
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0116268 A1

YAN et al.

US 201701 16268A1

(43) Pub. Date: Apr. 27, 2017

(54)

(71)

(72)

(21)

(22)

(63)

EXTENDING RELATIONAL ALGEBRAFOR
DATA MANAGEMENT

Applicant: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(US)

Inventors: ANYAN, Beijing (CN); JING LUO,
Being (CN); YI LUO, Beijing (CN);
NAN LI, Beijing (CN)

Appl. No.: 15/395,308

Filed: Dec. 30, 2016

Related U.S. Application Data
Continuation of application No. 14/298,651, filed on
Jun. 6, 2014, now Pat. No. 9,558,240.

Extract Search
Gueries

(Keywords only)
111

Determine
Keyword

Frequencies
112

Filter Gueries
based on High
Frequency
Keywords

113

Filter GRUeries
based on Multiple
High Frequency

Keywords
114

Publication Classification

Int. C.
G06F 7/30
U.S. C.
CPC. G06F 17/30454 (2013.01); G06F 17/30466

(2013.01); G06F 17/30595 (2013.01)

(51)

(52)
(2006.01)

(57) ABSTRACT
Systems and Methods are provided for improving the ability
to apply modeling techniques similar to relational algebra to
an expanded number of workflows. By allowing a relational
algebra type modeling technique to be applied to an
expanded number of workflows, an increased number of
data processing workflows can be more readily improved,
Such as by automatic modification of the sequence of tasks
in a workflow, to reduce the execution costs for a workflow.
The relational algebra type modeling technique can also
allow for identification of portions of data processing work
flows or queries that share a common input and output.

SELECT (Non
Keyword Input =

False)
131

REDUCE (C2 =
Freqkeyword 1 -
10; C3 = Keyword
1 - 10; C1 = All

Columns)
132

SELECT (Any of
Freqkeyword 1 -
10> Threshold)

133

SELECT (Any two
of Freqkeyword 1
- 10> Threshold)

134

Patent Application Publication

Extract Search
Gueries

(Keywords only)
111

Determine
Keyword

Frequencies
112

Filter Gueries
based on High
Frequency
Keywords

113

Filter Gueries
based on Multiple
High Frequency

Keywords
114

FIG. 1

Apr. 27, 2017. Sheet 1 of 12

SELECT (Non
Keyword Input =

False)
131

REDUCE (C2 =
Freqkeyword 1 -
10; C3 = Keyword
1 - 10; C1 = All

Columns)
132

SELECT (Any of
Freqkeyword 1 -
10> Threshold)

133

SELECT (Any two
of FreqKeyword 1
- 10 > Threshold)

134

US 2017/O116268 A1

Patent Application Publication

Extract Search
Gueries

(Keywords only)
221

Filter Data to
Keep Selected

Click information
222

Filter Gueries
based on Location

223

Determine
Keyword

Frequencies
224

Filter Gueries
based on High
Frequency
Keywords

225

FIG. 2

Apr. 27, 2017. Sheet 2 of 12

SELECT (Non
Keyword Input =

False)
241.

PROJECTION
(Number of results
accessed only)

242

SELECT (Location
= Pacific

Northwest)
243

REDUCE (C2 =
Freqkeyword 1 -
10; C3 = Keyword
1 - 10; C1 = All

Columns)
244

SELECT (Any of
Freqkeyword 1 -
10> Threshold)

245

US 2017/O116268 A1

Patent Application Publication

SELECT (Non
Keyword Input =

False)
131

REDUCE (C2 =
Freqkeyword 1 -
10; C3 = Keyword
1 - 10; C1 = All

Columns)
132

SELECT (Any of
Freqkeyword 1 -
10> Threshold)

133

SELECT (Any two
of Freqkeyword 1
- 10 > Threshold)

134

FIG. 3

Apr. 27, 2017. Sheet 3 of 12

SELECT (Non
Keyword Input =

False)
241

PROJECTION
(Number of results
accessed only)

242

SELECT (Location
= Pacific

Northwest)
243

REDUCE (C2 =
Freqkeyword 1 -
10; C3 = Keyword
1 - 10; C1 = All

Columns)
244

SELECT (Any of
Freqkeyword 1 -
10 > Threshold)

245

SELECT (Non
Keyword Input =

False)
241

PROJECTION
(Number of results
accessed only)

242

REDUCE (C2 =
Freqkeyword 1 -
10; C3 = Keyword
1 - 10; C1 = All

Columns)
244

SELECT (Location
= Pacific

Northwest)
243

SELECT (Any of
Freqkeyword 1 -
10> Threshold)

245

US 2017/O116268 A1

US 2017/O116268 A1 Apr. 27, 2017. Sheet 4 of 12 Patent Application Publication

ººººººººº Logro??a

Viz ’5)IH

US 2017/O116268 A1 Apr. 27, 2017. Sheet 5 of 12 Patent Application Publication

__,

US 2017/O116268 A1 Apr. 27, 2017. Sheet 6 of 12 Patent Application Publication

VG "?INH

Pºvou obv = Prawow\for

suunkov-ºdnoº?suomeuluou opv)suoneuluou-ope ?eorawow?onaERH

US 2017/O116268 A1 Apr. 27, 2017. Sheet 7 of 12 Patent Application Publication

__,
8-IG "?INH

Patent Application Publication Apr. 27, 2017. Sheet 8 of 12 US 2017/O116268 A1

612

Expanded
Relational

Algebra Library

User Device
Guery Log
Data Store

600

Cloud

G FIG. 6

Processor
Processor

N602 N603

Patent Application Publication Apr. 27, 2017. Sheet 9 of 12 US 2017/O116268 A1

MEMORY

712

I/O PORT(S)

718

PROCESSOR(S)

714

I/O COMPONENTS

720

PRESENTATION
COMPONENT(S)

716

POWER SUPPLY

722

710

FIG 7

Patent Application Publication Apr. 27, 2017. Sheet 10 of 12 US 2017/0116268 A1

RECEIVE GUERY DEFINING FIRST WORKFLOW
HAVING ACORRESPONDING FIRST LOGICAL 810
EXPRESSION COMPRISING AN INSTANCE OF A

REDUCE OPERATOR

MODIFY ORDERING OF ONE ORMORE

OPERATORS INFIRST LOGICAL EXPRESSION
RELATIVE TO POSITION OF INSTANCE OF

REDUCE OPERATOR

CONSTRUCT MODIFIED FIRST WORKFLOW
CORRESPONDING TO MODIFIED FIRST

LOGICAL EXPRESSION 830

EXECUTE AT LEAST A PORTION OF MODIFIED
FIRST WORKFLOW 840

FIG. 8

Patent Application Publication Apr. 27, 2017. Sheet 11 of 12 US 2017/0116268 A1

RECEIVE FIRST WORKFLOW HAVING
CORRESPONDING FIRST LOGICAL

EXPRESSION COMPRISING AN INSTANCE OF A
REDUCE OPERATOR 910

RECEIVE SECOND WORKFLOW HAVING
CORRESPONDING SECOND LOGICAL

EXPRESSION COMPRISING AN INSTANCE OF AV 920
REDUCE OPERATOR

MODIFY ORDERING OF ONE OR MORE
OPERATORS IN FIRST LOGICAL EXPRESSION
RELATIVE TO POSITION OF INSTANCE OF

REDUCE OPERATOR 930

CONSTRUCT MODIFIED FIRST WORKFLOW
CORRESPONDING TO MODIFIED FIRST

LOGICAL EXPRESSION 940

EXECUTE BEGINNING PORTION OF SECOND
WORKFLOW CORRESPONDING TO

OPERATORS IN COMMON FROM BEGINNING 950
SECRUENCE OF MODIFIED FIRST LOGICAL

EXPRESSION

EXECUTE ADDITIONAL PORTION OF SECOND 960
WORKFLOW USING INTERMEDIATE DATASET

EXECUTE PORTION OF MODIFIED FIRST 970
WORKFLOW CORRESPONDING TO

OPERATORS AFTER OPERATORS IN COMMON
WITH SECOND LOGICAL EXPRESSION

FIG. 9

Patent Application Publication Apr. 27, 2017. Sheet 12 of 12 US 2017/0116268 A1

RECEIVE FIRST AND SECOND WORKFLOWS
HAVING CORRESPONDING LOGICAL

EXPRESSIONS COMPRISING AN INSTANCE OF
A REDUCE OPERATOR 1010

MODIFY ORDERING OF ONE OR MORE
OPERATORS IN FIRST LOGICAL EXPRESSION
RELATIVE TO POSITION OF INSTANCE OF

REDUCE OPERATOR
1020

MODIFY ORDERING OF ONE OR MORE
OPERATORS IN SECOND LOGICAL

EXPRESSION RELATIVE TO POSITION OF
INSTANCE OF REDUCE OPERATOR 1030

CONSTRUCT MODIFIED FIRST AND SECOND
WORKFLOWS CORRESPONDING TO MODIFIED
FIRST AND SECOND LOGICAL EXPRESSIONS 1040

EXECUTE BEGINNING PORTION OF MODIFIED
SECOND WORKFLOW CORRESPONDING TO
OPERATORS IN COMMON FROM BEGINNING 1050
SECRUENCE OF MODIFIED FIRST LOGICAL

