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(57) ABSTRACT 
Systems and Methods are provided for improving the ability 
to apply modeling techniques similar to relational algebra to 
an expanded number of workflows. By allowing a relational 
algebra type modeling technique to be applied to an 
expanded number of workflows, an increased number of 
data processing workflows can be more readily improved, 
Such as by automatic modification of the sequence of tasks 
in a workflow, to reduce the execution costs for a workflow. 
The relational algebra type modeling technique can also 
allow for identification of portions of data processing work 
flows or queries that share a common input and output. 
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EXTENDING RELATIONAL ALGEBRAFOR 
DATA MANAGEMENT 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application claims the benefit of U.S. Non 
provisional application Ser. No. 14/298,651, titled “Extend 
ing Relational Algebra For Data Management, filed Jun. 6, 
2014, which is hereby expressly incorporated by reference in 
its entirety. 

BACKGROUND 

0002. A database management system (DBMS) is a soft 
ware application that can be utilized to store data into, 
retrieve data from, and modify data stored in a database. The 
DBMS can typically interact with a user, other applications, 
and the database itself to achieve these purposes. It may be 
desirable that DBMSs manage data efficiently. However, the 
amount of data stored in databases has been continuously 
increasing. Furthermore, databases have become increas 
ingly distributed. Many users may be simultaneously work 
ing on data pipelines of the database, and data may be 
flowing along those data pipelines. As such, it has become 
increasingly complex to manage the data efficiently. 
0003 Advances in processor and network capabilities 
have also increased the capabilities of using multiple pro 
cessors working in parallel to perform complex computing 
tasks. This type of parallel processing can sometimes be 
referred to as "cloud computing.” By distributing complex 
tasks across many processors, the overall time to complete 
a complex task can be reduced. Unfortunately, the ability to 
use parallel resources also means that a complex task may be 
performed multiple times by distinct processors, leading to 
waste of resources due to duplication of work. 

SUMMARY 

0004. In various aspects, an expanded relational algebra 
is provided to allow for representation of additional tasks for 
processing of data. This can allow for modeling of an 
increased number of types of data processing workflows 
using principles similar to relational algebra. This can 
improve the ability to detect workflows that can be improved 
by altering the order of operations. This can also improve the 
ability to identify workflows that have portions suitable for 
execution in common so that the loss of resources due to 
tasks being repeated by multiple processors is reduced or 
minimized. 
0005. This summary is provided to introduce a selection 
of concepts in a simplified form that are further described 
below in the detailed description. This summary is not 
intended to identify key features or essential features of the 
claimed Subject matter, nor is it intended to be used in 
isolation as an aid in determining the scope of the claimed 
Subject matter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0006 Implementations of the present disclosure are 
described in detail below with reference to the attached 
drawing figures, wherein: 
0007 FIGS. 1 and 2 schematically show examples of 
workflows and corresponding logical expression represen 
tations of the workflows in an expanded relational algebra. 
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0008 FIG. 3 shows an example of modification of a 
sequence of operators during comparison of logical expres 
S1O.S. 

0009 FIGS. 4A, 4B, 5A, and 5B schematically show 
examples of modification of sequences of operators to 
reduce execution costs for corresponding workflows. 
0010 FIG. 6 schematically shows a network environment 
suitable for performing embodiments of the invention. 
0011 FIG. 7 is a block diagram of an exemplary com 
puting environment Suitable for use in implementing 
embodiments of the present invention. 
0012 FIGS. 8,9, and 10 schematically show examples of 
methods according to some embodiments of the invention. 

DETAILED DESCRIPTION 

0013. In various aspects, methods are provided for 
improving the ability to apply modeling techniques similar 
to relational algebra to an expanded number of workflows. 
By allowing a relational algebra type modeling technique to 
be applied to an expanded number of workflows, an 
increased number of data processing workflows can be more 
readily improved, such as by automatic modification of the 
sequence of tasks in a workflow, to reduce the execution 
costs for a workflow. 
0014. In various aspects, methods are also provided for 
improving the ability to identify queries (and/or correspond 
ing data processing workflows and/or portions of data pro 
cessing workflows) that share a common input and output. 
When queries or data processing workflows with common 
inputs and outputs are identified, the common portion(s) of 
a workflow can be performed once, and the output from the 
workflow can then be shared with multiple consumers of the 
workflow output. The multiple users can use the workflow 
output directly for data analysis, as an input for additional 
workflow(s), or for any other convenient purpose. 
0015 The identification of common portions of a query 
or corresponding data processing workflow can be facili 
tated in part by using an expanded version of relational 
algebra. Conventional relational algebra is defined by a set 
of operators that satisfy a listing of algebraic rules. The 
conventional relational algebra group of operators can be 
expanded to include a non-traditional operator, Such as a 
“reduce operator. While the reduce operator may satisfy 
less than all of the conventional relational algebra require 
ments, it can be constructed to work with only modest 
modifications of the relational algebra requirements. By 
expanding the list of permitted operators to include a reduce 
operator, additional functionality can be modeled using the 
expanded set of operators. This can allow relational algebra 
style techniques to be applied to a larger set of potential data 
workflows, allowing for increased identification of oppor 
tunities for elimination of redundant calculations. This can 
include both identifying existing workflows that can be 
combined, as well as analyzing new workflows provided by 
a user to determine if a new workflow matches an existing 
workflow. 
0016 Relational algebra is a well-established tool for 
modeling queries in relational data processing, such as 
queries for retrieving information from large databases 
and/or large data sets. Conventional relational algebra 
includes two parts: (1) A limited set of “operators' which 
could apply to a query for an input dataset; and (2) A limited 
set of “rules” among the defined operators. In conventional 
relational algebra, the primitive operators include operations 
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Such as projection, selection, and various joins and/or 
unions. The rules in conventional relational algebra corre 
spond to equalities which describe if two operators can be 
switched/combined/split within a query plan tree under 
certain circumstances, without changing the result of the 
query plan. 
0017. In modeling a workflow (such as a workflow 
constructed based on a query for a data source), a logical 
expression in a relational algebra can be developed the 
corresponds to the workflow. For a workflow that has a 
corresponding relational algebra model or logical expres 
Sion, the tasks in the workflow can correspond to operators 
in the logical expression. 
0018. Because of the well-defined operators and rules 
within conventional relational algebra, a query that can be 
modeled using relational algebra can be readily manipulated 
to alter the order of the operators in the model. A modified 
query and/or modified corresponding workflow can then be 
constructed based on the modified sequence of operators in 
the logical expression of the relational algebra model. In 
Some aspects, the modified workflow corresponding to the 
modified logical expression can have a reduced execution 
cost relative to the original workflow, Such as the original 
workflow that was constructed based on a received query. 
0019. An additional potential benefit of modifying the 
sequence of operators in a relational algebra model is that 
various rearrangements of the operators in a first modeled 
workflow can be performed in order to try to match the 
modeled workflow with another existing model of a work 
flow. If the operators in a model of a workflow, or in at least 
an initial portion of the model, can be matched with another 
existing model of the workflow by rearranging the operators 
according to the rules of relational algebra, the models and 
the corresponding portions of the workflows are the same. 
This can allow the matched workflow portions to be per 
formed only once and then the results can be provided to 
multiple end users for consumption. 
0020. One difficulty with modeling queries and/or work 
flows with conventional relational algebra is that only a 
limited number of operators are provided in the relational 
algebra. In particular, the operators described in a relational 
algebra model primarily correspond to operators that sort 
and select from an existing data set. For example, conven 
tional operators in relational algebra may specify a first set 
of columns that are used to identify the columns used for an 
operation, Such as specifying columns using a "projection” 
operator. Conventional operators may also specify a second 
set of columns that identify the rows to use for an operation, 
Such as specifying the required data values within a row for 
a row to be selected in a “selection' operation. Unfortu 
nately, conventional operators do not include an option for 
specifying a new column of data that is distinct from the 
columns present in the data prior to use of the conventional 
operator. This means that conventional relational algebra is 
not suitable for modeling tasks that perform an operation 
(such as an arithmetic calculation) on a column (or table) of 
data such as determining an average value or Summing a 
group of numbers having a given attribute. As a result, many 
practical tasks for processing of large data tables and/or 
large data sets cannot be modeled using conventional rela 
tional algebra. This can limit the ability to automatically 
identify situations where queries and/or workflows represent 
the same data workflow, and in particular can limit the 
ability to identify queries and/or workflows where rear 

