SEQ ID NO: 1590-1594 and sequences having at least 80% identity thereof.

16

The present invention is also directed to a method for treating Pompe disease in a patient comprising administering said patient with an effective amount of an antisense oligomeric compound selected from the group comprising SEQ ID NO: 1590-1594 and sequences having at least 80% identity thereof.

The present invention is also directed to a method to restore the function of GAA in a cell wherein said method comprises the administration of an antisense oligomeric compound selected from the group comprising SEQ ID NO: 1590-1594 and sequences having at least 80% identity thereof.

The present invention is also directed to a method of correcting abnormal gene expression in a cell, Optionally a muscular cell, of a subject, the method comprising administering to the subject an antisense oligomeric compound selected from the group comprising SEQ ID NO: 1590-1594 and sequences having at least 80% identity thereof. Optionally in said methods the cell or the patient comprises at least one mutation selected from the group c.-32-13T>G, c.-32-3C>G, c.547-6, c.1071, c.1254, and c.1552-30, Optionally the cell or patient comprises mutation c.-32-3C>G or c.-32-13T>G. Optionally in said methods exon inclusion is accomplished, optionally inclusion of exon 2.

The present invention is also directed to a pharmaceutical composition comprising at least one antisense oligomeric compound selected from the group comprising SEQ ID NO: 1590-1594 and sequences having at least 80% identity thereof. Optionally the pharmaceutical composition further comprises a pharmaceutical acceptable excipient and/or a cell delivery agent.

Detailed description

5

10

15

20

25

30

The principle behind antisense technology is that an antisense compound, which hybridizes to a target nucleic acid, modulates gene expression activities such as transcription, splicing or translation. This

17

sequence specificity makes antisense compounds extremely attractive as tools for target validation and gene functionalization, as well as therapeutics to selectively modulate the expression of genes or gene products involved in disease.

5

10

15

20

25

30

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence, resulting in exon-exon junctions at the site where exons are joined. Targeting exon-exon junctions can be useful in situations where aberrant levels of a normal splice product are implicated in disease, or where aberrant levels of an aberrant splice product are implicated in disease. Targeting splice sites, i.e., intron-exon junctions or exon-intron junctions can also be particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also suitable targets. mRNA transcripts produced via the process of splicing of two (or more) mRNAs from different gene sources are known as "fusion transcripts" and are also suitable targets. It is also known that introns can be effectively targeted using antisense compounds targeted to, for example, DNA or pre-mRNA. Single-stranded antisense compounds such as oligonucleotide compounds that work via an RNase H mechanism are effective for targeting pre-mRNA. Antisense compounds that function via an occupancy-based mechanism are effective for redirecting splicing as they do not, for example, elicit RNase H cleavage of the mRNA, but rather leave the mRNA intact and promote the yield of desired splice product(s).

It is also known in the art that alternative RNA transcripts can be produced from the same genomic region of DNA. These alternative transcripts are generally known as "variants." More specifically, "pre-mRNA

18

variants" are transcripts produced from the same genomic DNA that differ from other transcripts produced from the same genomic DNA in either their start or stop position and contain both intronic and exonic sequence. Upon excision of one or more exon or intron regions, or portions thereof during splicing, pre-mRNA variants produce smaller "mRNA variants." Consequently, mRNA variants are processed pre-mRNA variants and each unique pre-mRNA variant must always produce a unique mRNA variant as a result of splicing. These mRNA variants are also known as "alternative splice variants." If no splicing of the pre-mRNA variant occurs then the pre-mRNA variant is identical to the mRNA variant.

5

10

15

20

25

30

It is also known in the art that variants can be produced through the use of alternative signals to start or stop transcription and that premRNAs and mRNAs can possess more that one start codon or stop codon. Variants that originate from a pre-mRNA or mRNA that use alternative start codons are known as "alternative start variants" of that pre-mRNA or mRNA. Those transcripts that use an alternative stop codon are known as "alternative stop variants" of that pre-mRNA or mRNA. One specific type of alternative stop variant is the "polyA variant" in which the multiple transcripts produced result from the alternative selection of one of the "polyA stop signals" by the transcription machinery, thereby producing transcripts that terminate at unique polyA sites.

As used herein, "antisense mechanisms" are all those involving hybridization of a compound with target nucleic acid, wherein the outcome or effect of the hybridization is either target degradation or target occupancy with concomitant stalling of the cellular machinery involving, for example, transcription or splicing.

As used herein, "to comprise" and its conjugations is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. In addition the verb "to consist" may be replaced by "to consist essentially of" meaning that a

19

compound or adjunct compound as defined herein may comprise additional component(s) than the ones specifically identified, said additional component(s) not altering the unique characteristic of the invention.

The articles "a" and "an" are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article.

5

10

15

20

25

30

The terms "individual", "patient", and "subject" are used interchangeably herein and refer to mammals, in particular primates and Optionally humans.

The term "exon" refers to a portion of a gene that is present in the mature form of mRNA. Exons include the ORF (open reading frame), i.e., the sequence which encodes protein, as well as the 5' and 3' UTRs (untranslated regions). The UTRs are important for translation of the protein. Algorithms and computer programs are available for predicting exons in DNA sequences (Grail, Grail 2 and Genscan and US 20040219522 for determining an exon-intron junctions).

As used herein, the term "protein coding exon" refers to an exon which codes (or at least partially codes) for a protein (or part of a protein). The first protein coding exon in an mRNA is the exon which contains the start codon. The last protein encoding exon in an mRNA is the exon which contains the stop codon. The start and stop codons can be predicted using any number of well-known programs in the art.

As used herein, the term "internal exon" refers to an exon that is flanked on both its 5' and 3' end by another exon. For an mRNA comprising n exons, exon 2 to exon (n-1) are the internal exons. The first and last exons of an mRNA are referred to herein as "external exons".

The term "intron" refers to a portion of a gene that is not translated into protein and while present in genomic DNA and pre-mRNA, it is removed in the formation of mature mRNA.

The term "messenger RNA" or "mRNA" refers to RNA that is transcribed from genomic DNA and that carries the coding sequence for

20

protein synthesis. Pre-mRNA (precursor mRNA) is transcribed from genomic DNA. In eukaryotes, pre-mRNA is processed into mRNA, which includes removal of the introns, i.e., "splicing", and modifications to the 5' and 3' end (e.g., polyadenylation). mRNA typically comprises from 5'to 3'; a 5'cap (modified guanine nucleotide), 5' UTR (untranslated region), the coding sequence (beginning with a start codon and ending with a stop codon), the 3' UTR, and the poly(A) tail.

5

10

15

20

25

30

The term "nucleic acid sequence" or "nucleic acid molecule" or polynucleotide are used interchangeably and refer to a DNA or RNA molecule in single or double stranded form. An "isolated nucleic acid sequence" refers to a nucleic acid sequence which is no longer in the natural environment from which it was isolated, e.g. the nucleic acid sequence in a cell.

A "mutation" in a nucleic acid molecule is a change of one or more nucleotides compared to the wild type sequence, e.g. by replacement, deletion or insertion of one or more nucleotides. A "point mutation" is the replacement of a single nucleotide, or the insertion or deletion of a single nucleotide.

Sequence identity" and "sequence similarity" can be determined by alignment of two peptide or two nucleotide sequences using global or local alignment algorithms. Sequences may then be referred to as "substantially identical" or "essentially similar" when they are optimally aligned by for example the programs GAP or BESTFIT or the Emboss program "Needle" (using default parameters, see below) share at least a certain minimal percentage of sequence identity (as defined further below). These programs use the Needleman and Wunsch global alignment algorithm to align two sequences over their entire length, maximising the number of matches and minimises the number of gaps. Generally, the default parameters are used, with a gap creation penalty = 10 and gap extension penalty = 0.5 (both for nucleotide and protein alignments). For nucleotides the default scoring

matrix used is DNAFULL and for proteins the default scoring matrix is Blosum62 (Henikoff & Henikoff, 1992, PNAS 89, 10915- 10919). Sequence alignments and scores for percentage sequence identity may for example be determined using computer programs, such as EMBOSS

5

10

15

20

25

30

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Alternatively sequence similarity or identity may be determined by searching against databases such as FASTA, BLAST, etc., but hits should be retrieved and aligned pairwise to compare sequence identity. Two proteins or two protein domains, or two nucleic acid sequences have "substantial sequence identity" if the percentage sequence identity is at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% or more, Optionally 90%, 95%, 98%, 99% or more (as determined by Emboss "needle" using default parameters, i.e. gap creation penalty = 10, gap extension penalty = 0.5, using scoring matrix DNAFULL for nucleic acids an Blosum62 for proteins). Such sequences are also referred to as 'variants' herein, e.g. other variants of antisense oligomeric compounds. It should be understood that sequence with substantial sequence identity do not necessarily have the same length and may differ in length. For example sequences that have the same nucleotide sequence but of which one has additional nucleotides on the 3'- and/or 5'-side are 100% identical.

The term "hybridisation" as used herein is generally used to mean hybridisation of nucleic acids at appropriate conditions of stringency as would be readily evident to those skilled in the art depending upon the nature of the probe sequence and target sequences. Conditions of hybridisation and washing are well known in the art, and the adjustment of conditions depending upon the desired stringency by varying incubation time, temperature and/or ionic strength of the solution are readily accomplished. See, for example, Sambrook, J. et al., Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Press, Cold Spring Harbor, New York, 1989. The choice of conditions is dictated by the length of

the sequences being hybridised, in particular, the length of the probe sequence, the relative G-C content of the nucleic acids and the amount of mismatches to be permitted. Low stringency conditions are preferred when partial hybridisation between strands that have lesser degrees of complementarity is desired. When perfect or near perfect complementarity is desired, high stringency conditions are preferred. For typical high stringency conditions, the hybridisation solution contains 6X S.S.C., 0.01 M EDTA, 1X Denhardt's solution and 0.5% SOS. hybridisation is carried out at about 68°C for about 3 to 4 hours for fragments of cloned DNA and for about 12 to about 16 hours for total eukaryotic DNA. For lower stringencies the temperature of hybridisation is reduced to about 42°C below the melting temperature (TM) of the duplex. The TM is known to be a function of the G-C content and duplex length as well as the ionic strength of the solution.

5

10

15

20

25

The term "allele(s)" means any of one or more alternative forms of a gene at a particular locus, all of which alleles relate to one trait or characteristic at a specific locus. One allele is present on each chromosome of the pair of homologous chromosomes. These may be identical alleles of the gene (homozygous) or two different alleles (heterozygous).

Mutant allele" refers herein to an allele comprising one or more mutations in the coding sequence (mRNA, cDNA or genomic sequence) compared to the wild type allele. Such mutation(s) (e.g. insertion, inversion, deletion and/or replacement of one or more nucleotide(s)) may lead to the encoded protein having reduced in vitro and/or in vivo functionality (reduced function) or no in vitro and/or in vivo functionality (loss-of-function), e.g. due to the protein e.g. being truncated or having an amino acid sequence wherein one or more amino acids are deleted, inserted or replaced. Such changes may lead to the protein having a different conformation, being targeted to a different sub-cellular compartment, having a modified catalytic

23

domain, having a modified binding activity to nucleic acids or proteins, etc, it may also lead to a different splicing event.

A "fragment" of the gene or nucleotide sequence or antisense oligomeric compound refers to any subset of the molecule, e.g., a shorter polynucleotide or oligonucleotide.

5

10

15

20

25

30

A "variant" refers to a molecule substantially similar to the antisense oligomeric compound or a fragment thereof, such as a nucleotide substitution variant having one or more substituted nucleotides, but which maintains the ability to hybridize with the particular gene. Optionally the variant comprises the mutations as identified by the invention. Variants also include longer sequences.

An "analogue" refers to a non-natural molecule substantially similar to or functioning in relation to either the entire molecule, a variant or a fragment thereof.

As used herein, the terms "precursor mRNA" or "pre-mRNA" refer to an immature single strand of messenger ribonucleic acid (mRNA) that contains one or more intervening sequence(s) (introns). Pre-mRNA is transcribed by an RNA polymerase from a DNA template in the cell nucleus and is comprised of alternating sequences of introns and coding regions (exons). Once a pre-mRNA has been completely processed by the splicing out of introns and joining of exons, it is referred to as "messenger RNA" or "mRNA," which is an RNA that is comprised exclusively of exons. Eukaryotic pre-mRNAs exist only transiently before being fully processed into mRNA. When a pre-mRNA has been properly processed to an mRNA sequence, it is exported out of the nucleus and eventually translated into a protein by ribosomes in the cytoplasm.

As used herein, the terms "splicing" and "processing" refers to the modification of a pre-mRNA following transcription, in which introns are removed and exons are joined. Pre-mRNA splicing involves two sequential biochemical reactions. Both reactions involve the spliceosomal

24

transesterification between RNA nucleotides. In a first reaction, the 2'-OH of a specific branch-point nucleotide within an intron, which is defined during spliceosome assembly, performs a nucleophilic attack on the first nucleotide of the intron at the 5' splice site forming a lariat intermediate. In a second reaction, the 3'-OH of the released 5' exon performs a nucleophilic attack at the last nucleotide of the intron at the 3' splice site thus joining the exons and releasing the intron lariat. Pre-mRNA splicing is regulated by intronic silencer sequence (ISS), exonic silencer sequences (ESS) and terminal stem loop (TSL) sequences.

5

10

15

20

25

30

As used herein, the terms "intronic silencer sequences (ISS)" and "exonic silencer sequences (TSL)" refer to sequence elements within introns and exons, respectively, that control alternative splicing by the binding of trans-acting protein factors within a pre-mRNA thereby resulting in differential use of splice sites. Typically, intronic silencer sequences are less conserved than the splice sites at exon- intron junctions.

As used herein, "modulation of splicing" refers to altering the processing of a pre-mRNA transcript such that there is an increase or decrease of one or more splice products, or a change in the ratio of two or more splice products. Modulation of splicing can also refer to altering the processing of a pre-mRNA transcript such that a spliced mRNA molecule contains either a different combination of exons as a result of exon skipping or exon inclusion, a deletion in one or more exons, or additional sequence not normally found in the spliced mRNA (e.g., intron sequence).

As used herein, "splice site" refers to the junction between an exon and an intron in a pre-mRNA (unspliced RNA) molecule (also known as a "splice junction"). A "cryptic splice site" is a splice site that is not typically used but may be used when the usual splice site is blocked or unavailable or when a mutation causes a normally dormant site to become an active splice site. An "aberrant splice site" is a splice site that results from a mutation in the native DNA and pre-mRNA.

As used herein, "splice products" or "splicing products" are the mature mRNA molecules generated from the process of splicing a premRNA. Alternatively spliced pre-mRNAs have at least two different splice products. For example, a first splicing product may contain an additional exon, or portion of an exon, relative to a second splicing product. Splice products of a selected pre-mRNA can be identified by a variety of different techniques well known to those of skill in the art.

5

10

15

20

25

30

As used herein "splice donor site" refers to a splice site found at the 5' end of an intron, or alternatively, the 3' end of an exon. Splice donor site is used interchangeably with "5' splice site." As used herein "splice acceptor site" refers to a splice site found at the 3' end of an intron, or alternatively, the 5' end of an exon. Splice acceptor site is used interchangeably with "3' splice site."

As used herein, "targeting" or "targeted to" refer to the process of designing an oligomeric compound such that the compound hybridizes with a selected nucleic acid molecule or region of a nucleic acid molecule.

Targeting an oligomeric compound to a particular target nucleic acid molecule can be a multistep process. The process usually begins with the identification of a target nucleic acid whose expression is to be modulated. As used herein, the terms "target nucleic acid" and "nucleic acid encoding GAA" encompass DNA encoding GAA, RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA. For example, the target nucleic acid can be a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. As disclosed herein, the target nucleic acid encodes GAA.

The targeting process usually also includes determination of at least one target region, segment, or site within the target nucleic acid for the antisense interaction to occur such that the desired effect, e.g., modulation of expression, will result.

26

As used herein, "target mRNA" refers to the nucleic acid molecule to which the oligomeric compounds provided herein are designed to hybridize. In the context of the present disclosure, target mRNA is usually unspliced mRNA, or pre-mRNA. In the context of the present invention, the target mRNA is GAA mRNA or GAA pre-mRNA.

5

10

15

20

25

30

"Region" is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic. Target regions may include, for example, a particular exon or intron, or may include only selected nucleotides within an exon or intron which are identified as appropriate target regions. Target regions may also be splicing repressor sites. Within regions of target nucleic acids are segments. "Segments" are defined as smaller or sub-portions of regions within a target nucleic acid. "Sites," as used in the present invention, are defined as unique nucleobase positions within a target nucleic acid. As used herein, the "target site" of an oligomeric compound is the 5'-most nucleotide of the target nucleic acid to which the compound binds.

Target degradation can include an RNase H, which is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. It is known in the art that single-stranded antisense compounds which are "DNA-like" elicit cleavage by RNAse H. Occupancy-based antisense mechanisms, whereby antisense compounds hybridize yet do not elicit cleavage of the target, include inhibition of translation, modulation of splicing, modulation of poly(A) site selection and disruption of regulatory RNA structure. For the present invention "RNA-like" antisense compounds for use in occupancy-based antisense mechanisms are preferred.

In the context of the present disclosure, an oligomeric compound "targeted to a splice site" refers to a compound that hybridizes with at least a portion of a region of nucleic acid encoding a splice site or a compound that hybridizes with an intron or exon in proximity to a splice site, such that splicing of the mRNA is modulated.

The term "oligomeric compound" refers to a polymeric structure capable of hybridizing to a region of a nucleic acid molecule. This term includes oligonucleotides, oligonucleosides, oligonucleotide analogs, oligonucleotide mimetics and chimeric combinations of these. Oligomeric compounds are routinely prepared linearly but can be joined or otherwise prepared to be circular. Moreover, branched structures are known in the art. Oligomeric compounds can be introduced in the form of single-stranded, double-stranded, circular, branched or hairpins and can contain structural elements such as internal or terminal bulges or loops. Oligomeric double-stranded compounds can be two strands hybridized to form double-stranded compounds or a single strand with sufficient self complementarity to allow for hybridization and formation of a fully or partially double-stranded compound.

The term "antisense oligonucleotide, AON, or antisense oligomeric compound" refers to an oligonucleotide that is capable of interacting with and/or hybridizing to a pre-mRNA or an mRNA having a complementary nucleotide sequence thereby modifying gene expression and/or splicing. Enzyme-dependent antisense oligonucleotides include forms that are dependent on RNase H activity to degrade target mRNA, and include single-stranded DNA, RNA, and phosphorothioate antisense. Steric blocking antisense oligonucleotides (RNase-H independent antisense) interfere with gene expression or other mRNA-dependent cellular processes by binding to a target sequence of mRNA. Steric blocking antisense includes 2'-0 alkyl antisense oligonucleotides, Morpholino antisense oligonucleotides, and tricyclo-DNA antisense oligonucleotides. Steric blocking antisense oligonucleotides are preferred in the present invention.

As used herein, antisense oligonucleotides that are "RNase H-independent" are those compounds which do not elicit cleavage by RNase H when hybridized to a target nucleic acid. RNase H-independent oligomeric compounds modulate gene expression, such as splicing, by a target

28

occupancy-based mechanism. Rnase H-independent antisense oligonucleotides are preferred in the present invention.

5

10

15

20

25

30

As used herein, "hybridization" means the pairing of complementary strands of oligomeric compounds. In the context of the present disclosure, an oligomeric compound is specifically hybridizable when there is a sufficient degree of complementarity to avoid non-specific binding of the oligomeric compound to non-target nucleic acid sequences. One of skill in the art will be able to determine when an oligomeric compound is specifically hybridizable.

As used herein, "complementary" refers to a nucleic acid molecule that can form hydrogen bond(s) with another nucleic acid molecule by either traditional Watson-Crick base pairing or other non-traditional types of pairing (e.g., Hoogsteen or reversed Hoogsteen hydrogen bonding) between complementary nucleosides or nucleotides. In reference to the antisense oligomeric compound of the present disclosure, the binding free energy for a antisense oligomeric compound with its complementary sequence is sufficient to allow the relevant function of the antisense oligomeric compound to proceed and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense oligomeric compound to nontarget sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of ex vivo or in vivo therapeutic treatment. Determination of binding free energies for nucleic acid molecules is well known in the art (see e.g., Turner et ah, CSH Symp. Quant. Biol. 1/7:123-133 (1987); Frier et al, Proc. Nat. Acad. Sci. USA 83:9373-77 (1986); and Turner et al, J. Am. Chem. Soc. 109:3783-3785 (1987)). Thus, "complementary" (or "specifically hybridizable") are terms that indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between a antisense oligomeric compound and a premRNA or mRNA target. It is understood in the art that a nucleic acid molecule need not be 100% complementary to a target nucleic acid sequence

5

10

15

20

25

30

to be specifically hybridizable. That is, two or more nucleic acid molecules may be less than fully complementary. Complementarity is indicated by a percentage of contiguous residues in a nucleic acid molecule that can form hydrogen bonds with a second nucleic acid molecule. For example, if a first nucleic acid molecule has 10 nucleotides and a second nucleic acid molecule has 10 nucleotides, then base pairing of 5, 6, 7, 8, 9, or 10 nucleotides between the first and second nucleic acid molecules represents 50%, 60%, 70%, 80%, 90%, and 100% complementarity, respectively. Percent complementarity of an oligomeric compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656). Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482-489). "Perfectly" or "fully" complementary nucleic acid molecules means those in which all the contiguous residues of a first nucleic acid molecule will hydrogen bond with the same number of contiguous residues in a second nucleic acid molecule, wherein the nucleic acid molecules either both have the same number of nucleotides (i.e., have the same length) or the two molecules have different lengths.

As used herein, "uniformly modified" or "fully modified" refers to an oligomeric compound, an antisense oligonucleotide, or a region of nucleotides wherein essentially each nucleoside is a sugar modified nucleoside having uniform modification.

As used herein, a "chimeric oligomeric compound", "chimeric antisense compound" or "chimeric antisense oligonucleotide compound" is a compound containing two or more chemically distinct regions, each

comprising at least one monomer unit (i.e., a nucleotide in the case of an oligonucleotide compound). The term "chimeric antisense compound" specifically refers to an antisense compound, having at least one sugar, nucleobase and/or internucleoside linkage that is differentially modified as compared to the other sugars, nucleotides and internucleoside linkages within the same oligomeric compound. The remainder of the sugars, nucleotides and internucleoside linkages can be independently modified or unmodified. In general a chimeric oligomeric compound will have modified nucleosides that can be in isolated positions or grouped together in regions that will define a particular motif. Chimeric oligomeric compounds typically contain at least one region modified so as to confer increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. In the context of the present disclosure, a "chimeric RNase H-independent antisense compound" is an antisense compound with at least two chemically distinct regions, but which is not susceptible to cleavage by RNase H when hybridized to a target nucleic acid.

5

10

15

20

25

30

As used herein, a "nucleoside" is a base-sugar combination and "nucleotides" are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside.

As used herein, a nucleoside with a modified sugar residue is any nucleoside wherein the ribose sugar of the nucleoside has been substituted with a chemically modified sugar moiety. In the context of the present disclosure, the chemically modified sugar moieties include, but are not limited to, 2'-O-methoxyethyl, 2'-fluoro, 2'-dimethylaminooxyethoxy, 2'-dimethylaminoexyethoxy, 2'-dimethylaminoexyethoxy, 2'-carbamate, 2'-aminooxy, 2'-acetamido and locked nucleic acid.

As used herein, compounds "resistant to RNase H degradation" are antisense compounds having a least one chemical modification that increases resistance of the compound to RNase H cleavage. Such modifications include, but are not limited to, nucleotides with sugar

modifications. As used herein, a nucleotide with a modified sugar includes, but is not limited to, any nucleotide wherein the 2'-deoxyribose sugar has been substituted with a chemically modified sugar moiety. In the context of the present invention, chemically modified sugar moieties include, but are not limited to, 2'-O-(2-methoxyethyl), 2'-fluoro, 2'-dimethylaminooxyethoxy, 2'-dimethylaminoethoxyethoxy, 2'-guanidinium, 2'-O-guanidinium ethyl, 2'-carbamate, 2'-aminooxy, 2'-acetamido, locked nucleic acid (LNA) and ethylene bridged nucleic acid (ENA). Modified compounds resistant to RNase H cleavage are thoroughly described herein and are well know to those of skill in the art.

5

10

15

20

25

30

In the context of the present disclosure, "cellular uptake" refers to delivery and internalization of oligomeric compounds into cells. The oligomeric compounds can be internalized, for example, by cells grown in culture (in vitro), cells harvested from an animal (ex vivo) or by tissues following administration to an animal (in vivo).

By "subject" is meant an organism, which is a donor or recipient of explanted cells or the cells themselves. "Subject" also refers to an organism to which the nucleic acid molecules of this disclosure can be administered. In one embodiment of the invention and/or embodiments thereof, a subject is a mammal or mammalian cell. In another embodiment, a subject is a human or human cell.

As used herein, the term "therapeutically effective amount" means an amount of antisense oligomeric compound that is sufficient, in the subject (e.g., human) to which it is administered, to treat or prevent the stated disease, disorder, or condition. The antisense oligomeric compound of the instant disclosure, individually, or in combination or in conjunction with other drugs, can be used to treat diseases or conditions discussed herein. For example, to treat a particular disease, disorder, or condition, the antisense oligomeric compound can be administered to a patient or can be administered to other appropriate cells evident to those skilled in the art,

32

individually or in combination with one or more drugs, under conditions suitable for treatment. In the present invention the disease is Optionally Pompe disease.

5

10

15

20

25

As used herein, the phrase "pharmaceutically acceptable" refers to molecular entities and compositions that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human. Optionally, as used herein, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.

As used herein, the term "isolated" means that the referenced material is removed from its native environment, e.g., a cell. Thus, an isolated biological material can be free of some or all cellular components, i.e. components of the cells in which the native material occurs naturally (e.g., cytoplasmic or membrane component).

The term "purified" as used herein refers to material that has been isolated under conditions that reduce or eliminate the presence of unrelated materials, i.e. contaminants, including native materials from which the material is obtained. For example, a purified tc- DNA antisense oligomeric compound is Optionally substantially free of cell or culture components, including tissue culture components, contaminants, and the like. As used herein, the term "substantially free" is used operationally, in the context of analytical testing of the material. Optionally, purified material substantially free of contaminants is at least 50% pure; more Optionally, at least 90% pure, and more Optionally still at least 99% pure. Purity can be evaluated by chromatography, gel electrophoresis, immunoassay, composition analysis, biological assay, and other methods known in the art.

In the present description, any concentration range, percentage 30 range, ratio range, or integer range is to be understood to include the value

33

of any integer within the recited range and, when appropriate, fractions thereof (such as one tenth and one hundredth of an integer), unless otherwise indicated. Also, any number range recited herein relating to any physical feature, such as polymer subunits, size or thickness, are to be understood to include any integer within the recited range, unless otherwise indicated. As used herein, "about" or "consisting essentially of mean +- 20% of the indicated range, value, or structure, unless otherwise indicated.

5

10

15

20

25

30

As used herein, the terms "include" and "comprise" are used synonymously. It should be understood that the terms "a" and "an" as used herein refer to "one or more" of the enumerated components. The use of the alternative (e.g., "or") should be understood to mean either one, both, or any combination thereof of the alternatives.

The term "about" or "approximately" means within a statistically meaningful range of a value. Such a range can be within an order of magnitude, Optionally within 50%, more Optionally within 20%, more Optionally still within 10%, and even more Optionally within 5% of a given value or range. The allowable variation encompassed by the term "about" or "approximately" depends on the particular system under study, and can be readily appreciated by one of ordinary skill in the art. According to the invention, a "subject" or "patient" is a human or non-human animal. Although the animal subject is Optionally a human, the compounds and compositions of the invention have application in veterinary medicine as well, e.g., for the treatment of domesticated species such as canine, feline, and various other pets; farm animal species such as bovine, equine, ovine, caprine, porcine, etc.; wild animals, e.g., in the wild or in a zoological garden; and avian species, such as chickens, turkeys, quail, songbirds, etc.

The term "enzyme replacement therapy" or "ERT" refers to the introduction of a non-native, purified enzyme into an individual having a deficiency in such enzyme. The administered enzyme can be obtained from natural sources or by recombinant expression. The term also refers to the

34

introduction of a purified enzyme in an individual otherwise requiring or benefiting from administration of a purified enzyme, e.g., suffering from protein insufficiency. The introduced enzyme may be a purified, recombinant enzyme produced in vitro, or enzyme purified from isolated tissue or fluid, such as, e.g., placenta or animal milk, or from plants.

5

10

15

20

25

As used herein, the term "active site-specific chaperone" or ASSC refers to any molecule including a protein, peptide, nucleic acid, carbohydrate, etc. that specifically interacts reversibly with an active site of a protein and enhances formation of a stable molecular conformation. As used herein, "active site-specific chaperone" does not include endogenous general chaperones present in the ER of cells such as Bip, calnexin or calreticulin, or general, non-specific chemical chaperones such as deuterated water, DMSO, or TMAO.

The term "purified" as used herein refers to material that has been isolated under conditions that reduce or eliminate the presence of unrelated materials, i.e., contaminants, including native materials from which the material is obtained. For example, a purified protein is Optionally substantially free of other proteins or nucleic acids with which it is associated in a cell; a purified nucleic acid molecule is Optionally substantially free of proteins or other unrelated nucleic acid molecules with which it can be found within a cell. As used herein, the term "substantially free" is used operationally, in the context of analytical testing of the material Optionally, purified material substantially free of contaminants is at least 95% pure; more Optionally, at least 97% pure, and more Optionally still at least 99% pure. Purity can be evaluated by chromatography, gel electrophoresis, immunoassay, composition analysis, biological assay, and other methods known in the art. In a specific embodiment, purified means that the level of contaminants is below a level acceptable to regulatory authorities for safe administration to a human or non-human animal.

As used herein, the terms "mutant" and "mutation" mean any detectable change in genetic material, e.g., DNA, or any process, mechanism or result of such a change. This includes gene mutations, in which the structure (e.g., DNA sequence) of a gene is altered, any gene or DNA arising from any mutation process, and any expression product (e.g., RNA, protein or enzyme) expressed by a modified gene or DNA sequence.

5

10

15

20

25

30

As used herein the term "mutant protein" refers to proteins translated from genes containing genetic mutations that result in altered protein sequences. In a specific embodiment, such mutations result in the inability of the protein to achieve its native conformation under the conditions normally present in the ER. The failure to achieve this conformation results in these proteins being degraded, rather than being transported through their normal pathway in the protein transport system to their proper location within the cell. Other mutations can result in decreased activity or more rapid turnover.

As used herein the term "wild-type gene" refers to a nucleic acid sequences which encodes a protein capable of having normal biological functional activity in vivo. The wild-type nucleic acid sequence may contain nucleotide changes that differ from the known, published sequence, as long as the changes result in amino acid substitutions having little or no effect on the biological activity. The term wild- type may also include nucleic acid sequences engineered to encode a protein capable of increased or enhanced activity relative to the endogenous or native protein.

As used herein, the term "wild-type protein" refers to any protein encoded by a wild-type gene that is capable of having functional biological activity when expressed or introduced in vivo. The term "normal wild-type activity" refers to the normal physiological function of a protein in a cell. Such functionality can be tested by any means known to establish functionality of a protein. The term "genetically modified" refers to cells that express a particular gene product following introduction of a nucleic acid

36

comprising a coding sequence which encodes the gene product, along with regulatory elements that control expression of the coding sequence. Introduction of the nucleic acid may be accomplished by any method known in the art including gene targeting and homologous recombination. As used herein, the term also includes cells that have been engineered to express or overexpress an endogenous gene or gene product not normally expressed by such cell, e.g., by gene activation technology.

5

10

15

20

25

The phrase "pharmaceutically acceptable", whether used in connection with the pharmaceutical compositions of the invention, refers to molecular entities and compositions that are physiologically tolerable and do not typically produce untoward reactions when administered to a human. Optionally, as used herein, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the compound is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils. Water or aqueous solution saline solutions and aqueous dextrose and glycerol solutions are Optionally employed as carriers, particularly for injectable solutions. Suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin, 18th Edition.

The terms "therapeutically effective dose" and "effective amount" refer to the amount of the compound that is sufficient to result in a therapeutic response. In embodiments where an ASSC and enzyme such as GAA are administered in a complex, the terms "therapeutically effective dose" and "effective amount" may refer to the amount of the complex that is sufficient to result in a therapeutic response. A therapeutic response may be any response that a user (e.g., a clinician) will recognize as an effective

37

response to the therapy. Thus, a therapeutic response will generally be an amelioration of one or more symptoms or sign of a disease or disorder.

It should be noted that a concentration of the chaperone that is inhibitory during in vitro production, transportation, or storage of the purified therapeutic protein may still constitute an "effective amount" for purposes of this invention because of dilution (and consequent shift in binding due to the chape in equilibrium), bioavailability and metabolism of the chaperone upon administration in vivo.

5

10

15

20

25

30

The term 'alkyl' refers to a straight or branched hydrocarbon group consisting solely of carbon and hydrogen atoms, containing no unsaturation, and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1 -methylethyl (isopropyl), n-butyl, n-pentyl, 1, 1 - dimethylethyl (t-butyl).

The term "alkenyl" refers to a C2-C20 aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be a straight or branched chain, e.g., ethenyl, 1-propenyl, 2-propenyl (allyl), isopropenyl, 2-methyl- 1-propenyl, 1-butenyl, 2-butenyl.

The term "cycloalkyl" denotes an unsaturated, non-aromatic monoor multicyclic hydrocarbon ring system such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl. Examples of multicyclic cycloalkyl groups include perhydronapththyl, adamantyl and norbornyl groups bridged cyclic group or sprirobicyclic groups, e.g., spiro (4,4) non-2-yl.

The term "aryl" refers to aromatic radicals having in the range of about 6 to about 14 carbon atoms such as phenyl, naphthyl, tetrahydronapthyl, indanyl, biphenyl.

The term "heterocyclic" refers to a stable 3- to 15-membered ring radical which consists of carbon atoms and from one to five heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. For purposes of this invention, the heterocyclic ring radical may be a monocyclic or bicyclic ring system, which may include fused or bridged ring systems,

and the nitrogen, carbon, oxygen or sulfur atoms in the heterocyclic ring radical may be optionally oxidized to various oxidation states. In addition, a nitrogen atom, where present, may be optionally quaternized; and the ring radical may be partially or fully saturated (. e.g. heteroaromatic or heteroaryl aromatic). The heterocyclic ring radical may be attached to the main structure at any heteroatom or carbon atom that results in the creation of a stable structure.

The term "heteroaryl" refers to a heterocyclic ring wherein the ring is aromatic.

The substituents in the 'substituted alkyl', 'substituted alkenyl', 'substituted cycloalkyl', 'substituted aryl' and 'substituted heteroaryl' may be the same or different, with one or more selected from the groups hydrogen, halogen, acetyl, nitro, carboxyl, oxo (=0), CF₃, -OCF₃, NH₂, -C(=0)-alkyl₂, OCH₃, or optionally substituted groups selected from alkyl, alkoxy and aryl. The term "halogen" refers to radicals of fluorine, chlorine, bromine and iodine.

GAA enzyme

5

10

15

20

25

30

Human GAA is synthesized as a 110 kDal precursor (Wisselaar et al. (1993) J. Biol. Chem. 268(3): 2223-31). The mature form of the enzyme is a mixture of monomers of 70 and 76 kD (Wisselaar et al. (1993) J. Biol. Chem. 268(3): 2223-31). The precursor enzyme has seven potential glycosylation sites and four of these are retained in the mature enzyme (Wisselaar et al. (1993) J. Biol. Chem. 268(3): 2223-31). The proteolytic cleavage events which produce the mature enzyme occur in late endosomes or in the lysosome (Wisselaar et al. (1993) J. Biol. Chem. 268(3): 2223-31). The C-terminal 160 amino acids are absent from the mature 70 and 76 kD species. It has been reported that the C-terminal portion of the protein, although cleaved from the rest of the protein during processing, remains associated with the major species (Moreland et al. (Nov. 1, 2004) J. Biol. Chem.. Manuscript 404008200).

39

The enzyme of GAA may be obtained from a cell endogenously expressing the enzyme or GAA, or the enzyme or GAA may be a recombinant human enzyme or GAA (rhGAA), as described herein. Optionally the recombinant human enzyme or rhGAA is a full length wild-type enzyme. Optionally the recombinant human enzyme or rhGAA comprises a subset of the amino acid residues present in a wild-type enzyme or GAA, wherein the subset includes the amino acid residues of the wild-type enzyme or GAA that form the active site for substrate binding and/or substrate reduction. As such, the present invention contemplates an recombinant human enzyme or rhGAA that is a fusion protein comprising the wild-type enzyme or GAA active site for substrate binding and/or substrate reduction, as well as other amino acid residues that may or may not be present in the wild type enzyme or GAA.