EXPRESSION

EXECUTE ADDITIONAL PORTION OF MODIFIED 1060
SECOND WORKFLOW USING INTERMEDIATE

DATASET

EXECUTE PORTION OF MODIFIED FIRST 1070
WORKFLOW CORRESPONDING TO

OPERATORS AFTER OPERATORS IN COMMON
WITH MODIFIED SECOND LOGICAL

EXPRESSION

FIG 1 O

US 2017/01 16268 A1

EXTENDING RELATIONAL ALGEBRAFOR
DATA MANAGEMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims the benefit of U.S. Non
provisional application Ser. No. 14/298,651, titled “Extend
ing Relational Algebra For Data Management, filed Jun. 6,
2014, which is hereby expressly incorporated by reference in
its entirety.

BACKGROUND

0002. A database management system (DBMS) is a soft
ware application that can be utilized to store data into,
retrieve data from, and modify data stored in a database. The
DBMS can typically interact with a user, other applications,
and the database itself to achieve these purposes. It may be
desirable that DBMSs manage data efficiently. However, the
amount of data stored in databases has been continuously
increasing. Furthermore, databases have become increas
ingly distributed. Many users may be simultaneously work
ing on data pipelines of the database, and data may be
flowing along those data pipelines. As such, it has become
increasingly complex to manage the data efficiently.
0003 Advances in processor and network capabilities
have also increased the capabilities of using multiple pro
cessors working in parallel to perform complex computing
tasks. This type of parallel processing can sometimes be
referred to as "cloud computing.” By distributing complex
tasks across many processors, the overall time to complete
a complex task can be reduced. Unfortunately, the ability to
use parallel resources also means that a complex task may be
performed multiple times by distinct processors, leading to
waste of resources due to duplication of work.

SUMMARY

0004. In various aspects, an expanded relational algebra
is provided to allow for representation of additional tasks for
processing of data. This can allow for modeling of an
increased number of types of data processing workflows
using principles similar to relational algebra. This can
improve the ability to detect workflows that can be improved
by altering the order of operations. This can also improve the
ability to identify workflows that have portions suitable for
execution in common so that the loss of resources due to
tasks being repeated by multiple processors is reduced or
minimized.
0005. This summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the detailed description. This summary is not
intended to identify key features or essential features of the
claimed Subject matter, nor is it intended to be used in
isolation as an aid in determining the scope of the claimed
Subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 Implementations of the present disclosure are
described in detail below with reference to the attached
drawing figures, wherein:
0007 FIGS. 1 and 2 schematically show examples of
workflows and corresponding logical expression represen
tations of the workflows in an expanded relational algebra.

Apr. 27, 2017

0008 FIG. 3 shows an example of modification of a
sequence of operators during comparison of logical expres
S1O.S.

0009 FIGS. 4A, 4B, 5A, and 5B schematically show
examples of modification of sequences of operators to
reduce execution costs for corresponding workflows.
0010 FIG. 6 schematically shows a network environment
suitable for performing embodiments of the invention.
0011 FIG. 7 is a block diagram of an exemplary com
puting environment Suitable for use in implementing
embodiments of the present invention.
0012 FIGS. 8,9, and 10 schematically show examples of
methods according to some embodiments of the invention.

DETAILED DESCRIPTION

0013. In various aspects, methods are provided for
improving the ability to apply modeling techniques similar
to relational algebra to an expanded number of workflows.
By allowing a relational algebra type modeling technique to
be applied to an expanded number of workflows, an
increased number of data processing workflows can be more
readily improved, such as by automatic modification of the
sequence of tasks in a workflow, to reduce the execution
costs for a workflow.
0014. In various aspects, methods are also provided for
improving the ability to identify queries (and/or correspond
ing data processing workflows and/or portions of data pro
cessing workflows) that share a common input and output.
When queries or data processing workflows with common
inputs and outputs are identified, the common portion(s) of
a workflow can be performed once, and the output from the
workflow can then be shared with multiple consumers of the
workflow output. The multiple users can use the workflow
output directly for data analysis, as an input for additional
workflow(s), or for any other convenient purpose.
0015 The identification of common portions of a query
or corresponding data processing workflow can be facili
tated in part by using an expanded version of relational
algebra. Conventional relational algebra is defined by a set
of operators that satisfy a listing of algebraic rules. The
conventional relational algebra group of operators can be
expanded to include a non-traditional operator, Such as a
“reduce operator. While the reduce operator may satisfy
less than all of the conventional relational algebra require
ments, it can be constructed to work with only modest
modifications of the relational algebra requirements. By
expanding the list of permitted operators to include a reduce
operator, additional functionality can be modeled using the
expanded set of operators. This can allow relational algebra
style techniques to be applied to a larger set of potential data
workflows, allowing for increased identification of oppor
tunities for elimination of redundant calculations. This can
include both identifying existing workflows that can be
combined, as well as analyzing new workflows provided by
a user to determine if a new workflow matches an existing
workflow.
0016 Relational algebra is a well-established tool for
modeling queries in relational data processing, such as
queries for retrieving information from large databases
and/or large data sets. Conventional relational algebra
includes two parts: (1) A limited set of “operators' which
could apply to a query for an input dataset; and (2) A limited
set of “rules” among the defined operators. In conventional
relational algebra, the primitive operators include operations

US 2017/01 16268 A1

Such as projection, selection, and various joins and/or
unions. The rules in conventional relational algebra corre
spond to equalities which describe if two operators can be
switched/combined/split within a query plan tree under
certain circumstances, without changing the result of the
query plan.
0017. In modeling a workflow (such as a workflow
constructed based on a query for a data source), a logical
expression in a relational algebra can be developed the
corresponds to the workflow. For a workflow that has a
corresponding relational algebra model or logical expres
Sion, the tasks in the workflow can correspond to operators
in the logical expression.
0018. Because of the well-defined operators and rules
within conventional relational algebra, a query that can be
modeled using relational algebra can be readily manipulated
to alter the order of the operators in the model. A modified
query and/or modified corresponding workflow can then be
constructed based on the modified sequence of operators in
the logical expression of the relational algebra model. In
Some aspects, the modified workflow corresponding to the
modified logical expression can have a reduced execution
cost relative to the original workflow, Such as the original
workflow that was constructed based on a received query.
0019. An additional potential benefit of modifying the
sequence of operators in a relational algebra model is that
various rearrangements of the operators in a first modeled
workflow can be performed in order to try to match the
modeled workflow with another existing model of a work
flow. If the operators in a model of a workflow, or in at least
an initial portion of the model, can be matched with another
existing model of the workflow by rearranging the operators
according to the rules of relational algebra, the models and
the corresponding portions of the workflows are the same.
This can allow the matched workflow portions to be per
formed only once and then the results can be provided to
multiple end users for consumption.
0020. One difficulty with modeling queries and/or work
flows with conventional relational algebra is that only a
limited number of operators are provided in the relational
algebra. In particular, the operators described in a relational
algebra model primarily correspond to operators that sort
and select from an existing data set. For example, conven
tional operators in relational algebra may specify a first set
of columns that are used to identify the columns used for an
operation, Such as specifying columns using a "projection”
operator. Conventional operators may also specify a second
set of columns that identify the rows to use for an operation,
Such as specifying the required data values within a row for
a row to be selected in a “selection' operation. Unfortu
nately, conventional operators do not include an option for
specifying a new column of data that is distinct from the
columns present in the data prior to use of the conventional
operator. This means that conventional relational algebra is
not suitable for modeling tasks that perform an operation
(such as an arithmetic calculation) on a column (or table) of
data such as determining an average value or Summing a
group of numbers having a given attribute. As a result, many
practical tasks for processing of large data tables and/or
large data sets cannot be modeled using conventional rela
tional algebra. This can limit the ability to automatically
identify situations where queries and/or workflows represent
the same data workflow, and in particular can limit the
ability to identify queries and/or workflows where rear

