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LIVE MIGRATION OF DATA

BACKGROUND

[0001] Current data storage devices such as volatile and non-volatile
memory often include a fault tolerance to ensure that data is not lost in the
event of a device error or failure. An example of a fault tolerance provided to
current data storage devices involves storing data with redundancy. Examples
of redundant data storage methods include duplicating data and storing the data
in multiple locations and adding parity bits to store calculated error recovery bits.
A consistency between the data and its redundancy should be maintained
during a migration to another memory location to prevent data corruption and

preserve fault tolerance.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Features of the present disclosure are illustrated by way of
example and not limited in the following figure(s), in which like numerals indicate

like elements, in which:

[0003] FIG. 1 shows a simplified block diagram of a computing device for

a live migration of data, according to an example of the present disclosure;

[0004] FIG. 2A shows striping across multiple memory modules in a fault

tolerant scheme, according to an example of the present disclosure;

[0005] FIG. 2B shows a storage subsystem for a live migration of data
from a source stripe to a destination stripe according to an example of the

present disclosure;

[0006] FIG. 3 shows a bounce diagram of a live migration method using

hierarchal stripe-locks, according to an example of the present disclosure;

[0007] FIG. 4 shows a state diagram of a method for staging an entry
into and an exit from a live migration of data, according to an example of the

present disclosure;

[0008] FIG. 5 shows a bounce diagram of an armed pre-migration read

method, according to another example of the present disclosure;

[0009] FIG. 6 shows a bounce diagram of an armed post-migration read

method, according to an example of the present disclosure;

[0010] FIG. 7 shows a bounce diagram of an armed write method,

according to an example of the present disclosure; and

[0011] FIG. 8 shows a flow diagram of a live migration method using

hierarchal stripe-locks, according to an example of the present disclosure.
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DETAILED DESCRIPTION

[0012] For simplicity and illustrative purposes, the present disclosure is
described by referring mainly to an example thereof. In the following
description, numerous specific details are set forth in order to provide a
thorough understanding of the present disclosure. It will be readily apparent
however, that the present disclosure may be practiced without limitation to these
specific details. In other instances, some methods and structures have not
been described in detail so as not to unnecessarily obscure the present
disclosure. As used herein, the terms “a@” and “an” are intended to denote at
least one of a particular element, the term “includes” means includes but not
limited to, the term “including” means including but not limited to, and the term

“‘based on” means based at least in part on.

[0013] Disclosed herein are examples of a method for live migration of
data from a source stripe to a destination stripe. Live migration refers to the
process of moving data from one memory module to another memory module
without impacting the availability of the memory modules. A stripe may include
a combination of data blocks from at least one data memory module and at least
one parity memory module. The disclosed method, for instance, enables live
migration of memory without intervention by an operating system. The memory
may be concurrently accessed by one or more processors (e.g., servers) while
parity-data consistency is maintained for each stripe affected by the migration.
Also disclosed herein are a computing device and hardware system for

implementing the methods.

[0014] According to an example, hierarchal stripe locks may be obtained
for a source stripe and a destination stripe. One of the hierarchal stripe locks
may be determined as a primary stripe lock and the other hierarchal stripe lock
may be determined as a secondary stripe lock. The primary stripe lock, for
instance, may be obtained prior to the secondary stripe lock to avoid a
deadlock. Either valid data or a data-migrated token may then be received from
the source stripe. In response to receiving valid data, data from the source
stripe may be written to the destination stripe, a data-migrated token may be
3
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written to the source stripe, a parity may be updated for the source stripe and
the destination stripe, and the hierarchal stripe locks may be released for the
source stripe and the destination stripe. In response to receiving the data-
migrated token, the hierarchal stripe locks may be released for the source stripe
and the destination stripe. A data-migrated token may be communicated and

stored in lieu of data in a source buffer data cache line.

[0015] According to an example, one of the hierarchal stripe locks may be
determined as a primary stripe lock and the other hierarchal stripe lock may be
determined as a secondary stripe lock. The ordering of one of the hierarchal
stripe locks is based on stripe numbers and identification numbers of media
controllers for the source stripe and the destination stripe in according to one
example. In this regard, a lower identification number may be sequenced as the
primary stripe lock and the higher identification number may be sequenced as
the secondary stripe lock. Alternatively, a higher identification number may be
sequenced as the primary stripe lock and the lower identification number may

be sequenced as the secondary stripe lock.

[0016] An entry into the live migration of the data may include two stages.
A first stage may include arming reads for each distributed redundancy
controller. The armed reads for each distributed redundancy controller are to
redirect each read to the destination stripe when the data-migrated token is
received. A second stage may include arming writes for each of the distributed

redundancy controllers after completion of the first stage.

[0017] An armed write for each of the distributed redundancy controllers
is to obtain the hierarchal stripe locks for the source stripe and the destination
stripe, write the data to the destination stripe, write the data-migrated token to
the source stripe, update a parity for the source stripe and the destination stripe,
and release the hierarchal stripe locks for the source stripe and the destination
stripe. According to an example, the live migration may only occur after all the
media controllers are armed for reads in the first stage and armed for writes in
the second stage. An exit from the live migration of the data may include a
disarming stage. The disarming stage may include determining that the data-
4
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migrated token is received for all source stripes in a source memory buffer and
updating each of the distributed redundancy controllers to only access the

destination stripes in a destination memory buffer.

[0018] The benefits of volatile memory (e.g., fast, low-latency) and non-
volatile memory (e.g., persistent) are being combined in emerging memory
technologies. Consequently, memory may require increased fault tolerance to
protect persistent user data and file systems. In-memory and memory mapped
storage paradigms may require a fault tolerance scheme such as redundant
array of independent disks (RAID) to provide a robust fault-tolerant solution.
The implementation of RAID in load/store computer architectures requires that,
in addition to memory and cache coherency, parity-data consistency must be
maintained to prevent data-corruption and provide fault tolerance. Furthermore,
processors require relatively low latency load/store access to coherent memory.
As such, memory migration must occur concurrently with load/store accesses
from processors while maintaining parity-data consistency. Memory migration
may be used to move data from a failing memory module to a stable memory
module, move data off of a lightly used memory module to repurpose the
memory module, defragment in-memory file systems to reclaim free space, alter

RAID memory groups, and etc.

