

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 February 2006 (23.02.2006)

PCT

(10) International Publication Number
WO 2006/017913 A1

(51) International Patent Classification⁷: A61K 38/02, C07K 2/00

(21) International Application Number: PCT/AU2005/001255

(22) International Filing Date: 22 August 2005 (22.08.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/603,525 20 August 2004 (20.08.2004) US

(71) Applicant (for all designated States except US): PHYSICOLOGICA LIMITED [AU/AU]; 105 Hay Street, Subiaco, Western Australia 6008 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WATT, Paul, Michael [AU/AU]; 25 Beecham Road, Mount Claremont, Western Australia 6010 (AU). FEAR, Mark [GB/AU]; 7 Thomas Way, Kardinya, Western Australia 6161 (AU). PAYNE, Trevor [AU/AU]; 5/48 Dalkeith Road, Nedlands, Western Australia 6009 (AU).

(74) Agent: F B RICE & CO; Level 23, 44 Market Street, Sydney, New South Wales 2000 (AU).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2006/017913 A1

(54) Title: PEPTIDE INHIBITORS OF C-JUN DIMERIZATION AND USES THEREOF

(57) Abstract: The present invention provides a method for the screening of nucleic acid fragment expression libraries and selecting encoded peptides based upon their ability to modulate the activity of a target protein or nucleic acid and assume conserved conformations compatible with albeit not reiterative of the target protein or nucleic acid. The present invention also provides methods for the diagnosis and treatment of ischemia. The present invention also provides c-Jun dimerization inhibitory peptides and analogues thereof that are useful for treatment of ischemia.

Peptide inhibitors of c-Jun dimerization and uses thereof

Field of the invention

5 The present invention relates generally to methods for the screening of nucleic acid fragment expression libraries and selecting encoded peptides based upon their ability to modulate the activity of a target protein or nucleic acid and assume conformations compatible with albeit not reiterative of the target protein or nucleic acid. Also provided are methods for the diagnosis and treatment of stroke using peptide inhibitors
10 of Jun dimerization that have been identified using the screening methods described herein.

Background of the invention

1. General information

15 This specification contains nucleotide and amino acid sequence information prepared using PatentIn Version 3.3, presented herein after the claims. Each nucleotide sequence is identified in the sequence listing by the numeric indicator <210> followed by the sequence identifier (e.g. <210>1, <210>2, <210>3, etc). The length and type of sequence (DNA, protein (PRT), etc), and source organism for each nucleotide
20 sequence, are indicated by information provided in the numeric indicator fields <211>, <212> and <213>, respectively. Nucleotide sequences referred to in the specification are defined by the term "SEQ ID NO:", followed by the sequence identifier (eg. SEQ ID NO: 1 refers to the sequence in the sequence listing designated as <400>1).

25 The designation of nucleotide residues referred to herein are those recommended by the IUPAC-IUB Biochemical Nomenclature Commission, wherein A represents Adenine, C represents Cytosine, G represents Guanine, T represents thymine, Y represents a pyrimidine residue, R represents a purine residue, M represents Adenine or Cytosine, K represents Guanine or Thymine, S represents Guanine or Cytosine, W represents
30 Adenine or Thymine, H represents a nucleotide other than Guanine, B represents a nucleotide other than Adenine, V represents a nucleotide other than Thymine, D

- 2 -

represents a nucleotide other than Cytosine and N represents any nucleotide residue.

As used herein the term "derived from" shall be taken to indicate that a specified integer may be obtained from a particular source albeit not necessarily directly from 5 that source.

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated step or element or integer or group of steps or elements 10 or integers but not the exclusion of any other step or element or integer or group of elements or integers.

Throughout this specification, unless specifically stated otherwise or the context requires otherwise, reference to a single step, composition of matter, group of steps or 15 group of compositions of matter shall be taken to encompass one and a plurality (i.e. one or more) of those steps, compositions of matter, groups of steps or group of compositions of matter.

Each embodiment described herein is to be applied *mutatis mutandis* to each and every 20 other embodiment unless specifically stated otherwise.

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The 25 invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations or any two or more of said steps or features.

The present invention is not to be limited in scope by the specific embodiments 30 described herein, which are intended for the purpose of exemplification only. Functionally-equivalent products, compositions and methods are clearly within the

- 3 -

scope of the invention, as described herein.

The present invention is performed without undue experimentation using, unless otherwise indicated, conventional techniques of molecular biology, microbiology, 5 virology, recombinant DNA technology, peptide synthesis in solution, solid phase peptide synthesis, and immunology. Such procedures are described, for example, in the following texts:

1. Sambrook, Fritsch & Maniatis, , whole of Vols I, II, and III;
2. DNA Cloning: A Practical Approach, Vols. I and II (D. N. Glover, ed., 1985),
10 IRL Press, Oxford, whole of text;
3. Oligonucleotide Synthesis: A Practical Approach (M. J. Gait, ed., 1984) IRL Press, Oxford, whole of text, and particularly the papers therein by Gait, pp1-22; Atkinson *et al.*, pp35-81; Sproat *et al.*, pp 83-115; and Wu *et al.*, pp 135-151;
4. Nucleic Acid Hybridization: A Practical Approach (B. D. Hames & S. J.
15 Higgins, eds., 1985) IRL Press, Oxford, whole of text;
5. Animal Cell Culture: Practical Approach, Third Edition (John R.W. Masters, ed., 2000), ISBN 0199637970, whole of text;
6. Immobilized Cells and Enzymes: A Practical Approach (1986) IRL Press, Oxford, whole of text;
- 20 7. Perbal, B., A Practical Guide to Molecular Cloning (1984);
8. Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.), whole of series;
9. J.F. Ramalho Ortigão, "The Chemistry of Peptide Synthesis" *In: Knowledge database of Access to Virtual Laboratory website* (Interactiva, Germany);
- 25 10. Sakakibara, D., Teichman, J., Lien, E. Land Fenichel, R.L. (1976). *Biochem. Biophys. Res. Commun.* **73** 336-342
11. Merrifield, R.B. (1963). *J. Am. Chem. Soc.* 85, 2149-2154.
12. Barany, G. and Merrifield, R.B. (1979) in *The Peptides* (Gross, E. and Meienhofer, J. eds.), vol. 2, pp. 1-284, Academic Press, New York.
- 30 13. Wünsch, E., ed. (1974) *Synthese von Peptiden in Houben-Weyls Methoden der Organischen Chemie* (Müller, E., ed.), vol. 15, 4th edn., Parts 1 and 2, Thieme,

- 4 -

Stuttgart.

14. Bodanszky, M. (1984) *Principles of Peptide Synthesis*, Springer-Verlag, Heidelberg.

5 15. Bodanszky, M. & Bodanszky, A. (1984) *The Practice of Peptide Synthesis*, Springer-Verlag, Heidelberg.

16. Bodanszky, M. (1985) *Int. J. Peptide Protein Res.* **25**, 449-474.

17. Handbook of Experimental Immunology, Vols. I-IV (D. M. Weir and C. C. Blackwell, eds., 1986, Blackwell Scientific Publications).

18. McPherson *et al.*, In: *PCR A Practical Approach*., IRL Press, Oxford University Press, Oxford, United Kingdom, 1991.

10 19. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual (D. Burke *et al.*, eds) Cold Spring Harbor Press, New York, 2000 (*see whole of text*).

20. Guide to Yeast Genetics and Molecular Biology. In: Methods in Enzymology Series, Vol. 194 (C. Guthrie and G.R. Fink *eds*) Academic Press, London, 1991 15 2000 (*see whole of text*).

2. Description of the related art.

Peptide therapeutics

20 As a response to the increasing demand for new lead compounds and new target identification and validation reagents, the pharmaceutical industry has increased its screening of various sources for new lead compounds having a unique activity or specificity in therapeutic applications, such as, for example, in the treatment of neoplastic disorders, infection, modulating immunity, autoimmunity, fertility, etc.

25

It is known that proteins bind to other proteins, antigens, antibodies, nucleic acids, and carbohydrates. Such binding enables the protein to effect changes in a wide variety of biological processes in all living organisms. As a consequence, proteins represent an important source of natural modulators of phenotype. Accordingly, peptides that 30 modulate the binding activity of a protein represent attractive lead compounds (drug candidates) in primary or secondary drug screening. For example, the formation of a

- 5 -

target biological interaction that has a deleterious effect (eg. replication of a pathogen or of a cancer cell), can be assayed to identify lead compounds that antagonize the biological interaction.

5 It is widely recognized that there is a need to develop methods for determining novel compounds, including nucleic acid-based products and peptide-based products, that modulate an activity or function of a particular target. In such approaches, an activity of a target protein or nucleic acid is screened in the absence and presence of a potential lead compound, which is a peptide, and modified activity of the target is determined.

10

Similarly, peptides can be used as dominant negative inhibitors or the validation of prospective drug targets using assays such as observing the phenotype resulting from over-expression of the peptides in ex-vivo assays or in transgenic mice.

15 *Screening methods*

In one known approach to identify novel lead compounds, random peptide (synthetic mimetic or mimotope) libraries are produced using short random oligonucleotides produced by synthetic combinatorial chemistry. The DNA sequences are cloned into an appropriate vehicle for expression and the encoded peptide is then screened using 20 one of a variety of approaches. However, the ability to isolate active peptides from random fragment libraries can be highly variable with low affinity interactions occurring between the peptide-binding partners. Moreover, the expressed peptides often show little or none of the secondary or tertiary structure required for efficient binding activity, and/or are unstable. This is not surprising, considering that biological 25 molecules appear to recognize shape and charge rather than primary sequence (Yang and Honig *J. Mol. Biol.* 301(3), 691-711 2000) and that such random peptide aptamers are generally too small to comprise a protein domain or to form the secondary structure of a protein domain. The relatively unstructured 'linear' nature of these peptide aptamers also leads to their more rapid degradation and clearance following 30 administration to a subject *in vivo*, thereby reducing their appeal as therapeutic agents.

- 6 -

To enhance the probability of obtaining useful bioactive peptides or proteins from random peptide libraries, peptides have previously been constrained within scaffold structures, eg., thioredoxin (Trx) loop (Blum *et al. Proc. Natl. Acad. Sci. USA*, 97, 2241-2246, 2000) or catalytically inactive staphylococcal nuclease (Norman *et al. Science*, 285, 591-595, 1999), to enhance their stability. Constraint of peptides within such structures has been shown, in some cases, to enhance the affinity of the interaction between the expressed peptides and its target, presumably by limiting the degrees of conformational freedom of the peptide, and thereby minimizing the entropic cost of binding.

10

It is also known to tailor peptide expression libraries for identifying specific peptides involved in a particular process, eg., antigen-antibody-binding activity. For example US Patent No 6,319,690 (Dade Behring Marburg GmBH) teaches a PCR-based method of amplifying cDNA sequences encoding a population of antibodies, wherein oligonucleotide primers that are homologous to conserved regions of antibody-encoding cDNAs derived from a mixture of non-activated B- lymphocytes are used to amplify nucleic acids that encode antibody variable regions. The amplified sequences are expressed using a bacterial display system, for screening with selected antigens to determine those antibody fragments that bind the antigens. However, the expression libraries described in US Pat. No. 6,319,690 show limited diversity, because the amplified fragments were all antibody-encoding fragments derived from a single complex eukaryote. Additionally, the antibody-encoding libraries described in US Pat. No. 6,319,690 were screened for antigen-binding activity rather than for a novel bioactivity (ie. the expressed peptides were not mimotopes).

25

Several attempts have been made to develop libraries based on naturally occurring proteins (eg genomic expression libraries). Libraries of up to several thousand polypeptides or peptides have been prepared by gene expression systems and displayed on chemical supports or in biological systems suitable for testing biological activity. For example, genome fragments isolated from *Escherichia coli* MG1655 have been expressed using phage display technology, and the expressed peptides screened to

identify peptides that bind to a polyclonal anti-Rec A protein antisera (Palzkill *et al.* *Gene*, 221 79-83, 1998). Such expression libraries are generally produced using nucleic acid from single genomes, and generally comprise nucleic acid fragments comprising whole genes and/or multiple genes or whole operons, including multiple 5 linked protein domains of proteins. Additionally, as many bacteria comprise recA-encoding genes, the libraries described by Palzkill *et al.*, were screened for an activity that was known for the organism concerned, rather than for a novel bioactivity (ie. the expressed peptides were not necessarily mimotopes).

10 US Patent No. 5,763,239 (Diversa Corporation) describes a procedure for producing normalized genomic DNA libraries from uncharacterized environmental samples containing a mixture of uncharacterized genomes. The procedure described by Diversa Corp. comprises melting DNA isolated from an environmental sample, and allowing the DNA to reanneal under stringent conditions. Rare sequences, that are less likely to 15 reanneal to their complementary strand in a short period of time, are isolated as single-stranded nucleic acid and used to generate a gene expression library. However, total normalization of each organism within such uncharacterized samples is difficult to achieve, thereby reducing the biodiversity of the library. Such libraries also tend to be biased toward the frequency with which a particular organism is found in the native 20 environment. As such, the library does not represent the true population of the biodiversity found in a particular biological sample. In cases where the environmental sample includes a dominant organism, there is likely to be a significant species bias that adversely impacts on the sequence diversity of the library. Furthermore, as many of the organisms found in such samples are uncharacterized, very little information is known 25 regarding the constitution of the genomes that comprise such libraries. Accordingly, it is not possible to estimate the true diversity of such libraries. Additionally, since the Diversa Corp. process relies upon PCR using random primers to amplify uncharacterized nucleic acids, there is no possibility of accounting for biasing factors, such as, for example, a disproportionate representation of repeated sequences across 30 genomes of the organisms in the environmental sample.

- 8 -

Accordingly, there remains a need to produce improved methods for constructing highly diverse and well characterized expression libraries wherein the expressed peptides are capable of assuming a secondary structure or conformation sufficient to bind to a target protein or nucleic acid, such as, for example, by virtue of the inserted 5 nucleic acid encoding a protein domain.

As used herein, the term "protein domain" shall be taken to mean a discrete portion of a protein that assumes a secondary structure or conformation sufficient to permit said portion to perform a specific function in the context of a target protein or target nucleic 10 acid and, in particular, to bind with high affinity to the target protein or nucleic acid. Preferred protein domains are not required to be constrained within a scaffold structure to bind to the target nucleic acid or target protein, or for said binding to be enhanced.

The term "protein domain" or "domain" or similar shall be taken to include an 15 independently folding peptide structure (ie. a "subdomain") unless the context requires otherwise. For example, protein subdomain consisting of a 19-residue fragment from the C-loop of the fourth epidermal growth factor-like domain of thrombomodulin has been described by Alder *et al*, *J. Biol. Chem.*, 270: 23366-23372, 1995. Accordingly, the skilled artisan is aware of the meaning of the term "protein subdomain".

20

There also remains a need to screen such libraries to identify those peptides that modulate the activity of a target protein or nucleic acid by virtue of assuming or presenting a secondary and/or tertiary structure that is compatible with the target albeit not necessary iterative of a structure in the target. Selection based on such 25 conformational features, rather than mere primary structure, provides the advantage of indicating a wide range of useful therapeutic and diagnostic compounds that are chemically unrelated, yet modulate activity of the same target.

Ischemia/stroke

30 Stroke is the second leading cause of death and the leading single cause of disability in Australia. As used herein, the term "stroke" includes any ischemic disorder e.g., a

- 9 -

peripheral vascular disorder, a venous thrombosis, a pulmonary embolus, a myocardial infarction, a transient ischemic attack, lung ischemia, unstable angina, a reversible ischemic neurological deficit, adjunct thromolytic activity, excessive clotting conditions, reperfusion injury, sickle cell anemia, a stroke disorder or an iatrogenically 5 induced ischemic period such as angioplasty.

The direct and indirect cost of stroke to the Australian community is estimated to be over \$2 billion annually. Currently, there is no effective clinical agent that inhibits the delayed neuronal cell death associated with stroke, and thought to be the major cause of 10 long term brain damage associated with stroke. Treatment of acute ischemic stroke has focused on the disruption of the formed clot. Drugs such as Activase (genetically engineered tissue plasminogen activator; Genentech), Abciximab (a platelet inhibitor; Centocor), and Ancrod (fibrinogenolytic) have had limited success if administered soon after the stroke occurs. Even alternative approaches that target the glutamate receptor 15 antagonists to prevent neuronal damage have shown no significant or consistent improvements in patient outcome, most likely due to the need to target these events early in stroke.

20

Involvement of the MAPK kinase pathway in ischemia

Various types of evidence indicate that c-Jun N-Terminal Kinase (JNK or SAPK) is involved in neuronal cell death during or following ischemia, via activation of the c-Jun N-Terminal Kinase (JNK) pathway.

25

Components of the JNK pathway associate with scaffold proteins that modulate their activities and cellular localization. Similar to other mitogen-activated protein kinases (MAPKs), JNK activity is controlled by a cascade of protein kinases and by protein phosphatases, including dual-specificity MAPK phosphatases. For example, the JNK-30 interacting protein-1 (JIP-1) scaffold protein specifically binds JNK, MAPK kinase 4 (MKK4) and MAPK kinase 7 (MKK7), and members of the mixed lineage kinase

- 10 -

(MLK) family, and regulates JNK activation in neurons. Distinct regions within the N termini of MKK7 and the MLK family member dual leucine zipper kinase (DLK) mediate their binding to JIP-1. JNK binds to c-Jun, and this appears to be required for efficient c-Jun phosphorylation.

5

Several members of the death-related JNK/c-Jun pathway acting upstream of JNK have been defined. The most distal of these are the Rho small GTPase family members Rac1 and Cdc42. Over expression of constitutively active forms of Rac1 (i.e., Rac1V12) and Cdc42 (i.e., Cdc42V12) leads to activation of the JNK pathway and to death of Jurkat T 10 lymphocytes, PC12 cells, and sympathetic neurons. Conversely, over expression of dominant-negative mutants of Cdc42 (i.e., Cdc42N17) and Rac1 (i.e., Rac1N17) in sympathetic neurons prevents elevation of c-Jun and death evoked by nerve growth factor (NGF) withdrawal (Bazenet *et al.*, *Proc. Natl. Acad. Sci. USA* 95, 3984-3989, 1998; Chuang *et al.*, *Mol. Biol. Cell* 8, 1687-1698, 1997). Over expression of the 15 dominant negative mutant Rac1N17 also reverses the induction of death by Cdc42V12, whereas Cdc42N17 has no effect on Rac1V12-induced death, suggesting that Cdc42 lies upstream of Rac1 (Bazenet *et al.*, *Proc. Natl. Acad. Sci. USA* 95, 3984-3989, 1998). Similar approaches have indicated that mitogen-activated protein kinase kinases 4 and 20 7 (MKK4 and MKK7) lie downstream of Cdc42 and Rac1 and directly upstream of the JNKs (Foltz *et al.*, *J. Biol. Chem.* 273, 9344-9351, 1998; Holland *et al.*, *J. Biol. Chem.* 272, 24994-24998, 1997; Mazars *et al.*, *Oncogene* 19, 1277-1287, 2000; Vacratsis *et al.*, *J. Biol. Chem.* 275, 27893-27900, 2000; Xia *et al.*, *Science* 270, 1326-1331, 1995; Yamauchi *et al.*, *J. Biol. Chem.* 274, 1957-1965, 1999). Studies using constitutively active and dominant-negative constructs have also implicated apoptosis signal- 25 regulating kinase 1 (ASK1) as an additional participant in the pathway that lies between Cdc42 and the downstream MKKs and JNKs (Kanamoto *et al.*, *Mol. Cell. Biol.* 20, 196-204, 2000).

MLKs have been shown to function as MKK kinases and lead to activation of JNKs via 30 activation of MKKs (Bock *et al.*, *J. Biol. Chem.* 275, 14231-1424, 2000; Cuenda *et al.*, *Biochem. J.* 333, 11-159, 1998; Hirai *et al.*, *J. Biol. Chem.* 272, 15167-15173, 1997;

- 11 -

Merritt *et al.*, *J. Biol. Chem.* 274, 10195-10202, ;1999; Rana *et al.*, *J. Biol. Chem.* 271, 19025-19028, 1996; Tibbles *et al.*, *EMBO J.* 15, 7026-7035, 1996; Vacratsis *et al.*, *J. Biol. Chem.* 275, 27893-27900, 2000). Members of the family include MLK1, MLK2 (also called MST), MLK3 (also called SPRK or PTK1), dual leucine zipper kinase 5 (DLK; also called MUK or ZPK), and leucine zipper-bearing kinase (LZK). Constitutively active mutants of Rac1 and Cdc42 have been found to bind to and to modulate the activities of MLK2 and -3, and co-expression of MLK3 and activated Cdc42 leads to enhanced MLK3 activation.

10 In animal models of ischemia or stroke, apoptotic neurons have enhanced phosphorylation of the transcription factor c-Jun by JNK. Additionally, neuronal c-Jun levels are elevated in response to trophic factor withdrawal, and dominant-negative forms of this transcription factor are at least partially-protective against neuronal cell death evoked by selective activation of JNKs (Eilers *et al.*, *J. Neurosci.* 18, 1713-1724, 15 1998; Ham *et al.*, *Neuron* 14, 927-939).

The transcriptional activating activity of c-Jun is regulated at the post-translational level by its phosphorylation by JNK (SAPK) at two residues within the amino-terminal trans-activation domain, serines 63 and 73, in response to a variety of cellular stresses. 20 Phosphorylation of these two residues is critical for the transcriptional activating activity of c-Jun, since mutation of them markedly decreases this activity. JNKs (SAPKs) readily phosphorylate c-Jun at Ser 63/73, and at a rate that is about 10 times faster than ERK-1 and ERK-2. The JNKs (SAPKs) account for the majority of c-Jun trans-activation domain (Ser 63/73) kinase activity after reperfusion, suggesting that 25 they trigger part of the kidney's very early genetic response to ischemia by enhancing the transcriptional activating activity of c-Jun. Since induction of c-Jun is auto-regulated, it is likely that activation of the JNKs (SAPKs) is, at least in part, responsible for the induction of c-Jun following myocardial or renal ischemia.

30 The role of JNKs (SAPKs) in the control of gene expression during and/or following ischemia extends well beyond the regulation of c-Jun by JNK. It is known that c-Jun

- 12 -

functions primarily as a heterodimer with c-Fos or ATF-2 (a member of the CREB family). When complexed with c-Fos, the dimer is targeted to promoters, such as that of the collagenase gene, containing canonical AP-1 elements. When complexed with ATF-2, however, the dimer appears to prefer CRE sequences, and AP-1 variants such 5 as that contained in the c-Jun promoter which controls induction of c-Jun in response to a variety of stimuli. After ischemia and reperfusion, ATF-2 and c-Jun are targeted as a heterodimer to both ATF/CRE motifs and the Jun2 TRE within the c-Jun promoter. This suggests that, following reperfusion of ischemic tissue, the JNKs (SAPKs) target 10 ATF-2/c-Jun heterodimers to various promoters, including the c-Jun promoter, and enhance transcriptional activating activity of both components of the c-Jun/ATF-2 dimer. This may provide a potent mechanism for the induction of a large number of genes regulated by promoters containing ATF/CRE sites or AP-1 variants to which the heterodimer binds.

15 Dimerization of c-Jun also leads to apoptosis in neurons in response to ischemia (Tong *et al.*, *J. Neurochem.* 71, 447-459, 1998; Ham *et al.*, *Biochem. Pharmacol.* 60, 1015-1021, 2000).

A homodimer of c-Jun is also known to activate the c-Jun transcription factor via 20 binding to the transcriptional regulatory element (TRE) in the c-Jun promoter.

As used herein unless specifically stated otherwise or the context requires otherwise, the term "c-Jun dimerization" shall be taken to include homo-dimerization of c-Jun monomers and the partnering of c-Jun with another peptide or polypeptide e.g., JNK, c- 25 Fos, ATF-2.

Similarly, unless specifically stated otherwise or the context requires otherwise, the term "c-Jun dimer" shall be taken to include homo-dimer of c-Jun monomers and a heterodimer of c-Jun with another peptide or polypeptide e.g., JNK, c-Fos, ATF-2.

30

Summary of the invention

The present invention is based upon the understanding of the present inventors that proteins that fold well in nature have non-random hydrophobicity distributions (Irback *et al.*, *Proc Natl Acad. Sci. USA* 93, 9533 – 9538, 1996). In any native peptide, the distribution of amino acid residues according to their chemical properties (e.g., 5 hydrophobicity, polarity, etc) is also non-random (Baud and Karlin, *Proc Natl Acad. Sci. USA* 96, 12494-12499, 1999). Accordingly, the present inventors realized that random peptide libraries have a low frequency of naturally occurring or native peptide conformational structures, secondary structures and/or tertiary structure, such as, for example, formed by protein domains.

10

In work leading up to the present invention, the inventors sought to take advantage of expression libraries produced, for example, as described in International Patent Application No. PCT/AU00/00414 and US Patent Publication No. 2003-0215846 A1 both of which are incorporated herein in their entirety by reference. Additional libraries 15 are described herein. Those expression libraries are well-characterized and highly diverse by virtue of comprising nucleic acid fragments from diverse and well-characterized prokaryotic genomes and/or compact eukaryotic genomes. In particular, the use of combinations of nucleic acid fragments from one or two or more well characterized genomes controls the degree the diversity of peptides/proteins expressed 20 in such expression libraries, to enhance the possibility of isolating novel peptides having the ability to bind to a desired protein or nucleic acid.

For the isolation of modulatory peptides it is to be understood that the bioactive peptides or proteins expressed by individual library clones of such libraries are 25 screened for an activity of the encoded peptide, particularly a binding activity, which said encoded protein has not been shown to possess in the context of the protein from which it was derived (i.e., in its native environment). For example, local BLAST searching of the peptide sequence against a database of sequences comprised from the source genome used to produce the library identified the organism from which the 30 peptide is derived and the function, if any, ascribed to the peptide in nature. Any library clone encoding a peptide that has the same activity as it would have in its native

- 14 -

environment is excluded during the screening process.

The present inventors have now found that it is possible to identify highly conserved specific secondary and/or tertiary structures for peptides identified in such screens, 5 notwithstanding that the primary amino acid sequences of the peptides bear no significant identity to each other or to the target protein or nucleic acid against which they were screened. This provides for improved screening assays based on the selection of peptides for their specific conformation, rather than merely selection peptides on the basis of their not having the desired activity in their native environment. 10 The low probability that peptides having very different amino acid sequences and highly conserved structures, as well as the low probability that peptides having conserved structural features and inhibitory activity against a target protein or nucleic acid, enhances the structural consideration, e.g., secondary and/or tertiary structure of the modulatory peptide.

15

More particularly, the present invention relates to the use of the expression libraries to isolate a nucleic acid that encodes a peptide or protein domain, in particular, a peptide having a conformation sufficient for binding to a target protein or target nucleic acid. This conformation is a product of secondary and/or tertiary structural features and 20 must, by virtue of the peptide binding to its target protein or nucleic acid, be compatible albeit not iterative necessity, of the target protein or target nucleic acid. In accordance with this aspect of the invention, the expression library is screened to identify a peptide encoded by an inserted nucleic acid fragment of the library that binds to a target protein or target nucleic acid, such as, for example to modulate a specific protein:DNA or 25 protein:protein interaction or a structure such as a cell wall or a membrane transport component.

For example, the present inventors have identified a large number of peptides that inhibit Jun dimerization, in a screen of a yeast library comprising combined gene 30 fragments from microorganisms and compact eukaryotes genomes. The identified peptides are useful for preventing or treating stroke or stroke-associated damage in

humans and animals, as determined by their deliverability, stability, and efficacy in animal models of stroke (i.e., a focal ischemic model in which stroke caused by embolism is mimicked, and a global ischemic model in which stroke and brain damage associated with cardiac arrest, severe hypotension and head injury are mimicked). In 5 primary screens, selection of peptides was based on their ability to disrupt Jun protein dimerization in a modified yeast reverse two hybrid screening platform and sequence analysis to determine those peptides having sequences not known to be involved in the Jun/JNK interactions in nature (i.e. their native environment).

10 Those peptides which disrupt Jun dimerization and do not possess this function in nature were further subjected to structural analysis e.g., by searching for secondary and/or tertiary structural features. For example, structural features are determined using appropriate software available on the website of the National Center for Biotechnology Information (NCBI) at the National Institutes of Health, 8600 Rockville 15 Pike, Bethesda MD 20894 such as, for example, through the NCBI Molecules Modeling Database (MMDB) including three-dimensional biomolecular structures determined using X-ray crystallography and/or NMR spectroscopy. The NCBI conserved domain database (CDD) includes domains from the well-known Smart and Pham collections, with links to a 3D-structure viewer (Cn3D). The NCBI Conserved 20 Domain Architecture Retrieval Tool (CDART) uses precalculated domain assignments to neighbor proteins by their domain architecture. By such *in silico* neighboring of peptide inhibitors, the present inventors identified a class of Jun dimerization inhibitory peptides that form a leucine zipper-like structure capable of binding to the leucine zipper of c-Jun thereby inhibiting Jun dimerization. Such peptides may also include an 25 acidic domain capable of binding to the DNA-binding domain of c-Jun thereby preventing docking of c-Jun or Jun dimerization.

30 *In silico* analysis have also identified a second class of Jun dimerization inhibitory peptides that form novel structures and folds that appear to interact with c-Jun. Precise structural determination of these peptides is performed by a process comprising X-ray crystallography , NMR or circular dichroism.

- 16 -

As used herein, the term "leucine zipper-like" shall be taken to mean a subdomain of an α -helical structure that resembles a classical leucine zipper or a part thereof capable of binding to a protein having a leucine zipper motif (e.g., c-Jun). It is to be understood 5 that a leucine zipper-like subdomain may comprise leucine residues or any combination of leucine-like residues, e.g., isoleucine, valine or methionine, of similar hydrophobicity and/or polarity leucine or leucine-like residues spaced at most about 6-12 residues apart, preferably spaced about 2-6 residues apart or 3-6 residues or 2-4 residues apart, and surrounded by a hydrophobic core. As a single turn of an α -helix 10 consists of about 3.6 amino acid residues, a leucine zipper-like subdomain may have the hydrophobic residues spaced about 3 or 4 residues from each leucine-like residue, to maintain the core. Optimally, each leucine-like residue will be spaced 6 or 7 residues apart, and interspersed by a hydrophobic residue spaced 3 or 4 residues from each leucine-like residue.

15

Preferably, an acidic domain comprises clustered aspartate or glutamate residues, such as, for example Asp-Asp-Asp-Asp, which interacts with the leucine zipper-like subdomain. In the exemplified embodiment, the acidic domain comprises the sequence Asp-Asp-Asp-Asp which interacts with Arg-276, Lys-273 and Arg-270 of the c-Jun 20 leucine zipper.

Accordingly, the present invention provides a method of determining a peptide that binds to a target nucleic acid or target protein comprising:

- (a) screening an expression library to identify a peptide expressed by the library that 25 binds to the target protein or target nucleic acid;
- (b) selecting any one or more peptides from (a) that do not bind to said target protein or nucleic acid in their native environment; and
- (c) selecting one or more peptides from (a) or (b) having conserved secondary structure and/or tertiary structure.

30

Screening approaches suitable for performing the invention include for example, a

method selected from the group consisting of yeast-2-hybrid, n-hybrid, reverse-2-hybrid, reverse n-hybrid, split two hybrid, bacterial display, minicell display, phage display, retroviral display, covalent display and *in vitro* display. In a preferred embodiment, the expression library is screened using a phage display method.

5

Preferably, the screening method of the present invention further comprises constructing the expression library by a method described herein. Any library produced by such a method, including any of the exemplified expression libraries, is suitable for this purpose. Alternatively or in addition, any suitable expression library is 10 obtained for screening according to the inventive method.

15 Optionally, a secondary screen is performed, e.g., using Surface Plasmon Resonance (SPR/Biacore) or isothermal calorimetry (ITC) to measure binding of the selected peptides to the immobilized target and selecting those peptides that bind at a specific desired affinity (e.g. high affinity).

20 Alternatively or in addition, the method further comprises determining the ability of a peptide to interact with a target protein or nucleic acid in a heterologous system to that in which the peptide was selected. By "heterologous system" is meant a different cell and/or using a different reporter gene and/or by measuring the interaction of the target protein or nucleic acid with a different binding partner to the interaction of the primary screen. For example, peptides that block c-Jun dimerization in primary yeast reverse hybrid screens can be expressed in mammalian cells in which an expression of different reporter gene (e.g., luciferase) is placed under operable control of AP-1 enhancer 25 elements and dependent on c-Jun dimerization.

30 The present invention clearly encompasses the use of any *in silico* analytical method and/or industrial process for carrying the screening methods described herein into a pilot scale production or industrial scale production of a compound identified in such screens. This invention also provides for the provision of information for any such production.

Accordingly, the present invention also provides a process for identifying or determining a compound or modulator *supra*, said method comprising:

- 5 (i) performing a method as described herein to thereby identify or determine a peptide capable of forming a conformation sufficient for binding a target protein and/or nucleic acid; and
- 10 (ii) providing the compound or the name or structure of the peptide such as, for example, in a paper form, machine-readable form, or computer-readable form.
- 15 10 Optionally, the process further comprises determining the amount of the peptide after (i). Optionally, the process further comprises determining the structure of the peptide after (i).

As used herein, the term “providing the peptide” shall be taken to include any chemical 15 or recombinant synthetic means for producing said compound (with or without derivitisation) or alternatively, the provision of a compound that has been previously synthesized by any person or means.

In a preferred embodiment, the compound or the name or structure of the compound is 20 provided with an indication as to its use e.g., as determined by a screen described herein.

The present invention also provides a process for producing a compound *supra*, said method comprising performing a process for identifying or determining a peptide 25 *supra*, said method comprising:

- 5 (i) performing a method as described herein to thereby identify or determine a peptide capable of forming a conformation sufficient for binding a target protein and/or nucleic acid;
- 10 (ii) optionally, determining the amount of the peptide;
- 15 30 (iii) providing the name or structure of the peptide such as, for example, in a paper form, machine-readable form, or computer-readable form; and

- 19 -

(v) providing the peptide.

Optionally, the process further comprises determining the structure of the peptide after (i).

5

Preferably, the method further comprises providing a chemical derivative of the peptide by protection of the amino-or carboxy-terminus, cyclisation of the peptide or construction of the peptide as a retro-inverted peptide.

10 In a preferred embodiment, the synthesized peptide or the name or structure of the peptide is provided with an indication as to its use e.g., as determined by a screen described herein.

15 The present invention also provides a method of manufacturing a peptide identified by a method of the present invention for use in medicine comprising:

(i) performing a method as described herein to thereby identify or determine a peptide capable of forming a conformation sufficient for binding a target protein and/or nucleic acid; and
(ii) using the peptide in the manufacture of a therapeutic or prophylactic for use in medicine.

20 In one embodiment, the method comprises the additional step of isolating the peptide. Alternatively, a compound is identified and is produced for use in the manufacture of a compound for use in medicine.

25

The present invention also provides an isolated peptide or protein domain that blocks an interaction between two c-Jun proteins, i.e., c-Jun self-dimerization or between c-Jun and another protein e.g., ATF-2, c-Fos or JNK and preferably between c-Jun and ATF-2 or between c-Jun and c-Fos (i.e., a c-Jun heterodimer) or an analogue of said isolated peptide or protein domain. Preferably, the isolated peptide comprises a leucine zipper-like domain or sub-domain and optionally, further comprises an acidic domain

- 20 -

or sub-domain as hereinbefore described. Even more preferably, the isolated peptide or protein domain blocks c-Jun dimerization in a cell.

In a particularly preferred embodiment, the isolated peptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178 and SEQ ID NO: 180.

It will be understood from the disclosure herein that the sequences set forth in SEQ ID NO: 66, SEQ ID NO: 70, SEQ ID NO: 74, SEQ ID NO: 78, SEQ ID NO: 82, SEQ ID NO: 86, SEQ ID NO: 90, SEQ ID NO: 94, SEQ ID NO: 98, SEQ ID NO: 102, SEQ ID NO: 106, SEQ ID NO: 110, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 122, SEQ ID NO: 126, SEQ ID NO: 130, SEQ ID NO: 134, SEQ ID NO: 138, SEQ ID NO: 142, SEQ ID NO: 146, SEQ ID NO: 150, SEQ ID NO: 154, SEQ ID NO: 158, SEQ ID NO: 162, SEQ ID NO: 166, SEQ ID NO: 170, SEQ ID NO: 174 and SEQ ID NO: 178 comprise fusions between a peptide encoded by the phage vector used to produce the expression library and a peptide encoded by a compact eukaryote or prokaryote genomic DNA inserted into the vector. Thus, the combination of these encoded peptide moieties into novel fusion peptides is one means by which the present invention enables the inhibition of c-jun dimerization. The present invention clearly encompasses the production and use of such fusion peptides.