Apr. 27, 2017 

rangement of tasks could allow for identification of common 
portions of two (or more) workflows. 
0021. In various aspects, the above difficulties can be 
overcome in part by creating an expanded set of relational 
algebra operators. For example, the set of relational algebra 
operators that can be used for modeling a query or workflow 
can be expanded to include an operator that can represent 
various arithmetic tasks that result in creation of one or more 
additional data columns. The additional data columns can 
contain data or dimension values that may not be originally 
present in the data set, and/or that may produce a final data 
set with a different cardinality than a cardinality Suggested 
by the original data set. In this discussion, this new operator 
used to provide an expanded relational algebra is referred to 
as a “Reduce” operator. 
0022. In various aspects, a “Reduce' operator can be 
incorporated into relational algebra modeling (using an 
expanded relational algebra) to allow for modeling of tasks 
that involve creation of a new type of output column not 
present in an original data set. For a Reduce operator as 
defined herein, three types of columns are specified in order 
to model a corresponding task. The first type of column(s), 
referred to herein as “C1', is one or more columns that 
specify how data is grouped or identified for use in the task 
corresponding to the Reduce operation. This can be similar 
to the specification of columns for a conventional relational 
algebra projection' type operator, where an entire column 
is specified, or this can be similar to the specification of 
columns for a “selection' type operator, where an operation 
is performed only on rows where the value or dimension in 
a grouping column matches a specified value or dimension 
in the C1 definition. The data specified in C1 also represents 
a portion of the data output from the Reduce operation. In 
this discussion, the C1 columns for a Reduce operator can be 
referred to as “grouping or “group-by' columns for the 
Reduce operator. 
0023 The second type of column(s), referred to herein as 
“C2, is a specification of one or more new output columns 
that are included in the output from the tasks corresponding 
to the Reduce operation. This is a specification not used for 
conventional relational algebra modeling. The new output 
column(s) can represent any convenient type of output that 
can be generated based on the data of one or more selected 
input columns. 
0024. The third type of column(s), referred to herein as 
“C3', is a specification of one or more columns that are used 
to generate the values that will populate the new C2 output 
column (or columns). The values in the C3 column(s) can be 
used in any convenient manner to generate the values for the 
C2 column(s). Such as by performing arithmetic operations 
on the values. It is noted that if the C3 column(s) are desired 
as part of the output from the task corresponding to the 
Reduce operation, the C3 columns should also be specified 
as part of the C1 group-by column specification. 
0025. The above provides a general description for a 
Reduce operator for modeling of data workflows or (corre 
sponding queries) using an expanded relational algebra. An 
example of a general format for writing a Reduce operator 
during modeling would be to write the Reduce operator as 
Reduce C2(C3), GroupBy=C1 (T), where T is the data set 
that the reduce operation is performed upon. It is noted that 
for relational algebra modeling purposes, the specific nature 
of the manipulation performed on the C3 column(s) in order 
to generate the C2 output column(s) is not specified. Instead, 
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similar to conventional relational algebra modeling, the 
nature of the operation is reflected only in the labels used to 
specify the columns. Thus, in order to verify that two reduce 
operators perform a similar operation, the column label or 
labels for the C2 output columns would need to be similar. 
0026. The above definition for a Reduce operator pro 
vides a general case for the operator. To further illustrate the 
nature of the definition of the Reduce operator for modeling 
a data workflow, two boundary or limiting examples of a 
Reduce operator can be considered. In a first example, a 
Reduce operator can be used to model a task where each row 
in a data table is treated as a “group' for performing a task. 
This can be described as a situation where the C1 columns 
are defined as “all columns' within a data set. In a second 
boundary example, the entire data set or other input relation 
can be used as the “group' for performing a task. This can 
be described as a situation where the C1 columns are defined 
as “null for the corresponding Reduce operator in a logical 
expression for modeling the workflow. For both of these 
boundary type examples, the output columns C2 and the 
columns that provide the input for manipulation C3 can be 
specified as described above. 
0027 Based on the above definition for a Reduce opera 

tor, the following are examples of rules for when the position 
of a Reduce operator can be switched in a logical expression 
(for modeling a workflow) with another operator. For 
example, a Reduce operator and a 'selection operator can 
be switched in a workflow model if the grouping columns 
(C1) for the Reduce operator are the same as or a Superset 
of the columns for the selection operator. For a “projection' 
operator, the Reduce operator and the projection operator 
can be switched in a workflow model if the input columns 
(C2) for the Reduce operator correspond to only the columns 
specified by the “projection' operator. It is noted that for 
Such a “projection' operator having the same columns 
specified as the input columns by the Reduce operator, the 
projection operator would be redundant when located after 
the Reduce operator and thus can be removed from the 
model for the workflow. 
0028 Determining whether a Reduce operator can be 
switched with one of the various types of join' or union 
operators in a logical expression based on an expanded 
relational algebra is dependent on the nature of the join 
operation. In general, Reduce operators as defined herein 
cannot be switched with join' operators. In the general 
case, since the nature of the data manipulation within a task 
modeled by a Reduce operator is not captured within the 
model, the presence of additional rows (including duplicate 
rows) within a data table may alter the output generated by 
the task corresponding to the Reduce operator. As a result, 
a Reduce operator cannot generally be Switched with a 
join' operator in a logical expression (model) in an 