Apr. 27, 2017

rangement of tasks could allow for identification of common
portions of two (or more) workflows.
0021. In various aspects, the above difficulties can be
overcome in part by creating an expanded set of relational
algebra operators. For example, the set of relational algebra
operators that can be used for modeling a query or workflow
can be expanded to include an operator that can represent
various arithmetic tasks that result in creation of one or more
additional data columns. The additional data columns can
contain data or dimension values that may not be originally
present in the data set, and/or that may produce a final data
set with a different cardinality than a cardinality Suggested
by the original data set. In this discussion, this new operator
used to provide an expanded relational algebra is referred to
as a “Reduce” operator.
0022. In various aspects, a “Reduce' operator can be
incorporated into relational algebra modeling (using an
expanded relational algebra) to allow for modeling of tasks
that involve creation of a new type of output column not
present in an original data set. For a Reduce operator as
defined herein, three types of columns are specified in order
to model a corresponding task. The first type of column(s),
referred to herein as “C1', is one or more columns that
specify how data is grouped or identified for use in the task
corresponding to the Reduce operation. This can be similar
to the specification of columns for a conventional relational
algebra projection' type operator, where an entire column
is specified, or this can be similar to the specification of
columns for a “selection' type operator, where an operation
is performed only on rows where the value or dimension in
a grouping column matches a specified value or dimension
in the C1 definition. The data specified in C1 also represents
a portion of the data output from the Reduce operation. In
this discussion, the C1 columns for a Reduce operator can be
referred to as “grouping or “group-by' columns for the
Reduce operator.
0023 The second type of column(s), referred to herein as
“C2, is a specification of one or more new output columns
that are included in the output from the tasks corresponding
to the Reduce operation. This is a specification not used for
conventional relational algebra modeling. The new output
column(s) can represent any convenient type of output that
can be generated based on the data of one or more selected
input columns.
0024. The third type of column(s), referred to herein as
“C3', is a specification of one or more columns that are used
to generate the values that will populate the new C2 output
column (or columns). The values in the C3 column(s) can be
used in any convenient manner to generate the values for the
C2 column(s). Such as by performing arithmetic operations
on the values. It is noted that if the C3 column(s) are desired
as part of the output from the task corresponding to the
Reduce operation, the C3 columns should also be specified
as part of the C1 group-by column specification.
0025. The above provides a general description for a
Reduce operator for modeling of data workflows or (corre
sponding queries) using an expanded relational algebra. An
example of a general format for writing a Reduce operator
during modeling would be to write the Reduce operator as
Reduce C2(C3), GroupBy=C1 (T), where T is the data set
that the reduce operation is performed upon. It is noted that
for relational algebra modeling purposes, the specific nature
of the manipulation performed on the C3 column(s) in order
to generate the C2 output column(s) is not specified. Instead,

US 2017/01 16268 A1

similar to conventional relational algebra modeling, the
nature of the operation is reflected only in the labels used to
specify the columns. Thus, in order to verify that two reduce
operators perform a similar operation, the column label or
labels for the C2 output columns would need to be similar.
0026. The above definition for a Reduce operator pro
vides a general case for the operator. To further illustrate the
nature of the definition of the Reduce operator for modeling
a data workflow, two boundary or limiting examples of a
Reduce operator can be considered. In a first example, a
Reduce operator can be used to model a task where each row
in a data table is treated as a “group' for performing a task.
This can be described as a situation where the C1 columns
are defined as “all columns' within a data set. In a second
boundary example, the entire data set or other input relation
can be used as the “group' for performing a task. This can
be described as a situation where the C1 columns are defined
as “null for the corresponding Reduce operator in a logical
expression for modeling the workflow. For both of these
boundary type examples, the output columns C2 and the
columns that provide the input for manipulation C3 can be
specified as described above.
0027 Based on the above definition for a Reduce opera

tor, the following are examples of rules for when the position
of a Reduce operator can be switched in a logical expression
(for modeling a workflow) with another operator. For
example, a Reduce operator and a 'selection operator can
be switched in a workflow model if the grouping columns
(C1) for the Reduce operator are the same as or a Superset
of the columns for the selection operator. For a “projection'
operator, the Reduce operator and the projection operator
can be switched in a workflow model if the input columns
(C2) for the Reduce operator correspond to only the columns
specified by the “projection' operator. It is noted that for
Such a “projection' operator having the same columns
specified as the input columns by the Reduce operator, the
projection operator would be redundant when located after
the Reduce operator and thus can be removed from the
model for the workflow.
0028 Determining whether a Reduce operator can be
switched with one of the various types of join' or union
operators in a logical expression based on an expanded
relational algebra is dependent on the nature of the join
operation. In general, Reduce operators as defined herein
cannot be switched with join' operators. In the general
case, since the nature of the data manipulation within a task
modeled by a Reduce operator is not captured within the
model, the presence of additional rows (including duplicate
rows) within a data table may alter the output generated by
the task corresponding to the Reduce operator. As a result,
a Reduce operator cannot generally be Switched with a
join' operator in a logical expression (model) in an

expanded relational algebra. However, there are exceptions
to this general rule for two specific types of join' operators
0029. One exception is a situation where a workflow
model contains a Reduce operator and a 'semi-join' opera
tor. A 'semi-join' operator represents a task involving two
data tables. In a task modeled by a 'semi-join' operator, a
first data table contains one or more tuples (rows) of data, a
second table contains at least one tuple of data, and the first
and second tables have at least one column X corresponding
to the same category. For example, both tables may have a
column titled “Department” which specifies a value/dimen
sion Such as “accounting”, “human resources’, or “engi

Apr. 27, 2017

neering’. In this situation, a task corresponding to a semi
join operator can be performed by selecting each row from
the first table where the tuple value in column X is the same
as one of the values in the corresponding column X in the
second table. Using the above example, if the second table
contains only the values “accounting and "human
resources' for the various rows in the second table, a task
corresponding to a semi-join operation would select the
rows from the first table having the values “accounting” or
“human resources’ in column X while not selecting the rows
from the first table having the value “engineering'. For a
semi-join type operator, if the group-by columns C1 of the
Reduce operator are the same or a Superset of the join key
for the join operator, the operators can be switched in a
model workflow.
0030 The other exception is when a workflow model
contains a Reduce operator and a “foreign key join' opera
tor. In a task corresponding to a “foreign key join', a first
table includes a column Y corresponding to a category, a
second table also includes the column Y, and both tables
include at least one tuple (row) of data. The values in column
Y of the first table are used as a “foreign' key for the second
table. The output of the foreign key join is to supplement the
tuples or rows from the first table with the values from the
second table by adding the columns from the second table
different from the column Y. The values added to each tuple
or row in the first table based on the values in the row of the
second table that have the same value (or key). When a
workflow model contains a Reduce operator and a “foreign
key join' operator, if all of the input C3 columns for the
Reduce operator are from the table that contains the foreign
key (the first table as described above), and if the group-by
columns C1 are the same or a Superset of the foreign key,
then the Reduce operator and the “foreign key join' operator
can be switched in the workflow model. It is noted that if a
Reduce operator and a “foreign key join' operator are to be
Switched, any columns in the second table can be included
in the group-by columns C1 of the Reduce operator so that
the values from the second table are present in the output
from the Reduce operator.
0031 Relational algebra also generally permits the merg
ing and splitting of operators of the same type when mod
elling a workflow. However, Reduce operators in an
expanded relational algebra cannot be merged or split.