Alternatively, the amino acid sequences set forth in SEQ ID NO: 68, SEQ ID NO: 72, SEQ ID NO: 76, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 96, SEQ ID NO: 100, SEQ ID NO: 104, SEQ ID NO: 108, SEQ ID NO:

- 21 -

112, SEQ ID NO: 116, SEQ ID NO: 120, SEQ ID NO: 124, SEQ ID NO: 128, SEQ ID NO: 132, SEQ ID NO: 136, SEQ ID NO: 140, SEQ ID NO: 144, SEQ ID NO: 148, SEQ ID NO: 152, SEQ ID NO: 156, SEQ ID NO: 160, SEQ ID NO: 164, SEQ ID NO: 168, SEQ ID NO: 172, SEQ ID NO: 176 and SEQ ID NO: 180 are encoded by the 5 compact eukaryote or prokaryote genome DNA inserted into the vector. Such peptides also have utility in inhibiting c-Jun dimerization and the present invention clearly encompasses all such peptides (i.e., without flanking phage vector sequences).

The present invention clearly extends to a peptide analogue of an exemplified c-Jun 10 dimerization inhibitory peptide. Particularly preferred analogues of such peptides are retro-inverted (retro-inverso) peptides. For example, a retro-inverted peptide may comprise an amino acid sequence set forth in SEQ ID NO: 181 or SEQ ID NO: 182.

The present invention clearly extends to any isolated nucleic acid encoding the peptide 15 or protein domain that partially or completely inhibits or antagonizes or blocks c-Jun dimerization in a cell. Exemplary nucleic acids provided herein comprise a nucleotide sequence selected from the group consisting of SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ 20 ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, 25 SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177 and SEQ ID NO: 179.

30

As with the peptide inhibitors of the invention, the present invention clearly extends to sub-groups of the exemplified peptides that comprise the flanking sequence derived from the phage vector, or alternatively, omit such flanking sequences, in accordance with the grouping shown in Table 5 herein.

35

The present invention also provides a database comprising the nucleotide sequences of isolated nucleic acid fragments. Preferably, the database incorporates information regarding the secondary structure of the peptides, including predicted structure or a structure as determined by X-ray crystallography or other empirical means.

5

The present invention also provides an analogue of a peptide that inhibits c-Jun dimerization, said analogue comprising a reversed amino acid sequence of a c-Jun dimerization inhibitory peptide of the present invention wherein every amino acid residue inverted (i.e., substituted with a corresponding D-amino acid residue).

10

The present invention also provides an analogue of a peptide that inhibits c-Jun dimerization, said analogue comprising a reversed amino acid sequence of a c-Jun dimerization inhibitory peptide of the present invention wherein an amino acid residue in said sequence other than glycine is inverted (i.e., substituted with a corresponding D-amino acid residue). Preferably, all amino acid residues other than glycine are inverted.

In a particularly preferred embodiment, the present invention provides an analogue of a peptide that capable of inhibiting c-Jun dimerization, wherein said analogue comprises 20 a complete or partial reverse of an amino acid sequence set forth in SEQ ID NO: 132 or 136 and wherein one or more amino acid residues of the reversed amino acid sequence are D-amino acid residues. More preferably, the present invention provides an analogue of a peptide that capable of inhibiting c-Jun dimerization, wherein said analogue comprises (i) a first peptidyl moiety comprising a sequence that consists of 25 complete or partial reverse of an amino acid sequence set forth in SEQ ID NO: 132 or 136 and wherein one or more amino acid residues of the reversed amino acid sequence are D-amino acid residues; and (ii) a protein transduction domain optionally separated from (i) by an amino acid spacer.

30

The present invention also provides a method for determining or validating a target

- 23 -

comprising

- (a) screening an expression library to identify a peptide expressed by the library that binds to a target protein or target nucleic acid;
- (b) selecting one or more peptides from (a) that do not bind to said target protein or nucleic acid in their native environment;
- 5 (c) selecting one or more peptides from (a) or (b) having conserved secondary structure and/or tertiary structure; and
- (d) expressing a selected peptide in an organism and determining a phenotype of the organism that is modulated by the target protein or target nucleic acid.

10

The present invention also provides a method for identifying a therapeutic or prophylactic compound comprising

- (a) screening an expression library to identify a peptide expressed by the library that binds to a target protein or target nucleic acid;
- 15 (b) selecting one or more peptides from (a) that do not bind to said target protein or nucleic acid in their native environment;
- (c) selecting one or more peptides from (a) or (b) having conserved secondary structure and/or tertiary structure;
- (d) expressing a selected peptide in an organism and determining a phenotype of the organism that is modulated by the target protein or target nucleic acid; and
- 20 (e) optionally, identifying a mimetic compound of a peptide that modulated the phenotype of the organism.

The present invention also provides a method for determining the efficacy of a compound in treating or preventing an ischemic disorder such as stroke in a subject, comprising: a) inducing an ischemic disorder in an animal model for ischemic disorders; b) measuring the stroke outcome in said animal, c) comparing the stroke outcome at (b) with the stroke outcome of the animal model in the absence of the compound so as to identify a compound capable of treating or preventing an ischemic disorder in a subject.

The present invention also provides a method of treatment of a disease or disorder comprising administering an effective amount of a peptide identified by a screening method of the present invention or an analogue of said peptide to a subject suffering from the disease and/or disorder or at risk of developing and/or suffering from the
5 disease and/or disorder.

The present invention also provides a method for preventing or treating ischemia or an ischemic event (e.g., stroke) in a subject comprising administering a peptide inhibitor of c-Jun dimerization according to any embodiment described herein or an analogue of
10 said peptide to a subject in need of treatment.

In a preferred embodiment, the present invention provides a method for preventing or treating ischemia or an ischemic event (e.g., stroke) in a subject comprising administering to a subject in need of treatment a peptide that comprises an amino acid
15 sequence selected from the group consisting of SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108,
20 SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164,
25 SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178 and SEQ ID NO: 180 or an analogue of said peptide.

30 In a related embodiment, the present invention provides for the use of a peptide that inhibits the dimerization of c-Jun according to any embodiment described herein or an analogue of said peptide in medicine. Preferred uses in medicine are, for example, in the manufacture of a medicament for the treatment of ischemia or an ischemic event (e.g., stroke) in a subject.

- 25 -

The present invention also provides a method for preventing or treating ischemia or an ischemic event (e.g., stroke) in a subject comprising administering an isolated nucleic acid encoding a c-Jun dimerization inhibitory peptide according to any embodiment 5 described herein or an analogue of said peptide to a subject in need of treatment.

Preferred nucleic acid encoding a c-Jun dimerization inhibitory peptide will comprise a sequence selected from the group consisting of SEQ ID NO: 65, SEQ ID NO: 67, SEQ 10 ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID 15 NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 20 173, SEQ ID NO: 175, SEQ ID NO: 177 and SEQ ID NO: 179.

In a related embodiment, the present invention provides for the use of an isolated nucleic acid encoding a peptide that inhibits the dimerization of c-Jun according to any embodiment described herein or an analogue of said peptide in medicine. Preferred 25 uses in medicine are, for example, in the manufacture of a medicament for the treatment of ischemia or an ischemic event (e.g., stroke) in a subject.

The present invention clearly encompasses the use of multiple or a plurality of isolated c-Jun dimerization inhibitory peptides or analogues thereof or nucleic acids encoding 30 same in medicine, such as, for example, in the manufacture of a medicament for the treatment of ischemia or an ischemic event (e.g., stroke) in a subject.

Brief description of the drawings

Figure 1 is a schematic representation showing a simplified method of generating an 35 expression library, said library comprising nucleic acid fragments from multiple

- 26 -

evolutionary diverse organisms. Initially nucleic acids are isolated from such organisms and pooled in such a way as to ensure equal representation of each of the genomes. Degenerate PCR is then used to amplify sequences from the pool of the genomes, before specific PCR is used to further amplify these nucleic acid fragments in 5 such a way that they may be cloned into an expression vector.

Figure 2 is a photographic representation showing amplification products of random PCR amplification of genomic DNA isolated from *Archaeoglobus fulgidis*, *Aquifex aeliticus*, *Aeropyrum pernix*, *Bacillus subtilis*, *Bordetella pertussis TOX6*, *Borrelia burgdorferi*, *Chlamydia trachomati*, *Escherichia coli K12*, *Haemophilus influenzae (rd)*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Pyrococcus horikoshii*, *Synechocystis PCC 6803*, *Thermoplasma volcanium*, and *Thermotoga maritima*. The molecular weight marker is shown on the 10 far left. The molecular weight marker is shown on the 15 far left.

Figure 3 is a schematic representation of the pDEATH-Trp vector (SEQ ID NO: 36). The pDEATH-Trp vector comprises a minimal ADH promoter for constitutive expression of a nucleic acid inserted into the vector in yeast cells; a T7 promoter for 20 expression of a nucleic acid fragment in bacterial cells; a nucleic acid encoding a SV-40 nuclear localization signal to force any expressed polypeptide into the nucleus of a yeast cell; a CYC1 terminator, for termination of transcription in yeast cells; a nucleic acid encoding a peptide conferring ampicillin resistance, for selection in bacterial cells; a nucleic acid encoding TRP1 which allows auxotrophic yeast to grow in media 25 lacking tryptophan; a pUC origin of replication, to allow the plasmid to replicate in bacterial cells; and a 2μ origin of replication, to allow the plasmid to replicate in yeast cells.

Figure 4 is a photographic representation showing nucleic acid fragments isolated from 30 bacterial clones carrying the pDEATH-Trp vector. The isolated vector was digested with the restriction endonuclease EcoRI and the resulting fragments electrophoresed.

- 27 -

The molecular weight marker is shown on the far left and far right, and the text indicates the size range of the nucleic acid fragments in base pairs.

Figure 5 is a schematic representation of the pJFK vector (SEQ ID NO: 60). The pJFK vector comprises a GAL1 promoter for inducible expression of a nucleic acid fragment in yeast cells; a nuclear localization signal to force any expressed polypeptide into the nucleus of a yeast cell; a nucleic acid encoding an activation domain derived from the B42 protein, to be expressed as a fusion with a polypeptide of interest in a “n”-hybrid screen; an ADH terminator or termination of transcription in yeast cells; a 2 μ origin of replication, to allow the plasmid to replicate in yeast cells; an HIS5 gene to allow auxotrophic yeast to grow in media lacking histidine; a nucleic acid encoding a peptide conferring ampicillin resistance, for selection in bacterial cells; and a nucleic acid encoding a peptide conferring kanamycin resistance.

Figure 6 is a schematic representation of the pDD vector (SEQ ID NO: 61). The pDD vector comprises a GAL1 promoter for inducible expression of a nucleic acid fragment in yeast cells; a nucleic acid encoding a LEXA1 protein, to be expressed as a fusion with a polypeptide of interest in a “n”-hybrid screen; an ADH terminator or termination of transcription in yeast cells; a 2 μ origin of replication, to allow the plasmid to replicate in yeast cells; an HIS5 gene to allow auxotrophic yeast to grow in media lacking histidine; a nucleic acid encoding a peptide conferring ampicillin resistance, for selection in bacterial cells; and a nucleic acid encoding a peptide conferring kanamycin resistance.

Figure 7 is a schematic representation of the pYTB3 vector (SEQ ID NO: 62). The pYTB vector comprises a minimal ADH promoter for constitutive expression of a nucleic acid fragment in yeast cells, a nuclear localization signal, to target an expressed peptide to the nucleus of a yeast cell, a CYC1 terminator for termination of transcription in yeast cells; a 2 μ origin of replication, to allow the plasmid to replicate in yeast cells; a TRP1 gene to allow auxotrophic yeast to grow in media lacking tryptophan; a nucleic acid encoding a peptide conferring ampicillin resistance, for

- 28 -

selection in bacterial cells; and a pUC origin of replication to allow for replication in bacterial cells. The pYTB3 vector also comprises a T7 promoter to facilitate expression of peptides in bacterial cells and using *in vitro* transcription/translation systems.

5

Figure 8 is a schematic representation of a JUN polypeptide. As shown the constructs JUN1 and JUNZ both encompass the DNA binding domain (DBD) and leucine zipper (LeuZ) domain of JUN. The leucine zipper domain is important for homo-dimerization of JUN.

10

Figure 9 is a graphical representation of a photograph showing yeast colonies expressing JUN1 and a peptide that interacts with JUN1 (Peptide 22) or JUN1 and a peptide that does not interact with JUN1 (Peptide 9). Also shown are cells expressing only the bait (ie JUN1). Note the increased growth in those cells expressing the 15 interacting polypeptides.

Figure 10 is a graphical representation showing the structure of peptide 22 as determined by threading using the structure of a Jun dimer. The peptide is shown interacting with the leucine zipper of the Jun protein and, in particular, with residues 20 Arg-276, Lys-273 and Arg-270 as indicated.

Figure 11 is a graphical representation showing the structure of peptide 22 as determined by threading using the structure of a Jun dimer. Non-polar amino acids that form the core of the peptide that comprises two α -helices are highlighted in blue. The 25 peptide is shown interacting with the leucine zipper of the Jun protein and, in particular, with residues Arg-276, Lys-273 and Arg-270 as indicated.

Figure 12 is a graphical representation showing the structure of peptide 22 as determined by threading using the structure of a Jun dimer. Acidic amino acids are 30 highlighted in blue. Amino acids from the FLAG epitope of peptide 22 are shown interacting with residues Arg-276, Lys-273 and Arg-270 of Jun.

- 29 -

Figure 13 is a graphical representation showing a the FLAG epitope of peptide 22 interacting with residues Arg-276, Lys-273 and Arg-270 of Jun. The structure of the FLAG epitope was determined by threading the sequence of peptide 22 onto the 5 structure of a Jun dimer.

Figure 14 is a graphical representation showing the sequence of several of the c-Jun dimerization inhibitory peptides. Also shown in the location of the amino acid leucine or an equivalent (i.e. valine, isoleucine or methionine) involved in the formation of a 10 leucine zipper like domain (underline). Text in bold font indicates the location of acidic residues involved in interacting with the basic residues of Jun that bind to DNA. The basic residues in Jun are indicated in *italics*.

Figure 15 is a graphical representation showing the level of expression of a reporter 15 gene placed operably under control of an AP-1 regulatory element in the presence of a number of peptides identified using the method of the invention. The level of expression is shown as a percentage of control (no peptide). The level of expression identified in cells expressing the following peptides is shown SP35 (SEQ ID NO: 130), SP36 (SEQ ID NO: 134), SP71 (SEQ ID NO: 158), SP34 (SEQ ID NO: 126) and 20 positive control dnJun. Columns representing results from each peptide are indicated.
*, p<0.05.

Figure 16 is a copy of a photographic representation showing immunoprecipitation of 25 c-Jun bound to a peptide of the invention. Peptides were captured with an anti-FLAG antibody and proteins separated by SDS-PAGE. c-Jun was then detected with an anti-c-Jun antibody (Top Panel). The total level of c-Jun in each cell is indicated in the Bottom Panel. Peptide identity is indicated at the top of the Top Panel.

Figure 17a is a copy of a photomicrograph showing the level of TNF- α induced cell 30 death in PC-12 cells. Cells were treated with TNF α and apoptosis determined using TUNEL. Dark stained cells are those undergoing apoptosis.

- 30 -

Figure 17b is a copy of a photomicrograph showing the level of TNF- α induced cell death in PC-12 cells expressing peptide SP36 (SEQ ID NO: 134). Cells were treated with TNF α and apoptosis determined using TUNEL.

5 Figure 17c is a copy of a photomicrograph showing the level of TNF- α induced cell death in PC-12 cells expressing peptide SP71 (SEQ ID NO: 158). Cells were treated with TNF α and apoptosis determined using TUNEL.

10 Figure 17d is a copy of a photomicrograph showing the level of TNF- α induced cell death in PC-12 cells expressing peptide SP34 (SEQ ID NO: 126). Cells were treated with TNF α and apoptosis determined using TUNEL.

15 Figure 17e is a graphical representation showing the percentage of PC12 cells undergoing apoptosis following TNF α treatment (i.e., percentage of total cells). Results from control cells are labeled TNF alpha. Results from cells expressing peptide SP34 (SEQ ID NO: 126), SP36 (SEQ ID NO: 134) or SP71 (SEQ ID NO: 158) are indicated.

20 Figure 18a is a graphical representation showing the results of FACS analysis to detect propidium iodide and Annexin V expression to determine the level of cell death in a sample of SIRC cells. Live cells and cells undergoing various forms of cell death are indicated.

25 Figure 18b is a graphical representation showing the results of FACS analysis to detect propidium iodide and Annexin V expression to determine the level of cell death in a sample of SIRC cells exposed to UV B radiation for 10 minutes. Live cells and cells undergoing various forms of cell death are indicated.

30 Figure 18c is a graphical representation showing the results of FACS analysis to detect propidium iodide and Annexin V expression to determine the level of cell death in a sample of SIRC cells expressing the peptide SP36 (SEQ ID NO: 134) and exposed to UV B radiation for 10 minutes. Live cells and cells undergoing various forms of cell death are indicated.

- 31 -

Figure 19 is a graphical representation showing the percentage of primary neurons surviving following exposure to glutamate (relative to control - no glutamate). Results are presented for control (Co), glutamate treated cells (glu), glutamate treated cells expressing SP35 (SEQ ID NO: 130), glutamate treated cells expressing SP36 (SEQ ID NO: 134), glutamate treated cells expressing SP71 (SEQ ID NO: 158), TiJIP and SP34 (SEQ ID NO: 126). *, p<0.05

Figure 20 is a graphical representation showing the percentage of primary neurons surviving following exposure to glutamate (relative to control - no glutamate). Results are presented for various doses of peptide SP36 (SEQ ID NO: 134) as indicated.

Figure 21 is a graphical representation showing the percentage of cells rescued from glutamate induced cell death (relative to control cells that have not been treated with glutamate). As indicated cells were treated with various concentrations of peptide 35 comprising L amino acids (L35) (SEQ ID NO: 130); peptide 35 comprising D amino acids (D35) (SEQ ID NO: 130); peptide 36 comprising L amino acids (L36) (SEQ ID NO: 134); peptide 36 comprising L amino acids (D36) (SEQ ID NO: 136); TiJIP or known glutamate receptor blockers MK801 and CNQX (blocker).

Figure 22 is a graphical representation showing the percentage of cells rescued from hypoxia (exposure to acute anaerobic conditions) induced cell death (relative to control cells that have not been exposed to anaerobic conditions). As indicated cells were treated with various concentrations of peptide 35 comprising L amino acids (L35); peptide 35 comprising L amino acids (D35); peptide 36 comprising L amino acids (L36); peptide 36 comprising L amino acids (D36); or known glutamate receptor blockers MK801 and CNQX (blocker).

Detailed description of the preferred embodiments

30 Suitable expression libraries

Expression libraries for expressing a polypeptide having a conformation sufficient for binding to and/or that binds to a target protein or nucleic acid are constructed as described below.

- 32 -

As used herein, the term "expression library" shall be taken to mean a plurality of nucleic acids cloned into a recombinant expression vector such that the cloned DNA fragments are expressed to produce peptides or proteins. As used herein, the terms "expression", "expressed" or "express" shall be taken to mean at least the transcription 5 of a nucleotide sequence to produce a RNA molecule. The term "expression" "expressed" or "express" further means the translation of said RNA molecule to produce a peptide, polypeptide or protein.

As used herein, the term "having a conformation sufficient for binding to a target 10 protein or nucleic acid" shall be taken to mean that an expressed peptide is capable of achieving a secondary structure and/or tertiary structure sufficient for it to bind to a particular target protein or peptide or polypeptide, or alternatively, a target nucleic acid, preferably in the absence of a constraining peptide such as, for example a Trx loop. Such an affinity is to be interpreted in its broadest context to include, for example, the 15 formation of a peptide:peptide complex, a peptide:protein complex, an antigen:antibody complex, and a peptide:nucleic acid complex.

Accordingly, a peptide "that binds to a target protein or nucleic acid" also achieves the secondary and/or tertiary structure required for such binding to occur.

20

A preferred means for producing a suitable expression library comprises producing nucleic acid fragments from the genome of one or two or more prokaryotes and/or compact eukaryotes, each of said prokaryotes (and/or microorganisms) and/or compact eukaryotes having a substantially sequenced genome.

25

The term "fragment" as used herein, shall be understood to mean a nucleic acid that is the same as part of, but not all of a nucleic acid that forms a gene. The term "fragment" also encompasses a part, but not all of an intergenic region.

30 As used herein, the term "gene" means the segment of nucleic acid, specifically DNA, capable of encoding a peptide or polypeptide, in the present context, a "nucleic acid

- 33 -

fragment" is include regions preceding and/or following the coding region of a naturally occurring gene, eg. 5' untranslated or 3' untranslated sequences, as well as intervening sequences between individual coding sequences.

- 5 It will be apparent from the disclosure herein that the nucleic acid fragments used to produce the expression libraries in accordance with the present invention do not necessarily encode the same protein or peptide as in their native context (ie. the gene from which they were derived). In fact, in some situations the nucleic acid fragments will encode a hitherto unknown peptide, particularly if derived from a non-coding
- 10 region of a native gene. All that is required is an open reading frame of sufficient length to encode a peptide or protein domain.

Nucleic acid fragments are generated by one or more of a variety of methods known to those skilled in the art. Such methods include, for example, a method of producing

15 nucleic acid fragments selected from the group consisting of mechanical shearing (e.g., by sonication or passing the nucleic acid through a fine gauge needle), digestion with a nuclease (eg Dnase 1), digestion with one or more restriction enzymes, preferably frequent cutting enzymes that recognize 4-base restriction enzyme sites and treating the DNA samples with radiation (eg. gamma radiation or ultra-violet radiation). Suitable

20 methods are described, for example, in Ausubel *et al* (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987) or Sambrook *et al.*, (In:).

In another embodiment, nucleic acid fragments derived from one or two or more

25 organisms are generated by polymerase chain reaction (PCR) using, for example, random or degenerate oligonucleotides. Preferably, such random or degenerate oligonucleotides include restriction enzyme recognition sequences to allow for cloning of the amplified nucleic acid into an appropriate nucleic acid vector. Methods of generating oligonucleotides are known in the art and are described, for example, in

30 Oligonucleotide Synthesis: A Practical Approach (M. J. Gait, ed., 1984) IRL Press, Oxford, whole of text, and particularly the papers therein by Gait, pp1-22; Atkinson *et*

al., pp35-81; Sproat *et al.*, pp 83-115; and Wu *et al.*, pp 135-151. Methods of performing PCR are also described in detail by McPherson *et al.*, *In: PCR A Practical Approach.*, IRL Press, Oxford University Press, Oxford, United Kingdom, 1991.

5 In a preferred embodiment, the nucleic acid fragment comprises or consists of an open reading frame of nucleotides having a length sufficient to encode a protein domain and preferably, one or two protein domain(s). Examples of protein domains include, for example protein domains selected from the group comprising, helix-loop helix (HLH), leucine zipper, zinc finger, SH2 domain, SH3 domain, WW domain, C2 domain, and
10 proline rich region (PRR), amongst others. However, the present invention is not to be limited to such protein domains. Rather, the present invention contemplates any domain that comprises a sequence of amino acids capable of forming a secondary and/or tertiary structure. Preferably, said structure is stable, more preferably, said structure is stable in the absence of a structural scaffold.

15

Several studies have shown that the smallest natural domains that are able to fold autonomously consist of about 19 amino acids to about 87 amino acids in length (Gegg *et al.*, *Protein Science*, 6: 1885-1892, 1997, Yang, *Biochemistry* 38, 465, 1999, Alder *et al.*, *J. Biol. Chem.*, 270: 23366-23372, 1995, Horng, *Biochemistry*, 41:13360, 2002, Neidigh, *Nature Structural Biology*, 9:425, 2002). In this context, the term “autonomous” means independent of controlling factors, thus a protein that is able to fold autonomously does so in the absence of factors such as, for example disulphide bonds, ligand binding, or the use of a constraint such as, for example a Trx loop. Accordingly, in one preferred embodiment of the present invention, the nucleic acid
25 fragments of the expression library will consist of an open reading frame sufficient to encode a peptide of at least about 30-50 amino acids in length.

It is also known that factors such as disulphide bonds control the folding of the peptides. US Patent No. 6,361,969 and US Patent No. 6,083,715 describe the
30 expression of protein disulphide isomerases to induce disulphide bond formation in proteins. Studies by Vranken (In: *Proteins*, 47:14-24, 2002) have suggested that

- 35 -

natural protein domains stabilized by disulphide bonding can be as small as 15 to 25 amino acids in length. Accordingly, an alternative embodiment of the present invention uses nucleic acid fragments that consist of an open reading frame sufficient to encode a peptide of at least about about 15 amino acids to about 25 amino acids in 5 length.

As for an upper limit of peptide size, it is preferred that the peptide does not comprise or consist of an entire protein that occurs in nature. Preferably, the peptide comprises one or two or three or four protein domains or folds or sub-domains. More preferably, 10 the peptide comprises one or two protein domains or folds or sub-domains. Accordingly, it is preferable that the peptide comprises fewer than about 200 amino acids, more preferably fewer than about 150 amino acids and even more preferably, fewer than about 120 amino acids. For example, the present inventors have identified a peptide comprising about 99 amino acids that is capable of binding to c-Jun and 15 inhibiting c-Jun dimerization. Furthermore, the present inventors have identified a peptide comprising about 75, 70, 65, 60, 50, 40, 30, 20 or 15 amino acids in length.

It will be apparent from the preceding description that the present invention preferably utilizes nucleic acid fragments having a length of about 45 to about 600 nucleotides in 20 length or about 300 nucleotides in length. However, it is to be understood that some variation from this range is permitted, the only requirement being that, on average, nucleic acid fragments generated encode a protein domain or a peptide comprising about at least about 15 to about 100 amino acids in length, and more preferably at least about about 20 to about 100 amino acids in length and still more preferably at least 25 about 30 to about 100 amino acids in length.

Methods of producing nucleic acid fragments and separating said fragments according to their molecular weight are known in the art and include, for example, the fragmentation methods *supra* and a method of separation selected from the group 30 consisting of, agarose gel electrophoresis, pulse field gel electrophoresis, polyacrylamide gel electrophoresis, density gradient centrifugation, size exclusion

chromatography and mixtures thereof. A number of other methods for separating DNA fragments by their size are known in the art and are described, for example in Sambrook *et al* (In:).

- 5 The genomic nucleic acid is isolated from a variety of sources. In one preferred embodiment, genomic DNA is isolated from a prokaryotic organism. Exemplary prokaryotic sources of nucleic acid fragments include, *Aeropyrum pernix*, *Agrobacterium tumeficiens*, *Aquifex aeolicus*, *Archeglobus fulgidis*, *Bacillus halodurans*, *Bacillus subtilis*, *Borrelia burgdorferi*, *Brucella melitensis*, *Brucella suis*,
- 10 *Bruchnera sp.*, *Caulobacter crescentus*, *Campylobacter jejuni*, *Chlamydia pneumoniae*, *Chlamydia pneumoniae*, *Chlamydia trachomatis*, *Chlamydia muridarum*, *Chlorobium tepidum*, *Clostridium acetobutylicum*, *Deinococcus radiodurans*, *Escherichia coli*, *Haemophilus influenzae Rd*, *Halobacterium sp.*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Lactococcus lactis*, *Listeria innocua*, *Listeria 15 monocytogenes*, *Methanococcus jannaschii*, *Mesorhizobium loti*, *Mycobacterium leprae*, *Mycobacterium tuberculosis*, *Mycoplasma genitalium*, *Mycoplasma penetrans*, *Mycoplasma pneumoniae*, *Mycoplasma pulmonis*, *Neisseria meningitidis*, *Oceanobacillus iheyensis*, *Pasteurella multocida*, *Pseudomonas aeruginosa*, *Pseudomonas putida*, *Pyrococcus horikoshii*, *Rickettsia conorii*, *Rickettsia prowazekii*,
- 20 *Salmonella typhi*, *Salmonella typhimurium*, *Shewanella oneidensis MR-1*, *Shigella flexneri 2a*, *Sinorhizobium meliloti*, *Staphylococcus aureus*, *Streptococcus agalactiae*, *Streptococcus agalactiae*, *Streptococcus mutans*, *Streptococcus pneumoniae*, *Streptococcus pyogenes*, *Streptomyces avermitilis*, *Streptomyces coelicolor*, *Sulfolobus solfataricus*, *Sulfolobus tokodaii*, *Synechocystis sp.*, *Thermoanaerobacter 25 tengcongensis*, *Thermoplasma acidophilum*, *Thermoplasma volcanium*, *Thermotoga maritima*, *Treponema pallidum*, *Ureaplasma urealyticum*, *Vibrio cholerae*, *Xanthomonas axonopodis* pv., *Citri*, *Xanthomonas campestris* pv., *Campestris*, *Xylella fastidiosa*, and *Yersinia pestis*.
- 30 Methods of isolating genomic DNA from prokaryotic organisms are known in the art and are described, for example, in Ausubel *et al* (In: Current Protocols in Molecular

Biology. Wiley Interscience, ISBN 047 150338, 1987) or (Sambrook *et al.*, *In:*).

In an alternative embodiment, genomic nucleic acid is from a compact eukaryote. As used herein the term “compact eukaryote” shall be taken to mean any organism of the

5 superkingdom Eukaryota that has a haploid genome size of less than about 1700 mega base pairs (Mbp), and preferably, less than 100 Mbp. Exemplary compact eukaryotes that are suitable for this purpose include, for example, *Arabidopsis thaliana*, *Anopheles gambiae*, *Brugia malayi*, *Caenorhabditis elegans*, *Danio rerio*, *Drosophila melanogaster*, *Eimeria tenella*, *Eimeria acervulina*, *Entamoeba histolytica*, *Oryzias latipes*, *Oryza sativa*, *Plasmodium falciparum*, *Plasmodium vivax*, *Plasmodium yoelii*, *Sarcocystis cruzi*, *Saccharomyces cerevesiae*, *Schizosaccharomyces pombe*, *Schistosoma mansoni*, *Takifugu rubripes*, *Theileria parva*, *Tetraodon fluviatilis*, *Toxoplasma gondii*, *Tryponosoma brucei*, and *Trypanosoma cruzi*.

10

15 Furthermore, it is preferred that said eukaryotes having a compact genome have less repetitive nucleotide sequences in their genome than, for example humans. Such information can be determined, for example, from information from NCBI or TIGR.

As used herein the term “NCBI” shall be taken to mean the database of the National

20 Center for Biotechnology Information at the National Library of Medicine at the National Institutes of Health of the Government of the United States of America, Bethesda, MD, 20894.

As used herein the term “TIGR” shall be taken to mean the database of The Institute of

25 Genomic Research, Rockville, MD, 20850.

By way of example, an organism having a compact genome is the Japanese puffer fish, *Takifugu rubripes*. *T. rubripes* has a haploid genome size of approximately 400Mbp, with a gene density of about 16%. This is compared to the human genome, which has a

30 size in excess of 3000Mbp of which only about 3% of nucleotide sequences encode proteins. The absolute number of native genes in the *T. rubripes* genome is comparable

to that in the human genome, suggesting fewer repetitive sequences occur in *T. rubripes*. This feature makes *T. rubripes* particularly useful as a source of nucleic acid fragments of the expression libraries. This is because a nucleic acid fragment derived from the genome of a compact eukaryote has an increased probability of encoding a 5 protein domain that is contained within a naturally occurring protein in its native context, compared to a sequence derived from a non-compact eukaryote.

It is to be understood that, whilst such a native domain of a protein is expressed by a library disclosed herein, the invention is not limited to the expression of known protein 10 domains. Moreover, it is to be understood that the expression library is screened using a process that excludes the selection of clones that encode a known protein domain having its native function. Accordingly, the present invention is directed to products and processes for isolating peptides having new or enhanced functions.

15 Methods of isolating genomic DNA from eukaryotic organisms are known in the art and are described in, for example, Ausubel *et al* (In: *Current Protocols in Molecular Biology*. Wiley Interscience, ISBN 047 150338, 1987) or (Sambrook *et al* (In:).

In a further embodiment of the present invention, the nucleic acid fragments are 20 derived from complementary DNA (cDNA). Those skilled in the art will be aware that cDNA is generated by reverse transcription of RNA using, for example, avian reverse transcriptase (AMV) reverse transcriptase or Moloney Murine Leukemia Virus (MMLV) reverse transcriptase. Such reverse transcriptase enzymes and the methods for their use are known in the art, and are obtainable in commercially available kits, 25 such as, for example, the Powerscript kit (Clontech), the Superscript II kit (Invitrogen), the Thermoscript kit (Invitrogen), the Titanium kit (Clontech), or Omniscript (Qiagen). Such cDNA may then be used to produce nucleic acid fragments, for example, using a method described herein.

30 Methods for isolating mRNA from a variety of organisms are known in the art and are described for example in, Ausubel *et al* (In: *Current Protocols in Molecular Biology*.

Wiley Interscience, ISBN 047 150338, 1987) or Sambrook *et al* (*In:*).

Methods of generating cDNA from isolated RNA are also commonly known in the art and are described in for example, Ausubel *et al* (*In:* Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987) or (Sambrook *et al* (*In:*).

In a preferred embodiment, the nucleic acid fragments generated from RNA or cDNA are normalized to reduce any bias toward more highly expressed genes. Methods of normalizing nucleic acids are known in the art, and are described, for example, in Ausubel *et al* (*In:* Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987) or Sambrook *et al* (*In:* Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001) and Soares *et al* *Curr. Opinion Biotechnol.* 8, 542-546, 1997, and references cited therein. One such method (described by Soares) uses reasssociation-based kinetics to reduce the bias of the library toward highly expressed sequences.

Alternatively, cDNA is normalized through hybridization to genomic DNA that has been bound to magnetic beads, as described in Kopczynski *et al*, *Proc. Natl. Acad. Sci. USA*, 95(17), 9973-9978, 1998. This provides an approximately equal representation of cDNA sequences in the eluant from the magnetic beads. Normalized expression libraries produced using cDNA from one or two or more prokaryotes or compact eukaryotes are clearly contemplated by the present invention.

In a particularly preferred embodiment, the nucleic acid fragments are derived from a prokaryote and/or compact eukaryote having a substantially sequenced genome. An advantage of using such fragments is that bioinformatic data can be assembled and used to provide more complete information about the composition of a library than would be possible using uncharacterized libraries. This facilitates, for example, the generation of DNA arrays containing sequences derived from many or all of the nucleic acid fragments of the library. Methods used in the generation and screening of DNA arrays are known in the art and are described in for example, Schena (*In:* Microarray Analysis,

- 40 -

John Wiley and Sons, ISBN: 0471414433, 2002). The use of a DNA array in the high-throughput analysis of the screening of a biodiverse nucleic acid fragment to determine the sequences of positive clones is contemplated.

5 As used herein “substantially sequenced genome” shall be taken to mean that at least about 60% of the genome has been sequenced. More preferably at least about 70% of the genome has been sequenced, and more preferably at least about 75% of the genome has been sequenced. Even more preferably at least about 80% of the genome has been sequenced.

10

Methods for determining the amount of a genome that has been sequenced are known in the art. Furthermore, information regarding those sequences that have been sequenced is readily obtained from publicly available sources, such as, for example, the databases of NCBI or TIGR, thereby facilitating determination of the diversity of the

15 genome.