[0019] Generally speaking, the disclosed examples provide a live
memory migration of that maintains parity-data consistency and is invisible to an
operating system. The disclosed examples coordinate the entry into and exit
from a migration mode to avoid race conditions and deadlock from distributed
redundancy controllers. The disclosed examples may move RAIDED memory
from one memory module to another module, move RAIDED contents from a
failing memory module to another memory module, move memory contents from
one region of RAIDED memory to another region, consolidate two RAID
memory groups, and reconfigure a RAID memory group. Additionally, the
disclosed examples may provide migration overlap between a source region

and a destination region. That is, for instance, the source region and the
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destination region may be almost identical, except that one storage module
within the RAID set is being migrated.

[0020] With reference to FIG. 1, there is shown a block diagram of a
computing device 100 that may implemented as a platform for the live migration
of data from a source stripe to a destination stripe according to an example of
the present disclosure. It should be understood that the computing device 100
may include additional components and that one or more of the components
described herein may be removed and/or modified without departing from a

scope of the computing device 100.

[0021] For example, the computing device 100 may include a processor
102, memory modules 104A-N (where N is an integer greater than 1), an
input/output interface 106, private memory 108, and a redundancy controller
110 (e.g., a RAID controller). In one example, the computing device 100 is a
server but other types of computing devices may be used. The computing
device 100 may be a node of a distributed data storage system. For example,
the computing device 100 may be part of a cluster of nodes that services
queries and provide data storage for multiple users or systems, and the nodes
may communicate with each other to service queries and store data. The
cluster of nodes may provide data redundancy to minimize down time and
prevent data loss in case of a node failure. Also, the components of the
computing device 100 are shown in a single computer as an example, however,
in other examples the components may exist on multiple computing devices and
the components may comprise multiple processors, redundancy controllers,

memory modules, interfaces, etc.

[0022] The processor 102 may be a microprocessor, a micro-controller,
an application specific integrated circuit (ASIC), field programmable gate array
(FPGA), or other type of circuit to perform various processing functions. The
memory modules 104A-N may each include media controllers 120A-N and
memory 121A-N. According to an example, each memory module may include
its own media controller and memory. The media controller, for instance, may
communicate with the memory and control access to the memory by the
6
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processor 102. The private memory 108 and memory 121A-N may include
volatile dynamic random access memory (DRAM) with battery backup, non-
volatile phase change random access memory (PCRAM), spin transfer torque-
magnetoresistive random access memory (STT-MRAM), resistive random
access memory (reRAM), memristor, FLASH, or other types of memory devices.
For example, the memory may be solid state, persistent, dense, fast memory.

Fast memory can be memory having an access time similar to DRAM memory.

[0023] The input/output (I/O) interface 106 may include a hardware
and/or a software interface. The /O interface 106 may be a network interface
connected to a network, such as the Internet, a local area network, etc. The
computing system 100 may receive data and user-input through the 1/O
interface 106. The computing system 100 may be connected to the memory
modules 104A-N, which may be provided on the computing device 100 or on a

separate computing device.

[0024] The components of computing device 100 may be coupled by a
bus 105, where the bus 105 may be a communication system that transfers data
between the various components of the computing device 100. In examples,
the bus 105 may be a Peripheral Component Interconnect (PCI), Industry
Standard Architecture (ISA), PCIl-Express, HyperTransport®, NuBus, a

proprietary bus, and the like.

[0025] The redundancy controller 110 may maintain fault tolerance
across the memory modules 104A-N according to an example. The redundancy
controller 110 is depicted as including a migration engine 112, a stripe locking
module 114, and a read/write module 116. Blocks 112, 114, and 116 are shown
to illustrate the functionality of the redundancy controller 110. However, the
functionality is implemented by hardware. The migration engine 112 for
example is hardware of the redundancy controller 110 and the modules 114 and
116 for example are hardware of the redundancy controller 110, and the engine
112 and the modules 114 and 116 may not be machine readable instructions
executed by a general purpose computer. The migration engine 112, for
example, may initiate a migration mode and iterate through an entire region of
7
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memory whose contents are to be migrated from a source memory region to a
destination memory region during the migration mode. The stripe locking
module 114, for example, may acquire and release a lock for a given memory
region and hierarchal locks for a plurality of memory regions. The read/write

module 116, for example, may process read or write operations to the memory.

[0026] FIG. 2A depicts striping across multiple memory modules in a fault
tolerant scheme, according to an example of the present disclosure. In FIG. 2A,
the fault tolerant scheme utilizes a RAID-4 configuration that uses block-level
striping with a dedicated parity memory module to provide redundancy to the
multiple memory modules. Examples of the present disclosure, however, are
not limited to the RAID-4 configuration, and may include various other fault
tolerance schemes such as RAID-1, RAID-5, and RAID-6, etc. The example in
FIG. 2A is used herein to define the terminology used throughout this

disclosure.

[0027] Referring to FIG. 2A, the fault tolerant scheme may use memory
associated with multiple memory modules (memory module 1, memory module
2, and memory module 3) to store memory blocks A1-Dp. According to an
example, each memory block may include a single cache line. A cache line is
the smallest unit of data that can be atomically read or written to a memory
module. A cache line could be of any size used by processors, such as 64
bytes. Memory blocks A1, A2, B1, B2, C1, C2, D1, and D2 represent data
blocks that are distributed across memory module 1 and memory module 2 to
increase data throughput. Memory blocks Ap, Bp, Cp, and Dp represent parity
blocks that are stored in memory module 3. The parity blocks provide
redundancy for the data blocks. A stripe may include a combination of data
blocks from at least one data memory module and at least one parity memory
module. In other words, a stripe may include memory blocks distributed across
multiple modules which contain redundant information, and must be atomically
accessed to maintain the consistency of the redundant information. The
memory blocks in a stripe may or may not be sequential in the address space of

the processor. For example, one stripe may include memory blocks A1, A2, and

8
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Ap (stripe 1), another stripe may include memory blocks B1, B2, and Bp (stripe
2), another stripe may include memory blocks C1, C2, and Cp (stripe 3), and
another stripe may include memory blocks D1, D2, and Dp (stripe 4). A RAID

memory group may include stripes 1-4.

