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(57) Abstract

Acoustic features (109, 111) are extracted from input speech (107) and are compared (113) against pre-stored models (117). The
result is used to make a judgement of the user’s pronunciation (115).
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METHOD AND SYSTEM FOR AUTOMATIC TEXT-INDEPENDENT
GRADING OF PRONUNCIATION FOR LANGUAGE INSTRUCTION

STATEMENT OF RELATED APPLICATIONS

This patent application claims priority from U.S.
Provisional Application No. 60/027,638, filed 10/2/96. The
content of the provisional application is incorporated herein

by reference.

COPYRIGHT NOTICE
A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright

rights whatsoever.
BACKGROUND OF THE INVENTION

The present invention relates to automatic
evaluation of speech pronunciation quality. One application
is in computer-aided language instruction and assessment.

Techniques related to embodiments of the present
invention are discussed in co-assigned U.S. Application No.
08/375,908, entitled METHOD AND APPARATUS FOR SPEECH
RECOGNITION ADAPTED TO AN INDIVIDUAL SPEAKER; U.S. Application
No. 08/276,742, entitled METHOD AND APPARATUS FOR SPEECH
RECOGNITION USING OPTIMIZED PARTIAL MIXTURE TYING; U.S. Patent
No. 5,634,086, entitled METHOD AND APPARATUS FOR VOICE-
INTERACTIVE LANGUAGE INSTRUCTION; and U.S. Patent No.
5,581,655, entitled METHOD FOR RECOGNIZING SPEECH USING
LINGUISTICALLY-MOTIVATED HIDDEN MARKOV MODELS; which

applications and patents are incorporated herein by reference.
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Relevant speech recognition techniques using Hidden
Markov Models are also described in V. Digalakis and H.
Murveit, "GENONES: Generalized Mixture-Tying in Continuous
Hidden-Markov-Model -Based Speech Recognizers, " IEEE

Transactions on Speech and Audio Processing, Vol. 4, July,

1996, which is incorporated herein by reference.

Computer-aided language instruction systems exist
that exercise the listening and reading comprehension skills
of language students. While such systems have utility, it
would be desirable to add capabilities to computer-based
language instruction Systems that allow students: language
production skills also to be exercised. In particular, it
would be desirable for a computer-based language instruction
System to be able to evaluate the quality of the students'
pronunciation.

A prior-art approach to automatic pronunciation
evaluation is discussed in previous work owned by the assignee
of the present invention. See Bernstein et al., "Automatic
Evaluation and Training in English Pronunciation", Internat.
Conf. on Spoken Language Processing, 1990, Kobe, Japan. This
prior-art approach is limited to evaluating speech utterances
from students who are reading a pre-selected set of scripts
for which training data had been collected from native
speakers. This prior-art approach is referred to as text-
dependent evaluation because it relies on statistics related
to specific words, phrases, or sentences.

The above-referenced prior-art approach is severely
limited in usefulness because it does not permit evaluation of
utterances which were not specifically included in the
training data used to train the evaluation system, so that
retraining of the evaluation system is required whenever a new
script needs to be added for which pronunciation evaluation is
desired.

What is needed are methods and systems for automatic
assessment of pronunciation gquality capable of grading even
arbitrary utterances--i.e., utterances made up of word

sequences for which there may be no training data or
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incomplete training data. This type of needed pronunciation
grading is termed text-independent grading.

The prior-art approach is further limited in that it
can generate only certain types of evaluation scores, such as
a spectral likelihood score. While the prior-art approach
achieves a rudimentary level of performance using its
evaluation scores, the level of performance is rather limited,
as compared to that achieved by human listeners. Therefore,
what is also needed are methods and systems for automatic
assessment of pronunciation quality that include more powerful

evaluation scores capable of producing improved performance.

GLOSSARY

In this art, the same terms are often used in
different contexts with very different meanings. For purposes
of clarity, in this specification, the following definitions
will apply unless the context demands otherwise:

Grade: An assessment of the pronunciation quality
of a speaker or a speech utterance on a grade scale such as
used by human expert listeners. A grade may be human- or
machine-generated.

Score: A value generated by a machine according to
a scoring function or algorithm as applied to a speech
utterance.

A Frame of Acoustic Features: A characterization of

speech sounds within a short time-frame produced by a feature
extractor for subsequent processing and analysis. For
example, a feature extractor that computes acoustic features
every 10 ms within a shifting 20 ms window is said to produce
a "frame of acoustic features" every 10 ms. In general, a
frame of acoustic features is a vector.

Acoustic Segments: Time-segments of speech whose
boundaries (or durations) are determined by a speech segmenter
based on acoustic properties of the speech. In an embodiment
of the invention, each acoustic segment produced by the speech

segmenter is a "phone."
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Phone: A basic speech sound unit within a given
language. 1In general, all speech utterances for a given
language may be represented by phones from a set of distinct
phone types for the language, the number of distinct phone
types being on the order of 40.

Acoustic Units: Time-segments of speech whose
durations are used to generate a score that is indicative of
pronunciation gquality. 1In an embodiment of the invention,
acoustic units are simply the acoustic segments produced by
the speech segmenter. 1In another embodiment, acoustic units
are "syllables" whose durations are determined based on the
boundaries (or durations) of the acoustic segments produced by
the speech segmenter.

SUMMARY OF THE INVENTION

According to the invention, methods and systems are
provided for assessing pronunciation quality of an arbitrary
speech utterance based on one or more metrics on the
utterance, including acoustic unit duration and a posterior-
probability-based evaluation.

A specific embodiment of the invention is a method
for assessing pronunciation of a student speech sample using a
computerized acoustic segmentation system, wherein the method
includes: accepting the student speech sample which includes a
sequence of words spoken by a student speaker; operating the
computerized acoustic segmentation system to define acoustic
units within the student speech sample based on speech
acoustic models within the segmentation system, the speech
acoustic models being established using training speech data
from at least one speaker, the training speech data not
necessarily including the sequence of spoken words; measuring
duration of the sample acoustic units; and comparing the
sample acoustic unit durations to a model of exemplary
acoustic unit duration to compute a duration score indicative
of similarity between the sample acoustic unit durations and

exemplary acoustic unit durations.
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According to a further specific embodiment, the
duration score is further mapped to a grade, and the grade is
presented to the student speaker.

According to a further specific embodiment, the
spoken sequence of words is unknown, and a computerized speech
recognition system is operated to determine the spoken
sequence of words.

A further specific embodiment of the invention is a
method for grading the pronunciation of a student speech
sample, the method including: accepting the student speech
sample which includes a sequence of words spoken by a student
speaker; operating a set of trained speech models to compute
at least one posterior probability from the speech sample,
each of the posterior probabilities being a probability that a
particular portion of the student speech sample corresponds to
a particular known model given the particular portion of the
speech sample; and computing an evaluation score, herein
referred to as the posterior-based evaluation score, for the
student sample of pronunciation gquality from the posterior
probabilities.

According to a further specific embodiment, the
posterior-based score is further mapped to a grade as would be
assigned by human grader, and the grade is presented to the
student speaker.