Organisms having a substantially sequenced genome include, for example, an organism selected from the group consisting of *Actinobacillus pleuropneumoniae* serovar, *Aeropyrum pernix*, *Agrobacterium tumeficiens*, *Anopheles gambiae*, *Aquifex aeolicus*,
20 *Arabidopsis thaliana*, *Archeglobus fulgidis*, *Bacillus anthracis*, *bacillus cereus*, *Bacillus halodurans*, *Bacillus subtilis*, *Bacteroides thetaiotaomicron*, *Bdellovibrio bacteriovorus*, *Bifidobacterium longum*, *Bordetella bronchiseptica*, *Bordetella parapertussis*, *Borrelia burgdorferi*, *Bradyrhizobium japonicum*, *Brucella melitensis*, *Brucella suis*, *Bruchnera aphidicola*, *Brugia malayi*, *Caenorhabditis elegans*,
25 *Campylobacter jejuni*, *Candidatus blochmannia floridanus*, *Caulobacter crescentus*, *Chlamydia muridarum*, *Chlamydia trachomatis*, *Chlamydophilia caviae*, *Chlamydia pneumoniae*, *Chlorobium tepidum*, *Chromobacterium violaceum*, *Clostridium acetobutylicum*, *Clostridium perfringens*, *Clostridium tetani*, *Corynebacterium diphtheriae*, *Corynebacterium efficiens*, *Corynebacterium glutamicum*, *Coxiella burnetii*, *Danio rerio*, *Dechloromonas aromatica*, *Deinococcus radiodurans*,
30 *Drosophila melanogaster*, *Eimeria tenella*, *Eimeria acervulina*, *Entamoeba histolytica*,

Enterococcus faecalis, Escherichia coli, Fusobacterium nucleatum, Geobacter sulfurreducens, Gloeobacter violaceus, Haemophilis ducreyi, Haemophilus influenzae, Halobacterium, Helicobacter hepaticus, Helicobacter pylori, Lactobacillus johnsonii, Lactobacillus plantarum, Lactococcus lactis, Leptospira interrogans serovar lai, 5 Listeria innocua, Listeria monocytogenes, Mesorhizobium loti, Methanobacterium thermoautotrophicum, Methanocaldococcus jannaschii, Methanococcoides burtonii, Methanopyrus kandleri, Methanosaerina acetivorans, Methanosaerina mazei Goel, Methanothermobacter thermautotrophicus, Mycobacterium avium, Mycobacterium bovis, Mycobacterium leprae, Mycobacterium tuberculosis, Mycoplasma gallisepticum 10 strain R, Mycoplasma genitalium, Mycoplasma penetrans, Mycoplasma pneumoniae, Mycoplasma pulmonis, Nanoarchaeum equitans, Neisseria meningitidis, Nitrosomonas europaea, Nostoc, Oceanobacillus iheyensis, Onion yellows phytoplasma, Oryzias latipes, Oryza sativa, Pasteurella multocida, Photobacterium luminescens, Pirellula, Plasmodium falciparum, Plasmodium vivax, Plasmodium yoelii, Porphyromonas 15 gingivalis, Prochlorococcus marinus, Prochlorococcus marinus, Prochlorococcus, Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas syringae, Pyrobaculum aerophilum, Pyrococcus abyssi, Pyrococcus furiosus, Pyrococcus horikoshii, Ralstonia solanacearum, Rhodopseudomonas palustris, Rickettsia conorii, Rickettsia prowazekii, Rickettsia rickettsii, Saccharomyces cerevisiae, Salmonella enterica, Salmonella 20 typhimurium, Sarcocystis cruzi, Schistosoma mansoni, Schizosaccharomyces pombe, Shewanella oneidensis, Shigella flexneri, Sinorhizobium meliloti, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Streptococcus agalactiae, Streptococcus mutans, Streptococcus pneumoniae, Streptococcus pyogenes, Streptomyces avermitilis, Streptomyces coelicolor, Sulfolobus solfataricus, Sulfolobus 25 tokodaii, Synechocystis sp., Takifugu rubripes, Tetraodon fluviatilis, Theileria parva, Thermoanaerobacter tengcongensis, Thermoplasma acidophilum, Thermoplasma volcanium, Thermosynechococcus elongatus, Thermotoga maritima, Toxoplasma gondii, Treponema denticola, Treponema pallidum, Tropheryma whipplei, Tryponosoma brucei, Trypanosoma cruzi, Ureaplasma urealyticum, Vibrio cholerae, 30 Vibrio parahaemolyticus, Vibrio vulnificus, Wigglesworthia brevipalpis, Wolbachia endosymbiont of Drosophila melanogaster, Wolinella succinogenes, Xanthomonas

axonopodis pv. *Citri*, *Xanthomonas campestris* pv. *Campestris*, *Xylella fastidiosa* and *Yersinia pestis*.

In an alternative embodiment, the library is produced from the genomic DNA of one or
5 more publicly available bacteria having substantially sequenced genomes and being
selected from the group consisting of: *Acidithiobacillus ferrooxidans*, *Campylobacter*
jejuni subsp. *Jejuni*, *Caulobacter vibrioides*, *Colwellia psychrerythraea*,
Corynebacterium diphtheriae, *Desulfovibrio vulgaris* subsp. *Vulgaris*, *Enterococcus*
faecalis, *Escherichia coli*, *Geobacter sulfurreducens*, *Haemophilus*
10 *actinomycetemcomitans*, *Haemophilus influenzae*, *Halobacterium salinarum*,
Haloferax volcanii, *Helicobacter pylori*, *Klebsiella pneumoniae* subsp. *pneumoniae*,
Lactobacillus plantarum, *Mannheimia haemolytica*, *Methanococcus jannaschii*,
Methanococcus maripaludis, *Methylobacterium extorquens*, *Neisseria gonorrhoeae*,
Neisseria meningitidis, *Nitrosomonas europaea*, *Nostoc* sp., *Novosphingobium*
15 *aromaticvorans*, *Oenococcus oeni*, *Pectobacterium atrosepticum*, *Porphyromonas*
gingivalis, *Pseudomonas aeruginosa*, *Pyrococcus furiosus*, *Pyrococcus horikoshii*,
Rhizobium radiobacter, *Rhodopseudomonas palustris*, *Salmonella enterica* subsp.
20 *Diarizonae*, *Salmonella enterica* subsp. *enterica* serovar *Paratyphi A*, *Salmonella*
enterica subsp. *enterica* serovar *Typhi*, *Salmonella enterica* subsp. *enterica* serovar
Typhimurium, *Shewanella oneidensis*, *Shigella flexneri*, *Silicibacter pomeroyi*,
Staphylococcus epidermidis, *Streptomyces violaceoruber*, *Thermoplasma volcanium*,
Thermotoga maritima, *Thermus thermophilus*, *Thiobacillus ferrooxidans*, *Ureaplasma*
urealyticum, *Vibrio fischeri*, *Wautersia metallidurans* and *Xylella fastidiosa* and
combinations thereof.

25

In an alternate, and/or additional embodiment, nucleic acid fragments are derived from
a virus having a substantially sequenced genome. Virus' with a substantially sequenced
genomes are known in the art and include, for example, a virus selected from the group
consisting of T7 phage, HIV, equine arteritis virus, lactate dehydrogenase-elevating
30 virus, lelystad virus, porcine reproductive and respiratory syndrome virus, simian
hemorrhagic fever virus, avian nephritis virus 1, turkey astrovirus 1, human astrovirus

type 1, 2 or 8, mink astrovirus 1, ovine astrovirus 1, avian infectious bronchitis virus, bovine coronavirus, human coronavirus, murine hepatitis virus, porcine epidemic diarrhea virus, SARS coronavirus, transmissible gastroenteritis virus, acute bee paralysis virus, aphid lethal paralysis virus, black queen cell virus, cricket paralysis virus, 5 Drosophila C virus, himetobi P virus, kashmir been virus, plautia stali intestine virus, rhopalosiphum padi virus, taura syndrome virus, triatoma virus, alkhurma virus, apoi virus, cell fusing agent virus, deer tick virus, dengue virus type 1, 2, 3 or 4, Japanese encephalitis virus, Kamiti River virus, kunjin virus, langat virus, louping ill virus, modoc virus, Montana myotis leukoencephalitis virus, Murray Valley 10 encephalitis virus, omsk hemorrhagic fever virus, powassan virus, Rio Bravo virus, Tamana bat virus, tick-borne encephalitis virus, West Nile virus, yellow fever virus, yokose virus, Hepatitis C virus, border disease virus, bovine viral diarrhea virus 1 or 2, classical swine fever virus, pestivirus giraffe, pestivirus reindeer, GB virus C, hepatitis G virus, hepatitis GB virus, bacteriophage M11, bacteriophage Qbeta, bacteriophage 15 SP, enterobacteria phage MX1, enterobacteria NL95, bacteriophage AP205, enterobacteria phage fr, enterobacteria phage GA, enterobacteria phage KU1, enterobacteria phage M12, enterobacteria phage MS2, pseudomonas phage PP7, pea enation mosaic virus-1, barley yellow dwarf virus, barley yellow dwarf virus-GAV, barley yellow dwarf virus-MAW, barley yellow dwarf virus-PAS, barley yellow dwarf 20 virus-PAV, bean leafroll virus, soybean dwarf virus, beet chlorosis virus, beet mild yellowing virus, beet western yellows virus, cereal yellow dwarf virus-RPS, cereal yellow dwarf virus-RPV, cucurbit aphid-borne yellows virus, potato leafroll virus, turnip yellows virus, sugarcane yellow leaf virus, equine rhinitis A virus, foot-and-mouth disease virus, encephalomyocarditis virus, theilovirus, bovine enterovirus, 25 human enterovirus A, B, C, D or E, poliovirus, porcine enterovirus A or B, unclassified enterovirus, equine rhinitis B virus, hepatitis A virus, aichi virus, human parechovirus 1, 2 or 3, Ijungan virus, equine rhinovirus 3, human rhinovirus A and B, porcine teschovirus 1, 2-7, 8, 9, 10 or 11, avian encephalomyelitis virus, kakugo virus, simian picornavirus 1, aura virus, barmah forest virus, chikungunya virus, eastern equine 30 encephalitis virus, igbo ora virus, mayaro virus, ockelbo virus, onyong-nyong virus, Ross river virus, sagiyama virus, salmon pancreas disease virus, semliki forest virus,

sindbis virus, sindbus-like virus, sleeping disease virus, Venezuelan equine encephalitis virus, Western equine encephalomyelitis virus, rubella virus, grapevine fleck virus, maize rayado fino virus, oat blue dwarf virus, chayote mosaic tymovirus, eggplant mosaic virus, erysimum latent virus, kennedy yellow mosaic virus, ononis yellow 5 mosaic virus, physalis mottle virus, turnip yellow mosaic virus and poinsettia mosaic virus.

Information regarding those viral sequences that have been sequenced is readily obtained from publicly available sources, such as, for example, the databases of VirGen 10 and/or NCBI, thereby facilitating determination of the diversity of the genome.

As used herein, the term "VirGen" shall be taken to mean the viral genome resource of the Bioinformatics Centre, University of Pune, Pune 411 007, India.

- 15 In a particularly preferred embodiment, nucleic acid fragments are selected that have sufficiently different or divergent nucleotide sequences to thereby enhance nucleotide sequence diversity among the selected fragments compared to the diversity of sequences in the genome from which they were derived.
- 20 In one embodiment a nucleic acid fragment is selected such that the encoded polypeptide varies by one or more amino acids with regard to the amino acid sequence of the polypeptide encoded by another fragment in the library, a process that is facilitated using genomes that are substantially sequenced.
- 25 In an alternative embodiment, the nucleotide sequence of a nucleic acid fragment is mutated by a process such that the encoded peptide varies by one or more amino acids compared to the "template" nucleic acid fragment. The "template" may have the same nucleotide sequence as the original nucleic acid fragment in its native context (ie. in the gene from which it was derived). Alternatively, the template may itself be an 30 intermediate variant that differs from the original nucleic acid fragment as a consequence of mutagenesis. Mutations include at least one nucleotide difference

- 45 -

compared to the sequence of the original fragment. This nucleic acid change may result in for example, a different amino acid in the encoded peptide, or the introduction or deletion of a stop codon. Accordingly, the diversity of the nucleic acids of the expression library and the encoded polypeptides is enhanced by such mutation processes.

In one embodiment, the nucleic acid fragments are modified by a process of mutagenesis selected from the group consisting of, mutagenic PCR, expressing the nucleic acid fragment in a bacterial cell that induces a random mutation, site directed 10 mutagenesis and expressing a nucleic acid fragment in a host cell exposed to a mutagenic agent such as for example radiation, bromo-deoxy-uridine (BrdU), ethylnitrosurea (ENU), ethylmethanesulfonate (EMS) hydroxylamine, or trimethyl phosphate amongst others.

15 In a preferred embodiment, the nucleic acid fragments are modified by amplifying a nucleic acid fragment using mutagenic PCR. Such a method includes, for example, a process selected from the group consisting of: (i) performing the PCR reaction in the presence of manganese; and (ii) performing the PCR in the presence of a concentration of dNTPs sufficient to result in misincorporation of nucleotides.

20 Methods of inducing random mutations using PCR are known in the art and are described, for example, in Dieffenbach (ed) and Dveksler (ed) (*In: PCR Primer: A Laboratory Manual*, Cold Spring Harbour Laboratories, NY, 1995). Furthermore, commercially available kits for use in mutagenic PCR are obtainable, such as, for 25 example, the Diversify PCR Random Mutagenesis Kit (Clontech) or the GeneMorph Random Mutagenesis Kit (Stratagene).

In one embodiment, PCR reactions are performed in the presence of at least about 200 μ M manganese or a salt thereof, more preferably at least about 300 μ M manganese 30 or a salt thereof, or even more preferably at least about 500 μ M or at least about 600 μ M manganese or a salt thereof. Such concentrations manganese ion or a manganese salt

induce from about 2 mutations per 1000 base pairs (bp) to about 10 mutations every 1000 bp of amplified nucleic acid (Leung *et al Technique 1*, 11-15, 1989).

In another embodiment, PCR reactions are performed in the presence of an elevated or 5 increased or high concentration of dGTP. It is preferred that the concentration of dGTP is at least about 25 μ M, or more preferably between about 50 μ M and about 100 μ M. Even more preferably the concentration of dGTP is between about 100 μ M and about 150 μ M, and still more preferably between about 150 μ M and about 200 μ M. Such high concentrations of dGTP result in the misincorporation of nucleotides into PCR products 10 at a rate of between about 1 nucleotide and about 3 nucleotides every 1000 bp of amplified nucleic acid (Shafkhan *et al BioTechniques 23*, 304-306, 1997).

PCR-based mutagenesis is preferred for the mutation of the nucleic acid fragments, as increased mutation rates is achieved by performing additional rounds of PCR.

15 In another preferred embodiment, the nucleic acid of the expression library is mutated by inserting said nucleic acid into a host cell that is capable of mutating nucleic acid. Such host cells are deficient in one or more enzymes, such as, for example, one or more recombination or DNA repair enzymes, thereby enhancing the rate of mutation to a rate 20 that is rate approximately 5,000 to 10,000 times higher than for non-mutant cells. Suitable bacterial strains carry, for example, alleles that modify or inactivate components of the mismatch repair pathway. Examples of such alleles include alleles selected from the group consisting of *mutY*, *mutM*, *mutD*, *mutT*, *mutA*, *mutC* and *mutS*. Bacterial cells that carry alleles that modify or inactivate components of the mismatch 25 repair pathway are known in the art, such as, for example the XL-1Red, XL-*mutS* and XL-*mutS*-Kan^r bacterial cells (commercially available from Stratagene).

Alternatively, nucleic acid fragments are cloned into a nucleic acid vector that is preferentially replicated in a bacterial cell by the repair polymerase, *Pol I*. By way of 30 exemplification, a *Pol I* variant strain will induce a high level of mutations in the introduced nucleic acid vector, thereby enhancing sequence diversity of the nucleic

acid used to generate the expression library. Such a method is described by Fabret *et al* (*In: Nucl Acid Res*, 28, 1-5 2000), which is incorporated herein by reference.

In a further preferred embodiment the mutated nucleic acid fragments are combined

5 with the non-mutated fragments from which they were derived, for subcloning into an expression vector. In this way, the nucleotide diversity of the expression library is enhanced, as is the diversity of the conformations of the expressed peptides and proteins.

10 In another embodiment, the sequence diversity of a nucleic acid fragment is increased, such as, for example, using a synthetic shuffling technique, such as, for example, the process described by Ness *et al*, *Nature Biotechnology*, 20, 1251-1255, 2002, which is incorporated herein by reference. In adapting such a technique to the present invention, functionally homologous nucleic acid fragments are selected from the expression

15 library, using methods described herein. By “functionally homologous” in this context means that the selected fragments bind to the same target protein or target nucleic acid. The amino acid sequence of each peptide that binds to the target is determined using methods known in the art, and the sequences are aligned using an algorithm known in the art. A consensus sequence is determined from the alignment that provides for

20 highly conserved residues, as well as elucidating those residues that are structurally similar albeit not strictly conserved. The structural features of the peptides are also derived using X-ray crystallography and/or computer-based modelling procedures. Accordingly, the divergence in the identified peptides from an individual screen permits the identification of both primary and secondary structural features that are

25 required for binding to the target protein or target nucleic acid to occur. Based upon the bioinformatic data obtained, oligonucleotides (e.g., degenerate oligonucleotides or non-degenerate oligonucleotides as appropriate) are designed that encode all of the possible peptides that bind to the target protein or target nucleic acid. These oligonucleotides are then assembled using PCR employing multiple rounds of

30 amplification, to generate a plurality of nucleic acids encoding all possible peptide combinations. Accordingly, an amino acid sequence that is not normally found in

nature is produced.

In one embodiment, nucleic acid fragments are cloned into a gene construct in at least two forward open reading frames, and preferably three forward open reading frames, to

5 thereby enhance the number of divergent peptides or proteins that are encoded by a particular nucleic acid fragment. Preferably, a significant proportion of the nucleic acid fragments are cloned into a gene construct in at least two forward open reading frames, and preferably three forward open reading frames, to thereby enhance the number of divergent peptides or proteins that are encoded by a particular nucleic acid fragment.

10 In this context, the term "significant proportion" means at least about 30% to 50%, preferably at least about 40% to 60%, more preferably at least about 50% to 70%, still more preferably at least about 60% to 80% and still more preferably greater than about 70% or 80% of the total nucleic acid fragments that are subcloned successfully into a suitable gene construct such that more than one open reading frame can be utilized for

15 expression. As will be known to those skilled in the art, procedures for cloning a single nucleic acid into a gene construct in multiple reading frames are known.

A preferred method of subcloning nucleic acid fragment(s) in multiple reading frames comprises a process selected from the group consisting of:

20 (a) ligating a nucleic acid fragment to a linker or adaptor, such as for example, one or more linkers modified to contain an additional one or two or three base pairs, or a multiple of one or two or three nucleotides;

(b) Placing a nucleic acid fragment operably under the control of a Kozak consensus sequence and at different distances therefrom (eg. one or two or three nucleotides or a multiple of one or two or three nucleotides) from said Kozak consensus sequence;

25 (c) Placing a fragment under control of a sequence that confers transcriptional and/or translational slippage.

30 By ligating the nucleic acid fragment to a linker or adaptor, the number of introduced nucleotides can be varied such that a significant proportion of the nucleic acid

fragments are introduced into an expression vector or gene construct in at least two and preferably three reading frames. Linkers or adaptors are ligated to the 5'-end of the nucleic acid fragment such that, on average, a different length linker or adaptor is added to each nucleic acid fragment having the same sequence. This is generally

5 achieved by varying the relative proportions of each linker/adaptor to the nucleic acid fragments. Naturally, each linker/adaptor of differing length is generally in equimolar concentration in the ligation reaction, and the total concentration of linker/adaptor 3'-ends is held in equimolar concentration to the total concentration of 5'-ends of the nucleic acid fragments being ligated. Methods of ligating adaptors to nucleic acids are

10 known in the art and are described in for example, Ausubel *et al* (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987) or Sambrook *et al* (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001).

15 As an alternative to separately adding the linkers/adaptors to the nucleic acid fragments prior to subcloning into a suitable gene construct, a suitable gene construct is used that comprises additional nucleotides 3' of a translation initiation signal, and provides for sub-cloning of nucleic acid fragments in each reading frame. As will be known to those skilled in the art, each reading frame in a gene construct is generally accessed by

20 digesting the gene construct with a different restriction endonuclease and then sub-cloning nucleic acid fragments into the digested, linearized vector. By "sub-cloning" means a process involving or comprising a ligation reaction.

Alternatively, site directed mutagenesis is used to introduce additional nucleotides after

25 the translation initiation site of the gene construct. Methods of site-directed mutagenesis are known in the art, and are described for example, in Dieffenbach (eds) and Dveksler (ed) (In: PCR Primer: A Laboratory Manual, Cold Spring Harbour Laboratories, NY, 1995). Furthermore, kits containing instructions and reagents necessary for site-directed mutagenesis are commercially available, such as, for

30 example, the Quikchange site directed mutagenesis kit (Stratagene).

- 50 -

Furthermore, expression vectors are commercially available that have been modified to include an additional one or two nucleotides after the transcription start codon to allow for cloning of a nucleic acid in at least two and preferably three reading frames. Such vectors include, for example, the pcDNA (A, B, or C) vector suite (Invitrogen).

5

By positioning each nucleic acid fragment so that expression is placed operably under the control of a Kozak consensus sequence and at different distances therefrom, a significant proportion of the nucleic acid fragments is inserted into the vector in at least two and preferably three reading frames. A preferred Kozak sequence has the core 10 sequence RNNATG (SEQ ID NO: 1), wherein R is a purine (ie. A or G) and N is any nucleotide. A particularly preferred Kozak sequence for expression of a polypeptide in eukaryotic cells comprises the sequence CCRCCATG (SEQ ID NO: 2) or GCCAGCCATGG (SEQ ID NO: 3). A preferred Kozak sequence for the expression of polypeptides in plants is CTACCATG (SEQ ID NO: 4).

15

A Kozak consensus sequence is generated using synthetic oligonucleotides in a process that is known in the art and described, for example, in, Oligonucleotide Synthesis: A Practical Approach (M. J. Gait, ed., 1984) IRL Press, Oxford, whole of text, and particularly the papers therein by Gait, pp1-22; Atkinson *et al.*, pp35-81; Sproat *et al.*, 20 pp 83-115; and Wu *et al.*, pp 135-151. Alternatively, a Kozac sequence is isolated from a natural or recombinant source using methods known in the art, such as for example using from the group, restriction enzyme digestion or PCR.

In one embodiment, the Kozak sequence is generated as an oligonucleotide or nucleic 25 acid fragment and then ligated 5' of the nucleic acid fragment (i.e., the nucleic acid fragment being sub-cloned). Methods of ligating such oligonucleotides or fragments are known in the art and are described in for example, Ausubel *et al* (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987) or (Sambrook *et al* (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, 30 Cold Spring Harbor Laboratories, New York, Third Edition 2001). As with other ligations, the total concentration of nucleic acid of each ligating species (ie. the Kozak

containing fragment and the nucleic acid) should preferably be equimolar. Naturally, to ensure that a significant proportion of nucleic acid fragments are ligated in each reading frame, the Kozak-containing fragments of differing length should also be present in approximately equimolar concentration.

5

As an alternative to separately adding the Kozak consensus sequence oligonucleotide or fragment to the nucleic acid fragment prior to subcloning into a suitable vector, an expression vector is used that comprises a translation start site and provides for subcloning of nucleic acid fragments in each reading frame. As will be known to those skilled in the art, each reading frame in such a vector is generally accessed by digesting the vector with a different restriction enzyme and then subcloning fragments into the digested, linearized vector.

When the nucleic acid fragment is to be expressed in prokaryotic cells, it is particularly preferred that the Kozak sequence of the above embodiments is replaced with a ribosome binding sequence, or Shine Dalgarno sequence. A particularly preferred Shine Dalgarno sequence consists of nucleic acids having the nucleotide sequence GAAGAAGATA (SEQ ID NO: 5).

- 20 By placing a fragment under control of sequences that confer transcriptional and/or translational slippage is meant that the fidelity of the start site for transcription and/or translation is reduced such that translation is initiated at different sites. Accordingly, such a sequence is cause the expression of several different polypeptides.
- 25 In one embodiment translational slippage (or translational frameshifting) is induced using nucleic acid comprising of the consensus sequence $N_1N_1N_1N_2N_2N_2N_3$, wherein N represents any nucleotide and all nucleotides represented by N_1 are the same nucleotide, all nucleotides represented by N_2 are the same nucleotide. In accordance with this embodiment, N_1 and/or N_2 and/or N_3 are the same or different. A particularly preferred translational slippage sequence for use in a eukaryote will comprise a sequence selected from the group consisting of: AAAAAAC (SEQ ID NO: 6),

- 52 -

AAATTAA (SEQ ID NO: 7), AAATTTT (SEQ ID NO: 8), GGGAAAC (SEQ ID NO: 9), GGGCCCC (SEQ ID NO: 10), GGGTTTA (SEQ ID NO: 11), GGGTTTT (SEQ ID NO: 12), TTTAAAC (SEQ ID NO: 13), TTTAAAT (SEQ ID NO: 14), TTTTTA (SEQ ID NO: 15), and GGATTAA (SEQ ID NO: 16). In an alternative embodiment, a 5 sequence that induces translational slippage in yeast is CTTAGGC (SEQ ID NO: 17) or GCGAGTT (SEQ ID NO: 18). In yet another embodiment a sequence that induces translational slippage in mammals is TCCTGAT (SEQ ID NO: 19).

In another embodiment, a translational slippage sequences for use in prokaryotic 10 organisms includes, but is not limited to a sequence selected from the group consisting of AAAAAAG (SEQ ID NO: 20), AAAAAAAA (SEQ ID NO: 21), AAAAAAC (SEQ ID NO: 22), GGGAAAG (SEQ ID NO: 23), AAAAGGG (SEQ ID NO: 24), GGGAAAA (SEQ ID NO: 25), TTTAAAG (SEQ ID NO: 26) and AAAGGGG (SEQ ID NO: 27). It is particularly preferred that this translational slippage sequence is 15 positioned about 7 to about 19 nucleotides downstream of a Shine Dalgarno sequence. In an alternative embodiment, a nucleic acid that induces translational slippage in bacterial cells comprises the nucleotide sequence CTT (SEQ ID NO: 28), and is positioned 3 nucleotides upstream of a Shine Dalgarno sequence controlling the expression of the nucleic acid fragment.

20

A translational slippage sequence is generated using synthetic oligonucleotides, or isolated from a natural or recombinant source, for example the *prfB* gene, the *dnaX* gene, the mammalian ornithine decarboxylase antizyme, in addition to various retroviruses, coronaviruses, retrotransposons, virus-like sequences in yeast, bacterial 25 genes and bacteriophage genes. Such a sequence is isolated using a method that is known in the art, such as for example, restriction enzyme digestion or PCR.

It is preferred that sequences that confer translational slippage are ligated to the 5'-end 30 of the nucleic acid fragment in the same manner as for adaptor addition. Methods of ligating adaptors are known in the art and are described in for example, Ausubel *et al* (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338,

1987) or (Sambrook *et al* (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001)).

It is also preferred that the sequences that confer transcriptional or translational slippage are incorporated into the expression vector or gene construct into which the nucleic acid fragment is inserted, such that it is positioned upstream (ie. 5') of the translational start site in the fragment.

In another embodiment, transcriptional slippage is induced by the introduction of a stretch of nucleotides with a sequence such as, for example, T₉ or A₉. Transcriptional slippage sequences are preferably cloned downstream (ie. 3') of the site of initiation of transcription. It is also preferred to position a transcriptional slippage sequence upstream (5') of a translational start site in the nucleic acid fragment. Accordingly, the transcriptional slippage sequence is included in the expression vector or gene construct into which the nucleic acid fragment is inserted.

Accordingly, the nucleic acids that form the transcriptional slippage sequence is ligated to the 5' end of a nucleic acid fragment, in conjunction with a translation start site.

It will be apparent from the preceding description that the transcriptional slippage sequence is incorporated into the expression vector or gene construct upstream of the translation start site, and downstream of the site of initiation of transcription.

Preferably, the nucleic acid fragments derived from the prokaryote or compact eukaryote genome are inserted into a gene construct in both the forward and/or reverse orientation, such that 1 or 2 or 3 or 4 or 5 or 6 open reading frames of said nucleic acid fragments are utilized. Methods of bi-directionally inserting fragments into vectors are known in the art.

It will be apparent to the skilled artisan that, by sub-cloning the nucleic acid fragments in multiple reading frames into a suitable expression vector, it is possible to encode a

peptide or protein domain that does not occur in nature, as well as producing a variety of natural peptide domains. Accordingly, the diversity of the nucleic acids of the expression library and their encoded peptides are greatly enhanced in these modified nucleic acid fragment expression libraries.

5

In a preferred embodiment, the expression libraries are normalized to remove any redundant nucleic acid from the genome. As used herein the term "redundant nucleic acid" shall be taken to mean those nucleic acid fragments having the same or substantially the same nucleotide sequence, such as, for example, high copy number or 10 repetitive sequences. Nucleic acid fragments derived from multiple homologous sequences, whether derived from the same or a different species can be subject to normalization to reduce the presence of redundant sequences in the expression library. Similarly, nucleic acid fragments derived from repetitive DNA and nucleic acid fragments derived from pseudogenes can be subject conveniently to normalization. 15 Methods of normalizing libraries to remove redundant nucleic acid are known in the art and are described, for example, by Ausubel *et al.*, *In: Current Protocols in Molecular Biology*. Wiley Interscience, ISBN 047 150338, 1987, or Diversa Corporation (US Patent No. 5,763,239), or Sambrook *et al.*, *In: Molecular Cloning: Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, New York, Third Edition 20 2001, or Bonaldo *et al.*, *Genome Res.* 6(9), 791-806, 1997.

In one embodiment, the nucleic acid fragments are subjected to hydroxyapatite chromatography to remove redundant or highly repetitive sequences. The success of such a normalization process can be determined, for example, by hybridizing labelled 25 non-normalized and normalized DNA to Southern blots of genomic DNA and comparing the amount of label bound to each blot. The amount of bound label is comparable to the amount of hybridized DNA. A reduced hybridization signal for normalized libraries indicates that iterative sequences have been reduced in the normalized pool.

30

In another embodiment of the present invention the nucleic acids are derived from two

or more prokaryotes and/or compact eukaryotes including any and all combinations thereof.

It is preferred that the prokaryote(s) and/or compact eukaryote(s) used to produce expression libraries from combined genomes are evolutionally diverse organisms. As used herein the term "evolutionary diverse" shall be taken to mean those organisms that when compared at the genetic level, show a significant degree of genetic diversity. As used herein the term "significant degree of genetic diversity" shall be taken to mean, that the genes of the prokaryotes or compact eukaryotes differ, by at least about 10% to 5 30% at the nucleic acid level. More preferably the genetic sequences of the prokaryotes or compact eukaryotes differ by at least about 30% to 40% at the nucleic acid level. More preferably the genetic sequences of the prokaryotes or compact eukaryotes differ by at least about 50% at the nucleic acid level. More preferably the genetic sequences of the prokaryote or compact eukaryotes differ by at least about 70% 10 15 at the nucleic acid level, or more preferably at least about 80% at the nucleic acid level or 90% at the nucleic acid level.

In determining whether or not two nucleotide sequences fall within these defined percentage identity limits, those skilled in the art will be aware that it is possible to 20 conduct a side-by-side comparison of the nucleotide sequences. In such comparisons or alignments, differences will arise in the positioning of non-identical residues depending upon the algorithm used to perform the alignment. In the present context, references to percentage identities and similarities between two or more nucleotide sequences shall be taken to refer to the number of identical and similar residues 25 respectively, between said sequences as determined using any standard algorithm known to those skilled in the art. In particular, nucleotide identities and similarities are calculated using software of the Computer Genetics Group, Inc., University Research Park, Maddison, Wisconsin, United States of America, eg., using the GAP program of Devereaux *et al.*, *Nucl. Acids Res.* 12, 387-395, 1984, which utilizes the algorithm of 30 Needleman and Wunsch, *J. Mol. Biol.* 48, 443-453, 1970. Alternatively, the CLUSTAL W algorithm of Thompson *et al.*, *Nucl. Acids Res.* 22, 4673-4680, 1994, is

used to obtain an alignment of multiple sequences, wherein it is necessary or desirable to maximize the number of identical/similar residues and to minimize the number and/or length of sequence gaps in the alignment. Nucleotide sequence alignments can also be performed using a variety of other commercially available sequence analysis 5 programs, such as, for example, the BLAST program available at NCBI.

In an alternative embodiment, the genetic sequences of the prokaryotes or compact eukaryotes fail to cross hybridize in a standard Cot analysis. The skilled artisan will be aware that standard Cot analysis determines the similarity between two nucleotide 10 sequences at the nucleotide level by using renaturation-kinetics of the corresponding nucleic acids (eg., Britten and Kohne *Science*, 161, 529-540, 1968).

Where more than one substantially sequenced genome is used to produce the expression library, it is also preferred that the fragments from each distinct prokaryote 15 or compact eukaryote are used in an amount proportional to the complexity and size of the genome of said prokaryote or compact eukaryote. As the genomes of the prokaryotes and/or compact eukaryotes are substantially sequenced the approximate size of said genomes is determined. Accordingly, a library is normalized to ensure that the amount of nucleic acids from all of the incorporated genomes to the final 20 expression library is equal.

In a preferred embodiment, the nucleic acid fragment expression libraries are normalized such that nucleic acid fragments from each of the prokaryotes or compact eukaryotes are incorporated in equimolar amounts. In one exemplified embodiment, 25 the sizes (in Mbp or molecular weight) of the genomes to be used in the expression library are compared and nucleic acid from each genome is used in an amount that is proportional to the ratio of genome size to the size of the smallest contributing genome for the library. For example, the genome of *T. rubripes* is about 400Mb in size, compared to the genome of *A. thaliana*, which is only about 120Mb. Accordingly, for 30 a combination of genomic *T. rubripes* and *A. thaliana* nucleic acid fragments, the ration of *T. rubripes* nucleic acid fragments to *A. thaliana* nucleic acid fragments would be

- 57 -

about 4:1.2 (w/w). The relative contributions of nucleic acid fragments for constructing expression libraries from multiple genomes are readily calculated from the information presented in Table 1.