[0028] According to this example, if memory module 1 fails, the data
blocks from memory module 2 may be combined with the parity blocks from
memory module 3 (using the Boolean XOR function) to reconstruct the missing
data blocks. For instance, if memory module 1 fails, then stripe 1 may be
reconstructed by performing an XOR function on data block A2 and parity block
Ap to determine data block A1. In addition, the other stripes may be
reconstructed in a similar manner using the fault tolerant scheme of this
example. In general, a data block on a single failed memory module may be
reconstructed by XORing the corresponding blocks on all of the surviving

memory modules.

[0029] With reference to FIG. 2B, there is shown storage subsystem 250
for the live migration of data from a source stripe to a destination stripe
according to an example of the present disclosure. The storage subsystem 250
may include multiple redundancy controllers 110A-N that each attempt to
access a source stripe 210 and a destination stripe 220 during the live migration
of data. Generally speaking, the multiple redundancy controllers 110A-N need
to be configured to safely co-exist without creating data/parity consistency
hazards or deadlocks. The methods disclosed below in FIGS. 3-8 describe
examples of a live migration method for the multiple redundancy controllers
110A-N to ensure correctness and the intermediate states necessary to ensure
a safe transition into and from the live migration of the data.

[0030] FIGS. 3-7 respectively depict diagrams of a live migration method

300, a staging method 400, an armed pre-migration read method 500, an armed

post-migration read method 600, and an armed migration write method 700 for

live migration of data between a source stripe and a destination stripe according

to examples of the present disclosure. It should be apparent to those of

ordinary skill in the art that the methods 300-700 represent generalized
9
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illustrations and that other operations may be added or existing operations may
be removed, modified or rearranged without departing from the scopes of the
methods 300-700.

[0031] According to an example, the methods discussed below may
include a processor 102, a redundancy controller 110, a migration engine 112, a
source stripe 210, and a destination stripe 220. The source stripe 210 and the
destination stripe 220 may each include a data cache line and a parity cache
line, as shown in FIG. 3. Moreover, each data cache line and parity cache line
may be associated with its own media controller. Moreover, the media
controllers associated with the source stripe 210 may be a disjoint set of media
controllers from those associated with the destination stripe 220. Alternatively,
the media controllers associated with the source stripe 210 and destination
stripe 220 may be a subset, a superset, an identical set, a reordered set, etc. of

one another.

[0032] With reference to FIG. 3, there is shown a bounce diagram of a
live migration method 300 using hierarchal stripe-locks, according to an

example of the present disclosure.

[0033] In FIG. 3, the migration engine 112 may initiate a live migration of
data from the source stripe 210 to the destination stripe 220 by transmitting a
migration request to the redundancy controller 110, as shown at arc 302.
According to one example, the migration engine 112 may be built into the
redundancy controller 110. Upon receiving the migration request from the
migration engine 112, the redundancy controller 110 may request a stripe lock
and parity from a media controller that hosts the parity in the destination stripe

220, as shown in arc 304.

[0034] Since there is no single point of serialization with multiple
concurrent redundancy controllers, a point of serialization is created at the
memory module that hosts the parity. As such, the media controller of the parity
memory module is accessed by all the redundancy controllers that are talking to
the same set of memory modules for serialization. According to an example,

the stripe lock may be an active queue inside the media controller that hosts the
10
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parity. The active queue may include a flag or bit that indicates whether a
particular stripe is locked. That is, the media controller of the parity memory
module may (i) keep track of all pending lock requests for a stripe, grant the lock
requests one at a time so that each requestor gets a turn in sequence to hold
the lock for that stripe and (ii) perform this independently for unrelated stripes.
In this regard, any subsequent accesses by other redundant controllers to the
locked stripe are in conflict and may be added to a conflict queue for later

access when the stripe lock is released.

[0035] As shown in arc 306, the media controller that hosts the parity in
the destination stripe 220 may grant the stripe lock for the destination stripe 220
and return an old parity to the requesting redundancy controller 110. The lock is
granted, for instance, if the destination stripe 220 is not locked. The
redundancy controller 110 may now request a stripe lock and parity from a
media controller that hosts the parity in the source stripe 210, as shown in arc
308. As shown in arc 310, the media controller that hosts the parity in the
source stripe 210 may grant the stripe lock for the source stripe 210 and return
an old parity to the requesting redundancy controller 110. The lock is granted,
for instance, if the source stripe 210 is not locked. According to an example, the
sequences represented by arcs 308 and 310 are omitted if the parity storage
location (i.e., the media controller identity and stripe number within the media

controller) is identical for the source stripe 210 and the destination stripe 220.

[0036] According to an example, the stripe locking between the source
stripe 210 and the destination stripe 220 is coordinated by a hierarchal stripe
locking protocol in order to avoid a deadlock situation. An example of a
deadlock situation may occur if two concurrent independent migration
operations occur. One independent migration operation may have its source
stripe parity at location A and destination stripe parity at location B. The other
independent migration operation may have the reverse. If each independent
migration operation were to attempt to obtain a source stripe lock before
obtaining a destination stripe lock, a deadlock could result where each of the

two independent migration operations obtains its source lock, and then is

11
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blocked from obtaining its destination lock by the other independent migration
operation. On the other hand, if all migration operations observe a consistent
order of locking, based, for instance, on stripe address and device number, then
each of the independent migration operations may complete in turn, with no

deadlock hazard.