expanded relational algebra. However, there are exceptions 
to this general rule for two specific types of join' operators 
0029. One exception is a situation where a workflow 
model contains a Reduce operator and a 'semi-join' opera 
tor. A 'semi-join' operator represents a task involving two 
data tables. In a task modeled by a 'semi-join' operator, a 
first data table contains one or more tuples (rows) of data, a 
second table contains at least one tuple of data, and the first 
and second tables have at least one column X corresponding 
to the same category. For example, both tables may have a 
column titled “Department” which specifies a value/dimen 
sion Such as “accounting”, “human resources’, or “engi 
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neering’. In this situation, a task corresponding to a semi 
join operator can be performed by selecting each row from 
the first table where the tuple value in column X is the same 
as one of the values in the corresponding column X in the 
second table. Using the above example, if the second table 
contains only the values “accounting and "human 
resources' for the various rows in the second table, a task 
corresponding to a semi-join operation would select the 
rows from the first table having the values “accounting” or 
“human resources’ in column X while not selecting the rows 
from the first table having the value “engineering'. For a 
semi-join type operator, if the group-by columns C1 of the 
Reduce operator are the same or a Superset of the join key 
for the join operator, the operators can be switched in a 
model workflow. 
0030 The other exception is when a workflow model 
contains a Reduce operator and a “foreign key join' opera 
tor. In a task corresponding to a “foreign key join', a first 
table includes a column Y corresponding to a category, a 
second table also includes the column Y, and both tables 
include at least one tuple (row) of data. The values in column 
Y of the first table are used as a “foreign' key for the second 
table. The output of the foreign key join is to supplement the 
tuples or rows from the first table with the values from the 
second table by adding the columns from the second table 
different from the column Y. The values added to each tuple 
or row in the first table based on the values in the row of the 
second table that have the same value (or key). When a 
workflow model contains a Reduce operator and a “foreign 
key join' operator, if all of the input C3 columns for the 
Reduce operator are from the table that contains the foreign 
key (the first table as described above), and if the group-by 
columns C1 are the same or a Superset of the foreign key, 
then the Reduce operator and the “foreign key join' operator 
can be switched in the workflow model. It is noted that if a 
Reduce operator and a “foreign key join' operator are to be 
Switched, any columns in the second table can be included 
in the group-by columns C1 of the Reduce operator so that 
the values from the second table are present in the output 
from the Reduce operator. 
0031 Relational algebra also generally permits the merg 
ing and splitting of operators of the same type when mod 
elling a workflow. However, Reduce operators in an 
expanded relational algebra cannot be merged or split. 

Altering Order of Operations in Data Flows 
0032. One of the potential benefits of being able to apply 
an extended relational algebra model to workflows that 
include a task corresponding to a Reduce operation is the 
ability to automatically identify opportunities to optimize 
workflows to reduce the amount of data being processed. In 
other words, the cost of execution of a workflow can 
potentially be reduced or minimized by modifying the order 
of execution of the tasks in the workflow, while still obtain 
ing the same end result. Because relational algebra repre 
sents tasks using a limited set of operators bound by a 
limited set of rules, alternative task workflows can be 
developed using automated processes with a reduced or 
minimized concern that an alternative workflow will change 
the final product. 
0033 FIGS. 4A and 4B show an example of a use of 
conventional relational algebra for improving a data pro 
cessing workflow. In FIG. 4A, a user has Submitted a query 
to identify the names of actors who were in the movie “Rain 
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Man”. In order to determine these actors, the user develops 
a query that first joins a data set related to movies with 
information from a data set for actors, based on actors who 
have the same “movie id' as an “id' from the movie data 
set. This is an example of a “foreign key join' operation. The 
user then selects information related to the movie "Rain 
Man” from this joined data set. Finally, the user identifies the 
actors in the movie by projecting just the names of the actors 
from the data set selected in the previous task. FIG. 4A 
represents a relational algebra model of this type of query. 
0034. The hypothetical original user query in FIG. 4A, as 
modeled using a relational algebra, can be improved to 
reduce the amount of data that is passed between tasks in the 
workflow. In FIG. 4A, the join' operation is performed on 
the entire original “movie' data set and the entire original 
“actor data set. The amount of data processing, however, 
can be reduced or minimized by switching the order of 
operations for the selection of the movie “Rain Man” and the 
join operation. Under the rules of relational algebra, the 
select operation can be switched with the join operation as 
shown in FIG. 4B. In the improved relational algebra model 
in FIG. 4B, the join operation is now performed on only the 
portion of the movie data set corresponding to the movie 
“Rain Man'. In a corresponding workflow constructed based 
on the modified logical expression in FIG. 4B, this means 
that only the row (or rows) corresponding to “Rain Man” are 
processed in the task corresponding to the join operation, 
leading to a Substantial savings in the amount of data that is 
processed. This demonstrates the ability of relational algebra 
to allow for automatic identification of alternative (im 
proved) workflows based on a user query. In other words, 
relational algebra modeling can allow an untrained user to 
submit a workflow in a manner that is logical for the user 
while still allowing the resulting workflow that is performed 
by a processor to correspond to a workflow with improved 
characteristics, such as reduced execution costs. 
0035 FIGS. 5A and 5B provide a simplified example of 
how expanding a relational algebra to include a Reduce 
operation can allow additional data workflows to be con 
sidered for improvement. In FIG. 5A, a user query similar to 
the query in FIG. 4A is modeled. However, in the hypo 
thetical query shown in FIG. 5A, the user is interested in 
determining the total number of academy award nomina 
tions that have been received by the actors in the movie 
“Rain Man'. In FIG. 5A, the user once again starts with a 
join of the “Movie' data set and the “Actor data set. The 
user than adds to the query a task to determine the total 
number of Academy Award nominations received by the 
actors in each movie. As shown in FIG. 5A, this corresponds 
to a Reduce operation on the grouping (C1) of “all columns' 
to use the value of all Academy Award nominations for each 
actor (input column or C3) to arrive at a combined value 
(output column C2) for each movie. It is noted that “all 
columns” is used as the group-by or C1 value so that the 
Reduce operation maintains all other data in the data set 
while performing this operation. Thus, the net outcome of 
the Reduce operation on the data set is to add a column to 
the data set. Next, similar to the query modeled in FIG. 4A, 
the user selects the movie “Rain Man'. Finally, the user 
query identifies the number of Academy Award nominations 
by projecting this value. 
0036. For the task flow represented in FIG.5A, due to the 
presence of a task corresponding to a Reduce operation, 
conventional relational algebra would not be suitable for 
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modeling the task flow, which would prevent any automatic 
optimization efforts using the rules of conventional rela 
tional algebra. However, using an expanded relational alge 
bra, the task corresponding to a Reduce operation can be 
modeled. Based on the rules for the Reduce operator, it is 
noted that the select operation involves a subset of the 
group-by (C1) columns of the Reduce operation. As a result, 
the select operation can be switched with the Reduce opera 
tion, and then Switched with the join operation similar to 
FIG. 4B to arrive at the improved task flow in FIG. 5B. Once 
again, a Substantial savings in data manipulation can be 
achieved, as the task flow in FIG. 5B only requires deter 
mining the number of academy award nominations for the 
movie Rain Man, as opposed to all movies in the Movie data 
Set. 

Example: Application of Expanded Relational 
Algebra Modeling to Data Mining Workflows 