Altering Order of Operations in Data Flows
0032. One of the potential benefits of being able to apply
an extended relational algebra model to workflows that
include a task corresponding to a Reduce operation is the
ability to automatically identify opportunities to optimize
workflows to reduce the amount of data being processed. In
other words, the cost of execution of a workflow can
potentially be reduced or minimized by modifying the order
of execution of the tasks in the workflow, while still obtain
ing the same end result. Because relational algebra repre
sents tasks using a limited set of operators bound by a
limited set of rules, alternative task workflows can be
developed using automated processes with a reduced or
minimized concern that an alternative workflow will change
the final product.
0033 FIGS. 4A and 4B show an example of a use of
conventional relational algebra for improving a data pro
cessing workflow. In FIG. 4A, a user has Submitted a query
to identify the names of actors who were in the movie “Rain

US 2017/01 16268 A1

Man”. In order to determine these actors, the user develops
a query that first joins a data set related to movies with
information from a data set for actors, based on actors who
have the same “movie id' as an “id' from the movie data
set. This is an example of a “foreign key join' operation. The
user then selects information related to the movie "Rain
Man” from this joined data set. Finally, the user identifies the
actors in the movie by projecting just the names of the actors
from the data set selected in the previous task. FIG. 4A
represents a relational algebra model of this type of query.
0034. The hypothetical original user query in FIG. 4A, as
modeled using a relational algebra, can be improved to
reduce the amount of data that is passed between tasks in the
workflow. In FIG. 4A, the join' operation is performed on
the entire original “movie' data set and the entire original
“actor data set. The amount of data processing, however,
can be reduced or minimized by switching the order of
operations for the selection of the movie “Rain Man” and the
join operation. Under the rules of relational algebra, the
select operation can be switched with the join operation as
shown in FIG. 4B. In the improved relational algebra model
in FIG. 4B, the join operation is now performed on only the
portion of the movie data set corresponding to the movie
“Rain Man'. In a corresponding workflow constructed based
on the modified logical expression in FIG. 4B, this means
that only the row (or rows) corresponding to “Rain Man” are
processed in the task corresponding to the join operation,
leading to a Substantial savings in the amount of data that is
processed. This demonstrates the ability of relational algebra
to allow for automatic identification of alternative (im
proved) workflows based on a user query. In other words,
relational algebra modeling can allow an untrained user to
submit a workflow in a manner that is logical for the user
while still allowing the resulting workflow that is performed
by a processor to correspond to a workflow with improved
characteristics, such as reduced execution costs.
0035 FIGS. 5A and 5B provide a simplified example of
how expanding a relational algebra to include a Reduce
operation can allow additional data workflows to be con
sidered for improvement. In FIG. 5A, a user query similar to
the query in FIG. 4A is modeled. However, in the hypo
thetical query shown in FIG. 5A, the user is interested in
determining the total number of academy award nomina
tions that have been received by the actors in the movie
“Rain Man'. In FIG. 5A, the user once again starts with a
join of the “Movie' data set and the “Actor data set. The
user than adds to the query a task to determine the total
number of Academy Award nominations received by the
actors in each movie. As shown in FIG. 5A, this corresponds
to a Reduce operation on the grouping (C1) of “all columns'
to use the value of all Academy Award nominations for each
actor (input column or C3) to arrive at a combined value
(output column C2) for each movie. It is noted that “all
columns” is used as the group-by or C1 value so that the
Reduce operation maintains all other data in the data set
while performing this operation. Thus, the net outcome of
the Reduce operation on the data set is to add a column to
the data set. Next, similar to the query modeled in FIG. 4A,
the user selects the movie “Rain Man'. Finally, the user
query identifies the number of Academy Award nominations
by projecting this value.
0036. For the task flow represented in FIG.5A, due to the
presence of a task corresponding to a Reduce operation,
conventional relational algebra would not be suitable for

Apr. 27, 2017

modeling the task flow, which would prevent any automatic
optimization efforts using the rules of conventional rela
tional algebra. However, using an expanded relational alge
bra, the task corresponding to a Reduce operation can be
modeled. Based on the rules for the Reduce operator, it is
noted that the select operation involves a subset of the
group-by (C1) columns of the Reduce operation. As a result,
the select operation can be switched with the Reduce opera
tion, and then Switched with the join operation similar to
FIG. 4B to arrive at the improved task flow in FIG. 5B. Once
again, a Substantial savings in data manipulation can be
achieved, as the task flow in FIG. 5B only requires deter
mining the number of academy award nominations for the
movie Rain Man, as opposed to all movies in the Movie data
Set.

Example: Application of Expanded Relational
Algebra Modeling to Data Mining Workflows

0037 Another example of use of an expanded relational
algebra is in identifying workflows (i.e. task flows) or data
queries for use in creating workflows that have common
tasks, so that a series of tasks can be performed once instead
of having multiple processors repeat the same series of tasks.
Data mining of large data sets is an example of an applica
tion where this feature of the expanded relational algebra
can be useful.
0038. Data mining for large data sets can require a large
number of related tasks. The data for the large data set can
be obtained or accumulated, possibly from multiple sources
having different data formats. The data can then be cleaned
in order to extract the information desired for data mining
from the various data formats. The information can then be
Sorted or placed in a catalog, so that information of various
types can be found in an expected location. One or more
types of analysis can then be performed on the Sorted data.
For large data sets, each data processing/transforming/ana
lyzing operation can take several hours using a large number
of computers.
0039. In order to achieve a desired set of results, multiple
types of analysis on a set of data may be required. For
example, it may be desirable to perform one or more time
series analysis operations, one or more frequency type
analysis operations, and one or more clustering analysis
operations on a data set to achieve a desired set of outputs.
These operations, possibly in the form of modules, can be
arranged in a proper order to achieve a result and then
Submitted together as a job.
0040. One difficulty in assembling a job for data mining
can be related to creating a job that will become parallel in
an effective manner. A portion of creating an effective
parallel job for data mining of a large data set can be related
to dividing a repetitive task performed on the large data set
over a plurality of processors. This type of parallelization
can be handled directly by a variety of known parallelization
algorithms. A more difficult type of parallelization can be
related to identifying locations within a long computational
flow where a given calculation is repeated for the same data
set more than once. For example, a first set of computations
may be required for a frequency analysis on a data set. A
second set of computations may be required for a different
frequency analysis. A third set of computations may be
required for a clustering analysis. Although each type of
analysis is distinct, there can be locations in each set of
computations where a given function is applied to the same

US 2017/01 16268 A1

data set. Conventionally, each set of computations can be
performed without reference to the other sets, resulting in
the repeated calculation on the data set being performed
three times. However, if the repeated calculations can be
identified in advance, the common calculations could be
saved and/or applied to each relevant location. Instead of
performing the common calculations multiple times, a cal
culation can be performed once and a data lookup used to
provide the data for the remaining instances of the common
calculation.
0041 An expanded relational algebra as described herein
can be used to facilitate assembling jobs for data mining. As
an example, a series of basic tasks involved in data mining
can be written in a conventional relational programming
language. This can be a general programming language Such
as SQL or the SCOPE scripting language that can be used for
handling parallel jobs in the Cosmos parallel operating
environment. Alternatively, some or all of the basic tasks can
also be in a language built upon a procedure language. Such
as C++ or C#, or a functional programming language. Such
as “Haskell' or “Fi”. By using an expanded relational
algebra to represent the data mining workflow, the tasks that
can be effectively modeled are not limited to tasks involving
existing data from a data set. Instead, a Reduce operator can
be used to also model tasks in the data mining workflow that
result in creation of new columns, such as aggregated data
values.
0042. The following provides a schematic example of
using expanded relational algebra to identify common tasks
within multiple workflows. The following data mining tasks
are intended as examples, as use of expanded relational
algebra can be applied generally to a variety of data mining
tasks and/or to other tasks involving manipulation of large
data sets, such as developing a workflow based on a database
query Submitted by a user.
0043. In this example, a user can represent or model a
data mining job using an expanded relational algebra. The
goal of the data mining job in this example is to perform two
types of data mining analysis on data from search engine
logs. One type of analysis can be an analysis to improve
document relevance for documents that may be responsive
to search queries that include multiple high frequency key
words. In search queries received by search engines, some
keywords may appear in received search queries with a
frequency above a threshold value. In order to provide a
convenient example for illustrating the application of mod
eling with an expanded relational algebra, this simple test for
determining the presence of high frequency keywords can be
used.