5

10

15

20

25

30

The enzyme or GAA may be obtained from commercial sources or may be obtained by synthesis techniques known to a person of ordinary skill in the art. The wild-type enzyme can be purified from a recombinant cellular expression system (e.g., mammalian cells or insect cells-see generally U.S. Pat. No. 5,580,757.; U.S. Pat. Nos. 6,395,884 and 6,458,574, U.S. Pat. No. 6,461,609, U.S. Pat. No. 6,210,666; U.S. Pat. No. 6,083,725.; U.S. Pat. No. 6,451,600.; U.S. Pat. No. 5,236,838.; and U.S. Pat. No. 5,879,680.), human placenta, or animal milk (see e.g. U.S. Pat. No. 6,188,045.). After the infusion, the exogenous enzyme is expected to be taken up by tissues through non-specific or receptor-specific mechanism. In general, the uptake efficiency (without use of an chaperone) is not high, and the circulation time of the exogenous protein is short (Ioannu et al., Am. J. Hum. Genet. 2001; 68: 14-25). In addition, the exogenous protein is unstable and subject to rapid intracellular degradation in vitro. Other synthesis techniques for obtaining GAA suitable for pharmaceutical may be found, for example, in U.S. Patent No. 7,560,424 and U.S. Patent No. 7,396,81 1, U.S. Published Application Nos. 2009/0203575, 2009/0029467, 2008/0299640,

5

10

15

20

25

2008/0241118, 2006/0121018, and 2005/0244400, U.S. Patent Nos. 7,423,135, 6,534,300, and 6,537,785; International Published Application No. 2005/077093 and U.S. Published Application Nos. 2007/0280925, and 2004/0029779. These references are hereby incorporated by reference in their entirety.

Optionally the GAA is alglucosidase alfa, which consists of the human enzyme acid alpha-glucosidase (GAA), encoded by any of nine observed haplotypes of this gene.

The GAA or enzyme suitable for ERT may be a modification, variant, analogue, fragment, portion, or functional derivative, thereof.

The uptake of the enzyme or GAA may be enhanced by functionalizing the enzyme or GAA by targets for receptors selected from the group consisting of mannose 6-phosphate receptor, insulin like growth factor II receptor, mannose receptor, galactose receptor, fucose receptor, N-Acetylglucosamine (GlcNAc) receptor, plasminogen activator receptor, IGF 1 receptor, insulin receptor; transferrin receptor, cation-dependent mannose-6-phosphate receptor (CD-MPR).

Functional derivatives" of the enzyme or GAA as described herein are fragments, variants, analogs, or chemical derivatives of the enzyme which retain at least a portion of the enzyme activity or immunological cross reactivity with an antibody specific for the enzyme.

A fragment or portion of enzyme refers to any subset of the molecule.

The enzyme or GAA may be modified with a compound selected from the group consisting of mannose 6-phosphate, , peptide insulin-like growth factor-2.

Peptide insulin-like growth factor-2 is used in glycosylationindependent lysosomal targeting (GILT).

Optionally the enzyme or GAA is produced by recombinant DNA technology in a Chinese hamster ovary cell line.

41

Optionally the enzyme or GAA is produced by a glycoengineered yeast platform (e.g. based on the yeast *Yarrowia lipolytica*).

Optionally the enzyme or GAA is produced by transgene rabbits and collected via the milk of these transgene rabbits.

5

10

15

20

25

30

GAA enzyme is available as Myozyme(Sanofi) Lumizyme (Sanofi) OXY2810 (Oxyrane), IGF2-GAA (Biomarin) BMN-701 (Biomarin), Reveglucosidase alfa (Biomarin).

Chaperone or ASSC (active site-specific chaperone) may be obtained using synthesis techniques known to one of ordinary skill in the art. For example, ASSC that may be used in the present application, such as 1-DNJ may be prepared as described in U.S. Patent Nos. 6,274,597 and 6,583,158, and U.S. Published Application No. 2006/0264467, each of which is hereby incorporated by reference in its entirety.

Optionally, the ASSC is a-homonojirimycin and the GAA is hrGAA (e.g., Myozyme® or Lumizyme®). Optionally the ASSC is castanospermine and the GAA is hrGAA (e.g., Myozyme® or Lumizyme®). The ASSC (e.g. homonojirimycin and castanospermine) may be obtained from synthetic libraries (see, e.g., Needels et al., Proc. Natl. Acad. Sci. USA 1993; 90: 10700-4; Ohlmeyer et al., Proc. Natl. Acad. Sci. USA 1993; 90: 10922-10926; Lam et al., PCT Publication No. WO 92/00252; Kocis et al., PCT Publication No. WO 94/28028) which provide a source of potential ASSC's. Synthetic compound libraries are commercially available from Maybridge Chemical Co. (Trevillet, Cornwall, UK), Comgenex (Princeton, N. J.), Brandon Associates (Merrimack, N.H.), and Microsource (New Milford, Conn.). A rare chemical library is available from Aldrich (Milwaukee, Wis.). Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available from e.g. Pan Laboratories (Bothell, Wash.) or MycoSearch (NC), or are readily producible. Additionally, natural and synthetically produced libraries and compounds are readily modified through Res. 1986; 155:1 19-29. Optionally ASSC's useful for the present

42

invention are inhibitors of lysosomal enzymes and include glucose and galactose imino-sugar derivatives as described in Asano et al., J. Med. Chem. 1994; 37:3701-06; Dale et al, Biochemistry 1985; 24:3530-39; Goldman et al., J. Nat. Prod. 1996; 59:1137-42; Legler et al, Carbohydrate Res. 1986; 155; 1 19-29. Such derivatives include those that can be purchased from commercial sources such as Toronto Research Chemicals, Inc. (North York, On. Canada) and Sigma.

5

10

15

20

25

30

Optionally, the route of administration is subcutaneous. Other routes of administration may be oral or parenteral, including intravenous, intraarterial, intraperitoneal, ophthalmic, intramuscular, buccal, rectal, vaginal, intraorbital, intracerebral, intradermal, intracranial, intraspinal, intraventricular, intrathecal, intracisternal, intracapsular, intrapulmonary, intranasal, transmucosal, transdermal, or via inhalation. Intrapulmonary delivery methods, apparatus and drug preparation are described, for example, in U.S. Pat. Nos. 5,785,049, 5,780,019, and 5,775,320, each incorporated herein by reference. In some embodiments, the method of intradermal delivery is by iontophoretic delivery via patches; one example of such delivery is taught in U.S. Pat. No. 5,843,015, which is incorporated herein by reference. Administration may be by periodic injections of a bolus of the preparation, or as a sustained release dosage form over long periods of time, or by intravenous or intraperitoneal administration, for example, from a reservoir which is external (e.g., an IV bag) or internal (e.g., a bioerodable implant, a bioartificial organ, or a population of implanted GAA production cells). See, e.g., U.S. Pat. Nos. 4,407,957 and 5,798,113, each incorporated herein by reference. Intrapulmonary delivery methods and apparatus are described, for example, in U.S. Pat. Nos. 5,654,007, 5,780,014, and 5,814,607, each incorporated herein by reference. Other useful parenteral delivery systems include ethylene-vinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, pump delivery, encapsulated cell delivery, liposomal delivery, needle-delivered injection, needle-less injection,

43

nebulizer, aeorosolizer, electroporation, and transdermal patch. Needle-less injector devices are described in U.S. Pat. Nos. 5,879,327; 5,520,639; 5,846,233 and 5,704,911, the specifications of which are herein incorporated by reference. Any of the GAA preparation described herein can administered in these methods.

5

10

15

20

25

30

Optionally the enzyme or GAA enzyme or nucleic acid encoding the enzyme or GAA enzyme and/or the antisense oligomeric compound may be administered in combination with an Active Site-Specific Chaperone (ASSC) for the GAA enzyme (e.g., 1-deoxynojirimycin (DNJ, 1-DNJ)). The ASSC enables higher concentrations of the enzyme or GAA enzyme or nucleic acid encoding the enzyme or GAA enzyme and/or the antisense oligomeric compound in a pharmaceutical composition. In combination with an ASSC the enzyme or GAA enzyme or nucleic acid encoding the enzyme or GAA enzyme and/or the antisense oligomeric compound may be administered at a concentration between about 5 and about 250 mg/mL. Optionally, the enzyme or GAA enzyme or nucleic acid encoding the enzyme or GAA enzyme and/or the antisense oligomeric compound is combined with an ASSC at a high concentration, for example, at a concentration selected from the group consisting of about 25 -240 mg/mL, about 80-200 mg/mL, about 115-160 mg/mL. Optionally, the enzyme or GAA enzyme or nucleic acid encoding the enzyme or GAA enzyme and/or the antisense oligomeric compound is combined with an ASSC, wherein the ASSC is present at a concentration between about 5 mg/mL and about 200 mg/mL, optionally between about 32 mg/mL and about 160 mg/mL. Optionally, t the enzyme or GAA enzyme or nucleic acid encoding the enzyme or GAA enzyme and/or the antisense oligomeric compound is combined with an ASSC, wherein the ASSC is present at a concentration between about 0.5 mM and about 20 mM. GAA enzyme combined with an ASSC can remain soluble at a high concentration (e.g., 25 mg/mL) and remain non- aggregated while maintaining a viscosity suitable for injection (e.g., subcutaneous administration). Optionally the

44

compositions of the present invention comprise more than about 5 mg/mL of the enzyme or GAA enzyme or nucleic acid encoding the enzyme or GAA enzyme and/or the antisense oligomeric compound.

Optionally, the compositions of the invention comprise about 5-25 mg/mL the enzyme or GAA enzyme or nucleic acid encoding the enzyme or GAA enzyme and/or the antisense oligomeric compound and about 1-10 mM DNJ.

5

10

15

20

25

Optionally, 1 - deoxynojirimycin-HCl, or a pharmaceutically acceptable salt thereof, may be administered to a subject in a dose of between about 10 mg/kg to 1000 mg/kg, Optionally administered orally, either prior to, concurrent with, or after administration of the the enzyme or GAA enzyme or nucleic acid encoding the enzyme or GAA enzyme and/or the antisense oligomeric compound.

Optionally the method of treating Pompe Disease comprises administering the enzyme or GAA enzyme or nucleic acid encoding the enzyme or GAA enzyme and/or the antisense oligomeric compound biweekly, weekly or once per two weeks for up to about 10 weeks in combination with from about 1 to about 5000 mg/kg of an ASSC (e.g., 1-DNJ-HCl) prior to, and in regular intervals after, the infusion of the enzyme or GAA enzyme or nucleic acid encoding the enzyme or GAA enzyme and/or the antisense oligomeric compound. For example, the ASSC could be administered within two hours of the infusion, and then administered at regular intervals once, twice, three-times, four-times, five-times or six-times within 24 hours post-infusion. Optionally, the GAA is Myozyme® and is administered via infusion once per week and the ASSC (e.g., 1-DNJ-HCl) is administered at 10 mg/kg, 100 mg/kg or l000mg/kg 30 minutes prior to infusion, and then 8, 16, and 24 hours after each Myozyme® infusion.

Optionally, the GAA is Lumizyme® and is administered via infusion once per week and the ASSC (e.g., 1-DNJ-HCl) is administered at

45

10 mg/kg, 100 mg/kg or l000mg/kg 30 minutes prior to infusion, and then 8, 16, and 24 hours after each Lumizyme® infusion.

It is believed that acid alpha-glucosidase (GAA) functions to remove terminal glucose

residues from lysosomal glycogen. Some genetic mutations reduce GAA trafficking and maturation. The pharmacological chaperone 1-DNJ increases GAA levels by selectively binding and stabilizing the enzyme in a proper conformation which restores proper protein trafficking to the lysosome. Optionally, the ASSC is administered as described in International Publication No. 2008/134628, which is hereby incorporated by reference in its entirety.

The ASSC is a small molecule inhibitor of the GAA enzyme, including reversible competitive inhibitors of the GAA enzyme. Optionally the ASSC may be represented by the formula:

where R_1 is H or a straight or branched alkyl, cycloalkyl, alkoxyalkyl or aminoalkyl containing 1 - 12 carbon atoms optionally substituted with an -OH, - COOH, -Cl, -F, -CF₃, -OCF₃, -O-C(O)N-(alkyl)₂; and R_2 is H or a straight or branched alkyl, cycloalkyl, or alkoxylalkyl containing 1 - 9 carbon atoms; including pharmaceutically acceptable salts, esters and prodrugs thereof. Optionally the ASSC is 1- deoxynojirimycin (1-DNJ), which is represented by the following formula:

20

10

15

or a pharmaceutically acceptable salts, esters or prodrug of 1 - deoxynojirimycin. Optionally, the salt is hydrochloride salt (i.e. 1-deoxynojirimycin-HCl). Optionally, the ASSC is N-butyl-deoxynojirimycin (NB-DNJ; Zavesca®, Actelion Pharmaceuticals Ltd, Switzerland), which is represented by the following formula:

5

or a pharmaceutically acceptable salt, ester or prodrug of NB-DNJ. Optionally the ASSC is $C_{10}H_{19}NO_4$, which is represented by the following formula:

or a pharmaceutically acceptable salt, ester or prodrug of $C10H_{19}NO_4$. Optionally the salt is hydrochloride salt.

Optionally, the ASSC is $C_{12}H_{23}NO_4$, which is represented by the following formula:

WO 2017/099579

5

10

15

20

or a pharmaceutically acceptable salt, ester or prodrug of $C_{12}H_{23}NO_4$. Optionally, the salt is hydrochloride salt.

Patients with complete absence of GAA enzyme are cross-reactive immunological material (CRIM) negative, and develop high titer antibody to rhGAA. Patients with GAA protein detectable by western blot are classified as CRIM-positive. Whereas the majority of CRIM-positive patients have sustained therapeutic responses to ERT, or gene therapy CRIM-negative patients almost uniformly do poorly, experiencing rapid clinical decline because of the development of sustained, high-titer antibodies to rhGAA.

47

PCT/NL2015/050849

A combination of rituximab with methotrexate with or without intravenous gammaglobulins (IVIG) may be used to induce tolerance induction of CRIM negative patients. The treatment may be prophylactically to avoid antibody to rhGAA or may be given to patients that have already developed anti-rhGAA. Rituximab may be given in a dose of 100- 1000 mg/kg , or in a dose of 150-900 mg/kg, or in a dose of 200-800 mg/kg, or in a dose of 350-500 mg/kg, or in a dose of 400-450 mg/kg.

Rituximab may be given once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 days. Optionally Rituximab is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 weeks. Optionally Rituximab is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, or 25 months. Optionally Rituximab is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, years.

5

10

15

20

25

30

Methotrexate may be given in a dose of 0.1- 10 mg/kg, or in a dose of 0.2-5 mg/kg, or in a dose of 0.3-2 mg/kg, or in a dose of 0.4-1 mg/kg or in a dose of 0.5-0.7 mg/kg. Methotrexate may be given once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 days. Optionally Methotrexate is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 weeks. Optionally Methotrexate is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 months. Optionally Methotrexate is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, years. Administration of Methotrexate may be based on hematologic tolerance. IVIG may be given in a dose of 0.1-10 mg/kg, or in a dose of 0.2-5 mg/kg, or in a dose of 0.3-2 mg/kg, or in a dose of 0.4-1 mg/kg or in a dose of 0.5-0.7 mg/kg. IVIG may be given once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 days. Optionally IVIG is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 weeks. Optionally IVIG is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 months. Optionally IVIG is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, years. Treatment may be given until rhGAA antibody titer is down to zero. Various combinations of administration of the enzyme or GAA and Rituximab, and/or Methotrexate and/or IVIG is explicitly envisioned in the present invention.

In one aspect, the invention is directed to an antisense oligomeric compound. Previous work by others has resulted in the design of antisense oligomeric compounds that promote exon exclusion in several human disorders including Duchenne Muscular Dystrophy (DMD). The strategy is simple and straightforward and relies on blocking a well-defined splice site. This results in exon skipping, thereby removing the exon containing the

5

10

15

20

25

49

PCT/NL2015/050849

pathogenic gene variant. The resulting mRNA is a little bit shorter resulting in expression of a truncated protein with considerable residual activity, sufficient to at least partially alleviate the disease. The strategy is simple because canonical splice sites are known for virtually all genes. The only requirement is to design an antisense oligomeric compound that binds to the canonical splice site in the pre-mRNA, which will result in blocking of that site and skipping of the exon involved.

A much more difficult task is the reverse process: to promote inclusion rather than exclusion of an exon. To promote exon inclusion, a splice repressor may be blocked using an antisense oligomeric compound. It is however unknown where splice repressors are located. These can be present in introns or in exons and are named intronic or exonic splice silencers (ISSs or ESSs, respectively). There is software available to predict the presence of such silences but these are very unreliable. This is further illustrated by our own experience using the minigene system containing GAA exon 1-3, which failed to confirm activity of predicted splice silencer motifs. The idea to promote exon 2 inclusion of GAA with an antisense oligomeric compound to treat Pompe disease is entirely novel.

sequences targeting SEQ ID NO: 1 are able to enhance inclusion of GAA exon 2. Also sequences targeting SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, were found to be able to enhance inclusion of GAA exon 2. It is to be noted that targeting means that at least part of the sequence SEQ ID NO: 1 is targeted, e.g. by a sequence that hybridizes with at least a part or by the sequence SEQ ID NO: 1, or that binds to at least a part of SEQ ID NO: 1. Sequences that target may be shorter or longer than the target sequence.

Sequence in cDNA to which AON anneals* sequence of AON (5'->3'): SEQ ID NO:

50

 $c-32-156_-210$

c-32-156_-200

GC 37

5

10

15

20

25

30

c-32-160_-190 TGCACTCCCCTGCTGGAGCTTTTCTCGCCCT

38

c-32-160_195

 ${f TGCACTCCCTGCTGGAGCTTTTCTCGCCCTTCCTT}$

39

c-32-165_-195 TCCCCTGCTGGAGCTTTTCTCGCCCTTCCTT

40

Optionally the sequences targeting SEQ ID NO: 1 hybridize with at least a part of SEQ ID NO: 1. Sequences that hybridize may be shorter or longer than the target sequence. Nucleotide sequences SEQ ID NO: 2-33 are oligomers that are able to enhance GAA exon 2 inclusion.

Two variant antisense oligomeric compounds, one of 21 nucleotides (SEQ ID NO: 33) and one of 25 nucleotides (SEQ ID NO: 12), were tested and both were found to enhance exon 2 inclusion. This was accompanied by enhanced GAA enzyme activity of at least 2 fold. It is known that patients with the IVS1 variant have ~15% leaky wild type splicing. The enhancement of 2 fold results in enzyme activities of ~30%, which are known to be above the disease threshold of 20% and thus are anticipated to restore at least a part, or even fully the lysosomal glycogen degradation.

In one aspect or embodiment of aspects and/or embodiments thereof, the invention is directed to an antisense oligomeric compound selected from the group comprising SEQ ID NO: 2-33 and variants and fragments having at least 80% identity thereof. The antisense oligomeric

compound may also target single nucleotide polymorphism of SEQ ID NO: 1, 37, 38, 39, 40. It should be noted that it may not necessary to have the full length of SEQ ID NO: 2-33, fragments having a shorter or longer sequence are also envisioned. The inventors have found the target genomic sequence which enables the inclusion of exon 2 of GAA and a skilled person is capable of finding suitable sequences that target this target genomic sequence, such as SEQ ID NO: 1, 37, 38, 39, 40 and single nucleotide polymorphisms thereof. Exemplary sequences that target this target genomic sequence, such as SEQ ID NO: 1, 37, 38, 39, or 41 may be SEQ ID NO: 2-33, but also variants and fragments having at least 80% identity thereof. In particular shorter fragments such as fragments with 18, 19, 20, 21, 22, 23, or 24 nucleotides of SEQ ID NO: 2-33 are envisioned.

5

10

15

20

25

In one aspect or embodiment of aspects and/or embodiments thereof, the invention is directed to an antisense oligomeric compound complementary to a polynucleotide having a sequence selected from the group comprising SEQ ID NO: 1, 37-40 and single nucleotide polymorphisms thereof. Also sequences having at least 80% identity to antisense oligomeric compound complementary to a polynucleotide having a sequence selected from the group comprising SEQ ID NO: 1, 37-40 are envisioned. Antisense oligomeric compound that target one or more than one single nucleotide polymorphisms may be designed.

In one aspect or embodiment of aspects and/or embodiments thereof, the invention is directed to an antisense oligomeric compound targeting a sequence selected from the group comprising the genomic sequence c-32-156_-210.

In one aspect or embodiment of aspects and/or embodiments thereof, the invention is directed to an antisense oligomeric compound comprising sequences selected from the group comprising SEQ ID NO: 2-33, 41-1583, 1590-1594 and sequences having at least 80% identity thereof.

In one aspect or embodiment of aspects and/or embodiments thereof, the invention is directed to antisense oligomeric compound comprising a sequences selected from the group comprising SEQ ID NO: 2-33, and 41-540, 1590-1594.

In one aspect or embodiment of aspects and/or embodiments thereof the invention is directed to an antisense oligomeric compound complementary to a genomic nucleic acid sequence of GAA gene targeting the location that comprises the position of the following mutation c.-32-13T>G, c.-32-3C>G c.-32-102T>C, c.-32-56C>T, c.-32-46G>A, c.-32-28C>A, c.-32-28C>T, c.-32-21G>A, c.7G>A, c.11G>A, c.15_17AAA, c.17C>T, c.19_21AAA, c.26_28AAA, c.33_35AAA, c.39G>A, c.42C>T, c.90C>T, c.112G>A, c.137C>T, c.164C>T, c.348G>A, c.373C>T, c.413T>A, c.469C>T, c.476T>C, c.476T>G, c.478T>G, c.482C>T, c.510C>T, c.515T>A, c.520G>A, c.546+11C>T, c.546+14G>A, c.546+19G>A, c.546+23C>A, c.547-6, c.1071, c.1254, c.1552-30, c.1256A>T, c.1551+1G>T, c.546G>T, .17C>T, c.469C>T, c.546+23C>A, c.-32-102T>C, c.-32-56C>T, c.11G>A, c.112G>A, c.137C>T.

The above identified mutations have been found to modulate splicing. Targeting the location of the mutation may also modulate the splicing. It is therefore understood that the antisense oligomeric compound targets the location the mutation. The nomenclature of the mutation identifies the location and the mutation. It is understood that the antisense oligomeric compound targets the location of the mutation, and the mutation does not need to be present in the genomic sequence or in the pre-mRNA. The location of the mutation is thus the location of the mutated nucleotide, or the location of the wild type nucleotide of the mutation. The antisense oligomeric compound may be targeted to a sequence comprising nucleotides upstream and nucleotides downstream of the location of the mutation. Optionally the antisense oligomeric compound target a sequence comprising 2-50 nucleotides upstream, and/or 2-50 nucleotides downstream of the location of the mutation, more Optionally the antisense oligomeric

compound target a sequence comprising 3-45 nucleotides upstream, and/or 3-45 nucleotides downstream of the location of the mutation, more Optionally the antisense oligomeric compound target a sequence comprising 5-40 nucleotides upstream, and/or 5-40 nucleotides downstream of the location of the mutation, more Optionally the antisense oligomeric 5 compound target a sequence comprising 6-35 nucleotides upstream, and/or 6-35 nucleotides downstream of the location of the mutation, more Optionally the antisense oligomeric compound target a sequence comprising 7-33 nucleotides upstream, and/or 7-33 nucleotides downstream of the 10 location of the mutation, more Optionally the antisense oligomeric compound target a sequence comprising 8-30 nucleotides upstream, and/or 8-30 nucleotides downstream of the location of the mutation, more Optionally the antisense oligomeric compound target a sequence comprising 9-28 nucleotides upstream, and/or 9-28 nucleotides downstream of the 15 location of the mutation, more Optionally the antisense oligomeric compound target a sequence comprising 10-25 nucleotides upstream, and/or 10-25 nucleotides downstream of the location of the mutation, more Optionally the antisense oligomeric compound target a sequence comprising 11-22 nucleotides upstream, and/or 11-22 nucleotides downstream of the 20 location of the mutation, more Optionally the antisense oligomeric compound target a sequence comprising 12-20 nucleotides upstream, and/or 12-20 nucleotides downstream of the location of the mutation, more Optionally the antisense oligomeric compound target a sequence comprising 13-18 nucleotides upstream, and/or 13-18 nucleotides downstream of the 25location of the mutation, more Optionally the antisense oligomeric compound target a sequence comprising 14-16 nucleotides upstream, and/or 14-16 nucleotides downstream of the location of the mutation.

The nomenclature is well known to a skilled person and can be found in Dunnen and Antonarakis Human mutation 15:7-12(2000) and Antonarakis SE, the Nomenclature Working Group. 1998.

30

Recommendations for a nomenclature system for human gene mutations. Hum Mutat 11:1–3 and on the website (http://www.dmd.nl/mutnomen.html. Genomic positions may also be found on www.pompecenter.nl. All of these are incorporated by reference.

Optionally the genomic nucleic acid sequence is pre-mRNA.

These antisense oligomeric compound are useful in the treatment of glycogen storage disease type II /Pompe disease .

5

10

15

20

25

30

In one aspect or the target sequence is an intronic splicing silencer or ISS. Optionally of the invention and/or embodiments thereof of an aspect and/or embodiments of the invention the target sequence is the TCCCCA (SEQ ID NO: 1). It should be noted that also naturally occurring single nucleotide polymorphism are included. . Antisense oligomeric compounds targeting SEQ ID NO: 1 are a very suitable to treat Pompe patients. Exemplary antisense oligomeric compounds targeting SEQ ID NO: 1 are SEQ ID NO: 2-33 and in particular SEQ ID NO: 12 and SEQ ID NO 33. However the invention is not limited to these two sequences. A skilled person is capable of designing antisense oligomeric compounds against target sequence SEQ ID NO: 1, 37, 38, 39, or 40. The antisense oligomeric compounds against target sequenced SEQ ID NO: 1 may have length of 10 to 100 nucleotides, Optionally 11 to 75 nucleotides, Optionally 12 to 73 nucleotides, Optionally 13 to 70 nucleotides, Optionally 14 to 65 nucleotides, Optionally 15 to 60 nucleotides, Optionally 16 to 55 nucleotides, Optionally 17 to 50 nucleotides, Optionally 18 to 45 nucleotides, Optionally 19 to 40 nucleotides, Optionally 20 to 38 nucleotides, Optionally 21 to 35 nucleotides, Optionally 22 to 33 nucleotides, Optionally 23 to 30 nucleotides, Optionally 24 to 29 nucleotides, Optionally 25 to 28 nucleotides, Optionally 26 to 27 nucleotides.

Hereunder exemplary antisense oligomeric compounds targeting SEQ ID NO: 1 are given

cDNA to which AON anneals* c32-180156 c32-181157	TGGGGAGAGGGCCAGAAGGAAGGGCC GGGGAGAGGGCCAGAAGGAAG	2
c32-180156 c32-181157	GGGGAGAGGCCAGAAGGAAGGCCG	
c32-181157	GGGGAGAGGCCAGAAGGAAGGCCG	
		 2
		3
c32-182158	GGGAGAGGCCAGAAGGAAGGCGA	4
c32-183159	GGAGAGGCCAGAAGGAAGGGCGAG	5
c32-184160	GAGAGGCCAGAAGGAAGGCCGAGA	6
c32-185161	AGAGGGCCAGAAGGAAGGGCGAGAA	7
c32-186162	GAGGGCCAGAAGGAAGGGCGAGAAA	8
c32-187163	AGGGCCAGAAGGAAGGGCGAGAAAA	9
c32-188164	GGGCCAGAAGGAAGGGCGAGAAAAG	10
c32-189165	GGCCAGAAGGAAGGCGAGAAAAGC	11
c32-190166	GCCAGAAGGAAGGGCGAGAAAAGCT	12
c32-191167	CCAGAAGGAAGGCCGAGAAAAGCTC	13
c32-192168	CAGAAGGAAGGCCGAGAAAAGCTCC	14
c32-193169	AGAAGGAAGGCCGAGAAAAGCTCCA	15
c32-194170	GAAGGAAGGCCGAGAAAAGCTCCAG	16
c32-195171	AAGGAAGGCCGAGAAAAGCTCCAGC	17
c32-196172	AGGAAGGCCGAGAAAAGCTCCAGCA	18
c32-197173	GGAAGGCCGAGAAAAGCTCCAGCAG	19
c32-198174	GAAGGGCGAGAAAAGCTCCAGCAGG	20
c32-199175	AAGGGCGAGAAAAGCTCCAGCAGGG	21
c32-200176	AGGGCGAGAAAAGCTCCAGCAGGGG	22
c32-201177	GGGCGAGAAAAGCTCCAGCAGGGGA	23
c32-202178	GGCGAGAAAAGCTCCAGCAGGGGAG	24
c32-203179	GCGAGAAAAGCTCCAGCAGGGGAGT	25
c32-204180	CGAGAAAAGCTCCAGCAGGGGAGTG	26
c32-205181	GAGAAAAGCTCCAGCAGGGGAGTGC	27

c32-206182	AGAAAAGCTCCAGCAGGGGAGTGCA	28
c32-207183	GAAAAGCTCCAGCAGGGGAGTGCAG	29
c32-208184	AAAAGCTCCAGCAGGGGAGTGCAGA	30
c32-209185	AAAGCTCCAGCAGGGGAGTGCAGAG	31
c32-210186	AAGCTCCAGCAGGGGAGTGCAGAGC	32
c32-187167	CCAGAAGGAAGGCGAGAAAA	33

In the above examples the sequences are 25 nucleotides long however longer variants or shorter fragment are also envisioned. Exemplary is SEQ ID NO: 33 which is only 21 nucleotides long and comprises the same nucleotides as SEQ ID NO: 12 but is shorter. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of SEQ ID NO: 2-33 and fragments and variants thereof having at least 80% sequence identity. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of SEQ ID NO: 2-33 and fragments and variants thereof having at least 80%,83%, 85%, 87%, 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7% sequence identity to SEQ ID NO: 2-33.

5

10

15

20

The present invention is also directed to sequences that are at least 80% identical to SEQ ID NO: 2-33. Optionally at least 85% identical to SEQ ID NO: 2-33, more Optionally at least 88% identical to SEQ ID NO: 2-33, more Optionally at least 90% identical to SEQ ID NO: 2-33. more Optionally at least 91% identical to SEQ ID NO: 2-33, more Optionally at least 92% identical to SEQ ID NO: 2-33, more Optionally at least 93% identical to SEQ ID NO: 2-33, more Optionally at least 94% identical to SEQ ID NO: 2-33, more Optionally at least 95% identical to SEQ ID NO: 2-33, more Optionally at least 96% identical to SEQ ID NO: 2-33, more Optionally at least 96% identical to SEQ ID NO: 2-33, more Optionally at least 97%

identical to SEQ ID NO: 2-33, more Optionally at least 98% identical to SEQ ID NO: 2-33, more Optionally at least 99% identical to SEQ ID NO: 2-33.

Preferred antisense sequences are SEQ ID NO: 12, and SEQ ID NO:33 or sequences that are at least 80% identical thereto, Optionally at least 85% identical, more Optionally at least 88% identical, more Optionally at least 90% identical, more Optionally at least 91% identical, more Optionally at least 92% identical, more Optionally at least 93% identical, more Optionally at least 94% identical, more Optionally at least 95% identical, more Optionally at least 96% identical, more Optionally at least 97% identical, more Optionally at least 98% identical, more Optionally at least 99% identical to SEQ ID NO: 12, and/or 33.

5

10

15

20

25

Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of fragments SEQ ID NO: 2-33, wherein the fragment is 16, 17, 18, 19, 20, 21, 22, 23, or 24 nucleotides long. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of fragments SEQ ID NO: 2-33, wherein the fragment is 17, 18, 19, 20, 21, or 22 nucleotides long. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of fragments SEQ ID NO: 2-33, wherein the fragment is 19, 20, or 21 nucleotides long.