0037 Another example of use of an expanded relational 
algebra is in identifying workflows (i.e. task flows) or data 
queries for use in creating workflows that have common 
tasks, so that a series of tasks can be performed once instead 
of having multiple processors repeat the same series of tasks. 
Data mining of large data sets is an example of an applica 
tion where this feature of the expanded relational algebra 
can be useful. 
0038. Data mining for large data sets can require a large 
number of related tasks. The data for the large data set can 
be obtained or accumulated, possibly from multiple sources 
having different data formats. The data can then be cleaned 
in order to extract the information desired for data mining 
from the various data formats. The information can then be 
Sorted or placed in a catalog, so that information of various 
types can be found in an expected location. One or more 
types of analysis can then be performed on the Sorted data. 
For large data sets, each data processing/transforming/ana 
lyzing operation can take several hours using a large number 
of computers. 
0039. In order to achieve a desired set of results, multiple 
types of analysis on a set of data may be required. For 
example, it may be desirable to perform one or more time 
series analysis operations, one or more frequency type 
analysis operations, and one or more clustering analysis 
operations on a data set to achieve a desired set of outputs. 
These operations, possibly in the form of modules, can be 
arranged in a proper order to achieve a result and then 
Submitted together as a job. 
0040. One difficulty in assembling a job for data mining 
can be related to creating a job that will become parallel in 
an effective manner. A portion of creating an effective 
parallel job for data mining of a large data set can be related 
to dividing a repetitive task performed on the large data set 
over a plurality of processors. This type of parallelization 
can be handled directly by a variety of known parallelization 
algorithms. A more difficult type of parallelization can be 
related to identifying locations within a long computational 
flow where a given calculation is repeated for the same data 
set more than once. For example, a first set of computations 
may be required for a frequency analysis on a data set. A 
second set of computations may be required for a different 
frequency analysis. A third set of computations may be 
required for a clustering analysis. Although each type of 
analysis is distinct, there can be locations in each set of 
computations where a given function is applied to the same 
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data set. Conventionally, each set of computations can be 
performed without reference to the other sets, resulting in 
the repeated calculation on the data set being performed 
three times. However, if the repeated calculations can be 
identified in advance, the common calculations could be 
saved and/or applied to each relevant location. Instead of 
performing the common calculations multiple times, a cal 
culation can be performed once and a data lookup used to 
provide the data for the remaining instances of the common 
calculation. 
0041 An expanded relational algebra as described herein 
can be used to facilitate assembling jobs for data mining. As 
an example, a series of basic tasks involved in data mining 
can be written in a conventional relational programming 
language. This can be a general programming language Such 
as SQL or the SCOPE scripting language that can be used for 
handling parallel jobs in the Cosmos parallel operating 
environment. Alternatively, some or all of the basic tasks can 
also be in a language built upon a procedure language. Such 
as C++ or C#, or a functional programming language. Such 
as “Haskell' or “Fi”. By using an expanded relational 
algebra to represent the data mining workflow, the tasks that 
can be effectively modeled are not limited to tasks involving 
existing data from a data set. Instead, a Reduce operator can 
be used to also model tasks in the data mining workflow that 
result in creation of new columns, such as aggregated data 
values. 
0042. The following provides a schematic example of 
using expanded relational algebra to identify common tasks 
within multiple workflows. The following data mining tasks 
are intended as examples, as use of expanded relational 
algebra can be applied generally to a variety of data mining 
tasks and/or to other tasks involving manipulation of large 
data sets, such as developing a workflow based on a database 
query Submitted by a user. 
0043. In this example, a user can represent or model a 
data mining job using an expanded relational algebra. The 
goal of the data mining job in this example is to perform two 
types of data mining analysis on data from search engine 
logs. One type of analysis can be an analysis to improve 
document relevance for documents that may be responsive 
to search queries that include multiple high frequency key 
words. In search queries received by search engines, some 
keywords may appear in received search queries with a 
frequency above a threshold value. In order to provide a 
convenient example for illustrating the application of mod 
eling with an expanded relational algebra, this simple test for 
determining the presence of high frequency keywords can be 
used. 

0044) A second type of data mining can be used to 
investigate regional differences in the use of high frequency 
keywords. Queries containing high frequency keywords can 
be identified. The identified queries can then be sorted into 
various regions or locations. The regions can correspond to 
any convenient geographic area. Such as a Zip code, a city, 
a state, or an arbitrary geographic region. The click through 
rates and/or page view times can then be analyzed on a per 
region basis, to determine if any location based or regional 
based factors should influence the document rankings. 
0045. In order to perform this data analysis, one or more 

initial logfiles can be obtained from, for example, a search 
engine that collects data on queries Submitted to the search 
engine. The search queries and accompanying data can be 
extracted from Some type of original data source. Such as a 
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raw logfile from the search engine, or possibly a logfile that 
has been refined using one or more standard filtering tech 
niques to remove, for example, unparseable data, queries 
related to undesirable topics, or data that appears to be 
related to an error in operation of the search engine. To 
facilitate analysis, the search queries and accompanying data 
from the logfile can also be organized to have an expected 
format, Such as by constructing a data table containing 
information for each query. For example, multiple columns 
in the table can be used so that each keyword in the query 
is placed in a separate column within the row for a query. 
Other columns could indicate situations where other types of 
information form part of the query, Such as using one or 
more images and/or image features as part of the query. 
Various other types of data can be stored in the table (or 
possibly multiple tables) for the Subsequent analysis. 
0046. The data analysis tasks described above can be 
performed by building up an overall data mining workflow 
computation from a series of Smaller tasks that are per 
formed on an initial data set. First, Smaller tasks for per 
forming the multiple high frequency keyword analysis can 
be identified. The tasks described here can describe a 
computation level that is still relatively high compared to 
basic functions. This high level of abstraction is used for 
convenience here to illustrate the concept. One example of 
identifying Smaller tasks, shown in FIG. 1, can be to have a 
task for extracting search queries 111 to form a set of search 
queries that only contain keywords, as opposed to queries 
that are also based in part on images, videos, or other 
non-keyword input. It is noted that this filtering task (and all 
of the other tasks in the various examples) are provided here 
to demonstrate the modeling of a data flow, and are not 
required. Another task can be counting instances of key 
words 112 in the extracted queries to determine any key 
words that occur frequently enough to be considered "high 
frequency' keywords. Still another task can be filtering the 
extracted search queries 113 to keep queries containing a 
high frequency keyword. Yet another task can be identifying 
queries 114 with more than one high frequency keyword. 
0047. Each of the above tasks can be represented by an 
operator in a model based on an expanded relational algebra. 
As shown in FIG. 1, extracting search queries from an initial 
logfile. This task can be represented as a selection task 131 
in an expanded relational algebra. For example, one of the 
columns in the logfile can be a Boolean type data column 
which indicates whether or not non-keyword input was used 
as part of the query. In Such an example, the filtering task 111 
can be expressed as selection task 131 as shown in FIG. 1, 
with the selection criteria being based on the “Non Keyword 
Input value being equal to “False'. Note that this is 
provided as just an example, and those of skill in the art 
would readily understand that other methods of organizing 
a data logfile and/or formulating a selection operation can be 
used to achieve a similar outcome. 