TABLE 1

Sizes of genomes of organisms from which nucleic acid fragments are derived for construction of expression libraries

Source of nucleic acid fragments	Approx. genome size (Mb)
<i>Actinobacillus pleuropneumoniae</i>	2.2
<i>Aeropyrum pernix</i>	1.6-1.7
<i>Agrobacterium pernix</i>	1.67
<i>Anopheles gambiae</i>	26-27
<i>Arabidopsis thaliana</i>	120
<i>Aquifex aeolicus</i>	1.5-1.6
<i>Archaeoglobus fulgidis</i>	1.7
<i>Bacillus anthracis</i>	5.09
<i>Acillus cereus</i>	5.4
<i>Bacillus halodurans</i>	4.2
<i>Bacillus subtilis</i>	4.2
<i>Bacteroides thetaiotaomicron</i>	6.2
<i>Bdellovibrio bacteriovorus</i>	3.8
<i>Bifidobacterium longum</i>	2.3
<i>Bordetella bronchiseptica</i>	5.34
<i>Bordetall parapertusis</i>	4.77
<i>Bordetella pertussis</i>	3.91
<i>Borellia afzelii</i>	0.95
<i>Borellia garinii</i>	0.95
<i>Borrelia burgdorferi</i>	0.91-0.96
<i>Bradyrhizobium japonicum</i>	9.11
<i>Brucella melitensis</i>	3.2
<i>Brucella suis</i>	3.29
<i>Brugia malayi</i>	100
<i>Buchnera aphidicola</i>	0.64
<i>Caenorhabditis elegans</i>	97-102
<i>Campylobacter jejuni</i>	1.64
<i>Candidatus blochmannia floridanus</i>	0.7
<i>Caulobacter crescentus</i>	4.01
<i>Chlamydia muridarum</i>	1.07
<i>Chlamydia pneumoniae</i>	1.22

- 59 -

Source of nucleic acid fragments	Approx. genome size (Mb)
<i>Chlamydia trachomatis</i>	1.0-1.1
<i>Chlamydophila caviae</i>	3.53
<i>Chlamydophila pneumoniae</i>	1.23
<i>Chlorobium tepidum</i>	2.1
<i>Clostridium acetobutylicum</i>	4.1
<i>Chromobacterium violaceum</i>	4.8
<i>Clostridium acetobutylicum</i>	3.94
<i>Clostridium perfringens</i>	3.03
<i>Clostridium tetani</i>	4.1
<i>Corynebacterium diphtheriae</i>	2.49
<i>Corynebacterium efficiens</i>	3.15
<i>Corynebacterium glutamicum</i>	3.31
<i>Coxiella burnetii</i>	2.0
<i>Danio rerio</i>	1700
<i>Dechloromonas aromatica</i>	4.50
<i>Deinococcus radiodurans</i>	3.28
<i>Drosophila melanogaster</i>	120
<i>Eimeria acervulina</i>	70
<i>Eimeria tenella</i>	70
<i>Entamoeba histolytica</i>	40
<i>Enterococcus faecalis</i>	3.36
<i>Escherichia coli</i>	4.6-5.6
<i>Fusobacterium nucleatum</i>	4.33
<i>Geobacter sulfurreducens</i>	3.85
<i>Gloebacter violaceus</i>	4.7
<i>Haemophilus ducreyi</i>	1.7
<i>Haemophilus influenzae</i>	1.83
<i>Halobacterium sp.</i>	2.57
<i>Helicobacter hepaticus</i>	1.8
<i>Helicobacter pylori</i>	1.66
<i>Lactobacillus johnsonii</i>	2.0
<i>Lactobacillus plantarum</i>	3.3
<i>Lactococcus lactis</i>	2.36
<i>Leptospira interrogans serovar lai</i>	4.6
<i>Listeria innocua</i>	3.01

- 60 -

Source of nucleic acid fragments	Approx. genome size (Mb)
<i>Listeria monocytogenes</i>	2.94
<i>Mesorhizobium loti</i>	7.59
<i>Methanobacterium thermoautotrophicum</i>	1.75
<i>Methanocaldococcus jannaschii</i>	1.66
<i>Methanococcoides burtonii</i>	2.6
<i>Methanopyrus kandleri</i>	1.69
<i>Methanosaarcina acetivorans</i>	5.75
<i>Methanosaarcina mazei Goe1</i>	4.1
<i>Methanothermobacter thermautotrophicus</i>	1.75
<i>Mycobacterium avium</i> sp.	4.96
<i>Mycobacterium bovis</i>	4.35
<i>Mycobacterium leprae</i>	2.8
<i>Mycobacterium tuberculosis</i>	4.4
<i>Mycoplasma gallisepticum</i> strain R	1.0
<i>Mycoplasma genitalium</i>	0.58
<i>Mycoplasma penetrans</i>	1.36
<i>Mycoplasma pneumoniae</i>	0.81
<i>Mycoplasma pulmonis</i>	0.96
<i>Nanoarchaeum equitans</i> Kin4	0.49
<i>Neisseria meningitidis</i>	2.18-2.27
<i>Nitrosomonas europaea</i>	2.81
<i>Nostoc</i> sp.	6.41
<i>Oceanobacillus iheyensis</i>	3.6
<i>Onion yellows phytoplasma</i>	0.86
<i>Oryza sativa</i>	400
<i>Pasturella multocida</i>	2.4
<i>Photorhabdus luminescens</i> sp.	5.7
<i>Pirellula</i> sp.	7.1
<i>Porphyromonas gingivalis</i>	2.34
<i>Plasmodium berghei</i>	25
<i>Plasmodium falciparum</i>	25
<i>Plasmodium yoelii</i>	23
<i>Plasmodium vivax</i>	30
<i>Prochlorococcus marinus</i> str.	2.41
<i>Pseudomonas aeruginosa</i>	6.3

- 61 -

Source of nucleic acid fragments	Approx. genome size (Mb)
<i>Pseudomonas putida</i>	6.1
<i>Pseudomonas syringae</i>	6.4
<i>Pyrobaculum aerophilum</i>	2.2
<i>Pyrococcus abyssi</i>	1.77
<i>Pyrococcus furiosus</i>	1.91
<i>Pyrococcus horikoshii</i>	1.74
<i>Ralstonia solanacearum</i>	5.80
<i>Rhodopseudomonas palustris</i>	5.46
<i>Rickettsia conorii</i>	1.27
<i>Rickettsia prowazekii</i>	1.1
<i>Rickettsia rickettsii</i>	1.3
<i>Saccharomyces cerevesiae</i>	13.0
<i>Salmonella enterica</i>	4.8
<i>Salmonella typhimurium</i>	4.8
<i>Sarcocystis cruzi</i>	201
<i>Schizosaccharomyces pombe</i>	13.8-14.0
<i>Schistosoma mansoni</i>	270
<i>Shewanella oneidensis</i>	5.14
<i>Shigella flexneri</i>	4.7
<i>Sinorhizobium meliloti</i>	6.7
<i>Staphylococcus aureus</i>	2.8
<i>Staphylococcus epidermidis</i>	2.6
<i>Streptococcus agalactiae</i>	2.21
<i>Streptococcus mutans</i>	2.03
<i>Streptococcus pneumoniae</i>	2.2
<i>Streptococcus pyogenes</i>	1.85
<i>Streptomyces avermitilis</i>	9
<i>Streptomyces coelicolor</i>	8.7
<i>Sulfolobus solfataricus</i>	2.99
<i>Sulfolobus tokodaii</i>	2.81
<i>Synechococcus sp.</i>	2.43
<i>Synechocystis PCC 6803</i>	3.57
<i>Takifugu rubripes</i>	400
<i>Thermoplasma volcanium</i>	1.56-1.58
<i>Thermoanaerobacter tengcongensis</i>	2.69

Source of nucleic acid fragments	Approx. genome size (Mb)
<i>Thermoplasma acidophilum</i>	1.56
<i>Thermoplasma volcanium</i>	1.58
<i>Thermotoga maritima</i>	1.80
<i>Thermotoga pallidum</i>	1.14
<i>Toxoplasma gondii</i>	89
<i>Treponema denticola</i>	3.06
<i>Treponema pallidum</i>	1.14
<i>Tropheryma whipplei</i>	0.93
<i>Trypanosoma brucei</i>	35
<i>Trypanosoma cruzi</i>	40
<i>Ureaplasma urealyticum</i>	0.75
<i>Vibrio cholerae</i>	4
<i>Vibro parahaemolyticus</i>	5.2
<i>Vibrio vulnificus</i>	5.1
<i>Wigglesworthia brevipalpis</i>	0.7
<i>Wolbachia endosymbiont of Drosophila melanogaster</i>	1.27
<i>Wolinella succinogenes</i>	2.1
<i>Xanthomonas axonopodis</i>	5.17
<i>Xanthomonas campestris</i>	5.07
<i>Xylella fastidiosa</i>	2.68
<i>Yersinia pestis</i>	4.65

Preferred combinations of genomes are selected from the group consisting of:

a) nucleic acid fragments derived from two organisms selected from the group consisting of: *Aeropyrum pernix*, *Anopheles gambiae*, *Arabidopsis thaliana*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Caenorhabditis elegans*, *Chlamydia trachomatis*, *Danio rerio*, *Drosophila melanogaster*, *Escherichia coli*, *Haemophilus influenzae*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Pyrococcus horikoshii*, *Saccharomyces cerevesiae*, *Schizosaccharomyces pombe*, *Synechocystis* PCC 6803, *Takifugu rubripes*, *Thermoplasma volcanium*, and *Thermotoga maritima*;

b) nucleic acid fragments derived from three organisms selected from the group consisting of: *Aeropyrum pernix*, *Anopheles gambiae*, *Arabidopsis thaliana*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Caenorhabditis elegans*, *Chlamydia trachomatis*, *Danio rerio*, *Drosophila melanogaster*, *Escherichia coli*, *Haemophilus influenzae*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Pyrococcus horikoshii*, *Saccharomyces cerevesiae*, *Schizosaccharomyces pombe*, *Synechocystis* PCC 6803, *Takifugu rubripes*, *Thermoplasma volcanium*, and *Thermotoga maritima*;

5 c) nucleic acid fragments derived from four organisms selected from the group consisting of: *Aeropyrum pernix*, *Anopheles gambiae*, *Arabidopsis thaliana*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Caenorhabditis elegans*, *Chlamydia trachomatis*, *Danio rerio*, *Drosophila melanogaster*, *Escherichia coli*, *Haemophilus influenzae*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Pyrococcus horikoshii*, *Saccharomyces cerevesiae*, *Schizosaccharomyces pombe*, *Synechocystis* PCC 6803, *Takifugu rubripes*, *Thermoplasma volcanium*, and *Thermotoga maritima*;

10 d) nucleic acid fragments derived from five organisms selected from the group consisting of: *Aeropyrum pernix*, *Anopheles gambiae*, *Arabidopsis thaliana*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Caenorhabditis elegans*, *Chlamydia trachomatis*, *Danio rerio*, *Drosophila melanogaster*, *Escherichia coli*, *Haemophilus influenzae*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Pyrococcus horikoshii*, *Saccharomyces cerevesiae*, *Schizosaccharomyces pombe*, *Synechocystis* PCC 6803, *Takifugu rubripes*, *Thermoplasma volcanium*, and *Thermotoga maritima*;

15 e) nucleic acid fragments derived from six organisms selected from the group consisting of: *Aeropyrum pernix*, *Anopheles gambiae*, *Arabidopsis thaliana*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Caenorhabditis elegans*, *Chlamydia trachomatis*, *Danio rerio*, *Drosophila*

melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803,

5 *Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

f) nucleic acid fragments derived from seven organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

10 g) nucleic acid fragments derived from eight organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

15 h) nucleic acid fragments derived from nine organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803,*

20 *Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

25 i) nucleic acid fragments derived from ten organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803,*

30 *Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;

i) nucleic acid fragments derived from ten organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803,*

5 *Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

10 *Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

j) nucleic acid fragments derived from eleven organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803,*

15 *Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

20 k) nucleic acid fragments derived from twelve organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803,*

25 *Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

l) nucleic acid fragments derived from thirteen organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia*

30 *Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii,

5 *Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

m) nucleic acid fragments derived from fourteen organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia*

10 *burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803,*

15 *Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

n) nucleic acid fragments derived from fifteen organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila*

20 *melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

25 o) nucleic acid fragments derived from sixteen organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori,*

30 *Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii,*

Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;

p) nucleic acid fragments derived from seventeen organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, 5 Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa,*

10 *Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

q) nucleic acid fragments derived from eighteen organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex 15 aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii,*

20 *Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

r) nucleic acid fragments derived from nineteen organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia 25 burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803,*

30 *Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

s) nucleic acid fragments derived from twenty organisms selected from the group

consisting of: *Aeropyrum pernix*, *Anopheles gambiae*, *Arabidopsis thaliana*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Caenorhabditis elegans*, *Chlamydia trachomatis*, *Danio rerio*, *Drosophila melanogaster*, *Escherichia coli*, *Haemophilus influenzae*, *Helicobacter pylori*,

5 *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Pyrococcus horikoshii*, *Saccharomyces cerevesiae*, *Schizosaccharomyces pombe*, *Synechocystis* PCC 6803, *Takifugu rubripes*, *Thermoplasma volcanium*, and *Thermotoga maritima*;

t) nucleic acid fragments derived from twenty one organisms selected from the

10 group consisting of: *Aeropyrum pernix*, *Anopheles gambiae*, *Arabidopsis thaliana*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Caenorhabditis elegans*, *Chlamydia trachomatis*, *Danio rerio*, *Drosophila melanogaster*, *Escherichia coli*, *Haemophilus influenzae*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*,

15 *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Pyrococcus horikoshii*, *Saccharomyces cerevesiae*, *Schizosaccharomyces pombe*, *Synechocystis* PCC 6803, *Takifugu rubripes*, *Thermoplasma volcanium*, and *Thermotoga maritima*;

u) nucleic acid fragments derived from twenty two organisms selected from the

20 group consisting of: *Aeropyrum pernix*, *Anopheles gambiae*, *Arabidopsis thaliana*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Caenorhabditis elegans*, *Chlamydia trachomatis*, *Danio rerio*, *Drosophila melanogaster*, *Escherichia coli*, *Haemophilus influenzae*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*,

25 *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Pyrococcus horikoshii*, *Saccharomyces cerevesiae*, *Schizosaccharomyces pombe*, *Synechocystis* PCC 6803, *Takifugu rubripes*, *Thermoplasma volcanium*, and *Thermotoga maritima*;

v) nucleic acid fragments derived from twenty three organisms selected from the

30 group consisting of: *Aeropyrum pernix*, *Anopheles gambiae*, *Arabidopsis thaliana*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*,

Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa,

5 *Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

w) nucleic acid fragments derived from twenty four organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa,*

10 *Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

x) nucleic acid fragments derived from twenty five organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa,*

15 *Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima;*

y) nucleic acid fragments derived from twenty six organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio,*

- 70 -

Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe,

5 *Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima; and*

z) nucleic acid fragments derived from twenty seven organisms selected from the group consisting of: *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis,*

10 *Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe,*

15 *Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima.*

In a particularly preferred embodiment, the nucleic acid fragments are derived from the organisms *Aeropyrum pernix, Anopheles gambiae, Arabidopsis thaliana, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Caenorhabditis elegans, Chlamydia trachomatis, Danio rerio, Drosophila melanogaster, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Mycoplasma pneumoniae, Neisseria meningitidis, Pseudomonas aeruginosa, Pyrococcus horikoshii, Saccharomyces cerevesiae, Schizosaccharomyces pombe, Synechocystis PCC 6803, Takifugu rubripes, Thermoplasma volcanium, and Thermotoga maritima.*

In a particularly preferred embodiment, nucleic acid fragments derived from the following bacteria are combined into a single expression library: *Aeropyrum pernix, Aquifex aeolicus, Archaeoglobus fulgidis, Bacillus subtilis, Bordetella pertussis, Borrelia burgdorferi, Chlamydia trachomatis, Escherichia coli, Haemophilus*

influenzae, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Pyrococcus horikoshii*, *Synechocystis* PCC 6803, *Thermoplasma volcanium* and *Thermotoga maritima*.

5

In another particularly preferred embodiment, nucleic acid fragments derived from the following bacteria are combined into a single expression library: *Archaeoglobus fulgidis*, *Aquifex aeolicus*, *Aeropyrum pernix*, *Aquifex aeolicus*, *Bacillus subtilis*, *Bordetella pertussis* TOX6, *Borrelia burgdorferi*, *Chlamydia trachomatis*, *Escherichia coli*, *Haemophilus influenzae*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Methanothermobacter thermoautotrophicus*, *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pirellula species*, *Pyrococcus horikoshii*, *Pseudomonas aeruginosa*, *Synechosistis* sp., *Thermoplasma volcanium* and *Thermotoga maritima*.

15

In a preferred embodiment, nucleic acid fragments are derived from two or more organisms selected from the group consisting of *Aeropyrum pernix*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Chlamydia trachomatis*, *Desulfovibrio vulgaris*, *Escherichia coli*, *Haemophilus influenzae*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Pyrococcus horikoshii*, *Synechocystis* PCC 6803, *Thermoplasma volcanium*, *Thermus thermophilus* and *Thermotoga maritima*.

25 In another preferred embodiment, nucleic acid fragments are derived from two or more organisms selected from the group consisting of *Archaeoglobus fulgidus*, *Aquifex aeolicus*, *Aeropyrum pernix*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Chlamydia trachomatis*, *Escherichia coli* K12, *Haemophilus influenzae*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Neisseria meningitidis*, *Pyrococcus horikoshii*, *Pseudomonas aeruginosa*, *Synechocystis* PCC 6803, *Thermoplasma volcanicum*, *Thermotoga maritima*,

- 72 -

Acidobacterium capsulatum, Halobacterium salinarum, Desulfobacterium autotrophicum, Haloferax volcanii, Rhodopirellula baltica, Thermus thermophilus HB27 and Prochlorococcus marinus MED4.

5 The nucleic acid fragments, unmodified or modified by the addition of one or more linkers, adaptors, Kozak containing oligonucleotides, Kozak containing fragments, or nucleic acids comprising a sequence that confers transcriptional or translational slippage, are placed in operable connection with a promoter sequence, thereby producing a recombinant gene construct.

10

The term “gene construct” is to be taken in its broadest context and includes a promoter sequence that is placed in operable connection with a nucleic acid fragment. The nucleic acid comprising the promoter sequence is isolated using techniques known in the art, such as for example PCR or restriction digestion. Alternatively the nucleic acid

15 comprising the promoter sequence is synthetic, that is an oligonucleotide. The methods of producing oligonucleotides are known in the art and are described, for example, in Oligonucleotide Synthesis: A Practical Approach (M. J. Gait, ed., 1984) IRL Press, Oxford, whole of text, and particularly the papers therein by Gait, pp1-22; Atkinson *et al.*, pp35-81; Sproat *et al.*, pp 83-115; and Wu *et al.*, pp 135-151.

20

The term “promoter” is to be taken in its broadest context and includes the transcriptional regulatory sequences of a genomic gene, including the TATA box or initiator element, which is required for accurate transcription initiation, with or without additional regulatory elements (ie. upstream activating sequences, transcription factor 25 binding sites, enhancers and silencers) which alter gene expression in response to developmental and/or external stimuli, or in a tissue specific manner. In the present context, the term “promoter” is also used to describe a recombinant, synthetic or fusion molecule, or derivative which confers, activates or enhances the expression of a nucleic acid molecule to which it is operably linked, and which encodes the peptide or protein.

30 Preferred promoters can contain additional copies of one or more specific regulatory elements to further enhance expression and/or alter the spatial expression and/or

temporal expression of said nucleic acid molecule.

Placing a nucleic acid molecule under the regulatory control of, i.e., "in operable connection with", a promoter sequence means positioning said molecule such that expression is controlled by the promoter sequence. Promoters are generally positioned 5' (upstream) to the coding sequence that they control. To construct heterologous promoter/structural gene combinations, it is generally preferred to position the promoter at a distance from the gene transcription start site that is approximately the same as the distance between that promoter and the gene it controls in its natural setting, i.e., the gene from which the promoter is derived. As is known in the art, some variation in this distance can be accommodated without loss of promoter function. Similarly, the preferred positioning of a regulatory sequence element with respect to a heterologous gene to be placed under its control is defined by the positioning of the element in its natural setting, i.e., the gene from which it is derived. Again, as is known in the art, some variation in this distance can also occur.

Typical promoters suitable for expression in bacterial cells, such as, for example, a bacterial cell selected from the group comprising *E. coli*, *Staphylococcus* sp., *Corynebacterium* sp., *Salmonella* sp., *Bacillus* sp., and *Pseudomonas* sp., include, but are not limited to, the *lacZ* promoter, the *Ipp* promoter, temperature-sensitive λ_L or λ_R promoters, *T7* promoter, *T3* promoter, *SP6* promoter or semi-artificial promoters such as the IPTG-inducible *tac* promoter or *lacUV5* promoter. A number of other gene construct systems for expressing the nucleic acid fragment in bacterial cells are well-known in the art and are described for example, in Ausubel *et al* (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987), US Patent No. 5,763,239 (Diversa Corporation) and (Sambrook *et al* (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001)).

30 Typical promoters suitable for expression in yeast cells such as, for example, a yeast cell selected from the group consisting of *Pichia pastoris*, *S. cerevisiae* and *S. pombe*,

include, but are not limited to, the *ADH1* promoter, the *GAL1* promoter, the *GAL4* promoter, the *CUP1* promoter, the *PHO5* promoter, the *nmt* promoter, the *RPR1* promoter, or the *TEF1* promoter.

5 Typical promoters suitable for expression in insect cells, or in insects, include, but are not limited to, the OPEI2 promoter, the insect actin promoter isolated from *Bombyx muri*, the *Drosophila sp. dsh* promoter (Marsh *et al* *Hum. Mol. Genet.* 9, 13-25, 2000) and the inducible metallothionein promoter. Preferred insect cells for expression of the recombinant polypeptides include an insect cell selected from the group consisting of
10 BT1-TN-5B1-4 cells, and *Spodoptera frugiperda* cells (eg., sf19 cells, sf21 cells). Suitable insects for the expression of the nucleic acid fragments include but are not limited to *Drosophila sp.* The use of *S. frugiperda* is also contemplated.

Promoters for expressing peptides in plant cells are known in the art, and include, but
15 are not limited to, the *Hordeum vulgare* amylase gene promoter, the cauliflower mosaic virus 35S promoter, the nopaline synthase (NOS) gene promoter, and the auxin inducible plant promoters P1 and P2.

Typical promoters suitable for expression in a mammalian cell, mammalian tissue or
20 intact mammal include, for example, a promoter selected from the group consisting of, retroviral LTR elements, the SV40 early promoter, the SV40 late promoter, the cytomegalovirus (CMV) promoter, the CMV IE (cytomegalovirus immediate early) promoter, the EF_{1 α} promoter (from human elongation factor 1 α), the EM7 promoter, the UbC promoter (from human ubiquitin C).

25

Preferred mammalian cells for expression of a nucleic acid fragment include epithelial cells, fibroblasts, kidney cells, T cells, or erythroid cells, including a cell line selected from the group consisting of COS, CHO, murine 10T, MEF, NIH3T3, MDA-MB-231, MDCK, HeLa, K562, HEK 293 and 293T. The use of neoplastic cells, such as, for
30 example, leukemic/leukemia cells, is also contemplated herein.

Preferred mammals for expression of the nucleic acid fragments include, but are not limited to mice (ie., *Mus sp.*) and rats (ie., *Rattus sp.*).

In one embodiment, nucleic acid comprising a promoter sequence is ligated to a nucleic acid fragment from the prokaryote or compact eukaryote, or a modified form thereof, using techniques known in the art.

In another embodiment, nucleic acid comprising a promoter sequence is modified by the addition of one or more linkers, adaptors, Kozak containing oligonucleotides, Kozak containing fragments, or nucleic acids comprising a sequence that confers transcriptional or translational slippage and ligated to a nucleic acid fragment from the prokaryote or compact eukaryote using techniques known in the art.

In yet another embodiment, nucleic acid comprising a promoter sequence is incorporated into an oligonucleotide with or without another nucleic acid comprising one or more spacers, Kozak sequences, or nucleic acids comprising a sequence that confers transcriptional or translational slippage.

Preferably, the oligonucleotide comprises a nucleotide sequence that is complementary or homologous to a region flanking the nucleic acid fragment from the prokaryote or compact eukaryote, such as, for example, an adaptor. Such a complementary or homologous sequence permits oligonucleotide primers to be used for amplifying nucleic acid comprising a promoter region and means for ribosome binding (such as for example a Kozak sequence or Shine-Dalgarno sequence) and the nucleic acid fragment as a single fragment. In this manner, a gene construct comprising a promoter sequence, means for ribosome binding and a nucleic acid fragment is readily constructed using the amplified nucleic acid.

In an alternative embodiment, a nucleic acid comprising a promoter sequence is incorporated into an oligonucleotide with or without another nucleic acid comprising one or more spacers, Kozak sequences, or nucleic acids comprising a sequence that

confers transcriptional or translational slippage, and said oligonucleotide is operably linked to a nucleic acid fragment by, for example, ligation.

In one embodiment, the nucleic acid fragments are expressed *in vitro*. According to 5 this embodiment, the gene construct preferably comprises a nucleic acid fragment of the prokaryote or compact eukaryote, and a promoter sequence and appropriate ribosome binding site which is both be present in the expression vector or added to said nucleic acid fragment before it is inserted into the vector. Typical promoters for the *in vitro* expression of the nucleic acid fragments include, but are not limited to the T3 or 10 T7 (Hanes and Plückthun *Proc. Natl. Acad. Sci. USA*, 94 4937-4942 1997) bacteriophage promoters.

In another embodiment, the gene construct optionally comprises a transcriptional termination site and/or a translational termination codon. Such sequences are known in 15 the art, and may be incorporated into oligonucleotides used to amplify the nucleic acid fragment of the prokaryote or compact eukaryote, or alternatively, present in the expression vector or gene construct before the nucleic acid fragment is inserted.

In another embodiment, the gene construct is an expression vector. The term 20 “expression vector” refers to a nucleic acid molecule that has the ability confer expression of a nucleic acid fragment to which it is operably connected, in a cell or in a cell free expression system. Within the context of the present invention, it is to be understood that an expression vector may comprise a promoter as defined herein, a plasmid, bacteriophage, phagemid, cosmid, virus sub-genomic or genomic fragment, or 25 other nucleic acid capable of maintaining and or replicating heterologous DNA in an expressible format. Many expression vectors are commercially available for expression in a variety of cells. Selection of appropriate vectors is within the knowledge of those having skill in the art.

30 Typical expression vectors for *in vitro* expression or cell-free expression have been described and include, but are not limited to the TNT T7 and TNT T3 systems

- 77 -

(Promega), the pEXP1-DEST and pEXP2-DEST vectors (Invitrogen).

Numerous expression vectors for expression of recombinant polypeptides in bacterial cells and efficient ribosome binding sites have been described, such as for example,

5 PKC30 (Shimatake and Rosenberg, *Nature* 292, 128, 1981); pKK173-3 (Amann and Brosius, *Gene* 40, 183, 1985), pET-3 (Studier and Moffat, *J. Mol. Biol.* 189, 113, 1986); the pCR vector suite (Invitrogen), pGEM-T Easy vectors (Promega), the pL expression vector suite (Invitrogen) the pBAD/TOPO or pBAD/thio – TOPO series of vectors containing an arabinose-inducible promoter (Invitrogen, Carlsbad, CA), the

10 latter of which is designed to also produce fusion proteins with a Trx loop for conformational constraint of the expressed protein; the pFLEX series of expression vectors (Pfizer nc., CT,USA); the pQE series of expression vectors (QIAGEN, CA, USA), or the pL series of expression vectors (Invitrogen), amongst others.

15 Expression vectors for expression in yeast cells are preferred and include, but are not limited to, the pACT vector (Clontech), the pDBleu-X vector, the pPIC vector suite (Invitrogen), the pGAPZ vector suite (Invitrogen), the pHYB vector (Invitrogen), the pYD1 vector (Invitrogen), and the pNMT1, pNMT41, pNMT81 TOPO vectors (Invitrogen), the pPC86-Y vector (Invitrogen), the pRH series of vectors (Invitrogen),

20 pYESTrp series of vectors (Invitrogen). Particularly preferred vectors are the pACT vector, pDBleu-X vector, the pHYB vector, the pPC86 vector, the pRH vector and the pYES vectors, which are all of use in various 'n'-hybrid assays described herein. Furthermore, the pYD1 vector is particularly useful in yeast display experiments in *S. cerevesiae*. A number of other gene construct systems for expressing the nucleic acid

25 fragment in yeast cells are well-known in the art and are described for example, in Giga-Hama and Kumagai (*In: Foreign Gene Expression in Fission Yeast: Schizosaccharomyces Pombe*, Springer Verlag, ISBN 3540632700, 1997) and Guthrie and Fink (*In: Guide to Yeast Genetics and Molecular and Cell Biology* Academic Press, ISBN 0121822540, 2002).

30

A variety of suitable expression vectors, containing suitable promoters and regulatory

- 78 -

sequences for expression in insect cells are known in the art, and include, but are not limited to the pAC5 vector, the pDS47 vector, the pMT vector suite (Invitrogen) and the pIB vector suite (Invitrogen).

- 5 Furthermore, expression vectors comprising promoters and regulatory sequences for expression of polypeptides in plant cells are also known in the art and include, for example, a promoter selected from the group, pSS, pBl121 (Clontech), pZ01502, and pPCV701 (Kuncz *et al*, *Proc. Natl. Acad. Sci. USA*, 84 131-135, 1987).
- 10 Expression vectors that contain suitable promoter sequences for expression in mammalian cells or mammals include, but are not limited to, the pcDNA vector suite supplied by Invitrogen, the pCI vector suite (Promega), the pCMV vector suite (Clontech), the pM vector (Clontech), the pSI vector (Promega), the VP16 vector (Clontech) and the pDISPLAY vectors (Invitrogen). The pDISPLAY vectors are of 15 particular use in mammalian display studies with the expressed nucleic acid fragment targeted to the cell surface with the Ig κ leader sequence, and bound to the membrane of the cell through fusion to the PDGFR transmembrane domain. The pM and VP16 vectors are of particular use in mammalian two-hybrid studies.
- 20 Methods of cloning DNA into nucleic acid vectors for expression of encoded polypeptides are known in the art and are described for example in, Ausubel *et al* (*In: Current Protocols in Molecular Biology*. Wiley Interscience, ISBN 047 150338, 1987) or Sambrook *et al* (*In: Molecular Cloning: Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, New York, Third Edition 2001).

25

The nucleic acid fragments are also expressed in the cells of other organisms, or entire organisms including, for example, nematodes (eg *C. elegans*) and fish (eg *D. rerio*, and *T. rubripes*). Promoters for use in nematodes include, but are not limited to *osm-10* (Faber *et al* *Proc. Natl. Acad. Sci. USA* 96, 179-184, 1999), *unc-54* and *myo-2* (Satyal 30 *et al* *Proc. Natl. Acad. Sci. USA*, 97 5750-5755, 2000). Promoters for use in fish include, but are not limited to the zebrafish *OMP* promoter, the GAP43 promoter, and

serotonin-N-acetyl transferase gene regulatory regions

In a preferred embodiment, the expression library is transcribed and translated *in vitro*. Methods of transcribing nucleic acid fragments and translating the resulting mRNA are known in the art and are described for example, in Ausubel *et al* (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987), US Patent No. 5,763,239 (Diversa Corporation) and (Sambrook *et al* (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001), for example the use of *E. coli* S30 lysate (available in kit for 10 from Promega).

In a preferred embodiment the gene construct contains a second nucleic acid in operable connection with a nucleic acid fragment. This second nucleic acid encodes a fusion partner. As used herein the term “fusion partner” shall be understood to mean a polypeptide sequence that is associated with a peptide encoded by a nucleic acid fragment. Such a fusion partner confers a common function or ability upon all polypeptides encoded by the expression library. Suitable fusion partners include, but are not limited to, presentation structures, polypeptides that facilitate the uptake of peptides into target cells, polypeptides that cause nuclear localization, polypeptides that cause secretion, polypeptides that cause mitochondrial localization, polypeptides that cause membrane localization, or a combination of any of these sequences.

Without suggesting that such a process is essential to the invention, a peptide encoded by the expression library can also be expressed such that it is conformationally constrained, or expressed in a “presentation structure”. Such constraint, whilst not generally necessary for expressing protein domains or peptides having a conformation sufficient to bind to a target protein or target nucleic acid, is useful for displaying peptides that comprise more highly flexible sequences, or to enhance stability against proteolytic enzymes (Humphrey *et al*, *Chem Rev* 97, 2243-2266, 1997).

30

A presentation structure will generally comprise a first component, i.e., polypeptide,

that is fused to the amino terminus of the polypeptide and a second component fused to the carboxyl- terminus of the peptide. Examples of such presentation structures include, but are not limited to, cysteine-linked (disulfide) structures, zinc-finger domains, cyclic peptides, and transglutaminase linked structures.

5

In a preferred embodiment, the presentation structure is a sequence that contains at least two cysteine residues, such that a disulphide bond is formed between the cysteine residues, resulting in a conformationally constrained peptide.

- 10 In another embodiment, a peptide encoded by an expression library is expressed within a second polypeptide as a fusion protein. Polypeptides used for such purposes are capable of reducing the flexibility of another protein's amino and/or carboxyl termini. Preferably, such proteins provide a rigid scaffold or platform for the protein. In addition, such proteins preferably are capable of providing protection from proteolytic
- 15 degradation and the like, and/or are capable of enhancing solubility. Preferably, conformation-constraining proteins are small in size (generally, less than or equal to about 200 amino acids in length), rigid in structure, of known three-dimensional configuration, and are able to accommodate insertions of proteins without undue disruption of their structures. A key feature of such proteins is the availability, on their
- 20 solvent exposed surfaces, of locations where peptide insertions can be made (eg., the Trx loop). It is also preferable that conformation-constraining protein producing genes be highly expressible in various prokaryotic and eukaryotic hosts, or in suitable cell-free systems, and that the proteins be soluble and resistant to protease degradation.
- 25 Examples of conformation-constraining proteins include the active site of thioredoxin or Trx loop and other thioredoxin-like proteins, nucleases (eg., RNase A), proteases (eg., trypsin), protease inhibitors (eg., bovine pancreatic trypsin inhibitor), antibodies or structurally rigid fragments thereof, conotoxins, and the pleckstrin homology domain. A conformation-constraining peptide can be of any appropriate length and can even be
- 30 a single amino acid residue.

- 81 -

This technique has been successfully used for bacterial display of peptides in bacteria using a Trx scaffold (Blum *et al* *Proc. Natl. Acad. Sci. USA* 97, 2241-2246 2000) in addition to the use in yeast 2 hybrid screening using either a catalytically inactive form of staphylococcal nuclease, or Trx (Norman *et al*, *Science*, 285, 591-595, 1999; and 5 Colas *et al*, *Nature* 380, 548-550, 1996).

In another embodiment the expression vector or gene construct is optionally comprise a transcriptional terminator that is operative in the expression system. Furthermore, the gene construct is also comprise a nucleic acid comprising the sequence of a 10 polyadenylation signal operative in the expression system.

It is preferred that when the gene constructs are to be introduced to and/or maintained and/or propagated and/or expressed in bacterial cells, either during generation of said gene constructs, or screening of said gene constructs, that the gene constructs contain 15 an origin of replication that is operable at least in a bacterial cell. A particularly preferred origin of replication is the ColE1 origin of replication. A number of gene construct systems containing origins of replication are well-known in the art and are described for example, in Ausubel *et al* (In: *Current Protocols in Molecular Biology*. Wiley Interscience, ISBN 047 150338, 1987), US Patent No. 5,763,239 (Diversa 20 Corporation) and (Sambrook *et al* (In: *Molecular Cloning: Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, New York, Third Edition 2001).

It is also preferred that when the gene constructs are to be introduced to and/or maintained and/or propagated and/or expressed in yeast cells, either during generation 25 of said gene constructs, or screening of said gene constructs, that the gene constructs contain an origin of replication that is operable at least in a yeast cell. One preferred origin of replication is the CEN/ARS4 origin of replication. Another particularly preferred origin of replication is the 2-micron origin of replication. A number of gene construct systems containing origins of replication are well-known in the art and are described for example, in Ausubel *et al* (In: *Current Protocols in Molecular Biology*. Wiley Interscience, ISBN 047 150338, 1987) and (Sambrook *et al* (In: *Molecular*

- 82 -

Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001).

In another embodiment, the gene construct containing the nucleic acid fragments 5 comprises another nucleic acid cassette comprising a promoter sequence in operable connection with a polynucleotide sequence encoding a selectable marker.

As used herein the term "selectable marker" shall be taken to mean a protein or peptide that confers a phenotype on a cell expressing said selectable marker that is not shown 10 by those cells that do not carry said selectable marker. Examples of selectable markers include, but are not limited to the *dhfr* resistance gene, which confers resistance to methotrexate (Wigler, et al., 1980, *Natl. Acad. Sci. USA* 77:3567; O'Hare, et al., 1981, *Proc. Natl. Acad. Sci. USA* 78:1527); the *gpt* resistance gene, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, *Proc. Natl. Acad. Sci. USA* 78:2072); 15 the neomycin phosphotransferase gene, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, *J. Mol. Biol.* 150:1); and the hygromycin resistance gene (Santerre, et al., 1984, *Gene* 30:147). Alternatively, a marker gene catalyses a reaction resulting in a visible outcome (for example, the production of a 20 blue precipitate when β galactosidase is expressed in the presence of the substrate molecule 5-bromo-4-chloro-3-indoyl- β -D-galactoside) or confer the ability to synthesize particular amino acids (for example the *HIS3* gene confers the ability to synthesize histidine).

In one embodiment the peptide encoded by the nucleic acid fragment is expressed as a 25 fusion protein with a peptide sequence capable of enhancing, increasing or assisting penetration or uptake of the peptide by cells either *in vitro* or *in vivo*. For example, the peptide sequence capable of enhancing, increasing or assisting penetration or uptake is the *Drosophila* penetratin targeting sequence (a "protein transduction domain"). This peptide sequence at least comprises the amino acid sequence:

30

CysArgGlnIleLysIleTrpPheGlnAsnArgArgMetLysTrpLysLys (SEQ ID NO. 29)

- 83 -

further comprising (Xaa)_n after the final Lys residue and followed by Cys wherein Xaa is any amino acid and n has a value greater than or equal to 1. Alternatively, a homologue, derivative or analogue of said sequence is used. The use of said sequence is particularly useful when peptides encoded by the nucleic acid fragment are 5 synthesized *in vitro* or secreted from a host cell, and must be taken up by a cell for screening said peptide encoded by the nucleic acid fragment.

Those skilled in the art will also be aware of an analogous use of signals such as for example, the *tat* sequence of HIV to drive import of peptides into cells.

10

In an alternative embodiment, the peptide encoded by the nucleic acid fragment is mixed with a peptide capable of enhancing, increasing or assisting penetration or uptake by cells *in vitro* or *in vivo*. A peptide sequence that is able to increase or assist penetration or uptake of cells is the synthetic peptide *Pep 1*, which at least comprises 15 the amino acid sequence:

LysGluThrTrpTrpGluThrTrpTrpThrGluTrpSerGlnLysLysLysArgLysVal
(SEQ ID NO. 30).

The *Pep 1* peptide does not need to be conjugated to the peptide encoded by the nucleic 20 acid fragments. Furthermore, *Pep 1* dissociates from the peptide encoded by the expression library. Thus *Pep 1* will not interfere with the peptide forming a conformation sufficient for binding to a target protein or nucleic acid. *Pep 1* is only useful when the peptides encoded by the expression library are isolated prior to the addition to a cell or organism for screening. Thus *Pep 1* is particularly useful when *in* 25 *vitro* libraries are screened.

Other protein transduction domains are known in the art, and are clearly useful in the present invention. For example, amino acids 43-58 of *Drosophila* antennapedia, poly-arginine, PTD-5, Transportan and KALA (reviewed in Kabouridis, *TRENDS in* 30 *Biotechnology*, 21: 498-503, 2003).

Alternative protein transduction domains are known in the art, and include, for example, TAT fragment 48-60 (GRKKRRQRRRPPQ, SEQ ID NO: 31), signal sequence based peptide 1 (GALFLGWLGAAGSTMGAWSQPKKKRKV, SEQ ID NO: 32), signal sequence based peptide 2 (AAVALLPAVLLALLAP, SEQ ID NO: 33), transportan (GWTLNSAGYLLKINLKALAALAKKIL, SEQ ID NO: 34), amphiphilic model peptide (KLALKLALKALKAAALKLA, SEQ ID NO: 35), polyarginine (e.g., RRRRRRRRRRR, SEQ ID NO: 36)

10 In one embodiment, the expression library is introduced into and preferably expressed within a cellular host or organism to generate the expression library, it is preferred that the gene constructs are introduced into said cellular host or said organism. Methods of introducing the gene constructs into a cell or organism for expression are known to those skilled in the art and are described for example, in Ausubel *et al* (In: Current

15 Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987) and Sambrook *et al* (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001). The method chosen to introduce the gene construct in depends upon the cell type in which the gene construct is to be expressed.