A still further specific embodiment of the invention
is a system for assessing pronunciation of a student speech
sample, the student speech sample including a sequence of
words spoken by a student speaker, the system including:
trained speech acoustic models of exemplary speech; and an
acoustic scorer configured to compute at least one posterior
probability from the speech sample using the trained speech
models, the acoustic scorer also configured to compute an
evaluation score of pronunciation quality for the student
sample from the posterior probabilities, each of the posterior
probabilities being a probability that a particular portion of
the student speech sample corresponds to a particular known

model given the particular portion of the speech sample.
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A still further specific embodiment of the invention
is a system for pronunciation training in a client/server
environment wherein there exists a client process for
presenting prompts to a student and for accepting student
speech elicited by the prompts, the system including: a server
process for sending control information to the client process
to specify a prompt to be presented to the student and for
receiving a speech sample derived from the student speech
elicited by the presented prompt; and a pronunciation
evaluator invocable by the server process for analyzing the
student speech sample.

A further understanding of the nature and advantages
of the present invention may be realized by reference to the

remaining portions of the specification and the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system for evaluating
pronunciation quality.

FIG. 2 is a block diagram of a pronunciation scorer
of FIG. 1 that produces a pronunciation score based on
duration of acoustic units according to an embodiment of the
present invention.

FIG. 3 is a block diagram showing a speech segmenter
of FIG. 2 that is a hidden Markov model (HMM) speech
recognizer according to an embodiment of the present
invention.

FIG. 4 is a diagram illustrating a portion of a
maximum likelihood path for sample input speech.

FIG. 5 is a block diagram of a system for computing
an acoustic score based directly on the acoustic features 111
themselves according to embodiments of the present invention.

FIG. 6 is a block diagram of a system that combines
different pronunciation scores according to an embodiment of
the invention.

FIG. 7 is a block diagram of a system for creating

FIG. 6's mapping function between one or more types of machine
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scores into a pronunciation grade as would be produced by a
human grader.
FIG. 8 is a block diagram of a distributed language

instruction system that evaluates pronunciation quality.

DESCRIPTION OF SPECIFIC EMBODIMENTS
I. AUTOMATIC PRONUNCIATION EVALUATION

FIG. 1 is a block diagram of a system 101 for
evaluating pronunciation quality according to embodiments of
the present invention. 1In FIG. 1, a speech input device 103
converts a sequence of spoken words from a speaker 105 into
machine-readable input speech 107. A feature extractor 109
divides the input speech 107 into time-frames and computes,
for each time-frame, acoustic features that capture
distinguishing characteristics of speech sounds within the
time-frame. In this manner, the feature extractor 109
produces a sequence of acoustic feature frames 111. The input
speech 107 and the sequence of acoustic feature frames 111 are
both representations of the speaker 105's speech and may
therefore each be referred to as a "student speech sample."

A pronunciation scorer 113 computes from the
acoustic features 111 at least one pronunciation score 115
that is indicative of pronunciation quality of the input
speech 107. In computing the pronunciation scores 115, the
pronunciation scorer 113 relies upon speech models 117 which
characterize various aspects of desirable, i.e. exemplary,
speech pronunciation. The speech models 117 are established
using training speech from exemplary speakers.

In some embodiments of the present invention, an
optional score-to-grade mapper 119 accepts the pronunciation
scores 115 and maps them into a pronunciation grade 121 as
would be given by an expert human grader.

During operation of the pronunciation evaluation
system 101, the various data, including the input speech 107,

the acoustic features 111, the pronunciation score({s) 115, and
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the pronunciation grade 121 may be stored in storage devices
for later use.

In embodiments of the present invention, the
acoustic features 111 include features used in the speech
recognition task, which are known in the art and are discussed
for example in the references cited and referenced in the
Background section. For example, in an embodiment of the
present invention, the acoustic features 111 include 12th
order mel-cepstra features computed every 10 ms within a
shifting 20 ms window, and the features' approximate
derivatives.

In an embodiment of the present invention, the
speech input device 103 is a telephone, and the speech input
107 is conveyed across a telephone network to the feature
extractor 109. This embodiment enables students to have their
spoken pronunciation evaluated by the present invention so
long as they have access to a telephone.

In an embodiment of the present invention, the
speech input device 103 is a digitizing microphone system,
such as a microphone connected to a remote, "client" computiﬁg
system that contains hardware and software for audio
digitization. The input speech 107 is conveyed in digitized
form (e.g., as streaming audio or as a compressed audio file)
across a digital network, for example, a local area network
and/or the Internet, to the feature extractor 109 which exists
on a local, "server" computing system. This embodiment
enables students to have their spoken pronunciation evaluated
by the present invention so long as they have access to a
digitizing microphone system connected to the digital network.

In an embodiment of the present invention, the
speech input device 103 and the feature extractor 109 reside
on at least one remote computing system and the acoustic
features 111 are conveyed across a network, for example, the
Internet, to the pronunciation scorer 113 which exists on a
local computing system. This embodiment reduces the amount of
data which need be conveyed across the network because
acoustic features 111 typically are a more compact

representation of speech than are the input speech 107 itself
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in this embodiment. This embodiment also reduces the amount

of computation required of the local computing system.

IT. SCORING PRONUNCIATION USING ACOUSTIC UNIT DURATIONS

FIG. 2 is a block diagram of a pronunciation scorer
113 of FIG. 1 according to embodiments of the present
invention that produce a pronunciation score 115 based on
duration of acoustic units. 1In FIG. 2, a speech segmenter 203
accepts the sequence of acoustic features 111 and produces
from them a time-segmentation 205 specifying acoustic
segments. The acoustic segmentation 205 is a representation
of acoustic segments from which their durations may be
determined. In an embodiment, the acoustic segmentation 205
comprises a time-boundary of each acoustic segment plus each
acoustic segment's duration. (Note that in general segment
boundaries define durations, and a sequence of durations
defines segment boundaries given a single boundary within the
sequence. Therefore, a system component that is described as
using boundaries can in general be alternatively but
equivalent described as using durations, or durations plus a
boundary.)

An acoustic unit duration extractor 207 accepts the
acoustic segmentation 205. From the acoustic segmentation
205, the acoustic unit duration extractor 207 recovers or
computes durations 209 of the acoustic units.

An acoustic unit duration scorer 211 accepts the
acoustic unit durations 209 and compares them to a model 213
of exemplary acoustic unit duration which has been established
using training speech from exemplary speakers. Based on this
comparison, the acoustic unit duration scorer 211 computes an
acoustic unit duration score 115 as the pronunciation score
115 of FIG. 1. The acoustic unit duration model 213 forms a
part of the speech models 117 of FIG. 1. In embodiments of
the invention, the acoustic unit duration model 213 may be a
parametric model or a non-parametric model. In another

embodiment of the invention, the acoustic unit duration model
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213 simply contains example acoustic unit durations from
exemplary speech.

It has been found that acoustic unit duration scores
are particularly important indicators of pronunciation quality
when the student speaker 105's speech is received through a
channel that adds a large amount of noise or distortion, such
as speech transmitted through a telephone connection.