0048. The next task of counting instances of keywords 
112 represents an operation that cannot be readily modeled 
using conventional relational algebra. As a result, due to the 
presence of task 112, the sequence of tasks 111-114 would 
not be suitable for modeling using conventional relational 
algebra, thus creating difficulties and/or preventing the use 
of a relational algebra model for comparing sequence of 
tasks 111-114 with other data mining workflows. However, 
using an expanded relational algebra, task 112 can be 
modeled as a Reduce operation 132. For Reduce operation 
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132, one option is to have the “group-by' columns (C1) 
correspond to an “all columns' definition. For modeling task 
112, the goal of the task is to determine keyword frequency, 
and add the keyword frequency value for each keyword to 
the data set. Although the operation is labeled as a “reduce 
operation, in this example for modeling task 112, it may be 
desirable to retain all columns of data for further analysis. 
This is how the Reduce operator 132 is shown in FIG. 1. 
Alternatively, if the columns from the data set that are of 
interest are known, the specification for C1 for the Reduce 
operator could correspond to all of the known desired data 
columns. With regard to the output columns (C2), the output 
columns correspond to the keyword frequency for each 
keyword in a query. For example, if the original logfile used 
as the data source contains 10 columns for keywords, 
possibly having labels “Keyword 1' to “Keyword 10, the 
new output columns in C2 can be “FreqKeyword 1' to 
FreqKeyword 10. In such an example, the input columns 
(C3) would then correspond to the columns “Keyword 1' to 
“Keyword 10, as these columns represent the columns for 
aggregating the number of occurrences of a given keyword. 
0049. The next task is filtering of queries 113 to identify 
the queries containing a high frequency keyword. This can 
be modeled as a selection operation 133, where the selection 
criteria corresponds to having any of columns “FreqKey 
word 1' to “FreqKeyword 10’ contain a value greater than a 
threshold value. Task 114 can similarly be modeled as a 
selection operation 134, where two of the columns 
“FreqKeyword 1' to “FreqKeyword 10” contain a value 
greater than the threshold value. 
0050. A similar task breakdown can be provided for the 
analysis of queries containing a high frequency keyword on 
a regional basis. As an example, it may be desirable to 
analyze queries Submitted from a geographic region, such as 
the Pacific Northwest, that contain a high frequency key 
word. For this example, the desired analysis is limited to 
analyzing the click-through analysis based on the number of 
results that are accessed on an initial results page. Thus, only 
the data columns related to accessing results need to be 
maintained. The data columns related to, for example, the 
amount of time a user spends interacting with a page, can be 
dropped from the data to reduce the amount of data being 
processed. 
0051 FIG. 2 shows an example of the tasks for perform 
ing a regional analysis and for modeling such a workflow. In 
the example shown in FIG. 2, one task can correspond to a 
task for extracting search queries 211 to form a set of search 
queries that only contain keywords. This task is performed 
on the same original data set used for the tasks shown in 
FIG. 1. Another task can be reducing the number of data 
columns that are required 212, since only data related to 
number of results accessed on a results page is needed for 
Subsequent analysis. Still another task can be filtering que 
ries 213 based on the having the location “Pacific North 
west’ associated with the queries. Yet another task can be 
determining the frequencies of keywords in queries. Still 
another task can be filtering the extracted search queries 214 
to keep queries containing a high frequency keyword. This 
sequence of tasks can provide a smaller data set that is 
Suitable for a focused investigation of regional search activ 
ity. 
0052. In FIG. 2, task 221 for modeling extraction of 
search queries containing only keywords can be modeled as 
a selection operation 241, similar to the selection operation 
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131 in FIG. 1. Task 222 can be modeled as a projection 
operation 242. Task 223 can be modeled as a selection 
operation 243, with rows containing the correct value in the 
“location' column being selected. Tasks 224 and 225 can be 
modeled as a Reduce operation 244 and a Selection opera 
tion 245, similar to the Reduce operation 132 and Selection 
operation 133. 
0053 Based on the tasks in the two workflows, it is not 
initially apparent that the tasks in FIG. 1 are sufficiently 
similar to the tasks in FIG. 2 to allow for any common data 
processing. However, by using the expanded relational alge 
bra, the model of the tasks in FIG. 2 can be rearranged to 
determine whether any common portions exist for the work 
flow. In FIG. 3, column A shows the modeled operations 
from the first workflow as the first set of operations. The 
model of the tasks from FIG. 2 is the second set of 
operations (column B). In comparing the workflows from 
the examples in FIGS. 1 and 2, it is noted that the first 
operator is the same in both workflows. However, the second 
operator in column A is a Reduce operator, while the second 
operator in column B is a projection. 
0054 Using the rules of the expanded relational algebra, 
the Reduce operator in column B can be switched with the 
preceding operations in order to investigate whether both 
modeled workflows are the same. Column C shows a switch 
in the model position for selection operation 243 and Reduce 
operation 244. Under the rules of the relational algebra, this 
Switch is permitted, as the group-by columns (C1) of the 
Reduce operator 244 are a superset of the columns used for 
the selection 243. However, no further switching can be 
performed for the Reduce operator 244, as the input columns 
for the Reduce operator 244 are not the same as the columns 
for the projection operation 242. As a result, the modeled 
workflows from the Examples in FIGS. 1 and 2 only share 
the initial selection operation 131 and 241. In the corre 
sponding workflows, this means that either task 111 or task 
221 can be performed, and both workflows can share the 
common output from this task. 
0055. It is noted that if projection operation 222 were not 
present, the second operator in column C would be Reduce 
operator 244. This would allow for elimination of one of 
tasks 112 or 224, thus allowing for additional savings in 
computational time. Alternatively, if the projection opera 
tion 222 were based on the same columns as the input 
columns (C2) for the Reduce operation 224, the operators 
242 and 244 in column C could be switched, which would 
also allow for additional savings. 
0056. The above examples described a comparison of 
two existing workflows for data mining. In various aspects, 
instead of modeling an existing workflow, the expanded 
relational algebra can be used to model a query that would 
lead to construction of a workflow. 

Data Processing Environments 
0057 FIG. 7 is a block diagram of an exemplary com 
puting environment Suitable for use in implementations of 
the present disclosure. In particular, the exemplary computer 
environment is shown and designated generally as comput 
ing device 700. Computing device 700 is but one example 
of a suitable computing environment and is not intended to 
Suggest any limitation as to the scope of use or functionality 
of the invention. Neither should computing device 700 be 
interpreted as having any dependency or requirement relat 
ing to any one or combination of components illustrated. 
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0058. The implementations of the present disclosure may 
be described in the general context of computer code or 
machine-useable instructions, including computer-execut 
able instructions such as program components, being 
executed by a computer or other machine, such as a personal 
data assistant or other handheld device. Generally, program 
components, including routines, programs, objects, compo 
nents, data structures, and the like, refer to code that 
performs particular tasks or implements particular abstract 
data types. Implementations of the present disclosure may 
be practiced in a variety of system configurations, including 
handheld devices, consumer electronics, general-purpose 
computers, specialty computing devices, etc. Implementa 
tions of the present disclosure may also be practiced in 
distributed computing environments where tasks are per 
formed by remote-processing devices that are linked through 
a communications network. 

0059. With continued reference to FIG. 7, computing 
device 700 includes bus 702 that directly or indirectly 
couples the following devices: memory 704, one or more 
processors 706, one or more presentation components 708, 
input/output (I/O) ports 710, I/O components 712, and 
power supply 714. Bus 702 represents what may be one or 
more busses (such as an address bus, data bus, or combi 
nation thereof). Although the devices of FIG. 7 are shown 
with lines for the sake of clarity, in reality, delineating 
various components is not so clear, and metaphorically, the 
lines would more accurately be grey and fuZZy. For example, 
one may consider a presentation component such as a 
display device to be one of I/O components 712. Also, 
processors, such as one or more processors 706, have 
memory. The present disclosure hereof recognizes that Such 
is the nature of the art, and reiterates that FIG. 7 is merely 
illustrative of an exemplary computing environment that can 
be used in connection with one or more implementations of 
the present disclosure. Distinction is not made between such 
categories as “workstation,” “server,” “laptop,” “handheld 
device.” etc., as all are contemplated within the scope of 
FIG. 7 and refer to “computer or “computing device.” 
0060 Computing device 700 typically includes a variety 
of computer-readable media. Computer-readable media can 
be any available media that can be accessed by computing 
device 700 and includes both volatile and nonvolatile media, 
removable and non-removable media. By way of example, 
and not limitation, computer-readable media may comprise 
computer storage media and communication media. Com 
puter storage media includes both volatile and nonvolatile, 
removable and non-removable media implemented in any 
method or technology for storage of information Such as 
computer-readable instructions, data structures, program 
modules or other data. 

