METHOD OF CONDITIONING FABRIC ARTICLES

Filed June 12, 1933

Fig. 4
METHOD OF CONDITIONING FABRIC ARTICLES

Forrest J. Couch, Rochester, N. Y., assignor to
The American Laundry Machinery Company,
Cincinnati, Ohio, a corporation of Ohio

Application June 12, 1933, Serial No. 675,417

4 Claims. (Cl. 68—11)

This invention relates to a method for conditioning laundered clothes and the like preparatory to their introduction into an ironing machine. In the regular laundering process, the excess moisture is removed from the laundry goods in an extractor which leaves the goods in a folded and wrinkled state and with the moisture therein very unevenly distributed. If these goods are merely shaken out, the creases or wrinkles will contain insufficient moisture for ironing, so that the finished article will contain marks, commonly called “crow’s feet”.

One of the purposes of this invention is to shake out the folds in the goods by passing them through a tumbling drum while at the same time equalizing the moisture content throughout the goods, particularly, to increase the moisture content where the goods were previously creased or wrinkled.

Another object of this invention is to raise the temperature of the goods passing through the tumbling drum, if desired.

Further objects include the increasing of the moisture content of the goods while passing through the conditioning apparatus, if necessary, and the addition of freshening gases to the atmosphere surrounding the goods in the tumbling drum, if desired.

Other objects and advantages will appear from the following description considered in connection with the drawings, and the essential features of which are summarily described in the claims.

Fig. 1 is a longitudinal sectional view; Fig. 2 is an end view of the inlet end, partly broken away; Fig. 3 is a section taken on the line 3—3 of Fig. 1; while Fig. 4 is a section along the line 4—4 of Fig. 1.

The method is carried out by arranging a closed system for circulating a current of air through the goods while they are being shaken out preparatory to ironing, and recirculating the air continuously while retiding in the air current the moisture given off by the goods. This circulating air current is the medium by which are realized the further objects of adding heat to the goods, or freshening ingredients, when desired.

In general, the apparatus illustrated for practicing my improved method comprises a casing within which a tumbling drum is mounted for rotation. The laundry goods are introduced into one end of the drum and discharged at the other end. A current of air is passed through the drum and a duct is provided for returning the air to the entrance end of the drum for recirculation.

Sprays are provided for adding moisture or freshening ingredients to the contents of the drum, and a heating element is suitably placed to heat the air passing through the drum, if desired. A continuous stream of goods is thus passed through the drum and the wrinkles and folds are shaken out, while the circulating air picks up excess moisture from the saturated portions of the goods and distributes it to the drier portions of the goods, for instance, the wrinkled parts. The clothes are then delivered for ironing with a homogeneous moisture content.

The casing 10 and the drum 11 are supported on a suitable framework, that shown comprising main frame members 12 and 13 comprising semi-circular shaped channels with legs 14 at their lower ends, longitudinally extending bottom channel members 15, and transverse members 16. The drum preferably slopes downwardly toward the discharge end and adjustability is provided by threaded members 17 passing through the bottom channels. The drum is mounted for rotation within the casing, the support illustrated comprising lower rollers 18, rotatably mounted on the transverse frame members and upper rollers 19, which are carried by the main frame members and spring-pressed downwardly to maintain contact between the drum and rollers 18. The drum may be provided on its outer periphery with circular flanged rings or channels 20 in which the rollers 18 and 19 are adapted to travel. For preventing longitudinal movement of the drum, other rollers 21 may be mounted on the main frame members and arranged to contact the flanges of the circular channels 20.

Power means is provided for rotating the drum, the embodiment comprising a motor 24 mounted on the main frame, a pulley 23 driven by the motor shaft, and a plurality of flexible endless belts 24, preferably V-shape in section, which pass about a suitably grooved band 25 on the drum. For taking up slack in the belts the motor may be adjustable mounted, as by pivoting one end of the motor base at 26 and securing the other end of the base on a threaded member 27.