20 In one embodiment, the cellular host is a bacterial cell. Means for introducing recombinant DNA into bacterial cells include, but are not limited to electroporation or chemical transformation into cells previously treated to allow for said transformation.

25 In another embodiment, the cellular host is a yeast cell. Means for introducing recombinant DNA into yeast cells include a method chosen from the group consisting of electroporation, and PEG mediated transformation.

30 In another embodiment, the cellular host is a plant cell. Means for introducing recombinant DNA into plant cells include a method selected from the group consisting of *Agrobacterium* mediated transformation, electroporation of protoplasts, PEG mediated transformation of protoplasts, particle mediated bombardment of plant

tissues, and microinjection of plant cells or protoplasts.

In yet another embodiment, the cellular host is an insect cell. Means for introducing recombinant DNA into plant cells include a method chosen from the group consisting of, 5 infection with baculovirus and transfection mediated with liposomes such as by using cellfectin (Invitrogen).

In yet another embodiment, the cellular host is a mammalian cell. Means for introducing recombinant DNA into mammalian cells include a means selected from the 10 group comprising microinjection, transfection mediated by DEAE-dextran, transfection mediated by calcium phosphate, transfection mediated by liposomes such as by using Lipofectamine (Invitrogen) and/or cellfectin (Invitrogen), PEG mediated DNA uptake, electroporation, transduction by Adenoviruses, Herpesviruses, Togaviruses or Retroviruses and microparticle bombardment such as by using DNA-coated tungsten or 15 gold particles (Agacetus Inc., WI, USA).

In an alternative embodiment, the expression library is an *in vitro* display library (ie., the peptides encoded by the prokaryote or compact eukaryote nucleic acid fragments of the expression library are displayed using *in vitro* display wherein the expressed 20 peptide is linked to the nucleic acid from which it was expressed such that said peptide is presented in the absence of a host cell). Accordingly, expression libraries produced by *in vitro* display technologies are not limited by transformation or transfection efficiencies. Accordingly any such library is of much higher complexity than an *in vivo* display library. Examples of methods of *in vitro* display include a method selected 25 from the group comprising but not limited to, ribosome display, covalent display and mRNA display.

In one embodiment, the *in vitro* display library is a ribosome display library. The skilled artisan will be aware that a ribosome display library directly links mRNA 30 encoded by the expression library to the peptide that it encodes. Means for producing a ribosome display library require that the nucleic acid fragment be placed in operable

connection with an appropriate promoter sequence and ribosome binding sequence, ie. form a gene construct. Preferred promoter sequences are the bacteriophage T3 and T7 promoters.

- 5 Preferably, the nucleic acid fragment is placed in operable connection with a spacer sequence and a modified terminator sequence with the terminator sequence removed.

As used herein the term “spacer sequence” shall be understood to mean a series of nucleic acids that encode a peptide that is fused to the peptide. The spacer sequence is 10 incorporated into the gene construct, as the peptide encoded by the spacer sequence remains within the ribosomal tunnel following translation, while allowing the peptide to freely fold and interact with another protein or a nucleic acid.

A preferred spacer sequence is, for example, a nucleic acid that encodes amino acids 15 211-299 of gene *III* of filamentous phage M13 mp19.

The display library is transcribed and translated *in vitro* using methods known in the art and are described for example, in Ausubel *et al* (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987) and (Sambrook *et al* (In: 20 Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001).

Examples of systems for *in vitro* transcription and translation include, for example, the TNT *in vitro* transcription and translation systems from Promega. Cooling the 25 expression reactions on ice generally terminates translation. The ribosome complexes are stabilized against dissociation from the peptide and/or its encoding mRNA by the addition of reagents such as, for example, magnesium acetate or chloroamphenicol. Such *in vitro* display libraries are screened by a variety of methods, as described herein.

- 30 In another embodiment, the expression library is a ribosome inactivation display library. In accordance with this embodiment, a nucleic acid fragment is operably

- 87 -

linked to a nucleic acid encoding a first spacer sequence. It is preferred that this spacer sequence is a glycine/serine rich sequence that allows a peptide encoded by the expression library to freely fold and interact with a target protein or nucleic acid.

- 5 The first spacer sequence is linked to a nucleic acid that encodes a toxin that inactivates a ribosome. It is preferred that the toxin comprises the ricin A chain, which inactivates eukaryotic ribosomes and stalls the ribosome on the translation complex without release of the mRNA or the encoded peptide.
- 10 The nucleic acid encoding the toxin is linked to another nucleic acid that encodes a second spacer sequence. The second spacer is required as an anchor to occupy the tunnel of the ribosome, and allow both the peptide and the toxin to correctly fold and become active. Examples of such spacer sequences are sequences derived from gene *III* of M13 bacteriophage.

15 Ribosome inactivation display libraries are generally transcribed and translated *in vitro*, using a system such as the rabbit reticulocyte lysate system available from Promega. Upon translation of the mRNA encoding the toxin and correct folding of this protein, the ribosome is inactivated while still bound to both the encoded polypeptide and the

- 20 mRNA from which it was translated.

In another embodiment, the expression library is an mRNA display library. In accordance with this embodiment, a nucleic acid fragment is operably linked to a nucleic acid encoding a spacer sequence, such as a glycine/serine rich sequence that

- 25 allows a peptide encoded by the expression library to freely fold and interact with a target protein or nucleic acid.

The nucleic acid encoding the spacer sequence is operably linked to a transcription terminator.

30 mRNA display libraries are generally transcribed *in vitro*, using methods known in the

art, such as, for example, the HeLaScribe Nuclear Extract *in vitro* Transcription System available from Promega. Encoded mRNA is subsequently covalently linked to a DNA oligonucleotide that is covalently linked to a molecule that binds to a ribosome, such as, for example, puromycin, using techniques known in the art and are described in, for 5 example, Roberts and Szostak, *Proc.Natl. Acad. Sci. USA*, 94, 12297-12302 (1997). Preferably, the oligonucleotide is covalently linked to a psoralen moiety, whereby the oligonucleotide is photo-crosslinked to a mRNA encoded by the expression library.

The mRNA transcribed from the expression library is then translated using methods 10 known in the art and are described for example, in Ausubel *et al* (In: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047 150338, 1987) and (Sambrook *et al* (In: Molecular Cloning: Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Third Edition 2001). When the ribosome reaches the junction of the mRNA and the oligonucleotide the ribosome stalls and the puromycin 15 moiety enters the phosphotransferase site of the ribosome and thus covalently links the encoded polypeptide to the mRNA from which it was expressed.

In yet another embodiment, the expression library is a covalent display library. In accordance with this embodiment, the nucleic acid fragment is operably linked to a 20 second nucleic acid fragment that encodes a protein that interacts with the DNA from which it was encoded. Examples of a protein that interacts with the DNA from which it interacts include, but are not limited to, the *E. coli* bacteriophage P2 viral A protein (P2A) and equivalent proteins isolated from phage 186, HP1 and PSP3.

25 The P2A protein is particularly preferred. The P2A protein recognizes a defined initiator sequence TCGGA (SEQ ID NO 31) positioned within the nucleic acid encoding the P2A protein and nicks one of the strands while forming a covalent bond with one of the free end nucleotides. Accordingly, it is preferred that at least the sequence TCGGA (SEQ ID NO 31) is included in the gene construct containing the 30 expression library.

It is particularly preferred that the protein attachment site is positioned such that a nucleic acid fragment is covalently linked to the peptide that it encodes.

A covalent display gene construct is transcribed and translated *in vitro*, using a system 5 such as the rabbit reticulocyte lysate system available from Promega. Upon translation of the fusion of the peptide and the P2A protein, the P2A protein nicks the nucleic acid of the sequence of SEQ ID NO: 31 and forms a covalent bond therewith. Accordingly, a nucleic acid fragment is covalently linked to the peptide that it encodes.

10 In yet another embodiment, the expression library is a phage display library wherein the expressed peptides or protein domains are displayed on the surface of a bacteriophage, as described, for example, in US Patent No. 5,821,047 and US Patent No. 6,190,908. The basic principle described relates to the fusion of a first nucleic acid comprising a sequence encoding a peptide or protein to a second nucleic acid 15 comprising a sequence encoding a phage coat protein, such as, for example a phage coat proteins selected from the group, M13 protein-3, M13 protein-7, or M13, protein-8. These sequences are then inserted into an appropriate vector, e.g., a vector capable of replicating in bacterial cells. Suitable host cells, such as, for example *E. coli*, are then transformed with the recombinant vector. Said host cells are also infected with a 20 helper phage particle encoding an unmodified form of the coat protein to which a nucleic acid fragment is operably linked. Transformed, infected host cells are cultured under conditions suitable for forming recombinant phagemid particles comprising more than one copy of the fusion protein on the surface of the particle. This system has been shown to be effective in the generation of virus particles such as, for example, a virus 25 particle selected from the group comprising λ phage, T4 phage, M13 phage, T7 phage and baculovirus. Such phage display particles are then screened to identify a displayed protein having a conformation sufficient for binding to a target protein or nucleic acid.

In yet another embodiment, the expression library is a retroviral display library wherein 30 the expressed peptides or protein domains are displayed on the surface of a retroviral particle. Retroviral display is of particular use as the proteins and peptides displayed in

such a system are generated in eukaryotic cells that can carry out a number of post-translational modifications to the peptides or protein domains that are required for activity. Such a retroviral display system is described in US Patent No. 6,297,004 (Cambridge Drug Discovery Holding, Limited). In adapting such a system to the

5 present invention, a nucleic acid fragment is placed in operable connection with an envelope protein of a retrovirus, more preferably a spike glycoprotein. An example of such a protein is the mature envelope protein of Moloney Murine leukemia virus. A gene construct comprising a nucleic acid fragment in operable connection with a retroviral envelope protein is also placed in operable connection with long terminal

10 repeat sequences, a tRNA binding site and a polypurine tract to ensure reverse transcription and integration of the encapsid RNA in an infected mammalian cell. Furthermore, such a gene construct should comprise an encapsidated signal sequence. An encapsidated signal sequence is a nucleic acid that is recognised by a component of the viral particle that mediates the inclusion of the nucleic acid into the viral particle.

15 Such a gene construct is then expressed in an appropriate host cell, such as, for example, a *COS* cell or *NIH3T3* cell, that has been previously infected with a retrovirus encoding an unmodified spike glycoprotein. In such a system chimeric retroviral particles are generated, carrying a mixture of modified and unmodified forms of the spike glycoprotein. These recombinant retrovirus particles are used to identify a

20 displayed peptide that binds to a target protein or nucleic acid.

In yet another embodiment, the expression library is a bacterial display library wherein the expressed peptides or protein domains are displayed on the surface of a bacterial cell. The cells displaying the expressed peptides or protein domains are then used for

25 biopanning as described, for example, in US Patent No. 5,516,637. Bacterial display is based on the finding that heterologous proteins are expressed as a fusion with bacterial surface proteins and assayed for the ability to bind to a target protein or nucleic acid. Accordingly, in such systems a nucleic acid fragment is placed in operable connection with a second nucleic acid that encodes an anchoring motif, or amino acid sequence

30 that directs the incorporation of the encoded peptide on the surface of the bacterial cell surface. Preferred amino acid sequences that direct incorporation of a peptide onto the

surface of a bacterial cell include, but are not limited to, the flagella major subunit FliC for localizing a protein on the flagellum of *E. coli*, the cell sorting signal of the cell wall proteinase PrtP of *Lactobacillus casei*, the OmpS maltoprotein of *Vibrio cholerae*, Protein A of *Bacillus subtilis*, LysA of *B. subtilis*, and ActA of *B. subtilis*. Expression 5 libraries comprising such gene constructs are then introduced into an appropriate host cell, such as for example *E. coli* or *B. subtilis* and the expressed peptides displayed on the surface of the bacterial cell. Such displayed libraries are of particular use in screening for peptides that have a conformation sufficient for binding a target protein or nucleic acid.

10

In an alternative embodiment, the peptides encoded by the nucleic acid fragment is also fused to a second nucleic acid comprising a sequences that encodes a peptide that directs the incorporation of the encoded peptide on the surface of a bacterial spore. Such methods are particularly useful in the display of peptides that are toxic to bacteria 15 when expressed intra cellularly, or when screening conditions are particularly harsh, such as, for example in the presence of organic solvents, or high temperatures.

In yet another embodiment, the expression library is a display library wherein the expressed peptides or protein domains are displayed on the surface of a yeast cell. This 20 method is particularly useful for the display of peptides encoded by nucleic acid derived from eukaryotes, as prokaryotic species are unable to form some structures encoded by eukaryotic sequences. Such a yeast display method is described in US Patent No 6,423,538. In adapting this method to the present invention, a nucleic acid fragment is operably linked to a second nucleic acid fragment encoding the membrane- 25 associated alpha-agglutinin yeast adhesion receptor, encoded by the *aga2* gene. The expression library is introduced into an appropriate host cell, such as for example *S. cerevisiae* or *S. pombe*. Following introduction into an appropriate host cell the fusion protein is secreted from the cell. The fusion protein then binds to the Aga1 protein on the surface of the cell by forming disulfide bonds. Such a yeast cell is screened to 30 determine whether or not it expresses a peptide having a conformation sufficient for binding to a target protein or nucleic acid.

In yet another embodiment, the expression library is a display library wherein the expressed peptides or protein domains are displayed on the surface of a mammalian cell. Such a system is described for example in Strenglin *et al* *EMBO J*, 7, 1053-1059, 5 1988. Mammalian display is particularly useful for the display of peptides derived from eukaryotes, as prokaryotic species and some lower eukaryotic species are unable to form some structures encoded by eukaryotic sequences. The mechanism behind mammalian display relates to the fusion of a nucleic acid fragment to a second nucleotide sequence encoding a peptide leader sequence, which directs the protein to be 10 secreted, such as for example the Ig κ secretion signal. Furthermore, the nucleic acid fragment is placed in operable connection with another nucleic acid, which encodes a peptide that anchors the peptide to the membrane, such as, for example the sequence of the transmembrane domain of PDGFR. An example of a vector containing such a sequence is the pDISPLAY vector available from Invitrogen. Proteins expressed by 15 such a vector are displayed upon the surface of the mammalian cell, making these cells particularly useful for screening for peptides that adopt a conformation sufficient for binding to a target protein or nucleic acid.

In another embodiment, the expression library is an arrayed expression library. As 20 used herein "arrayed expression library" shall be taken to mean that the library is assembled in such a way that an individual peptide and/or nucleic acid encoding same is readily identified. For example, each peptide encoded by the library of the present invention is produced individually (ie. in isolation from other peptides), a number or a plurality of different peptides are then pooled. Two or more of these pools of peptides 25 are then pooled, and if necessary, this process is repeated. Accordingly, pools of several thousands or millions of peptides may be produced. The largest of these pools is then screened to determine whether or not it comprises a peptide with a conformation sufficient for binding to a target protein and/or nucleic acid. Should such a pool comprise a peptide that binds to a target protein or nucleic acid, one or more groups of 30 smaller pools (ie. sub-pools) of peptides are screened to determine which comprise the peptide of interest. Clearly, this process can be iteratively repeated with pools of

descending size until the individual peptide of interest is isolated. Alternatively, a pool of a smaller number of peptides (e.g., 10 or 100) is directly screened to determine which, if any, of the peptides have a conformation sufficient for binding a target protein and/or nucleic acid and the sequence of said peptide or encoding nucleic acid (for 5 example using a biosensor chip in conjunction with mass spectrometry).

As will be apparent to the skilled artisan the present invention clearly encompasses the use of multiple different libraries. Accordingly, the present invention also includes screening one or more pooled libraries. For example, the present invention 10 encompasses the pooling of two or more libraries. In one embodiment, the libraries are derived from the same organism/s. In another embodiment, the libraries are derived from different organisms (e.g., a library derived from eukaryotes comprising a compact genome, and another library derived from bacteria).

15 As will be apparent to the skilled artisan an arrayed or pooled library may comprise nucleic acid fragments derived from the genome of one or more organisms and/or a vector comprising said fragment and/or the peptides encoded by the nucleic acid fragments and/or cells expressing said peptide.

20 In another embodiment, an arrayed expression library is produced or bound to or conjugated to a chip for analysis. To produce such a chip, the peptides (and/or nucleic acid encoding said peptide and/or a vector comprising said nucleic acid and/or a cell expressing said peptide) of the present invention are either synthesized on, or synthesized and then bound to, a solid support such as, for example glass, 25 polycarbonate, polytetrafluoroethylene, polystyrene, silicon oxide, gold or silicon nitride. This immobilization is either direct (e.g. by covalent linkage, such as, for example, Schiff's base formation, disulfide linkage, or amide or urea bond formation) or indirect. Methods of generating a protein chip are known in the art and are described in for example U.S. Patent Application No. 20020136821, 20020192654, 20020102617 30 and U.S. Patent No. 6,391,625. To bind a protein to a solid support it is often necessary to treat the solid support so as to create chemically reactive groups on the surface, such

- 94 -

as, for example, with an aldehyde-containing silane reagent or the calixcrown derivatives described in Lee *et al.*, *Proteomics*, 3: 2289-2304, 2003. A streptavidin chip is also useful for capturing proteins and/or peptides and/or nucleic acid and/or cells that have been conjugated with biotin (eg. as described in Pavlickova *et al.*, *Biotechniques*, 5 34: 124-130, 2003). Alternatively, a peptide is captured on a microfabricated polyacrylamide gel pad and accelerated into the gel using microelectrophoresis as described in, Arenkov *et al.* *Anal. Biochem.* 278:123-131, 2000.

Methods of determining a peptide on the chip capable of binding a target protein and/or 10 nucleic acid will be apparent to the skilled artisan. For example, a sample to be analyzed using a protein chip is attached to a reporter molecule, such as, for example, a fluorescent molecule, a radioactive molecule, an enzyme, or an antibody that is detectable using methods known in the art. Accordingly, by contacting a protein chip with a labeled sample and subsequent washing to remove any unbound proteins the 15 presence of a bound protein and/or nucleic acid is detected using methods known in the art, such as, for example using a DNA microarray reader.

Alternatively, biomolecular interaction analysis-mass spectrometry (BIA-MS) is used to rapidly detect and characterize a protein present in complex biological samples at the 20 low- to sub-fmole level (Nelson *et al.* *Electrophoresis* 21: 1155-1163, 2000 and Needelkov and Nelson, *Biosensors and Bioelectronics*, 16: 1071-1078, 2001). One technique useful in the analysis of a protein chip is surface enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) technology to characterize a protein bound to the protein chip. Alternatively, the protein chip is 25 analyzed using ESI as described in U.S. Patent Application 20020139751.

Library Screening Processes

The selection step of the screening process is to identify mimotopes or mimetic peptides, rather than merely selecting peptides that perform a known or expected 30 function. Suitable processes for selecting a peptide that does not bind to the target protein or target nucleic acid in its native environment include, for example,

determining the amino acid sequence of the peptide or determining the nucleotide sequence of the corresponding nucleic acid encoding said peptide and deriving the amino acid sequence from said nucleotide sequence, determining a known function of the amino acid sequence and excluding a peptide that binds to a target protein or target 5 nucleic acid associated with the known function.

Alternatively, or in addition, the selection involves using an expression library that comprises nucleic acid fragments from organisms that do not possess a particular biochemical pathway or signal transduction pathway relevant to the binding reaction 10 being assayed.

Alternatively, or in addition, the selection comprises using an expression library that comprises nucleic acid fragments from organisms that do not express one or more of the binding partners of the binding reaction being assayed. The present invention 15 clearly contemplates the combined use of bioinformatic analysis and selection of library components from organisms that are not known to carry out the binding reaction being assayed, to exclude those peptides from the screening process that merely perform their known function. Accordingly, such selection ensures that the selected peptide or protein domain does not bind to the target protein or target nucleic acid in its 20 native environment.

A particularly preferred embodiment of the present invention provides for the identification of a peptide or protein domain that is able to modulate the biological activity of a target protein or nucleic acid, wherein the modulated biological activity is 25 the ability of the target protein or nucleic acid to bind to another protein or nucleic acid and wherein the modulated binding is determined using a reporter molecule. As used herein, the term "reporter molecule" shall be taken to mean a molecule that displays a physically measurable property that alters in a way that can be measured and correlated with changes in the biological activity or a target protein or nucleic acid. Reporter 30 molecules are known in the art, and include, but are not limited to, proteins that fluoresce, for example, green fluorescence protein, proteins that induce a colour change

in the presence of a substrate, for example *E. coli* β -galactosidase, molecules that confer growth characteristics on the host cells, such as for example *HIS1*, and molecules that induce the death or reduced growth ability of the host cells, such as, for example, *URA3* and *CYH2 or CYH3*.

5

One embodiment of the present invention relates to the identification of nucleic acids that encode peptides having a conformation capable of binding to a DNA sequence. The one-hybrid assay, as described in Chong and Mandel (*In: Bartel and Fields, The Yeast Two-Hybrid System*, New York, NY pp 289-297, 1997) is used to determine 10 those peptides able to bind to a target DNA sequence. In adapting the standard one-hybrid technique to the present purpose, the target nucleotide sequence is incorporated into the promoter region of a reporter gene(s), the expression of which can be determined as described above. The peptide encoded by the expression library is expressed in such a manner that it forms a fusion protein with a transcriptional 15 activation domain (for example from the *GAL4* protein, the *LexA* protein, the *VP16* protein, the *B42* peptide or the mouse *NF κ B* protein). The transcriptional activation domain is recruited to the promoter through a functional interaction between the expressed peptide and the target nucleotide sequence. The transcriptional activation domain subsequently interacts with the basal transcriptional machinery of the cell, 20 activating expression of the reporter genes.

In another embodiment a polypeptide is identified that is able to bind a target protein or peptide using the two-hybrid assay described in US Patent No. 6,316,223 to Payan *et al* and Bartel and Fields, *The Yeast Two-Hybrid System*, New York, NY, 1997. The basic 25 mechanism described requires that the binding partners are expressed as two distinct fusion proteins in an appropriate host cell, such as for example bacterial cells, yeast cells, and mammalian cells. In adapting the standard two-hybrid screen to the present purpose, a first fusion protein consists of a DNA binding domain fused to the target protein, and a second fusion protein consists of a transcriptional activation domain 30 fused to the peptide encoded by the expression library. The DNA binding domain binds to an operator sequence which controls expression of one or more reporter genes. The

transcriptional activation domain is recruited to the promoter through the functional interaction between the peptide expressed by the expression library and the target protein. Subsequently, the transcriptional activation domain interacts with the basal transcription machinery of the cell, thereby activating expression of the reporter 5 gene(s), the expression of which can be determined.

The three hybrid assay as described in Zhang *et al* (In: Bartel and Fields, The Yeast Two-Hybrid System, New York, NY pp 289-297, 1997) is used to determine those peptides that bind target RNA sequences. In adapting the described 3-hybrid technique 10 to the present invention, a first fusion protein consists of a DNA binding domain which is fused to a known RNA binding protein, eg. the coat protein of bacteriophage MS2. An RNA hybrid molecule is also formed, consisting of a fusion between a RNA molecule known to bind the RNA binding protein, eg. MS2 binding sequences, and a target RNA binding sequence. A second fusion protein consists of a transcriptional 15 activation domain fused to the peptide encoded by the expression library. The DNA binding domain of the first fusion protein binds to an operator sequence that controls expression of one or more reporter genes. The RNA fusion molecule is recruited to the first fusion protein through the functional interaction between the RNA binding protein and the RNA molecule known to interact with said RNA binding protein. The 20 transcriptional activation domain is recruited to the promoter of one or more reporter molecules through functional interaction between the target RNA sequence of the peptide encoded by the nucleic acid of the present invention.

Other modifications of the two-hybrid screens are known in the art, such as for example 25 a PolIII two hybrid system, a Tribrid system, a ubiquitin based split protein sensor system and a Sos recruitment system as described in Vidal and Legrain *Nucl. Acid Res.* 27(4), 919-929 (1999). All of these systems are particularly contemplated.

A particularly preferred embodiment of the present invention relates to the 30 identification of peptides that antagonize or inhibit the interaction between the target protein or nucleic acid and another protein or nucleic acid. Accordingly, reverse 'N'-

hybrid screens are employed to identify agonist molecules. Reverse hybrid screens differ from the forward hybrid screens *supra* in that they use a counter selectable reporter marker(s), such as for example the URA3 gene, the CYH2 gene or the LYS2 gene, to select against interactions between the target protein or nucleic acid and another protein or nucleic acid. Cell survival or cell growth is reduced or prevented in the presence of a drug or a toxicogenic substrate of the counter selectable reporter gene product, which is converted by the counter selectable marker to a toxic compound, such as for example the URA3 gene product which confers lethality in the presence of the drug 5-FOA. Accordingly, cells in which the interaction between the target protein and another protein or nucleic acid is blocked or inhibited survive in the presence of the substance. This is because the counter selectable reporter molecule will not be expressed, and accordingly, the substrate will not be converted to a toxic product or the drug (in the case of cycloheximide) will not be active against the essential target encoded by the reporter gene. Such a result suggests that the peptide encoded by the expression library is an inhibitor of the interaction between the target protein or nucleic acid and another protein or nucleic acid.

In a particularly preferred embodiment, the screening method of the present invention identifies an antagonist of a protein: protein interaction or protein: nucleic acid interaction. In accordance with this embodiment, the present invention provides a reverse two hybrid screening process, such as, for example, essentially as described by Watt *et al.* (USSN 09/227,652), for identifying an inhibitory amino acid sequence that partially or completely inhibits a target protein-protein interaction or DNA-protein interaction involving one or more protein binding partners said method comprising:

- (i) providing cells that each comprise: (a) a nucleic acid comprising a counter-selectable reporter gene encoding a polypeptide that is capable of reducing cell growth or viability by providing a target for a cytotoxic or cytostatic compound (eg., *CYH2* gene that confers susceptibility to cycloheximide) or by converting a substrate to a cytotoxic or cytostatic product (eg., *URA3* gene that converts 5-FOA to a toxic product), said gene being positioned downstream of a promoter comprising a *cis*-acting element such that expression of said gene is operably

under the control of said promoter and wherein a protein binding partner of the protein-protein interaction or the DNA-protein interaction being assayed binds to said *cis*-acting element; and (b) nucleic acid selected from the group consisting of: (i) nucleic acid encoding a protein of the DNA-protein interaction that binds to said *cis*-acting element to activate expression of the counter-selectable reporter gene; and (ii) nucleic acids encoding two protein binding partners of the protein-protein interaction wherein a protein binding partner binds to the *cis*-acting element and the protein binding partners interact, said binding to the *cis*-acting element and said interaction being required to activate expression of the counter-selectable reporter gene;

- (ii) transforming or transfecting the cells or a portion of the cells with an expression library such that a single gene construct of the expression library is present in each transformed or transfected cell;
- (iii) culturing the transformed or transfected cells for a time and under conditions sufficient for the protein binding partner(s) to activate expression of the counter-selectable reporter gene in the absence of inhibition of the protein-protein interaction or the DNA-protein interaction by an amino acid sequence encoded by the expression library;
- (iv) culturing the transformed or transfected cells under conditions sufficient for an amino acid sequence of the expression library to be expressed in each of said transformed or transfected cells or a proportion of said transformed or transfected cells ;
- (v) culturing the transformed or transfected cells in the presence of the substrate or the cytotoxic or cytostatic compound such that the expressed counter-selectable reporter gene reduces the growth or viability of the cells unless said expression is reduced by virtue of an amino acid sequence of the expression library inhibiting the target protein-protein interaction or DNA-protein interaction;
- (vi) selecting a cell having enhanced growth or viability compared to a cell that does not express the amino acid sequence of the expression library wherein the enhanced growth or viability is indicative of a partial or complete inhibition of

- 100 -

the protein-protein interaction or a DNA-protein interaction by the amino acid sequence and

(vii) selecting a peptide expressed by the cell at (vi) that does not bind to a protein or nucleic acid of the protein-protein interaction or a DNA-protein interaction in its native environment.

5 Preferably, wherein a protein-protein interaction is being assayed, the binding of the two protein binding partners reconstitutes a functional transcriptional regulatory protein, such as, for example, by virtue of the binding partners being expressed as fusion proteins wherein each fusion protein comprises a portion of a transcriptional regulatory protein that does not modulate transcription without the other portion (eg., a

10 fusion protein comprising a transcriptional activator domain and a fusion protein comprising a DNA-binding domain). In a particularly preferred embodiment, one fusion protein comprises a Gal4 DNA-binding domain fused to SCL, and another fusion protein comprises the transcriptional activation domain of the LMO2 protein and a domain that interacts with SCL and, in this embodiment, the *URA3* counter selectable

15 reporter gene is operably under the control of a promoter comprising a Gal4 upstream activator sequence (Gal4 UAS), such that docking of the Gal4/SCL fusion to the Gal4 UAS and binding between SCL and LMO2 is required to activate transcription of the *URA3* gene, thereby conferring lethality on cells grown in the presence of 5-fluoro orotic acid (5-FOA). In screening the expression library, only those cells that survive

20 in the presence of 5-FOA are selected.

For example, a specific receptor is expressed as a DNA binding domain fusion protein, such as with the DNA binding domain of GAL4, and the ligand of said receptor is expressed as an activation domain fusion protein, such as with the GAL4 activation domain. These fusion proteins are expressed in yeast cells in operable connection with the CYH2 counter selectable marker, wherein expression of the CYH2 gene requires a physical interaction between the GAL4 DNA binding domain and the GAL4 activation domain. This physical relation is achieved is achieved, for example, by placing the expression of the marker gene under the control of a promoter comprising nucleotide

- 101 -

sequences to which the GAL4 DNA binding domain binds. Cells in which the reporter gene is expressed do not grow in the presence of cycloheximide. The expression libraries are expressed in these yeast cells and those cells that then grow in the presence of cycloheximide are further analyzed, such as, for example, analysis of the nucleic acid encoding the candidate peptide inhibitor(s).

In another particularly preferred embodiment, one fusion protein comprises a Gal4 DNA-binding domain fused to JUN1, and another fusion protein comprises the transcriptional activation domain of the LMO2 protein and a domain that interacts with JUN1 (e.g., JUNZ) and the *URA3* counter selectable reporter gene is operably under the control of a promoter comprising a Gal4 upstream activator sequence (Gal4 UAS), such that docking of the Gal4/JUN1 fusion to the Gal4 UAS and binding between JUN1 and JUNZ is required to activate transcription of the *URA3* gene, thereby conferring lethality on cells grown in the presence of 5-fluoro orotic acid (5-FOA). In screening the expression library, only those cells that survive in the presence of 5-FOA are selected.

As will be known to the skilled artisan, the reverse 'n'-hybrid technique briefly described above is readily modified for use in 1-hybrid, 2-hybrid or 3-hybrid assays.

In an alternative embodiment, the antagonist is identified using a reverse split two hybrid screening process, such as, for example, essentially as described by Erickson *et al.* (WO95/26400), wherein a relay gene that is a negative regulator of transcription is employed to repress transcription of a positive readout reporter gene when the interacting proteins (ie., bait and prey) interact, such that reporter gene expression is only induced in the absence of the protein encoded by the relay gene product. In accordance with this embodiment, there is provided a method for identifying an inhibitory amino acid sequence that partially or completely inhibits a target protein-protein interaction or DNA-protein interaction involving one or more protein binding partners said method comprising:

- (i) providing cells that each comprise: (a) a nucleic acid encoding a negative regulator of transcription (eg., Gal80 or *mdm2* oncoprotein-encoding gene), said nucleic acid being positioned downstream of a promoter comprising a *cis*-acting element and wherein a protein binding partner of the protein-protein interaction or the DNA-protein interaction being assayed binds to said *cis*-acting element; (b) nucleic acid selected from the group consisting of: (i) nucleic acid encoding a protein of the DNA-protein interaction that binds to said *cis*-acting element to activate expression of the negative regulator of transcription; and (ii) nucleic acids encoding two protein binding partners of the protein-protein interaction wherein a protein binding partner binds to the *cis*-acting element and the protein binding partners interact, said binding to the *cis*-acting element and said interaction being required to activate expression of the negative regulator of transcription; and (c) nucleic acid comprising a positive reporter gene (eg., an antibiotic resistance gene, herbicide resistance gene, or other resistance gene, or a gene which complements an auxotrophic mutation in the screening cells) operably connected to a *cis*-acting element (eg., a *GAL4* binding site capable of binding to Gal80, or Gal80, or the transactivation domain of p53 that binds to *mdm2* oncoprotein) to which the negative regulator of transcription binds to thereby inhibit or repress expression of the positive reporter gene;
- (ii) transforming or transfecting the cells or a portion of the cells with an expression library such that a single gene construct of the expression library is present in each transformed or transfected cell;
- (iii) culturing the transformed or transfected cells for a time and under conditions sufficient for the protein binding partner(s) to activate expression of negative regulator of transcription in the absence of inhibition of the protein-protein interaction or the DNA-protein interaction by an amino acid sequence encoded by the expression library;
- (iv) culturing the transformed or transfected cells under conditions sufficient for an amino acid sequence of the expression library to be expressed in each of said transformed or transfected cells or a proportion of said transformed or transfected cells ;

- (v) culturing the transformed or transfected cells in the presence of a compound to which the positive reporter gene confers resistance on the cells such that the expressed negative regulator of transcription represses expression of the positive reporter gene thereby reducing the growth or viability of the cells unless said expression is reduced by virtue of an amino acid sequence of the expression library inhibiting the target protein-protein interaction or DNA-protein interaction;
- (vi) selecting a cell having enhanced growth or viability compared to a cell that does not express the amino acid sequence of the expression library wherein the enhanced growth or viability is indicative of a partial or complete inhibition of the protein-protein interaction or a DNA-protein interaction by the amino acid sequence and
- (vii) selecting a peptide expressed by the cell at (vi) that does not bind to a protein or nucleic acid of the protein-protein interaction or a DNA-protein interaction in its native environment.

5 Preferably, wherein a protein-protein interaction is being assayed, the binding of the two protein binding partners reconstitutes a functional transcriptional regulatory protein. In a particularly preferred embodiment, one interacting protein comprises a LexA fusion protein, and another interacting protein comprises a VP16 fusion protein which when they interact induce expression of a GAL80 reporter gene regulated by 10 lexA operators. In this embodiment, the positive reporter gene (eg. a gene complementing an auxotrophic mutation) is placed operably under the control of a promoter comprising a Gal4 upstream activator sequence (Gal4 UAS), such that docking of a Gal80 negative regulator of transcription to the Gal4 UAS and binding between SCL and LMO2 is required to repress transcription of the positive reporter 15 gene, thereby preventing cells from proliferating. Conversely, repression of the interaction between the LexA-fusion and VP16 fusion prevents Gal80 expression allowing expression of the positive reporter gene that complements an auxotrophic mutation in the screening cells, particularly in cells that express endogenous Gal4

protein, allowing those cells to grow in the absence of the nutrient which the corresponding auxotrophic mutation had conferred dependence on.

In a preferred embodiment of the present invention, those nucleic acid fragments that 5 encode a polypeptide that binds to a target protein or nucleic acid are exposed to further rounds of selection using, for example, mutagenic PCR or expression of said fragments in "mutator" strains of bacteria. This increases the diversity of the selected nucleic acid. Said selected nucleic acid is again screened for those that encode a peptide having a conformation sufficient for binding a target protein or nucleic acid. Through 10 multiple rounds of screening and selection with lower concentrations of the target protein or nucleic acid, those peptides with the highest affinity for the target protein or nucleic acid are selected.

In a related embodiment, the sequences of those nucleic acid fragments encoding 15 peptides that bind to the target protein or nucleic acid are optimally aligned and the sequences compared to identify those nucleic acids that encode amino acids that are particularly desired for binding the target protein or nucleic acid. Furthermore, this information is used to generate synthetic nucleotide sequences encoding peptides, or synthetic peptides, containing those amino acids that are particularly desirable for 20 binding to a target protein or nucleic acid.

Preferably, those peptides that bind to the target protein or nucleic acid, are recovered and used in further analysis, such as for example, determining the nucleotide sequence of the nucleic acid encoding the identified peptide or protein domain. Initially, the 25 nucleic acid fragment encoding the peptide is isolated using methods known in the art, such as for example, PCR, RT-PCR, and nucleic acid isolation, amongst others. An isolated nucleic acid fragment is then characterized by methods such as nucleic acid sequencing. Such methods are known in the art.