[0037] According to an example, the conditions required to prevent such
a deadlock are that (i) all redundancy controllers make mutually consistent
choices with respect to the primacy of the locks, and that these choices are
consistent between all types of hierarchically-locked operations, as further
discussed in below in FIGS. 3 and 7. The stripe locking protocol, for instance,
may order one of the stripe locks as a primary stripe lock and another stripe lock
as a secondary stripe lock and may obtain the primary stripe lock prior to the
secondary stripe lock. For example, the ordering of the hierarchal stripe locks
may be based on stripe numbers and media controller identification numbers for
the source stripe and the destination stripe. That is, the media controller having
a lower identification number may be sequenced as the primary stripe lock and
the media controller having the higher identification number may be sequenced
as the secondary stripe lock. Alternatively, a higher identification number may
be sequenced as the primary stripe lock and the media controller having the
lower identification number may be sequenced as the secondary stripe lock If
the media controller identification numbers are identical, then the stripe number
(i.e., address) within the memory module may be used to similarly distinguish
primary from secondary. If the stripe number is also identical, then the second
lock operation must be omitted. In FIG. 3, for instance, the media controller that
hosts the parity in the destination stripe 220 may have a lower identification
number than the media controller that hosts the parity in the source stripe 210.
Thus, according to the stripe locking protocol, the stripe lock for the destination
stripe 220 is acquired prior to the stripe lock for the source stripe 210 in this
example. According to another example, a lower addressed stripe may be

sequenced before a higher addressed stripe, or vice versa.

12
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[0038] As shown in arcs 312 and 314, the redundancy controller 110 may
read and receive data from the source stripe 210. According to an example, the
data received from the source stripe 210 may include one of a data-migrated

token or valid data.

[0039] In response to receiving the valid data, the redundancy controller
110 may continue the process of copying data from the source stripe 210 to the
destination stripe 220. In particular, the redundancy controller 110 may read
and receive data from the destination stripe 220, as shown in arcs 316 and 318.
The data may be read from the destination stripe 220 in order to calculate the
new data to write to the parity of the destination stripe 220. As shown in arcs
320 and 322, the redundancy controller 110 may then write data from the
source stripe 210 to the data cache line of the destination stripe 220 and receive
a complete message in return. As shown in arcs 324 and 326, the redundancy
controller 110 may then write a data-migrated token to the data cache line of the
source stripe 210 and receive a complete message in return. The redundancy
controller 110 may write a new parity to the parity cache line of the source stripe
210, release the stripe lock from the parity cache line of the source stripe 210,
and receive a complete message in return, as shown in arcs 328 and 330. The
new source parity value written in arc 328 is calculated from the old parity value
returned in arc 310, modified to reflect the change in data value from the value
received in arc 312 to the data-migrated token value written in arc 324.
According to an example, the sequences represented by arcs 328 and 330 are
omitted if the parity storage location is identical for the source stripe 210 and the
destination stripe 220. In addition, the redundancy controller may write a new
parity to the parity cache line of the destination stripe 220, release the stripe
lock from the parity cache line of the destination stripe 220, and receive a
complete message in return, as shown in arcs 332 and 334. The new
destination parity value written in arc 332 is calculated from the old parity value
returned in arc 306, modified to reflect the change in data value from the value

received in arc 318 to the new migrated value written in arc 320.

13
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[0040] In response to receiving a data-migrated token, the redundancy
controller 110 may determine that the data from the source stripe 210 has
already been migrated to the data cache line of the destination stripe 220.
Accordingly, the redundancy controller 110 may then simply release the stripe
lock from the source stripe 210 and receive a complete message in return, as
shown in arcs 328 and 330. According to an example, the sequences
represented by arcs 328 and 330 are omitted if the parity storage location in the
source stripe 210 and the parity storage location in the destination stripe 220
are the same. As shown in arcs 332 and 334, the redundancy controller 110
may then release the stripe lock from the destination stripe 220 and receive a

complete message in return.

[0041] According to an example, the source stripe 210 and the
destination stripe 220 may be identical with the exception that one of the
memory modules is being replaced by a new memory module. In this instance,
only the data and parity stored in the memory module being replaced is
migrated. However, the parity calculation still involves all of the memory
modules. According to another example, the migration engine 112 may then
iterate through an entire region of memory whose contents are to be migrated
from a source memory region to a destination memory region in accordance
with the live migration method 300. Once the live migration is complete, all write

and read operations will target the destination memory location.

[0042] Referring to FIG. 4, there is shown a state diagram of a method
400 for staging an entry into and an exit from the live migration of data. FIG. 4
describes an overall state sequence used to prepare for migration (i.e., arm
read, arm write states), perform the migration (migrate state), and finally to
resume a normal state (disarm state). According to an example, the staging
includes the implementation of these states shown in FIG. 4 to ensure that the
multiple redundancy controllers 110A-N in the storage subsystem 250 may
safely co-exist without creating data/parity consistency hazards or deadlocks, as

discussed above.

14
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[0043] A normal state where no migration is taking place is shown in
state 405. According to an example, a transition into the live migration mode
may begin by starting to arm reads for each of the multiple redundancy
controllers 110A-N in the storage sub-system 250. Arming the reads, for
instance, may provide that each of the multiple redundancy controllers 110A-N
redirect all reads to the destination stripe 220 if a data-migrated token is
received when reading the source stripe 210. State 415 depicts a stage where

the redundancy controllers 110A-N are being armed for reads.

[0044] Armed writes are unsafe to comingle with unarmed reads targeting
the source stripe until all redundancy controllers 110A-N are in an armed read
state. Thus, there can never be an armed write concurrent with an unarmed
read, according to an example of the present disclosure. After all of the
redundancy controllers 110A-N have been armed for reads, as shown in state
420, the redundancy controllers 110A-N may then begin to the armed for writes,
as shown in state 425. Arming the writes, for instance, may provide that, for
each write performed by a redundancy controller, the redundancy controller first
obtains hierarchal stripe locks for the source stripe 210 and the destination
stripe 220, writes data to the destination stripe 220, writes a data-migrated token
to the source stripe 210, and then releases the hierarchical stripe locks for the

source stripe 210 and the destination stripe 220.