In an embodiment of the present invention, the
speech input device 103 (of FIG. 1), the feature extractor 109
(of FIG. 1), and the speech segmenter 203 all reside on one or
more remote computing system(s) and only the acoustic
segmentation 205 or only the acoustic unit durations 209 are
conveyed across a network, for example, the Internet, to the
acoustic unit duration scorer 211, which resides on a local
computing machine. This embodiment drastically reduces the
amount of data which need to be conveyed across the network
and the amount of computation required of the local comput ing
system, at the expense of requiring the remote comput ing
system to perform more computations.

In embodiments of the present invention, the speech
segmenter 203 segments the acoustic features 111 into acoustic
segments which are phones. The speech segmenter 203 also
identifies the type of each phone. The acoustic segmentation
205 includes segment information in the form of, for example,
phone boundaries expressed as indices into the sequence of

acoustic features 111 and phone type labels for each phone.
IT.A. PHONE DURATION

Certain embodiments of the present invention compute
duration scores 115 based on phone duration. The speech
segmenter 203 segments the acoustic features 111 into acoustic
segments which are phones. The acoustic unit duration
extractor 207 defines acoustic units as, simply, the phones
themselves. Therefore, the acoustic unit duration extractor
207 in these embodiments very simply extract the phone
durations as the acoustic unit durations 209. In particular,

in embodiments whose phone segmentation 205 expressly include
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phone durations, the acoustic unit duration extractor 207
simply uses the existing phone durations as the acoustic unit
durations 209. In embodiments whose phone segmentation 205
represents phone segmentation with only phone boundaries, the
acoustic unit duration extractor 207 is an arithmetic
subtractor that computes acoustic unit durations from the
phone boundaries.

In certain phone-duration-scoring embodiments of the
invention, the acoustic unit duration model 213 includes a
separate probability distribution P,(d|{q) of phone duration d
in exemplary speech given the phone's type g. For example, a
system configured to use, e.g., 45 types of phones that
describe a given language would have 45 probability
distributions, one for each phone type.

In a specific embodiment, each phone type's duration
probability distribution is represented as a parametric
distribution, such as a Gaussian distribution. The parameters
of these distributions are estimated according to standard
statistical estimation methods using the durations of each
type of phone as found in training speech from exemplary
speakers.

In other, preferred embodiments, each phone type's
duration probability distribution is represented as a
(nonparametric) probability mass function. These probability
distributions are established by tabulating durations of each
type of phone as found in training speech from exemplary
speakers. Each probability mass function is smoothed, and a
probability floor is introduced, in order to maintain
robustness of the model, given that only finite quantities of
training speech are available. Phone durations of the
training speech are determined during training in the same
manner as are phone durations 209 of input speech 107
determined during testing. Namely, the feature extractor 109,
speech segmenter 203, and acoustic unit duration extractor 207
are used.

The acoustic unit duration scorer 211 in certain
phone-duration-scoring embodiments computes a log-probability
p; of the duration d; of each phone i:
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p; = logP,(d,lq,;) (1)

wherein g; is the phone type of phone 1i.

The acoustic unit duration scorer 211 computes an
acoustic unit duration score 115 p for an entire utterance as
the average of the log-probability p; of each phone i's

duration:

- 1
P ==Y P (2)

wherein the sum runs over a number N of phones in the
utterance.

In a preferred embodiment, the acoustic unit
duration model 213 includes probability distributions Py (d' I q)
of phone durations d' that are speaker-normalized phone
durations. Accordingly, the acoustic unit duration scorer 211
computes the acoustic unit duration score 115 for an entire
utterance as the average of the log-probability of each phone
1's speaker-normalized duration at,.

A speaker-normalized phone duration is the phone
duration multiplied by the rate of speech for the speaker in
question. Rate of speech (ROS) is the number of phones
uttered by a speaker per second of speaking. The rate of
speech of each exemplary speaker is calculated from the
training speech. The rate of speech of the student speaker
105 is calculated from available data for the speaker,
including the acoustic segmentation 205 itself.

The following equations summarize use of speaker-

normalized phone durations in the preferred embodiment :

di = d; ROS (3)
p; = logP,(d}|q;) (4)
1 N
= = . (2)
p == 12‘: P,



WO 98/14934 PCT/US97/17888
13

II.B. SYLLABIC DURATION

Certain embodiments of the present invention compute
duration scores 115 based on the duration of "syllables". One
explanation of why syllabic duration is a good indicator of
pronunciation quality, even after normalization for rate of
speech (as will be described), is that language learners tend
to impose the rhythm of their native language on the language
they are learning. For example, English tends to be stress-
timed (stressed syllables tend to be lengthened and others
shortened), while Spanish and French tend to be syllable-
timed.

In these syllabic-duration-scoring embodiments, the
acoustic unit duration extractor 207 determines durations of
acoustic units that are "syllables" based on the durations of
phones as specified by the speech segmenter 203. In
particular, the acoustic unit duration extractor 207
determines syllabic durations as the duration between the
centers of vowel phones within speech.

In a specific syllabic-duration-scoring embodiment,
the acoustic unit duration model 213 includes a single
probability distribution Py(sd) of the syllabic duration sd of
any syllable. This probability distribution is established by
tabulating durations of all syllables found in training speech
from exemplary speakers. Syllable durations of the training
speech are determined during training in the same manner as
are syllable durations 209 of input speech 107 determined
during testing. Namely, the feature extractor 109, speech
segmenter 203, and acoustic unit duration extractor 207 are
used. The duration probability distribution is represented as
a probability mass function. The probability mass function is
smoothed, and a probability floor is introduced, in order to
maintain robustness of the model, given that only finite
quantities of training speech are available.

In a preferred embodiment, the syllabic duration sd;
for each syllable j is normalized during testing and training
by multiplication with the speaker's rate of speech (ROS), as

defined above, to obtain a speaker-normalized syllabic
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duration sd';. The following equations summarize use of

speaker-normalized syllabic durations in the preferred

syllabic-duration-scoring embodiment :

sdj = sd; ROS (6)
p; = logP,, (sd;) (7)
M
R
p~;!;pj . (8)

IT.C. SYLLABIC DURATION USING SPECIFIC SYLLABLES

In other embodiments of the present invention,
syllabic duration of specific syllables are used for scoring
in a manner analogous to that described above for all
syllables. In these embodiments, the acoustic unit duration
extractor 207 recovers syllabic durations from the acoustic
segmentation 205. The duration scorer compares these
durations to a model 213 of syllabic duration in exemplary
speech to compute a syllabic duration score 115.

The syllabic duration model 213 includes a
probability distribution of duration for a subset of the
syllables in the language. These syllables are the ones for
which sufficient training speech data existed from which
duration distributions could be estimated. The duration
scorer compares syllables from the student speech sample with
the syllable duration model 213 to derive syllabic duration
pronunciation scores, based on those syllables of the student
speech sample whose durations are modelled within the syllabic
duration model 213.

IT.D. WORD DURATION

In other embodiments of the present invention, word
duration is used for scoring in a manner analogous to that
described above for syllables. 1In these embodiments, the

acoustic unit duration extractor 207 recovers word durations
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from the acoustic segmentation 205. The duration scorer
compares these durations to a model 213 of word duration in
exemplary speech to compute a word duration score 115.