0044) A second type of data mining can be used to
investigate regional differences in the use of high frequency
keywords. Queries containing high frequency keywords can
be identified. The identified queries can then be sorted into
various regions or locations. The regions can correspond to
any convenient geographic area. Such as a Zip code, a city,
a state, or an arbitrary geographic region. The click through
rates and/or page view times can then be analyzed on a per
region basis, to determine if any location based or regional
based factors should influence the document rankings.
0045. In order to perform this data analysis, one or more

initial logfiles can be obtained from, for example, a search
engine that collects data on queries Submitted to the search
engine. The search queries and accompanying data can be
extracted from Some type of original data source. Such as a

Apr. 27, 2017

raw logfile from the search engine, or possibly a logfile that
has been refined using one or more standard filtering tech
niques to remove, for example, unparseable data, queries
related to undesirable topics, or data that appears to be
related to an error in operation of the search engine. To
facilitate analysis, the search queries and accompanying data
from the logfile can also be organized to have an expected
format, Such as by constructing a data table containing
information for each query. For example, multiple columns
in the table can be used so that each keyword in the query
is placed in a separate column within the row for a query.
Other columns could indicate situations where other types of
information form part of the query, Such as using one or
more images and/or image features as part of the query.
Various other types of data can be stored in the table (or
possibly multiple tables) for the Subsequent analysis.
0046. The data analysis tasks described above can be
performed by building up an overall data mining workflow
computation from a series of Smaller tasks that are per
formed on an initial data set. First, Smaller tasks for per
forming the multiple high frequency keyword analysis can
be identified. The tasks described here can describe a
computation level that is still relatively high compared to
basic functions. This high level of abstraction is used for
convenience here to illustrate the concept. One example of
identifying Smaller tasks, shown in FIG. 1, can be to have a
task for extracting search queries 111 to form a set of search
queries that only contain keywords, as opposed to queries
that are also based in part on images, videos, or other
non-keyword input. It is noted that this filtering task (and all
of the other tasks in the various examples) are provided here
to demonstrate the modeling of a data flow, and are not
required. Another task can be counting instances of key
words 112 in the extracted queries to determine any key
words that occur frequently enough to be considered "high
frequency' keywords. Still another task can be filtering the
extracted search queries 113 to keep queries containing a
high frequency keyword. Yet another task can be identifying
queries 114 with more than one high frequency keyword.
0047. Each of the above tasks can be represented by an
operator in a model based on an expanded relational algebra.
As shown in FIG. 1, extracting search queries from an initial
logfile. This task can be represented as a selection task 131
in an expanded relational algebra. For example, one of the
columns in the logfile can be a Boolean type data column
which indicates whether or not non-keyword input was used
as part of the query. In Such an example, the filtering task 111
can be expressed as selection task 131 as shown in FIG. 1,
with the selection criteria being based on the “Non Keyword
Input value being equal to “False'. Note that this is
provided as just an example, and those of skill in the art
would readily understand that other methods of organizing
a data logfile and/or formulating a selection operation can be
used to achieve a similar outcome.

0048. The next task of counting instances of keywords
112 represents an operation that cannot be readily modeled
using conventional relational algebra. As a result, due to the
presence of task 112, the sequence of tasks 111-114 would
not be suitable for modeling using conventional relational
algebra, thus creating difficulties and/or preventing the use
of a relational algebra model for comparing sequence of
tasks 111-114 with other data mining workflows. However,
using an expanded relational algebra, task 112 can be
modeled as a Reduce operation 132. For Reduce operation

US 2017/01 16268 A1

132, one option is to have the “group-by' columns (C1)
correspond to an “all columns' definition. For modeling task
112, the goal of the task is to determine keyword frequency,
and add the keyword frequency value for each keyword to
the data set. Although the operation is labeled as a “reduce
operation, in this example for modeling task 112, it may be
desirable to retain all columns of data for further analysis.
This is how the Reduce operator 132 is shown in FIG. 1.
Alternatively, if the columns from the data set that are of
interest are known, the specification for C1 for the Reduce
operator could correspond to all of the known desired data
columns. With regard to the output columns (C2), the output
columns correspond to the keyword frequency for each
keyword in a query. For example, if the original logfile used
as the data source contains 10 columns for keywords,
possibly having labels “Keyword 1' to “Keyword 10, the
new output columns in C2 can be “FreqKeyword 1' to
FreqKeyword 10. In such an example, the input columns
(C3) would then correspond to the columns “Keyword 1' to
“Keyword 10, as these columns represent the columns for
aggregating the number of occurrences of a given keyword.
0049. The next task is filtering of queries 113 to identify
the queries containing a high frequency keyword. This can
be modeled as a selection operation 133, where the selection
criteria corresponds to having any of columns “FreqKey
word 1' to “FreqKeyword 10’ contain a value greater than a
threshold value. Task 114 can similarly be modeled as a
selection operation 134, where two of the columns
“FreqKeyword 1' to “FreqKeyword 10” contain a value
greater than the threshold value.
0050. A similar task breakdown can be provided for the
analysis of queries containing a high frequency keyword on
a regional basis. As an example, it may be desirable to
analyze queries Submitted from a geographic region, such as
the Pacific Northwest, that contain a high frequency key
word. For this example, the desired analysis is limited to
analyzing the click-through analysis based on the number of
results that are accessed on an initial results page. Thus, only
the data columns related to accessing results need to be
maintained. The data columns related to, for example, the
amount of time a user spends interacting with a page, can be
dropped from the data to reduce the amount of data being
processed.
0051 FIG. 2 shows an example of the tasks for perform
ing a regional analysis and for modeling such a workflow. In
the example shown in FIG. 2, one task can correspond to a
task for extracting search queries 211 to form a set of search
queries that only contain keywords. This task is performed
on the same original data set used for the tasks shown in
FIG. 1. Another task can be reducing the number of data
columns that are required 212, since only data related to
number of results accessed on a results page is needed for
Subsequent analysis. Still another task can be filtering que
ries 213 based on the having the location “Pacific North
west’ associated with the queries. Yet another task can be
determining the frequencies of keywords in queries. Still
another task can be filtering the extracted search queries 214
to keep queries containing a high frequency keyword. This
sequence of tasks can provide a smaller data set that is
Suitable for a focused investigation of regional search activ
ity.
0052. In FIG. 2, task 221 for modeling extraction of
search queries containing only keywords can be modeled as
a selection operation 241, similar to the selection operation

Apr. 27, 2017

131 in FIG. 1. Task 222 can be modeled as a projection
operation 242. Task 223 can be modeled as a selection
operation 243, with rows containing the correct value in the
“location' column being selected. Tasks 224 and 225 can be
modeled as a Reduce operation 244 and a Selection opera
tion 245, similar to the Reduce operation 132 and Selection
operation 133.
0053 Based on the tasks in the two workflows, it is not
initially apparent that the tasks in FIG. 1 are sufficiently
similar to the tasks in FIG. 2 to allow for any common data
processing. However, by using the expanded relational alge
bra, the model of the tasks in FIG. 2 can be rearranged to
determine whether any common portions exist for the work
flow. In FIG. 3, column A shows the modeled operations
from the first workflow as the first set of operations. The
model of the tasks from FIG. 2 is the second set of
operations (column B). In comparing the workflows from
the examples in FIGS. 1 and 2, it is noted that the first
operator is the same in both workflows. However, the second
operator in column A is a Reduce operator, while the second
operator in column B is a projection.
0054 Using the rules of the expanded relational algebra,
the Reduce operator in column B can be switched with the
preceding operations in order to investigate whether both
modeled workflows are the same. Column C shows a switch
in the model position for selection operation 243 and Reduce
operation 244. Under the rules of the relational algebra, this
Switch is permitted, as the group-by columns (C1) of the
Reduce operator 244 are a superset of the columns used for
the selection 243. However, no further switching can be
performed for the Reduce operator 244, as the input columns
for the Reduce operator 244 are not the same as the columns
for the projection operation 242. As a result, the modeled
workflows from the Examples in FIGS. 1 and 2 only share
the initial selection operation 131 and 241. In the corre
sponding workflows, this means that either task 111 or task
221 can be performed, and both workflows can share the
common output from this task.
0055. It is noted that if projection operation 222 were not
present, the second operator in column C would be Reduce
operator 244. This would allow for elimination of one of
tasks 112 or 224, thus allowing for additional savings in
computational time. Alternatively, if the projection opera
tion 222 were based on the same columns as the input
columns (C2) for the Reduce operation 224, the operators
242 and 244 in column C could be switched, which would
also allow for additional savings.
0056. The above examples described a comparison of
two existing workflows for data mining. In various aspects,
instead of modeling an existing workflow, the expanded
relational algebra can be used to model a query that would
lead to construction of a workflow.