[0045] According to an example, unarmed writes may safely comingle
with armed writes. That is, any armed write has the side effect of performing a
cache line migration and any unarmed write has the opposite side-effect, and
they undo any earlier migration for that cache line. Thus, the effectiveness of
migration may only be guaranteed once it is known that there are no further
unarmed writes occurring. The armed write state ensures that all subsequent
migrations in the migrate state may be effective because state transition 430
does not occur until all redundancy controllers 110A-N are in the armed write

state.

[0046] After all the redundancy controllers110A-N are armed for writes,
as shown in state 430, the redundancy controllers 110A-N are prepared to
15
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safely migrate data as directed by the migration engine 112. As shown in state
435, the multiple redundancy controllers 110A-N are directed by the migration
engine 112 to iterate through the aperture of memory that is to be migrated.
The method for the live migration 300 in FIG. 3 may be implemented in state
435. Once the migration engine 112 has migrated all cache lines while in the
migrate state, there remains no unmigrated cache lines in the source stripe 210
(i.e., every read of the source stripe 210 returns a data-migrated token, and
every read of the destination stripe 220 returns the data). Only once this state is
reached, may it be safe to begin redirecting all reads and writes to directly
access the destination stripe 220 without the armed read or armed write

behaviors.

[0047] Accordingly, state transition 440 allows disarming of the
redundancy controllers only after migration is known to be complete. Since the
disarmed redundancy controllers send all writes directly to the destination stripe
220, unarmed writes no longer result in the undoing of cache line migrations, as
they did in the armed write state. = As shown in state 440, the redundancy
controllers 110A-N may be disarmed as shown in state 445. Because of the
source memory has already been migrated in state 445, the data-migrated
token is valid for the entire source memory aperture that has been migrated. As
such, the destination memory contains all of the migrated source memory
contents. Accordingly, disarming redundancy controllers 110A-N may include
updating the redundancy controllers 110A-N to only use the destination memory
for future reads and writes. Once all the redundancy controllers 110A-N are
disarmed, as shown in state 450, the redundancy controllers 110A-N are ready

for normal state again as shown in state 405.

[0048] With reference to FIG. 5, there is shown a bounce diagram of an
armed pre-migration read method 500, according to an example of the present
disclosure. The processor 102, for instance, may initiate a read of data from the
source stripe 210 via the redundancy controller 110, as shown in arc 502. Since
this read takes place prior to the migration of data from the source stripe 210 to

the destination stripe 220, the source stripe 210 returns the requested data to
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indicate that the requested data is still located in the data cache line of the

source stripe 210 as shown in arc 504.

[0049] With reference to FIG. 6, there is shown a bounce diagram of an
armed post-migration read method 600, according to an example of the present
disclosure. The processor 102, for instance, may initiate a read of data from
the source stripe 210 via the redundancy controller 110, as shown in arc 602.
Since this read takes place after to the migration of data from the source stripe
210 to the destination stripe 220, the source stripe 210 may return a data-
migrated token to indicate that the requested data is no longer located in the
data cache line of the source stripe 210 as shown in arc 604. Accordingly, as
shown in arc 606, the redundancy controller 110 may initiate a read of the
migrated data from the data cache line of the destination stripe 220. In
response read request by the redundancy controller 110, media controller of the
destination stripe 220 may return the requested data from its data cache line, as

shown in arc 608.

[0050] With reference to FIG. 7, there is shown a bounce diagram of an
armed write method 700, according to an example of the present disclosure.
The armed write method 700 may be implemented prior, during, or subsequent
to the live migration according to an example.

[0051] In FIG. 7, the processor 102 may initiate a write request to the
redundancy controller 110, as shown in arc 702. The write request, for
instance, may be to write new data to the source stripe 210. Upon receiving the
write request from the processor 102, the redundancy controller 110 may
request a stripe lock and parity from a media controller that hosts the parity in
the destination stripe 220, as shown in arc 704. As shown in arc 706, the media
controller that hosts the parity in the destination stripe 220 may grant the stripe
lock for the destination stripe 220 and return an old parity to the requesting
redundancy controller 110. The stripe lock is granted, for instance, if the

destination stripe 220 is not locked.

[0052] The redundancy controller 110 may now request a stripe lock and

parity from the media controller that hosts the parity in the source stripe 210, as
17
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shown in arc 708. As shown in arc 710, the media controller that hosts the
parity in the source stripe 210 may grant the stripe lock for the source stripe 210
and return an old parity to the requesting redundancy controller 110. The lock is
granted, for instance, if the source stripe 210 is not locked. According to an
example, the sequences represented by arcs 308 and 310 are omitted if the
parity storage location is identical for the source stripe 210 and the destination
stripe 220.

[0053] According to an example, the stripe locking between the source
stripe 210 and the destination stripe 220 is coordinated by the hierarchal stripe
locking protocol discussed above in order to avoid a deadlock situation. For
example, according to the stripe locking protocol, the stripe lock for the
destination stripe 220 is acquired prior to the stripe lock for the source stripe 210

in this example.

[0054] As shown in arcs 712 and 714, the redundancy controller 110 may
read and receive old data from the data cache line of the destination stripe 220.
The redundancy controller 110 may then write the new data to the data cache
line of the destination stripe 220 and receive a complete message in return, as

shown in arcs 716 and 718.

[0055] The redundancy controller 110 may read and receive old data
from the data cache line of the source stripe 210, as shown in arcs 712 and
714. According to an example, the redundancy controller 110 may then write a
data-migrated token to the data cache line of the source stripe 210 and receive

a complete message in return as shown in arcs 724 and 726.