0061 Computer storage media includes RAM, ROM, 
EEPROM, flash memory or other memory technology, CD 
ROM, digital versatile disks (DVD) or other optical disk 
storage, magnetic cassettes, magnetic tape, magnetic disk 
storage or other magnetic storage devices. Computer storage 
media does not comprise a propagated data signal, and the 
definition of computer storage media in the discussion 
herein explicitly excludes such propagated data signals and 
other modulated data signals. 
0062 Communication media typically embodies com 
puter-readable instructions, data structures, program mod 
ules or other data in a modulated data signal Such as a carrier 
wave or other transport mechanism and includes any infor 
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mation delivery media. The term “modulated data signal 
means a signal that has one or more of its characteristics set 
or changed in Such a manner as to encode information in the 
signal. By way of example, and not limitation, communi 
cation media includes wired media Such as a wired network 
or direct-wired connection, and wireless media Such as 
acoustic, RF, infrared and other wireless media. Combina 
tions of any of the above should also be included within the 
Scope of computer-readable media. 
0063 Memory 704 includes computer-storage media in 
the form of volatile and/or nonvolatile memory. Memory 
704 may be removable, nonremovable, or a combination 
thereof. Exemplary memory includes solid-state memory, 
hard drives, optical-disc drives, etc. Computing device 700 
includes one or more processors 706 that read data from 
various entities such as bus 702, memory 704 or I/O 
components 712. One or more presentation components 708 
presents data indications to a person or other device. Exem 
plary one or more presentation components 708 include a 
display device, speaker, printing component, vibrating com 
ponent, etc. I/O ports 710 allow computing device 700 to be 
logically coupled to other devices including I/O components 
712, some of which may be built in computing device 700. 
Illustrative I/O components 712 include a microphone, 
joystick, game pad, satellite dish, Scanner, printer, wireless 
device, etc. 
0064. With additional reference to FIG. 6, a block dia 
gram depicting an exemplary network environment 600 
suitable for use in embodiments of the invention is 
described. The environment 600 is but one example of an 
environment that can be used in embodiments of the inven 
tion and may include any number of components in a wide 
variety of configurations. The description of the environ 
ment 600 provided herein is for illustrative purposes and is 
not intended to limit configurations of environments in 
which embodiments of the invention can be implemented. 
0065. The environment 600 includes a network 604, a 
user device 606, a query log data store 608 and an expanded 
relational algebra library 612. The environment also 
includes a processors 602 and 603 which are part of the 
cloud computing resources that can be accessed by jobs run 
using cloud operating environment 609. The network 604 
includes any computer network Such as, for example and not 
limitation, the Internet, an intranet, private and public local 
networks, and wireless data or telephone networks. The user 
device 606 can be any computing device, such as the 
computing device 500, from which a search query can be 
provided. For example, the user device 606 might be a 
personal computer, a laptop, a server computer, a wireless 
phone or device, a personal digital assistant (PDA), or a 
digital camera, among others. In an embodiment, a plurality 
of user devices 606, such as thousands or millions of user 
devices 606, can be connected to the network 604. Similarly, 
processors 602 and 603 are representative of any number of 
processors that could be connected by a network 604 for use 
in a parallel or cloud computing environment. Optionally, 
one or more of processors 602 or 603 could be a user device 
as well. Cloud operating environment 609 represents an 
operating system or interface that allows a user to Submit 
jobs for execution in the environment. 
0.066 Query log data store 608 can represent one or more 
databases or other data storage structures that contain query 
log information that can be targeted for data mining. The 
data in query log data store 608 can originally be based on 
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one or more types of search engine interfaces. A user can use 
expanded relational algebra library 612 to model data pro 
cessing workflows. The library 612 can also include auto 
matic routines for identifying potential variations of a work 
flow that are permitted under the rules of a relational 
algebra, either for identification of workflows with reduced 
execution costs or determining that two workflows having a 
common sequence of tasks. 

Additional Examples 
0067 FIG. 8 shows an example for a method of using an 
expanded relational algebra to modify a workflow based on 
a received query for a data set. In FIG. 8, a query defining 
a first workflow is received 810. The first workflow defined 
by the query has a corresponding first logical expression in 
an expanded relational algebra. The corresponding first 
logical expression includes an instance of a Reduce operator. 
The ordering of one or more operators in the first logical 
expression is then modified 820 relative to a position of the 
instance of the Reduce operator. This can correspond to 
moving one or more operators from a position prior to the 
Reduce operator in the sequence to a position after the 
Reduce operator, moving one or more operators from a 
position after the Reduce operator in the sequence to a 
position prior to the Reduce operator; or a combination 
thereof. Based on the modified first logical expression, a 
modified first workflow can be constructed 830. At least a 
portion of the modified first workflow can then be executed 
840 to perform the desired data processing operation 
requested via the original query. 
0068 FIG. 9 shows an example for a method of using an 
expanded relational algebra to modify a workflow in order 
to identify common tasks between the beginning portions of 
two workflows. In FIG. 9, a first workflow is received 910. 
The first workflow has a corresponding first logical expres 
sion in an expanded relational algebra. The corresponding 
first logical expression includes an instance of a Reduce 
operator. Optionally, the first workflow can correspond to a 
workflow constructed based on a query. A second workflow 
can also be received 920. The ordering of one or more 
operators in the first logical expression is then modified 930 
relative to a position of the instance of the Reduce operator. 
This can correspond to moving one or more operators from 
a position prior to the Reduce operator in the sequence to a 
position after the Reduce operator, moving one or more 
operators from a position after the Reduce operator in the 
sequence to a position prior to the Reduce operator; or a 
combination thereof. In various aspects, modifying the 
sequence of operators in the first logical expression can 
increase the number of operators in common at the begin 
ning of the modified first logical expression and the second 
logical expression relative to the number of operators in 
common for the first logical expression and the second 
logical expression. Based on the modified first logical 
expression, a modified first workflow can be constructed 
940. A beginning portion of the second workflow can then 
be executed 950. The beginning portion of the second 
workflow can correspond to operators that are in common 
between the beginning portion of the second workflow and 
the beginning portion of the modified first workflow. Execu 
tion 950 of the beginning portion of the second workflow 
can result in generation of an intermediate data set. An 
additional portion of the second workflow can then be 
executed 960 using the intermediate data set as an input. The 
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additional portion of the second workflow can correspond to 
operators in the second logical expression after the operators 
in common with the modified first logical expression. Simi 
larly, a portion of the modified first workflow 970 can be 
executed using the intermediate data set as an input. The 
portion of the modified first workflow can correspond to 
operators in the modified first logical expression after the 
common operators. 
0069 FIG. 10 shows an example for a method of using an 
expanded relational algebra to modify two workflows in 
order to identify common tasks between the beginning 
portions of the workflows. In FIG. 10, similar to FIG. 9, a 
first workflow and a second workflow are received 1010. 
The ordering of one or more operators in the first logical 
expression is then modified 1020 relative to a position of the 
instance of a Reduce operator. This can correspond to 
moving one or more operators from a position prior to the 
Reduce operator in the sequence to a position after the 
Reduce operator, moving one or more operators from a 
position after the Reduce operator in the sequence to a 
position prior to the Reduce operator, or a combination 
thereof. In various aspects, modifying the sequence of 
operators in the first logical expression can increase the 
number of operators in common at the beginning of the 
modified first logical expression and the second logical 
expression relative to the number of operators in common 
for the first logical expression and the second logical expres 
Sion. Similarly, the ordering of one or more operators in the 
second logical expression can be modified 1030 relative to 
a position of the instance of the Reduce operator. Based on 
the modified first logical expression and modified second 
logical expression, a modified first workflow and modified 
second workflow can be constructed 1040. A beginning 
portion of the modified second workflow can then be 
executed 1050. The beginning portion of the modified 
second workflow can correspond to operators that are in 
common between the beginning portion of the modified 
second workflow and the beginning portion of the modified 
first workflow. Execution 1050 of the beginning portion of 
the modified second workflow can result in generation of an 
intermediate data set. An additional portion of the modified 
second workflow can then be executed 960 using the inter 
mediate data set as an input. The additional portion of the 
second workflow can correspond to operators in the second 
logical expression after the operators in common with the 
modified first logical expression. Similarly, a portion of the 
modified first workflow 970 can be executed using the 
intermediate data set as an input. The portion of the modified 
first workflow can correspond to operators in the modified 
first logical expression after the common operators. 