30 In one embodiment, an isolated nucleic acid fragment is placed into an expression vector using methods known in the art, and described herein. Such a nucleic acid

fragment is only expressed in a single reading frame and only in one direction. This method is repeated until all possible open reading frames of the nucleic acid fragment are tested, and that/those that encode a polypeptide having a conformation sufficient for binding a target protein or nucleic acid are identified. As used herein the term “all

5 possible open reading frames” shall include those open reading frames that include the entire nucleic acid fragment, in addition to those open reading frames that are formed within a nucleic acid fragment, such as for example by the inclusion of a second ATG start codon, a Kozak sequence, a Shine-Dalgarno sequence, or an internal ribosome entry sequence (IRES), amongst others. Preferably, such translational start sites are

10 incorporated in order of increasing strength from the 5' end to the 3' end of the ribosome binding region of the expression construct, to compensate for a disproportionately strong initiation from the first Kozak sequence encountered after the cap site of the mRNA. All of the expressed peptides are then screened in an appropriate screening system to determine those that have a conformation sufficient for

15 binding to a target protein or nucleic acid. Accordingly, analysis of the nucleic acid encoding such a peptide is used to determine the amino acid sequence of the peptide. Using such software as the Translate tool available at ExPasy. As used herein, the term “ExPasy” shall be understood to mean, the ExPasy proteomics server provided by the Swiss Institute of Bioinformatics at CMU-Rue Michel – Servet 1 1211 Genève 4

20 Switzerland

Following isolation of the nucleic acid that encodes a peptide with a conformation sufficient for binding to a target protein or nucleic acid, it is preferred that all homologues of this sequence are isolated from the genomes of the organisms used to

25 generate the expression library. Methods of isolating homologous nucleic acid regions are known in the art and are described, for example, in Dieffenbach (ed) and Dveksler (ed) (*In: PCR Primer: A Laboratory Manual*, Cold Spring Harbour Laboratories, NY, 1995). Such methods include PCR and degenerate PCR. Such homologues are then screened in all possible reading frames using a suitable screening system, as are known

30 in the art and described herein.

- 106 -

It is a further preferred embodiment that an identified nucleotide sequence or amino acid sequence shall be used as a “reference sequence” for a homology search using a database of all known sequences. Such a reference sequence is a nucleotide or amino acid sequence to which all nucleotides or amino acid sequences in a database are compared. A number of source databases are available that contain either a nucleotide sequence and/or a deduced amino acid sequence that are particularly useful to identify all known sequences that are substantially homologous the sequence of nucleic acid or peptide, polypeptide or protein domain identified as positive in the present invention. Such databases are known in the art and include, for example, Genbank (at NCBI) and SWISS-PROT and TrEMBL (available at ExPasy). A number of different methods of performing such sequence searches are known in the art. The sequence data of the clone is then aligned to the sequences in the database or databases using algorithms designed to measure homology between two or more sequences.

15 In one embodiment, a nucleic acid identified in a homology search of the known nucleic acids is isolated using one of a variety of methods known in the art, such as for example PCR amplification of the specific region of genomic DNA or cDNA of the organism in which the nucleic acid is naturally found. The sequence of the isolated nucleic acid is determined, used to generate a gene construct as described herein, and 20 screened to determine if it encodes a peptide that has a conformation sufficient for binding the target protein or nucleic acid.

In another embodiment a nucleic acid encoding an amino acid sequence identified in a homology search of known amino acid sequences using techniques known in the art, such as for example degenerate PCR. An isolated nucleic acid is then used to generate a gene construct as described herein, and screened to determine if it encodes a peptide that has a conformation sufficient for binding the target protein or nucleic acid.

30 It is a particularly preferred embodiment of the present invention that those nucleic acids that encode a polypeptide having a conformation that binds to a target protein or nucleic acid are analyzed to select those nucleic acid fragments that encode

polypeptides that do not bind to said target protein or nucleic acid in its native environment. As used herein, the term “native environment” of a polypeptide shall be understood to mean the protein encoded by the gene from which the nucleic acid fragment was isolated. Accordingly, it is the aim of the present invention to identify 5 those polypeptides that display a function of the subdomain of the native protein, for example by binding to a target protein or nucleic acid to which it cannot bind in the context of the protein in which it naturally occurs.

The known function/s of the polypeptides isolated in the screening of the libraries of 10 the present invention are determined using sequence analysis software as is available from, for example NCBI, or Prosite. As used herein the term “Prosite” shall be understood to mean the Prosite protein database which is a part of the ExPasy proteomics server provided by the Swiss Institute of Bioinformatics at CMU-Rue Michel – Servet 1 1211 Genève 4 Switzerland. Accordingly, those polypeptides that 15 are known to bind to the target protein or nucleic acid in their native environment are excluded from any further analysis. Furthermore, analysis of the bioinformatic information available, for example, at NCBI aids in determining the native function of a protein. Such analysis will determine if, for example, the pathway being modified exists in an organism from which a peptide is identified or if a target protein or nucleic 20 acid is found in any of the organisms used to generate an expression library.

It is particularly preferred that an expression library is generated using nucleic acid fragments isolated from organisms that are distinct from the organism in which the target protein or nucleic acid naturally occurs. For example, to identify a nucleic acid 25 that encodes a peptide that has a conformation sufficient for binding the c-Jun protein of *Homo sapiens* an expression library is generated from the organisms *Aeropyrum pernix*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Chlamydia trachomatis*, *Escherichia coli*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*, *Pyrococcus horikoshii*, 30 *Synechocystis* PCC 6803, *Thermoplasma volcanium* and *Thermotoga maritima*. This

- 108 -

will reduce the likelihood of identifying a peptide that interacts with the c-Jun protein in its native environment.

In another embodiment, the expression library is screened using affinity purification.

5 Affinity purification techniques are known in the art and are described in, for example, Scopes (In: Protein purification: principles and practice, Third Edition, Springer Verlag, 1994). Methods of affinity purification typically involve contacting the peptides encoded by the nucleic acid fragment library of the present invention with a specific target protein or nucleic acid, and, following washing, eluting those peptides

10 that remain bound to the target protein or nucleic acid. Said target protein or nucleic acid is bound to another molecule to allow for ease of purification, such as, for example, a molecule selected from the group consisting of protein A, protein G, agarose, biotin, glutathione S-transferase (GST), and FLAG epitope. Accordingly, the target protein or nucleic acid is isolated simply through centrifugation, or through

15 binding to another molecule, e.g. streptavidin, or binding of a specific antibody, e.g. anti-FLAG antibodies, or anti-GST antibodies. Methods using target proteins or nucleic acids covalently bound to affinity matrices are particularly preferred.

In another embodiment, the expression library is expressed so as to allow identification

20 of a bound peptide using FACS analysis. The screening of libraries using FACS analysis is described in US Patent No 6,455,63 (Rigel Pharmaceuticals Incorporated). In adapting the protocol to the present invention, it is particularly preferred that the expression libraries are expressed in such that they are displayed, such as for example, using in vitro display, bacterial surface display, yeast display, or mammalian display.

25

Preferably, an in vitro display library is screened by FACS sorting. In vitro displayed proteins are covalently linked to a particle or bead suitable for FACS sorting, such as, for example, glass, polymers such as for example polystyrene, latex or cross-linked dextrans such as Sepharose, cellulose, nylon, teflon, amongst others.

30

The displayed library bound to particles or beads is added to a target protein or nucleic

- 109 -

acid that has been labelled with a labelling moiety, such as for example a fluorescent molecule, or a molecule which is detected by a second fluorescent molecule. Methods of labelling a target protein or nucleic acid are known in the art, and include methods using direct linkage or methods using a linker. The beads are then washed and 5 subjected to sorting by FACS, which allows the beads with bound fluorescent target proteins or nucleic acids, to be separated from the beads that have not bound to a fluorescent target protein or nucleic acid.

Alternatively the library is screened using a biosensor-based assay, such as, for 10 example, Biacore sensor chip technology (Biacore AB, UK). The Biacore sensor chip is a glass surface coated with a thin layer of gold modified with carboxymethylated dextran, to which the target protein or nucleic acid is covalently attached. The peptides encoded by the expression libraries are then exposed to the Biacore sensor chip comprising the target protein or nucleic acid.

15

Preferably, the nucleic acid fragment and its encoded polypeptide are linked, such as for example using display technology.

The Biacore sensor chip is further used in the analysis of the kinetics of the interaction 20 of the peptide encoded by the expression library and the target protein or nucleic acid, such as for example through analyzing binding affinity using surface plasmon resonance. Essentially, surface plasmon resonance detects changes in the mass of the aqueous layer close to the chip surface, through measuring changes in the refractive index. Accordingly, when a peptide encoded by the expression library binds to the 25 target protein or nucleic acid the refractive index increases. Such an assay additionally enables determination of the affinity of a peptide for a target protein or target nucleic acid.

As will be apparent of the skilled artisan another biosensor, such as, for example, an 30 evanescent biosensor, a membrane based biosensor (as described in AU 623,747, US 5,234,566 and USSN 20030143726) or a microcantilever biosensor (as described in

USSN 20030010097) is useful for screening the peptides of the present invention.

Determining the structure of a peptide

In a preferred embodiment, the structure of one or more peptides (and preferably, a plurality of peptides) selected or identified using a screening method described herein is determined. By determining the structure of a plurality of peptides, the present invention enables the identification of a secondary and/or tertiary structure that is conserved between the peptides. Preferably, a peptide having said conserved structure is then selected.

10

In one embodiment, the conserved structure (or the structure of the selected peptide) is different to that of a protein or fragment thereof that interacts with the target protein or target nucleic acid in nature.

15 In an alternative embodiment, the conserved structure (or the structure of the selected peptide) is the same as or similar to that of a protein or fragment thereof that interacts with the target protein or target nucleic acid in nature.

Bioinformatics and/or empirical means are preferably employed to determine one or 20 more secondary structure and/or tertiary structures of peptides identified in a screen. It is to be understood and implicit in these processes that, whilst it is not strictly necessary to conduct structural analysis on multiple peptides, the conservation or recurrence of specific structural features in different peptides provides validation of the role of that structure in binding to the target protein or target nucleic acid. This is true even for 25 structural features which have been previously identified or described in protein databases. Accordingly, a comparison of structural features of different peptides selected in the screen process is particularly preferred.

Empirical methods and/or means for determining the structure of a peptide will be 30 apparent to the skilled artisan and include, for example, a technique selected from the group consisting of atomic absorption spectroscopy (AAS), auger electron spectroscopy (AES), coherent anti-Stokes spectroscopy (CARS), circular dichroism (CD), Conversion electron Mossbauer spectroscopy (CEMS), chemical ionization mass

spectroscopy, chemically-induced dynamic electron/nuclear polarization (CIDEP/CIDNP), Cross polarization magic angle spinning (CP-MASS), combined rotation and multipulse spectroscopy (CRAMPS), distortionless enhancement by polarization transfer, 2-Dimensional nuclear magnetic resonance spectroscopy, electron 5 diffraction (ED), energy dispersive X-ray spectroscopy, electron energy-loss spectroscopy, electron-electron double resonance, electronic spectroscopy, electron impact mass spectroscopy, electron-nuclear double resonance (ENDOR), electron paramagnetic resonance spectroscopy, electron spin resonance spectroscopy (ESR), exchange spectroscopy, far infrared laser magnetic resonance, fluorescence 10 spectroscopy, Fourier transform infrared spectroscopy (FTIR), gas-phase electron diffraction (GED), heteronuclear correlation spectroscopy (HETCOR), heteronuclear overhauser effect spectroscopy, Hyper Raman spectroscopy, infrared spectroscopy (IR), laser desorption mass spectroscopy, laser-induced fluorescence, laser magnetic resonance spectroscopy, magnetic circular dichroism, microwave spectroscopy, mass- 15 analyzed ion kinetic energy spectroscopy, microwave optical double resonance spectroscopy, Mossbauer spectroscopy, multiphoton ionization spectroscopy, multi-stage mass spectroscopy (MS/MS), multiphoton induced fluorescence spectroscopy, nuclear gamma resonance spectroscopy, nuclear overhauser spectroscopy, nuclear quadrupole resonance spectroscopy, optical double resonance spectroscopy, 20 photoelectron spectroscopy, photoionization mass spectroscopy, Raman spectroscopy, Raman-induced Kerr-effect spectroscopy, rotating frame Nuclear Overhauser Effect spectroscopy, rotational Raman spectroscopy, Rotational spectroscopy, resonance Raman spectroscopy, secondary ion mass spectroscopy, total correlation spectroscopy, vibrational spectroscopy, visible spectroscopy, X-ray diffraction, X-ray fluorescence 25 spectroscopy, X-ray photoelectron spectroscopy, correlation spectroscopy (COSY), Coulomb explosion, HPLC, mass spectrometry (for example, MALDI, MALDI-TOF, LC-MS, MS-MS, GC-MS, LC/MS-MS, ES-MS, LC-ES-MS).

Raman spectroscopy

30 For example, Raman spectroscopy is useful for the high-throughput screening and/or analysis of multiple samples. The Raman spectrum of a compound provides

information both about its chemical nature as well as its physical state. For example, Raman spectra provides information about intra- and inter-molecular interactions, inclusions, salts forms, crystalline forms, and hydration states (or solvation states) of samples to identify suitable or desirable samples, or to classify a large number of 5 samples. Raman spectroscopy is also useful for examining kinetics of changes in the hydration-state of a sample or compound-of-interest. The lack of a strong Raman signal from water, a common solvent or component in preparations allows collection of Raman data in-situ in a manner relevant to many applications. Suitable methods of Raman spectroscopy are described, for example, in Matsousek *et al.* *J. Raman* 10 *Spectroscopy*. 32: 983-988, 2001, and USSN 20050130220.

Infrared spectroscopy

Infrared (IR) spectroscopy is also a valuable technique for assessing protein secondary structure in solution. One particular form of IR spectroscopy, Fourier transform 15 infrared spectroscopy (FTIR), has become a preferred form of IR spectroscopy for the study of protein secondary structure. FTIR is useful for the rapid determination of secondary structure as it offers accurate, high-resolution spectra with excellent sensitivity and signal-to-noise (S/N) ratios, as compared to other forms of infrared spectroscopy. Suitable methods of FTIR are described, for example, in Kumosinski & 20 Unruh, (1994) in ACS Symposium Series 576, Molecular Modeling: From Virtual Tools to Real Problems, (Kumosinski & Liebman, eds.) pp. 71-98; Susi & Byler, (1986) *Method. Enzymol.* 130: 290-311; Susi & Byler, *Method. Enzymol.* 130: 290-311, 1986; Byler & Susi *Biopolymers* 25: 469-87, 1986; and Miyazawa *et al.*, *J. Chem. Phys.* 24(2): 408-18., 1956

25

Proteins are known to have nine characteristic absorption bands in the mid-infrared region (approximately 1250 cm^{-1} to 1850 cm^{-1}) that yield conformational insight and are known as the amide A, B, and I-VII bands (Susi & Byler, *Method. Enzymol.* 130: 290-311, 1986). The secondary structure of proteins are primarily been characterized 30 by the frequency of the amide I and II bands.

Nuclear magnetic resonance spectroscopy

Another preferred class of spectroscopy is nuclear magnetic resonance (NMR). Nuclear magnetic resonance (NMR) spectroscopy uses high magnetic fields and radio-frequency pulses to manipulate the spin states of nuclei, for example, ¹H, ¹³C, and ¹⁵N, that have nonzero-spin angular momentum. For a molecule containing such nuclei, the result is a NMR spectrum with peaks, the positions and intensities of which reflect the chemical environment and nucleic positions within the molecule. As applied to protein-structure analysis, the accuracy now achievable with NMR spectroscopy is comparable to that obtained with X-ray crystallography.

10 Examples of such methods include, 1D, 2D, and 3D-NMR, including, for example, 1D spectra, such as single pulse, water-peak saturated, spin-echo such as CPMG (i.e., edited on the basis of nuclear spin relaxation times), diffusion-edited; 2D spectra, such as J-resolved (JRES), ¹H-¹H correlation methods such as NOESY, COSY, TOCSY and variants thereof, methods which correlated ¹H to heteronuclei (including, for example, ¹³C, ¹⁵N, ¹⁹F, and ³¹P), such as direct detection methods such as HETCOR and inverse-detected methods such as ¹H-¹³C HMQC, HSQC and HMBO; 3D spectra, including many variants, which are combinations of 2D methods, e.g. HMQC-TOCSY, NOESY-TOCSY, etc. All of these NMR spectroscopic techniques can also be combined with

15 magic-angle-spinning (MAS) to study samples other than isotropic liquids, which are characterized by anisotropic composition.

20

Circular dichroism

Circular dichroism spectroscopy is performed by passing plane polarized light through a birefringent plate, which splits the light into two plane-polarized beams oscillating along different axes (e.g., fast and slow). When one of the beams is retarded by 90° (using a quarter-wave retarder) then the two beams which are now 90° out of phase are added together, the result is circularly polarized light of one direction. By inverting the two axes such that the alternate beam is retarded than circularly polarized light of the other direction is generated. The result of adding the right and left circularly polarized that passes through the optically active sample is elliptically polarized light, thus circular dichroism is equivalent to ellipticity. By determining the absorption of a

purified peptide in solution at various wavelengths and comparing the absorption to absorptions obtained for proteins and/or peptides of known structure a structure is assigned to the peptide.

5 X-ray crystallography

In another embodiment, the structure of a peptide is determined using X-ray crystallography. X-ray crystallography is a method useful for solving the three dimensional structures of a molecule. The structure of a molecule is calculated from X-ray diffraction patterns using a crystal as a diffraction grating. Three dimensional structures of protein molecules arise from crystals grown from a concentrated aqueous solution of that protein. For example, the process of X-ray crystallography includes the following steps:

- (a) synthesizing and isolating (or otherwise obtaining) peptide;
- (b) growing a crystal from an aqueous solution comprising the peptide; and
- 15 (c) collecting X-ray diffraction patterns from the crystals, determining unit cell dimensions and symmetry, determining electron density, fitting the amino acid sequence of the peptide to the electron density, and refining the structure.

Suitable methods for producing a peptide are described hereinabove.

20

Crystals are then grown from an aqueous solution containing the purified and concentrated peptide by any of a variety of techniques. These techniques include batch, liquid, bridge, dialysis, vapor diffusion, and hanging drop methods (McPherson John Wiley, New York, 1982; McPherson *Eur. J. Biochem.* 189:1-23, 1990; Webber *Adv.*

25 *Protein Chem.* 41:1-36, 1991)

For example, a native crystal of a peptide is, in general, grown by adding precipitants to the concentrated solution of the peptide. The precipitants are added at a concentration just below that necessary to precipitate the protein. Water is removed by controlled 30 evaporation to produce precipitating conditions, which are maintained until crystal growth ceases.

Following crystal growth, the crystal is placed in a glass capillary tube or other mounting device and mounted onto a holding device connected to an X-ray generator and an X-ray detection device. Collection of X-ray diffraction patterns are known in the art (e.g., Ducruix and Geige, (1992), IRL Press, Oxford, England, and references cited therein). A beam of X-rays enters the crystal and then diffracts from the crystal. An X-ray detection device is utilized to record the diffraction patterns emanating from the crystal. Suitable X-ray detection devices include, film or a digital recording device. Suitable X-ray sources are of various types, but advantageously, a high intensity source is used, e.g., a synchrotron beam source.

Methods for obtaining the three dimensional structure of the crystalline form of a peptide molecule or molecule complex are known in the art (e.g., Ducruix and Geige, (1992), IRL Press, Oxford, England, and references cited therein).

For example, after the X-ray diffraction patterns are collected from the crystal, the unit cell dimensions and orientation in the crystal are determined. The unit cell dimensions and orientation are determined from the spacing between the diffraction emissions as well as the patterns made from these emissions. The unit cell dimensions are characterized in three dimensions in units of Angstroms (one angstrom= 10^{-10} meters) and by angles at each vertices. The symmetry of the unit cell in the crystals is also characterized at this stage. The symmetry of the unit cell in the crystal simplifies the complexity of the collected data by identifying repeating patterns.

Each diffraction pattern emission is characterized as a vector and the data collected at this stage of the method determines the amplitude of each vector. The phases of the vectors can be determined using multiple techniques. In one method, heavy atoms are soaked into a crystal (isomorphous replacement), and the phases of the vectors determined by using these heavy atoms as reference points in the X-ray analysis. (Otwinowski, (1991), Daresbury, United Kingdom, 80-86). The isomorphous replacement method usually utilizes more than one heavy atom derivative.

In another method, the amplitudes and phases of vectors from a crystalline polypeptide with an already determined structure is applied to the amplitudes of the vectors from a crystalline peptide of unknown structure and consequently determine the phases of

5 these vectors. This method is known as molecular replacement and the protein structure which is used as a reference must have a closely related structure to the protein of interest (Naraza *Proteins* 11:281-296, 1994). For example, the structure of c-Jun is useful for the molecular replacement analysis of a peptide that binds to c-Jun.

10 Following determination of the phases of the vectors describing the unit cell of a crystal, the vector amplitudes and phases, unit cell dimensions, and unit cell symmetry are used as terms in a Fourier transform function. The Fourier transform function calculates the electron density in the unit cell from these measurements. The electron density that describes one of the molecules or one of the molecule complexes in the

15 unit cell can be referred to as an electron density map. The amino acid structures of the sequence or the molecular structures of compounds complexed with the crystalline polypeptide are then fitted to the electron density using any of a variety of computer programs. This step of the process is sometimes referred to as model building and can be accomplished by using computer programs such as Turbo/FRODO or "O". (Jones

20 *Methods in Enzymology* 115:157-171, 1985).

A theoretical electron density map is then calculated from the amino acid structures and fit to the experimentally determined electron density. The theoretical and experimental electron density maps are compared to one another and the agreement between these

25 two maps described by a parameter (R-factor). A low value for an R-factor describes a high degree of overlapping electron density between a theoretical and experimental electron density map.

The R-factor is then minimized by using a computer program that refine the theoretical

30 electron density map. A computer program such as X-PLOR can be used for model refinement by those skilled in the art (Briinger *Nature* 355:472-475, 1992). Refinement

is achieved in an iterative process. For example, a first step comprises altering the conformation of atoms defined in an electron density map. The conformations of the atoms are altered by simulating a rise in temperature, which will increase the vibrational frequency of the bonds and modify positions of atoms in the structure. At a 5 particular point in the atomic perturbation process, a force field, which typically defines interactions between atoms in terms of allowed bond angles and bond lengths, Van der Waals interactions, hydrogen bonds, ionic interactions, and hydrophobic interactions, are applied to the system of atoms. Favorable interactions are described in terms of free energy and the atoms moved over many iterations until a free energy minimum is 10 achieved. The refinement process can be iterated until the R-factor reaches a minimum value.

The three dimensional structure of the molecule or molecule complex is described by atoms that fit the theoretical electron density characterized by a minimum R-value.

15

In silico methods

The present invention also contemplates an *in silico* method for determining the structure of a peptide identified using a method described herein.

20 For example, structural features are determined using appropriate software available on the website of the National Center for Biotechnology Information (NCBI) at the National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894 such as, for example, through the NCBI Molecules Modelling Database (MMDB) including three-dimensional biomolecular structures determined using X-ray crystallography and/or 25 NMR spectroscopy. The NCBI conserved domain database (CDD) includes domains from the well-known Smart and Pham collections, with links to a 3D-structure viewer (Cn3D). The NCBI Conserved Domain Architecture Retrieval Tool (CDART) uses precalculated domain assignments to neighbour proteins by their domain architecture.

30 Additional methods for predicting protein or peptide secondary structure are known in the art and/or described, for example, in Moult, *Curr. Opin. Biotechnol.* 7:422-27, 1996;

- 118 -

Chou *et al.*, *Biochemistry* 13:222-45, 1974; Chou *et al.*, *Biochemistry* 113:211-22, 1974; Chou *et al.*, *Adv. Enzymol. Relat. Areas Mol. Biol.* 47:45-48, 1978; Chou *et al.*, *Ann. Rev. Biochem.* 47:251-276, 1978; or Chou *et al.*, *Biophys. J.* 26:367-84, 1979.

5 Additionally, computer programs are currently available to assist with predicting secondary structure of a protein or peptide. One such method of predicting secondary structure is based upon homology modeling. For example, two polypeptides or proteins or a peptide and a fragment of a polypeptide or protein that have a sequence identity of greater than 30%, or similarity greater than 40%, often have similar structural

10 topologies. The recent growth of the protein structural database (PDB) has provided enhanced predictability of secondary structure, including the potential number of folds within the structure of a polypeptide or protein (Holm *et al.*, *Nucleic Acids Res.* 27:244-47, 1999).

15 For example, methods for determining the structure of a peptide are described, for example, in US Patent Application No 20020150906 (California Institute of Technology), or using a computer program or algorithm, such as, for example, MODELLER, (Sali and Blundell, *J. Mol. Biol.* 234, 779-815, 1993). These techniques rely upon aligning the sequence of a peptide with the sequences of peptides or proteins

20 that have a characterized structure. Such alignment algorithms are known in the art and are accessed through software packages such as, for example BLAST at NCBI. Structural information, ie. three-dimensional structure, of a query peptide is then be predicted based upon structural information corresponding to the sequence or subsequences aligned in the proteins or peptides that have previously been

25 characterized. In this way it is possible to generate a library of three-dimensional structures of peptides expressed from the expression library. This information is used to determine those sequences that is adopt a conformation sufficient for binding to a target protein or nucleic acid.

30 Additional methods of predicting secondary structure include, for example, "threading" (Jones, *Curr. Opin. Struct. Biol.* 7:377-87, 1997; Sippl *et al.*, *Structure* 4:15-19, 1996), "profile analysis" (Bowie *et al.*, *Science*, 253:164-70, 1991; Gribskov *et al.*, *Methods Enzymol.* 183:146-59, 1990; Gribskov *et al.*, *Proc. Nat. Acad. Sci. U.S.A.* 84:4355-58, 1989), and "evolutionary linkage"

In a preferred embodiment, the secondary structure of a peptide is determined by threading. Conventional threading of protein sequence is used to predict the 3D structure scaffold of a protein. Typically, threading is a process of assigning the folding of the protein by threading (or comparing) its sequence to a library of potential structural templates by using a scoring function that incorporates the sequence as well as the local parameters such as secondary structure and solvent exposure (Rost *et al.* 270: 471-480, 1997; Xu and Xu *Proteins: Structure, Function, and Genetics* 40: 343-354, 2000); and Panchenko *et al.* *J. Mol. Biol.* 296: 1319-1331, 2000). For example, the threading process starts from prediction of the secondary structure of the amino acid sequence and solvent accessibility for each residue of the query sequence. The resulting one-dimensional (1D) profile of the predicted structure is threaded into each member of a library of known 3D structures. The optimal threading for each sequence-structure pair is obtained using dynamic programming. The overall best sequence-structure pair constitutes the predicted 3D structure for the query sequence. Using such a technique, the inventors have determined the structure of a number of peptides using the method of the invention. Additional description of suitable threading methods is provided below in the Examples.

In another embodiment, a peptide is selected that has a secondary and/or tertiary structure that differs to the structure of a protein (or fragment thereof) that binds to the target protein or target nucleic acid in nature. For example, the present inventors have identified a number of peptides that are capable of binding to c-Jun and inhibiting c-Jun dimerization that do not form a similar structure to the region of c-Jun that self-dimerizes.

25

In an alternative embodiment, the method comprises selecting a peptide that has a secondary and/or tertiary structure that is the same as or similar to the structure of a protein (or fragment thereof) that binds to the target protein or target nucleic acid in nature. For example, the present inventors have identified a number of peptides that are capable of binding to c-Jun and inhibiting c-Jun dimerization that are predicted to form a leucine zipper-like domain (i.e., a similar structure to the region of c-Jun that self-dimerizes).

A preferred embodiment of the invention provides a method of determining a peptide that binds to a target nucleic acid or target protein comprising:

- 120 -

- (a) screening an expression library to identify a plurality of peptides expressed by the library that bind to the target protein or target nucleic acid;
- (b) selecting a plurality of the peptides from (a) that do not bind to said target protein or nucleic acid in their native environment;
- 5 (c) determining the structure of a plurality of the selected peptides;
- (d) determining a secondary and/or tertiary structure that is conserved between two or more of the selected peptides; and
- (e) selecting one or more peptides from (c) having the conserved secondary structure and/or tertiary structure,
- 10 thereby determining a peptide that binds to a target nucleic acid or target protein.

Preferably, the target protein is c-Jun and the peptide that interacts with c-Jun additionally inhibits c-Jun dimerization.

- 15 In a preferred embodiment the peptide comprises a leucine zipper-like domain, for example, the leucine zipper-like domain comprises a plurality of amino acid residues spaced at most 6 to 12 residues apart, wherein the amino acid residues are selected from the group consisting of leucine, isoleucine, valine, methionine and mixtures thereof. Preferably, the amino acid residues are spaced 6 to 7 amino acid residues apart.
- 20

In a preferred embodiment the plurality of amino acid residues comprises at least 6 amino acid residues selected from the group consisting of leucine, isoleucine, valine, methionine and mixtures thereof.

- 25 Preferably, the amino acid residues are interspersed with hydrophobic amino acids. For example, each hydrophobic amino acid is within 3 or 4 amino acids of one or more amino acid residue(s) selected from the group consisting of leucine, isoleucine, valine and methionine.

- 30 In a preferred embodiment, the peptide additionally comprises an acidic domain. For example, the acidic domain comprises four or more arginine residues.

As will be apparent to the skilled person from the foregoing, the present invention provides a method of determining a peptide that binds to c-Jun, said method comprising:

- (a) screening an expression library to identify a plurality of peptides expressed by the library that bind to c-Jun;
- 5 (b) selecting a plurality of the peptides from (a) that do not bind to c-Jun in their native environment;
- (c) determining the structure of a plurality of the selected peptides; and
- (e) selecting one or more peptides from (c) having a leucine zipper-like domain
- 10 and optionally, an acidic domain,

thereby determining a peptide that binds to c-Jun.

Preferably, the method additionally comprises:

- (f) determining a peptide selected at (e) that inhibits c-Jun dimerization.

15 In one embodiment, the nucleotide sequence of the nucleic acid encoding the identified peptide or protein domain is determined. Preferably, the sequences of several distinct peptides identified in a specific screen of a library are aligned and compared, and highly conserved primary and/or secondary structures within the peptides or protein domains are determined. Alternatively, or in addition, less conserved structures are also determined. More preferably, the highly conserved structural features are used to design and/or to produce additional peptides having the same or enhanced binding properties as the peptides identified in the initial screening.

25 *Additional characterization of identified peptides*

As exemplified herein, the present inventors have further characterized peptides identified in a primary or secondary screen by introducing the peptide into a cell (e.g., by recombinant expression) and determining the effect of the peptide on the phenotype of a cell.

30 For example, the present inventors have produced a cell comprising a reporter gene the expression of which is operably under the control of c-Jun dimerization, e.g., by placing the reporter gene operably under the control of an AP-1 enhancer element. A cell in which c-Jun self-dimerizes is determined by detecting the expression of the

reporter gene. A peptide identified by a method of the invention is then expressed in the cell and the level of c-Jun dimerization determined by determining the level of reporter gene expression. A peptide that reduces expression of the reporter gene is considered to bind to and inhibit c-Jun dimerization.

5

Accordingly, in one embodiment, the present invention provides a method for determining a peptide that binds to a target protein or target nucleic acid, the method comprising identifying or determining a peptide using a method described *supra* and additionally comprising characterizing a selected peptide by performing a process 10 comprising:

- (a) expressing in a cell comprising or expressing the target nucleic acid or target protein or introducing into a cell comprising or expressing the target nucleic acid or target protein the peptide; and
- (b) determining the ability of the peptide to interact with the target nucleic 15 acid or target protein in the cell.

In one embodiment, the ability of the peptide to interact with the target nucleic acid or target protein in the cell is determined by determining the level of expression of a reporter gene the expression of which is placed operably under the control of the 20 interaction of the peptide that the target nucleic acid or target protein.

Preferably, the peptide inhibits the interaction of the target nucleic acid or target protein with another nucleic acid or protein and the ability of the peptide to interact with the target nucleic acid or target protein in the cell is determined by determining a reduced 25 level of interaction between the target nucleic acid or target protein with the other nucleic acid or protein.

For example, the ability of the target nucleic acid or target protein to interact with the other nucleic acid or protein in the cell is determined by determining the level of 30 expression of a reporter gene the expression of which is placed operably under the control of the interaction of the target nucleic acid or target protein and the other nucleic acid or protein.

- 123 -

As exemplified herein, a reporter gene that is placed operably under control of a AP-1 enhancer element is useful, for example, for determining a peptide that binds to and/or inhibits c-Jun dimerization.

- 5 In another embodiment, the interaction of a peptide with a target protein or target nucleic acid is determined by detecting or determining the level of a phenotype mediated by the target gene or nucleic acid in a cell that expresses the peptide or into which the peptide has been introduced.
- 10 For example, the present inventors have introduced a peptide identified by a screen of the invention into a cell and determined the level of c-Jun mediated cell death. For example, cell death is induced, by the addition of an apoptosis inducing factor (e.g., TNF- α) or by exposing the cell to ultraviolet radiation or by inducing hypoxia in the cell. Accordingly, in a preferred embodiment, a peptide is characterized by (i) introducing the peptide into a cell or expressing the peptide in a cell; (ii) maintaining the cell under conditions sufficient to induce cell death; and (iii) selecting a peptide that prevents cell death.
- 15

In a preferred embodiment, a cell is characterized by its ability to reduce or prevent cell death. Preferably, the cell death is induced by performing a process selected from the group consisting of:

- (a) contacting a cell with tumor necrosis factor α (TNF α) for a time and under conditions sufficient to induce cell death;
- (b) exposing a cell to ultraviolet radiation for a time and under conditions sufficient to induce cell death; and
- 25 (c) contacting a cell with glutamate for a time and under conditions sufficient to induce cell death.

Methods for determining the level of cell death will be apparent to the skilled person.

- 30 For example, APOTEST (available from Immunotech) stains cells early in apoptosis, and does not require fixation of the cell sample (Martin *et al.*, 1994). This method utilizes an annexin V antibody to detect cell membrane re-configuration that is characteristic of cells undergoing apoptosis. Apoptotic cells stained in this manner can then be sorted either by fluorescence activated cell sorting (FACS), ELISA or by adhesion
- 35 and panning using immobilized annexin V antibodies.

Alternatively, as exemplified herein, a terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end-labeling (TUNEL) assay is used to determine the level of cell death. The TUNEL assay uses the enzyme terminal deoxynucleotidyl transferase 5 to label 3'-OH DNA ends, generated during apoptosis, with biotinylated nucleotides. The biotinylated nucleotides are then detected by using streptavidin conjugated to a detectable marker. Kits for TUNEL staining are available from, for example, Intergen Company, Purchase, NY.

10 Alternatively, or in addition, an activated caspase, such as, for example, Caspase 3 is detected. Several caspases are effectors of apoptosis and, as a consequence, are only activated to significant levels in a cell undergoing programmed cell death. Kits for detection of an activated caspase are available from, for example, Promega Corporation, Madison WI, USA. Such assays are useful for both immunocytochemical 15 or flow cytometric analysis of cell death.

Alternatively, or in addition a marker of cell death, e.g., Annexin V is detected, e.g., using FACS analysis, as exemplified herein.

20 *Target Validation*

As exemplified herein, the nucleic acid fragment expression libraries are screened for encoded peptides that inhibit or antagonize or block dimerization of a protein, such as for example, JUN. Such peptide antagonists ("peptide blockers") are particularly useful for validating c-Jun as a cellular target in the therapeutic treatment of stroke. As 25 exemplified herein, reverse two hybrid screens that assay the interaction between JUN1 and JUNZ (fragments of c-JUN that include the leucine zipper domain), have successfully been used to identify several specific peptide blockers of c-JUN dimerization.

30 It is therefore apparent that a selected peptide or protein domain and/or nucleic acid encoding same can be recovered and used to validate a therapeutic target (ie. it is used as a target validation reagent). By virtue of its ability to bind to a specific target protein or target nucleic acid, it is well within the ken of a skilled artisan to determine the *in*

vivo effect of modulating the activity of the target protein or target nucleic acid by expressing the identified peptide or protein domain in an organism (eg., a bacterium, plant or animal such as, for example, an experimental animal or a human). In accordance with this aspect of the present invention, a phenotype of an organism that 5 expresses the identified peptide or protein domain is compared to a phenotype of an otherwise isogenic organism (ie. an organism of the same species or strain and comprising a substantially identical genotype however does not express the peptide or protein domain). This is performed under conditions sufficient to induce the phenotype that involves the target protein or target nucleic acid. The ability of the peptide or 10 protein domain to specifically prevent expression of the phenotype, preferably without undesirable or pleiotropic side-effects indicates that the target protein or target nucleic acid is a suitable target for development of therapeutic/prophylactic reagents.