[0056] The redundancy controller 110 may write a new parity to the parity
cache line of the source stripe 210, unlock the source stripe 210, and receive a
complete message in return, as shown in arcs 728 and 730. The new source
parity value written in arc 728 is calculated from the old parity value returned in
arc 710, modified to reflect the change in data value from the value received in
arc 722 to the data-migrated token value written in arc 724. Alternatively, the
redundancy controller 110 may just unlock the source stripe 210 if a data-

migrated token is returned during the read of the source stripe 210. According
18
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to an example, the sequences represented by arcs 728 and 730 are omitted if
the parity storage location is identical for the source stripe 210 and the
destination stripe 220. In addition, the redundancy controller may write a new
parity to the parity cache line of the destination stripe 220, release the stripe
lock from the parity cache line of the destination stripe 220, and receive a
complete message in return, as shown in arcs 732 and 734. The new
destination parity value written in arc 732 is calculated from the old parity value
returned in arc 706, modified to reflect the change in data value from the value

read in arc 714 to the new write-data value written in arc 716.

[0057] With reference to FIG. 8, there is shown a flow diagram of a live
migration method 800 using hierarchal stripe-locks, according to an example of
the present disclosure. The method 800 may be implemented using the

processor 102 of computing device 100 according to an example.

[0058] In block 810, stripe locking module, for instance, may obtain
hierarchal stripe locks for a source stripe and a destination stripe. According to
an example, one of the hierarchal stripe locks may be determined as a primary
stripe lock and the other hierarchal stripe lock may be determined as a
secondary stripe lock. The primary stripe lock, for instance, may be obtained
prior to the secondary stripe lock. The ordering of one of the hierarchal stripe
locks is based on stripe numbers and identification numbers of media controllers
for the source stripe and the destination stripe in according to one example. If
the media controller identification numbers are identical, then the stripe number
(i.e., address) within the memory module may be used to similarly distinguish
primary from secondary. If the stripe number is also identical, then the second

lock operation must be omitted.

[0059] In block 820, the read/write module 116, for instance, may receive
a data-migrated token from the source stripe or valid data for the source stripe.
A data-migrated token indicates that the data has already been migrated. If

data is returned, then migration can proceed as shown in block 830.

[0060] In response to receiving read data for the source stripe, the

read/write module 116, for instance, may write data from the source stripe to the
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destination stripe (840), write a data-migrated token to the source stripe (850),
update a parity for the source stripe and the destination stripe, and release the

hierarchal stripe locks for the source stripe and the destination stripe (860).

[0061] In response to receiving the data-migrated token, the read/write
module 116, for instance, may release the hierarchal stripe locks for the source

stripe and the destination stripe (870).

[0062] According to an example, an entry into the live migration of the
data includes two stages. The first stage may include arming reads for each
distributed redundancy controller. The armed reads for each distributed
redundancy controller are to redirect each read to the destination stripe when
the data-migrated token is received. A second stage may include arming writes
for each of the distributed redundancy controllers. The armed writes for each of
the distributed redundancy controllers are to obtain the hierarchal stripe locks
for the source stripe and the destination stripe, write the to the destination stripe,
write the data-migrated token to the source stripe, and release the hierarchal

stripe locks for the source stripe and the destination stripe.

[0063] According to another example, an exit from the live migration of
the data includes a disarming stage. The disarming stage may include
determining that the data-migrated token is received for all source stripes in a
source memory buffer and updating each of the distributed redundancy

controllers to only access the destination stripes in a destination memory buffer.

[0064] What has been described and illustrated herein are examples of
the disclosure along with some variations. The terms, descriptions and figures
used herein are set forth by way of illustration only and are not meant as
limitations. Many variations are possible within the scope of the disclosure,
which is intended to be defined by the following claims -- and their equivalents --
in which all terms are meant in their broadest reasonable sense unless

otherwise indicated.
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CLAIMS

What is claimed is:

1. A method for live migration of data from a source stripe to a destination

stripe, the method comprising:

obtaining, by a redundancy controller, hierarchal stripe locks for the

source stripe and the destination stripe;
receiving a data-migrated token or the data from the source stripe;
in response to receiving the data,
writing the data from the source stripe to the destination stripe,
writing a data-migrated token to the source stripe, and

releasing the hierarchal stripe locks for the source stripe and the

destination stripe; and

in response to receiving a data-migrated token indicating the data is
already migrated from the source stripe, releasing the hierarchal stripe locks for

the source stripe and the destination stripe.

2. The method of claim 1, comprising staging an entry into the live migration

of the data, wherein a first stage comprises:

arming reads for each distributed redundancy controller, wherein the
armed reads for each distributed redundancy controller are to redirect each read
to the destination stripe when the data-migrated token indicating the data is

already migrated from the source stripe.

3. The method of claim 2, wherein the staging comprises a second stage

and the second stage comprises:
arming writes for each of the distributed redundancy controllers, wherein

21



WO 2016/018383 PCT/US2014/049193

each write performed by a distributed redundancy controller is to:

obtain the hierarchal stripe locks for the source stripe and the

destination stripe,
write the data to the destination stripe,
write the data-migrated token to the source stripe, and

release the hierarchal stripe locks for the source stripe and the
destination stripe.

4. The method of claim 1, comprising staging an exit from the live migration

of the data, wherein staging the exit comprises:

determining that the data migrated token is received for all source stripes

in a source memory buffer; and

updating each of the distributed redundancy controllers to only access
the destination stripes in a destination memory buffer.

5. The method of claim 1, wherein obtaining the hierarchal stripe locks

comprises:

ordering one of the hierarchal stripe locks as a primary stripe lock and
another of the hierarchal stripe locks as a secondary stripe lock; and

obtaining the primary stripe lock prior to the secondary stripe lock.

6. The method of claim 5, wherein the ordering of one of the hierarchal
stripe locks is based on stripe numbers and identification numbers of media
controllers for the source stripe and the destination stripe.