The antisense oligomeric compounds may be selected from the group of SEQ ID NO: 41-540:

Sequence in GAA	AON sequence 5' -> 3'	Seq ID
cDNA to which AON		
anneals		
c32-319300	CCAAACAGCTGTCGCCTGGG	41
c32-299280	AGGTAGACACTTGAAACAGG	42
c32-279260	CCCAGGAAGACCAGCAAGGC	43
c32-259240	TCAAACACGCTTAGAATGTC	44

c32-239220	GTCTGCTAAAATGTTACAAA	45
c32-219200	GAGTGCAGAGCACTTGCACA	46
c32-199180	CGAGAAAAGCTCCAGCAGGG	47
c32-179160	GAGAGGCCAGAAGGAAGGG	48
c32-159140	GCCCTGCTGTCTAGACTGGG	49
c32-139120	AGGTGGCCAGGGTGGGTGTT	50
c32-119100	GCACCCAGGCAGGTGGGGTA	51
c32-9980	CAACCGCGGCTGGCACTGCA	52
c32-7960	TCAAAGCAGCTCTGAGACAT	53
c32-5940	GGGCGCACTCACGGGGCTC	54
c32-3920	GCTCAGCAGGGAGGCGGGAG	55
c32-190	CCTGCGGGAGAAGAAGCGG	56
c3012	GCCTGGACAGCTCCTACAGG	57
c10_+9	CACTCCCATGGTTGGAGATG	58
c.10_+29	TGGGAGCAGGGCGGTGCCT	59
c.30_+49	CGCAGACGGCCAGGAGCCGG	60
c.50_+69	GGTTGCCAAGGACACGAGGG	61
c.70_+89	ATGTGCCCCAGGAGTGCAGC	62
c.90_+109	GCAGGAAATCATGGAGTAGG	63
c.110_+129	ACTCAGCTCTCGGGGAACCA	64
c.130_+149	TCCAGGACTGGGGAGGAGCC	65
c.150_+169	GGTGAGCTGGGTGAGTCTCC	66
c.170_+189	TGGTCTGCTGGCTCCCTGCT	67
c.190_+209	GCCTGGGCATCCCGGGGCCC	68
c.210_+229	CTCTGGGACGGCCGGGGTGT	69
c.230_+249	GTCGCACTGTGTGGGCACTG	70
c.250_+269	AAGCGGCTGTTGGGGGGGAC	71
c.270_+289	CCTTGTCAGGGGCGCAATCG	72
c.290_+309	GCACTGTTCCTGGGTGATGG	73
c.310_+329	TAGCAACAGCCGCGGGCCTC	74
c.330_+349	GCCCTGCTTTGCAGGGATG	75
c.350_+369	CCCCATCTGGGCTCCCTGCA	76
c.370_+389	GGGAAGAAGCACCAGGGCTG	77
c.390_+409	TGTAGCTGGGGTAGCTGGGT	78
c.410_+429	GGAGCTCAGGTTCTCCAGCT	79
c.430_+449	GCCGTGTAGCCCATTTCAGA	80
c.450_+469	GGGTGGTACGGGTCAGGGTG	81
c.470_+489	GTCCTTGGGGAAGAAGGTGG	82
c.490_+509	TCCAGCCGCAGGGTCAGGAT	83
c.510_+529	TCTCAGTCTCCATCATCACG	84
c.530_+546	GTGAAGTGGAGGCGGT	85

c32-225206	AGAGCACTTGCACAGTCTGC	86
c32-223204	GCAGAGCACTTGCACAGTCT	87
c32-221202	GTGCAGAGCACTTGCACAGT	88
c32-217198	GGGAGTGCAGAGCACTTGCA	89
c32-215196	AGGGGAGTGCAGAGCACTTG	90
c32-213194	GCAGGGGAGTGCAGAGCACT	91
c32-185166	GCCAGAAGGAAGGCGAGAA	92
c32-183164	GGGCCAGAAGGAAGGGCGAG	93
c32-181162	GAGGGCCAGAAGGAAGGGCG	94
c32-177158	GGGAGAGGCCAGAAGGAAG	95
c32-175156	TGGGGAGAGGCCAGAAGGA	96
c32-173154	ACTGGGGAGAGGCCAGAAG	97

variants that affect aberrant splicing of exon 2 caused by IVS1 in GAA exon 1-3 minigene system	AON sequence designed to block the region surrounding the identified splice element (5' -> 3')	Seq ID
c32-102C>T	CACCCAGGCAGGTGGGGTAAGGTGG	98
	AGCACCCAGGCAGGTGGGGTAAGGT	99
	GCAGCACCCAGGCAGGTGGGGTAAG	100
	CTGCAGCACCCAGGCAGGTGGGGTA	101
	CACTGCAGCACCCAGGCAGGTGGGG	102
	GGCACTGCAGCACCCAGGCAGGTGG	103
	CTGGCACTGCAGCACCCAGGCAGGT	104
	GGCTGGCACTGCAGCACCCAGGCAG	105
	GCGGCTGGCACTGCAGCACCCAGGC	106
	CCGCGGCTGGCACTGCAGCACCCAG	107
	TCAACCGCGGCTGGCACTGCAGCAC	108
	ACCCAGGCAGGTGGGGTAAGGTGGC	109
	GCACCCAGGCAGGTGGGGTAAGGTG	110
	CAGCACCCAGGCAGGTGGGGTAAGG	111
	TGCAGCACCCAGGCAGGTGGGGTAA	112
	ACTGCAGCACCCAGGCAGGTGGGGT	113
	GCACTGCAGCACCCAGGCAGGTGGG	114
	TGGCACTGCAGCACCCAGGCAGGTG	115
	GCTGGCACTGCAGCACCCAGGCAGG	116
	CGGCTGGCACTGCAGCACCCAGGCA	117
	CGCGGCTGCACTGCAGCACCCAGG	118
	ACCGCGGCTGGCACTGCAGCACCCA	119

	CAACCGCGGCTGGCACTGCAGCACC	120
	ATCAACCGCGGCTGGCACTGCAGCA	121
c32-56C>T, c-32-	GGCTCTCAAAGCAGCTCTGAGACAT	122
46G>A, c32-28C>A, c	GGGGCTCTCAAAGCAGCTCTGAGAC	123
32-28C>T, c32-21G>A	ACGGGGCTCTCAAAGCAGCTCTGAG	124
	TCACGGGGCTCTCAAAGCAGCTCTG	125
	ACTCACGGGGCTCTCAAAGCAGCTC	126
	GCACTCACGGGGCTCTCAAAGCAGC	127
	CGGCACTCACGGGGCTCTCAAAGCA	128
	GGCGGCACTCACGGGGCTCTCAAAG	129
	GGGGCGCACTCACGGGGCTCTCAA	130
	GAGGGCGCACTCACGGGGCTCTC	131
	GGGAGGGCGCACTCACGGGGCTC	132
	GCGGGAGGGCGCACTCACGGGGC	133
	AGGCGGAGGGGCGCACTCACGGG	134
	GGAGGCGGAGGGGCACTCACG	135
	AGGGAGGCGGAGGGGCACTCA	136
	GCAGGGAGGCGGAGGGCGCACT	137
	CAGCAGGGAGGCGGGAGGGCGCA	138
	CTCAGCAGGGAGGGGGGGG	139
	GGCTCAGCAGGGAGGGGGC	140
	CGGGCTCAGCAGGGAGGCGGGAGGG	141
	AGCGGGCTCAGCAGGGAGGCGGGAG	142
	AAAGCGGGCTCAGCAGGGAGGCGGG	143
	AGAAAGCGGGCTCAGCAGGGAGGCG	144
	GAAGAAAGCGGGCTCAGCAGGGAGG	145
	GAGAAGAAAGCGGGCTCAGCAGGGA	146
	GGGAGAAGAAGCGGGCTCAGCAGG	147
	GCGGGAGAAGAAGCGGGCTCAGCA	148
	CTGCGGGAGAAGAAGCGGGCTCAG	149
	GCCTGCGGGAGAAGAAAGCGGGCTC	150
	AGGCCTGCGGGAGAAGAAGCGGGC	151
	ACTCCCATGGTTGGAGATGGCCTGG	152
	TCACTCCCATGGTTGGAGATGGCCT	153
	CCTCACTCCCATGGTTGGAGATGGC	154
	TGCCTCACTCCCATGGTTGGAGATG	155
	GGTGCCTCACTCCCATGGTTGGAGA	156
	CGGGTGCCTCACTCCCATGGTTGGA	157
	GGCGGTGCCTCACTCCCATGGTTG	158
	AGGGCGGTGCCTCACTCCCATGGT	159
	GCAGGGCGGTGCCTCACTCCCATG	160

GAGCAGGGCGGGTGCCTCACTCCCA	161
GGGAGCAGGGCGGTGCCTCACTCC	162
GTGGGAGCAGGGCGGGTGCCTCACT	163
CGGTGGGAGCAGGGCGGGTGCCTCA	164
GCCGGTGGGAGCAGGGCGGGTGCCT	165
GAGCCGGTGGGAGCAGGGCGGGTGC	166
AGGAGCCGGTGGGAGCAGGGCGGGT	167
CCAGGAGCCGGTGGGAGCAGGGCGG	168
GGCCAGGAGCCGGTGGGAGCAGGGC	169
ACGGCCAGGAGCCGGTGGGAGCAGG	170
AGACGGCCAGGAGCCGGTGGGAGCA	171
GCAGACGGCCAGGAGCCGGTGGGAG	172
GCGCAGACGGCCAGGAGCCGGTGGG	173
GGGCGCAGACGCCAGGAGCCGGTG	174
GAGGGCGCAGACGGCCAGGAGCCGG	175
ACGAGGCCAGACGCCAGGAGCC	176
ACACGAGGCGCAGACGCCAGGAG	177
GGACACGAGGGCGCAGACGGCCAGG	178
AAGGACACGAGGGCCAGACGGCCA	179
CCAAGGACACGAGGGCGCAGACGGC	180
TGCCAAGGACACGAGGGCGCAGACG	181
GCTCTCAAAGCAGCTCTGAGACATC	182
GGGCTCTCAAAGCAGCTCTGAGACA	183
CTCACGGGGCTCTCAAAGCAGCTCT	184
CACTCACGGGGCTCTCAAAGCAGCT	185
GGCACTCACGGGGCTCTCAAAGCAG	186
GCGGCACTCACGGGGCTCTCAAAGC	187
GGGCGCACTCACGGGGCTCTCAAA	188
AGGGGCGCACTCACGGGGCTCTCA	189
GGAGGGCGCACTCACGGGGCTCT	190
CGGGAGGGCGCACTCACGGGGCT	191
GGCGGAGGGGCGCACTCACGGGG	192
GAGGCGGAGGGGCGCACTCACGG	193
GGGAGGCGGAGGGCACTCAC	194
CAGGGAGGGGGGGGCACTC	195
AGCAGGAGGCGGAGGGCGCAC	196
TCAGCAGGGAGGCGGGC	197
GCTCAGCAGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGG	198
GGGCTCAGCAGGGAGGCGGGAGGGG	199
GCGGGCTCAGCAGGGAGGCGGGAGG	200
AAGCGGGCTCAGCAGGAGGCGGGA	$\frac{200}{201}$
GAAAGCGGGCTCAGCAGGGAGGCGG	$\frac{201}{202}$
UNANUOUUU I ONUONUUNAUUU	

	AAGAAAGCGGGCTCAGCAGGGAGGC	203
	AGAAGAAAGCGGGCTCAGCAGGAGGC	$\frac{203}{204}$
	GGAGAAGAAGCGGGCTCAGCAGGG	204
	CGGGAGAAGAAGCGGGCTCAGCAG	$\frac{203}{206}$
	TGCGGAGAAGAAGCGGGCTCAGC	200
	CCTGCGGGAGAAGAAGCGGGCTCA	207
	GGCCTGCGGGAGAAGAAGCGGGCT	208
	CAGGCCTGCGGGAGAAGAAGCGGG	210
	CGGGGCTCTCAAAGCAGCTCTGAGA	210
	CACGGGGCTCTCAAAGCAGCTCTGA	212
c.7G>A, c.11G>A,	CTCCCATGGTTGGAGATGCCTGGA	213
c.15 17AAA, c.17C>T,	CACTCCCATGGTTGGAGATGGCCTG	213
c.19_21AAA,	CTCACTCCCATGGTTGGAGATGGCCTG	214
c.26_28AAA,	GCCTCACTCCCATGGTTGGAGATGGC	216
c.33_35AAA, c.39G>A,	GTGCCTCACTCCCATGGTTGGAGAT	217
c.42C>T	GGTGCCTCACTCCCATGGTTGGAGA	217
	GCGGGTGCCTCACTCCCATGGTTGGAG	219
	GGGCGGTGCCTCACTCCCATGGTTG	$\frac{219}{220}$
	CAGGGCGGTGCCTCACTCCCATGGTT	$\frac{220}{221}$
	AGCAGGGGGGTGCCTCACTCCCAT	$\begin{array}{c c} 221\\ 222 \end{array}$
	GGAGCAGGGCGGTGCCTCACTCCC	223
	TGGGAGCAGGGCGGTGCCTCACTC	$\begin{array}{c c} 223 \\ 224 \\ \end{array}$
	GGTGGGAGCAGGGCGGGTGCCTCAC	$\begin{array}{c c} 224 \\ 225 \end{array}$
	CCGCTGGGAGCAGGGCGGGTGCCTC	$\begin{array}{c c} 225 \\ \hline 226 \end{array}$
	AGCCGGTGGGAGCAGGGCGGGTGCC	$\begin{array}{c c} 226 \\ \hline 227 \end{array}$
	GGAGCCGGTGGGAGCAGGGCGGGTG	228
	CAGGAGCCGGTGGGAGCAGGGCGGG	229
	GCCAGGAGCCGGTGGGAGCAGGGCG	230
	CGGCCAGGAGCCGGTGGGAGCAGGG	231
	GACGGCCAGGAGCCGGTGGGAGCAG	232
	CAGACGCCAGGAGCCGGTGGGAGC	233
	CGCAGACGGCCAGGAGCCGGTGGGA	234
	GGCGCAGACGGCCAGGAGCCGGTGG	$\begin{array}{r} 234 \\ \hline 235 \end{array}$
	AGGGCGCAGACGGCCAGGAGCCGGT	236
	CGAGGCGCAGACGGCCAGGAGCCG	236
	CACGAGGCGCAGACGCCAGGAGCCG	238
	GACACGAGGGCCAGACGCCAGGA	238
	AGGACACGAGGGCAGACGGCCAGA	$\frac{239}{240}$
	CAAGGACACGAGGGCCAGACGGCC	240
	GCCAAGGACACGAGGGCGCAGACGG	$\frac{241}{242}$
	TTGCCAAGGACACGAGGGCGCAGAC	242
	11GUAAGGACACGAGGGGAGAGAGAGAGGAGAGGAGAGGA	Z45

c.90C>T, c.112G>A,	GGATGTGCCCCAGGAGTGCAGCGGT	244
c.137C>T, c.164C>T	TAGGATGTGCCCCAGGAGTGCAGCG	245
	AGTAGGATGTGCCCCAGGAGTGCAG	246
	GGAGTAGGATGTGCCCCAGGAGTGC	247
	ATGGAGTAGGATGTGCCCCAGGAGT	248
	TCATGGAGTAGGATGTGCCCCAGGA	249
	AATCATGGAGTAGGATGTGCCCCAG	250
	GAAATCATGGAGTAGGATGTGCCCC	251
	AGGAAATCATGGAGTAGGATGTGCC	252
	GCAGGAAATCATGGAGTAGGATGTG	253
	CAGCAGGAAATCATGGAGTAGGATG	254
	ACCAGCAGGAAATCATGGAGTAGGA	255
	GAACCAGCAGGAAATCATGGAGTAG	256
	GGGAACCAGCAGGAAATCATGGAGT	257
	CGGGGAACCAGCAGGAAATCATGGA	258
	CTCGGGGAACCAGCAGGAAATCATG	259
	CTCTCGGGGAACCAGCAGGAAATCA	260
	AGCTCTCGGGGAACCAGCAGGAAAT	261
	TCAGCTCTCGGGGAACCAGCAGGAA	262
	ACTCAGCTCTCGGGGAACCAGCAGG	263
	CCACTCAGCTCTCGGGGAACCAGCA	264
	AGCCACTCAGCTCTCGGGGAACCAG	265
	GGAGCCACTCAGCTCTCGGGGAACC	266
	GAGGAGCCACTCAGCTCTCGGGGAA	267
	GGGAGGAGCCACTCAGCTCTCGGGG	268
	TGGGGAGGAGCCACTCAGCTCTCGG	269
	ACTGGGGAGGAGCCACTCAGCTCTC	270
	GGACTGGGGAGGAGCCACTCAGCTC	271
	CAGGACTGGGGAGGAGCCACTCAGC	272
	TCCAGGACTGGGGAGGAGCCACTCA	273
	CCTCCAGGACTGGGGAGGAGCCACT	274
	CTCCTCCAGGACTGGGGAGGAGCCA	275
	GTCTCCTCCAGGACTGGGGAGGAGC	276
	GAGTCTCCTCCAGGACTGGGGAGGA	277
	GTGAGTCTCCTCCAGGACTGGGGAG	278
	GGGTGAGTCTCCTCCAGGACTGGGG	279
	CTGGGTGAGTCTCCTCCAGGACTGG	280
	AGCTGGGTGAGTCTCCTCCAGGACT	281
	TGAGCTGGGTGAGTCTCCTCCAGGA	282
	GGTGAGCTGGGTGAGTCTCCTCCAG	283
	CTGGTGAGCTGGGTGAGTCTCCTCC	284

 	1
TGCTGGTGAGCTGGGTGAGTCTCCT	285
CCTGCTGGTGAGCTGGGTGAGTCTC	286
TCCCTGCTGGTGAGCTGGGTGAGTC	287
GCTCCCTGCTGGTGAGCTGGGTGAG	288
TGGCTCCCTGCTGGTGAGCTGGGTG	289
GCTGGCTCCCTGCTGGTGAGCTGGG	290
CTGCTGGCTCCCTGCTGGTGAGCTG	291
GTCTGCTGGCTCCCTGCTGGTGAGC	292
GATGTGCCCCAGGAGTGCAGCGGTT	293
AGGATGTGCCCCAGGAGTGCAGCGG	294
GTAGGATGTGCCCCAGGAGTGCAGC	295
GAGTAGGATGTGCCCCAGGAGTGCA	296
TGGAGTAGGATGTGCCCCAGGAGTG	297
CATGGAGTAGGATGTGCCCCAGGAG	298
ATCATGGAGTAGGATGTGCCCCAGG	299
AAATCATGGAGTAGGATGTGCCCCA	300
GGAAATCATGGAGTAGGATGTGCCC	301
CAGGAAATCATGGAGTAGGATGTGC	302
AGCAGGAAATCATGGAGTAGGATGT	303
CCAGCAGGAAATCATGGAGTAGGAT	304
AACCAGCAGGAAATCATGGAGTAGG	305
GGAACCAGCAGGAAATCATGGAGTA	306
GGGGAACCAGCAGGAAATCATGGAG	307
TCGGGGAACCAGCAGGAAATCATGG	308
TCTCGGGGAACCAGCAGGAAATCAT	309
GCTCTCGGGGAACCAGCAGGAAATC	310
CAGCTCTCGGGGAACCAGCAGGAAA	311
CTCAGCTCTCGGGGAACCAGCAGGA	312
CACTCAGCTCTCGGGGAACCAGCAG	313
GCCACTCAGCTCTCGGGGAACCAGC	314
GAGCCACTCAGCTCTCGGGGAACCA	315
AGGAGCCACTCAGCTCTCGGGGAAC	316
GGAGGAGCCACTCAGCTCTCGGGGA	317
GGGGAGGAGCCACTCAGCTCTCGGG	318
CTGGGGAGGAGCCACTCAGCTCTCG	319
GACTGGGGAGGAGCCACTCAGCTCT	320
AGGACTGGGGAGGAGCCACTCAGCT	321
CCAGGACTGGGGAGGAGCCACTCAG	322
CTCCAGGACTGGGGAGGAGCCACTC	323
TCCTCCAGGACTGGGGAGGAGCCAC	324
TCTCCTCCAGGACTGGGGAGGAGCC	325

	TGAGTCTCCTCCAGGACTGGGGAGG	327
	GGTGAGTCTCCTCCAGGACTGGGGA	328
	TGGGTGAGTCTCCTCCAGGACTGGG	329
	GCTGGGTGAGTCTCCTCCAGGACTG	330
	GAGCTGGGTGAGTCTCCTCCAGGAC	331
	GTGAGCTGGGTGAGTCTCCTCCAGG	332
	TGGTGAGCTGGGTGAGTCTCCTCCA	333
	GCTGGTGAGCTGGGTGAGTCTCCTC	334
	CTGCTGGTGAGCTGGGTGAGTCTCC	335
	CCCTGCTGGTGAGCTGGGTGAGTCT	336
	CTCCCTGCTGGTGAGCTGGGTGAGT	337
	GGCTCCCTGCTGGTGAGCTGGGTGA	338
	CTGGCTCCCTGCTGGTGAGCTGGGT	339
	TGCTGGCTCCCTGCTGGTGAGCTGG	340
	TCTGCTGGCTCCCTGCTGGTGAGCT	341
	GGTCTGCTGGCTCCCTGCTGAG	342
c.348G>A, c.373C>T	AGCCCCTGCTTTGCAGGGATGTAGC	343
,	GCAGCCCCTGCTTTGCAGGGATGTA	344
	CTGCAGCCCCTGCTTTGCAGGGATG	345
	CCCTGCAGCCCCTGCTTTGCAGGGA	346
	CTCCCTGCAGCCCCTGCTTTGCAGG	347
	GGCTCCCTGCAGCCCCTGCTTTGCA	348
	TGGGCTCCCTGCAGCCCCTGCTTTG	349
	TCTGGGCTCCCTGCAGCCCCTGCTT	350
	CATCTGGGCTCCCTGCAGCCCCTGC	351
	CCCATCTGGGCTCCCTGCAGCCCCT	352
	GCCCATCTGGGCTCCCTGCAGCCC	353
	CTGCCCATCTGGGCTCCCTGCAGC	354
	GGCTGCCCATCTGGGCTCCCTGCA	355
	AGGGCTGCCCCATCTGGGCTCCCTG	356
	CCAGGGCTGCCCATCTGGGCTCCC	357
	CACCAGGGCTGCCCCATCTGGGCTC	358
	AGCACCAGGGCTGCCCCATCTGGGC	359
	GAAGCACCAGGGCTGCCCATCTGG	360
	AAGAAGCACCAGGGCTGCCCCATCT	361
	GGAAGAAGCACCAGGGCTGCCCCAT	362
	TGGGAAGAAGCACCAGGGCTGCCCC	363
	GGTGGGAAGAAGCACCAGGGCTGCC	364
	TGGTTGGAAGAAGCACCAGGGCTG	365
	GCTGGGTGGGAAGAAGCACCAGGGC	366
	GCCCTGCTTTGCAGGGATGTAGCA	367
	CAGCCCTGCTTTGCAGGGATGTAGCA	368

	TGCAGCCCCTGCTTTGCAGGGATGT	369
	CCTGCAGCCCCTGCTTTGCAGGGAT	370
	TCCCTGCAGCCCCTGCTTTGCAGGG	371
	GCTCCCTGCAGCCCCTGCTTTGCAG	372
	GGGCTCCCTGCAGCCCCTGCTTTGC	373
	CTGGGCTCCCTGCAGCCCCTGCTTT	374
	ATCTGGGCTCCCTGCAGCCCCTGCT	375
	CCATCTGGGCTCCCTGCAGCCCCTG	376
	CCCCATCTGGGCTCCCTGCAGCCCC	377
	TGCCCCATCTGGGCTCCCTGCAGCC	378
	GCTGCCCCATCTGGGCTCCCTGCAG	379
	GGGCTGCCCCATCTGGGCTCCCTGC	380
	CAGGGCTGCCCCATCTGGGCTCCCT	381
	ACCAGGGCTGCCCCATCTGGGCTCC	382
	GCACCAGGGCTGCCCCATCTGGGCT	383
	AAGCACCAGGGCTGCCCCATCTGGG	384
	AGAAGCACCAGGGCTGCCCCATCTG	385
	GAAGAAGCACCAGGGCTGCCCCATC	386
	GGGAAGAAGCACCAGGGCTGCCCCA	387
	GTGGGAAGAAGCACCAGGGCTGCCC	388
	GGGTGGGAAGAAGCACCAGGGCTGC	389
	CTGGGTGGGAAGAAGCACCAGGGCT	390
	AGCTGGGTGGGAAGAAGCACCAGGG	391
c.413T>A	CAGCTTGTAGCTGGGGTAGCTGGGT	392
	TCCAGCTTGTAGCTGGGGTAGCTGG	393
	TCTCCAGCTTGTAGCTGGGGTAGCT	394
	GTTCTCCAGCTTGTAGCTGGGGTAG	395
	AGGTTCTCCAGCTTGTAGCTGGGGT	396
	TCAGGTTCTCCAGCTTGTAGCTGGG	397
	GCTCAGGTTCTCCAGCTTGTAGCTG	398
	GAGCTCAGGTTCTCCAGCTTGTAGC	399
	AGGAGCTCAGGTTCTCCAGCTTGTA	400
	AGAGGAGCTCAGGTTCTCCAGCTTG	401
	TCAGAGGAGCTCAGGTTCTCCAGCT	402
	TTTCAGAGGAGCTCAGGTTCTCCAG	403
	AGCTTGTAGCTGGGTAGCTGGGTG	404
	CCAGCTTGTAGCTGGGGTAGCTGGG	405
	CTCCAGCTTGTAGCTGGGGTAGCTG	406
	TTCTCCAGCTTGTAGCTGGGGTAGC	407
	GGTTCTCCAGCTTGTAGCTGGGGTA	408
	CAGGTTCTCCAGCTTGTAGCTGGGG	409
	CTCAGGTTCTCCAGCTTGTAGCTGG	410

	AGCTCAGGTTCTCCAGCTTGTAGCT	411
	GGAGCTCAGGTTCTCCAGCTTGTAG	412
	GAGGAGCTCAGGTTCTCCAGCTTGT	413
	CAGAGGAGCTCAGGTTCTCCAGCTT	414
	TTCAGAGGAGCTCAGGTTCTCCAGC	415
	ATTTCAGAGGAGCTCAGGTTCTCCA	416
c.469C>T, c.476T>C,	GGGGTGGTACGGGTCAGGGTGGCCG	417
c.476T>G, c.478T>G,	TGGGGGTGGTACGGGTCAGGGTGGC	418
c.482C>T	GGTGGGGTGGTACGGGTCAGGGTG	419
	AAGGTGGGGTGGTACGGGTCAGGG	420
	AGAAGGTGGGGGTGGTACGGGTCAG	421
	GAAGAAGGTGGGGGTGGTACGGGTC	422
	GGGAAGAAGGTGGGGGTACGGG	423
	TGGGGAAGAAGGTGGGGGTGGTACG	424
	CTTGGGGAAGAAGGTGGGGGTGGTA	425
	TCCTTGGGGAAGAAGGTGGGGGTGG	426
	TGTCCTTGGGGAAGAAGGTGGGGGT	427
	GATGTCCTTGGGGAAGAAGGTGGGG	428
	AGGATGTCCTTGGGGAAGAAGGTGG	429
	TCAGGATGTCCTTGGGGAAGAAGGT	430
	GGTCAGGATGTCCTTGGGGAAGAAG	431
	AGGGTCAGGATGTCCTTGGGGAAGA	432
	GCAGGGTCAGGATGTCCTTGGGGAA	433
	CCGCAGGGTCAGGATGTCCTTGGGG	434
	AGCCGCAGGGTCAGGATGTCCTTGG	435
	GGGTGGTACGGGTCAGGGTGGCCGT	436
	GGGGTGGTACGGGTCAGGGTGGCC	437
	GTGGGGTGGTACGGGTCAGGGTGG	438
	AGGTGGGGGTGGTACGGGTCAGGGT	439
	GAAGGTGGGGTGGTACGGGTCAGG	440
	AAGAAGGTGGGGGTGGTACGGGTCA	441
	GGAAGAAGGTGGGGGTGGTACGGGT	442
	GGGGAAGAAGGTGGGGGTGGTACGG	443
	TTGGGGAAGAAGGTGGGGGTGGTAC	444
	CCTTGGGGAAGAAGGTGGGGGTGGT	445
	GTCCTTGGGGAAGAAGGTGGGGGTG	446
	ATGTCCTTGGGGAAGAAGGTGGGGG	447
	GGATGTCCTTGGGGAAGAAGGTGGG	448
	CAGGATGTCCTTGGGGAAGAAGGTG	449
	GTCAGGATGTCCTTGGGGAAGAAGG	450
	GGGTCAGGATGTCCTTGGGGAAGAA	451

	CGCAGGGTCAGGATGTCCTTGGGGA	453
	GCCGCAGGGTCAGGATGTCCTTGGG	454
	CAGCCGCAGGGTCAGGATGTCCTTG	455
c.510C>T, c.515T>A,	CGTCCAGCCGCAGGGTCAGGATGTC	456
c.520G>A	CACGTCCAGCCGCAGGGTCAGGATG	457
	ATCACGTCCAGCCGCAGGGTCAGGA	458
	TCATCACGTCCAGCCGCAGGGTCAG	459
	CATCATCACGTCCAGCCGCAGGGTC	460
	TCCATCATCACGTCCAGCCGCAGGG	461
	TCTCCATCATCACGTCCAGCCGCAG	462
	AGTCTCCATCATCACGTCCAGCCGC	463
	TCAGTCTCCATCATCACGTCCAGCC	464
	TCTCAGTCTCCATCATCACGTCCAG	465
	GTTCTCAGTCTCCATCATCACGTCC	466
	CGGTTCTCAGTCTCCATCATCACGT	467
	GGCGGTTCTCAGTCTCCATCATCAC	468
	GAGGCGGTTCTCAGTCTCCATCATC	469
	TGGAGGCGGTTCTCAGTCTCCATCA	470
	AGTGGAGGCGGTTCTCAGTCTCCAT	471
	GAAGTGGAGGCGGTTCTCAGTCTCC	472
	GTCCAGCCGCAGGGTCAGGATGTCC	473
	ACGTCCAGCCGCAGGGTCAGGATGT	474
	TCACGTCCAGCCGCAGGGTCAGGAT	475
	CATCACGTCCAGCCGCAGGGTCAGG	476
	ATCATCACGTCCAGCCGCAGGGTCA	477
	CCATCATCACGTCCAGCCGCAGGGT	478
	CTCCATCATCACGTCCAGCCGCAGG	479
	GTCTCCATCATCACGTCCAGCCGCA	480
	CAGTCTCCATCATCACGTCCAGCCG	481
	CTCAGTCTCCATCATCACGTCCAGC	482
	TTCTCAGTCTCCATCATCACGTCCA	483
	GGTTCTCAGTCTCCATCATCACGTC	484
	GCGGTTCTCAGTCTCCATCATCACG	485
	AGGCGGTTCTCAGTCTCCATCATCA	486
	GGAGGCGGTTCTCAGTCTCCATCAT	487
	GTGGAGGCGGTTCTCAGTCTCCATC	488
	AAGTGGAGGCGGTTCTCAGTCTCCA	489
	TGAAGTGGAGGCGGTTCTCAGTCTC	490
c.546+11C>T,	TGCCTGCCCACCGTGAAGTGGAGG	491
c.546+14G>A,	CCTGCCCTGCCCACCGTGAAGTGGA	492
c.546+19G>A,	CCCTGCCTGCCCACCGTGAAGTG	493
c.546+23C>A	CGCCCTGCCCTGCCCACCGTGAAG	494

CCCGCCCTGCCCTGCCTG GCCTGCCACCGTG CTGCCTGCCACCG CCCTGCCTGCCCACCG GCCCTGCCTGCCCTGC	AAGTGGAGGC TGAAGTGGAG CGTGAAGTGG ACCGTGAAGT CCACCGTGAA GCCCACCGTG CTGCCCACCG TGCCTGCCCC CCCTGCCCTG	495 496 497 498 499 500 501 502 503 504 505 506
CTGCCTGCCACG CCCTGCCTGCCAC GCCCTGCCTGCCC CCGCCCTGCCTGC CCCCCCCC	TGAAGTGGAG CGTGAAGTGG ACCGTGAAGT CCACCGTGAA GCCCACCGTG CTGCCCACCG CCTGCCCAC TGCCCTGCCC	497 498 499 500 501 502 503 504 505 506
CCCTGCCTGCCAC GCCCTGCCTGCC CCGCCCTGCCTGC CCCCGCCCTGCCT GCCCCCGCCCTGCC GCCCCCGCCCCCC CCGCCCCCCCC	CGTGAAGTGG ACCGTGAAGT CCACCGTGAA GCCCACCGTG CTGCCCACCG CCCTGCCCAC CCCTGCCCTG	498 499 500 501 502 503 504 505 506
GCCCTGCCTGCCC CCGCCCTGCCTGC CCCCGCCCTGCCT GCCCCGCCCTGCC GCCCCCGCCCTGC CGCCCCCGCCCCCGCCC GCCGCCCCGCCCC GCCGCC	ACCGTGAAGT CCACCGTGAA GCCCACCGTG CTGCCCACCG CCCTGCCCAC TGCCCTGCCC	499 500 501 502 503 504 505 506
CCGCCCTGCCTGC CCCCGCCCTGCCT GCCCCGCCCTGCC CCGCCCCCGCCCCTGCC CCGCCCCCGCCCCC GCCGCCCCCCCC	CCACCGTGAA GCCCACCGTG CTGCCCACCG CCCTGCCCAC CCCTGCCCTG	500 501 502 503 504 505 506
CCCCGCCCTGCCT GCCCCGCCCTGCC CCGCCCCGCCCTGCC CGCCGCCCCGCCCCC GCCGCCCCCGCCC GCCGCC	GCCCACCGTG CTGCCCACCG CCCTGCCCAC TGCCCTGCCC	501 502 503 504 505 506
GCCCCGCCCTGCC CCGCCCCCCCCCCCCCCCCCCCCCC	CTGCCCACCG CCCTGCCCAC TGCCCTGCCC CCCTGCCCTG	502 503 504 505 506
CCGCCCCGCCCTG CGCCCCCCCCCCCCCCCCCCCCCCC	CCCTGCCCAC TGCCCTGCCC CCTGCCCTGC CCCCCTGCCCT CCCCCCCC	503 504 505 506
CGCCGCCCCGCCCCCGCCCCCGCCCCCGCCCCCGCCCCCC	TGCCCTGCCC CCCTGCCCTGC CCCCCTGCCCT CCCCCCCC	504 505 506
GCCGCCCCCCGCC TGGCCGCCCCCCCCCCCCCCCCCCC	CCCTGCCCTGC CCCCCTGCCCT CCCCCCCCCCCCCCC	505 506
TGGCCGCCCCCGGCCCCCGGCCCCCGCCCCCGCCCCCCGCCCC	CCCCTGCCT CCGCCCTGCC	506
CCTGGCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGCCCCTGCC CCCGCCCCTG	
GCCTGGCCGCCGCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCGCCCTG	
CTGCCTGGCCGCGCGCGCCGCCTCTGCCCTGGCCGCCCTCTGCCCTGGCCCTGGCCCTGCCCTGCCCTGCCCTGCCCTGCCCTGCCCCCC		507
CTCTGCCCTGGCCGC CCCTCTGCCCTGGCC CACCCTCTGCCCTG CGCACCCTCTGCCCT CGCGCACCCTCTGCC CCCCCGCCCCTGCCC		508
CCCTCTGCCCTGGCC CACCCTCTGCCCTGG CGCACCCTCTGCCCT CGCGCACCCTCTGCC CCCCCGCCCCTGCCC		509
CACCTCTGCCCTGG CGCACCCTCTGCCCTGCCC CCCCCGCCCCTGCCC		510
CGCACCCTCTGCCCTCCCCCCCCCCCCCCCCCCCCCCCC	GCCGCCCCG	511
CGCGCACCCTCTGCC CCCCGCCCCTGCCC	CCGCCGCCC	512
CCCCGCCCTGCCC	GGCCGCCGCC	513
	CTGGCCGCCG	514
	TGCCCACCGT	515
	CCTGCCCACC	516
GCCGCCCCCCCC	GCCCTGCCCA	517
CCGCCGCCCCCCCCC	CTGCCCTGCC	518
GGCCGCCCCCGC	CCCCTGCCCTG	519
CTGGCCGCCCCC	GCCCCTGCCC	520
CCCTGGCCGCCCC	CCGCCCTGC	521
TGCCCTGGCCGCCGC	CCCCGCCCT	522
TCTGCCCTGGCCGCC	GCCCCGCCC	523
CCTCTGCCCTGGCCG	CCGCCCCGC	524
ACCCTCTGCCCTGGC	CGCCGCCCC	525
GCACCCTCTGCCCTG	GCCGCCGCCC	526
GCGCACCCTCTGCCC	TGGCCGCCGC	527
c.547-6 AGAGATGGGGGTTTA	TTGATGTTCC	528
GAAGAGATGGGGGTT	TATTGATGTT	529
TAGAAGAGATGGGGG	GTTTATTGATG	530
TCTAGAAGAGATGGG	GGTTTATTGA	531
GATCTAGAAGAGATG		532
TTGATCTAGAAGAGA		533
CTTTGATCTAGAAGA		534
ATCTTTGATCTAGAAG		535
GGATCTTTGATCTAG		

70

CTGGATCTTGATCTAGAAGAGATG	537
AGCTGGATCTTTGATCTAGAAGAGA	538
TTAGCTGGATCTTGATCTAGAAGA	539
TGTTAGCTGGATCTTTGATCTAGAA	540

In the above examples the sequences are 25 nucleotides long however longer variants or shorter fragment are also envisioned. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of SEQ ID NO: 41-540 and fragments and variants thereof having at least 80% sequence identity. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of SEQ ID NO: 41-540 and fragments and variants thereof having at least 80%,83%, 85%, 87%, 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7% sequence identity to SEQ ID NO: 41-540.

5

10

15

20

25

The present invention is also directed to sequences that are at least 80% identical to SEQ ID NO: 41-540. Optionally at least 85% identical to SEQ ID NO: 41-540, more Optionally at least 88% identical to SEQ ID NO: 41-540, more Optionally at least 90% identical to SEQ ID NO: 41-540. more Optionally at least 91% identical to SEQ ID NO: 41-540, more Optionally at least 92% identical to SEQ ID NO: 41-540, more Optionally at least 93% identical to SEQ ID NO: 41-540, more Optionally at least 94% identical to SEQ ID NO: 41-540, more Optionally at least 95% identical to SEQ ID NO: 41-540, more Optionally at least 96% identical to SEQ ID NO: 41-540, more Optionally at least 97% identical to SEQ ID NO: 41-540, more Optionally at least 98% identical to SEQ ID NO: 41-540, more Optionally at least 99% identical to SEQ ID NO: 41-540.

Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of fragments SEQ ID NO: 41-540,

71

wherein the fragment is 16, 17, 18, 19, 20, 21, 22, 23, or 24 nucleotides long. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of fragments SEQ ID NO: 41-540, wherein the fragment is 17, 18, 19, 20, 21, or 22 nucleotides long. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of fragments SEQ ID NO: 41-540, wherein the fragment is 19, 20, or 21 nucleotides long.

5

10

15

20

25

Optionally of the invention and/or embodiments thereof the target sequence provides exclusion of intron 6. It was found that SEQ ID NO: 1584 provides the target sequence for exclusion of intron 6.

Also the following genomic sequences are target sequences for exclusion of intron 6 of GAA:

Sequence in		
cDNA to which		
antisense		
oligomeric	sequence of region (5'-> 3'):	Seq ID

compound		
anneals*		
	AACCCCAGAGCTGCTTCCCTTCCAGATGTGGTCCTGC	
	AGCCGAGCCCTGCCCTTAGCTGGAGGTCGACAGGTG	
	GGATCCTGGATGTCTACATCTTCCTGGGCCCAGAGC	
	CCAAGAGCGTGGTGCAGCAGTACCTGGACGTTGTGG	
050	GTAGGGCCTGCTCCCTGGCCGCGCCCCCAA	
c.956-	GGCTCCCTCCCTCCCTCATGAAGTCGGCGTTGG	1584
25_1194+25	CCTGCAGGATACCCGTTCATGCCGCCATACTGGGGC	
	CTGGGCTTCCACCTGTGCCGCTGGGGCTACTCCTCC	
	ACCGCTATCACCCGCCAGGTGGTGGAGAACATGACC	
	AGGGCCCACTTCCCCCTGGTGAGTTGGGGTGGTGGC	
	AGGGGAG	
	AACCCCAGAGCTGCTTCCCTTCCAGATGTGGTCCTGC	
	AGCCGAGCCCTGCCCTTAGCTGGAGGTCGACAGGTG	1585
c.956-25_1004	G	
	GATCCTGGATGTCTACATCTTCCTGGGCCCAGAGCC	
	CAAGAGCGTGGTGCAGCAGTACCTGGACGTTGTGGG	1586
c.1005_1075+3	TA	
	GGGCCTGCTCCCTGGCCGCGCCCCCAAGGC	
	TCCCTCCTCCCTCATGAAGTCGGCGTTGGCCTG	1587
c.1075+4_1076-2	C	
	AGGATACCCGTTCATGCCGCCATACTGGGGCCTGGG	
	CTTCCACCTGTGCCGCTGGGGCTACTCCTCCACCGCT	1588
c.1076-2_1147	A	
	TCACCCGCCAGGTGGTGGAGAACATGACCAGGGCCC	1500
c.1148_1194+25	ACTTCCCCCTGGTGAGTTGGGGTGGCAGGGGAG	1589

It is to be noted that targeting means that at least part of the sequence SEQ ID NO: 1584-1589 is targeted, e.g. by a sequence that hybridizes with at least a part or by the sequence SEQ ID NO: 1584-1589, or

73

that binds to at least a part of SEQ ID NO: 1584-1589. Sequences that target may be shorter or longer than the target sequence.