The word duration model 213 includes a probability
distribution of duration for a subset of the words in the
language. These words are the ones for which sufficient
training speech data existed from which duration distributions
could be estimated. The duration scorer compares words from
the student speech sample with the word duration model 213 to
derive word duration pronunciation scores, based on those
words of the student speech sample whose durations are

modelled within the word duration model 213.

III. AN HMM SPEECH RECOGNIZER FOR ACOUSTIC SEGMENTATION

FIG. 3 is a block diagram showing a speech segmenter
203 of FIG. 2 that is an HMM speech recognizer 203, according
to a specific embodiment of the present invention. HMM speech
recognizers are known in the art and are discussed for example
in the references cited and incorporated in the Background
section.

A Markov model (MM) is a network of states connected
by directed transition branches. The HMM speech recognizer
203 uses a Markov model to model the production of speech
sounds. The HMM recognizer 203 represents each type of phone
in a language by a phone model made up of a handful of
connected states. (The specific embodiment uses 3 states per
phone model for most phone types.) The HMM recognizer 203
also provides additional, context-dependent phone models,
including "tri-phone" models, that represent each phone type
when it is preceded and/or followed by particular other phone
types. The HMM recognizer 203 also includes a pause phone
which models pauses that occur during speech between words.
The phone models, including the context-dependent and pause
phone models, form acoustic models 305 within the HMM
recognizer 203,

Each state in a speech HMM has an associated

probability distribution of the acoustic features which are
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produced while in the state. (These output distributions are
alternatively but equivalently described in the literature as
being associated with the transition branches.) The output
distributions may be Gaussian distributions, or weighted
mixtures of CGaussian distributions, etc., as are described in
the literature. The HMM recognizer 203 of the specific
embodiment uses output distributions which are weighted tied
mixtures of Gaussian distributions. Weighted tied mixtures
are known in the art of speech recognition. A standard HMM
speech recognizer which can be configured to implement the HMM
recognizer 203 of the specific embodiment is the DECIPHER
system from SRI International of Menlo Park, California.

Each transition branch in a Markov model has a
transition probability indicating the probability of
transiting from the branch's source state to its destination
state. All transition probabilities out of any given state,
including any self transition probabilities, sum to one.

The output and transition probability distributions
for all states in a speech HMM are established from training
speech data using standard HMM training algorithms and
techniques, including the forward-backward (Baum-Welch)
algorithm. A standard HMM-based speech recognizer on which
such training can be performed is the DECIPHER system from SRI
International of Menlo Park, California.

According to the present invention, the training
speech are not required to include the sequence of spoken
words found in the input speech 107. These training speech
are not even required to include individual words from the
sequence of spoken words found in the input speech 107.

A lexicon 307 is a catalog of words in a language
and defines component phone types that make up each word. 1In
some embodiments of the invention, the lexicon 307 also
includes any assigned transition probabilities from phone type
to phone type within each word. A grammar 309 describes
allowed word-to-word transitions in a language. The grammar
309 of the specific embodiment is a "bi-gram" that specifies
context-free word-to-word transition probabilities between

every pair of words. The grammar 309 also allows an optional
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pause phone between words to model possible pauses between
words during speech. The grammar 309 allows the pause phone
to be skipped. The grammar 309 implements a skip as a
transition arc which does not correspond to any outputted
acoustic features.

Grammars 309 and lexicons 307 together form a
grammar network 310 that specifies allowable links between
phones and, hence, allowable words and sentences. Grammars,
lexicons, and grammar networks are known elements of HMM
speech recognizers. The grammar network 310 and the phone
acoustic models 305 form a part of the speech models 117 (of
FIG. 1).

All phone models 305 plus the lexicon 307 and the
grammar 309 may be considered to be a vast virtual network
called "the HMMs" or "the recognition HMM." The HMM
recognizer 203 models every spoken sentence as having been
produced by traversing a path through the states within the
HMMs. 1In general, a frame of acoustic features is produced at
each time-step along this path. (However, some state
transitions such as the "skip" transition take no time and
produce no output.) The path identifies the sequence of
states traversed. The path also identifies the duration of
time spent in each state of the sequence, thereby defining the
time-duration of each phone and each word of a sentence. Put
in another way, the path describes an "alignment" of the
sequence of frames 111 with a corresponding sequence of states
of the HMMs.

In FIG. 3, the HMM speech recognizer 203 is operated
not merely for its ordinary purpose of speech recognition, but
also for time-segmenting speech into component phones. In
FIG. 3, The HMM recognizer 203 accepts the acoustic features
111. The HMM recognizer 203 includes hidden Markov models
(HMMs) specified by the phone acoustic models 305, the lexicon
307, and the grammar 309. An HMM search engine 311 within the
HMM recognizer 203 computes a maximum likelihood path 313.

The maximum likelihood path is a path through the
hidden Markov models with the maximum likelihood of generating

the acoustic feature sequence 111 extracted from the speech of
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the user. The maximum likelihood path 313 includes the
sequence of states traversed 314 and the duration of time 315
spent in each state. The maximum likelihood path 313 defines
an acoustic segmentation 205 of the acoustic features into a
sequence of phones. The acoustic segmentation 205 of the
specific embodiment is a subset of the path information 313,
including time boundaries (and/or durations) and the phone-
type labels of the sequence of phones. Using the duration
information from the acoustic segmentation 205, the present
invention evaluates pronunciation quality, as was described
above in connection with Figs. 1 and 2.

The HMM search engine 311 computes the maximum
likelihood path through its speech HMMs according to a
standard pruning HMM search algorithm that uses the well-known
Viterbi search method. This HMM search algorithm is described
for example in the cited and incorporated art and elsewhere in
the literature. The Viterbi algorithm is also discussed in
numerous other references, such as G.D. Forney, Jr., "The
Viterbi algorithm," Proc. IEEE, vol.61l, pp.268-278, 1973.

In the specific embodiment, the sequence of spoken
words from the speaker 105 may or may not be known in advance
by the pronunciation evaluation system 101. If the sequence
of spoken words is not known in advance, then the HMM
recognizer 203 outputs, in addition to the acoustic
segmentation 205, the recognized word sequence 317 for other
use. For example, the recognized word sequence 317 may be
used by an interactive language instruction system included in
the specific embodiment. This language instruction system
might determine the meaning of the recognized word sequence
317 and whether the recognized word sequence 317 is a correct
and appropriate utterance in relation to a current lesson
being conducted.

If the sequence of spoken words is known in advance,
then the known word sequence 319 is fed to the HMM engine 311
to dramatically constrain the possible paths through the HMMs.
This known word sequence 319 represents additional information
that forms a part of the grammar network 310. The sequence of

spoken words may be known in advance for example because a
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language instruction system has requested that the speaker 105
read from a known script. Using the known word sequence 319
as an additional constraint can reduce recognition and
segmentation errors and also reduce the amount of computation
required by the HMM engine 311.