The drum is provided with means for lifting or agitating the goods passing therethrough, that shown comprising longitudinally extending shelves or blades 28 secured to the inner periphery of the drum. These blades may be provided with rounded enlargements 29 at their free ends the better to lift the clothes without tearing them. The blades may be cut away at the outlet end of the drum, as shown at 30 in Fig. 1, to facilitate the discharge of the clothes from the drum.
The inlet end of the drum may be braced by a plurality of spokes 3 which may be arranged extending radially inwardly from the blades and secured together at their inner ends by a ring 32. The clothes or other laundry goods may be continuously fed to the drum at the inlet end, as by a conveyor 33 discharging into a suitable hopper 34, which is mounted on the casing 10 and extends into the drum beyond the ring 32. A flexible curtain 35 is provided for closing the hopper opening against air circulation. For discharging the goods from the conditioning device, I have shown a conveyor 36 whose tail pulley 38 is rotatably mounted in brackets 37 carried by the longitudinal frame members 15. The conveyor enters and leaves the casing through suitable openings 38 and 39, which may be sealed against air passage by curtains 40 and 41. The opening 39 is made sufficiently large to permit clothes to pass outside of the casing on the conveyor. An extension 42 may be provided on the casing wall to prevent goods falling too near the edge of the conveyor.

For the circulation of air I provide a duct 43 leading from one end of the drum to the other. By placing this duct in the space beneath the drum I am able to construct a very compact device. Means is provided for circulating and recirculating air through the drum and duct. The means shown comprises a fan 44, driven by a motor 45, which is preferably arranged in an open-ended tube 54 extending transversely of the duct to protect the motor from the moist air. While the air current may travel in either direction, I prefer to have it pass through the drum from the goods inlet end to the outlet end as shown by arrows in Fig. 1.

The duct is connected with the casing at the discharge end of the drum preferably by means of a substantially circular duct 46 surrounding the outlet end of the drum, and open at its upper rear portion, as indicated at 47. This gives a better distribution of the air currents in the drum and places the suction inlet as far as possible from the clothes discharge opening in the casing. The duct leads from the lower portion of this circular duct 46 to the inlet end of the drum which it enters through a curved opening 53 in the lower part of the casing. The portions of the casing engaging the inlet and outlet ends of the drum are sealed by flexible strips 48, thus forming substantially air-tight compartments at those points. The air circulation thus provided is a closed system so that moisture or other ingredients may be retained until evenly distributed through the clothes.

For the addition of heat to the circulating air current, I have illustrated a steam radiator 49 in the duct 43. Moisture may be added to the circulating air current and to the goods in the tumbling drum by means of the pipe 58 with its regulating valve 51. By the use of a similar pipe or spray 52, gaseous freshening ingredients, such as ozone, may be introduced into the conditioning apparatus.

It is thus apparent that I have devised a conditioner which is inexpensive to construct and maintain, and one which is simple to operate. Where laundry goods are continuously passing from an extractor operated in a uniform manner, little attention need be given to the conditioner. The temperature and moisture content of the clothes discharged from my device may be maintained sufficiently uniform by occasional slight adjustments of the apparatus described.

I claim as my invention:

1. The method of conditioning laundry goods between extracting and ironing, comprising tumbling the goods to shake out the wrinkles therein, and simultaneously circulating and recirculating air through the tumbled clothes, while retaining all of the moisture from the clothes in the circulating air and adding heat to the air.

2. The method of conditioning laundry goods between extracting and ironing, comprising tumbling the goods to shake out the wrinkles therein, simultaneously circulating the same air through the goods, and adding moisture to the circulating air as desired.

3. The method of conditioning fabric articles between extracting and ironing, comprising tumbling the articles to shake out wrinkles, and simultaneously circulating the same air over and through said articles, whereby to retain substantially all of the moisture in said articles left therein by the extractor and to equalize the moisture in the articles and in the portions of each article.

4. The method of conditioning fabric articles between extracting and ironing, comprising tumbling the articles to shake out wrinkles, simultaneously circulating the same air over and through said articles, and modifying the temperature of the air.

FORREST J. COUCH.