Data Processing Environments
0057 FIG. 7 is a block diagram of an exemplary com
puting environment Suitable for use in implementations of
the present disclosure. In particular, the exemplary computer
environment is shown and designated generally as comput
ing device 700. Computing device 700 is but one example
of a suitable computing environment and is not intended to
Suggest any limitation as to the scope of use or functionality
of the invention. Neither should computing device 700 be
interpreted as having any dependency or requirement relat
ing to any one or combination of components illustrated.

US 2017/01 16268 A1

0058. The implementations of the present disclosure may
be described in the general context of computer code or
machine-useable instructions, including computer-execut
able instructions such as program components, being
executed by a computer or other machine, such as a personal
data assistant or other handheld device. Generally, program
components, including routines, programs, objects, compo
nents, data structures, and the like, refer to code that
performs particular tasks or implements particular abstract
data types. Implementations of the present disclosure may
be practiced in a variety of system configurations, including
handheld devices, consumer electronics, general-purpose
computers, specialty computing devices, etc. Implementa
tions of the present disclosure may also be practiced in
distributed computing environments where tasks are per
formed by remote-processing devices that are linked through
a communications network.

0059. With continued reference to FIG. 7, computing
device 700 includes bus 702 that directly or indirectly
couples the following devices: memory 704, one or more
processors 706, one or more presentation components 708,
input/output (I/O) ports 710, I/O components 712, and
power supply 714. Bus 702 represents what may be one or
more busses (such as an address bus, data bus, or combi
nation thereof). Although the devices of FIG. 7 are shown
with lines for the sake of clarity, in reality, delineating
various components is not so clear, and metaphorically, the
lines would more accurately be grey and fuZZy. For example,
one may consider a presentation component such as a
display device to be one of I/O components 712. Also,
processors, such as one or more processors 706, have
memory. The present disclosure hereof recognizes that Such
is the nature of the art, and reiterates that FIG. 7 is merely
illustrative of an exemplary computing environment that can
be used in connection with one or more implementations of
the present disclosure. Distinction is not made between such
categories as “workstation,” “server,” “laptop,” “handheld
device.” etc., as all are contemplated within the scope of
FIG. 7 and refer to “computer or “computing device.”
0060 Computing device 700 typically includes a variety
of computer-readable media. Computer-readable media can
be any available media that can be accessed by computing
device 700 and includes both volatile and nonvolatile media,
removable and non-removable media. By way of example,
and not limitation, computer-readable media may comprise
computer storage media and communication media. Com
puter storage media includes both volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information Such as
computer-readable instructions, data structures, program
modules or other data.

0061 Computer storage media includes RAM, ROM,
EEPROM, flash memory or other memory technology, CD
ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices. Computer storage
media does not comprise a propagated data signal, and the
definition of computer storage media in the discussion
herein explicitly excludes such propagated data signals and
other modulated data signals.
0062 Communication media typically embodies com
puter-readable instructions, data structures, program mod
ules or other data in a modulated data signal Such as a carrier
wave or other transport mechanism and includes any infor

Apr. 27, 2017

mation delivery media. The term “modulated data signal
means a signal that has one or more of its characteristics set
or changed in Such a manner as to encode information in the
signal. By way of example, and not limitation, communi
cation media includes wired media Such as a wired network
or direct-wired connection, and wireless media Such as
acoustic, RF, infrared and other wireless media. Combina
tions of any of the above should also be included within the
Scope of computer-readable media.
0063 Memory 704 includes computer-storage media in
the form of volatile and/or nonvolatile memory. Memory
704 may be removable, nonremovable, or a combination
thereof. Exemplary memory includes solid-state memory,
hard drives, optical-disc drives, etc. Computing device 700
includes one or more processors 706 that read data from
various entities such as bus 702, memory 704 or I/O
components 712. One or more presentation components 708
presents data indications to a person or other device. Exem
plary one or more presentation components 708 include a
display device, speaker, printing component, vibrating com
ponent, etc. I/O ports 710 allow computing device 700 to be
logically coupled to other devices including I/O components
712, some of which may be built in computing device 700.
Illustrative I/O components 712 include a microphone,
joystick, game pad, satellite dish, Scanner, printer, wireless
device, etc.
0064. With additional reference to FIG. 6, a block dia
gram depicting an exemplary network environment 600
suitable for use in embodiments of the invention is
described. The environment 600 is but one example of an
environment that can be used in embodiments of the inven
tion and may include any number of components in a wide
variety of configurations. The description of the environ
ment 600 provided herein is for illustrative purposes and is
not intended to limit configurations of environments in
which embodiments of the invention can be implemented.
0065. The environment 600 includes a network 604, a
user device 606, a query log data store 608 and an expanded
relational algebra library 612. The environment also
includes a processors 602 and 603 which are part of the
cloud computing resources that can be accessed by jobs run
using cloud operating environment 609. The network 604
includes any computer network Such as, for example and not
limitation, the Internet, an intranet, private and public local
networks, and wireless data or telephone networks. The user
device 606 can be any computing device, such as the
computing device 500, from which a search query can be
provided. For example, the user device 606 might be a
personal computer, a laptop, a server computer, a wireless
phone or device, a personal digital assistant (PDA), or a
digital camera, among others. In an embodiment, a plurality
of user devices 606, such as thousands or millions of user
devices 606, can be connected to the network 604. Similarly,
processors 602 and 603 are representative of any number of
processors that could be connected by a network 604 for use
in a parallel or cloud computing environment. Optionally,
one or more of processors 602 or 603 could be a user device
as well. Cloud operating environment 609 represents an
operating system or interface that allows a user to Submit
jobs for execution in the environment.
0.066 Query log data store 608 can represent one or more
databases or other data storage structures that contain query
log information that can be targeted for data mining. The
data in query log data store 608 can originally be based on

US 2017/01 16268 A1

one or more types of search engine interfaces. A user can use
expanded relational algebra library 612 to model data pro
cessing workflows. The library 612 can also include auto
matic routines for identifying potential variations of a work
flow that are permitted under the rules of a relational
algebra, either for identification of workflows with reduced
execution costs or determining that two workflows having a
common sequence of tasks.