7. A computing device for live migration of data from a source stripe to a

destination stripe, comprising a hardware redundancy controller to:
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acquire hierarchal stripe locks for the source stripe and the destination

stripe;
receive one of the data and a data-migrated token from the source stripe;

copy the data from the source stripe to the destination stripe and release
the hierarchal stripe locks for the source stripe and the destination stripe if the

data is received from the source stripe; and

release the hierarchal stripe locks for the source stripe if the data-

migrated token is received from the source stripe.

8. The computing device of claim 7, wherein to copy data from the source
stripe to the destination stripe, the hardware redundancy controller is to write a

data-migrated token to the source stripe.

9. The computing device of claim 7, wherein the hardware redundancy
controller is to arm each distributed redundancy controller to redirect reads to
the destination stripe when the data-migrated token is received as a first stage

prior to the live migration of data.

10. The computing device of claim 9, wherein the hardware redundancy
controller is to arm writes for each of the distributed redundancy controllers,
wherein each write is to acquire the hierarchal stripe locks for the source stripe
and the destination stripe, copy the data from the source stripe to the
destination stripe, write the data-migrated token to the source stripe, and
release the hierarchal stripe locks for the source stripe and the destination stripe

as a second stage prior to the live migration of data.

11.  The computing device of claim 7, wherein the hardware redundancy
controller is to determine that the data-migrated token is received for all source

stripes in a source memory bufferand update each of the distributed
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redundancy controllers to only access the destination stripes in a destination

memory buffer subsequent to the live migration of data.

12. The computing device of claim 7, wherein to acquire the hierarchal stripe

locks, the hardware redundancy controller is to:

order one of the hierarchal stripe locks as a primary stripe lock and

another of the hierarchal stripe locks as a secondary stripe lock; and

acquire the primary stripe lock prior to the secondary stripe lock.

13. A system comprising:
a plurality of redundancy controllers;

a plurality of memory modules each including a media controller and a
memory, wherein the memory modules are connected to the plurality of

redundancy controllers through a memory bus,
wherein each of the redundancy controllers is to:

initiate, by a migration engine, the live migration of data from a source
stripe to a destination stripe, wherein the source stripe and the destination stripe

are in at least one of the plurality of memory modules;

acquire, by a stripe locking module, hierarchal stripe locks for a source

stripe and a destination stripe; and
receive data-migrated token or the data for the source stripe,

wherein in response to receiving the data for the source stripe, write the
data from the source stripe to the destination stripe, write a data-migrated token
to the source stripe, update a parity for the source stripe and the destination
stripe, and release the hierarchal stripe locks for the source stripe and the

destination stripe, and

wherein in response to receiving the data-migrated token, release the

hierarchal stripe locks for the source stripe and the destination stripe.
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14.  The system of claim 13, each of the redundancy controllers is to stage an

entry into the live migration of the data, wherein to stage the entry is to:

arm reads for each distributed redundancy controller, wherein the armed
reads for each distributed redundancy controller are to redirect each read to the

destination stripe when the data-migrated token is received; and

arm writes for each of the distributed redundancy controllers, wherein

each write by a distributed redundancy controller is to:

obtain the hierarchal stripe locks for the source stripe and the

destination stripe,
write the data from the source stripe to the destination stripe,
write the data-migrated token to the source stripe,

update the parity for the source stripe and the destination stripe,

and

release the hierarchal stripe locks for the source stripe and the

destination stripe.

15.  The system of claim 13, wherein the each of the redundancy controllers
is to stage an exit from the live migration of the data, wherein to stage the exit is

to:

determine that the data-migrated token is received for all source stripes

in a source memory buffer; and

update each of the distributed redundancy controllers to only access the

destination stripes in a destination memory buffer.

25



1 "Old

PCT/US2014/049193

1/8

Nich — mm4mmﬂzoo
AHJONIN vIaan . 901
mJNmoz JOVAYILNI
NvOT O/l
S TNAON 3119MWav3ay
AHOWAN
VIl
. I1NAON -
. ONIMOOTIdINLS | le—p
HOSSIDONd
S0l —
ZIT
S Yoz INIONT
—)
>mme§ YITI0YLINOD NOILVHOIN
vIQIn — _
017 301
— YITI0YLINOD AHOWIAN
—NAOWN ADNVANNAIY J1VAINd
AHOWAN

WO 2016/018383

O
O
—



WO 2016/018383

2/8

PCT/US2014/049193

STRIPE1 — ~ ~ ~_
STRIPE2 ___
STRIPE4 ____
MEMORY MEMORY MEMORY
MODULE 1 MODULE 2 MODULE 3
FIG. 2A
250
REDUNDANCY REDUNDANCY REDUNDANCY
CONTROLLER CONTROLLER CONTROLLER
110A 110B 110N
105
SOURCE DESTINATION
STRIPE STRIPE
210 220

FIG. 2B



PCT/US2014/049193

WO 2016/018383

3/8

€ Old

Ve %JES > I
0 s== . .
et (U0 [-pojeibipy 4 1o0jun 1snf Jo) 0N + Ajeg meN oM +——o ]
_ o [eonuap!
o} o Bo_aﬂ_oo aJe suoneoo|
|« BCE (uao1-pajesbiy 1 yoopun jsnf 10) obesoss Aued
Hoojun + Aieg meN ey #IWo
o143 >
g)9|dwo)
{743
~uoxo)-poresby s ]
— " us)o |
ZZ¢ 9jeldwo) ™ | -pejesbiyy e pawnisl
-] —— pesy ay}
Occveeg opp———— | JIRIVTe}
L P S)00|
— | gIE g ed -aduys
-— ] —_ leyolelaly
———91¢€ g ejeq peay I —— Buisn
- ajesBiy
I —
Y EEEQ
- 413
V Blegpesy ]
—_ 07— P [eonuspl
0T% V¥ Alued PIO + Juei9 %007 ale suoneso|
—_— abeio)s Aued
B0 v Ailled % %007 aduig jsenboy HIWO
90t g Aued PlO +1UBID X907 _
DU |
0T g Aed + yo07 eduig onboy—uo— | 706
g0} v ajeibipy
Aued eleq Aued eleq orr t413
02¢ []%4 J8[|013U0) auibug
ading uoneunsag (g) adiyg a2anog (y) Aouepunpay uoneabiy