FIG. 4 is a diagram illustrating a portion of a
maximum likelihood path 313 for sample input speech 107 in
accordance with the invention. The input speech 107 is
composed of its constituent words 403, which are in turn
broken down into constituent phones 205, which are themselves
broken down into constituent states 405. The constituent
phones 205 include phone type labels 407 as well as

information that specifies each phone's duration.
IV. SCORING PRONUNCIATION USING ACOUSTIC FEATURES

FIG. 5 is a block diagram of a system 113 for
computing an acoustic score 115 based directly on the acoustic
features 111 themselves, rather than on acoustic unit
durations, according to embodiments of the present invention.

In FIG. 5, a speech segmenter 203 accepts the
sequence of acoustic features 111 and produces from them a
time-segmentation 205 specifying acoustic segments. An
acoustic scorer 503 accepts the acoustic segmentation 205 and
also the sequence of acoustic features 111. The acoustic
scorer 503 uses the acoustic segmentation 205 to index into
the sequence of acoustic features 111. 1In this way, the
acoustic scorer 503 obtains acoustic feature frames which
correspond to each acoustic segment.

The acoustic scorer 503 compares the acoustic
feature frames of the acoustic segments to a model 505 of
exemplary acoustic feature frames. The model 505 was
established using training speech from exemplary speakers.
Based on this comparison, the acoustic scorer 503 computes the
acoustic score 115 as the pronunciation score 115 of FIG. 1.
The acoustic model 505 forms a part of the speech models 117
of FIG. 1.
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In certain acoustic-scoring embodiments of the
invention, the speech segmenter 203 is an HMM recognizer 203
that produces an acoustic segmentation 205 of the sequence of
acoustic features 111 into phones, as was described in
connection with FIG. 3. The acoustic model 505 in certain of
these embodiments includes separate models of acoustic feature
frames for each phone type. 1In a preferred embodiment, these
models are HMM models from the HMM recognizer 203 used for

segmentation.
Iv.Aa. PHONE LOG-POSTERIOR PROBABILITY SCORES

In a specific acoustic-scoring embodiment, each of
the separate models corresponding to a phone type q is a
context-independent probability density p(y|q), wherein the
variable y represents an acoustic feature frame. The acoustic
scorer 503 computes, for each frame Y, within a phone i of
phone type q;, a frame-based posterior probability P(q;ly,) of

phone i's type given the observed acoustic feature frame Yyt

p(ytI(L’) P(q,)
Y py.a) P(a) (9)

All g

P(q_]_lyt)

wherein p(y,|q;) is the probability of the frame Y, according to
the distribution corresponding to phone type g;. The sum over
g runs over all phone types. P(qg;) represents the prior
probability of the phone type g;.

The acoustic scorer 503 of the specific embodiment
computes a phone posterior score p; for each phone i defined
by the acoustic segmentation 205. Each phone i's phone
posterior score is an average of the logarithms of the frame-
based posterior probabilities P(g;ly,) of all frames within
phone i. Each phone i's phone posterior score p, can be

expressed as:
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tj*di_l

Y logPlgly,) (10)

=t

_ 1
P d, '
wherein the sum runs over all d; frames of phone 1i.

The acoustic scorer 503 of the specific embodiment
computes the acoustic score 115 p for an entire utterance as

the average of the phone posterior scores p; of each phone i:

zle

p = ZN:pi (11)
i=1

wherein the sum runs over the number N of phones in the
utterance. This acoustic score 115 p is an example of an
acoustic-posterior-probability-based score.

The acoustic-posterior-probability-based score 115 p
is designed to be potentially less affected by changes in
spectral match due to particular speaker characteristics or
acoustic channel variations. Changes in acoustic match are
likely to affect both numerator and denominator similarly in
Equation (9), thereby making the acoustic score 115 more
invariant to those changes and more focused on phonetic
quality.

In the specific embodiment, the acoustic scorer 503
computes each of the context-independent probability densities
p(yig) shown in Equation (9) using distributions from
context -independent hidden Markov phone models. In the
numerator of Equation (9), p(y,lq;) is computed by evaluating
the output distribution of the HMM state to which the frame vy,
is aligned in phone type q;'s HMM. The sum over all phone
types in the denominator of Equation (9) is computed using the
output distribution of the most likely HMM state (for the
frame y,) within each phone type's context-independent HMM.

In the specific embodiment, the output distribution
of each state of within each phone type g's HMM is a weighted
mixture of Gaussian distributions. Good results have been
achieved using approximately 100 Gaussian distributions with
diagonal covariances (i.e., off-diagonal entries constrained

to zero in the covariance matrix). Parameter values within
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the Gaussian distributions are established, using standard
estimation techniques, from training speech data collected
from exemplary speakers.

A first alternate acoustic-scoring embodiment
computes a context-dependent posterior probability according
to a variation of Equation (9). In this embodiment, Equation

(9) is replaced by an approximated equation:

p(y.la; ctx;) P(q,)

Y by P(e (12)
All q

P(g;ly., ctx;) =

wherein ctx; represents phone i's context class, i.e., the
phone types of phone i's immediately preceding and following
phones, as determined by the segmenter HMM 203.

Equation (12) differs from Equation (9) in that the
term p(y}h%,ctxﬂ in the numerator is computed from an output
distribution of an HMM state to which the frame y, is aligned
in a context-dependent (i.e., tri-phone) HMM phone model.
This term is the output, or "emission" probability of frame Yi
given phone type g; in the context ctx;. The denominator still
uses the sum over the context-independent phones as in the
specific embodiment.

The posterior score p; 1s replaced (approximated) by
a context dependent score p'; which is defined as the average
of the logarithm of the frame-based phone context-dependent
posterior probability over all the frames of the segment:

Cj*di'l

p, = pi = Fl E logP(q;ly,, ctx,) (13)
i t=t

wherein d; is the duration in frames of the phone i.
The computation may be further simplified; expanding
Equation (13) using Equation (12) produces:

ti+dy~1 ti+d;-1
/

pi== Y loglp(v,la,. ctx) Plapl-L ¥ logl Y p(y./e) P(g)]
di t=t; di t=t; Allg

(14)

The first term in Equation (14) can be approximated by the log
probability per frame along the maximum likelihood path 313
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obtained from the the HMM recognizer 203 used for

segmentation:

ti+d;-1
p;= p} = 1og__prob_per_framei—gl- Y 1logly piyla)P(a]
C=t1

1 Allg

(15)

The context-dependent model used to compute the
numerator of Equation (12) is a more precise model than the
context-independent one as it captures the realization of the
given phone type in the specific phonetic context of the
surrounding phones as they occur in the test sentence.
Furthermore, the context-dependent score can be faster to
compute than the context-independent score, especially if the
approximate methods of computation are used. This is true
because the many of the context-dependent score's components
already exist from operation of the HMM recognizer 203 used
for segmentation.

The score for a phone and a sentence are computed
similarly as in the specific embodiment, exXcept that in
Equation (10), the context-dependent posterior produced by
Equation (12) should be substituted for the
context-independent posterior produced by Equation (9).

A second alternate acoustic-scoring embodiment is
similar to the specific embodiment but the acoustic scorer 503
computes the denominator of Equation (9) by summing over only
a subset of the context-independent phones, this reduces
computation and allows a similar normalization effect on the
acoustic scores, with little reduction in the usefulness of
the acoustic score. The phones used are selected to cover
most of the acoustic space (i.e., very dissimilar sounds are
chosen) .