Optionally the sequences targeting SEQ ID NO: 1584-1589 hybridize with at least a part of SEQ ID NO: 1584-1589. Sequences that hybridize may be shorter or longer than the target sequence. Nucleotide sequences SEQ ID NO: 541-1583 are oligomers that are able to enhance GAA intron 6 exclusion.

5

10

15

20

25

30

In one aspect or embodiment of aspects and/or embodiments thereof, the invention is directed to an antisense oligomeric compound selected from the group comprising SEQ ID NO: 541-1583 and variants and fragments having at least 80% identity thereof. The antisense oligomeric compound may also target single nucleotide polymorphism of SEQ ID NO: 1584-1589. It should be noted that it may not necessary to have the full length of SEQ ID NO: 541-1583, fragments having a shorter or longer sequence are also envisioned. The inventors have found the target genomic sequence which enables the exclusion of intron 6 and a skilled person is capable of finding suitable sequences that target this target genomic sequence, such as SEQ ID NO: 1584-1589 and single nucleotide polymorphisms thereof. Exemplary sequences that target this target genomic sequence, such as SEQ ID NO: 1584-1589 may be SEQ ID NO: 541-1583, but also variants and fragments having at least 80% identity thereof. In particular shorter fragments such as fragments with 18, 19, 20, 21, 22, 23, or 24 nucleotides of SEQ ID NO: 541-1583 are envisioned.

In one aspect or embodiment of aspects and/or embodiments thereof, the invention is directed to an antisense oligomeric compound complementary to a polynucleotide having a sequence selected from the group comprising SEQ ID NO: 1584-1589 and single nucleotide polymorphisms thereof . Also sequences having at least 80% identity to antisense oligomeric compound complementary to a polynucleotide having a sequence selected from the group comprising SEQ ID NO: 1584-1589 are

74

envisioned. Antisense oligomeric compound that target one or more than one single nucleotide polymorphisms may be designed.

In one aspect or embodiment of aspects and/or embodiments thereof, the invention is directed to an antisense oligomeric compound targeting a sequence selected from the group comprising the genomic sequence c.956-25_1194+25.

5

10

15

20

25

In one aspect or embodiment of aspects and/or embodiments thereof, the invention is directed to an antisense oligomeric compound comprising sequences selected from the group comprising SEQ ID NO: 41-1583, 1590-1594 and sequences having at least 80% identity thereof.

In one aspect or embodiment of aspects and/or embodiments thereof, the invention is directed to antisense oligomeric compound comprising a sequences selected from the group comprising SEQ ID NO: 541-1583, 1590-1594.

Antisense oligomeric compounds targeting SEQ ID NO: 1584 are a very suitable to treat Pompe patients. Exemplary antisense oligomeric compounds targeting SEQ ID NO: 1584 are SEQ ID NO: 541-1853. However the invention is not limited to these sequences. A skilled person is capable of designing antisense oligomeric compounds against target sequence SEQ ID NO: 1584, 1885, 1586, 1587, 1588, 1589. The antisense oligomeric compounds against target sequenced SEQ ID NO: 1584, 1885, 1586, 1587, 1588, or 1589 may have length of 10 to 100 nucleotides, Optionally 11 to 75 nucleotides, Optionally 12 to 73 nucleotides, Optionally 13 to 70 nucleotides, Optionally 14 to 65 nucleotides, Optionally 15 to 60 nucleotides, Optionally 16 to 55 nucleotides, Optionally 17 to 50 nucleotides, Optionally 18 to 45 nucleotides, Optionally 19 to 40 nucleotides, Optionally 20 to 38 nucleotides, Optionally 21 to 35 nucleotides, Optionally 22 to 33 nucleotides, Optionally 23 to 30 nucleotides, Optionally 24 to 29 nucleotides, Optionally 25 to 28 nucleotides, Optionally 26 to 27 nucleotides.

75

The antisense oligomeric compounds may be selected from the group of SEQ ID NO541-1583:

Sequence in cDNA to		
which AON anneals		
for intron 6 exclusion	AON sequence 5' -> 3'	Seq ID
c.956-251	CTGGAAGGGAAGCAGCTCTGGGGTT	541
c.956-24_956	TCTGGAAGGGAAGCAGCTCTGGGGT	542
c.956-23_957	ATCTGGAAGGGAAGCAGCTCTGGGG	543
c.956-22_958	CATCTGGAAGGGAAGCAGCTCTGGG	544
c.956-21_959	ACATCTGGAAGGGAAGCAGCTCTGG	545
c.956-20_960	CACATCTGGAAGGGAAGCAGCTCTG	546
c.956-19_961	CCACATCTGGAAGGGAAGCAGCTCT	547
c.956-18_962	ACCACATCTGGAAGGGAAGCAGCTC	548
c.956-17_963	GACCACATCTGGAAGGGAAGCAGCT	549
c.956-16_964	GGACCACATCTGGAAGGGAAGCAGC	550
c.956-15_965	AGGACCACATCTGGAAGGGAAGCAG	551
c.956-14_966	CAGGACCACATCTGGAAGGGAAGCA	552
c.956-13_967	GCAGGACCACATCTGGAAGGGAAGC	553
c.956-12_968	TGCAGGACCACATCTGGAAGGGAAG	554
c.956-11_969	CTGCAGGACCACATCTGGAAGGGAA	555
c.956-10_970	GCTGCAGGACCACATCTGGAAGGGA	556
c.956-9_971	GGCTGCAGGACCACATCTGGAAGGG	557
c.956-8_972	CGGCTGCAGGACCACATCTGGAAGG	558
c.956-7_973	TCGGCTGCAGGACCACATCTGGAAG	559
c.956-6_974	CTCGGCTGCAGGACCACATCTGGAA	560
c.956-5_975	GCTCGGCTGCAGGACCACATCTGGA	561
c.956-4_976	GGCTCGGCTGCAGGACCACATCTGG	562
c.956-3_977	GGGCTCGGCTGCAGGACCACATCTG	563
c.956-2_978	AGGGCTCGGCTGCAGGACCACATCT	564
c.956-1_979	CAGGGCTCGGCTGCAGGACCACATC	565
c.956_980	GCAGGGCTCGGCTGCAGGACCACAT	566
c.957_981	GGCAGGGCTCGGCTGCAGGACCACA	567
c.958_982	GGGCAGGGCTCGGCTGCAGGACCAC	568
c.959_983	AGGGCAGGGCTCGGCTGCAGGACCA	569
c.960_984	AAGGGCAGGGCTCGGCTGCAGGACC	570
c.961_985	TAAGGGCAGGGCTCGGCTGCAGGAC	571
c.962_986	CTAAGGGCAGGGCTCGGCTGCAGGA	572
c.963_987	GCTAAGGGCAGGGCTCGGCTGCAGG	573

c.964_988	AGCTAAGGGCAGGGCTCGGCTGCAG	574
c.965_989	CAGCTAAGGGCAGGGCTCGGCTGCA	575
c.966_990	CCAGCTAAGGGCAGGGCTCGGCTGC	576
c.967_991	TCCAGCTAAGGGCAGGGCTCGGCTG	577
c.968_992	CTCCAGCTAAGGGCAGGGCTCGGCT	578
c.969_993	CCTCCAGCTAAGGGCAGGGCTCGGC	579
c.970_994	ACCTCCAGCTAAGGGCAGGGCTCGG	580
c.971_995	GACCTCCAGCTAAGGGCAGGGCTCG	581
c.972 996	CGACCTCCAGCTAAGGGCAGGGCTC	582
c.973_997	TCGACCTCCAGCTAAGGGCAGGGCT	583
c.974_998	GTCGACCTCCAGCTAAGGGCAGGGC	584
c.975 999	TGTCGACCTCCAGCTAAGGGCAGGG	585
c.976 1000	CTGTCGACCTCCAGCTAAGGGCAGG	586
c.977_1001	CCTGTCGACCTCCAGCTAAGGGCAG	587
c.978_1002	ACCTGTCGACCTCCAGCTAAGGGCA	588
c.979_1003	CACCTGTCGACCTCCAGCTAAGGGC	589
c.980_1004	CCACCTGTCGACCTCCAGCTAAGGG	590
c.981_1005	CCCACCTGTCGACCTCCAGCTAAGG	591
c.982 1006	TCCCACCTGTCGACCTCCAGCTAAG	592
c.983_1007	ATCCCACCTGTCGACCTCCAGCTAA	593
c.984_1008	GATCCCACCTGTCGACCTCCAGCTA	594
c.985_1009	GGATCCCACCTGTCGACCTCCAGCT	595
c.986_1010	AGGATCCCACCTGTCGACCTCCAGC	596
c.987_1011	CAGGATCCCACCTGTCGACCTCCAG	597
c.988_1012	CCAGGATCCCACCTGTCGACCTCCA	598
c.989_1013	TCCAGGATCCCACCTGTCGACCTCC	599
c.990_1014	ATCCAGGATCCCACCTGTCGACCTC	600
c.991_1015	CATCCAGGATCCCACCTGTCGACCT	601
c.992_1016	ACATCCAGGATCCCACCTGTCGACC	602
c.993_1017	GACATCCAGGATCCCACCTGTCGAC	603
c.994_1018	AGACATCCAGGATCCCACCTGTCGA	604
c.995_1019	TAGACATCCAGGATCCCACCTGTCG	605
c.996_1020	GTAGACATCCAGGATCCCACCTGTC	606
c.997_1021	TGTAGACATCCAGGATCCCACCTGT	607
c.998_1022	ATGTAGACATCCAGGATCCCACCTG	608
c.999_1023	GATGTAGACATCCAGGATCCCACCT	609
c.1000_1024	AGATGTAGACATCCAGGATCCCACC	610
c.1001_1025	AAGATGTAGACATCCAGGATCCCAC	611
c.1002_1026	GAAGATGTAGACATCCAGGATCCCA	612
c.1003_1027	GGAAGATGTAGACATCCAGGATCCC	613
c.1004_1028	AGGAAGATGTAGACATCCAGGATCC	614
c.1005_1029	CAGGAAGATGTAGACATCCAGGATC	615

c.1006 1030	CCAGGAAGATGTAGACATCCAGGAT	616
c.1007 1031	CCCAGGAAGATGTAGACATCCAGGA	617
c.1008 1032	GCCCAGGAAGATGTAGACATCCAGG	618
c.1009 1033	GGCCCAGGAAGATGTAGACATCCAG	619
c.1010 1034	GGGCCCAGGAAGATGTAGACATCCA	620
c.1011 1035	TGGGCCCAGGAAGATGTAGACATCC	621
c.1012 1036	CTGGGCCCAGGAAGATGTAGACATC	622
c.1013 1037	TCTGGGCCCAGGAAGATGTAGACAT	623
c.1014 1038	CTCTGGGCCCAGGAAGATGTAGACA	624
c.1015 1039	GCTCTGGGCCCAGGAAGATGTAGAC	625
c.1016 1040	GGCTCTGGGCCCAGGAAGATGTAGA	626
c.1017 1041	GGGCTCTGGGCCCAGGAAGATGTAG	627
c.1018 1042	TGGGCTCTGGGCCCAGGAAGATGTA	628
c.1019_1043	TTGGGCTCTGGGCCCAGGAAGATGT	629
c.1020_1044	CTTGGGCTCTGGGCCCAGGAAGATG	630
c.1021_1045	TCTTGGGCTCTGGGCCCAGGAAGAT	631
c.1022_1046	CTCTTGGGCTCTGGGCCCAGGAAGA	632
c.1023_1047	GCTCTTGGGCTCTGGGCCCAGGAAG	633
c.1024_1048	CGCTCTTGGGCTCTGGGCCCAGGAA	634
c.1025_1049	ACGCTCTTGGGCTCTGGGCCCAGGA	635
c.1026_1050	CACGCTCTTGGGCTCTGGGCCCAGG	636
c.1027_1051	CCACGCTCTTGGGCTCTGGGCCCAG	637
c.1028_1052	ACCACGCTCTTGGGCTCTGGGCCCA	638
c.1029_1053	CACCACGCTCTTGGGCTCTGGGCCC	639
c.1030_1054	GCACCACGCTCTTGGGCTCTGGGCC	640
c.1031_1055	TGCACCACGCTCTTGGGCTCTGGGC	641
c.1032_1056	CTGCACCACGCTCTTGGGCTCTGGG	642
c.1033_1057	GCTGCACCACGCTCTTGGGCTCTGG	643
c.1034_1058	TGCTGCACCACGCTCTTGGGCTCTG	644
c.1035_1059	CTGCTGCACCACGCTCTTGGGCTCT	645
c.1036_1060	ACTGCTGCACCACGCTCTTGGGCTC	646
c.1037_1061	TACTGCTGCACCACGCTCTTGGGCT	647
c.1038_1062	GTACTGCTGCACCACGCTCTTGGGC	648
c.1039_1063	GGTACTGCTGCACCACGCTCTTGGG	649
c.1040_1064	AGGTACTGCTGCACCACGCTCTTGG	650
c.1041_1065	CAGGTACTGCTGCACCACGCTCTTG	651
c.1042_1066	CCAGGTACTGCTGCACCACGCTCTT	652
c.1043_1067	TCCAGGTACTGCTGCACCACGCTCT	653
c.1044_1068	GTCCAGGTACTGCTGCACCACGCTC	654
c.1045_1069	CGTCCAGGTACTGCTGCACCACGCT	655
c.1046_1070	ACGTCCAGGTACTGCTGCACCACGC	656
c.1047_1071	AACGTCCAGGTACTGCTGCACCACG	657

c.1048_1072	CAACGTCCAGGTACTGCTGCACCAC	658
c.1049_1073	ACAACGTCCAGGTACTGCTGCACCA	659
c.1050_1074	CACAACGTCCAGGTACTGCTGCACC	660
c.1051_1075	CCACAACGTCCAGGTACTGCTGCAC	661
c.1052_1075+1	CCCACAACGTCCAGGTACTGCTGCA	662
c.1053_1075+2	ACCCACAACGTCCAGGTACTGCTGC	663
c.1054_1075+3	TACCCACAACGTCCAGGTACTGCTG	664
c.1055_1075+4	CTACCCACAACGTCCAGGTACTGCT	665
c.1056_1075+5	CCTACCCACAACGTCCAGGTACTGC	666
c.1057_1075+6	CCCTACCCACAACGTCCAGGTACTG	667
c.1058_1075+7	GCCCTACCCACAACGTCCAGGTACT	668
c.1059_1075+8	GGCCCTACCCACAACGTCCAGGTAC	669
c.1060_1075+9	AGGCCCTACCCACAACGTCCAGGTA	670
c.1061_1075+10	CAGGCCCTACCCACAACGTCCAGGT	671
c.1062_1075+11	GCAGGCCCTACCCACAACGTCCAGG	672
c.1063_1075+12	AGCAGGCCCTACCCACAACGTCCAG	673
c.1064_1075+13	GAGCAGGCCCTACCCACAACGTCCA	674
c.1065_1075+14	GGAGCAGGCCCTACCCACAACGTCC	675
c.1066_1075+15	GGGAGCAGGCCCTACCCACAACGTC	676
c.1067_1075+16	AGGGAGCAGGCCCTACCCACAACGT	677
c.1068_1075+17	CAGGGAGCAGGCCCTACCCACAACG	678
c.1069_1075+18	CCAGGGAGCAGGCCCTACCCACAAC	679
c.1070_1075+19	GCCAGGGAGCAGGCCCTACCCACAA	680
c.1071_1075+20	GGCCAGGGAGCAGGCCCTACCCACA	681
c.1072_1075+21	CGGCCAGGGAGCAGGCCCTACCCAC	682
c.1073_1075+22	GCGGCCAGGGAGCAGGCCCTACCCA	683
c.1074_1075+23	CGCGGCCAGGGAGCAGGCCCTACCC	684
c.1075_1075+24	CCGCGGCCAGGGAGCAGGCCCTACC	685
C.1075+1_+25	GCCGCGGCCAGGGAGCAGGCCCTAC	686
C.1075+2_+26	GGCCGCGGCCAGGGAGCAGGCCCTA	687
C.1075+3_+27	GGGCCGCGGCCAGGGAGCAGGCCCT	688
C.1075+4_+28	GGGGCCGCGCCAGGGAGCAGGCCC	689
C.1075+5_+29	GGGGCCGCGGCCAGGGAGCAGGCC	690
C.1075+6_+30	CGGGGCCGCCGGCCAGGGAGCAGGC	691
C.1075+7_+31	GCGGGGCCGCGCCAGGGAGCAGG	692
C.1075+8_+32	GGCGGGGCCGCCCAGGGAGCAG	693
C.1075+9_+33	GGGCGGGGCCGCGCCAGGGAGCA	694
C.1075+10_+34	GGGGCGGGGCCGCGCCAGGGAGC	695
C.1075+11_+35	TGGGGCGGGGCCGGCCAGGGAG	696
C.1075+12_+36	TTGGGGCGGGGCCGGCCAGGGA	697
C.1075+13_+37	CTTGGGGCGGGGGCCAGGG	698

C.1075+14_+38	CCTTGGGGCGGGGCCGGCCAGG	699
C.1075+15_+39	GCCTTGGGGCGGGGCCGGCCAG	700
C.1075+16_+40	AGCCTTGGGGCGGGGGCCCA	701
C.1075+17_1076-39	GAGCCTTGGGGCGGGGGCCGCGCCC	702
C.1075+18_1076-38	GGAGCCTTGGGGCGGGGGCCGCGC	703
C.1075+19_1076-37	GGGAGCCTTGGGGCGGGGGCCGCGG	704
C.1075+20_1076-36	AGGGAGCCTTGGGGCGGGGGCCGCG	705
C.1075+21_1076-35	GAGGGAGCCTTGGGGCGGGGGCCGC	706
C.1075+22_1076-34	GGAGGGAGCCTTGGGGCCGGGGCCG	707
C.1075+23_1076-33	AGGAGGGAGCCTTGGGGCGGGGCC	708
C.1075+24_1076-32	GAGGAGGGAGCCTTGGGGCGGGGC	709
C.1075+25_1076-31	GGAGGAGGGAGCCTTGGGGCGGGG	710
C.1075+26_1076-30	GGGAGGAGGGAGCCTTGGGGCGGGG	711
C.1075+27_1076-29	AGGGAGGAGGCCTTGGGGCGGG	712
C.1075+28_1076-28	GAGGGAGGAGGCCTTGGGGCGG	713
C.1075+29_1076-27	GGAGGAGGAGGGAGCCTTGGGGCG	714
C.1075+30_1076-26	GGGAGGAGGAGGCCTTGGGGC	715
C.1075+31_1076-25	AGGGAGGAGGAGGCCTTGGGG	716
C.1075+32_1076-24	GAGGGAGGAGGAGCCTTGGG	717
C.1075+33_1076-23	TGAGGGAGGAGGAGCCTTGG	718
C.1075+34_1076-22	ATGAGGGAGGAGGAGCCTTG	719
C.1075+35_1076-21	CATGAGGGAGGGAGGGAGCCTT	720
C.1075+36_1076-20	TCATGAGGGAGGGAGGGAGCCT	721
C.1075+37_1076-19	TTCATGAGGGAGGGAGGGAGCC	722
C.1075+38_1076-18	CTTCATGAGGGAGGAGGAGGAGC	723
C.1075+39_1076-17	ACTTCATGAGGGAGGAGGAGGAG	724
C.1075+40_1076-16	GACTTCATGAGGGAGGAGGAGGA	725
c.1076-3915	CGACTTCATGAGGGAGGAGGAGGG	726
c.1076-3814	CCGACTTCATGAGGGAGGAGGAGG	727
c.1076-3713	GCCGACTTCATGAGGGAGGAGGAG	728
c.1076-3612	CGCCGACTTCATGAGGGAGGAGGA	729
c.1076-3511	ACGCCGACTTCATGAGGGAGGGAGG	730
c.1076-3410	AACGCCGACTTCATGAGGGAGGGAG	731
c.1076-339	CAACGCCGACTTCATGAGGGAGGGA	732
c.1076-328	CCAACGCCGACTTCATGAGGGAGGG	733
c.1076-317	GCCAACGCCGACTTCATGAGGGAGG	734
c.1076-306	GGCCAACGCCGACTTCATGAGGGAG	735
c.1076-295	AGGCCAACGCCGACTTCATGAGGGA	736
c.1076-284	CAGGCCAACGCCGACTTCATGAGGG	737
c.1076-273	GCAGGCCAACGCCGACTTCATGAGG	738
c.1076-262	TGCAGGCCAACGCCGACTTCATGAG	739

c.1076-251	CTGCAGGCCAACGCCGACTTCATGA	740
c.1076-24_1076	CCTGCAGGCCAACGCCGACTTCATG	741
c.1076-23_1077	TCCTGCAGGCCAACGCCGACTTCAT	742
c.1076-22_1078	ATCCTGCAGGCCAACGCCGACTTCA	743
c.1076-21_1079	TATCCTGCAGGCCAACGCCGACTTC	744
c.1076-20_1080	GTATCCTGCAGGCCAACGCCGACTT	745
c.1076-19_1081	GGTATCCTGCAGGCCAACGCCGACT	746
c.1076-18_1082	GGGTATCCTGCAGGCCAACGCCGAC	747
c.1076-17_1083	CGGGTATCCTGCAGGCCAACGCCGA	748
c.1076-16_1084	ACGGGTATCCTGCAGGCCAACGCCG	749
c.1076-15_1085	AACGGGTATCCTGCAGGCCAACGCC	750
c.1076-14_1086	GAACGGGTATCCTGCAGGCCAACGC	751
c.1076-13_1087	TGAACGGGTATCCTGCAGGCCAACG	752
c.1076-12_1088	ATGAACGGGTATCCTGCAGGCCAAC	753
c.1076-11_1089	CATGAACGGGTATCCTGCAGGCCAA	754
c.1076-10_1090	GCATGAACGGGTATCCTGCAGGCCA	755
c.1076-9_1091	GGCATGAACGGGTATCCTGCAGGCC	756
c.1076-8_1092	CGGCATGAACGGGTATCCTGCAGGC	757
c.1076-7_1093	GCGGCATGAACGGGTATCCTGCAGG	758
c.1076-6_1094	GGCGGCATGAACGGGTATCCTGCAG	759
c.1076-5_1095	TGGCGGCATGAACGGGTATCCTGCA	760
c.1076-4_1096	ATGGCGGCATGAACGGGTATCCTGC	761
c.1076-3_1097	TATGGCGGCATGAACGGGTATCCTG	762
c.1076-2_1098	GTATGGCGGCATGAACGGGTATCCT	763
c.1076-1_1099	AGTATGGCGGCATGAACGGGTATCC	764
c.1076_1100	CAGTATGGCGGCATGAACGGGTATC	765
c.1077_1101	CCAGTATGGCGGCATGAACGGGTAT	766
c.1078_1102	CCCAGTATGGCGGCATGAACGGGTA	767
c.1079_1103	CCCCAGTATGGCGGCATGAACGGGT	768
c.1080_1104	GCCCCAGTATGGCGGCATGAACGGG	769
c.1081_1105	GGCCCCAGTATGGCGGCATGAACGG	770
c.1082_1106	AGGCCCCAGTATGGCGGCATGAACG	771
c.1083_1107	CAGGCCCCAGTATGGCGGCATGAAC	772
c.1084_1108	CCAGGCCCCAGTATGGCGGCATGAA	773
c.1085_1109	CCCAGGCCCCAGTATGGCGGCATGA	774
c.1086_1110	GCCCAGGCCCAGTATGGCGGCATG	775
c.1087_1111	AGCCCAGGCCCCAGTATGGCGGCAT	776
c.1088_1112	AAGCCCAGGCCCCAGTATGGCGGCA	777
c.1089_1113	GAAGCCCAGGCCCCAGTATGGCGGC	778
c.1090_1114	GGAAGCCCAGGCCCCAGTATGGCGG	779
c.1091_1115	TGGAAGCCCAGGCCCCAGTATGGCG	780
c.1092_1116	GTGGAAGCCCAGGCCCCAGTATGGC	781

c.1093 1117	GGTGGAAGCCCAGGCCCCAGTATGG	782
c.1094 1118	AGGTGGAAGCCCAGGCCCCAGTATG	783
c.1095_1119	CAGGTGGAAGCCCAGGCCCCAGTAT	784
c.1096 1120	ACAGGTGGAAGCCCAGGCCCCAGTA	785
c.1097_1121	CACAGGTGGAAGCCCAGGCCCCAGT	786
c.1098_1122	GCACAGGTGGAAGCCCAGGCCCCAG	787
c.1099_1123	GGCACAGGTGGAAGCCCAGGCCCCA	788
c.1100_1124	CGGCACAGGTGGAAGCCCAGGCCCC	789
c.1101_1125	GCGGCACAGGTGGAAGCCCAGGCCC	790
c.1102_1126	AGCGGCACAGGTGGAAGCCCAGGCC	791
c.1103_1127	CAGCGGCACAGGTGGAAGCCCAGGC	792
c.1104_1128	CCAGCGGCACAGGTGGAAGCCCAGG	793
c.1105_1129	CCCAGCGGCACAGGTGGAAGCCCAG	794
c.1106_1130	CCCCAGCGGCACAGGTGGAAGCCCA	795
c.1107_1131	GCCCCAGCGGCACAGGTGGAAGCCC	796
c.1108_1132	AGCCCCAGCGGCACAGGTGGAAGCC	797
c.1109_1133	TAGCCCCAGCGCACAGGTGGAAGC	798
c.1110_1134	GTAGCCCCAGCGCACAGGTGGAAG	799
c.1111_1135	AGTAGCCCCAGCGGCACAGGTGGAA	800
c.1112_1136	GAGTAGCCCCAGCGGCACAGGTGGA	801
c.1113_1137	GGAGTAGCCCCAGCGGCACAGGTGG	802
c.1114_1138	AGGAGTAGCCCCAGCGCACAGGTG	803
c.1115_1139	GAGGAGTAGCCCCAGCGGCACAGGT	804
c.1116_1140	GGAGGAGTAGCCCCAGCGGCACAGG	805
c.1117_1141	TGGAGGAGTAGCCCCAGCGGCACAG	806
c.1118_1142	GTGGAGGAGTAGCCCCAGCGGCACA	807
c.1119_1143	GGTGGAGGAGTAGCCCCAGCGGCAC	808
c.1120_1144	CGGTGGAGGAGTAGCCCCAGCGGCA	809
c.1121_1145	GCGGTGGAGGAGTAGCCCCAGCGGC	810
c.1122_1146	AGCGGTGGAGGAGTAGCCCCAGCGG	811
c.1123_1147	TAGCGGTGGAGGAGTAGCCCCAGCG	812
c.1124_1148	ATAGCGGTGGAGGAGTAGCCCCAGC	813
c.1125_1149	GATAGCGGTGGAGGAGTAGCCCCAG	814
c.1126_1150	TGATAGCGGTGGAGGAGTAGCCCCA	815
c.1127_1151	GTGATAGCGGTGGAGGAGTAGCCCC	816
c.1128_1152	GGTGATAGCGGTGGAGGAGTAGCCC	817
c.1129_1153	GGGTGATAGCGGTGGAGGAGTAGCC	818
c.1130_1154	CGGGTGATAGCGGTGGAGGAGTAGC	819
c.1131_1155	GCGGGTGATAGCGGTGGAGGAGTAG	820
c.1132_1156	GGCGGGTGATAGCGGTGGAGGAGTA	821
c.1133_1157	TGGCGGGTGATAGCGGTGGAGGAGT	822
c.1134_1158	CTGGCGGTGATAGCGGTGGAGGAG	823

c.1135_1159	CCTGGCGGTGATAGCGGTGGAGGA	824
c.1136_1160	ACCTGGCGGGTGATAGCGGTGGAGG	825
c.1137_1161	CACCTGGCGGGTGATAGCGGTGGAG	826
c.1138_1162	CCACCTGGCGGGTGATAGCGGTGGA	827
c.1139_1163	ACCACCTGGCGGGTGATAGCGGTGG	828
c.1140_1164	CACCACCTGGCGGGTGATAGCGGTG	829
c.1141_1165	CCACCACCTGGCGGGTGATAGCGGT	830
c.1142_1166	TCCACCACCTGGCGGGTGATAGCGG	831
c.1143_1167	CTCCACCACCTGGCGGGTGATAGCG	832
c.1144_1168	TCTCCACCACCTGGCGGGTGATAGC	833
c.1145_1169	TTCTCCACCACCTGGCGGGTGATAG	834
c.1146_1170	GTTCTCCACCACCTGGCGGGTGATA	835
c.1147_1171	TGTTCTCCACCACCTGGCGGGTGAT	836
c.1148_1172	ATGTTCTCCACCACCTGGCGGGTGA	837
c.1149_1173	CATGTTCTCCACCACCTGGCGGGTG	838
c.1150_1174	TCATGTTCTCCACCACCTGGCGGGT	839
c.1151_1175	GTCATGTTCTCCACCACCTGGCGGG	840
c.1152_1176	GGTCATGTTCTCCACCACCTGGCGG	841
c.1153_1177	TGGTCATGTTCTCCACCACCTGGCG	842
c.1154_1178	CTGGTCATGTTCTCCACCACCTGGC	843
c.1155_1179	CCTGGTCATGTTCTCCACCACCTGG	844
c.1156_1180	CCCTGGTCATGTTCTCCACCACCTG	845
c.1157_1181	GCCCTGGTCATGTTCTCCACCACCT	846
c.1158_1182	GGCCCTGGTCATGTTCTCCACCACC	847
c.1159_1183	GGGCCCTGGTCATGTTCTCCACCAC	848
c.1160_1184	TGGGCCCTGGTCATGTTCTCCACCA	849
c.1161_1185	GTGGGCCCTGGTCATGTTCTCCACC	850
c.1162_1186	AGTGGGCCCTGGTCATGTTCTCCAC	851
c.1163_1187	AAGTGGGCCCTGGTCATGTTCTCCA	852
c.1164_1188	GAAGTGGGCCCTGGTCATGTTCTCC	853
c.1165_1189	GGAAGTGGGCCCTGGTCATGTTCTC	854
c.1166_1190	GGGAAGTGGGCCCTGGTCATGTTCT	855
c.1167_1191	GGGGAAGTGGGCCCTGGTCATGTTC	856
c.1168_1192	GGGGGAAGTGGGCCCTGGTCATGTT	857
c.1169_1193	AGGGGGAAGTGGGCCCTGGTCATGT	858
c.1170_1194	CAGGGGAAGTGGGCCCTGGTCATG	859
c.1171_1194+1	CCAGGGGAAGTGGGCCCTGGTCAT	860
c.1172_1194+2	ACCAGGGGAAGTGGGCCCTGGTCA	861
c.1173_1194+3	CACCAGGGGAAGTGGGCCCTGGTC	862
c.1174_1194+4	TCACCAGGGGGAAGTGGGCCCTGGT	863
c.1175_1194+5	CTCACCAGGGGGAAGTGGGCCCTGG	864
c.1176_1194+6	ACTCACCAGGGGGAAGTGGGCCCTG	865

c.1177_1194+7	AACTCACCAGGGGGAAGTGGGCCCT	866
c.1178_1194+8	CAACTCACCAGGGGGAAGTGGGCCC	867
c.1179_1194+9	CCAACTCACCAGGGGGAAGTGGGCC	868
c.1180_1194+10	CCCAACTCACCAGGGGGAAGTGGGC	869
c.1181_1194+11	CCCCAACTCACCAGGGGGAAGTGGG	870
c.1182_1194+12	ACCCCAACTCACCAGGGGGAAGTGG	871
c.1183_1194+13	CACCCCAACTCACCAGGGGGAAGTG	872
c.1184_1194+14	CCACCCCAACTCACCAGGGGGAAGT	873
c.1185_1194+15	ACCACCCCAACTCACCAGGGGGAAG	874
c.1186_1194+16	CACCACCCCAACTCACCAGGGGGAA	875
c.1187_1194+17	CCACCACCCAACTCACCAGGGGA	876
c.1188_1194+18	GCCACCACCCCAACTCACCAGGGGG	877
c.1189_1194+19	TGCCACCACCCCAACTCACCAGGGG	878
c.1190_1194+20	CTGCCACCACCCCAACTCACCAGGG	879
c.1191_1194+21	CCTGCCACCACCCCAACTCACCAGG	880
c.1192_1194+22	CCCTGCCACCACCCCAACTCACCAG	881
c.1193_1194+23	CCCCTGCCACCACCCCAACTCACCA	882
c.1194_1194+24	TCCCCTGCCACCACCCCAACTCACC	883
c.1194+1_+25	CTCCCCTGCCACCACCCCAACTCAC	884
c.956-255	AAGGGAAGCAGCTCTGGGGTT	885
c.956-244	GAAGGGAAGCAGCTCTGGGGT	886
c.956-233	GGAAGGGAAGCAGCTCTGGGG	887
c.956-222	TGGAAGGGAAGCAGCTCTGGG	888
c.956-211	CTGGAAGGGAAGCAGCTCTGG	889
c.956-20_956	TCTGGAAGGGAAGCAGCTCTG	890
c.956-19_957	ATCTGGAAGGGAAGCAGCTCT	891
c.956-18_958	CATCTGGAAGGGAAGCAGCTC	892
c.956-17_959	ACATCTGGAAGGGAAGCAGCT	893
c.956-16_960	CACATCTGGAAGGGAAGCAGC	894
c.956-15_961	CCACATCTGGAAGGGAAGCAG	895
c.956-14_962	ACCACATCTGGAAGGGAAGCA	896
c.956-13_963	GACCACATCTGGAAGGGAAGC	897
c.956-12_964	GGACCACATCTGGAAGGGAAG	898
c.956-11_965	AGGACCACATCTGGAAGGGAA	899
c.956-10_966	CAGGACCACATCTGGAAGGGA	900
c.956-9_967	GCAGGACCACATCTGGAAGGG	901
c.956-8_968	TGCAGGACCACATCTGGAAGG	902
c.956-7_969	CTGCAGGACCACATCTGGAAG	903
c.956-6_970	GCTGCAGGACCACATCTGGAA	904
c.956-5_971	GGCTGCAGGACCACATCTGGA	905
c.956-4_972	CGGCTGCAGGACCACATCTGG	906
c.956-3_973	TCGGCTGCAGGACCACATCTG	907

c.956-2_974	CTCGGCTGCAGGACCACATCT	908
c.956-1_975	GCTCGGCTGCAGGACCACATC	909
c.956_976	GGCTCGGCTGCAGGACCACAT	910
c.957_977	GGGCTCGGCTGCAGGACCACA	911
c.958_978	AGGGCTCGGCTGCAGGACCAC	912
c.959_979	CAGGGCTCGGCTGCAGGACCA	913
c.960_980	GCAGGGCTCGGCTGCAGGACC	914
c.961_981	GGCAGGGCTCGGCTGCAGGAC	915
c.962_982	GGGCAGGGCTCGGCTGCAGGA	916
c.963_983	AGGGCAGGGCTCGGCTGCAGG	917
c.964_984	AAGGGCAGGGCTCGGCTGCAG	918
c.965_985	TAAGGGCAGGGCTCGGCTGCA	919
c.966_986	CTAAGGGCAGGGCTCGGCTGC	920
c.967_987	GCTAAGGGCAGGGCTCGGCTG	921
c.968_988	AGCTAAGGGCAGGGCTCGGCT	922
c.969_989	CAGCTAAGGGCAGGGCTCGGC	923
c.970_990	CCAGCTAAGGGCAGGGCTCGG	924
c.971_991	TCCAGCTAAGGGCAGGGCTCG	925
c.972_992	CTCCAGCTAAGGGCAGGGCTC	926
c.973_993	CCTCCAGCTAAGGGCAGGGCT	927
c.974_994	ACCTCCAGCTAAGGGCAGGGC	928
c.975_995	GACCTCCAGCTAAGGGCAGGG	929
c.976_996	CGACCTCCAGCTAAGGGCAGG	930
c.977_997	TCGACCTCCAGCTAAGGGCAG	931
c.978_998	GTCGACCTCCAGCTAAGGGCA	932
c.979_999	TGTCGACCTCCAGCTAAGGGC	933
c.980_1000	CTGTCGACCTCCAGCTAAGGG	934
c.981_1001	CCTGTCGACCTCCAGCTAAGG	935
c.982_1002	ACCTGTCGACCTCCAGCTAAG	936
c.983_1003	CACCTGTCGACCTCCAGCTAA	937
c.984_1004	CCACCTGTCGACCTCCAGCTA	938
c.985_1005	CCCACCTGTCGACCTCCAGCT	939
c.986_1006	TCCCACCTGTCGACCTCCAGC	940
c.987_1007	ATCCCACCTGTCGACCTCCAG	941
c.988_1008	GATCCCACCTGTCGACCTCCA	942
c.989_1009	GGATCCCACCTGTCGACCTCC	943
c.990_1010	AGGATCCCACCTGTCGACCTC	944
c.991_1011	CAGGATCCCACCTGTCGACCT	945
c.992_1012	CCAGGATCCCACCTGTCGACC	946
c.993_1013	TCCAGGATCCCACCTGTCGAC	947
c.994_1014	ATCCAGGATCCCACCTGTCGA	948
c.995_1015	CATCCAGGATCCCACCTGTCG	949