00



WO 2016/018383 PCT/US2014/049193

40

445

FIG. 4



PCT/US2014/049193

5/8

G Old

..—uqé.\\\'.\\\v

veed peay
uonelbipy
-ald
aandyv
- | —
208 v peay— |
Aued eleq ot ”5T
(34 19103109 Jossadold
ading a2anog (y) Aouepunpay

WO 2016/018383

O
O
o



PCT/US2014/049193

WO 2016/018383

6/8

9 "Old

909 g peay —
|
—usvoL-pareOIN
209 v peay—___|
Aued eleq Aued ereq ort ”oT
02z 0iZ 19]103u09 J0ssadold
ading uoneunsaq (g) adiyg 92anog (y) Aouepunpay

00




PCT/US2014/049193

WO 2016/018383

7/8

L 'Old

| —»
¥EeL %_Q_Eoo
- TEL o0l + Aled MaN L
I .y | ajdwo)———— P [eonuapl
ale suonedo|
@ B¢Z (us¥ol-pejesbip g “Yoolun 151 10) wmm;_ow_wh Rued
$30lun + Aed mep SlUM — o
geL >
gjo|dwo)
« T
a0 -pajelBiyy ey
[ZJp—
v Bled Pio
- 0
Y Bleq pio peoy
—_ . P
. BJ7eledwo)
_ syo0l-aduys
il 91/ g Bleq MaN SjLp [eyoJelaly
— Buisn
v, 9eedpPlo il B
— _— uonelbiy
I G EjeQ PIO peay aandv
U o [eonuap!
v Aed + WUeIS H01 aJe suoReso|
< 807 ebeloys Aued
Y Alleq +y0070dmg 1senboy J WO
907 fed + JuBiS) %007 >
- | .
Y0 g Alled + 007 adujg jsenbey— |
] .
0 veum
Aued eleq Aued eleq orr 413 >oT
022 L]%4 J3]j013U0D auibug
Jossadold
ading uoneunsaq (g) adiig aosunog (y) Aouepunpay uoneibI

004




WO 2016/018383

8/8

00

PCT/US2014/049193

OBTAIN HIERARCHAL STRIPE-LOCKS FOR A SOURCE
STRIPE AND A DESTINATION STRIPE

810

|

RECEIVE A DATA-MIGRATED TOKEN OR DATA FROM
THE SOURCE STRIPE

820

NO

l

WRITE DATA FROM THE SOURCE
STRIPE TO THE DESTINATION
STRIPE
840

'

WRITE A DATA-MIGRATED TOKEN TO
THE SOURCE STRIPE
850

!

RELEASE THE HIERARCHAL STRIPE-
LOCKS FOR THE SOURCE STRIPE
AND THE DESTINATION STRIPE
860

DATA-

MIGRATED TOKEN?

830

FIG. 8

YES

l

RELEASE THE HIERARCHAL STRIPE-
LOCKS FOR THE SOURCE STRIPE
AND THE DESTINATION STRIPE
870




International application No.

PCT/US2014/049193

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 11/10(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 11/10; GO6F 15/16; GO6F 12/00; GO6F 13/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electromic data base consulted during the international search (name of data base and, where practicable, search terms used)
¢KOMPASS(KIPO internal) & Keywords: redundancy, data, migration, lock, token, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See column 11,

line 10 - column 12, line 4; and figure 9.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 8341459 B2 (BALAKUMAR KAUSHIK et al.) 25 December 2012 1-15
See column 2, lines 57-67; column 7, lines 32-63; and figures 1A, 2.
A US 7996608 Bl (PARESH CHATTERJEE et al.) 09 August 2011 1-15
See column 15, line 16 — column 17, line 9; and figures 12-13.
A US 6654830 Bl (JAMES A. TAYLOR et al.) 25 November 2003 1-15
See column 14, line 35 - column 16, line 9; and figures 6-8.
A US 6502165 Bl (GREGORY TAD KISHI et al.) 31 December 2002 1-15
See column 13, line 66 - column 14, line 45; and figure 11.
A US 6467024 B1 (THOMAS WILLIAM BISH et al.) 15 October 2002 1-15

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or after the international
filing date

document which may throw doubts on priotity claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later
than the priority date claimed

g

"

o

wpn

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory undetlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

gn

myn

ngn

Date of the actual completion of the international search
26 February 2015 (26.02.2015)

Date of mailing of the international search report

26 February 2015 (26.02.2015)

Name and mailing address of the ISA/KR
International Application Division
& Korean [ntellectual Property Office
189 Cheongsa-1o, Seo-gu, Dagjeon Metropolitan City, 302-701,
Republic of Korea

Facsimile No. ++82 42 472 3473

Authorized officer

YU, Jaec Chon

Telephone No. +82-42-481-8647

Form PCT/ISA/210 (second sheet) (January 2015)




INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2014/049193
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 8341459 B2 25/12/2012 US 08788878 B2 22/07/2014
US 2009-037679 Al 05/02/2009
US 2013-080827 Al 28/03/2013
US 7996608 Bl 09/08/2011 US 08639878 Bl 28/01/2014
US 6654830 B1 25/11/2003 CN 1241134 C 08/02/2006
CN 1268703 A 04/10/2000
GB 2351375 A 27/12/2000
JP 2000-339098 A 08/12/2000
KR 10-0644011 Bl 13/11/2006
US 06446141 B1 03/09/2002
US 06553408 Bl 22/04/2003
US 06640278 Bl 28/10/2003
US 6502165 Bl 31/12/2002 CN 1159651 C 28/07/2004
CN 1299097 A 13/06/2001
DE 10055603 Al 21/06/2001
DE 10055603 B4 13/12/2007
US 6467024 Bl 15/10/2002 None

Form PCT/ISA/210 (patent family annex) (January 2015)



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report
	Page 37 - wo-search-report