Additional Embodiments 

Embodiment 1 

0070 A computer-implemented method for managing a 
distributed database, comprising: receiving a query defining 
a first workflow, the first workflow corresponding to tasks 
for processing data from one or more data sources, the query 
having a corresponding first logical expression comprising a 
sequence of operators from an expanded relational algebra, 
at least one operator in the first logical expression being an 
instance of a reduce operator, modifying an ordering of the 
operators in the first logical expression to form a modified 
first logical expression, the modifying of the ordering of the 
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operators in the first logical expression comprising a) mov 
ing one or more operators from a position prior to the 
instance of the reduce operator to a position after the 
instance of the reduce operator, b) moving one or more 
operators from a position after the instance of the reduce 
operator to a position prior to the instance of the reduce 
operator, or c) a combination thereof; constructing a modi 
fied first workflow corresponding to the modified first logi 
cal expression; and executing at least a portion of the 
modified first workflow, wherein the modified first workflow 
has a lower execution cost than an execution cost of the first 
workflow. 

Embodiment 2 

0071. The computer-implemented method of Embodi 
ment 1, wherein moving one or more operators from a 
position prior to the instance of the reduce operator to a 
position after the instance of the reduce operator comprises 
moving a foreign key join operator from a position prior to 
the instance of the reduce operator to a position after the 
instance of the reduce operator. 

Embodiment 3 

0072 The computer-implemented method of Embodi 
ment 1 or 2, wherein executing at least a portion of the 
modified first workflow comprises executing tasks corre 
sponding to all operators in the modified first logical expres 
S1O. 

Embodiment 4 

0073. The computer-implemented method of Embodi 
ment 1 or 2, wherein executing at least a portion of the 
modified first workflow comprises executing tasks corre 
sponding to fewer than all tasks in the first workflow defined 
by the query. 

Embodiment 5 

0074. A computer-implemented method for managing a 
distributed database, comprising: receiving a first workflow 
corresponding to tasks for processing data from one or more 
data sources, the first workflow having a corresponding first 
logical expression comprising a sequence of operators from 
an expanded relational algebra, at least one operator in the 
first logical expression being an instance of a reduce opera 
tor; receiving a second workflow corresponding to tasks for 
processing data from the one or more data sources, the 
second workflow having a corresponding second logical 
expression comprising a sequence of operators from the 
expanded relational algebra, at least one operator in the 
second logical expression being an instance of the reduce 
operator, modifying an ordering of the operators in the first 
logical expression to form a modified first logical expres 
Sion, a beginning sequence of the modified first logical 
expression having an increased number of operators in 
common with a beginning sequence of the second logical 
expression relative to a beginning sequence of the first 
logical expression, the modifying of the ordering of the 
operators in the first logical expression comprising a) mov 
ing one or more operators from a position prior to the 
instance of the reduce operator to a position after the 
instance of the reduce operator, b) moving one or more 
operators from a position after the instance of the reduce 
operator to a position prior to the instance of the reduce 
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operator, or c) a combination thereof, optionally modifying 
an ordering of the operators in the second logical expression 
to form a modified second logical expression, a beginning 
sequence of the modified first logical expression having an 
increased number of operators in common with a beginning 
sequence of the modified second logical expression relative 
to a number of operators in common between a beginning 
sequence of the first logical expression and a beginning 
sequence of the second logical expression; constructing a 
modified first workflow corresponding to the modified first 
logical expression; optionally constructing a modified sec 
ond workflow corresponding to the optionally modified 
second logical expression; executing a beginning portion of 
the (optionally modified) second workflow to form an inter 
mediate data set, the executed portion of the (optionally 
modified) second workflow corresponding to the operators 
in common from the beginning sequence of the modified 
first logical expression; executing an additional portion of 
the (optionally modified) second workflow using the inter 
mediate data set; and executing a portion of the modified 
first workflow using the intermediate data set, the executed 
portion of the modified first workflow corresponding to 
operators in the sequence for the modified first logical 
expression located after the operators in common with the 
(optionally modified) second logical expression. 

Embodiment 6 

0075. The computer-implemented method of Embodi 
ment 5, wherein the modified first workflow has a lower 
execution cost than an execution cost of the first workflow. 

Embodiment 7 

0076. The computer-implemented method of Embodi 
ment 5, wherein a combined execution cost of the modified 
first workflow and the (optionally modified) second work 
flow is lower than a combined execution cost of the first 
workflow and the (optionally modified) second workflow. 

Embodiment 8 

0077. The computer-implemented method of any of 
Embodiments 5-7, wherein the first workflow is constructed 
based on a query. 

Embodiment 9 

0078. The computer-implemented method of any of 
Embodiments 5-8, wherein the beginning sequence of the 
second logical expression has no operators in common with 
the beginning sequence of the first logical expression. 

Embodiment 10 

007.9 The computer-implemented method of any of 
Embodiments 5-9, wherein moving one or more operators 
from a position prior to the instance of the reduce operator 
to a position after the instance of the reduce operator 
comprises moving a foreign key join operator from a posi 
tion prior to the instance of the reduce operator to a position 
after the instance of the reduce operator. 

Embodiment 11 

0080. The computer-implemented method of any of 
Embodiments 5-10, wherein moving one or more operators 
from a position after the instance of the reduce operator to 
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a position prior to the instance of the reduce operator 
comprises moving a foreign key join operator from a posi 
tion after the instance of the reduce operator to a position 
prior to the instance of the reduce operator. 

Embodiment 12 

0081. The computer-implemented method of any of 
Embodiments 5-11, wherein executing a portion of the 
modified first workflow using the intermediate data set 
comprises executing tasks corresponding to all operators in 
the modified first logical expression located after the opera 
tors in common with the (optionally modified) second 
logical expression. 