c.996_1016	ACATCCAGGATCCCACCTGTC	950
c.997_1017	GACATCCAGGATCCCACCTGT	951
c.998_1018	AGACATCCAGGATCCCACCTG	952
c.999_1019	TAGACATCCAGGATCCCACCT	953
c.1000_1020	GTAGACATCCAGGATCCCACC	954
c.1001_1021	TGTAGACATCCAGGATCCCAC	955
c.1002_1022	ATGTAGACATCCAGGATCCCA	956
c.1003_1023	GATGTAGACATCCAGGATCCC	957
c.1004_1024	AGATGTAGACATCCAGGATCC	958
c.1005_1025	AAGATGTAGACATCCAGGATC	959
c.1006_1026	GAAGATGTAGACATCCAGGAT	960
c.1007_1027	GGAAGATGTAGACATCCAGGA	961
c.1008_1028	AGGAAGATGTAGACATCCAGG	962
c.1009_1029	CAGGAAGATGTAGACATCCAG	963
c.1010_1030	CCAGGAAGATGTAGACATCCA	964
c.1011_1031	CCCAGGAAGATGTAGACATCC	965
c.1012_1032	GCCCAGGAAGATGTAGACATC	966
c.1013_1033	GGCCCAGGAAGATGTAGACAT	967
c.1014_1034	GGGCCCAGGAAGATGTAGACA	968
c.1015_1035	TGGGCCCAGGAAGATGTAGAC	969
c.1016_1036	CTGGGCCCAGGAAGATGTAGA	970
c.1017_1037	TCTGGGCCCAGGAAGATGTAG	971
c.1018_1038	CTCTGGGCCCAGGAAGATGTA	972
c.1019_1039	GCTCTGGGCCCAGGAAGATGT	973
c.1020_1040	GGCTCTGGGCCCAGGAAGATG	974
c.1021_1041	GGGCTCTGGGCCCAGGAAGAT	975
c.1022_1042	TGGGCTCTGGGCCCAGGAAGA	976
c.1023_1043	TTGGGCTCTGGGCCCAGGAAG	977
c.1024_1044	CTTGGGCTCTGGGCCCAGGAA	978
c.1025_1045	TCTTGGGCTCTGGGCCCAGGA	979
c.1026_1046	CTCTTGGGCTCTGGGCCCAGG	980
c.1027_1047	GCTCTTGGGCTCTGGGCCCAG	981
c.1028 1048	CGCTCTTGGGCTCTGGGCCCA	982
c.1029_1049	ACGCTCTTGGGCTCTGGGCCC	983
c.1030_1050	CACGCTCTTGGGCTCTGGGCC	984
c.1031_1051	CCACGCTCTTGGGCTCTGGGC	985
c.1032_1052	ACCACGCTCTTGGGCTCTGGG	986
c.1033_1053	CACCACGCTCTTGGGCTCTGG	987
c.1034_1054	GCACCACGCTCTTGGGCTCTG	988

c.1035_1055	TGCACCACGCTCTTGGGCTCT	989
c.1036_1056	CTGCACCACGCTCTTGGGCTC	990
c.1037_1057	GCTGCACCACGCTCTTGGGCT	991
c.1038_1058	TGCTGCACCACGCTCTTGGGC	992
c.1039_1059	CTGCTGCACCACGCTCTTGGG	993
c.1040_1060	ACTGCTGCACCACGCTCTTGG	994
c.1041_1061	TACTGCTGCACCACGCTCTTG	995
c.1042_1062	GTACTGCTGCACCACGCTCTT	996
c.1043_1063	GGTACTGCTGCACCACGCTCT	997
c.1044_1064	AGGTACTGCTGCACCACGCTC	998
c.1045_1065	CAGGTACTGCTGCACCACGCT	999
c.1046_1066	CCAGGTACTGCTGCACCACGC	1000
c.1047_1067	TCCAGGTACTGCTGCACCACG	1001
c.1048_1068	GTCCAGGTACTGCTGCACCAC	1002
c.1049_1069	CGTCCAGGTACTGCTGCACCA	1003
c.1050_1070	ACGTCCAGGTACTGCTGCACC	1004
c.1051_1071	AACGTCCAGGTACTGCTGCAC	1005
c.1052_1072	CAACGTCCAGGTACTGCTGCA	1006
c.1053_1073	ACAACGTCCAGGTACTGCTGC	1007
c.1054_1074	CACAACGTCCAGGTACTGCTG	1008
c.1055_1075	CCACAACGTCCAGGTACTGCT	1009
c.1056_1075+1	CCCACAACGTCCAGGTACTGC	1010
c.1057_1075+2	ACCCACAACGTCCAGGTACTG	1011
c.1058_1075+3	TACCCACAACGTCCAGGTACT	1012
c.1059_1075+4	CTACCCACAACGTCCAGGTAC	1013
c.1060_1075+5	CCTACCCACAACGTCCAGGTA	1014
c.1061_1075+6	CCCTACCCACAACGTCCAGGT	1015
c.1062_1075+7	GCCCTACCCACAACGTCCAGG	1016
c.1063_1075+8	GGCCCTACCCACAACGTCCAG	1017
c.1064_1075+9	AGGCCCTACCCACAACGTCCA	1018
c.1065_1075+10	CAGGCCCTACCCACAACGTCC	1019
c.1066_1075+11	GCAGGCCCTACCCACAACGTC	1020
c.1067_1075+12	AGCAGGCCCTACCCACAACGT	1021
c.1068_1075+13	GAGCAGGCCCTACCCACAACG	1022
c.1069_1075+14	GGAGCAGGCCCTACCCACAAC	1023
c.1070_1075+15	GGGAGCAGGCCCTACCCACAA	1024
c.1071_1075+16	AGGGAGCAGGCCCTACCCACA	1025
c.1072_1075+17	CAGGGAGCAGGCCCTACCCAC	1026
c.1073_1075+18	CCAGGGAGCAGGCCCTACCCA	1027
c.1074_1075+19	GCCAGGGAGCAGGCCCTACCC	1028
c.1075_1075+20	GGCCAGGGAGCAGGCCCTACC	1029
c.1075+1_+21	CGGCCAGGGAGCAGGCCCTAC	1030

c.1075+2_+22	GCGGCCAGGGAGCAGGCCCTA	1031
c.1075+3_+23	CGCGGCCAGGGAGCAGGCCCT	1032
c.1075+4_+24	CCGCGGCCAGGGAGCAGGCCC	1033
c.1075+5_+25	GCCGCGGCCAGGGAGCAGGCC	1034
c.1075+6_+26	GGCCGCGGCCAGGGAGCAGGC	1035
c.1075+7_+27	GGGCCGCGCCAGGGAGCAGG	1036
c.1075+8_+28	GGGGCCGGGCCAGGGAGCAG	1037
c.1075+9_+29	GGGGCCGCGGCCAGGGAGCA	1038
c.1075+10_+30	CGGGGGCCGCGCCAGGGAGC	1039
c.1075+11_+31	GCGGGGCCGCGCCAGGGAG	1040
c.1075+12_+32	GGCGGGGCCGCCGGCA	1041
c.1075+13_+33	GGGCGGGGCCGGCCAGGG	1042
c.1075+14_+34	GGGGCGGGGCCAGG	1043
c.1075+15_+35	TGGGGCGGGGCCAG	1044
c.1075+16_+36	TTGGGGCGGGGCCGCCCA	1045
c.1075+17_+37	CTTGGGGCGGGGCCGCGCC	1046
c.1075+18_+38	CCTTGGGGCGGGGGCCGCGC	1047
c.1075+19_+39	GCCTTGGGGCGGGGGCCGCGG	1048
c.1075+20_+40	AGCCTTGGGGCGGGGGCCGCG	1049
c.1075+21_1076-39	GAGCCTTGGGGCGGGGGCCGC	1050
c.1075+22_1076-38	GGAGCCTTGGGGCGGGGGCCG	1051
c.1075+23_1076-37	GGGAGCCTTGGGGCGGGGCC	1052
c.1075+24_1076-36	AGGGAGCCTTGGGGCGGGGC	1053
c.1075+25_1076-35	GAGGGAGCCTTGGGGCGGGGG	1054
c.1075+26_1076-34	GGAGGGAGCCTTGGGGCGGGG	1055
c.1075+27_1076-33	AGGAGGGAGCCTTGGGGCGGG	1056
c.1075+28_1076-32	GAGGAGGGAGCCTTGGGGCGG	1057
c.1075+29_1076-31	GGAGGAGGGAGCCTTGGGGCG	1058
c.1075+30_1076-30	GGGAGGAGGGAGCCTTGGGGC	1059
c.1075+31_1076-29	AGGGAGGAGGCCTTGGGG	1060
c.1075+32_1076-28	GAGGGAGGAGGCCTTGGG	1061
c.1075+33_1076-27	GGAGGAGGAGGCCTTGG	1062
c.1075+34_1076-26	GGGAGGAGGAGCCTTG	1063
c.1075+35_1076-25	AGGGAGGAGGGAGCCTT	1064
c.1075+36_1076-24	GAGGGAGGAGGGAGCCT	1065
c.1075+37_1076-23	TGAGGGAGGGAGGGAGCC	1066
c.1075+38_1076-22	ATGAGGGAGGAGGAGC	1067
c.1075+39_1076-21	CATGAGGGAGGAGGAGGAG	1068
c.1075+40_1076-20	TCATGAGGGAGGAGGAGGA	1069
c.1076-3919	TTCATGAGGGAGGAGGAGGG	1070
c.1076-3818	CTTCATGAGGGAGGAGGAGG	1071
c.1076-3717	ACTTCATGAGGGAGGAGGAG	1072

c.1076-3616	GACTTCATGAGGGAGGAGGA	1073
c.1076-35 -15	CGACTTCATGAGGGAGGGAGG	1074
c.1076-3414	CCGACTTCATGAGGGAGGGAG	1075
c.1076-33 -13	GCCGACTTCATGAGGGAGGGA	1076
c.1076-32 -12	CGCCGACTTCATGAGGGAGGG	1077
c.1076-3111	ACGCCGACTTCATGAGGGAGG	1078
c.1076-30 -10	AACGCCGACTTCATGAGGGAG	1079
c.1076-29 -9	CAACGCCGACTTCATGAGGGA	1080
c.1076-288	CCAACGCCGACTTCATGAGGG	1081
c.1076-277	GCCAACGCCGACTTCATGAGG	1082
c.1076-266	GGCCAACGCCGACTTCATGAG	1083
c.1076-255	AGGCCAACGCCGACTTCATGA	1084
c.1076-244	CAGGCCAACGCCGACTTCATG	1085
c.1076-233	GCAGGCCAACGCCGACTTCAT	1086
c.1076-222	TGCAGGCCAACGCCGACTTCA	1087
c.1076-211	CTGCAGGCCAACGCCGACTTC	1088
c.1076-20_1076	CCTGCAGGCCAACGCCGACTT	1089
c.1076-19_1077	TCCTGCAGGCCAACGCCGACT	1090
c.1076-18_1078	ATCCTGCAGGCCAACGCCGAC	1091
c.1076-17_1079	TATCCTGCAGGCCAACGCCGA	1092
c.1076-16_1080	GTATCCTGCAGGCCAACGCCG	1093
c.1076-15_1081	GGTATCCTGCAGGCCAACGCC	1094
c.1076-14_1082	GGGTATCCTGCAGGCCAACGC	1095
c.1076-13_1083	CGGGTATCCTGCAGGCCAACG	1096
c.1076-12_1084	ACGGGTATCCTGCAGGCCAAC	1097
c.1076-11_1085	AACGGGTATCCTGCAGGCCAA	1098
c.1076-10_1086	GAACGGGTATCCTGCAGGCCA	1099
c.1076-9_1087	TGAACGGGTATCCTGCAGGCC	1100
c.1076-8_1088	ATGAACGGGTATCCTGCAGGC	1101
c.1076-7_1089	CATGAACGGGTATCCTGCAGG	1102
c.1076-6_1090	GCATGAACGGGTATCCTGCAG	1103
c.1076-5_1091	GGCATGAACGGGTATCCTGCA	1104
c.1076-4_1092	CGGCATGAACGGGTATCCTGC	1105
c.1076-3_1093	GCGGCATGAACGGGTATCCTG	1106
c.1076-2_1094	GGCGGCATGAACGGGTATCCT	1107
c.1076-1_1095	TGGCGGCATGAACGGGTATCC	1108
c.1076_1096	ATGGCGGCATGAACGGGTATC	1109
c.1077_1097	TATGGCGGCATGAACGGGTAT	1110
c.1078_1098	GTATGGCGGCATGAACGGGTA	1111
c.1079_1099	AGTATGGCGGCATGAACGGGT	1112
c.1080_1100	CAGTATGGCGGCATGAACGGG	1113
c.1081_1101	CCAGTATGGCGGCATGAACGG	1114

c.1082 1102	CCCAGTATGGCGGCATGAACG	1115
c.1083 1103	CCCCAGTATGGCGGCATGAAC	1116
c.1084_1104	GCCCCAGTATGGCGGCATGAA	1117
c.1085 1105	GGCCCCAGTATGGCGGCATGA	1118
c.1086_1106	AGGCCCCAGTATGGCGGCATG	1119
c.1087_1107	CAGGCCCCAGTATGGCGGCAT	1120
c.1088 1108	CCAGGCCCCAGTATGGCGGCA	1121
c.1089 1109	CCCAGGCCCCAGTATGGCGGC	1122
c.1090 1110	GCCCAGGCCCCAGTATGGCGG	1123
c.1091 1111	AGCCCAGGCCCCAGTATGGCG	1124
c.1092 1112	AAGCCCAGGCCCCAGTATGGC	1125
c.1093 1113	GAAGCCCAGGCCCCAGTATGG	1126
c.1094 1114	GGAAGCCCAGGCCCCAGTATG	1127
c.1095 1115	TGGAAGCCCAGGCCCCAGTAT	1128
c.1096 1116	GTGGAAGCCCAGGCCCCAGTA	1129
c.1097 1117	GGTGGAAGCCCAGGCCCCAGT	1130
c.1098 1118	AGGTGGAAGCCCAGGCCCCAG	1131
c.1099 1119	CAGGTGGAAGCCCAGGCCCCA	1132
c.1100 1120	ACAGGTGGAAGCCCAGGCCCC	1133
c.1101 1121	CACAGGTGGAAGCCCAGGCCC	1134
c.1102 1122	GCACAGGTGGAAGCCCAGGCC	1135
c.1103 1123	GGCACAGGTGGAAGCCCAGGC	1136
c.1104_1124	CGGCACAGGTGGAAGCCCAGG	1137
c.1105 1125	GCGGCACAGGTGGAAGCCCAG	1138
c.1106 1126	AGCGGCACAGGTGGAAGCCCA	1139
c.1107 1127	CAGCGGCACAGGTGGAAGCCC	1140
c.1108 1128	CCAGCGGCACAGGTGGAAGCC	1141
c.1109 1129	CCCAGCGGCACAGGTGGAAGC	1142
c.1110_1130	CCCCAGCGGCACAGGTGGAAG	1143
c.1111_1131	GCCCCAGCGGCACAGGTGGAA	1144
c.1112_1132	AGCCCCAGCGGCACAGGTGGA	1145
c.1113_1133	TAGCCCCAGCGCACAGGTGG	1146
c.1114_1134	GTAGCCCCAGCGCACAGGTG	1147
c.1115_1135	AGTAGCCCCAGCGCACAGGT	1148
c.1116_1136	GAGTAGCCCCAGCGCACAGG	1149
c.1117_1137	GGAGTAGCCCCAGCGGCACAG	1150
c.1118_1138	AGGAGTAGCCCCAGCGGCACA	1151
c.1119_1139	GAGGAGTAGCCCCAGCGCAC	1152
c.1120_1140	GGAGGAGTAGCCCCAGCGGCA	1153
c.1121_1141	TGGAGGAGTAGCCCCAGCGGC	1154
c.1122_1142	GTGGAGGAGTAGCCCCAGCGG	1155
c.1123_1143	GGTGGAGGAGTAGCCCCAGCG	1156

c.1124_1144	CGGTGGAGGAGTAGCCCCAGC	1157
c.1125_1145	GCGGTGGAGGAGTAGCCCCAG	1158
c.1126_1146	AGCGGTGGAGGAGTAGCCCCA	1159
c.1127 1147	TAGCGGTGGAGGAGTAGCCCC	1160
c.1128_1148	ATAGCGGTGGAGGAGTAGCCC	1161
c.1129_1149	GATAGCGGTGGAGGAGTAGCC	1162
c.1130_1150	TGATAGCGGTGGAGGAGTAGC	1163
c.1131_1151	GTGATAGCGGTGGAGGAGTAG	1164
c.1132_1152	GGTGATAGCGGTGGAGGAGTA	1165
c.1133_1153	GGGTGATAGCGGTGGAGGAGT	1166
c.1134_1154	CGGGTGATAGCGGTGGAGGAG	1167
c.1135_1155	GCGGGTGATAGCGGTGGAGGA	1168
c.1136_1156	GGCGGGTGATAGCGGTGGAGG	1169
c.1137_1157	TGGCGGTGATAGCGGTGGAG	1170
c.1138_1158	CTGGCGGGTGATAGCGGTGGA	1171
c.1139_1159	CCTGGCGGGTGATAGCGGTGG	1172
c.1140_1160	ACCTGGCGGGTGATAGCGGTG	1173
c.1141_1161	CACCTGGCGGGTGATAGCGGT	1174
c.1142_1162	CCACCTGGCGGGTGATAGCGG	1175
c.1143_1163	ACCACCTGGCGGGTGATAGCG	1176
c.1144_1164	CACCACCTGGCGGGTGATAGC	1177
c.1145_1165	CCACCACCTGGCGGGTGATAG	1178
c.1146_1166	TCCACCACCTGGCGGGTGATA	1179
c.1147_1167	CTCCACCACCTGGCGGGTGAT	1180
c.1148_1168	TCTCCACCACCTGGCGGGTGA	1181
c.1149_1169	TTCTCCACCACCTGGCGGGTG	1182
c.1150_1170	GTTCTCCACCACCTGGCGGGT	1183
c.1151_1171	TGTTCTCCACCACCTGGCGGG	1184
c.1152_1172	ATGTTCTCCACCACCTGGCGG	1185
c.1153_1173	CATGTTCTCCACCACCTGGCG	1186
c.1154_1174	TCATGTTCTCCACCACCTGGC	1187
c.1155_1175	GTCATGTTCTCCACCACCTGG	1188
c.1156_1176	GGTCATGTTCTCCACCACCTG	1189
c.1157_1177	TGGTCATGTTCTCCACCACCT	1190
c.1158_1178	CTGGTCATGTTCTCCACCACC	1191
c.1159_1179	CCTGGTCATGTTCTCCACCAC	1192
c.1160_1180	CCCTGGTCATGTTCTCCACCA	1193
c.1161_1181	GCCCTGGTCATGTTCTCCACC	1194
c.1162_1182	GGCCCTGGTCATGTTCTCCAC	1195
c.1163_1183	GGGCCCTGGTCATGTTCTCCA	1196
c.1164_1184	TGGGCCCTGGTCATGTTCTCC	1197
c.1165_1185	GTGGGCCCTGGTCATGTTCTC	1198

c.1166_1186	AGTGGGCCCTGGTCATGTTCT	1199
c.1167_1187	AAGTGGGCCCTGGTCATGTTC	1200
c.1168_1188	GAAGTGGGCCCTGGTCATGTT	1201
c.1169_1189	GGAAGTGGGCCCTGGTCATGT	1202
c.1170_1190	GGGAAGTGGGCCCTGGTCATG	1203
c.1171_1191	GGGGAAGTGGGCCCTGGTCAT	1204
c.1172_1192	GGGGGAAGTGGGCCCTGGTCA	1205
c.1173_1193	AGGGGAAGTGGGCCCTGGTC	1206
c.1174_1194	CAGGGGAAGTGGGCCCTGGT	1207
c.1175_1194+1	CCAGGGGAAGTGGGCCCTGG	1208
c.1176_1194+2	ACCAGGGGAAGTGGGCCCTG	1209
c.1177_1194+3	CACCAGGGGGAAGTGGGCCCT	1210
c.1178_1194+4	TCACCAGGGGGAAGTGGGCCC	1211
c.1179_1194+5	CTCACCAGGGGGAAGTGGGCC	1212
c.1180_1194+6	ACTCACCAGGGGGAAGTGGGC	1213
c.1181_1194+7	AACTCACCAGGGGAAGTGGG	1214
c.1182_1194+8	CAACTCACCAGGGGGAAGTGG	1215
c.1183_1194+9	CCAACTCACCAGGGGAAGTG	1216
c.1184_1194+10	CCCAACTCACCAGGGGGAAGT	1217
c.1185_1194+11	CCCCAACTCACCAGGGGGAAG	1218
c.1186_1194+12	ACCCCAACTCACCAGGGGGAA	1219
c.1187_1194+13	CACCCCAACTCACCAGGGGGA	1220
c.1188_1194+14	CCACCCCAACTCACCAGGGGG	1221
c.1189_1194+15	ACCACCCCAACTCACCAGGGG	1222
c.1190_1194+16	CACCACCCCAACTCACCAGGG	1223
c.1191_1194+17	CCACCACCCCAACTCACCAGG	1224
c.1192_1194+18	GCCACCACCCAACTCACCAG	1225
c.1193_1194+19	TGCCACCACCCAACTCACCA	1226
c.1194_1194+20	CTGCCACCACCCAACTCACC	1227
c.1194+1_+21	CCTGCCACCACCCCAACTCAC	1228
c.1194+2_+22	CCCTGCCACCACCCCAACTCA	1229
c.1194+3_+23	CCCCTGCCACCACCCCAACTC	1230
c.1194+4_+24	TCCCCTGCCACCACCCCAACT	1231
c.1194+5_+25	CTCCCCTGCCACCACCCCAAC	1232
c.956-258	GGAAGCAGCTCTGGGGTT	1233
c.956-247	GGGAAGCAGCTCTGGGGT	1234
c.956-236	AGGGAAGCAGCTCTGGGG	1235
c.956-225	AAGGGAAGCAGCTCTGGG	1236
c.956-214	GAAGGGAAGCAGCTCTGG	1237
c.956-203	GGAAGGGAAGCAGCTCTG	1238
c.956-192	TGGAAGGGAAGCAGCTCT	1239
c.956-181	CTGGAAGGGAAGCAGCTC	1240

c.956-17_956	TCTGGAAGGGAAGCAGCT	1241
c.956-16_957	ATCTGGAAGGGAAGCAGC	1242
c.956-15_958	CATCTGGAAGGGAAGCAG	1243
c.956-14_959	ACATCTGGAAGGGAAGCA	1244
c.956-13_960	CACATCTGGAAGGGAAGC	1245
c.956-12_961	CCACATCTGGAAGGGAAG	1246
c.956-11_962	ACCACATCTGGAAGGGAA	1247
c.956-10_963	GACCACATCTGGAAGGGA	1248
c.956-9_964	GGACCACATCTGGAAGGG	1249
c.956-8_965	AGGACCACATCTGGAAGG	1250
c.956-7_966	CAGGACCACATCTGGAAG	1251
c.956-6_967	GCAGGACCACATCTGGAA	1252
c.956-5_968	TGCAGGACCACATCTGGA	1253
c.956-4_969	CTGCAGGACCACATCTGG	1254
c.956-3_970	GCTGCAGGACCACATCTG	1255
c.956-2_971	GGCTGCAGGACCACATCT	1256
c.956-1_972	CGGCTGCAGGACCACATC	1257
c.956_973	TCGGCTGCAGGACCACAT	1258
c.957_974	CTCGGCTGCAGGACCACA	1259
c.958_975	GCTCGGCTGCAGGACCAC	1260
c.959_976	GGCTCGGCTGCAGGACCA	1261
c.960_977	GGGCTCGGCTGCAGGACC	1262
c.961_978	AGGGCTCGGCTGCAGGAC	1263
c.962_979	CAGGGCTCGGCTGCAGGA	1264
c.963_980	GCAGGGCTCGGCTGCAGG	1265
c.964_981	GGCAGGGCTCGGCTGCAG	1266
$c.965_982$	GGGCAGGGCTCGGCTGCA	1267
c.966_983	AGGGCAGGGCTCGGCTGC	1268
c.967_984	AAGGGCAGGGCTCGGCTG	1269
$c.968_985$	TAAGGGCAGGGCTCGGCT	1270
c.969_986	CTAAGGGCAGGGCTCGGC	1271
$c.970_987$	GCTAAGGGCAGGGCTCGG	1272
c.971_988	AGCTAAGGGCAGGGCTCG	1273
$c.972_989$	CAGCTAAGGGCAGGGCTC	1274
c.973_990	CCAGCTAAGGGCAGGGCT	1275
c.974_991	TCCAGCTAAGGGCAGGGC	1276
c.975_992	CTCCAGCTAAGGGCAGGG	1277
c.976_993	CCTCCAGCTAAGGGCAGG	1278
c.977_994	ACCTCCAGCTAAGGGCAG	1279
c.978_995	GACCTCCAGCTAAGGGCA	1280
c.979_996	CGACCTCCAGCTAAGGGC	1281
c.980_997	TCGACCTCCAGCTAAGGG	1282

c.981_998	GTCGACCTCCAGCTAAGG	1283
c.982_999	TGTCGACCTCCAGCTAAG	1284
c.983_1000	CTGTCGACCTCCAGCTAA	1285
c.984_1001	CCTGTCGACCTCCAGCTA	1286
c.985_1002	ACCTGTCGACCTCCAGCT	1287
c.986_1003	CACCTGTCGACCTCCAGC	1288
c.987_1004	CCACCTGTCGACCTCCAG	1289
c.988_1005	CCCACCTGTCGACCTCCA	1290
c.989_1006	TCCCACCTGTCGACCTCC	1291
c.990_1007	ATCCCACCTGTCGACCTC	1292
c.991_1008	GATCCCACCTGTCGACCT	1293
c.992 1009	GGATCCCACCTGTCGACC	1294
c.993 1010	AGGATCCCACCTGTCGAC	1295
c.994_1011	CAGGATCCCACCTGTCGA	1296
c.995_1012	CCAGGATCCCACCTGTCG	1297
c.996_1013	TCCAGGATCCCACCTGTC	1298
c.997_1014	ATCCAGGATCCCACCTGT	1299
c.998_1015	CATCCAGGATCCCACCTG	1300
c.999 1016	ACATCCAGGATCCCACCT	1301
c.1000_1017	GACATCCAGGATCCCACC	1302
c.1001_1018	AGACATCCAGGATCCCAC	1303
c.1002_1019	TAGACATCCAGGATCCCA	1304
c.1003_1020	GTAGACATCCAGGATCCC	1305
c.1004_1021	TGTAGACATCCAGGATCC	1306
c.1005_1022	ATGTAGACATCCAGGATC	1307
c.1006_1023	GATGTAGACATCCAGGAT	1308
c.1007_1024	AGATGTAGACATCCAGGA	1309
c.1008_1025	AAGATGTAGACATCCAGG	1310
c.1009_1026	GAAGATGTAGACATCCAG	1311
c.1010_1027	GGAAGATGTAGACATCCA	1312
c.1011_1028	AGGAAGATGTAGACATCC	1313
c.1012_1029	CAGGAAGATGTAGACATC	1314
c.1013_1030	CCAGGAAGATGTAGACAT	1315
c.1014_1031	CCCAGGAAGATGTAGACA	1316
c.1015_1032	GCCCAGGAAGATGTAGAC	1317
c.1016_1033	GGCCCAGGAAGATGTAGA	1318
c.1017_1034	GGGCCCAGGAAGATGTAG	1319
c.1018_1035	TGGGCCCAGGAAGATGTA	1320
c.1019_1036	CTGGGCCCAGGAAGATGT	1321
c.1020_1037	TCTGGGCCCAGGAAGATG	1322
c.1021_1038	CTCTGGGCCCAGGAAGAT	1323
c.1022_1039	GCTCTGGGCCCAGGAAGA	1324

c.1023_1040	GGCTCTGGGCCCAGGAAG	1325
c.1024_1041	GGGCTCTGGGCCCAGGAA	1326
c.1025_1042	TGGGCTCTGGGCCCAGGA	1327
c.1026_1043	TTGGGCTCTGGGCCCAGG	1328
c.1027_1044	CTTGGGCTCTGGGCCCAG	1329
c.1028_1045	TCTTGGGCTCTGGGCCCA	1330
c.1029_1046	CTCTTGGGCTCTGGGCCC	1331
c.1030_1047	GCTCTTGGGCTCTGGGCC	1332
c.1031_1048	CGCTCTTGGGCTCTGGGC	1333
c.1032_1049	ACGCTCTTGGGCTCTGGG	1334
c.1033_1050	CACGCTCTTGGGCTCTGG	1335
c.1034_1051	CCACGCTCTTGGGCTCTG	1336
c.1035_1052	ACCACGCTCTTGGGCTCT	1337
c.1036_1053	CACCACGCTCTTGGGCTC	1338
c.1037_1054	GCACCACGCTCTTGGGCT	1339
c.1038_1055	TGCACCACGCTCTTGGGC	1340
c.1039_1056	CTGCACCACGCTCTTGGG	1341
c.1040_1057	GCTGCACCACGCTCTTGG	1342
c.1041_1058	TGCTGCACCACGCTCTTG	1343
c.1042_1059	CTGCTGCACCACGCTCTT	1344
c.1043_1060	ACTGCTGCACCACGCTCT	1345
c.1044_1061	TACTGCTGCACCACGCTC	1346
c.1045_1062	GTACTGCTGCACCACGCT	1347
c.1046_1063	GGTACTGCTGCACCACGC	1348
c.1047_1064	AGGTACTGCTGCACCACG	1349
c.1048_1065	CAGGTACTGCTGCACCAC	1350
c.1049_1066	CCAGGTACTGCTGCACCA	1351
c.1050_1067	TCCAGGTACTGCTGCACC	1352
c.1051_1068	GTCCAGGTACTGCTGCAC	1353
c.1052_1069	CGTCCAGGTACTGCTGCA	1354
c.1053_1070	ACGTCCAGGTACTGCTGC	1355
c.1054_1071	AACGTCCAGGTACTGCTG	1356
c.1055_1072	CAACGTCCAGGTACTGCT	1357
c.1056_1073	ACAACGTCCAGGTACTGC	1358
c.1057_1074	CACAACGTCCAGGTACTG	1359
c.1058_1075	CCACAACGTCCAGGTACT	1360
c.1059_1075+1	CCCACAACGTCCAGGTAC	1361
c.1060_1075+2	ACCCACAACGTCCAGGTA	1362
c.1061_1075+3	TACCCACAACGTCCAGGT	1363
c.1062_1075+4	CTACCCACAACGTCCAGG	1364
c.1063_1075+5	CCTACCCACAACGTCCAG	1365
c.1064_1075+6	CCCTACCCACAACGTCCA	1366

c.1065_1075+7	GCCCTACCCACAACGTCC	1367
c.1066_1075+8	GGCCCTACCCACAACGTC	1368
c.1067_1075+9	AGGCCCTACCCACAACGT	1369
c.1068_1075+10	CAGGCCCTACCCACAACG	1370
c.1069_1075+11	GCAGGCCCTACCCACAAC	1371
c.1070_1075+12	AGCAGGCCCTACCCACAA	1372
c.1071_1075+13	GAGCAGGCCCTACCCACA	1373
c.1072_1075+14	GGAGCAGGCCCTACCCAC	1374
c.1073_1075+15	GGGAGCAGGCCCTACCCA	1375
c.1074_1075+16	AGGGAGCAGGCCCTACCC	1376
c.1075_1075+17	CAGGGAGCAGGCCCTACC	1377
c.1075+1_+18	CCAGGGAGCAGGCCCTAC	1378
c.1075+2_+19	GCCAGGGAGCAGGCCCTA	1379
c.1075+3_+20	GGCCAGGGAGCAGGCCCT	1380
c.1075+4_+21	CGGCCAGGGAGCAGGCCC	1381
c.1075+5_+22	GCGGCCAGGGAGCAGGCC	1382
c.1075+6_+23	CGCGGCCAGGGAGCAGGC	1383
c.1075+7_+24	CCGCGGCCAGGGAGCAGG	1384
c.1075+8_+25	GCCGCGGCCAGGGAGCAG	1385
c.1075+9_+26	GGCCGCGGCCAGGGAGCA	1386
c.1075+10_+27	GGGCCGCGGCCAGGGAGC	1387
c.1075+11_+28	GGGGCCGCGGCCAGGGAG	1388
c.1075+12_+29	GGGGCCGCGCCAGGGA	1389
c.1075+13_+30	CGGGGCCGCGCCAGGG	1390
c.1075+14_+31	GCGGGGCCGCGCCAGG	1391
c.1075+15_+32	GGCGGGGCCGCCCAG	1392
c.1075+16_+33	GGGCGGGGCCA	1393
c.1075+17_+34	GGGGCGGGGCCGCCC	1394
c.1075+18_+35	TGGGGCGGGGCCGCGC	1395
c.1075+19_+36	TTGGGGCGGGGCCGCGG	1396
c.1075+20_+37	CTTGGGGCGGGGCCGCG	1397
c.1075+21_+38	CCTTGGGGCGGGGCCGC	1398
c.1075+22_+39	GCCTTGGGGCGGGGGCCG	1399
c.1075+23_+40	AGCCTTGGGGCGGGGGCC	1400
c.1075+24_1076-39	GAGCCTTGGGGCGGGGGC	1401
c.1075+25_1076-38	GGAGCCTTGGGGCGGGGG	1402
c.1075+26_1076-37	GGGAGCCTTGGGGCGGGG	1403
c.1075+27_1076-36	AGGGAGCCTTGGGGCGGG	1404
c.1075+28_1076-35	GAGGGAGCCTTGGGGCGG	1405
c.1075+29_1076-34	GGAGGGAGCCTTGGGGCG	1406
c.1075+30_1076-33	AGGAGGGAGCCTTGGGGC	1407
c.1075+31_1076-32	GAGGAGGGAGCCTTGGGG	1408

c.1075+32_1076-31	GGAGGAGGGAGCCTTGGG	1409
c.1075+33_1076-30	GGGAGGAGGGAGCCTTGG	1410
c.1075+34_1076-29	AGGGAGGAGGGAGCCTTG	1411
c.1075+35_1076-28	GAGGGAGGAGGCCTT	1412
c.1075+36_1076-27	GGAGGGAGGAGCCT	1413
c.1075+37_1076-26	GGGAGGAGGAGGCC	1414
c.1075+38_1076-25	AGGGAGGAGGAGGAGC	1415
c.1075+39_1076-24	GAGGGAGGAGGAG	1416
c.1075+40_1076-23	TGAGGGAGGAGGAGGA	1417
c.1076-3922	ATGAGGGAGGAGGAGGG	1418
c.1076-3821	CATGAGGGAGGAGGAGG	1419
c.1076-3720	TCATGAGGGAGGAGGAG	1420
c.1076-3619	TTCATGAGGGAGGAGGA	1421
c.1076-3518	CTTCATGAGGGAGGGAGG	1422
c.1076-3417	ACTTCATGAGGGAGGGAG	1423
c.1076-3316	GACTTCATGAGGGAGGGA	1424
c.1076-3215	CGACTTCATGAGGGAGGG	1425
c.1076-3114	CCGACTTCATGAGGGAGG	1426
c.1076-3013	GCCGACTTCATGAGGGAG	1427
c.1076-2912	CGCCGACTTCATGAGGGA	1428
c.1076-2811	ACGCCGACTTCATGAGGG	1429
c.1076-2710	AACGCCGACTTCATGAGG	1430
c.1076-269	CAACGCCGACTTCATGAG	1431
c.1076-258	CCAACGCCGACTTCATGA	1432
c.1076-247	GCCAACGCCGACTTCATG	1433
c.1076-236	GGCCAACGCCGACTTCAT	1434
c.1076-225	AGGCCAACGCCGACTTCA	1435
c.1076-214	CAGGCCAACGCCGACTTC	1436
c.1076-203	GCAGGCCAACGCCGACTT	1437
c.1076-192	TGCAGGCCAACGCCGACT	1438
c.1076-181	CTGCAGGCCAACGCCGAC	1439
c.1076-17_1076	CCTGCAGGCCAACGCCGA	1440
c.1076-16_1077	TCCTGCAGGCCAACGCCG	1441
c.1076-15_1078	ATCCTGCAGGCCAACGCC	1442
c.1076-14_1079	TATCCTGCAGGCCAACGC	1443
c.1076-13_1080	GTATCCTGCAGGCCAACG	1444
c.1076-12_1081	GGTATCCTGCAGGCCAAC	1445
c.1076-11_1082	GGGTATCCTGCAGGCCAA	1446
c.1076-10_1083	CGGGTATCCTGCAGGCCA	1447
c.1076-9_1084	ACGGGTATCCTGCAGGCC	1448
c.1076-8_1085	AACGGGTATCCTGCAGGC	1449
c.1076-7_1086	GAACGGGTATCCTGCAGG	1450