Additional Examples
0067 FIG. 8 shows an example for a method of using an
expanded relational algebra to modify a workflow based on
a received query for a data set. In FIG. 8, a query defining
a first workflow is received 810. The first workflow defined
by the query has a corresponding first logical expression in
an expanded relational algebra. The corresponding first
logical expression includes an instance of a Reduce operator.
The ordering of one or more operators in the first logical
expression is then modified 820 relative to a position of the
instance of the Reduce operator. This can correspond to
moving one or more operators from a position prior to the
Reduce operator in the sequence to a position after the
Reduce operator, moving one or more operators from a
position after the Reduce operator in the sequence to a
position prior to the Reduce operator; or a combination
thereof. Based on the modified first logical expression, a
modified first workflow can be constructed 830. At least a
portion of the modified first workflow can then be executed
840 to perform the desired data processing operation
requested via the original query.
0068 FIG. 9 shows an example for a method of using an
expanded relational algebra to modify a workflow in order
to identify common tasks between the beginning portions of
two workflows. In FIG. 9, a first workflow is received 910.
The first workflow has a corresponding first logical expres
sion in an expanded relational algebra. The corresponding
first logical expression includes an instance of a Reduce
operator. Optionally, the first workflow can correspond to a
workflow constructed based on a query. A second workflow
can also be received 920. The ordering of one or more
operators in the first logical expression is then modified 930
relative to a position of the instance of the Reduce operator.
This can correspond to moving one or more operators from
a position prior to the Reduce operator in the sequence to a
position after the Reduce operator, moving one or more
operators from a position after the Reduce operator in the
sequence to a position prior to the Reduce operator; or a
combination thereof. In various aspects, modifying the
sequence of operators in the first logical expression can
increase the number of operators in common at the begin
ning of the modified first logical expression and the second
logical expression relative to the number of operators in
common for the first logical expression and the second
logical expression. Based on the modified first logical
expression, a modified first workflow can be constructed
940. A beginning portion of the second workflow can then
be executed 950. The beginning portion of the second
workflow can correspond to operators that are in common
between the beginning portion of the second workflow and
the beginning portion of the modified first workflow. Execu
tion 950 of the beginning portion of the second workflow
can result in generation of an intermediate data set. An
additional portion of the second workflow can then be
executed 960 using the intermediate data set as an input. The

Apr. 27, 2017

additional portion of the second workflow can correspond to
operators in the second logical expression after the operators
in common with the modified first logical expression. Simi
larly, a portion of the modified first workflow 970 can be
executed using the intermediate data set as an input. The
portion of the modified first workflow can correspond to
operators in the modified first logical expression after the
common operators.
0069 FIG. 10 shows an example for a method of using an
expanded relational algebra to modify two workflows in
order to identify common tasks between the beginning
portions of the workflows. In FIG. 10, similar to FIG. 9, a
first workflow and a second workflow are received 1010.
The ordering of one or more operators in the first logical
expression is then modified 1020 relative to a position of the
instance of a Reduce operator. This can correspond to
moving one or more operators from a position prior to the
Reduce operator in the sequence to a position after the
Reduce operator, moving one or more operators from a
position after the Reduce operator in the sequence to a
position prior to the Reduce operator, or a combination
thereof. In various aspects, modifying the sequence of
operators in the first logical expression can increase the
number of operators in common at the beginning of the
modified first logical expression and the second logical
expression relative to the number of operators in common
for the first logical expression and the second logical expres
Sion. Similarly, the ordering of one or more operators in the
second logical expression can be modified 1030 relative to
a position of the instance of the Reduce operator. Based on
the modified first logical expression and modified second
logical expression, a modified first workflow and modified
second workflow can be constructed 1040. A beginning
portion of the modified second workflow can then be
executed 1050. The beginning portion of the modified
second workflow can correspond to operators that are in
common between the beginning portion of the modified
second workflow and the beginning portion of the modified
first workflow. Execution 1050 of the beginning portion of
the modified second workflow can result in generation of an
intermediate data set. An additional portion of the modified
second workflow can then be executed 960 using the inter
mediate data set as an input. The additional portion of the
second workflow can correspond to operators in the second
logical expression after the operators in common with the
modified first logical expression. Similarly, a portion of the
modified first workflow 970 can be executed using the
intermediate data set as an input. The portion of the modified
first workflow can correspond to operators in the modified
first logical expression after the common operators.

Additional Embodiments

Embodiment 1

0070 A computer-implemented method for managing a
distributed database, comprising: receiving a query defining
a first workflow, the first workflow corresponding to tasks
for processing data from one or more data sources, the query
having a corresponding first logical expression comprising a
sequence of operators from an expanded relational algebra,
at least one operator in the first logical expression being an
instance of a reduce operator, modifying an ordering of the
operators in the first logical expression to form a modified
first logical expression, the modifying of the ordering of the

US 2017/01 16268 A1

operators in the first logical expression comprising a) mov
ing one or more operators from a position prior to the
instance of the reduce operator to a position after the
instance of the reduce operator, b) moving one or more
operators from a position after the instance of the reduce
operator to a position prior to the instance of the reduce
operator, or c) a combination thereof; constructing a modi
fied first workflow corresponding to the modified first logi
cal expression; and executing at least a portion of the
modified first workflow, wherein the modified first workflow
has a lower execution cost than an execution cost of the first
workflow.

Embodiment 2

0071. The computer-implemented method of Embodi
ment 1, wherein moving one or more operators from a
position prior to the instance of the reduce operator to a
position after the instance of the reduce operator comprises
moving a foreign key join operator from a position prior to
the instance of the reduce operator to a position after the
instance of the reduce operator.

Embodiment 3

0072 The computer-implemented method of Embodi
ment 1 or 2, wherein executing at least a portion of the
modified first workflow comprises executing tasks corre
sponding to all operators in the modified first logical expres
S1O.

Embodiment 4

0073. The computer-implemented method of Embodi
ment 1 or 2, wherein executing at least a portion of the
modified first workflow comprises executing tasks corre
sponding to fewer than all tasks in the first workflow defined
by the query.

Embodiment 5

0074. A computer-implemented method for managing a
distributed database, comprising: receiving a first workflow
corresponding to tasks for processing data from one or more
data sources, the first workflow having a corresponding first
logical expression comprising a sequence of operators from
an expanded relational algebra, at least one operator in the
first logical expression being an instance of a reduce opera
tor; receiving a second workflow corresponding to tasks for
processing data from the one or more data sources, the
second workflow having a corresponding second logical
expression comprising a sequence of operators from the
expanded relational algebra, at least one operator in the
second logical expression being an instance of the reduce
operator, modifying an ordering of the operators in the first
logical expression to form a modified first logical expres
Sion, a beginning sequence of the modified first logical
expression having an increased number of operators in
common with a beginning sequence of the second logical
expression relative to a beginning sequence of the first
logical expression, the modifying of the ordering of the
operators in the first logical expression comprising a) mov
ing one or more operators from a position prior to the
instance of the reduce operator to a position after the
instance of the reduce operator, b) moving one or more
operators from a position after the instance of the reduce
operator to a position prior to the instance of the reduce

Apr. 27, 2017

operator, or c) a combination thereof, optionally modifying
an ordering of the operators in the second logical expression
to form a modified second logical expression, a beginning
sequence of the modified first logical expression having an
increased number of operators in common with a beginning
sequence of the modified second logical expression relative
to a number of operators in common between a beginning
sequence of the first logical expression and a beginning
sequence of the second logical expression; constructing a
modified first workflow corresponding to the modified first
logical expression; optionally constructing a modified sec
ond workflow corresponding to the optionally modified
second logical expression; executing a beginning portion of
the (optionally modified) second workflow to form an inter
mediate data set, the executed portion of the (optionally
modified) second workflow corresponding to the operators
in common from the beginning sequence of the modified
first logical expression; executing an additional portion of
the (optionally modified) second workflow using the inter
mediate data set; and executing a portion of the modified
first workflow using the intermediate data set, the executed
portion of the modified first workflow corresponding to
operators in the sequence for the modified first logical
expression located after the operators in common with the
(optionally modified) second logical expression.

Embodiment 6

0075. The computer-implemented method of Embodi
ment 5, wherein the modified first workflow has a lower
execution cost than an execution cost of the first workflow.

Embodiment 7

0076. The computer-implemented method of Embodi
ment 5, wherein a combined execution cost of the modified
first workflow and the (optionally modified) second work
flow is lower than a combined execution cost of the first
workflow and the (optionally modified) second workflow.

Embodiment 8

0077. The computer-implemented method of any of
Embodiments 5-7, wherein the first workflow is constructed
based on a query.

Embodiment 9

0078. The computer-implemented method of any of
Embodiments 5-8, wherein the beginning sequence of the
second logical expression has no operators in common with
the beginning sequence of the first logical expression.

Embodiment 10

007.9 The computer-implemented method of any of
Embodiments 5-9, wherein moving one or more operators
from a position prior to the instance of the reduce operator
to a position after the instance of the reduce operator
comprises moving a foreign key join operator from a posi
tion prior to the instance of the reduce operator to a position
after the instance of the reduce operator.