Embodiment 13 

0082. The computer-implemented method of any of 
Embodiments 5-11, wherein executing a portion of the 
modified first workflow using the intermediate data set 
comprises executing tasks corresponding to fewer than all 
operators in the modified first logical expression located 
after the operators in common with the (optionally modified) 
second logical expression. 
0083. The subject matter of embodiments of the inven 
tion is described with specificity herein to meet statutory 
requirements. However, the description itself is not intended 
to limit the scope of this patent. Rather, the inventors have 
contemplated that the claimed Subject matter might be 
embodied in other ways, to include different steps or com 
binations of steps similar to the ones described in this 
document, in conjunction with other present or future tech 
nologies. Moreover, although the terms “step’ and/or 
“block” may be used herein to connote different elements of 
methods employed, the terms should not be interpreted as 
implying any particular order among or between various 
steps herein disclosed unless and except when the order of 
individual steps is explicitly described. 
0084 Embodiments of the invention have been described 
to be illustrative rather than restrictive. It will be understood 
that certain features and Subcombinations are of utility and 
may be employed without reference to other features and 
subcombinations. This is contemplated by and is within the 
Scope of the claims. 
What is claimed is: 
1. A computer-implemented method for managing a dis 

tributed database, the method comprising: 
receiving a query defining a first workflow, the first 

workflow corresponding to tasks for processing data 
from one or more data sources, the query having a 
corresponding first logical expression comprising a 
sequence of operations defined by operators from an 
expanded relational algebra, at least one operator in the 
first logical expression being an instance of a reduce 
operator; 

modifying an ordering of the operations in the first logical 
expression to form a modified first logical expression, 
the modifying of the ordering of the operations in the 
first logical expression comprising a) moving one or 
more operators from a position prior to the instance of 
the reduce operator to a position after the instance of 
the reduce operator, b) moving one or more operators 
from a position after the instance of the reduce operator 
to a position prior to the instance of the reduce operator, 
or c) a combination thereof; 
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constructing a modified first workflow corresponding to 
the modified first logical expression; and 

executing at least a portion of the modified first workflow, 
wherein the modified first workflow has a lower execu 
tion cost than an execution cost of the first workflow. 

2. The computer-implemented method of claim 1, 
wherein moving one or more operators from a position prior 
to the instance of the reduce operator to a position after the 
instance of the reduce operator comprises moving a foreign 
key join operator from a position prior to the instance of the 
reduce operator to a position after the instance of the reduce 
operator. 

3. The computer-implemented method of claim 1, 
wherein executing at least a portion of the modified first 
workflow comprises executing tasks corresponding to all 
operators in the modified first logical expression. 

4. The computer-implemented method of claim 1, 
wherein executing at least a portion of the modified first 
workflow comprises executing tasks corresponding to fewer 
than all tasks in the first workflow defined by the query. 

5. A computer-implemented system comprising: 
one or more sensors configured to provide sensor data 

from at least one user device; 
one or more processors; and 
one or more computer storage media storing computer 

useable instructions that, when executed by the one or 
more processors, implement a method for managing a 
distributed database, the method comprising: 

receiving a first workflow corresponding to tasks for 
processing data from one or more data sources, the first 
workflow having a corresponding first logical expres 
sion comprising a sequence of operations defined by 
operators from an expanded relational algebra, at least 
one operator in the first logical expression being an 
instance of a reduce operator, 

modifying an ordering of the operations in the first logical 
expression to form a modified first logical expression, 
the modifying of the ordering of the operations in the 
first logical expression comprising a) moving one or 
more operators from a position prior to the instance of 
the reduce operator to a position after the instance of 
the reduce operator, b) moving one or more operators 
from a position after the instance of the reduce operator 
to a position prior to the instance of the reduce operator, 
or c) a combination thereof; 

constructing a modified first workflow corresponding to 
the modified first logical expression; and 

executing at least a portion of the modified first workflow. 
6. The computer-implemented system of claim 5, wherein 

the modified first workflow has a lower execution cost than 
an execution cost of the first workflow. 

7. The computer-implemented system of claim 5, wherein 
the first workflow is constructed based on a query. 

8. The computer-implemented system of claim 5, wherein 
the modifying includes increasing a number of operators in 
common with a sequence of a second logical expression of 
a second workflow. 

9. The computer-implemented system of claim 5, wherein 
moving one or more operators from a position prior to the 
instance of the reduce operator to a position after the 
instance of the reduce operator comprises moving a foreign 
key join operator from a position prior to the instance of the 
reduce operator to a position after the instance of the reduce 
operator. 
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10. The computer-implemented system of claim 5, 
wherein moving one or more operators from a position after 
the instance of the reduce operator to a position prior to the 
instance of the reduce operator comprises moving a foreign 
key join operator from a position after the instance of the 
reduce operator to a position prior to the instance of the 
reduce operator. 

11. The computer-implemented system of claim 5, 
wherein the modifying includes increasing a number of 
operators in common with a sequence of a second logical 
expression of a second workflow, and the executing uses an 
intermediate data set formed by executing a portion of the 
second workflow corresponding to operators added by the 
increasing the number of operators. 

12. The computer-implemented system of claim 5, 
wherein the modifying includes increasing a number of 
operations in common with a sequence of a second logical 
expression of a second workflow, and the executing uses an 
intermediate data set formed by executing a portion of the 
second workflow corresponding to operations added by the 
increasing the number of operations. 

13. One or more computer storage devices storing com 
puter-useable instructions that, when used by one or more 
computing devices, cause the one or more computing 
devices to perform a method for managing a distributed 
database, the method comprising: 

receiving a first workflow corresponding to tasks for 
processing data from one or more data sources, the first 
workflow having a corresponding first logical expres 
sion comprising a sequence of operations defined by 
operators from an expanded relational algebra, at least 
one operator in the first logical expression being an 
instance of a reduce operator; 

modifying an ordering of the operations in the first logical 
expression to form a modified first logical expression, 
the modifying of the ordering of the operations in the 
first logical expression comprising a) moving one or 
more operators from a position prior to the instance of 
the reduce operator to a position after the instance of 
the reduce operator, b) moving one or more operators 
from a position after the instance of the reduce operator 
to a position prior to the instance of the reduce operator, 
or c) a combination thereof; 
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constructing a modified first workflow corresponding to 
the modified first logical expression; and 

executing at least a portion of the modified first workflow. 
14. The one or more computer storage devices of claim 

13, wherein the modifying includes increasing a number of 
operators in common with a sequence of a second logical 
expression of a second workflow. 

15. The one or more computer storage devices of claim 
13, wherein the first workflow is constructed based on a 
query. 

16. The one or more computer storage devices of claim 
13, wherein the modified first workflow has a lower execu 
tion cost than an execution cost of the first workflow. 

17. The one or more computer storage devices of claim 
13, wherein moving one or more operators from a position 
prior to the instance of the reduce operator to a position after 
the instance of the reduce operator comprises moving a 
foreign key join operator from a position prior to the 
instance of the reduce operator to a position after the 
instance of the reduce operator. 

18. The one or more computer storage devices of claim 
13, wherein moving one or more operators from a position 
after the instance of the reduce operator to a position prior 
to the instance of the reduce operator comprises moving a 
foreign key join operator from a position after the instance 
of the reduce operator to a position prior to the instance of 
the reduce operator. 

19. The one or more computer storage devices of claim 
13, wherein the modifying includes increasing a number of 
operators in common with a sequence of a second logical 
expression of a second workflow, and the executing uses an 
intermediate data set formed by executing a portion of the 
second workflow corresponding to operators added by the 
increasing the number of operators. 

20. The one or more computer storage devices of claim 
13, wherein the modifying includes increasing a number of 
operations in common with a sequence of a second logical 
expression of a second workflow, and the executing uses an 
intermediate data set formed by executing a portion of the 
second workflow corresponding to operations added by the 
increasing the number of operations. 
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