c.1076-6_1087	TGAACGGGTATCCTGCAG	1451
c.1076-5_1088	ATGAACGGGTATCCTGCA	1452
c.1076-4_1089	CATGAACGGGTATCCTGC	1453
c.1076-3_1090	GCATGAACGGGTATCCTG	1454
c.1076-2_1091	GGCATGAACGGGTATCCT	1455
c.1076-1_1092	CGGCATGAACGGGTATCC	1456
c.1076_1093	GCGGCATGAACGGGTATC	1457
c.1077_1094	GGCGGCATGAACGGGTAT	1458
c.1078_1095	TGGCGGCATGAACGGGTA	1459
c.1079_1096	ATGGCGGCATGAACGGGT	1460
c.1080_1097	TATGGCGGCATGAACGGG	1461
c.1081_1098	GTATGGCGGCATGAACGG	1462
c.1082_1099	AGTATGGCGGCATGAACG	1463
c.1083_1100	CAGTATGGCGGCATGAAC	1464
c.1084_1101	CCAGTATGGCGGCATGAA	1465
c.1085_1102	CCCAGTATGGCGGCATGA	1466
c.1086_1103	CCCCAGTATGGCGGCATG	1467
c.1087_1104	GCCCCAGTATGGCGGCAT	1468
c.1088 1105	GGCCCCAGTATGGCGGCA	1469
c.1089_1106	AGGCCCCAGTATGGCGGC	1470
c.1090_1107	CAGGCCCCAGTATGGCGG	1471
c.1091_1108	CCAGGCCCCAGTATGGCG	1472
c.1092_1109	CCCAGGCCCCAGTATGGC	1473
c.1093_1110	GCCCAGGCCCCAGTATGG	1474
c.1094_1111	AGCCCAGGCCCCAGTATG	1475
c.1095_1112	AAGCCCAGGCCCCAGTAT	1476
c.1096_1113	GAAGCCCAGGCCCCAGTA	1477
c.1097_1114	GGAAGCCCAGGCCCCAGT	1478
c.1098_1115	TGGAAGCCCAGGCCCCAG	1479
c.1099_1116	GTGGAAGCCCAGGCCCCA	1480
c.1100_1117	GGTGGAAGCCCAGGCCCC	1481
c.1101_1118	AGGTGGAAGCCCAGGCCC	1482
c.1102_1119	CAGGTGGAAGCCCAGGCC	1483
c.1103_1120	ACAGGTGGAAGCCCAGGC	1484
c.1104_1121	CACAGGTGGAAGCCCAGG	1485
c.1105_1122	GCACAGGTGGAAGCCCAG	1486
c.1106_1123	GGCACAGGTGGAAGCCCA	1487
c.1107_1124	CGGCACAGGTGGAAGCCC	1488
c.1108_1125	GCGGCACAGGTGGAAGCC	1489
c.1109_1126	AGCGGCACAGGTGGAAGC	1490
c.1110_1127	CAGCGGCACAGGTGGAAG	1491
c.1111_1128	CCAGCGGCACAGGTGGAA	1492

c.1112 1129	CCCAGCGGCACAGGTGGA	1493
c.1113 1130	CCCCAGCGGCACAGGTGG	1494
c.1114_1131	GCCCCAGCGCACAGGTG	1495
c.1115 1132	AGCCCCAGCGGCACAGGT	1496
c.1116 1133	TAGCCCCAGCGGCACAGG	1497
c.1117_1134	GTAGCCCCAGCGCACAG	1498
c.1118 1135	AGTAGCCCCAGCGGCACA	1499
c.1119_1136	GAGTAGCCCCAGCGCAC	1500
c.1120_1137	GGAGTAGCCCCAGCGGCA	1501
c.1121_1138	AGGAGTAGCCCCAGCGGC	1502
c.1122_1139	GAGGAGTAGCCCCAGCGG	1503
c.1123_1140	GGAGGAGTAGCCCCAGCG	1504
c.1124_1141	TGGAGGAGTAGCCCCAGC	1505
c.1125_1142	GTGGAGGAGTAGCCCCAG	1506
c.1126_1143	GGTGGAGGAGTAGCCCCA	1507
c.1127_1144	CGGTGGAGGAGTAGCCCC	1508
c.1128_1145	GCGGTGGAGGAGTAGCCC	1509
c.1129_1146	AGCGGTGGAGGAGTAGCC	1510
c.1130_1147	TAGCGGTGGAGGAGTAGC	1511
c.1131_1148	ATAGCGGTGGAGGAGTAG	1512
c.1132_1149	GATAGCGGTGGAGGAGTA	1513
c.1133_1150	TGATAGCGGTGGAGGAGT	1514
c.1134_1151	GTGATAGCGGTGGAGGAG	1515
c.1135_1152	GGTGATAGCGGTGGAGGA	1516
c.1136_1153	GGGTGATAGCGGTGGAGG	1517
c.1137_1154	CGGGTGATAGCGGTGGAG	1518
c.1138_1155	GCGGGTGATAGCGGTGGA	1519
c.1139_1156	GGCGGGTGATAGCGGTGG	1520
c.1140_1157	TGGCGGGTGATAGCGGTG	1521
c.1141_1158	CTGGCGGGTGATAGCGGT	1522
c.1142_1159	CCTGGCGGGTGATAGCGG	1523
c.1143_1160	ACCTGGCGGGTGATAGCG	1524
c.1144_1161	CACCTGGCGGGTGATAGC	1525
c.1145_1162	CCACCTGGCGGGTGATAG	1526
c.1146_1163	ACCACCTGGCGGGTGATA	1527
c.1147_1164	CACCACCTGGCGGGTGAT	1528
c.1148_1165	CCACCACCTGGCGGGTGA	1529
c.1149_1166	TCCACCACCTGGCGGGTG	1530
c.1150_1167	CTCCACCACCTGGCGGGT	1531
c.1151_1168	TCTCCACCACCTGGCGGG	1532
c.1152_1169	TTCTCCACCACCTGGCGG	1533
c.1153_1170	GTTCTCCACCACCTGGCG	1534

c.1154_1171	TGTTCTCCACCACCTGGC	1535
c.1155_1172	ATGTTCTCCACCACCTGG	1536
c.1156_1173	CATGTTCTCCACCACCTG	1537
c.1157_1174	TCATGTTCTCCACCACCT	1538
c.1158_1175	GTCATGTTCTCCACCACC	1539
c.1159_1176	GGTCATGTTCTCCACCAC	1540
c.1160_1177	TGGTCATGTTCTCCACCA	1541
c.1161_1178	CTGGTCATGTTCTCCACC	1542
c.1162_1179	CCTGGTCATGTTCTCCAC	1543
c.1163_1180	CCCTGGTCATGTTCTCCA	1544
c.1164_1181	GCCCTGGTCATGTTCTCC	1545
c.1165_1182	GGCCCTGGTCATGTTCTC	1546
c.1166_1183	GGGCCCTGGTCATGTTCT	1547
c.1167_1184	TGGGCCCTGGTCATGTTC	1548
c.1168_1185	GTGGGCCCTGGTCATGTT	1549
c.1169_1186	AGTGGGCCCTGGTCATGT	1550
c.1170_1187	AAGTGGGCCCTGGTCATG	1551
c.1171_1188	GAAGTGGGCCCTGGTCAT	1552
c.1172_1189	GGAAGTGGGCCCTGGTCA	1553
c.1173_1190	GGGAAGTGGGCCCTGGTC	1554
c.1174_1191	GGGGAAGTGGGCCCTGGT	1555
c.1175_1192	GGGGGAAGTGGGCCCTGG	1556
c.1176_1193	AGGGGAAGTGGGCCCTG	1557
c.1177_1194	CAGGGGAAGTGGGCCCT	1558
c.1178_1194+1	CCAGGGGGAAGTGGGCCC	1559
c.1179_1194+2	ACCAGGGGGAAGTGGGCC	1560
c.1180_1194+3	CACCAGGGGGAAGTGGGC	1561
c.1181_1194+4	TCACCAGGGGGAAGTGGG	1562
c.1182_1194+5	CTCACCAGGGGGAAGTGG	1563
c.1183_1194+6	ACTCACCAGGGGGAAGTG	1564
c.1184_1194+7	AACTCACCAGGGGGAAGT	1565
c.1185_1194+8	CAACTCACCAGGGGGAAG	1566
c.1186_1194+9	CCAACTCACCAGGGGGAA	1567
c.1187_1194+10	CCCAACTCACCAGGGGGA	1568
c.1188_1194+11	CCCCAACTCACCAGGGGG	1569
c.1189_1194+12	ACCCCAACTCACCAGGGG	1570
c.1190_1194+13	CACCCCAACTCACCAGGG	1571
c.1191_1194+14	CCACCCCAACTCACCAGG	1572
c.1192_1194+15	ACCACCCCAACTCACCAG	1573
c.1193_1194+16	CACCACCCCAACTCACCA	1574
c.1194_1194+17	CCACCACCCCAACTCACC	1575
c.1194+1_+18	GCCACCACCCAACTCAC	1576

100

TGCCACCACCCAACTCA	1577
CTGCCACCACCCAACTC	1578
CCTGCCACCACCCAACT	1579
CCCTGCCACCACCCAAC	1580
CCCCTGCCACCACCCAA	1581
TCCCCTGCCACCACCCA	1582
CTCCCCTGCCACCACCCC	1583
TCAGTCAAGTATCTGGAAAGTACGA	1590
AGTCAAGTATCTGGAAAGTAC	1591
GGAAGTCCCGGAAGCCAACCTTGTT	1592
TGACTCTGCCCAGAGTGAGGA	1593
AGCTTTCTGGGATGAGGCAGAGGCT	1594
	CTGCCACCACCCCAACTC CCTGCCACCACCCCAACT CCCTGCCACCACCCCAAC CCCCTGCCACCACCCCAA TCCCCTGCCACCACCCCA CTCCCCTGCCACCACCCC TCAGTCAAGTATCTGGAAAGTACGA AGTCAAGTATCTGGAAAGTAC GGAAGTCCCGGAAGCCAACCTTGTT TGACTCTGCCCAGCAGAGTAGGA

In the above examples the sequences are 18, 21 and 25 nucleotides long however longer variants or shorter fragment are also envisioned. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of SEQ ID NO: 541-1583, 1590-1594 and fragments and variants thereof having at least 80% sequence identity. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of SEQ ID NO: 541-1583, 1590-1594 and fragments and variants thereof having at least 80%,83%, 85%, 87%, 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7% sequence identity to SEQ ID NO: 541-1583, 1590-1594.

5

10

Or sequences that are at least 80% identical to SEQ ID NO: 541-1583, 1590-1594. Optionally at least 85% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 88% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 90% identical to SEQ ID NO: 541-1583, 1590-1594. more Optionally at least 91% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 92% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 93% identical to SEQ ID NO: 541-1583, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-1594, 1590-159

1583, 1590-1594, more Optionally at least 94% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 95% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 96% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 97% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 98% identical to SEQ ID NO: 541-1583, 1590-1594, more Optionally at least 99% identical to SEQ ID NO: 541-1583, 1590-1594.

5

10

15

20

25

30

Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of fragments SEQ ID NO: 541-1583, 1590-1594, wherein the fragment is 16, 17, 18, 19, 20, 21, 22, 23, or 24 nucleotides long. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of fragments SEQ ID NO: 541-1583, 1590-1594, wherein the fragment is 17, 18, 19, 20, 21, or 22 nucleotides long. Optionally of the invention and/or embodiments thereof of the present invention and/or embodiments thereof the antisense oligomeric compounds are selected from the group of fragments SEQ ID NO: 541-1583, 1590-1594, wherein the fragment is 19, 20, or 21 nucleotides long.

The antisense oligomeric compound may be also be complementary to a genomic nucleic acid sequence of GAA gene targeting the location that comprises the position of a mutation selected from the group

c.-32-13T>G (IVS1), c.1636+5G>T, c.525delT, c.-32-3C>G, c. 1551+1G>A, c.1075G>A, c.1552-3C>G, c.1437G>A, c.1256A>T, c.1551+1G>T.

Optionally the genomic nucleic acid sequence is pre-mRNA.

Optionally of the invention and/or embodiments thereof, the antisense oligomeric compound may be also be complementary to a genomic nucleic acid sequence of GAA gene targeting the location that comprises the position of a mutation selected from the group comprising

 $c.-32-3C>G,\ c.-32-13T>G,\ c.-32-102T>C,\ c.-32-56C>T,\ c.-32-46G>A,\ c.-32-28C>A,\ c.-32-28C>T,\ c.-32-21G>A,\ c.7G>A,\ c.11G>A,\ c.15_17AAA,\ c.17C>T,\ c.19_21AAA,\ c.26_28AAA,\ c.33_35AAA,\ c.39G>A,\ c.42C>T,\ c.90C>T,\ c.112G>A,\ c.137C>T,\ c.164C>T,\ c.348G>A,\ c.373C>T,\ c.413T>A,\ c.469C>T,\ c.476T>C,\ c.476T>G,\ c.478T>G,\ c.482C>T,\ c.510C>T,\ c.515T>A,\ c.520G>A,\ c.546+11C>T,\ c.546+14G>A,\ c.546+19G>A,\ c.546+23C>A,\ c.547-6,\ c.1071,\ c.1254,\ and\ c.1552-30.$

5

10

15

20

25

30

Optionally the genomic nucleic acid sequence is pre-mRNA Optionally of the invention and/or embodiments thereof, the antisense oligomeric compound may be also be complementary to a genomic nucleic acid sequence of GAA gene targeting the location that comprises the position of a mutation selected from the group comprising c.17C>T c.469C>T c.546+23C>A, c.-32-102T>C c.-32-56C>T c.11G>A c.112G>A c.137C>T.

Optionally of the invention and/or embodiments thereof, the antisense oligomeric compound may be also be complementary to a genomic nucleic acid sequence of GAA gene targeting the location that comprises the position of a mutation selected from the group comprising c.17C>T c.469C>T c.546+23C>A.

Optionally of the invention and/or embodiments thereof, the antisense oligomeric compound may be also be complementary to a genomic nucleic acid sequence of GAA gene targeting the location that comprises the position of a mutation selected from the group comprising c.-32-102T>C c.-32-56C>T c.11G>A c.112G>A c.137C>T.

Most preferred are antisense oligomeric compounds that are complementary to a genomic nucleic acid sequence of GAA gene targeting the location that comprises the position of a mutation c.-32-13T>G (IVS1).

Most preferred are antisense oligomeric compounds that are complementary to a genomic nucleic acid sequence of GAA gene targeting the location that comprises the position of a mutation c.-32-3C>G, c.1256A>T, c.1551+1G>T, c.546G>T.

103

Most preferred are antisense oligomeric compounds that are complementary to a genomic nucleic acid sequence of GAA gene targeting the location that comprises the position of a mutation c.-32-3C>G.

Most preferred are antisense oligomeric compounds that are complementary to a genomic nucleic acid sequence of GAA gene targeting SEQ ID NO: 1.

5

10

15

20

25

30

Optionally of the invention and/or embodiments thereof, the antisense oligomeric compound are 8 to 80 nucleotides in length, 9 to 50 nucleotides in length, 10 to 30 nucleotides in length, 12 to 30 nucleotides in length, 15 to 25 nucleotides in length or about 20 nucleotides in length. One of ordinary skill in the art will appreciate that this comprehends antisense compounds of 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 nucleotides.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 13 to 80 nucleotides. One having ordinary skill in the art will appreciate that this embodies antisense compounds of 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 nucleotides.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 13 to 50 nucleotides. One having ordinary skill in the art will appreciate that this embodies antisense compounds of 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides.

WO 2017/099579

5

10

15

20

25

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 13 to 30 nucleotides. One having ordinary skill in the art will appreciate that this embodies antisense compounds of 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 20 to 30 nucleotides. One having ordinary skill in the art will appreciate that this embodies antisense compounds of 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 15 to 25 nucleotides. One having ordinary skill in the art will appreciate that this embodies antisense compounds of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 20 nucleotides.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 19 nucleotides.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 18 nucleotides.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 17 nucleotides.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 16 nucleotides.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 15 nucleotides.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 14 nucleotides.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise 13 nucleotides.

5

10

15

20

25

30

105

In one embodiment of the invention and/or embodiments thereof, compounds include oligonucleotide sequences that comprise at least the 8 consecutive nucleotides from one of the antisense compounds as claimed. Optionally at least 9 consecutive nucleotides from one of the antisense compounds as claimed, more Optionally at least 10 consecutive nucleotides from one of the antisense compounds as claimed, more Optionally at least 11 consecutive nucleotides from one of the antisense compounds as claimed, more Optionally at least 12 consecutive nucleotides from one of the antisense compounds as claimed, more Optionally at least 13 consecutive nucleotides from one of the antisense compounds as claimed, more Optionally at least 14 consecutive nucleotides from one of the antisense compounds as claimed, more Optionally at least 15 consecutive nucleotides from one of the antisense compounds as claimed, more Optionally at least 16 consecutive nucleotides from one of the antisense compounds as claimed, more Optionally at least 17 consecutive nucleotides from one of the antisense compounds as claimed, more Optionally at least 18 consecutive nucleotides from one of the antisense compounds as claimed, more Optionally at least 19 consecutive nucleotides from one of the antisense compounds as claimed, more Optionally at least 20 consecutive nucleotides from one of the antisense compounds as claimed.

Any remaining nucleotides from the oligonuclotides may be oligonucleotides that improve resistance to Rnase H, cell-targeting sequences, cell penetrating sequences, marker sequences or any other sequences.

One having skill in the art armed with the antisense compounds disclosed herein will be able, without undue experimentation, to identify further antisense compounds.

In order for an antisense oligonucleotide to achieve therapeutic success, oligonucleotide chemistry must allow for adequate cellular uptake (Kurreck, J. (2003) Eur. J. Biochem. 270:1628-1644). Splicing

106

oligonucleotides have traditionally been comprised of uniform modifications that render the oligonucleotide RNA-like, and thus resistant to cleavage by RNase H, which is critical to achieve modulation of splicing. Provided herein are antisense compounds for modulation of splicing.

Optionally of the invention and/or embodiments thereof, the antisense compounds are chimeric, with regions of RNA-like and DNA-like chemistry. Despite regions of DNA-like chemistry, the chimeric compounds are Optionally RNase H-resistant and effectively modulate splicing of target mRNA in vitro and in vivo. In another preferred embodiment the disclosed antisense oligomeric compounds show enhanced cellular uptake and greater pharmacologic activity compared with uniformly modified oligonucleotides.

5

10

15

20

25

30

Contemplated herein are antisense oligomeric compound which are targeted to a splice site of a target mRNA or to splicing repressor sequences, or to splicing enhancer sequences, Optionally to splicing repressor sequences. Splice sites include aberrant and cryptic splice sites.

One skilled in the art recognizes that the inclusion of mismatches is possible without eliminating the activity of the antisense compound. Compounds provided herein are therefore directed to those antisense compounds that may contain up to about 20% nucleotides that disrupt base pairing of the antisense compound to the target. Optionally the compounds contain no more than about 15%, more Optionally not more than about 10%, most Optionally not more than 5% or no mismatches. The remaining nucleotides do not disrupt hybridization (e.g., universal bases).

It is understood in the art that incorporation of nucleotide affinity modifications may allow for a greater number of mismatches compared to an unmodified compound. Similarly, certain oligonucleotide sequences may be more tolerant to mismatches than other oligonucleotide sequences. One of the skill in the art is capable of determining an appropriate number of mismatches between oligonucleotides, or between an oligonucleotide and a target nucleic acid, such as by determining melting temperature.

107

It is known by a skilled person that hybridization to a target mRNA depends on the conditions. "Stringent hybridization conditions" or "stringent conditions" refer to conditions under which an oligomeric compound will hybridize to its target sequence, but to a minimal number of other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances, and "stringent conditions" under which oligomeric compounds hybridize to a target sequence are determined by the nature and composition of the oligomeric compounds and the assays in which they are being investigated.

5

10

15

20

25

30

Antisense compounds, or a portion thereof, may have a defined percent identity to a SEQ ID NO, or a compound having a specific Isis number. As used herein, a sequence is identical to the sequence disclosed herein if it has the same nucleobase pairing ability. For example, a RNA which contains uracil in place of thymidine in the disclosed sequences would be considered identical as they both pair with adenine. This identity may be over the entire length of the oligomeric compound, or in a portion of the antisense compound (e.g., nucleotides 1-20 of a 27-mer may be compared to a 20-mer to determine percent identity of the oligomeric compound to the SEQ ID NO.) It is understood by those skilled in the art that an antisense compound need not have an identical sequence to those described herein to function similarly to the antisense compound described herein. Shortened versions of antisense compound taught herein, or non-identical versions of the antisense compound taught herein are also contemplated. Non-identical versions are those wherein each base does not have the same pairing activity as the antisense compounds disclosed herein. Bases do not have the same pairing activity by being shorter or having at least one abasic site. Alternatively, a non-identical version can include at least one base replaced with a different base with different pairing activity (e.g., G can be replaced by C, A, or T). Percent identity is calculated according to the number of bases that have identical base pairing corresponding to the SEQ ID NO or

108

antisense compound to which it is being compared. The non-identical bases may be adjacent to each other, dispersed through out the oligonucleotide, or both.

For example, a 16-mer having the same sequence as nucleotides 2-17 of a 20-mer is 80% identical to the 20-mer. Alternatively, a 20-mer containing four nucleotides not identical to the 20-mer is also 80% identical to the 20-mer. A 14-mer having the same sequence as nucleotides 1-14 of an 18-mer is 78% identical to the 18-mer. Such calculations are well within the ability of those skilled in the art.

5

10

15

20

25

30

The percent identity is based on the percent of nucleotides in the original sequence present in a portion of the modified sequence. Therefore, a 30 nucleobase antisense compound comprising the full sequence of the complement of a 20 nucleobase active target segment would have a portion of 100% identity with the complement of the 20 nucleobase active target segment, while further comprising an additional 10 nucleobase portion. The complement of an active target segment may constitute a single portion. Optionally of the invention and/or embodiments thereof, the oligonucleotides are at least about 80%, more Optionally at least about 85%, even more Optionally at least about 90%, most Optionally at least 95% identical to at least a portion of the complement of the active target segments presented herein.

It is well known by those skilled in the art that it is possible to increase or decrease the length of an antisense compound and/or introduce mismatch bases without eliminating activity. For example, in Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7310, 1992, incorporated herein by reference), a series of antisense oligomeric compounds of 13-25 nucleotides in length were tested for their ability to induce cleavage of a target RNA. Antisense oligomeric compounds of 25 nucleotides in length with 8 or 11 mismatch bases near the ends of the antisense oligomeric compounds were able to direct specific cleavage of the target mRNA, albeit to a lesser extent

5

10

15

20

25

30

109

than the antisense oligomeric compounds that contained no mismatches. Similarly, target specific cleavage was achieved using a 13 nucleobase antisense oligomeric compounds, including those with 1 or 3 mismatches. Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358,1988, incorporated herein by reference) tested a series of tandem 14 nucleobase antisense oligomeric compounds, and a 28 and 42 nucleobase antisense oligomeric compounds comprised of the sequence of two or three of the tandem antisense oligomeric compounds, respectively, for their ability to arrest translation of human DHFR in a rabbit reticulocyte assay. Each of the three 14 nucleobase antisense oligomeric compounds alone were able to inhibit translation, albeit at a more modest level than the 28 or 42 nucleobase antisense oligomeric compounds. It is understood that antisense compounds can vary in length and percent complementarity to the target provided that they maintain the desired activity. Methods to determine desired activity are disclosed herein and well known to those skilled in the art. Optionally of the invention and/or embodiments thereof, the antisense oligomeric compounds have at least 80% complementarity to the target mRNA, more Optionally at least 85% complementarity to the target mRNA, more Optionally at least 90% complementarity to the target mRNA, more Optionally at least 95% complementarity to the target mRNA, more Optionally at least 96% complementarity to the target mRNA, more Optionally at least 97% complementarity to the target mRNA, more Optionally at least 98% complementarity to the target mRNA, more Optionally at least 99% complementarity to the target mRNA, more Optionally at least 100% complementarity to the target mRNA.

As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base (sometimes referred to as a "nucleobase" or simply a "base"). The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate

group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. Within oligonucleotides, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage. It is often preferable to include chemical modifications in oligonucleotides to alter their activity. Chemical modifications can alter oligonucleotide activity by, for example: increasing affinity of an antisense oligonucleotide for its target RNA, increasing nuclease resistance, and/or altering the pharmacokinetics of the oligonucleotide. The use of chemistries that increase the affinity of an oligonucleotide for its target can allow for the use of shorter oligonucleotide compounds.

Antisense compounds provided herein may also contain one or more nucleosides having modified sugar moieties. The furanosyl sugar ring of a nucleoside can be modified in a number of ways including, but not limited to, addition of a substituent group, bridging of two non-geminal ring atoms to form a bicyclic nucleic acid (BNA) and substitution of an atom or group such as -S-, -N(R)- or -C(R1)(R2) for the ring oxygen at the 4'-position. Modified sugar moieties are well known and can be used to alter, typically increase, the affinity of the antisense compound for its target and/or increase nuclease resistance. A representative list of preferred modified sugars includes but is not limited to bicyclic modified sugars (BNA's), including LNA and ENA (4'-(CH2)2-O-2' bridge); and substituted sugars, especially 2'-substituted sugars having a 2'-F, 2'-OCH2 or a 2'-O(CH2)2-OCH3 substituent group. Sugars can also be replaced with sugar mimetic groups among others. Methods for the preparations of modified sugars are well known to those skilled in the art. Suitable compounds can comprise one

5

10

15

20

25

30

of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkynyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1 to C10 alkyl or C2 to C10 alkenyl and alkynyl. Also suitable are O((CH2)nO)mCH3,

O(CH2)nOCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON((CH2)nCH3)2, where n and m are from 1 to about 10. Other oligonucleotides comprise one of the following at the 2' position: C1 to C10 lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3,

SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, poly-alkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other

substituents having similar properties. One modification includes 2'-methoxyethoxy (2'-O-CH2CH2OCH3, also known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504), i.e., an alkoxyalkoxy group. A further modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2'-

DMAOE, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-O-dimethyl-amino-ethoxy-ethyl or 2'-DMAEOE), i.e., 2'-O-(CH2)2-O-(CH2)2-N(CH3)2. Other modifications include 2'-methoxy (2'-O-CH3), 2'-aminopropoxy (2'-OCH2CH2CH2NH2), 2'-allyl (2'-CH2-CH-CH2), 2'-O-allyl (2'-O-CH2-CH-CH2) and 2'-fluoro (2'-F). The 2'-modification may be in the arabino (up) position or ribo (down) position. One 2'-arabino modification is

arabino (up) position or ribo (down) position. One 2'-arabino modification is 2'-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Antisense compounds may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative

112

United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; 5,700,920; and, 6,147,200.

5

10

15

20

25

30

In one aspect of the present invention oligomeric compounds include nucleosides modified to induce a 3'-endo sugar conformation. A nucleoside can incorporate modifications of the heterocyclic base, the sugar moiety or both to induce a desired 3'-endo sugar conformation. These modified nucleosides are used to mimic RNA-like nucleosides so that particular properties of an oligomeric compound can be enhanced while maintaining the desirable 3'-endo conformational geometry.

In the present invention there is a preference for an RNA type duplex (A form helix, predominantly 3'-endo) as they are RnasH resistant. Properties that are enhanced by using more stable 3'-endo nucleosides include but are not limited to: modulation of pharmacokinetic properties through modification of protein binding, protein off-rate, absorption and clearance; modulation of nuclease stability as well as chemical stability; modulation of the binding affinity and specificity of the oligomer (affinity and specificity for enzymes as well as for complementary sequences); and increasing efficacy of RNA cleavage.

Nucleoside conformation is influenced by various factors including substitution at the 2', 3' or 4'-positions of the pentofuranosyl sugar. Electronegative substituents generally prefer the axial positions, while sterically demanding substituents generally prefer the equatorial positions (Principles of Nucleic Acid Structure, Wolfgang Sanger, 1984, Springer-Verlag.) Modification of the 2' position to favor the 3'-endo conformation can be achieved while maintaining the 2'-OH as a recognition element (Gallo et al., Tetrahedron (2001), 57, 5707-5713. Harry-O'kuru et al., J. Org. Chem.,

113

(1997), 62(6), 1754-1759 and Tang et al., J. Org. Chem. (1999), 64, 747-754.) Alternatively, preference for the 3'-endo conformation can be achieved by deletion of the 2'-OH as exemplified by 2' deoxy-2'F-nucleosides (Kawasaki et al., J. Med. Chem. (1993), 36, 831-841), which adopts the 3'-endo conformation positioning the electronegative fluorine atom in the axial position. Representative 2'-substituent groups amenable to the present invention that give A-form conformational properties (3'-endo) to the resultant duplexes include 2'-O-alkyl, 2'-O-substituted alkyl and 2'-fluoro substituent groups. Other suitable substituent groups are various alkyl and aryl ethers and thioethers, amines and monoalkyl and dialkyl substituted amines.

5

10

15

20

25

Other modifications of the ribose ring, for example substitution at the 4'-position to give 4'-F modified nucleosides (Guillerm et al., Bioorganic and Medicinal Chemistry Letters (1995), 5, 1455-1460 and Owen et al., J. Org. Chem. (1976), 41, 3010-3017), or for example modification to yield methanocarba nucleoside analogs (Jacobson et al., J. Med. Chem. Lett. (2000), 43, 2196-2203 and Lee et al., Bioorganic and Medicinal Chemistry Letters (2001), 11, 1333-1337) also induce preference for the 3'-endo conformation. Along similar lines, one or more nucleosides may be modified in such a way that conformation is locked into a C3'-endo type conformation, i.e. Locked Nucleic Acid (LNA, Singh et al, Chem. Commun. (1998), 4, 455-456), and ethylene bridged Nucleic Acids (ENA(TM), Morita et al, Bioorganic & Medicinal Chemistry Letters (2002), 12, 73-76.)

Preferred modification of the sugar are selected from the group consisting of 2'-O-methyl 2'-O-methoxyethyl, 2'-fluoro, 2'-dimethylaminooxyethoxy, 2'-dimethylaminoethoxyethoxy, 2'-guanidinium, 2'-O-guanidinium ethyl, 2'-carbamate, 2'-aminooxy, 2'-acetamido and locked nucleic acid. In one preferred embodiment, the sugar modification is 2'-O-methyl or 2'-O-methoxyethyl.

5

10

15

20

25

30

114

Oligomeric compounds can also include nucleobase (often referred to in the art as heterocyclic base or simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleotides include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). A "substitution" is the replacement of an unmodified or natural base with another unmodified or natural base. "Modified" nucleotides mean other synthetic and natural nucleotides such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (-C[identical to]C-CH3) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3deazaguanine and 3-deazaadenine. Further modified nucleotides include tricyclic pyrimidines such as phenoxazine cytidine(1H-pyrimido(5,4b)(1,4)benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido(5,4b)(1,4)benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-H-pyrimido(5,4-b)(1,4)benzoxazin-2(3H)one), carbazole cytidine (2H-pyrimido(4,5-b)indol-2-one), pyridoindole cytidine (H-pyrido(3',2':4,5)pyrrolo[2,3-d]pyrimidin-2-one). Modified nucleotides may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7deazaguanosine, 2-aminopyridine and 2-pyridone. Further nucleotides include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859,

Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Lebleu, B., ed., CRC Press, 1993. Certain of these nucleotides are known to those skilled in the art as suitable for increasing the binding affinity of the compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C. and are presently suitable base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications. It is understood in the art that modification of the base does not entail such chemical modifications as to produce substitutions in a nucleic acid sequence.

Representative United States patents that teach the preparation of certain of the above noted modified nucleotides as well as other modified nucleotides include, but are not limited to, the above noted U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; 5,681,941; and 5,750,692.

Oligomeric compounds of the present invention may also include polycyclic heterocyclic compounds in place of one or more of the naturally-occurring heterocyclic base moieties. A number of tricyclic heterocyclic compounds have been previously reported. These compounds are routinely used in antisense applications to increase the binding properties of the modified strand to a target strand. The most studied modifications are targeted to guanosines hence they have been termed G-clamps or cytidine analogs. Representative cytosine analogs that make 3 hydrogen bonds with a guanosine in a second strand include 1,3-diazaphenoxazine-2-one

116

(Kurchavov, et al., Nucleosides and Nucleotides, 1997, 16, 1837-1846), 1,3-diazaphenothiazine-2-one, (Lin, K.-Y.; Jones, R. J.; Matteucci, M. J. Am. Chem. Soc. 1995, 117, 3873-3874) and 6,7,8,9-tetrafluoro-1,3-diazaphenoxazine-2-one (Wang, J.; Lin, K.-Y., Matteucci, M. Tetrahedron Lett. 1998, 39, 8385-8388). Incorporated into oligonucleotides these base modifications were shown to hybridize with complementary guanine and the latter was also shown to hybridize with adenine and to enhance helical thermal stability by extended stacking interactions (also see U.S. Pre-Grant Publications 20030207804 and 20030175906).

5

10

15

20

25

30

Further helix-stabilizing properties have been observed when a cytosine analog/substitute has an aminoethoxy moiety attached to the rigid 1,3-diazaphenoxazine-2-one scaffold (Lin, K.-Y.; Matteucci, M. J. Am. Chem. Soc. 1998, 120, 8531-8532). Binding studies demonstrated that a single incorporation could enhance the binding affinity of a model oligonucleotide to its complementary target DNA or RNA with a Δ Tm of up to 18°C. relative to 5-methyl cytosine, which is a high affinity enhancement for a single modification. On the other hand, the gain in helical stability does not compromise the specificity of the oligonucleotides.

Further tricyclic heterocyclic compounds and methods of using them that are amenable to use in the present invention are disclosed in U.S. Pat. Nos. 6,028,183, and 6,007,992.

The enhanced binding affinity of the phenoxazine derivatives together with their uncompromised sequence specificity makes them valuable nucleobase analogs for the development of more potent antisense-based drugs. In fact, promising data have been derived from in vitro experiments demonstrating that heptanucleotides containing phenoxazine substitutions are capable to activate RNase H, enhance cellular uptake and exhibit an increased antisense activity (Lin, K-Y; Matteucci, M. J. Am. Chem. Soc. 1998, 120, 8531-8532). The activity enhancement was even more pronounced in case of G-clamp, as a single substitution was shown to

117

significantly improve the in vitro potency of a 20 mer 2'-deoxyphosphorothicate oligonucleotides (Flanagan, W. M.; Wolf, J. J.; Olson, P.; Grant, D.; Lin, K.-Y.; Wagner, R. W.; Matteucci, M. Proc. Natl. Acad. Sci. USA, 1999, 96, 3513-3518).

Further modified polycyclic heterocyclic compounds useful as heterocyclic bases are disclosed in but not limited to, the above noted U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,434,257; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,646,269; 5,750,692; 5,830,653; 5,763,588; 6,005,096; and 5,681,941, and U.S. Pre-Grant Publication 20030158403.

5

10

15

20

25

30

The compounds described herein may include internucleoside linking groups that link the nucleosides or otherwise modified monomer units together thereby forming an antisense compound. The two main classes of internucleoside linking groups are defined by the presence or absence of a phosphorus atom. Representative phosphorus containing internucleoside linkages include, but are not limited to, phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidate, and phosphorothioates. Representative non-phosphorus containing internucleoside linking groups include, but are not limited to, methylenemethylimino (-CH2-N(CH3)-O-CH2-), thiodiester (-O-C(O)-S-), thionocarbamate (-O-C(O)(NH)-S-); siloxane (-O-Si(H)2-O-); and N,N'dimethylhydrazine (-CH2-N(CH3)-N(CH3)-). Modified internucleoside linkages, compared to natural phosphodiester linkages, can be used to alter, typically increase, nuclease resistance of the antisense compound. Internucleoside linkages having a chiral atom may be prepared racemic, chiral, or as a mixture. Representative chiral internucleoside linkages include, but are not limited to, alkylphosphonates and phosphorothioates. Methods of preparation of phosphorous-containing and non-phosphorouscontaining linkages are well known to those skilled in the art.