In a third alternate acoustic-scoring embodiment,
the acoustic scorer 503 generates the frame-based posterior
probabilities p(qjy,) directly by using a multi-layer
perceptron (MLP). The multi-layer perceptron is trained using
forced (i.e., known-script-constrained) alignments on
exemplary training data. The training procedure is a standard

backpropagation supervised training scheme.
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During training, a current frame--and optionally its
surrounding acoustic context frames--is presented to the
inputs of the MLP along with the desired output. The desired
output for any frame is 1-of-N targets (target 1 is set to the
output corresponding to the correct phone type and targets 0
are used for the other outputs). Using a relative entropy or
minimum square error training criterion, the outputs are known
to converge to the frame-based posterior probabilities
p(gly,) .

MLP's are well known in the art, and are described
for example in Nelson Morgan and Herve Bourlard, "Continuous
Speech Recognition: An introduction to the Hybrid HMM-
Connectionist Approach," IEEE Signal Processing Magazine, Vol.
12, No. 3, May '95, pp. 25-42, which is herein incorporated by
reference.

The score for a phone and a sentence are computed
similarly as in the specific embodiment, except that in
Equation (10), the MLP-based posterior is used instead of the
HMM-derived posterior.

In a fourth alternate acoustic-scoring embodiment,
the acoustic scorer 503 also generates an acoustic-posterior-
probability-based score. However, rather than generating
frame-based posterior probabilities according to Equation
(9), the acoustic scorer 503 generates phone-based posterior
probabilities directly. 1In this embodiment, the acoustic
scorer 503 includes an HMM engine. The acoustic scorer 503
operates the HMM engine to generate an alignment for the
frames Y; of the student speech sample corresponding to a
phone i with every phone type g's hidden Markov phone model
using the Viterbi algorithm. The acoustic scorer 503 computes
an acoustic log-likelihood, log p(Y;lq), of the speech Y, for
each alignment to a phone type g's HMM using the standard HMM
backtracing technique known in the art of speech recognition.
Using these log-likelihoods, the acoustic scorer 503 computes

a posterior log-probability score for a phone i according to:
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p(Y;|q;) P(q;)

}: p(Y|la) P(qg)
All g

p; = logp(q,|Y;) = log (16)

The acoustic scorer 503 computes the acoustic score
115 p for an entire utterance as the average of the phone
posterior score p; of each phone i in the utterance, according

tc Equation (11).
IV.B. PHONE LOG-LIKELIHOOD SCORES

In an alternate acoustic-scoring embodiment, the
acoustic scorer 503 uses HMM log-likelihoods to derive a
likelihood-based pronunciation score 115 L. The underlying
assumption is that the logarithm of the likelihood of the
speech data, computed by the Viterbi algorithm, using the HMMs
obtained from exemplary speakers is a good measure of the
similarity (or match) between exemplary speech and the
student's speech. The acoustic scorer 503 computes for each

phone a normalized log-likelihood 1';:
1} =1,/4d, (17)

wherein 1; is the log-likelihood corresponding to phone i and
d; is its duration in number of frames. The normalization by
the phone's duration is to give short-duration phones a boost
in their effect on the log likelihood score, which would be
dominated by longer phones, otherwise.

The acoustic scorer 503 computes the likelihood-
based score 115 L for a whole utterance as the average of the

individual normalized log-likelihood scores 1'; for each phone

i:
N
2:1; (18)

wherein the sum runs over the number N of phones in the

utterance.
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V. COMBINATION OF SCORES AND MAPPING TO A HUMAN GRADE

FIG. 6 is a block diagram of a system that combines
different types of pronunciation scores according to an
embodiment of the invention. By combining scores, an
improvement in evaluation performance is achieved, overall, as
compared to using each score by itself.

In FIG. 6, multiple pronunciation scores 115 are
computed for acoustic features 111 of a single utterance.
These scores include a phone duration score 115, a syllabic
duration score, 115, and an acoustic-posterior-probability-
based score 115, which have been described, separately. The
scores are shown as being generated by three separate scorers
113. 1In actual implementation, the three separate scorers 113
would likely share many common components, such as an acoustic
segmenter 203 (of FIGS. 2 and 5).

A scores-to-grade mapper 119 accepts the different
scores 115 and applies a mapping function 603 to the scores
115 to derive a single grade 121.

FIG. 7 is a block diagram of a system 701 for
creating FIG. 6's mapping function 603 between one or more
types of machine scores into a pronunciation grade as would be
produced by a human listener. 1In FIG. 7, wachine scores 703
are generated for utterances in a development set of training
speech data. Human-generated scores 705 are also collected
for the utterances in the development set. The development
set is assembled so as to include speech from speakers of
varying proficiency levels.

A mapping analyzer 707 processes the machine scores
703 and the corresponding human grades 705 to generate a
scores-to-grade mapping 603.

In one embodiment of the invention, the mapping
analyzer 707 uses linear regression to linearly combine two or
more machine scores (my, . . ., m,) for each utterance, plus a

bias term, to approximate the corresponding human score h:
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h! = Ag+hym+ . . . +Amy (19)

The linear coefficients A; and bias term Ay, are optimized to
minimize the mean square between the predicted and the actual
human scores over the utterances of the development set.

In another embodiment of the invention, the mapping
analyzer 707 uses nonlinear regression. The machine scores
703 to be combined are the input to a neural network 603 that
implements the mapping between the multiple machine scores 703
and the corresponding human scores 705. The mapping analyzer
establishes the parameters within the neural network 603 using
the actual human scores 705 as targets. The network has a
single linear output unit and 16 sigmoidal hidden units. The
mapping analyzer trains the neural network using the standard
backpropagation technique, using cross-validation on about 15
percent of the training data. The training is stopped when
performance degrades on the cross-validation set.

In another embodiment of the present invention, the
mapping analyzer 707 computes a mapping 603 that defines the
predicted human score h' as the conditional expected value of
the actual human score h given the measured machine scores m,,

c,omy
h' = Elhlm,, ..., m,)) (20)

To compute the expectation the conditional probability
P(h{M;, . . ., M) is needed. The mapping analyzer 707

n

computes this conditional probability as:

p(m,,...,m,|h)P(h)

P(h|m,, ..., m,) (21)

G
Y p(my,...,m,|hy) P(hy)
J=1

wherein the sum in the denominator is over all G possible
grades and P(h) is the prior probability of the grade h and
the conditional distribution is modeled approximately by a
discrete distribution based on scalar or vector quantization
of the machine scores. The number of bins to use in the
quantization is determined by the amount of available training

data. The more available data, the more bins may be used.
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In yet another embodiment of the invention, the
mapping analyzer 707 uses a decision tree or, alternatively, a
class probability tree.

The machine scores to be combined are the input to a
tree that implements the mapping between the machine scores
703 and the corresponding human scores 705. The mapping
analyzer establishes the parameters within the decision tree
(or alternative the class probability tree) using the actual
human scores 705 as target classes according to algorithms,
known in the art, for constructing decision trees. A discrete
set of human targets are defined as classes used by the
decision or class probability tree into which classify the

input machine scores.