Preferably, determining a phenotype of the organism that is modulated by the target 15 protein or target nucleic acid comprises comparing the organism to an otherwise isogenic organism that does not express the selected peptide. For example, animal models of stroke can be assayed in the presence and absence of a peptide or protein domain that blocks c-Jun dimerization and stroke-inducing conditions applied to the animal. Amelioration of stroke damage, or prevention of stroke by the expressed 20 peptide indicates that the c-Jun dimerization is a suitable target for intervention, wherein the peptide is then suitably formulated for therapeutic intervention directly, or alternatively, small molecules are identified that are mimetics of the identified peptide or protein domain.

25 *Databases of nucleotide sequences and amino acid sequences*

The present invention also provides a database of nucleic acids that are selected by screening an expression library, as described herein. As the nucleic acid fragments are derived from organisms with substantially sequenced genomes, it is possible to use this 30 information to generate a database of the nucleotide sequences of nucleic acid fragments that is generated in the construction of an expression library screened as described herein.

The utility of the database lies in the ability for a skilled person to search the database for a nucleotide sequence or amino acid sequence determined by screening the expression library. In this way, it is possible to identify nucleic acid fragments that

5 encode a peptide that is adopt a conformation sufficient for binding to a specific target protein or nucleic acid. Furthermore, the database allows the user to identify a sequence that is homologous to a nucleic acid, in addition to determining from which species it is derived. Once a sequence is identified, the specific nucleic acid is isolated from the expression library using techniques known in the art, eg. PCR and the

10 expressed peptide analyzed.

Nucleotide sequences of the nucleic acid fragments of the expression library are derived from any one of many publicly known databases, such as for example NCBI or TIGR, because the organisms used in the generation of an expression library screened

15 as described herein has a substantially sequenced genome.

Such a database (i.e., comprising the sequences of nucleic acid fragments of the expression library and/or comprising the amino acid sequences of the peptides encoded by each nucleic acid fragment) is used, for example, to direct the synthesis of encoded

20 peptides either by direct chemical synthesis, or alternatively, by producing the encoding nucleic acid and expressing said nucleic acid in a suitable expression system.

Amino acid sequences that are found in the database are derived by conceptual translation of nucleotide sequences that are selected from the screened expression

25 library. The conceptual translation of a nucleotide sequence comprises applying the known codon usage rules to obtain hypothetical peptide sequences by translating a nucleotide sequence in both orientations and in all three reading frames for each possible orientation. Software for translation of nucleotide sequence to amino acid sequence is known in the art, and includes, for example, the Translate tool at ExPasy.

30 Care is taken to translate a nucleotide sequence using the known codon usage of the organism in which a nucleic acid fragment is to be expressed. Such codon usage

- 127 -

information is known in the art. Amino acid sequences are also derived by sequencing the expressed peptides. Methods of sequencing peptides and proteins are known in the art.

- 5 The conceptual translation of the sequences of peptides encoded by the libraries described herein assists the identification and/or isolation of those peptides from complex mixtures.

In a related embodiment, a database of amino acid sequences of peptides is analyzed to 10 generate a database of domain structures, or three-dimensional structures that is formed by a peptide expressed by the expression library. Methods for predicting the 3 dimensional structure of a peptide are known in the art, described *supra*.

Synthesis of peptide inhibitors of c-jun dimerization

- 15 As exemplified herein, the present inventors have identified a number of distinct c-Jun inhibitory peptides (Table 4 and 5), the amino acid sequences of which are set forth in the Sequence Listing. These are to be understood to comprise a non-exhaustive list of c-Jun inhibitory peptides. The skilled artisan is readily able to produce additional c-Jun inhibitory peptides following the teaching provided herein, e.g., using different libraries 20 produced according to the methods described, including libraries derived from different genome sources to those exemplified.

In a particularly preferred embodiment, a c-Jun dimerization inhibitory peptide will comprise an amino acid sequence selected from the group consisting of:

25

A c-Jun dimerization inhibitory peptide of the present invention is readily synthesized by recombinant means using methods known in the art and/or described herein. For example, nucleic acid encoding a peptide is synthesized from the deduced amino acid sequence (e.g., as set forth in Table 5).

30

Alternatively, a c-Jun dimerization inhibitory peptide of the present invention is readily synthesized from its determined amino acid sequence using standard techniques, e.g., using BOC or Fmoc chemistry. Synthetic peptides are prepared using known techniques of solid phase, liquid phase, or peptide condensation, or any combination 5 thereof, and can include natural and/or unnatural amino acids. Amino acids used for peptide synthesis may be standard Boc ($\text{N}\alpha$ -amino protected $\text{N}\alpha$ -t-butyloxycarbonyl) amino acid resin with the deprotecting, neutralization, coupling and wash protocols of the original solid phase procedure of Merrifield, *J. Am. Chem. Soc.*, 85:2149-2154, 1963, or the base-labile $\text{N}\alpha$ -amino protected 9-fluorenylmethoxycarbonyl (Fmoc) 10 amino acids described by Carpino and Han, *J. Org. Chem.*, 37:3403-3409, 1972. Both Fmoc and Boc $\text{N}\alpha$ -amino protected amino acids can be obtained from various commercial sources, such as, for example, Fluka, Bachem, Advanced Chemtech, Sigma, Cambridge Research Biochemical, Bachem, or Peninsula Labs.

15 The Merrifield method of synthesis (Merrifield, *J Am Chem Soc*, 85,:2149-2154, 1963) and the myriad of available improvements on that technology are described in the art (see e.g., Synthetic Peptides: A User's Guide, Grant, ed. (1992) W.H. Freeman & Co., New York, pp. 382; Jones (1994) *The Chemical Synthesis of Peptides*, Clarendon Press, Oxford, pp. 230.); Barany, G. and Merrifield, R.B. (1979) in *The Peptides* 20 (Gross, E. and Meienhofer, J. eds.), vol. 2, pp. 1-284, Academic Press, New York; Wünsch, E., ed. (1974) *Synthese von Peptiden in Houben-Weyls Metoden der Organischen Chemie* (Müller, E., ed.), vol. 15, 4th edn., Parts 1 and 2, Thieme, Stuttgart; Bodanszky, M. (1984) *Principles of Peptide Synthesis*, Springer-Verlag, Heidelberg; Bodanszky, M. & Bodanszky, A. (1984) *The Practice of Peptide Synthesis*, 25 Springer-Verlag, Heidelberg; Bodanszky, M. (1985) *Int. J. Peptide Protein Res.* 25, 449-474.

Synthetic peptides may also be produced using techniques known in the art and described, for example, in Stewart and Young (*In: Solid Phase Synthesis*, Second 30 Edition, Pierce Chemical Co., Rockford, Ill. (1984) and/or Fields and Noble (*Int. J. Pept. Protein Res.*, 35:161-214, 1990), or using automated synthesizers. Accordingly,

peptides of the invention may comprise D-amino acids, a combination of D- and L-amino acids, and various unnatural amino acids (e.g., α -methyl amino acids, Ca -methyl amino acids, and Na -methyl amino acids, etc) to convey special properties. Synthetic amino acids include ornithine for lysine, fluorophenylalanine for phenylalanine, and 5 norleucine for leucine or isoleucine.

Analogues of c-Jun dimerization inhibitors

The amino acid sequences of the c-Jun dimerization inhibitory peptides described may be modified for particular purposes according to methods well known to those of skill 10 in the art without adversely affecting their c-Jun dimerization inhibitory activity. Such analogues may be produced by chemical means or alternatively, by recombinant expression of nucleic acid encoding an analogue as described herein.

For example, particular peptide residues may be derivatized or chemically modified in 15 order to enhance the stability of the peptide or to permit coupling of the peptide to other agents, particularly lipids. It also is possible to change particular amino acids within the peptides without disturbing the overall structure of the peptide. Such changes are therefore termed "conservative" changes and tend to rely on the hydrophilicity or polarity of the residue. The size and/or charge of the side chains also are relevant 20 factors in determining which substitutions are conservative.

It is well understood by the skilled artisan that, inherent in the definition of a biologically functional equivalent protein or peptide, is the concept that there is a limit to the number of changes that may be made within a defined portion of the molecule 25 and still result in a molecule with an acceptable level of equivalent biological activity. Biologically functional equivalent peptides are thus defined herein as those peptides in which specific amino acids may be substituted. Particular embodiments encompass variants that have one, two, three, four, five or more variations in the amino acid sequence of the peptide. Of course, a plurality of distinct proteins/peptides with 30 different substitutions may easily be made and used in accordance with the invention.

Those skilled in the art are well aware that the following substitutions are permissible conservative substitutions (i) substitutions involving arginine, lysine and histidine; (ii) substitutions involving alanine, glycine and serine; and (iii) substitutions involving phenylalanine, tryptophan and tyrosine. Peptides incorporating such conservative 5 substitutions are defined herein as biologically functional equivalents.

The importance of the hydropathic amino acid index in conferring interactive biological function on a protein is generally understood in the art (Kyte & Doolittle, *J. Mol. Biol.* 157, 105-132, 1982). It is known that certain amino acids may be substituted for other 10 amino acids having a similar hydropathic index or score and still retain a similar biological activity. The hydropathic index of amino acids also may be considered in determining a conservative substitution that produces a functionally equivalent molecule. Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics, as follows: isoleucine (+4.5); valine (+4.2); 15 leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5). In making changes based upon the hydropathic index, the substitution of amino acids whose hydropathic indices 20 are within .+/- 0.2 is preferred. More preferably, the substitution will involve amino acids having hydropathic indices within .+/- 0.1, and more preferably within about .+/- 0.05.

It is also understood in the art that the substitution of like amino acids is made 25 effectively on the basis of hydrophilicity, particularly where the biological functional equivalent protein or peptide thereby created is intended for use in immunological embodiments, as in the present case (e.g. US Patent No. 4,554,101). In fact, the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity. As detailed 30 in US Patent No. 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 +/- 0.1); glutamate

(+3.0 +/- 0.1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5 +/- 0.1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4). In making changes based upon similar hydrophilicity values, it 5 is preferred to substitute amino acids having hydrophilicity values within about +/- 0.2 of each other, more preferably within about +/- 0.1, and even more preferably within about +/- 0.05

It also is contemplated that other sterically similar compounds may be formulated to 10 mimic the key portions of the peptide structure. Such compounds, which may be termed peptidomimetics, may be used in the same manner as the peptides of the invention and hence are also functional equivalents. The generation of a structural functional equivalent may be achieved by the techniques of modeling and chemical design known to those of skill in the art. It will be understood that all such sterically 15 similar constructs fall within the scope of the present invention.

Another method for determining the "equivalence" of modified peptides involves a functional approach. For example, a given peptide analogue is tested fro its ability to inhibit c-Jun dimerization e.g., using any screening method described herein.

20 Particularly preferred analogues of a peptide of the invention will comprise one or more non-natrually occurring amino acids or amino acid analogues. For example, a c-Jun dimerization inhibitory peptide of the invention may comprise one or more naturally occurring non-genetically encoded L-amino acids, synthetic L-amino acids or D- 25 enantiomers of an amino acid. More particularly, the analogue may comprise one or more residues selected from the group consisting of: hydroxyproline, β -alanine, 2,3-diaminopropionic acid, α -aminoisobutyric acid, N-methylglycine (sarcosine), ornithine, citrulline, t-butylalanine, t-butylglycine, N-methylisoleucine, phenylglycine, cyclohexylalanine, norleucine, naphthylalanine, pyridylalanine 3-benzothienyl alanine 30 4-chlorophenylalanine, 2-fluorophenylalanine, 3-fluorophenylalanine, 4-fluorophenylalanine, penicillamine, 1,2,3,4-tetrahydro-tic isoquinoline-3-carboxylic

acid β -2-thienylalanine, methionine sulfoxide, homoarginine, N-acetyl lysine, 2,4-diamino butyric acid, ρ -aminophenylalanine, N-methylvaline, homocysteine, homoserine, ϵ -amino hexanoic acid, δ -amino valeric acid, 2,3-diaminobutyric acid and mixtures thereof.

5

Commonly-encountered amino acids which are not genetically encoded and which can be present, or substituted for an amino acid, in a peptides analogue of the invention include, but are not limited to, β -alanine (b-Ala) and other omega-amino acids such as 3-aminopropionic acid (Dap), 2,3-diaminopropionic acid (Dpr), 4-aminobutyric acid 10 and so forth; α -aminoisobutyric acid (Aib); ϵ -aminohexanoic acid (Aha); δ -aminovaleric acid (Ava); methylglycine (MeGly); ornithine (Orn); citrulline (Cit); t-butylalanine (t-BuA); t-butylglycine (t-BuG); N-methylisoleucine (Melle); phenylglycine (Phg); cyclohexylalanine (Cha); norleucine (Nle); 2-naphthylalanine (2-Nal); 4-chlorophenylalanine (Phe(4-Cl)); 2-fluorophenylalanine (Phe(2-F)); 3-fluorophenylalanine (Phe(3-F)); 4-fluorophenylalanine (Phe(4-F)); penicillamine (Pen); 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic); β -2-thienylalanine (Thi); methionine sulfoxide (MSO); homoarginine (hArg); N-acetyl lysine (AcLys); 2,3-diaminobutyric acid (Dab); 2,3-diaminobutyric acid (Dbu); ρ -aminophenylalanine (Phe(pNH₂)); N-methyl valine (MeVal); homocysteine (hCys) and homoserine (hSer).

15

Other amino acid residues that are useful for making the peptides and peptide analogues described herein can be found, e.g., in Fasman, 1989, CRC Practical Handbook of Biochemistry and Molecular Biology, CRC Press, Inc., and the references cited therein.

20

As used herein, "analogues" include "derivatives" or "derivatized peptide compounds", wherein a peptidyl compound is modified to contain one or more-chemical moieties other than an amino acid. The chemicalmoiety may be linked covalently to the peptidyl moiety e.g., via an amino terminal amino acid residue, a carboxy terminal amino acid 25 residue, or at an internal amino acid residue. Such modifications include the addition of a protective or capping group on a reactive moiety in the peptide, addition of a

detectable label, and other changes that do not adversely destroy the activity of the peptide compound (e.g., its ability to bind to c-Jun and/or inhibit c-Jun dimerization).

An "amino terminal capping group" of a peptide compound described herein is any 5 chemical compound or moiety that is covalently linked or conjugated to the amino terminal amino acid residue of a peptide compound. An amino terminal capping group may be useful to inhibit or prevent intramolecular cyclization or intermolecular polymerization, to promote transport of the peptide compound across the blood-brain barrier (BBB), to protect the amino terminus from an undesirable reaction with other 10 molecules, to provide additional antioxidative activity, or to provide a combination of these properties. A peptide compound of this invention that possesses an amino terminal capping group may possess other beneficial activities as compared with the uncapped peptide, such as enhanced efficacy or reduced side effects. Examples of amino terminal capping groups that are useful in preparing peptide compounds and 15 compositions according to this invention include, but are not limited to, 1 to 6 naturally occurring L-amino acid residues, preferably, 1-6 lysine residues, 1-6 arginine residues, or a combination of lysine and arginine residues; urethanes; urea compounds; lipoic acid ("Lip"); glucose-3-O-glycolic acid moiety ("Gga"); or an acyl group that is covalently linked to the amino terminal amino acid residue of a peptide, wherein such 20 acyl groups useful in the compositions of the invention may have a carbonyl group and a hydrocarbon chain that ranges from one carbon atom (e.g., as in an acetyl moiety) to up to 25 carbons (e.g., palmitoyl group, "Palm" (16:0) and docosahexaenoyl group, "DHA" (C22:6-3)). Furthermore, the carbon chain of the acyl group may be saturated, as in Palm, or unsaturated, as in DHA. It is understood that when an acid, such as 25 docosahexaenoic acid, palmitic acid, or lipoic acid is designated as an amino terminal capping group, the resultant peptide compound is the condensed product of the uncapped peptide and the acid.

A "carboxy terminal capping group" of a peptide compound described herein is any 30 chemical compound or moiety that is covalently linked or conjugated to the carboxy terminal amino acid residue of the peptide compound. The primary purpose of such a carboxy terminal capping group is to inhibit or prevent intramolecular cyclization or intermolecular polymerization, to promote transport of the peptide compound across the blood-brain barrier, and to provide a combination of these properties. A peptide 35 compound of this invention possessing a carboxy terminal capping group may also

possess other beneficial activities as compared with the uncapped peptide, such as enhanced efficacy, reduced side effects, enhanced hydrophilicity, enhanced hydrophobicity. Carboxy terminal capping groups that are particularly useful in the peptide compounds described herein include primary or secondary amines that are 5 linked by an amide bond to the *alpha*-carboxyl group of the carboxy terminal amino acid of the peptide compound. Other carboxy terminal capping groups useful in the invention include aliphatic primary and secondary alcohols and aromatic phenolic derivatives, including flavonoids, with 1 to 26 carbon atoms, which form esters when linked to the carboxylic acid group of the carboxy terminal amino acid residue of a 10 peptide compound described herein.

Other chemical modifications of a peptide or analogue, include, for example, glycosylation, acetylation (including N-terminal acetylation), carboxylation, carbonylation, phosphorylation, PEGylation, amidation, addition of trans olefin, 15 substitution of α -hydrogens with methyl groups, derivatization by known protecting/blocking groups, circularization, inhibition of proteolytic cleavage (e.g., using D amino acids), linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited to specific chemical cleavage by cyanogen bromide, trypsin, 20 chymotrypsin, papain, V8 protease, NaBH₄, acetylation, formylation, oxidation, reduction, etc.

The present invention additionally encompasses an isostere of a peptide described herein. The term "isostere" as used herein is intended to include a chemical structure 25 that can be substituted for a second chemical structure because the steric conformation of the first structure fits a binding site specific for the second structure. The term specifically includes peptide back-bone modifications (i.e., amide bond mimetics) well known to those skilled in the art. Such modifications include modifications of the amide nitrogen, the α -carbon, amide carbonyl, complete replacement of the amide 30 bond, extensions, deletions or backbone crosslinks. Several peptide backbone modifications are known, including ψ [CH₂S], ψ [CH₂NH], ψ [CSNH₂], ψ [NHCO], ψ [COCH₂], and ψ [(E) or (Z) CH=CH]. In the nomenclature used above, ψ indicates the absence of an amide bond. The structure that replaces the amide group is specified within the brackets.

Other possible modifications include an N-alkyl (or aryl) substitution (ψ [CONR]), or backbone crosslinking to construct lactams and other cyclic structures. Other derivatives of the modulator compounds of the invention include C-terminal hydroxymethyl derivatives, O-modified derivatives (e.g., C-terminal hydroxymethyl 5 benzyl ether), N-terminally modified derivatives including substituted amides such as alkylamides and hydrazides and compounds in which a C-terminal phenylalanine residue is replaced with a phenethylamide analogue (e.g., Val-Phe-phenethylamide as an analogue of the tripeptide Val-Phe-Phe).

- 10 Particularly preferred analogues of a c-Jun dimerization inhibitory peptide are retro-inverted peptide analogues (also known as retro-inverso peptides). These analogues are isomers of linear peptides in which the direction of the amino acid sequence is reversed (retro) and the chirality, D- or L-, of one or more amino acids therein is inverted (inverso) e.g., using D-amino acids rather than L-amino acids, e.g., Jameson *et al.*, 15 *Nature*, 368, 744-746 (1994); Brady *et al.*, *Nature*, 368, 692-693 (1994). The net result of combining D-enantiomers and reverse synthesis is that the positions of carbonyl and amino groups in each amide bond are exchanged, while the position of the side-chain groups at each alpha carbon is preserved.
- 20 An advantage of retro-inverso peptides is their enhanced activity *in vivo* due to improved resistance to proteolytic degradation (e.g., Chorev *et al.*, *Trends Biotech.* 13, 438-445, 1995).

In one embodiment, the retro-inverso peptide is N-terminally modified, for example, 25 with a modifying group comprising an alkyl group such as a C1-C6 lower alkyl group, e.g., a methyl, ethyl, or propyl group; or a cyclic, heterocyclic, polycyclic or branched alkyl group, or one or more an amino acid linker residues.

In another embodiment, the retro-inverso peptide is C-terminally modified, for example 30 with an amide group, an alkyl or aryl amide group (e.g., phenethylamide) or a hydroxy group (i.e., the reduction product of a peptide acid, resulting in a peptide alcohol), or one or more an amino acid linker residues e.g., glycine, cysteine, etc.

It is also within the scope of the present invention for the retro-inverso peptide to be 35 further modified by the inclusion of one or more targeting domains e.g., penetratin,

TAT etc added to the N-terminus and/or C-terminus. Such peptide additions may be separated from the retro-inverso peptide moiety by one or more linkers e.g., glycine, cysteine, etc.

5 Retro-inverso peptide analogues may be complete or partial. Complete retro-inverso peptides are those in which a complete sequence of a c-Jun dimerization inhibitory peptide is reversed and the chirality of each amino acid in a sequence is inverted. Partial retro-inverso peptide analogues are those in which only some of the peptide bonds are reversed and the chirality of only those amino acid residues in the reversed 10 portion is inverted. For example, The present invention clearly encompasses both partial and complete retro-inverso peptide analogues.

For example, the amino acid sequence of a c-Jun dimerization inhibitory peptide of the present invention may be reversed completely and every amino acid residue inverted 15 (i.e., substituted with a corresponding D-amino acid residue) to produce a complete retroinverso analogue of the peptide.

Preferred retro-inverso analogues are partial analogues wherein the complete amino acid sequence of a c-Jun dimerization inhibitory peptide of the present invention is 20 reversed and an amino acid residue in said sequence other than glycine is inverted (i.e., substituted with a corresponding D-amino acid residue). Preferably, all amino acid residues other than glycine are inverted. In accordance with this preferred embodiment, a retro-inverso peptide analogue of the present invention will comprise a protein transduction domain such as penetratin or a TAT sequence, optionally fused to 25 the retro-inverso peptide moiety by means of an amino acid linker, such as glycine.

In a particularly preferred embodiment, the present invention provides an analogue of a peptide that capable of inhibiting c-Jun dimerization, wherein said analogue comprises a complete or partial reverse of an amino acid sequence set forth in SEQ ID NO: 132 or 30 136 and wherein one or more amino acid residues of the reversed amino acid sequence are D-amino acid residues.

More preferably, the present invention provides an analogue of a peptide that capable of inhibiting c-Jun dimerization, wherein said analogue comprises (i) a first peptidyl moiety comprising a sequence that consists of complete or partial reverse of an amino acid sequence set forth in SEQ ID NO: 132 or 136 and wherein one or more amino acid residues of the reversed amino acid sequence are D-amino acid residues; and (ii) a protein transduction domain optionally separated from (i) by an amino acid spacer.

Still more preferably, two or three or four or five or six or seven or eight or none or ten or eleven or twelve or thirteen or fourteen or fifteen or sixteen amino acid residues other than glycine are D-amino acids. Even more preferably, the analogue will comprise one or more D-amino acids selected from the group consisting of D-arginine, D-glutamate, D-serine, D-glutamine, D-isoleucine, D-tyrosine, D-alanine, D-lysine, D-proline and D-leucine.

15

In a particularly preferred embodiment, the analogue will comprise an amino acid sequence set forth in SEQ ID NO: 181 or 182.

Peptide/analogue isolation

20 After being produced or synthesized, a peptide compound that is useful in the compositions and methods of the invention may be purified using methods known in the art. Such purification preferably provides a peptide of the invention in a state dissociated from significant or detectable amounts of undesired side reaction products; unattached or unreacted moieties used to modify the peptide compound; and 25 dissociated from other undesirable molecules, including but not limited to other peptides, proteins, nucleic acids, lipids, carbohydrates, and the like.

Standard methods of peptide purification are employed to obtain isolated peptide compounds of the invention, including but not limited to various high-pressure (or 30 performance) liquid chromatography (HPLC) and non-HPLC peptide isolation protocols, such as size exclusion chromatography, ion exchange chromatography, phase separation methods, electrophoretic separations, precipitation methods, salting

in/out methods, immunochromatography, and/or other methods.

A preferred method of isolating peptide compounds useful in compositions and methods of the invention employs reversed-phase HPLC using an alkylated silica 5 column such as C₄-, C₈- or C₁₈-silica. A gradient mobile phase of increasing organic content is generally used to achieve purification, for example, acetonitrile in an aqueous buffer, usually containing a small amount of trifluoroacetic acid. Ion-exchange chromatography can also be used to separate peptide compounds based on their charge. The degree of purity of the peptide compound may be determined by various methods, 10 including identification of a major large peak on HPLC. A peptide compound that produces a single peak that is at least 95% of the input material on an HPLC column is preferred. Even more preferable is a polypeptide that produces a single peak that is at least 97%, at least 98%, at least 99% or even 99.5% of the input material on an HPLC column.

15

To ensure that a peptide compound obtained using any of the techniques described above is the desired peptide compound for use in compositions and methods of the present invention, analysis of the compound's composition determined by any of a variety of analytical methods known in the art. Such composition analysis may be 20 conducted using high resolution mass spectrometry to determine the molecular weight of the peptide. Alternatively, the amino acid content of a peptide can be confirmed by hydrolyzing the peptide in aqueous acid, and separating, identifying and quantifying the components of the mixture using HPLC, or an amino acid analyzer. Protein sequenators, which sequentially degrade the peptide and identify the amino acids in 25 order, may also be used to determine definitely the sequence of the peptide. Since some of the peptide compounds contain amino and/or carboxy terminal capping groups, it may be necessary to remove the capping group or the capped amino acid residue prior to a sequence analysis. Thin-layer chromatographic methods may also be used to authenticate one or more constituent groups or residues of a desired peptide compound. 30 Purity of a peptide compound may also be assessed by electrophoresing the peptide compound in a polyacrylamide gel followed by staining to detect protein components separated in the gel.

Therapeutic compositions

As will be apparent to the skilled artisan, peptides identified in the method of the present invention are useful as a therapeutic and/or prophylactic treatment of a disease and/or disorder. In addition to producing peptides that inhibit c-Jun dimerization, the 5 present inventors have also produced retro-inverso peptides (i.e., analogues of the exemplified peptides) and shown their efficacy in a cellular model of ischemia, including stroke.

Accordingly, the present invention also provides a method of treatment of a disease or 10 disorder comprising administering an effective amount of a peptide identified by the method of the present invention or an analogue thereof to a subject suffering from the disease and/or disorder or at risk of developing and/or suffering from the disease and/or disorder and/or in need of treatment.

15 Clearly the present invention encompasses the use of a peptide identified by a method of the present invention or analogue thereof in medicine. Additionally, the present invention encompasses a peptide identified by the present invention when used in medicine.

20 As will be apparent to the skilled artisan, peptides identified in the method of the present invention and analogues thereof are useful for inhibiting c-Jun dimerization. Such activity renders the peptide(s) and analogues thereof useful for the treatment of ischemia or an ischemic event e.g., stroke.

25 As will be apparent to the skilled artisan, the use of a peptide identified by the method of the present invention or analogue thereof to treat a disorder may require the peptide or analogue be formulated into a compound for administration.

Preferably, the compound is a pharmaceutical compound.

To prepare pharmaceutical or sterile compositions including a peptide or nucleic acid identified using the method of the invention, the peptide or analogue thereof, or isolated nucleic acid, is mixed with a pharmaceutically acceptable carrier or excipient. Compositions comprising a therapeutic peptide or nucleic acid are prepared, for 5 example, by mixing with physiologically acceptable carriers, excipients, or stabilizers in the form of, e.g., lyophilized powders, slurries, aqueous solutions, lotions, or suspensions (see, e.g., Hardman, *et al.* (2001) Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, N.Y.; Gennaro (2000) Remington: The Science and Practice of Pharmacy, Lippincott, Williams, and 10 Wilkins, New York, N.Y.; Avis, *et al.* (eds.) (1993) Pharmaceutical Dosage Forms: Parenteral Medications, Marcel Dekker, NY; Lieberman, *et al.* (eds.) (1990) Pharmaceutical Dosage Forms: Tablets, Marcel Dekker, NY; Lieberman, *et al.* (eds.) (1990) Pharmaceutical Dosage Forms: Disperse Systems, Marcel Dekker, NY; Weiner and Kotkoskie (2000) Excipient Toxicity and Safety, Marcel Dekker, Inc., New York, 15 N.Y.).

Formulation of a pharmaceutical compound will vary according to the route of administration selected (e.g., solution, emulsion, capsule). For solutions or emulsions, suitable carriers include, for example, aqueous or alcoholic/aqueous solutions, 20 emulsions or suspensions, including saline and buffered media. Parenteral vehicles can include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils, for instance. Intravenous vehicles can include various additives, preservatives, or fluid, nutrient or electrolyte replenishers and the like (See, generally, Remington's Pharmaceutical Sciences, 17th Edition, Mack Publishing Co., 25 Pa., 1985). For inhalation, the agent can be solubilized and loaded into a suitable dispenser for administration (e.g., an atomizer, nebulizer or pressurized aerosol dispenser).

Furthermore, where the agent is a protein or peptide or analogue thereof, the agent can 30 be administered via in vivo expression of the recombinant protein. In vivo expression can be accomplished via somatic cell expression according to suitable methods (see,

- 141 -

e.g. U.S. Pat. No. 5,399,346). In this embodiment, nucleic acid encoding the protein can be incorporated into a retroviral, adenoviral or other suitable vector (preferably, a replication deficient infectious vector) for delivery, or can be introduced into a transfected or transformed host cell capable of expressing the protein for delivery. In 5 the latter embodiment, the cells can be implanted (alone or in a barrier device), injected or otherwise introduced in an amount effective to express the protein in a therapeutically effective amount.

As will be apparent to a skilled artisan, a compound that is active *in vivo* is particular 10 preferred. A compound that is active in a human subject is even more preferred. Accordingly, when manufacturing a compound that is useful for the treatment of a disease it is preferable to ensure that any components added to the peptide does not inhibit or modify the activity of said peptide or analogue.

15 Selecting an administration regimen for a therapeutic composition depends on several factors, including the serum or tissue turnover rate of the entity, the level of symptoms, the immunogenicity of the entity, and the accessibility of the target cells in the biological matrix. Preferably, an administration regimen maximizes the amount of therapeutic compound delivered to the patient consistent with an acceptable level of 20 side effects. Accordingly, the amount of composition delivered depends in part on the particular entity and the severity of the condition being treated. Guidance in selecting appropriate doses of peptides are available (see, e.g., Milgrom, *et al. New Engl. J. Med.* 341:1966-1973, 1999; Slamon, *et al. New Engl. J. Med.* 344:783-792, 2001; Beniaminovitz, *et al. New Engl. J. Med.* 342:613-619, 2000; Ghosh, *et al. New Engl. J. Med.* 348:24-32, 2003; or Lipsky, *et al. New Engl. J. Med.* 343:1594-1602, 2000).

A peptide is provided, for example, by continuous infusion, or by doses at intervals of, e.g., one day, one week, or 1-7 times per week. Doses of a composition may be provided intravenously, subcutaneously, topically, orally, nasally, rectally, 30 intramuscular, intracerebrally, or by inhalation. A preferred dose protocol is one involving the maximal dose or dose frequency that avoids significant undesirable side effects. A total weekly dose depends on the type and activity of the compound being used to deplete B cells. For example, such a dose is at least about 0.05 µg/kg body

weight, or at least about 0.2 $\mu\text{g}/\text{kg}$, or at least about 0.5 $\mu\text{g}/\text{kg}$, or at least about 1 $\mu\text{g}/\text{kg}$, or at least about 10 $\mu\text{g}/\text{kg}$, or at least about 100 $\mu\text{g}/\text{kg}$, or at least about 0.2 mg/kg , or at least about 1.0 mg/kg , or at least about 2.0 mg/kg , or at least about 10 mg/kg , or at least about 25 mg/kg , or at least about 50 mg/kg (see, e.g., Yang, *et al. New Engl. J. Med.* 5 349:427-434, 2003; or Herold, *et al. New Engl. J. Med.* 346:1692-1698, 2002.

An effective amount of a peptide for a particular patient may vary depending on factors such as the condition being treated, the overall health of the patient, the method route and dose of administration and the severity of side affects, see, e.g., Maynard, *et al.* 10 (1996) *A Handbook of SOPs for Good Clinical Practice*, Interpharm Press, Boca Raton, Fla.; or Dent (2001) *Good Laboratory and Good Clinical Practice*, Urch Publ., London, UK.

Determination of the appropriate dose is made by a clinician, e.g., using parameters or 15 factors known or suspected in the art to affect treatment or predicted to affect treatment. Generally, the dose begins with an amount somewhat less than the optimum dose and is increased by small increments thereafter until the desired or optimum effect is achieved relative to any negative side effects. Important diagnostic measures include those of 20 symptoms of the disease and/or disorder being treated. Preferably, a compound that will be used is derived from or adapted for use in the same species as the subject targeted for treatment, thereby minimizing a humoral response to the reagent.

An effective amount of therapeutic will decrease disease symptoms, for example, as described *supra*, typically by at least about 10%; usually by at least about 20%; 25 preferably at least about 30%; more preferably at least about 40%, and more preferably by at least about 50%.

The route of administration is preferably by, e.g., topical or cutaneous application, injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, 30 intraocular, intraarterial, intracerebrospinal, intralesional, or pulmonary routes, or by sustained release systems or an implant (see, e.g., Sidman *et al. Biopolymers* 22:547-556, 1983; Langer, *et al. J. Biomed. Mater. Res.* 15:167-277, 1981; Langer *Chem. Tech.* 12:98-105, 1982; Epstein, *et al. Proc. Natl. Acad. Sci. USA* 82:3688-3692, 1985; Hwang, *et al. Proc. Natl. Acad. Sci. USA* 77:4030-4034, 1980; U.S. Pat. Nos. 35 6,350,466 and 6,316,024).

Methods of treatment of an ischemic disorder

As exemplified herein, several peptides and peptide analogues isolated by the inventors have been shown to be useful for the treatment of a variety of models of ischemia, an 5 ischemic disorder (e.g., stroke). Accordingly, the present invention provides, a method of treating ischemia, an ischemic disorder, an ischemic event (e.g., stroke), said method comprising administering a peptide according to any embodiment herein or an analogue thereof or a pharmaceutical composition comprising said peptide or analogue to a subject in need of treatment.

10

Alternatively, the present invention provides a method of treating an ischemic disorder, said method comprising administering a nucleic acid described herein according to any embodiment or a pharmaceutical composition comprising said nucleic acid to a subject in need of treatment.

15

Methods of administering the peptides, analogues or nucleic acid will be apparent to the skilled person. For example, the peptide, analogue or nucleic acid is administered to a subject by a method selected from the group consisting of intravenous administration, intrathecal administration, intra-arterial administration, local 20 administration following a craniotomy, and mixtures thereof.

Preferred routes of administration of a peptide or functional analogue thereof according to the invention in patients suffering from an ischemic disorder are, for example:

- (i) intravenously, for example, in a 0.9% saline solution;
- 25 (ii) intrathecally, for example, the peptide composition is given after a lumbar puncture with a 18 G needle or after subsequent insertion of a extralumbal catheter with the tip in the intrathecal space;
- (iii) by selective intra-arterial digital subtraction angiography, for example, wherein a microcatheter is inserted in the femoral artery and guided to the cerebral arteries and 30 the peptide of the invention perfused into the area;
- (iv) locally after craniotomy;
- (v) by intracoronary delivery using catheter-based deliveries of synthesized peptide (or analogue) suspended in a suitable buffer (such as saline) which is injected locally (e.g., by injecting into the myocardium through the vessel wall) in the coronary artery 35 using a suitable local delivery catheter such as a 10 mm InfusaSleeve catheter (Local

- 144 -

Med, Palo Alto, Calif.) loaded over a 3.0 mm x 20 mm angioplasty balloon, delivered over a 0.014 inch angioplasty guide wire; or

(vi) by intracoronary bolus infusion of peptide (or derivative) wherein the peptide is manually injected, for example, through an Ultrafuse-X dual lumen catheter (SciMed, 5 Minneapolis, Minn.) or another suitable device into proximal orifices of coronary arteries.

(vii) by intramyocardial delivery of synthesized peptide or analogue e.g., under direct vision following thoracotomy or using thoracoscope or via a catheter.

10 10 Pericardial delivery of synthesized peptide or analogue is typically accomplished by installation of the peptide-containing solution into the pericardial sac. The pericardium is accessed via a right atrial puncture, transthoracic puncture or via a direct surgical approach. Once the access is established, the peptide or analogue is infused into the pericardial cavity and the catheter is withdrawn. Alternatively, the delivery is 15 accomplished via the aid of slow-release polymers such as heparinal-alginate or ethylene vinyl acetate (EVAc). In both cases, once the peptide or analogue is integrated into the polymer, the desired amount of peptide/polymer is inserted under the epicardial fat or secured to the myocardial surface using, for example, sutures. In addition, the peptide/polymer composition can be positioned along the adventitial surface of 20 coronary vessels.