Suitable modified internucleoside linking groups are for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkyl-phosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-5 amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkyl-phosphonates, thionoalkylphosphotriesters, phosphonoacetate and thiophosphonoacetate (see Sheehan et al., Nucleic Acids Research, 2003, 31(14), 4109-4118 and 10 Dellinger et al., J. Am. Chem. Soc., 2003, 125, 940-950), selenophosphates and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Oligonucleotides having inverted polarity comprise a single 3' to 3' linkage 15 at the 3'-most internucleotide linkage, i.e., a single inverted nucleoside residue which may be abasic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included.

N3'-P5'-phosphoramidates have been reported to exhibit both a
high affinity towards a complementary RNA strand and nuclease resistance
(Gryaznov et al., J. Am. Chem. Soc., 1994, 116, 3143-3144). N3'-P5'phosphoramidates have been studied with some success in vivo to
specifically down regulate the expression of the c-myc gene (Skorski et al.,
Proc. Natl. Acad. Sci., 1997, 94, 3966-3971; and Faira et al., Nat.
Biotechnol., 2001, 19, 40-44).

Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821;

30

119

5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050.

In some embodiments of the invention, oligomeric compounds may have one or more phosphorothioate and/or heteroatom internucleoside linkages, in particular -CH2-NH-O-CH2-, -CH2-N(CH3)-O-CH2- (known as a methylene (methylimino) or MMI backbone), -CH2-O-N(CH3)-CH2-, -CH2-N(CH3)-N(CH3)-CH2- and -O-N(CH3)-CH2-CH2- (wherein the native phosphodiester internucleotide linkage is represented as -O-P(-O)(OH)-O-CH2-). The MMI type internucleoside linkages are disclosed in the above referenced U.S. Pat. No. 5,489,677. Amide internucleoside linkages are disclosed in the above referenced U.S. Pat. No. 5,602,240.

5

10

15

20

25

30

Some oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439.

In some embodiments of the invention, the backbone of the antisense oligomeric compound is selected from the group consisiting of phosphodiester ODN , phosphoramidate , phosphorothioate , Locked nucleic acids , 2'O methoxyethyl , 2'-deoxy-2'-fluoro-D-arabinose , S-constrained-ethyl , Tricyclo DNA , Morpholino , Vivo-morpholino , Peptide nucleic acids , Unlocked Nucleic Acid , 2'-O,4'-C-ethylene-bridged nucleic acids , 2',4'-bridged nucleic acid , multi-targeting oligonucleotides , 2'-Deoxy-2',4'-difluorouridine , 2'-deoxy-2'-fluoroarabinonucleic acid , 2'-O,4'-C-spirocyclopropylene bridged nucleic acid , amido-bridged nucleic acid , gamma-CF2-aminopropylglycine PNA , constrained altritol nucleic acids , Mixed backbone antisense glucosylceramide synthase oligonucleotide , 3'-fluoro hexitol nucleic acid , positively charged phosphorodiamidate morpholino oligomers , trans-4-hydroxy-L-proline phosphono peptide nucleic acid , constrained methoxyethyl.

5

10

15

20

25

Optionally of the invention and/or embodiments thereof the internucleoside linkage is phosphorothioate, or phosphorodiamidate

It is further intended that multiple modifications can be made to one or more of the oligomeric compounds of the invention at multiple sites of one or more monomeric subunits (nucleosides are suitable) and/or internucleoside linkages to enhance properties such as but not limited to activity in a selected application.

The synthesis of numerous of the modified nucleosides amenable to the present invention are known in the art (see for example, Chemistry of Nucleosides and Nucleotides Vol 1-3, ed. Leroy B. Townsend, 1988, Plenum press). The conformation of modified nucleosides and their oligomers can be estimated by various methods routine to those skilled in the art such as molecular dynamics calculations, nuclear magnetic resonance spectroscopy and CD measurements.

121

Optionally of the invention and/or embodiments thereof, the oligomeric compounds of the present invention are morpholino phosphorothioates, or phosphorodiamidate morpholino.

5

10

15

20

25

30

Another group of oligomeric compounds includes oligonucleotide mimetics. As used herein the term "mimetic" refers to groups that are substituted for a sugar, a nucleobase, and/or internucleoside linkage. Generally, a mimetic is used in place of the sugar or sugar-internucleoside linkage combination, and the nucleobase is maintained for hybridization to a selected target. Representative examples of a sugar mimetic include, but are not limited to, cyclohexenyl or morpholino. Representative examples of a mimetic for a sugar-internucleoside linkage combination include, but are not limited to, peptide nucleic acids (PNA) and morpholino groups linked by uncharged achiral linkages. In some instances a mimetic is used in place of the nucleobase. Representative nucleobase mimetics are well known in the art and include, but are not limited to, tricyclic phenoxazine analogs and universal bases (Berger et al., Nuc Acid Res. 2000, 28:2911-14, incorporated herein by reference). Methods of synthesis of sugar, nucleoside and nucleobase mimetics are well known to those skilled in the art. The heterocyclic base moiety or a modified heterocyclic base moiety is Optionally maintained for hybridization with an appropriate target nucleic acid.

The compounds described herein may contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric configurations that may be defined, in terms of absolute stereochemistry, as (R) or (S), [alpha] or [beta], or as (D) or (L) such as for amino acids et al. The present disclosure is meant to include all such possible isomers, as well as their racemic and optically pure forms.

One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA) (Nielsen et al., Science, 1991, 254, 1497-1500). PNAs have favorable hybridization properties, high biological stability and

are electrostatically neutral molecules. PNA compounds have been used to correct aberrant splicing in a transgenic mouse model (Sazani et al., Nat. Biotechnol., 2002, 20, 1228-1233). In PNA oligomeric compounds, the sugarbackbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleotides are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA oligomeric compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262. PNA compounds can be obtained commercially from Applied Biosystems (Foster City, Calif., USA). Numerous modifications to the basic PNA backbone are known in the art; particularly useful are PNA compounds with one or more amino acids conjugated to one or both termini. For example, 1-8 lysine or arginine residues are useful when conjugated to the end of a PNA molecule. A polyarginine tail may be a suitable for enhancing cell penetration.

Another class of oligonucleotide mimetic that has been studied is based on linked morpholino units (morpholino nucleic acid) having heterocyclic bases attached to the morpholino ring. A number of linking groups have been reported that link the morpholino monomeric units in a morpholino nucleic acid. One class of linking groups have been selected to give a non-ionic oligomeric compound. Morpholino-based oligomeric compounds are non-ionic mimetics of oligo-nucleotides which are less likely to form undesired interactions with cellular proteins (Dwaine A. Braasch and David R. Corey, Biochemistry, 2002, 41(14), 4503-4510). Morpholino-based oligomeric compounds have been studied in zebrafish embryos (see: Genesis, volume 30, issue 3, 2001 and Heasman, J., Dev. Biol., 2002, 243, 209-214). Further studies of morpholino-based oligomeric compounds have also been reported (Nasevicius et al., Nat. Genet., 2000, 26, 216-220; and Lacerra et al., Proc. Natl. Acad. Sci., 2000, 97, 9591-9596). Morpholino-based oligomeric compounds are disclosed in U.S. Pat. No. 5,034,506. The

123

morpholino class of oligomeric compounds have been prepared having a variety of different linking groups joining the monomeric subunits. Linking groups can be varied from chiral to achiral, and from charged to neutral. U.S. Pat. No. 5,166,315 discloses linkages including -O-P(-O)(N(CH3)2)-O-; U.S. Pat. No. 5,034,506 discloses achiral intermorpholino linkages; and U.S. Pat. No. 5,185,444 discloses phosphorus containing chiral intermorpholino linkages.

5

10

15

20

25

30

A further class of oligonucleotide mimetic is referred to as cyclohexene nucleic acids (CeNA). In CeNA oligonucleotides, the furanose ring normally present in a DNA or RNA molecule is replaced with a cyclohexenyl ring. CeNA DMT protected phosphoramidite monomers have been prepared and used for oligomeric compound synthesis following classical phosphoramidite chemistry. Fully modified CeNA oligomeric compounds and oligonucleotides having specific positions modified with CeNA have been prepared and studied (Wang et al., J. Am. Chem. Soc., 2000, 122, 8595-8602). In general the incorporation of CeNA monomers into a DNA chain increases its stability of a DNA/RNA hybrid. CeNA oligoadenylates formed complexes with RNA and DNA complements with similar stability to the native complexes. The study of incorporating CeNA structures into natural nucleic acid structures was shown by NMR and circular dichroism to proceed with easy conformational adaptation. Furthermore the incorporation of CeNA into a sequence targeting RNA was stable to serum and able to activate E. coli RNase H resulting in cleavage of the target RNA strand.

A further modification includes bicyclic sugar moieties such as "Locked Nucleic Acids" (LNAs) in which the 2'-hydroxyl group of the ribosyl sugar ring is linked to the 4' carbon atom of the sugar ring thereby forming a 2'-C,4'-C-oxymethylene linkage to form the bicyclic sugar moiety (reviewed in Elayadi et al., Curr. Opinion Invens. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8 1-7; and Orum et al., Curr. Opinion Mol. Ther.,

2001, 3, 239-243; see also U.S. Pat. Nos. 6,268,490 and 6,670,461). The linkage can be a methylene (-CH2-) group bridging the 2' oxygen atom and the 4' carbon atom, for which the term LNA is used for the bicyclic moiety; in the case of an ethylene group in this position, the term ENA(TM) is used (Singh et al., Chem. Commun., 1998, 4, 455-456; ENA(TM): Morita et al., Bioorganic Medicinal Chemistry, 2003, 11, 2211-2226). LNA and other bicyclic sugar analogs display very high duplex thermal stabilities with complementary DNA and RNA (Tm=+3 to +10[deg.] C.), stability towards 3'-exonucleolytic degradation and good solubility properties. LNAs are commercially available from ProLigo (Paris, France and Boulder, Colo., USA).

5

10

15

20

25

An isomer of LNA that has also been studied is alpha-L-LNA which has been shown to have superior stability against a 3'-exonuclease. The alpha-L-LNAs were incorporated into antisense gapmers and chimeras that showed potent antisense activity (Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372).

Another similar bicyclic sugar moiety that has been prepared and studied has the bridge going from the 3'-hydroxyl group via a single methylene group to the 4' carbon atom of the sugar ring thereby forming a 3'-C,4'-C-oxymethylene linkage (see U.S. Pat. No. 6,043,060).

LNA has been shown to form exceedingly stable LNA:LNA duplexes (Koshkin et al., J. Am. Chem. Soc., 1998, 120, 13252-13253). LNA:LNA hybridization was shown to be the most thermally stable nucleic acid type duplex system, and the RNA-mimicking character of LNA was established at the duplex level. Introduction of 3 LNA monomers (T or A) significantly increased melting points (Tm=+15/+11[deg.] C.) toward DNA complements. The universality of LNA-mediated hybridization has been stressed by the formation of exceedingly stable LNA:LNA duplexes. The RNA-mimicking of LNA was reflected with regard to the N-type

conformational restriction of the monomers and to the secondary structure of the LNA:RNA duplex.

LNAs also form duplexes with complementary DNA, RNA or LNA with high thermal affinities. Circular dichroism (CD) spectra show that duplexes involving fully modified LNA (esp. LNA:RNA) structurally resemble an A-form RNA:RNA duplex. Nuclear magnetic resonance (NMR) examination of an LNA:DNA duplex confirmed the 3'-endo conformation of an LNA monomer. Recognition of double-stranded DNA has also been demonstrated suggesting strand invasion by LNA. Studies of mismatched sequences show that LNAs obey the Watson-Crick base pairing rules with generally improved selectivity compared to the corresponding unmodified reference strands. DNA-LNA chimeras have been shown to efficiently inhibit gene expression when targeted to a variety of regions (5'-untranslated region, region of the start codon or coding region) within the luciferase mRNA (Braasch et al., Nucleic Acids Research, 2002, 30, 5160-5167).

Potent and nontoxic antisense oligonucleotides containing LNAs have been described (Wahlestedt et al., Proc. Natl. Acad. Sc U.S.A., 2000, 97, 5633-5638). The authors have demonstrated that LNAs confer several desired properties. LNA/DNA copolymers were not degraded readily in blood serum and cell extracts. LNA/DNA copolymers exhibited potent antisense activity in assay systems as disparate as G-protein-coupled receptor signaling in living rat brain and detection of reporter genes in Escherichia coli. Lipofectin-mediated efficient delivery of LNA into living human breast cancer cells has also been accomplished. Further successful in vivo studies involving LNA's have shown knock-down of the rat delta opioid receptor without toxicity (Wahlestedt et al., Proc. Natl. Acad. Sci., 2000, 97, 5633-5638) and in another study showed a blockage of the translation of the large subunit of RNA polymerase II (Fluiter et al., Nucleic Acids Res., 2003, 31, 953-962).

126

The synthesis and preparation of the LNA monomers adenine, cytosine, guanine, 5-methyl-cytosine, thymine and uracil, along with their oligomerization, and nucleic acid recognition properties have been described (Koshkin et al., Tetrahedron, 1998, 54, 3607-3630). LNAs and preparation thereof are also described in WO 98/39352 and WO 99/14226.

5

10

15

20

25

Analogs of LNA, phosphorothioate-LNA and 2'-thio-LNAs, have also been prepared (Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222). Preparation of locked nucleoside analogs containing oligodeoxyribonucleotide duplexes as substrates for nucleic acid polymerases has also been described (Wengel et al., WO 99/14226). Furthermore, synthesis of 2'-amino-LNA, a novel conformationally restricted high-affinity oligonucleotide analog has been described in the art (Singh et al., J. Org. Chem., 1998, 63, 10035-10039). In addition, 2'-Amino- and 2'-methylamino-LNA's have been prepared and the thermal stability of their duplexes with complementary RNA and DNA strands has been previously reported.

Another oligonucleotide mimetic that has been prepared and studied is threose nucleic acid. This oligonucleotide mimetic is based on threose nucleosides instead of ribose nucleosides. Initial interest in (3',2')-alpha-L-threose nucleic acid (TNA) was directed to the question of whether a DNA polymerase existed that would copy the TNA. It was found that certain DNA polymerases are able to copy limited stretches of a TNA template (reported in Chemical and Engineering News, 2003, 81, 9). In another study it was determined that TNA is capable of antiparallel Watson-Crick base pairing with complementary DNA, RNA and TNA oligonucleotides (Chaput et al., J. Am. Chem. Soc., 2003, 125, 856-857).

In one study (3',2')-alpha-L-threose nucleic acid was prepared and compared to the 2' and 3' amidate analogs (Wu et al., Organic Letters, 2002, 4(8), 1279-1282). The amidate analogs were shown to bind to RNA and DNA with comparable strength to that of RNA/DNA.

Further oligonucleotide mimetics have been prepared to include bicyclic and tricyclic nucleoside analogs (see Steffens et al., Helv. Chim. Acta, 1997, 80, 2426-2439; Steffens et al., J. Am. Chem. Soc., 1999, 121, 3249-3255; Renneberg et al., J. Am. Chem. Soc., 2002, 124, 5993-6002; and Renneberg et al., Nucleic acids res., 2002, 30, 2751-2757). These modified nucleoside analogs have been oligomerized using the phosphoramidite approach and the resulting oligomeric compounds containing tricyclic nucleoside analogs have shown increased thermal stabilities (Tm's) when hybridized to DNA, RNA and itself. Oligomeric compounds containing bicyclic nucleoside analogs have shown thermal stabilities approaching that of DNA duplexes.

Another class of oligonucleotide mimetic is referred to as phosphonomonoester nucleic acids which incorporate a phosphorus group in the backbone. This class of oligonucleotide mimetic is reported to have useful physical and biological and pharmacological properties in the areas of inhibiting gene expression (antisense oligonucleotides, sense oligonucleotides and triplex-forming oligonucleotides), as probes for the detection of nucleic acids and as auxiliaries for use in molecular biology. Further oligonucleotide mimetics amenable to the present invention have been prepared wherein a cyclobutyl ring replaces the naturally occurring furanosyl ring.

Another modification of the oligomeric compounds of the invention involves chemically linking to the oligomeric compound one or more moieties or conjugates which enhance the properties of the oligomeric compound, such as to enhance the activity, cellular distribution or cellular uptake of the oligomeric compound. These moieties or conjugates can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include intercalators, reporter molecules, polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of

oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugate groups include cholesterols, lipids, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve uptake, enhance resistance to degradation, and/or strengthen sequence-specific hybridization with the target nucleic acid. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve uptake, distribution, metabolism or excretion of the compounds of the present invention. Representative conjugate groups are disclosed in International Patent Application PCT/US92/09196, filed Oct. 23, 1992, and U.S. Pat. Nos. 6,287,860 and 6,762,169.

Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethyl-ammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety. Oligomeric compounds of the invention may also be conjugated to drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2,3,5-triiodobenzoic acid, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indomethicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic. Oligonucleotide-drug conjugates and their preparation are described in U.S. Pat. No. 6,656,730.

Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. Pat.

129

Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941.

5

10

15

20

25

30

Oligomeric compounds can also be modified to have one or more stabilizing groups that are generally attached to one or both termini of an oligomeric compound to enhance properties such as for example nuclease stability. Included in stabilizing groups are cap structures. By "cap structure or terminal cap moiety" is meant chemical modifications, which have been incorporated at either terminus of oligonucleotides (see for example Wincott et al., WO 97/26270). These terminal modifications protect the oligomeric compounds having terminal nucleic acid molecules from exonuclease degradation, and can improve delivery and/or localization within a cell. The cap can be present at either the 5'-terminus (5'-cap) or at the 3'-terminus (3'-cap) or can be present on both termini of a single strand, or one or more termini of both strands of a double-stranded compound. This cap structure is not to be confused with the inverted methylguanosine "5" cap" present at the 5' end of native mRNA molecules. In non-limiting examples, the 5'-cap includes inverted abasic residue (moiety), 4',5'methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide, 4'-thio nucleotide, carbocyclic nucleotide; 1,5-anhydrohexitol nucleotide; Lnucleotides; alpha-nucleotides; modified base nucleotide; phosphorodithioate linkage; threo-pentofuranosyl nucleotide; acyclic 3',4'-seco nucleotide; acyclic 3,4-dihydroxybutyl nucleotide; acyclic 3,5-dihydroxypentyl riucleotide, 3'-3'inverted nucleotide moiety; 3'-3'-inverted abasic moiety; 3'-2'-inverted

130

nucleotide moiety; 3'-2'-inverted abasic moiety; 1,4-butanediol phosphate; 3'-phosphoramidate; hexylphosphate; aminohexyl phosphate; 3'-phosphorothioate; phosphorodithioate; or bridging or non-bridging methylphosphonate moiety (for more details see Wincott et al., International PCT publication No. WO 97/26270).

5

10

15

20

25

30

Particularly suitable 3'-cap structures include, for example 4',5'-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide; 4'-thio nucleotide, carbocyclic nucleotide; 5'-amino-alkyl phosphate; 1,3-diamino-2-propyl phosphate, 3-aminopropyl phosphate; 6-aminohexyl phosphate; 1,2-aminododecyl phosphate; hydroxypropyl phosphate; 1,5-anhydrohexitol nucleotide; L-nucleotide; alpha-nucleotide; modified base nucleotide; phosphorodithioate; threo-pentofuranosyl nucleotide; acyclic 3',4'-seco nucleotide; 3,4-dihydroxybutyl nucleotide; 3,5-dihydroxypentyl nucleotide, 5'-5'-inverted nucleotide moiety; 5'-5'-inverted abasic moiety; 5'-phosphoramidate; 5'-phosphorothioate; 1,4-butanediol phosphate; 5'-amino; bridging and/or non-bridging 5'-phosphoramidate, phosphorothioate and/or phosphorodithioate, bridging or non bridging methylphosphonate and 5'-mercapto moieties (for more details see Beaucage and Tyer, 1993, Tetrahedron 49, 1925).

Further 3' and 5'-stabilizing groups that can be used to cap one or both ends of an oligomeric compound to impart nuclease stability include those disclosed in WO 03/004602 published on Jan. 16, 2003.

In certain embodiments, oligomeric compounds, may be conjugated with a wide variety of different positively charged polymers. Examples of positively charged polymers include peptides, such as argine rich peptides (Examples of positively charged peptides that may be used in the practice of the invention include R9F2C; (RXR)4 XB (where X can be any amino acid); R5F2R4c; (RFF)3; Tat proteins, such as TAT sequence CYGRKKRRQRRR; and (RFF)3R), cationic polymers, such as dendrimeric octaguanindine polymer, and other positively charged molecules as known in the art for

131

conjugation to antisense oligonucleotide compounds. In one embodiment of the invention and/or embodiments thereof, the antisense oligonucleotides are conjugated with positively charged polymer comprising a polymer having a molecular weight that is from about 1,000 to 20,000 Daltons, and Optionally from about 5,000 to 10,000 Daltons. Another example of positively charged polymers is polyethylenimine (PEI) with multiple positively charged amine groups in its branched or unbranched chains. PEI has else been widely used as gene and oligomer delivery vesicle.

5

10

15

20

25

30

Optionally of the invention and/or embodiments thereof the oligomeric compounds are modified with cell penetrating sequences. Suitable cell penetrating sequences include cell penetrating peptides, such as TAT peptide, MPG, Pep-1, MAP, fusogenic, antimicrobial peptides (AMPs), bacteriocidal peptides, fungicidal peptides, virucidal peptides,

Cell-penetrating peptides (CPPs) are short peptides that facilitate cellular uptake of the particles of the invention. The particle of the invention is associated with the CPP peptides either through chemical linkage via covalent bonds or through non-covalent interactions. The function of the CPPs are to deliver the particles into cells, a process that commonly occurs through endocytosis with the cargo delivered to the endosomes of living mammalian cells. CPPs typically have an amino acid composition that either contains a high relative abundance of positively charged amino acids such as lysine or arginine or has sequences that contain an alternating pattern of polar/charged amino acids and non-polar, hydrophobic amino acids. These two types of structures are referred to as polycationic or amphipathic, respectively. A third class of CPPs are the hydrophobic peptides, containing only apolar residues, with low net charge or have hydrophobic amino acid groups that are crucial for cellular uptake.

An exemplary cell penetrating peptide is the trans-activating transcriptional activator (Tat) from Human Immunodeficiency Virus 1 (HIV-1) could be efficiently taken up from the surrounding media by numerous cell types in culture. Other cell penetrating peptides are MPG, Pep-1, transportan, penetratin, CADY, TP, TP10, arginine octamer. polyarginine sequences, Arg8, VP22 HSV-1 structural protein, SAP Prolinerich motifs, Vectocell® peptides, hCT (9–32), SynB, Pvec, and PPTG1. Cell penetrating peptides may be cationic, essentially containing clusters of polyarginine in their primary sequence or amphipathic. CPPs are generally peptides of less than 30 amino acids, derived from natural or unnatural protein or chimeric sequences.

5

20

30

Optionally the oligomeric compounds are derivatised with

conjugates selected from the group consisting of Pip6a, PEG12, (R/W)9,

H5WYG, GalNAc or GN3, M12, PEI-LA, RGD, endosomolytic peptide,,

peptide, Pep-3, CADY, C6, MPEG-PCL-CH2R4H2C, (RXR)4XB, R9F2,

TAT, (KFF)3K, (RFF)3RXB, (RFF)3R, F-3, Pip2a, B-peptide, B-MSP,

Pip5e, PKKKRKV, Penetratin, Lys4, SPACE, Tat-DRBD, (RXR)4,

(RxR)3RXB, (KFF)3K, T-cell-derived CPP, PEGPep-3, MPG-8, MPG-8-Chol, PepFect6, P5RHH, R15, Chol-R9.

Optionally the oligomeric compounds, enzyme, and/or nucleic acid encoding for the enzyme are incorporated or otherwise associated with nanoparticles. Nanoparticles may optionally be modified for targeting specific cells and optimised for penetrating cells. A skilled person is aware of methods to employ nanoparticles for oligomeric compounds delivery to cells.

Suitable particle are gold particles, silver particle.

Optionally the nanoparticles are made from material selected from the group consisting of gelatine, hydrophilic gelatine, Arg-Gly-Asp-

25 Polyethylenglycol-stearic acid-chitosan, mesoporous silica.

Optionally the nanoparticles are made from protein selected from the group consisting of Hematoporphyrin —Bovine serum albumin, Heat-liable enterotoxin subunit B- Bovine serum albumin, Apotransferin- Bovine serum albumin, Apotransferrin-Lactoferrin, Chitosan-retinoic acid-Albumin, 30Kc19-human-serum-albumin.

Optionally the nanoparticles are made from a polymer selected from the group consisting of Poly(lactic-co-glyoclic acid), Poly(lactic-co-glyoclic acid), Poly(lactic-co-glyoclic acid)-Chitosan, Poly(lactic-co-glyoclic acid)-eudragit, Poly (lactic acid)-F127- Poly (lactic acid), Polycaprolactone-eudragit RS, Polyacrylic acid, Thiolated Polyacrylic acid, Chitosan, Chitosan-Hydroxy propyl Methyl cellulose Phthalate, Chitosan-PGA-DTPA, Trimethyl chitosan-cysteine conjugate, Lauryl-succinyl-Chitosan, Dextran-poloxamer-Chitosan-albumin, Dextran sulfate-Chitosan, Cholic acid modified dextran sulfate, Alginate-dextran sulfate-Chitosan-albumin, Alginate, Thiolated-Eudragit, Poly-N-isopropylacrylamide, Poly(lactic-co-glyoclic acid), Polyethylenglycol-dithiodipropionate-hyaluronic acid, polycaprolactone, Galactose-Chitosan, O-carboxymethyl-chitosan-Galactose, hyaluronic acid-Galactose, Galactosylated-chitosan-polycaprolactone, Galactosylated-chitosan, poly(alkylene oxide)-poly(propylacrylic acid), Poly (lactic acid), (poly(ethylene imine)), Poly(lactic-co-glyoclic acid).

5

10

15

20

25

Optionally the oligomeric compounds, enzyme, and/or nucleic acid encoding for the enzyme are incorporated or otherwise associated with extracellular vesicles (EV). Extracellular vesicles (EVs) are small vesicles, which are secreted by prokaryotic and eukaryotic cells One may distinguish between three classes of EVs, namely apoptotic bodies (ABs), microvesicles (MVs) and exosomes. Exosomes or extracellular vesicles are derived from cells. The cells may any kind of cell that is capable of producing exosomes. The cells may be patient derived or from donors, cells in culture or heterologous systems from animals or plants. Preferably the exosomes or extracellular vesicles are derived from the human cells. Several approaches may be used for the loading of exosomal or extracellular vesical carriers with therapeutic cargo

(A) loading naïve exosomes or extracellular vesicles isolated from parental cells ex vitro;

134

(B) loading parental cells with enzyme, nucleic acid encoding the enzyme and/or antisense oligomeric compound, which is then released in exosomes or extracellular vesicles; and finally,

(C) transfecting/infecting parental cells with DNA encoding enzyme, and/or antisense oligomeric compound, which are then released in exosomes or extracellular vesicles. Exosomes possess an intrinsic ability to cross biological barriers, including the most difficult to penetrate: the blood brain barrier (BBB).

5

10

15

20

25

30

Optionally the exosomes or extracellular vesicles comprise the enzyme or GAA. Optionally the exosomes or extracellular vesicles comprise the mRNA for the enzyme or GAA. Optionally the exosomes or extracellular vesicles comprise the antisense oligomeric compound. Optionally the exosomes or extracellular vesicles comprise a DNA construct encoding for the antisense oligomeric compound.

Optionally the oligomeric compounds, enzyme, and/or nucleic acid encoding for the enzyme are incorporated or otherwise associated with micelles.

Optionally the oligomeric compounds, enzyme, and/or nucleic acid encoding for the enzyme are incorporated or otherwise associated with liposomes.

Optionally the oligomeric compounds, enzyme, and/or nucleic acid encoding for the enzyme are incorporated or otherwise associated with microparticles.

Optionally, the oligomeric compounds are modified with an endosomal escape agent moiety. The endocytic pathway is a major uptake mechanism of cells. Compounds taken up by the endocytic pathway become entrapped in endosomes and may be degraded by specific enzymes in the lysosome. This may be desired or not desired depending on the purpose. If taken up by the endosomes is not desired, endosomal escape agent may be used. Suitable endosomal escape agents may be chloroquine, TAT peptide.

135

It is not necessary for all positions in a given oligomeric compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even within a single nucleoside within an oligomeric compound.

5

10

15

20

25

The present invention also includes oligomeric compounds which are chimeric compounds. "Chimeric" oligomeric compounds or "chimeras," in the context of this invention, are single- or double-stranded oligomeric compounds, such as oligonucleotides, which contain two or more chemically distinct regions, each comprising at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. Chimeric antisense oligonucleotides are one form of oligomeric compound. These oligonucleotides typically contain at least one region which is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, alteration of charge, increased stability and/or increased binding affinity for the target nucleic acid.

Chimeric oligomeric compounds of the invention can be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleotides, oligonucleotide mimetics, or regions or portions thereof. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922.

Oligomerization of modified and unmodified nucleosides can be routinely performed according to literature procedures for DNA (Protocols for Oligonucleotides and Analogs, Ed. Agrawal (1993), Humana Press) and/or RNA (Scaringe, Methods (2001), 23, 206-217. Gait et al., Applications of Chemically synthesized RNA in RNA: Protein Interactions, Ed. Smith (1998), 1-36. Gallo et al., Tetrahedron (2001), 57, 5707-5713).

5

30

Oligomeric compounds of the present invention can be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The following precursor compounds, including amidites and their intermediates can be prepared by methods routine to those skilled in the art; 5'-O-Dimethoxytrityl-thymidine intermediate for 5-methyl dC amidite, 10 5'-O-Dimethoxytrityl-2'-deoxy-5-methylcytidine intermediate for 5-methyldC amidite, 5'-O-Dimethoxytityl-2'-deoxy-N4-benzoyl-5-methylcytidine penultimate intermediate for 5-methyl dC amidite, (5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-deoxy-N4-benzoyl-5-methylcytidin-3'-O-yl)-2cyanoethyl-N,N-diisopropylphosphoramidite (5-methyl dC amidite), 2'-15 Fluorodeoxyadenosine, 2'-Fluorodeoxyguanosine, 2'-Fluorouridine, 2'-Fluorodeoxycytidine, 2'-O-(2-Methoxyethyl) modified amidites, 2'-O-(2methoxyethyl)-5-methyluridine intermediate, 5'-O-DMT-2'-O-(2methoxyethyl)-5-methyluridine penultimate intermediate, (5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2-methoxyethyl)-5-methyluridin-3'-O-yl)-20 2-cyanoethyl-N,N-diisopropylphosphoramidite (MOE T amidite), 5'-O-Dimethoxytrityl-2'-O-(2-methoxyethyl)-5-methylcytidine intermediate, 5'-Odimethoxytrityl-2'-O-(2-methoxyethyl)-N<4>-benzoyl-5-methyl-cytidine penultimate intermediate, (5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2-25methoxyethyl)-N<4>-benzoyl-5-methylcytidin-3'-O-yl)-2-cyanoethyl-N,Ndiisopropylphosphoramidite (MOE 5-Me-C amidite), (5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2-methoxyethyl)-N<6>-benzoyladenosin-3'-O-yl)-2-cyanoethyl-N,N-diisopropylphosphoramidite (MOE A amdite), (5'-O-(4,4'-Dimethoxytriphenylmethyl)-2'-O-(2-methoxyethyl)-N<4>-

isobutyrylguanosin-3'-O-yl)-2-cyanoethyl-N,N-diisopropylphosphoramidite

(MOE G amidite), 2'-O-(Aminooxyethyl) nucleoside amidites and 2'-O-(dimethylaminooxyethyl) nucleoside amidites, 2'-(Dimethylaminooxyethoxy) nucleoside amidites, 5'-O-tert-Butyldiphenylsilyl-O<2>-2'-anhydro-5-methyluridine, 5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine, 2'-O-((2-phthalimidoxy)ethyl)-5'-t-butyldiphenylsilyl-5-methyluridine, 5'-O-tert-butyldiphenylsilyl-2'-O-((2-formadoximinooxy)ethyl)-5-methyluridine, 5'-O-tert-Butyldiphenylsilyl-2'-O-

(N,N dimethylaminooxyethyl)-5-methyluridine, 2'-O-(dimethylaminooxyethyl)-5-methyluridine, 5'-O-DMT-2'-O-

(dimethylaminooxyethyl)-5-methyluridine, 5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-((2-cyanoethyl)-N,N-diisopropylphosphoramidite), 2'-(Aminooxyethoxy) nucleoside amidites, N2-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-((2-cyanoethyl)-N,N-

diisopropylphosphoramidite), 2'-dimethylaminoethoxyethoxy (2'-DMAEOE) nucleoside amidites, 2'-O-(2(2-N,N-dimethylaminoethoxy)ethyl)-5-methyl uridine, 5'-O-dimethoxytrityl-2'-O-(2(2-N,N-dimethylaminoethoxy)-ethyl))-5-methyl uridine and 5'-O-Dimethoxytrityl-2'-O-(2(2-N,N-dimethylaminoethoxy)-ethyl))-5-methyl uridine-3'-O-(cyanoethyl-N,N-diisopropyl)phosphoramidite.

diisopropyl)phosphoramidite.

5

The preparation of such precursor compounds for oligonucleotide synthesis are routine in the art and disclosed in U.S. Pat. No. 6,426,220 and published PCT WO 02/36743.

2'-Deoxy and 2'-methoxy beta-cyanoethyldiisopropyl

phosphoramidites can be purchased from commercial sources (e.g.

Chemgenes, Needham, Mass. or Glen Research, Inc. Sterling, Va.). Other 2'
O-alkoxy substituted nucleoside amidites can be prepared as described in

U.S. Pat. No. 5,506,351.

Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-Me-C) 30 nucleotides can be synthesized routinely according to published methods 10

15

20

25

(Sanghvi, et. al., Nucleic Acids Research, 1993, 21, 3197-3203) using commercially available phosphoramidites (Glen Research, Sterling Va. or ChemGenes, Needham, Mass.).

2'-fluoro oligonucleotides can be synthesized routinely as described (Kawasaki, et. al., J. Med. Chem., 1993, 36, 831-841) and U.S. Pat. No. 5,670,633.

2'-O-Methoxyethyl-substituted nucleoside amidites can be prepared routinely as per the methods of Martin, P., Helvetica Chimica Acta, 1995, 78, 486-504.

Aminooxyethyl and dimethylaminooxyethyl amidites can be prepared routinely as per the methods of U.S. Pat. No. 6,127,533.

Phosphorothioate-containing oligonucleotides (P-S) can be synthesized by methods routine to those skilled in the art (see, for example, Protocols for Oligonucleotides and Analogs, Ed. Agrawal (1993), Humana Press). Phosphinate oligonucleotides can be prepared as described in U.S. Pat. No. 5,508,270.

Alkyl phosphonate oligonucleotides can be prepared as described in U.S. Pat. No. 4,469,863.

3'-Deoxy-3'-methylene phosphonate oligonucleotides can be prepared as described in U.S. Pat. No. 5,610,289 or 5,625,050.

Phosphoramidite oligonucleotides can be prepared as described in U.S. Pat. Nos. 5,256,775 or U.S. Pat. No. 5,366,878.

Alkylphosphonothioate oligonucleotides can be prepared as described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively).

3'-Deoxy-3'-amino phosphoramidate oligonucleotides can be prepared as described in U.S. Pat. No. 5,476,925.

Phosphotriester oligonucleotides can be prepared as described in U.S. Pat. No. 5,023,243.

139

Borano phosphate oligonucleotides can be prepared as described in U.S. Pat. Nos. 5,130,302 and 5,177,198.

4'-thio-containing oligonucleotides can be synthesized as described in U.S. Pat. No. 5,639,873.

5

10

15

20

25

Methylenemethylimino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as MDH linked oligonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified as amide-3 linked oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for instance, alternating MMI and P-O or P-S linkages can be prepared as described in U.S. Pat. Nos. 5,378,825, 5,386,023, 5,489,677, 5,602,240 and 5,610,289.

Formacetal and thioformacetal linked oligonucleosides can be prepared as described in U.S. Pat. Nos. 5,264,562 and 5,264,564.

Ethylene oxide linked oligonucleosides can be prepared as described in U.S. Pat. No. 5,223,618.

Peptide nucleic acids (PNAs) can be prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 5-23. They may also be prepared in accordance with U.S. Pat. Nos. 5,539,082, 5,700,922, 5,719,262, 6,559,279 and 6,762,281.