VI. LANGUAGE INSTRUCTION IN A CLIENT-SERVER ENVIRONMENT

FIG. 8 is a block diagram of a distributed system
801 for language instruction that evaluates pronunciation
quality. In FIG. 8, a remote client processor 803 runs a
client process. The client process executes software
instructions that presents a prompt to a student 105. 1In
response, the student 105 Speaks into a microphone 805. As
will be further discussed, the system 801 contains a
pronunciation evaluator (101, as shown in FIG. 1 only). The
microphone 805 forms at least a part of the pronunciation
evaluator's speech input device (103, as shown in FIG. 1
only) .

In one embodiment of FIG. 8, the client process uses
a computer display 807 to provide the prompts. One type of
prompt is a displayed script to be read by the student 105.
The client process exceeds previous pronunciation evaluation
systems in that it can (and does) use scripts containing words
for which there may be no training data or incomplete training
data, as described above. These scripts include scripts
generated dynamically during execution by the system 801.
Another novel way by which the client process can (and does)
elicit the verbal utterances is to ask open-ended questions to

which the student 105 answers spontaneously, without reading
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from any script, as described above. Thus, the system 801
according to the present invention permits a virtually
inexhaustible, immediately-usable supply of unique word
sequences for pronunciation evaluation.

In another embodiment, the display 807 is replaced
or supplemented by a speaker 809 that provides audio prompts,
such as scripts and questions.

A local server processor 811 runs a server process
that controls the language instruction lesson being executed
on the client processor 803 via a network 813, such as a local
area network, the Internet, etc. In one embodiment, the
server process controls the lesson by dynamically sending
control information that contains or specifies individual
prompts, such as scripts and questions, shortly before the
prompts are to be provided to the student 105. 1In another
embodiment, the server process controls the lesson more
loosely by downloading control information which includes
software (e.g., JAVA-language software) for individual lessons
to the client processor 803's local storage 815, which
includes RAM, or hard disk, etc. The client processor 803
thereafter runs the lesson software with less direct
supervision from the server processor 811.

In some embodiments of the invention, the server
processor 811 contains the final stages of the pronunciation
evaluator which generate the evaluation grade for student
pronunciation. In one such embodiment, the microphone 805 is
coupled 817 to convey speech to the client processor 803. The
client process relays student speech samples across the
network 813 to an audio receiver process operating in
conjunction with the server process to request pronunciation
evaluation. The audio receiver process runs on the server
processor 811.

In other such embodiments, the microphone 805 is
coupled to relay student speech samples to the server process
across a separate channel 819 which is not under the direct
control of the client process. The separate channel 819 in
one of these embodiments is a physically separate channel,

such as a telephone channel. The separate channel 819 in
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another of these embodiments is a virtual channel that appears
to the server process to be a separate channel, even though it
is implemented using physical lines also shared by the client-
to-server connection. For example, the virtual channel may be
implemented using the audio virtual channel of a Digital
Simultaneous Voice and Data (DSVD) modem, whose data virtual
channel handles the client-to-server communications.

In other embodiments, the pronunciation evaluator
(of FIG. 1) is not implemented on the server processor 811,
Instead, the evaluator is implemented on either the client
processor 803 or elsewhere. Therefore, pronunciation
evaluation is controlled by the client process without need
for sending speech samples to the server process. In these
embodiments, the server processor 811's computation resources
are conserved because it needs only control the lesson. In
this way, the server processor 811 becomes capable of
controlling a greater number of lessons simultaneously in a
multi-tasking manner.

, As described, the client process and the server
process run on separate processors 803 and 811 which are
coupled via a network 813. 1In general, though, the client
process and the server process may run on a single processor
in a multi-tasking manner.

The invention has now been explained with reference
to specific embodiments. Other embodiments will be apparent
to those of ordinary skill in the art in view of the foregoing
description. For example, preselected scripts may be
delivered to a user via off-line means such as a written
guidebook, as a newspaper advertisement or in other visual or
auditory forms. It is therefore not intended that this
invention be limited, except as indicated by the appended

claims.
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WHAT 1S CLATIMED IS:

1. In an automatic speech processing system, a
method for assessing pronunciation of a student speech sample
using a computerized acoustic segmentation system, the method
comprising:

accepting said student speech sample which comprises
a sequence of words spoken by a student speaker;

operating said computerized acoustic segmentation
system to define sample acoustic units within said student
speech sample based on speech acoustic models within said
segmentation system, said speech acoustic models being
established using training speech data from at least one
speaker, said training speech data not necessarily including
said sequence of spoken words;

measuring duration of said sample acoustic units;
and

comparing said duraticns of sample acoustic units to
a model of exemplary acoustic unit duration to compute a
duration score indicative of similarity between said sample

acoustic unit durations and exemplary acoustic unit durations.

2. The method according to claim 1 wherein said
exemplary acoustic unit duration model is established using
duration-training speech data from at least one exemplary
speaker, said duration-training data not necessarily including

said sequence of spoken words.

3. The method according to claim 1 wherein each
acoustic unit is shorter in duration than a longest word in

the language of said spoken words.

4. The method according to claim 1 further
comprising:
mapping said duration score to a grade; and

presenting said grade to a student.
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5. The method according to claim 4 wherein the
step of mapping said duration score to a grade comprises:

collecting a set of training speech samples from a
plurality of language students of various proficiency levels;

computing training duration scores for each of said
training speech samples;

collecting at least one human evaluation grade from
a human grader for each of said training speech samples; and

adjusting coefficients used in mapping by minimizing
an error measurement between said human evaluation grades and

said training duration scores.

6. The method according to claim 4 wherein the
step of mapping comprises using a mapping function obtained by
linear or non-linear regression from training duration scores,
alone or in combination with other machine scores, and
corresponding human evaluation grades, all of said scores and
grades being collected over a representative training data

base of student speech.

7. The method according to claim 6 wherein said
mapping function is obtained by non-linear regression
implemented with a neural net which allows arbitrary mappings

from machine scores to human expert grades.

8. The method according to claim 4 wherein the
step of mapping comprises using a decision tree or class
probability tree whose parameters were established using

training duration scores.

9. The method according tc claim 1 wherein the
step of operating said acoustic segmentation system comprises
the steps of:

computing a path through trained hidden Markov
models (HMMs) from among said speech acoustic models, said
path being an allowable path through the HMMs that has maximum
likelihood of generating an observed acoustic features

sequence from said student speech sample; and
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determining from said path at least one boundary or

duration of one acoustic unit.

10. The method according to claim 9 wherein:

said spoken sequence of words is spoken according to
a known script; and

the path computing step comprises using said script

in defining allowability of any path through the HMMs.

11. The method according to claim 9 wherein said
spoken seguence of words is unknown, and the path computing
step comprises operating a computerized speech recognition

system that determines said spoken sequence of words.

12. The method according to claim 9 wherein:
said sample acoustic units are syllables; and
the step of determining at least one acoustic unit
boundary or duration comprises the steps of:
extracting boundaries or durations of at least
two phones from said path; and
combining portions of at least two phones to
obtain a boundary or duration of a syllable acoustic

unit.

13. The method according to claim 12 wherein the
step of combining portions of at least two phones comprises
measuring the time difference between centers of vowel phones
from among said phones to obtain a duration of a syllable

acoustic unit.