Embodiment 11

0080. The computer-implemented method of any of
Embodiments 5-10, wherein moving one or more operators
from a position after the instance of the reduce operator to

US 2017/01 16268 A1

a position prior to the instance of the reduce operator
comprises moving a foreign key join operator from a posi
tion after the instance of the reduce operator to a position
prior to the instance of the reduce operator.

Embodiment 12

0081. The computer-implemented method of any of
Embodiments 5-11, wherein executing a portion of the
modified first workflow using the intermediate data set
comprises executing tasks corresponding to all operators in
the modified first logical expression located after the opera
tors in common with the (optionally modified) second
logical expression.

Embodiment 13

0082. The computer-implemented method of any of
Embodiments 5-11, wherein executing a portion of the
modified first workflow using the intermediate data set
comprises executing tasks corresponding to fewer than all
operators in the modified first logical expression located
after the operators in common with the (optionally modified)
second logical expression.
0083. The subject matter of embodiments of the inven
tion is described with specificity herein to meet statutory
requirements. However, the description itself is not intended
to limit the scope of this patent. Rather, the inventors have
contemplated that the claimed Subject matter might be
embodied in other ways, to include different steps or com
binations of steps similar to the ones described in this
document, in conjunction with other present or future tech
nologies. Moreover, although the terms “step’ and/or
“block” may be used herein to connote different elements of
methods employed, the terms should not be interpreted as
implying any particular order among or between various
steps herein disclosed unless and except when the order of
individual steps is explicitly described.
0084 Embodiments of the invention have been described
to be illustrative rather than restrictive. It will be understood
that certain features and Subcombinations are of utility and
may be employed without reference to other features and
subcombinations. This is contemplated by and is within the
Scope of the claims.
What is claimed is:
1. A computer-implemented method for managing a dis

tributed database, the method comprising:
receiving a query defining a first workflow, the first

workflow corresponding to tasks for processing data
from one or more data sources, the query having a
corresponding first logical expression comprising a
sequence of operations defined by operators from an
expanded relational algebra, at least one operator in the
first logical expression being an instance of a reduce
operator;

modifying an ordering of the operations in the first logical
expression to form a modified first logical expression,
the modifying of the ordering of the operations in the
first logical expression comprising a) moving one or
more operators from a position prior to the instance of
the reduce operator to a position after the instance of
the reduce operator, b) moving one or more operators
from a position after the instance of the reduce operator
to a position prior to the instance of the reduce operator,
or c) a combination thereof;

Apr. 27, 2017

constructing a modified first workflow corresponding to
the modified first logical expression; and

executing at least a portion of the modified first workflow,
wherein the modified first workflow has a lower execu
tion cost than an execution cost of the first workflow.

2. The computer-implemented method of claim 1,
wherein moving one or more operators from a position prior
to the instance of the reduce operator to a position after the
instance of the reduce operator comprises moving a foreign
key join operator from a position prior to the instance of the
reduce operator to a position after the instance of the reduce
operator.

3. The computer-implemented method of claim 1,
wherein executing at least a portion of the modified first
workflow comprises executing tasks corresponding to all
operators in the modified first logical expression.

4. The computer-implemented method of claim 1,
wherein executing at least a portion of the modified first
workflow comprises executing tasks corresponding to fewer
than all tasks in the first workflow defined by the query.

5. A computer-implemented system comprising:
one or more sensors configured to provide sensor data

from at least one user device;
one or more processors; and
one or more computer storage media storing computer

useable instructions that, when executed by the one or
more processors, implement a method for managing a
distributed database, the method comprising:

receiving a first workflow corresponding to tasks for
processing data from one or more data sources, the first
workflow having a corresponding first logical expres
sion comprising a sequence of operations defined by
operators from an expanded relational algebra, at least
one operator in the first logical expression being an
instance of a reduce operator,

modifying an ordering of the operations in the first logical
expression to form a modified first logical expression,
the modifying of the ordering of the operations in the
first logical expression comprising a) moving one or
more operators from a position prior to the instance of
the reduce operator to a position after the instance of
the reduce operator, b) moving one or more operators
from a position after the instance of the reduce operator
to a position prior to the instance of the reduce operator,
or c) a combination thereof;

constructing a modified first workflow corresponding to
the modified first logical expression; and

executing at least a portion of the modified first workflow.
6. The computer-implemented system of claim 5, wherein

the modified first workflow has a lower execution cost than
an execution cost of the first workflow.

7. The computer-implemented system of claim 5, wherein
the first workflow is constructed based on a query.

8. The computer-implemented system of claim 5, wherein
the modifying includes increasing a number of operators in
common with a sequence of a second logical expression of
a second workflow.

9. The computer-implemented system of claim 5, wherein
moving one or more operators from a position prior to the
instance of the reduce operator to a position after the
instance of the reduce operator comprises moving a foreign
key join operator from a position prior to the instance of the
reduce operator to a position after the instance of the reduce
operator.

US 2017/01 16268 A1

10. The computer-implemented system of claim 5,
wherein moving one or more operators from a position after
the instance of the reduce operator to a position prior to the
instance of the reduce operator comprises moving a foreign
key join operator from a position after the instance of the
reduce operator to a position prior to the instance of the
reduce operator.

11. The computer-implemented system of claim 5,
wherein the modifying includes increasing a number of
operators in common with a sequence of a second logical
expression of a second workflow, and the executing uses an
intermediate data set formed by executing a portion of the
second workflow corresponding to operators added by the
increasing the number of operators.

12. The computer-implemented system of claim 5,
wherein the modifying includes increasing a number of
operations in common with a sequence of a second logical
expression of a second workflow, and the executing uses an
intermediate data set formed by executing a portion of the
second workflow corresponding to operations added by the
increasing the number of operations.

13. One or more computer storage devices storing com
puter-useable instructions that, when used by one or more
computing devices, cause the one or more computing
devices to perform a method for managing a distributed
database, the method comprising:

receiving a first workflow corresponding to tasks for
processing data from one or more data sources, the first
workflow having a corresponding first logical expres
sion comprising a sequence of operations defined by
operators from an expanded relational algebra, at least
one operator in the first logical expression being an
instance of a reduce operator;

modifying an ordering of the operations in the first logical
expression to form a modified first logical expression,
the modifying of the ordering of the operations in the
first logical expression comprising a) moving one or
more operators from a position prior to the instance of
the reduce operator to a position after the instance of
the reduce operator, b) moving one or more operators
from a position after the instance of the reduce operator
to a position prior to the instance of the reduce operator,
or c) a combination thereof;

Apr. 27, 2017

constructing a modified first workflow corresponding to
the modified first logical expression; and

executing at least a portion of the modified first workflow.
14. The one or more computer storage devices of claim

13, wherein the modifying includes increasing a number of
operators in common with a sequence of a second logical
expression of a second workflow.

15. The one or more computer storage devices of claim
13, wherein the first workflow is constructed based on a
query.

16. The one or more computer storage devices of claim
13, wherein the modified first workflow has a lower execu
tion cost than an execution cost of the first workflow.

17. The one or more computer storage devices of claim
13, wherein moving one or more operators from a position
prior to the instance of the reduce operator to a position after
the instance of the reduce operator comprises moving a
foreign key join operator from a position prior to the
instance of the reduce operator to a position after the
instance of the reduce operator.

18. The one or more computer storage devices of claim
13, wherein moving one or more operators from a position
after the instance of the reduce operator to a position prior
to the instance of the reduce operator comprises moving a
foreign key join operator from a position after the instance
of the reduce operator to a position prior to the instance of
the reduce operator.

19. The one or more computer storage devices of claim
13, wherein the modifying includes increasing a number of
operators in common with a sequence of a second logical
expression of a second workflow, and the executing uses an
intermediate data set formed by executing a portion of the
second workflow corresponding to operators added by the
increasing the number of operators.

20. The one or more computer storage devices of claim
13, wherein the modifying includes increasing a number of
operations in common with a sequence of a second logical
expression of a second workflow, and the executing uses an
intermediate data set formed by executing a portion of the
second workflow corresponding to operations added by the
increasing the number of operations.

k k k k k