Oligomeric compounds incorporating at least one 2'-O-protected nucleoside by methods routine in the art. After incorporation and appropriate deprotection the 2'-O-protected nucleoside will be converted to a ribonucleoside at the position of incorporation. The number and position of the 2-ribonucleoside units in the final oligomeric compound may vary from one at any site or the strategy can be used to prepare up to a full 2'-OH modified oligomeric compound.

The main RNA synthesis strategies that are presently being used commercially include 5'-[beta]-DMT-2'-O-t-butyldimethylsilyl (TBDMS), 5'-O-DMT-2'-[1(2-fluorophenyl)-4-methoxypiperidin-4-yl] (FPMP), 2'-O-[(triisopropylsilyl)oxy]methyl (2'-O-CH2-O-Si(iPr)3 (TOM), and the 5'-O-silyl ether-2'-ACE (5'-O-bis(trimethylsiloxy)cyclododecyloxysilyl ether (DOD)-2'-O-bis(2-acetoxyethoxy)methyl (ACE). Some companies currently offering RNA products include Pierce Nucleic Acid Technologies (Milwaukee, Wis.), Dharmacon Research Inc. (a subsidiary of Fisher Scientific, Lafayette, Colo.), and Integrated DNA Technologies, Inc. (Coralville, Iowa). One company, Princeton Separations, markets an RNA synthesis activator advertised to reduce coupling times especially with TOM and TBDMS chemistries. Such an activator would also be amenable to the oligomeric compounds of the present invention.

5

10

15

20

25

30

All of the aforementioned RNA synthesis strategies are amenable to the oligomeric compounds of the present invention. Strategies that would be a hybrid of the above e.g. using a 5'-protecting group from one strategy with a 2'-O-protecting from another strategy is also contemplated herein.

Chimeric oligonucleotides, chimeric oligonucleosides and mixed chimeric oligonucleotides/oligonucleosides can be synthesized according to U.S. Pat. No. 5,623,065.

Chimeric oligomeric compounds exhibitting enhanced cellular uptake and greater pharmacologic activity may be made in accordance to U.S. Pat. No US8,501,703.

Another form of oligomeric compounds comprise tricyclo-DNA (tc-DNA) antisense oligonucleotides. Tricyclo-DNA nucleotides are nucleotides modified by the introduction of a cyclopropane ring to restrict conformational flexibility of the backbone and to optimize the backbone geometry of the torsion angle γ . Homobasic adenine- and thymine-containing tc-DNAs form extraordinarily stable A-T base pairs with complementary RNAs. Antisense oligomeric compound that contains

WO 2017/099579

5

10

15

20

25

between 6-22 tricyclo nucleotides in length, in particular between 8-20 tricyclo nucleotides, more particularly between 10 and 18 or between 11 and 18 tricyclo nucleotides are suitable. See e.g. WO2010115993 for examples of tricyclo- DNA (tc-DNA) antisense oligonucleotides.

Oligomerization of modified and unmodified nucleosides can be routinely performed according to literature procedures for DNA (Protocols for Oligonucleotides and Analogs, Ed. Agrawal (1993), Humana Press) and/or RNA (Scaringe, Methods (2001), 23, 206-217. Gait et al., Applications of Chemically synthesized RNA in RNA: Protein Interactions, Ed. Smith (1998), 1-36. Gallo et al., Tetrahedron (2001), 57, 5707-5713).

Antisense compounds can be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives. The disclosure is not limited by the method of antisense compound synthesis.

Methods of oligonucleotide purification and analysis are known to those skilled in the art. Analysis methods include capillary electrophoresis (CE) and electrospray-mass spectroscopy. Such synthesis and analysis methods can be performed in multi-well plates. The methods described herein are not limited by the method of oligomer purification.

Optionally of the invention and/or embodiments thereof, the antisense compounds provided herein are resistant to RNase H degradation.

In one embodiment of the invention and/or embodiments thereof, the antisense compounds comprise at least one modified nucleotide. In another embodiment, the antisense compounds comprise a modified

142

nucleotide at each position. In yet another embodiment, the antisense compounds are uniformly modified at each position.

5

10

15

20

25

30

Modulation of splicing can be assayed in a variety of ways known in the art. Target mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR. RNA analysis can be performed on total cellular RNA or poly(A)+mRNA by methods known in the art. Methods of RNA isolation are taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993.

Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley & Sons, Inc., 1996. Real-time quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM(TM) 7700 Sequence Detection System, available from PE-Applied Biosystems, Foster City, Calif. and used according to manufacturer's instructions.

Levels of a protein encoded by a target mRNA can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to a protein encoded by a target mRNA can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, Mich.), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.12.9, John Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.4.1-11.11.5, John Wiley & Sons, Inc., 1997.

Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular

143

Biology, Volume 2, pp. 10.16.1-10.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.1-10.8.21, John Wiley & Sons, Inc., 1997.

Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.1-11.2.22, John Wiley & Sons, Inc., 1991.

5

10

15

20

25

The effect of the oligomeric compounds of the present invention may be analysed by RT PCT, qPCR, flanking exon PCR and/or a method comprising

flanking exon PCR on each internal exon corresponding to the mRNA to obtain one or more flanking exon amplification products, and detecting the presence and length of the said flanking exon amplification products,

quantifying of each protein encoding exon of said mRNA.

The oligomeric compounds provided herein may be utilized for therapeutics or research. Furthermore, antisense compounds, which are able to inhibit gene expression or modulate splicing with specificity, may be used to elucidate the function of particular genes or gene products or to distinguish between functions of various members of a biological pathway. Optionally of the invention and/or embodiments thereof the oligomeric compounds are used for the treatment of Pompe disease. Optionally of the invention and/or embodiments thereof the oligomeric compounds are used in research of the function of the GAA gene.

Compounds described herein can be used to modulate splicing of a target mRNA in an metazoans, Optionally mamals Optionally human. In one non-limiting embodiment of the invention and/or embodiments thereof, the methods comprise the step of administering to said animal an effective

144

amount of an antisense compound that modulates splicing of a target mRNA.

5

10

15

20

25

30

For example, modulation of splicing of a target mRNA can be measured by determining levels of mRNA splicing products in a bodily fluid, tissue, organ of cells of the animal. Bodily fluids include, but are not limited to, blood (serum or plasma), lymphatic fluid, cerebrospinal fluid, semen, urine, synovial fluid and saliva and can be obtained by methods routine to those skilled in the art. Tissues, organs or cells include, but are not limited to, blood (e.g., hematopoietic cells, such as human hematopoietic progenitor cells, human hematopoietic stem cells, CD34+ cells CD4+ cells), lymphocytes and other blood lineage cells, skin, bone marrow, spleen, thymus, lymph node, brain, spinal cord, heart, skeletal muscle, liver, connective tissue, pancreas, prostate, kidney, lung, oral mucosa, esophagus, stomach, ilium, small intestine, colon, bladder, cervix, ovary, testis, mammary gland, adrenal gland, and adipose (white and brown). Samples of tissues, organs and cells can be routinely obtained by biopsy. In some alternative situations, samples of tissues or organs can be recovered from an animal after death. Optionally of the invention and/or embodiments thereof modulation of splicing is measured in fibroblast, Optionally primary fibroblasts, Optionally primary fibroblasts from patients suffering from Pompe disease.

The effects of treatment with the oligomeric compounds can be assessed by measuring biomarkers associated with modulation of splicing of a target mRNA in the aforementioned fluids, tissues or organs, collected from an animal contacted with one or more compounds, by routine clinical methods known in the art. These biomarkers include but are not limited to: glucose, cholesterol, lipoproteins, triglycerides, free fatty acids and other markers of glucose and lipid metabolism; liver transaminases, bilirubin, albumin, blood urea nitrogen, creatine and other markers of kidney and liver function; interleukins, tumor necrosis factors, intracellular adhesion

145

molecules, C-reactive protein and other markers of inflammation; testosterone, estrogen and other hormones; tumor markers; vitamins, minerals and electrolytes. Optionally of the invention and/or embodiments thereof the biomarker is glycogen.

5

10

15

20

25

30

The compounds disclosed herein can be utilized in pharmaceutical compositions by adding an effective amount of a compound to a suitable pharmaceutically acceptable diluent or carrier. The compounds can also be used in the manufacture of a medicament for the treatment of diseases and disorders related to alterations in splicing. Optionally of the invention and/or embodiments thereof, the disease is Pompe disease.

Methods whereby bodily fluids, organs or tissues are contacted with an effective amount of one or more of the antisense compounds or compositions of the disclosure are also contemplated. Bodily fluids, organs or tissues can be contacted with one or more of the compounds of the disclosure resulting in modulation of splicing of target mRNA in the cells of bodily fluids, organs or tissues. An effective amount can be determined by monitoring the modulatory effect of the antisense compound or compounds or compositions on target nucleic acids or their products by methods routine to the skilled artisan. Further contemplated are ex vivo methods of treatment whereby cells or tissues are isolated from a subject, contacted with an effective amount of the antisense compound or compounds or compositions and reintroduced into the subject by routine methods known to those skilled in the art.

A sufficient amount of an antisense oligomeric compound to be administered will be an amount that is sufficient to induce amelioration of unwanted disease symptoms. Such an amount may vary inter alia depending on such factors as the gender, age, weight, overall physical condition, of the patient, etc. and may be determined on a case by case basis. The amount may also vary according to the type of condition being treated, and the other components of a treatment protocol (e.g. administration of

146

other medicaments such as steroids, etc.). The amount may also vary according to the method of administration such as systemically or locally.

Typical dosage amounts of the antisense oligonucleotide molecules in pharmaceutical formulations may range from about 0.05 to 1000 mg/kg body weight, and in particular from about 5 to 500 mg/kg body weight. In one embodiment of the invention and/or embodiments thereof, the dosage amount is from about 50 to 300 mg/kg body weight once in 2 weeks, or once or twice a week, or any frequency required to achieve therapeutic effect. Optionally amounts are from 3-50 mg/kg, more Optionally 10-40 mg/kg, more Optionally 15-25 mg/kg.

5

10

15

20

25

30

The dosage administered will, of course, vary depending on the use and known factors such as the pharmacodynamic characteristics of the active ingredient; age, health, and weight of the recipient; nature and extent of symptoms, kind of concurrent treatment, frequency of treatment, and the effect desired. The recipient may be any type of mammal, but is Optionally a human. In one embodiment of the invention and/or embodiments thereof, dosage forms (compositions) of the inventive pharmaceutical composition may contain about 1 microgram to 50,000 micrograms of active ingredient per unit, and in particular, from about 10 to 10,000 micrograms of active ingredient per unit. (if here a unit means a vial or one package for one injection, then it will be much higher, up to 15 g if the weight of a patient is 50 kg) For intravenous delivery, a unit dose of the pharmaceutical formulation will generally contain from 0.5 to 500 micrograms per kg body weight and Optionally will contain from 5 to 300 micrograms, in particular 10, 15, 20, 30, 40, 50, 100, 200, or 300 micrograms per kg body weight ([mu]g/kg body weight) of the antisense oligonucleotide molecule. Preferred intravenous dosage ranges from 10 ng to 2000microg, Optionally 3 to 300 [mg, more Optionally 10 to 100 [mulg of compound per kg of body weight. Alternatively the unit dose may contain from 2 to 20 milligrams of the

147

antisense oligonucleotide molecule and be administered in multiples, if desired, to give the preceding daily dose. In these pharmaceutical compositions, the antisense oligonucleotide molecule will ordinarily be present in an amount of about 0.5-95% by weight based on the total weight of the composition.

5

10

15

20

25

In one particular embodiment, it should be recognized that the dosage can be raised or lowered based on individual patient response. It will be appreciated that the actual amounts of antisense oligonucleotide molecule used will vary according to the specific antisense oligonucleotide molecule being utilized, the particular compositions formulated, the mode of application, and the particular site of administration.

Optionally the compounds are administered daily, once every 2 days, once every 3 days, once a week, once every two weeks, or once every month.

In another preferred embodiment the administration is only one time, e.g. when using a viral vector.

If a viral-based delivery of antisense oligomeric compounds is chosen, suitable doses will depend on different factors such as the viral strain that is employed, the route of delivery (intramuscular, intravenous, intra-arterial or other), Those of skill in the art will recognize that such parameters are normally worked out during clinical trials. Further, those of skill in the art will recognize that, while disease symptoms may be completely alleviated by the treatments described herein, this need not be the case. Even a partial or intermittent relief of symptoms may be of great benefit to the recipient. In addition, treatment of the patient is usually not a single event. Rather, the antisense oligomeric compounds of the invention will likely be administered on multiple occasions, that may be, depending on the results obtained, several days apart, several weeks apart, or several months apart, or even several years apart.

148

Those of skill in the art will recognize that there are many ways to determine or measure a level of functionality of a protein, and to determine a level of increase or decrease of functionality e.g. in response to a treatment protocol. Such methods include but are not limited to measuring or detecting an activity of the protein, etc. Such measurements are generally made in comparison to a standard or control or "normal" sample. In addition, when the protein's lack of functionality is involved in a disease process, disease symptoms may be monitored and/or measured in order to indirectly detect the presence or absence of a correctly functioning protein, or to gauge the success of a treatment protocol intended to remedy the lack of functioning of the protein. In preferred embodiment the functionality of the GAA protein is measured. This is Optionally performed with an enzymatic activity assays as is well known to a skilled person.

5

10

15

20

25

30

In a particular embodiment of the invention and/or embodiments thereof; antisense oligonucleotides of the invention may be delivered in vivo alone or in association with a vector. In its broadest sense, a "vector" is any vehicle capable of facilitating the transfer of the antisense oligonucleotide of the invention to the cells. Optionally, the vector transports the nucleic acid to cells with reduced degradation relative to the extent of degradation that would result in the absence of the vector. In general, the vectors useful in the invention include, but are not limited to, naked plasmids, non viral delivery systems (electroporation, sonoporation, cationic transfection agents, liposomes, etc...), phagemids, viruses, other vehicles derived from viral or bacterial sources that have been manipulated by the insertion or incorporation of the antisense oligonucleotide nucleic acid sequences. Viral vectors are a preferred type of vector and include, but are not limited to nucleic acid sequences from the following viruses: R A viruses such as a retrovirus (as for example moloney murine leukemia virus and lentiviral derived vectors), harvey murine sarcoma virus, murine mammary tumor virus, and rous sarcoma virus; adenovirus, adeno- associated virus; SV40-

149

type viruses; polyoma viruses; Epstein-Barr viruses; papilloma viruses; herpes virus; vaccinia virus; polio virus. One can readily employ other vectors not named but known to the art.

5

10

15

20

25

30

Preferred viral vectors according to the invention include adenoviruses and adeno- associated (AAV) viruses, which are DNA viruses that have already been approved for human use in gene therapy. Actually 12 different AAV serotypes (AAVI to 12) are known, each with different tissue tropisms (Wu, Z Mol Ther 2006; 14:316-27). Recombinant AAV are derived from the dependent parvovirus AAV (Choi, VW J Virol 2005; 79:6801-07). The adeno- associated virus type 1 to 12 can be engineered to be replication deficient and is capable of infecting a wide range of cell types and species (Wu, Z Mol Ther 2006; 14:316-27). It further has advantages such as, heat and lipid solvent stability; high transduction frequencies in cells of diverse lineages, including hemopoietic cells; and lack of superinfection inhibition thus allowing multiple series of transductions. In addition, wild-type adeno-associated virus infections have been followed in tissue culture for greater than 100 passages in the absence of selective pressure, implying that the adeno-associated virus genomic integration is a relatively stable event. The adeno-associated virus can also function in an extrachromosomal fashion.

Other vectors include plasmid vectors. Plasmid vectors have been extensively described in the art and are well known to those of skill in the art. See e.g. Sambrook et al, 1989. They are particularly advantageous for this because they do not have the same safety concerns as with many of the viral vectors. These plasmids, however, having a promoter compatible with the host cell, can express a peptide from a gene operatively encoded within the plasmid. Some commonly used plasmids include pBR322, pUC18, pUC19, pRC/CMV, SV40, and pBlueScript. Other plasmids are well known to those of ordinary skill in the art. Additionally, plasmids may be custom designed using restriction enzymes and ligation reactions to remove and add

150

specific fragments of DNA. Plasmids may be delivered by a variety of parenteral, mucosal and topical routes. For example, the DNA plasmid can be injected by intramuscular, intradermal, subcutaneous, or other routes. It may also be administered by, intranasal sprays or drops, rectal suppository and orally. Optionally, said DNA plasmid is injected intramuscular, or intravenous. It may also be administered into the epidermis or a mucosal surface using a gene-gun. The plasmids may be given in an aqueous solution, dried onto gold particles or in association with another DNA delivery system including but not limited to liposomes, dendrimers, cochleate and microencapsulation.

5

10

15

20

25

30

Optionally of the invention and/or embodiments thereof, the antisense oligonucleotide nucleic acid sequence is under the control of a heterologous regulatory region, e.g., a heterologous promoter. The promoter can also be, e.g., a viral promoter, such as CMV promoter or any synthetic promoters.

Optionally of the invention and/or embodiments thereof, the vector may code for more than one antisense oligomeric compound. Each antisense oligomeric compound is directed to different targets.

Pharmaceutical composition comprising the antisense compounds described herein may comprise any pharmaceutically acceptable salts, esters, or salts of such esters, or any other functional chemical equivalent which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the antisense compounds, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

The term "prodrug" indicates a therapeutic agent that is prepared in an inactive or less active form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes, chemicals, and/or conditions. In particular, prodrug versions of the

151

oligonucleotides are prepared as SATE ((S-acetyl-2-thioethyl) phosphate) derivatives according to the methods disclosed in WO 93/24510 or WO 94/26764. Prodrugs can also include antisense compounds wherein one or both ends comprise nucleotides that are cleaved (e.g., by incorporating phosphodiester backbone linkages at the ends) to produce the active compound.

5

10

15

20

25

30

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto. Sodium salts of antisense oligonucleotides are useful and are well accepted for therapeutic administration to humans. In another embodiment of the invention and/or embodiments thereof, sodium salts of dsRNA compounds are also provided.

The antisense compounds described herein may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds.

The present disclosure also includes pharmaceutical compositions and formulations which include the antisense compounds described herein. The pharmaceutical compositions may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Optionally of the invention and/or embodiments thereof, administration is intramuscular or intravenous.

The pharmaceutical formulations, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers, finely divided solid carriers, or both, and then, if necessary, shaping the product (e.g., into a specific particle size for

152

delivery). Optionally of the invention and/or embodiments thereof, the pharmaceutical formulations are prepared for intramuscular administration in an appropriate solvent, e.g., water or normal saline, possibly in a sterile formulation, with carriers or other agents.

5

10

15

20

25

30

A "pharmaceutical carrier" or "excipient" can be a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal and are known in the art. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition.

Compositions provided herein may contain two or more antisense compounds. In another related embodiment, compositions may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Alternatively, compositions provided herein can contain two or more antisense compounds targeted to different regions of the same nucleic acid target. Two or more combined compounds may be used together or sequentially. Compositions can also be combined with other non-antisense compound therapeutic agents.

The antisense oligomeric compound described herein may be in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydropropyl-methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents can be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide

5

10

15

20

25

153

with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. Aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl phydroxybenzoate. Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. antisense oligomeric compound compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. Suspensions may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents that have been mentioned above. The sterile injectable preparation can also be a sterile injectable solution or suspension in a non-toxic parentally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be employed including synthetic mono or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

The present disclosure also includes antisense oligomeric compound compositions prepared for storage or administration that include a pharmaceutically effective amount of the desired compounds in a pharmaceutically acceptable carrier or diluent. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences (Mack Publishing Co., A.R. Gennaro edit., 1985). For example, preservatives and stabilizers can be provided. These include sodium benzoate, sorbic acid and

154

esters of p-hydroxybenzoic acid. In addition, antioxidants and suspending agents can be used.

5

10

15

20

25

30

Pharmaceutical compositions of this disclosure can also be in the form of oil- in- water emulsions. The oily phase can be a vegetable oil or a mineral oil or mixtures of these. Suitable emulsifying agents can be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol, anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxy ethylene sorbitan monooleate.

The antisense oligomeric compound of this disclosure may be administered to a patient by any standard means, with or without stabilizers, buffers, or the like, to form a composition suitable for treatment. When it is desired to use a liposome delivery mechanism, standard protocols for formation of liposomes can be followed. Thus the antisense oligomeric compound of the present disclosure may be administered in any form, for example intramuscular or by local, systemic, or intrathecal injection.

This disclosure also features the use of antisense oligomeric compound compositions comprising surface-modified liposomes containing poly(ethylene glycol) lipids (PEG-modif[iota]ed, or long-circulating liposomes or stealth liposomes). These formulations offer a method for increasing the accumulation of antisense oligomeric compound in target tissues. This class of drug carriers resists opsonization and elimination by the mononuclear phagocytic system (MPS or RES), thereby enabling longer blood circulation times and enhanced tissue exposure for the encapsulated antisense oligomeric compound (Lasic et al, Chem. Rev. 95:2601-2627 (1995) and Ishiwata et al, Chem. Pharm. Bull. 43:1005-1011 (1995). Long-circulating liposomes enhance the pharmacokinetics and pharmacodynamics of antisense oligomeric compound, particularly compared to conventional

155

cationic liposomes which are known to accumulate in tissues of the MPS (Liu et al, J. Biol. Chem. 42:24864-24870 (1995); Choi et al, PCT Publication No. WO 96/10391; Ansell et al, PCT Publication No. WO 96/10390; Holland et al, PCT Publication No. WO 96/10392). Long-circulating liposomes are also likely to protect antisense oligomeric compound from nuclease degradation to a greater extent compared to cationic liposomes, based on their ability to avoid accumulation in metabolically aggressive MPS tissues such as the liver and spleen.

Following administration of the antisense oligomeric compound compositions according to the formulations and methods of this disclosure, test subjects will exhibit about a 10% up to about a 99% reduction in one or more symptoms associated with the disease or disorder being treated, as compared to placebo -treated or other suitable control subjects.

10

156

Claims

1. Composition for use for the treatment of Pompe disease, said composition comprising an enzyme or nucleic acid encoding for said enzyme suitable for Enzyme Replacement Therapy for Pompe disease, wherein said treatment is a combination of the administration of said enzyme or said nucleic acid encoding for said enzyme and the administration of an antisense oligomeric that modulates the splicing of acid alpha-glucosidase (GAA) enzyme.

5

10

- 2. Treatment of Pompe disease by administration of an enzyme or nucleic acid encoding for said enzyme suitable for Enzyme Replacement Therapy for Pompe disease in combination with the administration of an antisense oligomeric compound that modulates the splicing of acid alphaglucosidase (GAA) enzyme gene.
- 3. Composition according to claim 1or treatment according to claim 2 wherein the antisense oligomeric compound modulates abherent splicing of acid alpha-glucosidase (GAA) enzyme gene, Optionally by an activity selected from the group consisting of promotion of exon inclusion, inhibition of a cryptic splicing site, inhibition of of intron inclusion, recovering of reading frame, inhibition of splicing silencer sequence, activation of spicing enhancer sequence or any combination thereof..
 - 4. Composition according to any of claims 1, 3 or treatment according to any of claims 2, 3 wherein the antisense oligomeric compound targets a nucleic acid sequence of the GAA gene selected from the group consiting of SEQ ID NO: 1, 37-40, 1584-1589 or targets a single nucleotide polymorphisms of SEQ ID NO: 1, 37-40, 1584-1589.

157

5. Composition according to any of claims 1, 3-4 or treatment according to any of claims 2-4 wherein said enzyme or said nucleic acid encoding for said enzyme and the antisense oligomeric compound is administered simultaneously or separately.

5

10

15

20

- 6. Composition according to any of claims 1, 3-5 or treatment according to any of claims 2-5 wherein said enzyme or said nucleic acid encoding for said enzyme and said antisense oligomeric compound are present in one treatment composition or in separate treatment compositions.
- 7. Composition according to claim any of 1 or 3-6 or treatment according to any of claim 2 -6 wherein the administration route is selected from the group consisting of oral, parenteral, intravenous, intraarterial, subcutaneous, intraperitoneal, ophthalmic, intramuscular, buccal, rectal, vaginal, intraorbital, intracerebral, intradermal, intracranial, intraspinal, intraventricular, intrathecal, intracisternal, intracapsular, intrapulmonary, intranasal, transmucosal, transdermal, or via inhalation, or combinations thereof, Optionally intravenous.
- 8. Composition according to claim any of 1 or 3-7 or treatment according to any of claim 2 -7 wherein the administration route of said enzyme or said nucleic acid encoding for said enzyme and the administration route of said antisense oligomeric compound are the same or different.
- 9. Composition according to claim any of 1 or 3-8 or treatment according to any of claim 2 -8 wherein said enzyme or said nucleic acid

WO 2017/099579

158

PCT/NL2015/050849

encoding for said enzyme is administered once every 1 week or once every 2 weeks, or once every 3 weeks.

- 10. Composition according to claim any of 1 or 3-9 or treatment according to any of claim 2 -9 wherein said antisense oligomeric compound is administered once every week, once every 2 week or once every 4 weeks, or once every 6 weeks.
- 11. Composition according to claim any of 1 or 3-10 or treatment

 10 according to any of claim 2 -10 wherein said enzyme or said nucleic acid

 encoding for said enzyme is administered in a dose of about 1-100 mg/kg,

 optionally 2-90 mg/kg, 3-80 mg/kg, 5-75 mg/kg, 7-70 mg/kg, 10-60 mg/kg, 12
 55 mg/kg, 15-50 mg/kg, 17-45 mg/kg, 20-40 mg/kg, 22-35 mg/kg, 25-30

 mg/kg.

15

20

5

Composition according to claim any of 1 or 3-11 or treatment according to any of claim 2 -11 wherein said antisense oligomeric compound is administered in dose of about 0.05 to 1000 mg/kg, optionally about 0.1 to 900 mg/kg, 1-800 mg/kg, 2-750 mg/kg, 3-700 mg/kg, 4-600 mg/kg, 5-500 mg/kg, 7 to 450 mg/kg, 10 to 400 mg/kg, 12 to 350 mg/kg, 15 to 300 mg/kg, 17 to 250 mg/kg, 20 to 220 mg/kg, 22 to 200 mg/kg, 25 to 180 mg/kg, 30 to 150 mg/kg, 35 to 125 mg/kg, 40 to 100 mg/kg, 45 to 75 mg/kg, 50-70 mg/kg.

25

13. Composition according to claim any of 1 or 3-12 or treatment according to any of claim 2 -12 wherein the said enzyme or said nucleic acid encoding for said enzyme or said antisense oligomeric compound is administered in combination with a chaperone such as a Active Site-Specific Chaperone (ASSC).

159

- 14. Composition according to claim any of 1 or 3-13 or treatment according to any of claim 2 -13 wherein the administration is in combination with genistein
- 5 15. Composition according to claim any of 1 or 3-14 or treatment according to any of claim 2 -14 wherein the administration is in combination with cell penetrating peptides.
- 16. Composition according to claim any of 1 or 3-15 or treatment according to any of claim 2 -15 wherein said enzyme is an acid alphaglucosidase (GAA) enzyme, or any modification, variant, analogue, fragment, portion, or functional derivative, thereof.
 - 17. Composition according to claim any of 1 or 3-16 or treatment according to any of claim 2 -16 wherein said enzyme is slected from the group consisting of a recombinant human GAA, Myozyme, Lumizyme, neoGAA, Gilt GAA (BMN-701), or oxyrane.

15

- Composition according to claim any of 1 or 3-17 or treatment according to any of claim 2 -17 wherein the composition comprises more than one antisense oligomeric compound.
 - 19. Composition according to claim any of 1 or 3-18 or treatment according to any of claim 2 -18 wherein the antisense oligomeric compound is selected from the group comprising SEQ ID NO: 2-33, 541-1583, 1590-1594, and sequences having at least 80% identity thereof.
- 20. Composition according to claim any of 1 or 3-19 or treatment according to any of claim 2 -19 wherein the antisense oligomeric compound is complementary to a sequence selected from the group comprising SEQ ID

160

NO: 1, 37-40, 1584-1589, and sequences having at least 80% identity thereof.

21. Composition according to claim any of 1 or 3-20 or treatment according to any of claim 2 -20 wherein wherein at least one of the nucleotides of the is antisense oligomeric compound is modified Optionally the oligomeric compound is uniformly modified.

5

15

20

- 22. Composition according to claim any of 1 or 3-21 or treatment
 10 according to any of claim 2 -21 wherein the sugar of one or more nucleotides
 of the is antisense oligomeric compound is modified, Optionally the sugar
 modification is 2'-O-methyl or 2'-O-methoxyethyl.
 - Composition according to claim any of 1 or 3-22 or treatment according to any of claim 2 -22 wherein the base of one or more nucleotides of the antisense oligomeric compound is modified.
 - 24. Composition according to claim any of 1 or 3-23 or treatment according to any of claim 2 -23 wherein the backbone of the antisense oligomeric compound is modified, Optionally is a morpholino phosphorothioate, or a morpholino phosphorodiamidate, or or tricyclo-DNA.
 - 25. Composition according to claim any of 1 or 3-24 or treatment according to any of claim 2 -24 wherein the antisense oligomeric compound is SEQ ID NO: 12 or SEQ ID NO: 33.
 - 26. Composition according to claim any of 1 or 3-25 or treatment according to any of claim 2 -25 wherein the antisense oligomeric compound and/or the enzyme or nucleic acid coding for said enzyme is carried in a

WO 2017/099579

10

15

25

30

PCT/NL2015/050849

carrier selected from the group of exosomes, nanoparticles, micelles, liposomes, or microparticles.

- 27. A pharmaceutical composition comprising at least one antisense oligomeric compound as defined in any of claim 1-26 and a enzyme as defined in any of claims 1-26.
 - 28. A pharmaceutical composition according to claim 27 wherein said composition further comprises a pharmaceutical acceptable excipient and/or a cell delivery agent.
 - 29. A pharmaceutical composition according to claim 27 or 28 wherein the composition further comprises a chaperone such as a Active Site-Specific Chaperone (ASSC).
 - 30. A pharmaceutical composition according to any of claim 27 to 29 wherein the composition further comprises genistein
- 31. A pharmaceutical composition according to any of claim 27 to 30 wherein the composition further comprises at least one cell penetrating peptide.
 - 32. A pharmaceutical composition according to any of claim 27 to 31 wherein the wherein said enzyme is an acid alpha-glucosidase (GAA) enzyme, or any modification, variant, analogue, fragment, portion, or functional derivative, thereof.
 - 33. A pharmaceutical composition according to any of claim 27 to 32 wherein the composition comprises enzyme in an amount of about 5-25 mg/mL enzyme.

34. A pharmaceutical composition according to any of claim 27 to 33 wherein the composition comprises antisense oligomeric compound in an amount of -25 mg/mL.

5

- 35. A pharmaceutical composition according to any of claim 27 to 34 wherein the composition comprises a carrier selected from the group consisting of exosomes, nanoparticles, micelles, liposomes, microparticles.
- 10 36. Antisense oligomeric compound comprising sequences selected from the group comprising SEQ ID NO: 1590-1594 and sequences having at least 80% identity thereof.
- 37. Antisense oligomeric compound as claimed in claim 36 for use in the treatment Pompe disease.
 - 38. Antisense oligomeric compound as claimed in any of the claims 36-37 wherein at least one of the nucleotides is modified Optionally the oligomeric compound is uniformly modified.

- 39. Antisense oligomeric compound as claimed in any of the claims 36-38 wherein the sugar of one or more nucleotides is modified, Optionally the sugar modification is 2'-O-methyl or 2'-O-methoxyethyl.
- 25 40. Antisense oligomeric compound as claimed in any of the claims 36-39 wherein the base of one or more nucleotides is modified.
 - 41. Antisense oligomeric compound as claimed in any of the claims 36-40 wherein the backbone of the oligomeric compound is modified,

Optionally is morpholino phosphorothioates, or morpholino phosphorodiamidate, or tricyclo DNA.

- 42. A method of modulating splicing of GAA pre-mRNA in a cell comprising:
 - contacting the cell with an antisense oligomeric compound as claimed in any claim 36-41.
- 43. Method for treating Pompe disease in a patient comprising administering said patient with an effective amount of an antisense oligomeric compound according to any of claim 36-41.
 - 44. Method to restore the function of GAA in a cell wherein said method comprises the administration of step and the antisense oligmeric compound according to any of claim 36-41.

15

20

- 45. Method of correcting abnormal gene expression in a cell,
 Optionally a muscular cell, of a subject, the method comprising
 administering to the subject an antisense oligomeric compound according to
 any of claim 36-41.
 - 46. Method according to any of claim 42-45 wherein the cell or the patient comprises at least one mutation selected from the group c.-32-13T>G, c.-32-3C>G, c.547-6, c.1071, c.1254, and c.1552-30, Optionally the cell or patient comprises mutation c.-32-3C>G or c.-32-13T>G.
 - 47. Method according to any of claim 42-46 wherein exon inclusion is accomplished, Optionally inclusion of exon 2.

- 48. A pharmaceutical composition comprising at least one antisense oligomeric compound according to any of claim 36-41
- 49. A pharmaceutical composition according to claim 48 wherein said composition further comprises a pharmaceutical acceptable excipient and/or a cell delivery agent.

INTERNATIONAL SEARCH REPORT

International application No PCT/NL2015/050849

A. CLASSIFICATION OF SUBJECT MATTER INV. C12N15/11 C12N15/113

A61K48/00

A61K38/47

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, BIOSIS, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
Υ	WO 2013/134530 A1 (AMICUS THERAPEUTICS, INC. [US]) 12 September 2013 (2013-09-12) the whole document	1-35		
Υ	WO 2015/035231 A1 (SAREPTA THERAPEUTICS, INC. [US]; MURDOCH UNIVERSITY [AU]) 12 March 2015 (2015-03-12) page 21; sequence 9 the whole document	1-35		
Α	WO 2015/036451 A1 (SYNTHENA AG [CH]) 19 March 2015 (2015-03-19) the whole document	1-49		
A	WO 2014/130723 A1 (VALERION THERAPEUTICS, LLC [US]) 28 August 2014 (2014-08-28) the whole document/	15		

X Further documents are listed in the continuation of Box C.	X See patent family annex.		
* Special categories of cited documents : "A" document defining the general state of the art which is not considered	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art		
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than			
the priority date claimed Date of the actual completion of the international search	"&" document member of the same patent family Date of mailing of the international search report		
23 August 2016	02/09/2016		
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Macchia, Giovanni		

INTERNATIONAL SEARCH REPORT

International application No
PCT/NL2015/050849

O/O-mtimus	Mars DOCUMENTO CONCIDEDED TO DE DELEVANT	PC1/NL2015/050849			
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.					
A	WO 2013/182906 A1 (3G THERAPEUTICS, INC. [US]) 12 December 2013 (2013-12-12) the whole document	14			
Α	ADAMS E.M. ET AL.: "Glycogenosis type II: a juvenile-specific mutation with an unusual splicing pattern and a shared mutation in African Americans", HUMAN MUTATION, vol. 10, no. 2, 1997, pages 128-134, XP002760979, ISSN: 1059-7794 the whole document	4			
A	STEFANIA ZAMPIERI ET AL.: "Splicing mutations in glycogen-storage disease type II: evaluation of the full spectrum of mutations and their relation to patients' phenotypes", EUROPEAN JOURNAL OF HUMAN GENETICS, vol. 19, no. 4, 1 April 2011 (2011-04-01), pages 422-431, XP55098232, ISSN: 1018-4813, DOI: 10.1038/ejhg.2010.188 the whole document	1-49			

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/NL2015/050849

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 2013134530 A1	12-09-2013	CA 2866683 A1 EP 2823043 A1 JP 2015509542 A KR 20140135222 A US 2014193390 A1 US 2015044194 A1 WO 2013134530 A1	12-09-2013 14-01-2015 30-03-2015 25-11-2014 10-07-2014 12-02-2015 12-09-2013
WO 2015035231 A1	12-03-2015	AU 2014317961 A1 CA 2922838 A1 CN 105793422 A EP 3041935 A1 KR 20160082972 A TW 201605881 A US 2015197534 A1 US 2016208264 A1 WO 2015035231 A1	17-03-2016 12-03-2015 20-07-2016 13-07-2016 11-07-2016 16-02-2016 16-07-2015 21-07-2016 12-03-2015
WO 2015036451 A1	19-03-2015	EP 3044315 A1 US 2016215291 A1 WO 2015036451 A1	20-07-2016 28-07-2016 19-03-2015
WO 2014130723 A1	28-08-2014	AU 2014218854 A1 CA 2901978 A1 CN 105189542 A EP 2981551 A1 JP 2016514096 A US 2016108133 A1 WO 2014130723 A1	20-08-2015 28-08-2014 23-12-2015 10-02-2016 19-05-2016 21-04-2016 28-08-2014
WO 2013182906 A1	12-12-2013	US 2015148551 A1 WO 2013182906 A1	28-05-2015 12-12-2013