14. The method according to claim 1 wherein said

sample acoustic units are phones.

15. The method according to claim 1 wherein said

sample acoustic units are syllables.

16. The method according to claim 1 wherein:
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said exemplary acoustic unit duration distribution
model is a model of speaker-normalized acoustic unit
durations, and the duration measuring step comprises the steps
of:
analyzing said student speech sample to
determine a student speaker normalization factor; and
employing said student speaker normalization
factor to measure speaker-normalized durations as said
measured sample acoustic unit durations, whereby the
comparing step compares said speaker-normalized sample
acoustic unit durations to said exemplary speaker-

normalized acoustic unit duration distribution model.

17. The method according to claim 16 wherein said

student speaker normalization factor is rate of speech.

18. The method according to claim 1 wherein the
step of operating said segmentation system excludes acoustic

units in context with silence from analysis.

19. The method according to claim 1 wherein the
step of operating said segmentation system comprises operating
a speech recognition system as said acoustic segmentation

system.

20. A system for assessing pronunciation of a
student speech sample, said student speech sample comprising a
sequence of words spoken by a student speaker, the system
comprising:

speech acoustic models established using training
speech data from at least one speaker, said training speech
data not necessarily including said sequence of spoken words;

a computerized acoustic segmentation system
configured to identify acoustic units within said student
speech sample based on said speech acoustic models;

a duration extractor configured to measure duration
of said sample acoustic units;

a model of exemplary acoustic unit duration:; and
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a duration scorer configured to compare said sample
acoustic unit durations to said model of exemplary acoustic
unit duration and compute a duration score indicative of
similarity between said sample acoustic unit durations and

acoustic unit durations in exemplary speech.

21. In an automatic speech processing system, a
method for grading the pronunciation of a student speech
sample, the method comprising:

accepting said student speech sample which comprises
a sequence of words spoken by a student speaker;

operating a set of trained speech models to compute
at least one posterior probability from said speech sample,
each of said posterior probabilities being a probability that
a particular portion of said student speech sample corresponds
to a particular known model given said particular portion of
said speech sample; and

computing an evaluation score, herein referred to as
the posterior-based evaluation score, of pronunciation quality
for said student speech sample from said posterior

probabilities.

22. The method according to claim 21 wherein each
of said posterior probabilities is derived from a model
likelihood by dividing the likelihood that said particular
known model generated said particular portion of said student
speech sample by the summation of the likelihoods that
individual models generated said particular portion of said

speech sample.

23. The method according to claim 21 wherein:

said particular known model is a context-dependent
model; and

said individual models are context-dependent or

context - independent models.

24. The method according to claim 21 wherein:
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said trained speech models comprise a set of phone
models;

said student speech sample comprises phones:; and

the step of operating said speech models comprises
computing a frame-based posterior probability for each frame

y, within a phone i of a phone type g;:

( -2 ) P(g;)
Pg,ly.) py.la, g;
Y piviae. .. )P
All g
wherein:
P{ydqg, ...) is the probability of the frame Y,

according to a model corresponding to phone type q;;
the sum over g runs over all phone types; and
P(qg;) represents the prior probability of the
phone type gq;.

25. The method according to claim 24 wherein the
step of computing a frame-based posterior probability uses

context-dependent models corresponding to each phone type q;

in the numerator, whereby said p(y,g, ...) is a context-
dependent likelihood p(y,|q;, ctx;), wherein ctx, represents
context.

26. The method according to claim 24 wherein the
step of computing said posterior-based evaluation score for
said student speech sample comprises computing for a phone i
an average of the logarithm of the frame-based posterior
probabilities of all frames within said phone i, said average
herein referred to as a phone score P;, which is expressible

as:
1 Cj"di‘l
P; = = Y logP(qly,)
d; £=t;

wherein the sum runs over all d; frames of said phone i.
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27. The method according to claim 26 wherein said posterior-

based evaluation score for said student speech sample is

defined as an average of the individual phone scores p; for

each phone i within said student speech sample:

N

2 P
1

1=

A

p =

wherein the sum runs over the number of phones in said student

speech sample.

28. The method according tc claim 24 wherein the
model corresponding to each phone type is a gaussian mixture

phone model.

29. The method according to claim 24 wherein the
model corresponding to each phone type is a context-

independent phone model.

30. The method according to claim 24 wherein the
model corresponding to each phone type is a hidden markov

model .

31. The method according to claim 22 wherein said

particular portion of said speech sample is a phone.

32. The method according to claim 21 further
comprising:

mapping said posterior-based evaluation score to a
grade as would be assigned by human listener; and

presenting said grade to said student speaker.

33. The method according to claim 32 wherein said
step of mapping said posterior-based evaluation score to a
grade comprises:
collecting a set of training speech samples
from a plurality of language students of various

proficiency levels;

37 PCT/US97/17888
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collecting a set of human evaluation grades for
each of said training samples from human expert listeners
listening to said samples; and

adjusting coefficients used in mapping by
minimizing the squared-error between the human expert

grades and said evaluation score.

34. The method according to claim 21 wherein said
student speech sample comprises an acoustic features seqguence,
the method further comprising the steps of:

computing a path through a set of trained hidden
Markov models (HMMs) from among said speech acoustic models,
said path being an allowable path through the HMMs that has
maximum likelihood of generating said acoustic features
sequence; and

identifying transitions between phones within said

path, thereby defining phones.

35. The method according to claim 34 wherein the
path computing step is performed using the Viterbi search
technique.

36. The method according to claim 34 wherein said
spoken sequence of words is unknown, and the path computing
step is performed using a computerized speech recognition

system that determines said spoken sequence of words.

37. The method according to claim 21 wherein
segments in context with silence are excluded from said
student speech sample and from training data used to train
said speech models.

38. A system for assessing pronunciation of a
student speech sample, said student speech sample comprising a
sequence of words spoken by a student speaker, the system
comprising:

trained speech acoustic models of exemplary speech;
and
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an acoustic scorer configured to compute at least

one posterior probability from said speech sample using said
trained speech models, said acoustic scorer also configured to
compute an evaluation score of pronunciation quality for said
student sample from said posterior probabilities, each of said
posterior probabilities being a probability that a particular
portion of said student speech sample corresponds to a

particular known model given said particular portion of said

speech sample.

38. A system for pronunciation training in a
client/server environment wherein there exists a client
process for presenting prompts to a student and for accepting
student speech elicited by said prompts, the system
comprising:

a server process for sending control information to
said client process to specify a prompt to be presented to
said student and for receiving a speech sample derived from
said student speech elicited by said presented prompt; and

a pronunciation evaluator invocable by said server

process for analyzing said student speech sample.

40. The system according tc claim 39 wherein:

said pronunciation evaluator is established using
training speech data; and

said server process is adapted to specify a prompt
for eliciting a sequence of words not necessarily found in

said training speech data as said student speech sample.

41. The system according to claim 39 wherein said
server process receives said speech sample over a speech
channel that is separate from a communication channel through

which said server process and said client process communicate.

42. The system according to claim 39 wherein said
client process and said server process are located on two

separate computer processors and communicate via a network.
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