In the case of administration of a peptide by a route that does not directly access the central nervous system, the peptide may have to cross the blood brain barrier. Methods and means for enabling a peptide to cross the blood brain barrier are known in the art 25 and/or described, for example, in USSN20050142141. For example, a peptide of the invention is conjugated to an agent that enables the peptide to cross the blood brain barrier (e.g., a Trojan horse). E.g., HIR MAb 83-14 is a murine MAb that binds to the human insulin receptor (HIR). This binding triggers transport across the BBB of MAb 83-14 (Pardridge *et al.*, *Pharm., Res.* 12: 807-816, 1995), and any drug or gene payload 30 attached to the MAb (Wu *et al.*, *J. Clin. Invest.*, 100: 1804-1812, 1997).

The use of molecular Trojan horses to ferry drugs or genes across the blood brain barrier is described in U.S. Pat. Nos. 4,801,575 and 6,372,250. The linking of drugs to MAb transport vectors is facilitated with use of avidin-biotin technology. In this 35 approach, the drug or protein therapeutic is monobiotinylated and bound to a conjugate

- 145 -

of the antibody vector and avidin or streptavidin. The use of avidin-biotin technology to facilitate linking of drugs to antibody-based transport vectors is described in U.S. Pat. No. 6,287,792. Fusion proteins have also been used where a drug is genetically fused to the MAb transport vector.

5

In a preferred embodiment, a therapeutic peptide described herein is administered to a subject when the subject is suffering from or has suffered from an ischemic event (e.g., a stroke). Such timing of administration is useful for, for example, reducing the effect of reperfusion following the ischemic event.

10

In another embodiment, a therapeutic peptide described herein is administered to a subject when the subject is at risk of experiencing a reperfusion injury following an ischemic event.

15 The present invention is further described with reference to the following non-limiting examples.

EXAMPLE 1

The construction of a biodiverse nucleic acid fragment expression library
in the vector pDEATH-Trp

5 Nucleic acid was isolated from the following bacterial species:

1	<i>Archaeoglobus fulgidis</i>
2	<i>Aquifex aeliticus</i>
3	<i>Aeropyrum pernix</i>
4	<i>Bacillus subtilis</i>
5	<i>Bordetella pertussis TOX6</i>
6	<i>Borrelia burgdorferi</i>
7	<i>Chlamydia trachomatis</i>
8	<i>Escherichia coli K12</i>
9	<i>Haemophilus influenzae (rd)</i>
10	<i>Helicobacter pylori</i>
11	<i>Methanobacterium thermoautotrophicum</i>
12	<i>Methanococcus jannaschii</i>
13	<i>Mycoplasma pneumoniae</i>
14	<i>Neisseria meningitidis</i>
15	<i>Pseudomonas aeruginosa</i>
16	<i>Pyrococcus horikoshii</i>
17	<i>S necholsistis PCC 6803</i>
18	<i>Thermoplasma volcanium</i>
19	<i>Thermotoga maritima</i>

Nucleic acid fragments were generated from the genomic DNA of each genome using 2 consecutive rounds of primer extension amplification using tagged random oligonucleotides with the sequence:

10

5'-GACTACAAGGACGACGACGACAAGGCTTATCAATCAATCAN₆-3' (SEQ ID NO: 38). The PCR amplification was completed using the Klenow fragment of *E. coli* DNA polymerase I in the following primer extension reaction:

	<u>Reagent</u>	<u>Volume</u>
	DNA (100-200ng)	
5	Oligonucleotide comprising SEQ ID NO: 38 (25µM)	4µl
	H ₂ O	to 17.4µl.
	Samples were then boiled for 3-5 minutes to denature the nucleic acid isolated from the bacteria, before being snap cooled, to allow the tagged random oligonucleotides to anneal to said nucleic acid. These samples were then added to the following reagents:	
10	Klenow buffer	3µl
	dNTP (2mM)	3µl
	Klenow	0.6µl
	Polyethylene Glycol (8,500)	6µl

15 Primer extension reactions were then incubated at 15°C for 30 minutes, then at room temperature for 2 hours, before being heated to 37°C for 15 minutes.

20 Samples were boiled for 5 minutes to again denature the nucleic acid, before being snap cooled to allow renaturation of said nucleic acid. Another 0.5µl of the Klenow fragment of *E. coli* DNA polymerase I was added to each reaction and the samples incubated at 15°C for 30 minutes, then at room temperature for 2 hours, before being heated to 37°C for 15 minutes.

Following boiling the samples, following snap cooling another 2 rounds of primer extension were completed using the tagged random oligonucleotide:

25 5'-GACTACAAGGACGACGACGACAAGGCTTATCAATCAATCAN₉-3' (SEQ ID NO: 39)

To complete this the following reagents were added to the samples of the previous step:

30 Oligonucleotide comprising SEQ ID NO 39 (25µM) 4µl
 Klenow Buffer 1µl
 dNTP(2mM) 3µl
 Klenow 0.5µl
 H₂O to 40µl

35 Samples were then incubated at 15°C for 30 minutes, then at room temperature for 2

- 148 -

hours, before being heated to 37°C for 15 minutes.

Samples were boiled for 5 minutes to again denature the nucleic acid, before being snap cooled to allow renaturation of said nucleic acid. Another 0.5μl of the Klenow 5 fragment of *E. coli* DNA polymerase I was added to each reaction and the samples incubated at 15°C for 30 minutes, then at room temperature for 2 hours, before being heated to 37°C for 15 minutes.

Following completion of the primer extension amplification all sample volumes were 10 increased to 500μl with TE buffer and added to an Amicon spin column. These columns were then centrifuged for 15 minutes at 3,800 rpm in a microcentrifuge. Columns were then inverted and 30μl of TE buffer was added before the columns were centrifuged for 2 minutes at 3,800rpm, with this fraction collected for later use. The Klenow amplified DNA was then used in subsequent DNA manipulations.

15

The now purified primer extension products were then used in a PCR reaction with an oligonucleotide comprising the following sequence:

5'-**GAGAGAATTTCAGGTCAGACTAC**AAGGACGACGACGACAAG-3' (SEQ ID NO: 40), wherein an *Eco*RI restriction endonuclease site is shown in bold text, and 20 three stop codons are underlined. Note that each of the stop codons is in a different reading frame.

Thus, the following PCR reaction was used:

	Oligonucleotide comprising SEQ ID NO: 40 (10μM)	12μl
25	PCR buffer	5μl
	dNTP (2mM)	5μl
	Taq polymerase (Boehringer) 5.5U/μl)	0.4μl
	H ₂ O	26.6μl
	Klenow amplified DNA	2μl

30

Reactions were then cycled in a thermocycler using the following program:

95°C for 2 min; 60°C for 30sec; 72°C for 1 min;
95°C for 20 sec; 60°C for 30sec; 72°C for 1 min (repeated 29 times); and
72°C for 5 min.

35

- 149 -

PCR products were then purified using Amicon spins columns which fractionate on the basis of size.

The PCR products were then analyzed by electrophoresis on standard TAE-agarose 5 gels to determine the approximate size of the nucleic acid fragments generated as shown in Figure 2. The nucleic acid concentration of the samples was also determined.

PCR products from each of the 19 bacterial species were then pooled to generate a biodiverse nucleic acid library. To do so, DNA from each organism was added in an 10 equimolar amount when compared to the amount of nucleic acid added to the pool from the organism with the smallest genome. Between 1 μ g and 10 μ g of DNA from each organism was used, depending on the genome size of the organism from which the DNA was obtained.

15 In order to allow efficient cloning of the nucleic acid fragments into the pDEATH-Trp vector (SEQ ID NO: 41; Figure 3), both the fragments and the vector were digested with the EcoRI restriction endonuclease. Restriction digests were completed in the following reactions:

20 Digestion of PCR products used the following reaction conditions:

PCR products (1 μ g)	
EcoR I Buffer (Promega)	17 μ l
BSA (10x)	17 μ l
EcoR I enzyme (20U/ μ L) (Promega)	0.9 μ l
25 H ₂ O	to 170 μ l

Restriction digests were allowed to proceed for 40 minutes at 37°C. Samples were then purified using QIAquick PCR purification columns as per manufacturer's instructions. Nucleic acid was eluted into 50 μ l of H₂O.

30 Digestion of pDEATH-Trp vector used the following reaction conditions:

pDEATH-Trp (25 μ g)	
EcoR I Buffer (Promega)	100 μ l
BSA (10X)	100 μ l
35 EcoR I enzyme (20U/ μ L)	4 μ l

- 150 -

H₂O to 1000μl

Restriction digests were allowed to proceed for 5 minutes at 37°C. Samples were then purified using 3 QIAquick PCR purification columns as per manufacturer's 5 instructions. Nucleic acid was eluted into 150μl of H₂O.

The fragments generated from the PCR products were then ligated into the pDEATH-Trp vector (SEQ ID NO 41) using the following reaction:

	pDEATH-Trp (2 μg)	
10	BGF-PCR Fragments (1μg)	
	Ligation Buffer (10x) (NEB)	20μl
	T4 DNA Ligase (NEB)	10μl
	H ₂ O	to 200μl

15 Ligation reactions were allowed to proceed overnight at 16°C. The ligase was then heat inactivated by incubating the samples at 65°C for 30 minutes. Following completion of the ligation reaction sample volumes were increased to 500μl with TE buffer and added to an Amicon spin column. These columns were then centrifuged for 15 minutes at 3,800 rpm in a microcentrifuge. Columns were then inverted and 30μl of TE buffer 20 was added before the columns were centrifuged for 2 minutes at 3,800rpm, with this fraction collected for later use.

The pDEATH-Trp vector containing the biodiverse nucleic acid fragment was then transformed into *E. coli* TOP10 cells. Expression vectors were then isolated from 25 bacteria using standard procedures. Restriction enzyme digestion of the isolated vectors using EcoRI was then used to characterise the size of the inserts contained in the library, as shown in Figure 4.

Vectors were then pooled and transformed into the yeast strain PRT 51. Yeast strain 30 PRT-51 is characterized by the following genotype: *MATα, his3, trp1, ura3, 6 LexA-LEU2, lys2:3 cIop-LYS2, CYH2^R, ade2:G418-pZero-ade2, met15:Zeo-pBLUE-met15, his5::hygro.*

The result of this transformation was a library of 61 million clones. The recombinant 35 clones each express a peptide that is fused to another polynucleotide sequence encoding

- 151 -

the FLAG epitope or other marker.

EXAMPLE 2

Characterization of a biodiverse nucleic acid fragment expression library 5 in the pDEATH-Trp vector

Sequence analysis of nucleic acids cloned into pDEATH-Trp vector show that the fragments are derived from a variety of organisms, and encode a variety of proteins, as shown in Table 2.

10

TABLE 2.
Characterization of nucleic acid fragment cloned into pDEATH-Trp

No.	Insert size (bp)	Organism	Genbank ID	Function
1	114	<i>P. aeruginosa</i>	AAG05339.1	Hypothetical Protein
2	143	<i>Synechocystis PCC6803</i>	BAA10184.1	Fructose
3	166	<i>E. coli</i>	AAC73742.1	Lipoprotein
4	180	<i>B. subtilis</i>	CAB12555.1	methyl-accepting chemotaxis protein
5	150	<i>N. meningitis</i>	AAF41991.1	N utilization substance protein A
6	240	<i>E. coli</i>	AAC75637.1	Hypothetical protein
7	357	<i>H. pylori</i>	AAD08555.1	transcription termination factor NusA
8	83	<i>Z. maritima</i>	AAD36283.1	Hypothetical protein

- 152 -

EXAMPLE 3

The construction of a biodiverse nucleic acid fragment expression library
in the vector T7Select415-1

5 Nucleic acid was isolated from the following bacterial species:

1	<i>Archaeoglobus fulgidis</i>
2	<i>Aquifex aeliticus</i>
3	<i>Aeropyrum pernix</i>
4	<i>Bacillus subtilis</i>
5	<i>Bordetella pertussis TOX6</i>
6	<i>Borrelia burgdorferi</i>
7	<i>Chlamydia trachomatis</i>
8	<i>Escherichia coli K12</i>
9	<i>Haemophilus influenzae (rd)</i>
10	<i>Helicobacter pylori</i>
11	<i>Methanobacterium thermoautotrophicum</i>
12	<i>Methanococcus jannaschii</i>
13	<i>Mycoplasma pneumoniae</i>
14	<i>Neisseria meningitidis</i>
15	<i>Pseudomonas aeruginosa</i>
16	<i>Pyrococcus horikoshii</i>
17	<i>Synechocystis PCC 6803</i>
18	<i>Thermoplasma volcanium</i>
19	<i>Thermotoga maritima</i>

Nucleic acid fragments were generated from each of these genomes using multiple consecutive rounds of Klenow primer extension using tagged random oligonucleotides.

10 In the final round of PCR, the sequence of the oligonucleotide primer comprised the sequence:
5'-AGAGGAATTCAAGGTCAAGACTACAAGGACGACGACGACAAG-3' (SEQ ID NO: 42).

15 The primer extension products generated were then used as a template for PCR reactions using the following oligonucleotides:

- 153 -

5'-CAGAAGCTTAAGGACGACGACGACAAG-3' (SEQ ID NO: 43);
5'-CAGGAATTCAAGGACGACGACGACAAG-3' (SEQ ID NO: 44);
5'-CAGGAATTCCAAGGACGACGACGACAAG-3' (SEQ ID NO: 45); and
5'-CAGGAATTCAAGGACGACGACGACAAG-3' (SEQ ID NO: 46),

5 wherein the underlined sequence in SEQ ID Nos: 42-46 permits amplification of the PCR products. Furthermore, the sequence shown in bold highlights a *Hind*III restriction endonuclease recognition site or *Eco*RI recognition site. Furthermore, note the addition of one or two nucleotides after the *Eco*RI restriction site in SEQ ID Nos: 45 and 46, respectively (shown in italics). These nucleotides allow expression of
10 amplified nucleic acid in multiple forward reading frames.

Each DNA template was amplified by "one armed" (ie. using only 1 oligonucleotide primer) PCR, with each of the oligonucleotides (ie., SEQ ID Nos: 43-46) in separate reactions (ie. 76 reactions).

15

Each PCR reaction contained:

Template DNA	1 μ l
Taq buffer (10x) (Promega)	5 μ l
MgCl ₂ (25mM)	4 μ l
20 dNTP (2mM)	5 μ l
a primer selected from the group consisting of	
SEQ ID Nos: 43-46 (10pmol/ μ l)	10 μ l
Taq DNA polymerase (Promega 5U/ μ l)	0.4 μ l
H ₂ O	to 50 μ l

25

Reactions were then cycled in a Perkin Elmer thermocycler PE 9700 or PE 2400 using the following program:

30 5 min at 94°C, followed by 30 cycles wherein each cycle consists of 30 sec at 94°C, followed by 30 sec at 55°C, and followed by 1 min at 72°C], followed by 5 min at 72°C.

35 A sample of the resulting PCR products was analyzed by electrophoresis using a 2% agarose/TAE gel. The amount of nucleic acid in each of the PCR products was also determined using the picogreen method following instructions provided by the manufacturer.

PCR products generated with each of the oligonucleotides SEQ ID Nos: 43-46 were pooled. DNA from each organism was added in an equimolar amount when compared to the amount of nucleic acid added to the pool from the organism with the smallest genome.

Subsequently, the pools generated from PCR products amplified using the oligonucleotides SEQ ID NO: 44, SEQ ID NO: 45 or SEQ ID NO: 46 were combined in equal ratios (ie. equal amounts of nucleic acid) to form one pool.

10 The pooled PCR products were then purified using QIAquick PCR purification columns (QIAGEN) as per manufacturer's instructions. This step removes any unincorporated oligonucleotides, dNTPs and contaminating proteins.

15 Each of the pools of PCR products (6 μ g) was then divided into 3 equal parts and each part digested with a different one of the restriction enzymes *Alu*I, *Hae*III or *Rsa*I (NEB) in the following reaction:

PCR product (2 μ g)	
Restriction endonuclease buffer (10x) (NEB)	4 μ l
20 Restriction endonuclease	1 μ l
H ₂ O	to 40 μ l

Reactions were allowed to proceed for 2 hours at 37°C, before being heat inactivated by incubating at 65°C for 20 minutes. Restriction digests were then re-pooled and purified 25 using QIAquick PCR purification columns (QIAGEN) as per manufacturer's instructions.

Each of the enzymes *Alu*I, *Hae*III and *Rsa*I produce blunt ends. Accordingly, it is possible to ligate blunt end adaptors to the restriction digested PCR products to allow 30 directional cloning into the T7Select415-1 vector. Oligonucleotides encoding the blunt-end adaptors were generated comprising the following sequences:

5'-AATTCGAACCCCTTCG-3' (SEQ ID NO: 47)
5'-CGAAGGGGTTCG-3' (SEQ ID NO: 48)
5'-AATTCGAACCCCTTCGC-3' (SEQ ID NO: 49)
35 5'-GCGAAGGGGTTCG-3' (SEQ ID NO: 50)

- 155 -

5'-AATTCGAACCCCTTCGCG-3' (SEQ ID NO: 51)
5'- CGCGAAGGGGTTCG-3' (SEQ ID NO: 52)
5'-AGCTCGAAGGGGTTCG-3' (SEQ ID NO: 53)
5'-CGAACCCCTTCG-3' (SEQ ID NO: 54).

5 The adaptor pairs SEQ ID Nos: 47 and 48; SEQ ID Nos: 49 and 50; SEQ ID NOs: 51 and 52; SEQ ID NOs: 53 and 54 were then annealed to one another. This process was completed in H₂O with each of the oligonucleotides at a concentration of 50μM. Pairs of adaptors were incubated at 94°C for 10 minutes and then allowed to cool to room 10 temperature slowly.

15 The annealed adaptors were then ligated to the pool of amplified PCR products in separate ligation reactions. The adaptor formed through annealing of SEQ ID NOs: 53 and 54 was ligated to the pool of PCR products amplified using the oligonucleotides set forth in SEQ ID NO: 44, SEQ ID NO: 45 and SEQ ID NO: 46.

Ligations were carried out in the following reactions:

	Pooled PCR product (average length of 200bp)	2 pmol
	Annealed adaptor	150 pmol
20	Ligation buffer (10x) (Promega)	1μl
	T4 DNA ligase (3U/μl) (Promega)	1μl
	H ₂ O	to 10μl

25 Samples were then incubated at 4°C overnight before being heat inactivated through incubation at 65°C for 20 minutes.

Samples were then phosphorylated using T4 polynucleotide kinase (Promega) in the following reaction:

	Ligation buffer (10x) (Promega)	1μl
30	rATP (10mM)	2μl
	T4 polynucleotide kinase (5U/μl)	1μl
	H ₂ O	20μl

35 Samples were incubated at 37°C for 30 minutes followed by incubation at 65°C for 20 minutes to heat inactivate the T4 polynucleotide kinase.

- 156 -

Following ligation and phosphorylation each of the three reactions comprising nucleic acid amplified using the oligonucleotide SEQ ID NO: 43 were combined in equal ratios, ie. equal amounts of nucleic acid to form one pool.

5

The nucleic acids originally amplified with SEQ ID NO: 43 were then digested with the restriction endonuclease *HindIII* in the following reaction:

	PCR product (2 µg)	
	HindIII buffer (10x) (Promega)	8µl
10	HindIII (10U/µl) (Promega)	1µl
	H ₂ O	to 80µl

The nucleic acids in the pool originally amplified by one of SEQ ID Nos: 44-46 were digested with the restriction endonuclease *EcoRI* in the following reaction:

15	PCR product (2 µg)	
	EcoRI buffer (10x) (Promega)	8µl
	EcoRI (10U/µl) (Promega)	1µl
	H ₂ O	to 80µl

20 Samples were then purified using a QIAquick PCR purification column (QIAGEN) as per manufacturer's instructions. Nucleic acid concentration was then determined by spectrophotometry measuring UV absorption at 260nm.

Both pools of nucleic acid fragments (ie. those digested with EcoRI and those digested 25 with HindIII) were then combined in equal ratios, ie. equal amounts of nucleic acid, to form one pool. This pool of nucleic acid fragments was then suitable for cloning into the peptide display vector T7Select415-1 (Novagen). The T7415-1 vector is provided in a form for nucleic acids to be ligated into EcoRI and HindIII restriction endonuclease sites.

30

The nucleic acid fragments were then ligated into the T7Select415-1 vector using the following reaction:

	Ligation buffer (10x) (Novagen)	0.5µl
	rATP (10mM)	0.5µl
35	DTT (10mM)	0.5µl

- 157 -

T7Select415-1 EcoRI/HindIII vector arms (0.02pmol)	1µl
Nucleic acid fragments (0; 0.02; and 0.06 pmol in independent reactions)	
H ₂ O	to 5µl

5

Reactions were incubated at 16°C overnight.

EXAMPLE 5

10 Packaging and amplification of a biodiverse nucleic acid fragment expression library

The ligation reactions of Example 4 were packaged using commercial packaging extract available from Novagen. These reactions were then titered according to manufacturer's instructions by infection of *E. coli* BL21 cells. By using 1µl from each 15 of three independent ligations, titers between 1.3×10^7 and 7×10^7 plaque forming units (pfu)/ml were obtained.

Pooling of three ligation reactions containing a total of 1 µg of T7Select415-1 vector, and packaging, resulted in a library with 2.75×10^7 pfu, ie 2.75×10^7 initial 20 recombination events. The library was immediately amplified by "plate lysate amplification" (as per manufacturer's instructions) on 180 LB Petri dishes (14 cm diameter). Titers of the amplified lysates varied between 1 and 5×10^{10} pfu/ml. Two liters of lysate were harvested, pooled and the titer determined at 1.5×10^{10} pfu/ml, ie 25 3×10^{13} pfu in total. The lysate was stored at 4°C over CHCl₃ (as per manufacturer's instructions) and glycerol stocks containing 10% glycerol were stored at -80°C.

- 158 -

EXAMPLE 6
Characterization of a T7-displayed
biodiverse nucleic acid fragment library

During the amplification of the library described in Example 5, individual plaques from
5 low-density plates were collected and analyzed by PCR with primers specific to
T7Select415-1 of the nucleotide sequence.

Thirty nine plaques with insert sizes larger than 70bp were analyzed by DNA sequence
analysis. The resulting sequences are summarised in the Table 3

10 DNA from 13 of the 19 bacterial genomes could be identified in the recombinant phage
analyzed,. In most cases, the homology was between 96 and 100% in the regions that
were derived from the genomic starting material. In addition, primers and adapters
were identified, however, there were also many cases of strings of adapters and
15 multiple PCR primers in the insert regions. The inserted DNA of the analyzed phage
clones was up to 250bp long.

TABLE 3
Characterization of nucleic acid fragments in T7Select-415-1

BGF clone	T7for/rev PCR fragment (bp)	Insert homology to organism (% homology in the matching region)	Size of homologous region (bp)	Extra amino Acids after Asn (T7)	Natural reading frame
SP8	255	<i>B. pertussis</i> (98%)	112	16	
SP14	212	<i>M. thermoautotrophicum</i> (98%)	73	12	
SP15	350	<i>B. pertussis</i> (98%)	171	0	
SP16	263	<i>A. fulgidus</i> (100%)	125	20	
SP18	260	<i>A. fulgidus</i> (100%)	112	0	
SP31	260	<i>A. fulgidus</i> (96%)	118	65	yes
SP52	240	<i>T. volcanicum</i> (100%)	39	0	
SP61	272	<i>M. jannashii</i> (100%)	90	12	
SP65	230	<i>N. meningitidis</i> (100%)	107	0	
SP73	230	<i>C. trachomatis</i> (98%)	62	10	
SP83	200	<i>B. burgdorferi</i> (100%)	46	8	
SP89	411	<i>B. subtilis</i> (98%)	170	15	
SP100	268	<i>P. aeruginosa</i>	159	11	
SP104	174	no match	-	12	
SP125	250	<i>E. coli</i> K12 (98%)	109	4	
SP126	220	<i>E. coli</i> K12	91	6	
SP139	240	<i>Synechocystis</i> PCC 6803 (100%)	109	26	yes
SP141	250	<i>E. coli</i> K12	126	6	
SP144	170	no match	-	15	
SP152	160	<i>E. coli</i> K12 (100%)	39	13	
SP153	290	<i>C. trachomatis</i> (100%)	131	7	
SP163	260	<i>C. trachomatis</i> (100%)	90	5	
SP166	270	<i>E. coli</i> K12 (100%)	112	20	
SP169	240	<i>M. thermoautotrophicum</i> (100%)	112	6	
SP10	180	no match	-	7	
SP17	190	<i>M. jannashii</i>	68	13	
SP20	190	<i>E. coli</i> K12	58	22	
SP25	170	<i>P. horikoshii</i>	40	10	
SP30	200	<i>P. aeruginosa</i>	54	13	

- 160 -

SP40	190	no match	-	24	
42	190	<i>B. sublilis</i>	44	0	
SP44	250	<i>B. burgdorferi</i>	130	6	
SP47	210	<i>C. trachomatis</i>	95	13	
SP48	200	<i>Synechocystis PCC 6803</i>	82	20	
SP55	180	no match	-	11	
SP64	190	<i>Synechocystis PCC 6803</i>	46	16	
SP82	180	<i>M. thermoautotrophicum</i>	39	8	
SP87	250	No match	-	51	
SP134	280	<i>M. thermoautotrophicum</i>			

EXAMPLE 7

Production and screening of a biodiverse nucleic acid fragment library
from *Takifugu rubripes*

Nucleic acid fragments are generated from genomic DNA from the Japanese puffer fish
5 *T. rubripes* using a restriction enzyme digestion with the enzymes AluI and HaeIII, in
the following reaction:

	Genomic DNA (20 μ g)	
	Restriction enzyme buffer (10x)	5 μ l
	AluI(10U/ μ g)	4 μ l
10	HaeIII(10U/ μ g)	4 μ l
	H ₂ O	to 50 μ l

The DNA fragments are then separated by electrophoresis using a 2% agarose/TAE gel.
Fragments in the 90-120bp range are isolated using the QIAquick Gel Extraction Kit
15 (QIAGEN) following manufacturer's instructions.

The concentration of DNA is determined using spectrophotometry at 260nm.

The adaptor pairs SEQ ID Nos: 47 and 48; SEQ ID Nos: 49 and 50; SEQ ID NOS: 51
20 and 52; SEQ ID NOS: 53 and 54 are then annealed to one another. This process is
completed in H₂O with each of the oligonucleotides at a concentration of 50 μ M. Pairs
of adaptors are incubated at 94°C for 10 minutes and then allowed to cool to room
temperature slowly.

25 The annealed adaptors are then ligated to the isolated nucleic acid fragments in separate
ligation reactions.

Ligations are carried out in the following reactions:

	Pooled genomic DNA fragments (ave. fragment length 100bp)	2 pmol
30	Annealed adaptor	150 pmol
	Ligation buffer (10x) (Promega)	1 μ l
	T4 DNA ligase (3U/ μ l) (Promega)	1 μ l
	H ₂ O	to 10 μ l

35 Samples are then incubated at 4°C overnight before being heat-inactivated through

- 162 -

incubation at 65°C for 20 minutes.

Samples are phosphorylated using T4 polynucleotide kinase (Promega) in the following reaction:

5	Ligation buffer (10x) (Promega)	1µl
	rATP (10mM)	2µl
	T4 polynucleotide kinase (5U/µl)	1µl
	H ₂ O	20µl

10 Samples are incubated at 37°C for 30 minutes followed by incubation at 65°C for 20 minutes to heat inactivate the enzyme.

Nucleic acid fragments from each of the ligation reactions are then combined in equal ratios, ie. equal amounts of nucleic acid, to form one pool. This pool of nucleic acid 15 fragments is then suitable for cloning into the peptide display vector T7Select415-1 (Novagen). However, it is first necessary to digest the T7Select415-1 vector with EcoRI in the following reaction:

	T7Select415-1 vector (1µg)	
	EcoRI buffer (10x) (Promega)	3µl
20	BSA (10x)	3µl
	EcoRI (20U/µl) (Promega)	2µl
	H ₂ O	to 30µl

Reactions proceed at 37°C for 2 hours, before enzymes are heat inactivated by 25 incubating the reactions at 65°C for 20 minutes. Samples are then purified using a QIAquick PCR purification column using manufacturer's instructions. Nucleic acid concentration are then determined by spectrophotometry measuring UV absorption at 260nm, before diluting the DNA to a final concentration of 0.02µM.

30 The nucleic acid fragments are then ligated into the T7Select415-1 vector using the following reaction:

	Ligation buffer (10x) (Novagen)	0.5µl
	rATP (10mM)	0.5µl
	DTT (10mM)	0.5µl
35	T7Select415-1 (0.02pmol)	1µl

- 163 -

Nucleic acid fragments

(0; 0.02; and 0.06 pmol in independent reactions)

H₂O

to 5 μ l

5 Reactions are incubated at 16°C overnight. Samples are then purified using a QIAquick PCR purification column (QIAGEN), before being diluted in 1 ml of phosphate buffered saline.

10 The library generated from *T. rubripes* is then screened for mimotopes of epitopes of the D15 protein. The D15 protein is a 80 kDa outer membrane protein of *Haemophilus influenzae*, which are shown to elicit an immune response in rabbits. The antibodies isolated from these rabbits, in turn, are shown to confer resistance to *H. influenzae* to infant rats. Affinity-purified antibodies isolated from rabbits have also been shown to be protective in screens using infant rats (Thomas *et al*, *Infect Immunol*, 58(6), 1909-15 1990).

15 In an attempt to identify mimotopes of epitopes of the D15 protein, the phage displayed library generated from *T. rubripes*, is screened for those peptides that have a conformation sufficient for binding the affinity purified antibody described in Thomas 20 *et al* (1990).

The phage display library is added to the affinity purified antibody, which is linked to an antibody coated goat anti-rabbit coupled magnetic beads. These beads are generated by incubating 10 μ g of the antibody with 5 mg Dynal beads and incubating at 25°C for 25 1 hour, followed by 6 washes with HEG buffer (35mM HEPES-KOH, pH 7.5/0.1mM EDTA/100mM sodium glutamate).

Phage are incubated with these beads at 0°C for 1 hour, before being washing three times with 5 ml cold HEG buffer/0.1% BSA. Beads are then washed a further three 30 times with HEG buffer using a magnet, such as a tesla magnet (Miltenyi Biotec, Bergish Gladbach, Germany) to immobilise the beads. Bound phage are then eluted with 0.5 ml of 1% SDS. Phage isolated by this method are re-screened, or, alternatively, the nucleic acid fragments encoding the binding peptide are isolated from the phage and analyzed. For example, the amino acid sequences of the peptides are 35 determined.

EXAMPLE 8

Construction of a biodiverse nucleic acid fragment for ribosome display

Nucleic acid is isolated from the following bacterial species:

1	<i>Archaeoglobus fulgidis</i>
2	<i>Aquifex aeliticus</i>
3	<i>Aeropyrum pernix</i>
4	<i>Bacillus subtilis</i>
5	<i>Bordetella pertussis TOX6</i>
6	<i>Borrelia burgdorferi</i>
7	<i>Chlamydia trachomatis</i>
8	<i>Escherichia coli K12</i>
9	<i>Haemophilus influenzae (rd)</i>
10	<i>Helicobacter pylori</i>
11	<i>Methanobacterium thermoautotrophicum</i>
12	<i>Methanococcus jannaschii</i>
13	<i>Mycoplasma pneumoniae</i>
14	<i>Neisseria meningitidis</i>
15	<i>Pseudomonas aeruginosa</i>
16	<i>Pyrococcus horikoshii</i>
17	<i>Synechocystis PCC 6803</i>
18	<i>Thermoplasma volcanium</i>
19	<i>Thermotoga maritima</i>

5

Nucleic acid fragments are generated from each of these genomes using 4 consecutive rounds of PCR using tagged random oligonucleotides with the sequence:

5' TTTCCCGAATTGTGAGCGGATAACAATAGAAATAATTTGTTAACCTTA
AGAAGGAGATATCCATGGACTACAAAGAN₉-3' (SEQ ID NO: 55).

10 This oligonucleotide introduces a ribosome binding site.

In order to complete this the following reagents are added to the samples:

15	Genomic DNA (100-200ng)	
	Oligonucleotide comprising SEQ ID NO: 55 (25µM)	4µl
	Klenow Buffer	1µl
	dNTP(2mM)	3µl

- 165 -

Klenow	0.5µl
H ₂ O	to 40µl

Samples are incubated at 15°C for 30 minutes, then at room temperature for 2 hours,
 5 before being heated to 37°C for 15 minutes.

Samples are boiled for 5 minutes to again denature the nucleic acid in said sample, before being snap cooled to allow renaturation of said nucleic acid. Another 0.5µl of the Klenow fragment of *E. coli* DNA polymerase I is added to each reaction, and the
 10 samples incubated at 15°C for 30 minutes, then at room temperature for 2 hours, before being heated to 37°C for 15 minutes.

The PCR products generated are then used as a template for PCR reactions using the following oligonucleotide:

15 5'GGGGCCAAGCAGTAATAATCGAGTCACTATAGGGAGACCACAAAC
 GGTTTCCCGAATTGTG-3' (SEQ ID NO: 56).

This oligonucleotide comprises a T7 promoter and a region that is homologous a region of to SEQ ID NO: 53).

20 Each DNA template is amplified by “one armed” PCR, with the oligonucleotide SEQ ID NO: 54 in separate reactions (ie. 19 reactions). Each PCR reaction contains the following:

Template DNA	1µl
Taq buffer (10x) (Promega)	5µl
25 MgCl ₂ (25mM)	4µl
dNTP (2mM)	5µl
Oligonucleotide comprising SEQ ID NO: 56 (10pmol/µl)	10µl
Taq DNA polymerase (Promega 5U/µl)	0.4µl
H ₂ O	to 50µl

30 Reactions are then cycled in a Perkin Elmer thermocycler PE 9700 or PE 2400 using the following program:

5 min 94°C + 30x [30sec 94°C, 30 sec. 55°C, 1 min 72°C] + 5 min 72°C.

35 The resulting PCR products are electrophoresed using a 2% agarose/TAE gel, and the

- 166 -

nucleic acid fragments between 50bp to 250bp extracted using a QIAquick gel extraction kit (QIAGEN) using manufacturer's instructions. Nucleic acid concentration is determined by spectrophotometry measuring UV absorption at 260nm.

- 5 Pools of PCR products derived from each of the 19 bacterial species are produced. To do so, DNA from each organism is added in an equimolar amount when compared to the amount of nucleic acid added to the pool from the organism with the smallest genome.
- 10 Nucleic acid fragments are then blunt ended using Mung Bean Nuclease (NEB) in the following reaction:

	Nucleic acid fragments (2 μ g)	
	Mung bean nuclease buffer (10x)	3 μ l
	Mung bean nuclease (10U/ μ l)(NEB)	2 μ l
15	H ₂ O	to 30 μ l

The reaction proceeds at 30°C for 1 hour. The sample is then purified using a QIAquick PCR purification column (QIAGEN) as per manufacturer's instructions.

- 20 Oligonucleotides encoding a blunt-end adaptor are generated comprising the following sequences:
 - 5'-TTAACAGCTCGATAGCAGCAC-3' (SEQ ID NO: 57); and
 - 5'-GTGCTGCTATCGAGCTGCTTAAA-3' (SEQ ID NO: 58).

- 25 The adaptors are annealed to one another. This process is completed in H₂O with each of the oligonucleotides at a concentration of 50 μ M. Pairs of adaptors are incubated at 94°C for 10 minutes and then allowed to cool to room temperature slowly. Annealed adaptors are ligated to the nucleic acid fragments in the following reactions:

	Pooled PCR product (average length of 150bp)	2 pmol
30	Annealed adaptor	150 pmol
	Ligation buffer (10x) (Promega)	1 μ l
	T4 DNA ligase (3U/ μ l) (Promega)	1 μ l
	H ₂ O	to 10 μ l
- 35 Samples are then incubated at 4°C overnight before being heat inactivated through

- 167 -

incubation at 65°C for 20 minutes. The ligation reaction is then purified using a QIAquick PCR purification kit (QIAGEN)

The modified nucleic acid fragments are then amplified in a PCR reaction with 5 oligonucleotides of the sequence SEQ ID NO: 56 and the following sequence:
 5'AGACCCGTTAGAGGCCCAAGGGGTATGGAATTCACCTTAAGCAGCT C-3' (SEQ ID NO: 59). The oligonucleotide of SEQ ID NO: 59 introduces a modified lipoprotein terminator with the stop codon removed.

10 The PCR reactions are completed in the following reaction:

	Template DNA	1µl
	pfu buffer (10x) (Promega)	5µl
	MgCl ₂ (25mM)	4µl
	dNTP (2mM)	5µl
15	oligonucleotide SEQ ID NO: 54 (10pmol/µl)	10µl
	oligonucleotide SEQ ID NO: 57 (10pmol/µl)	10µl
	pfu DNA polymerase (Promega 5U/µl)	0.4µl
	H ₂ O	to 50µl

20 The PCR reactions are completed with the following cycling conditions:

5 min 94°C + 30x [30sec 94°C, 30 sec. 55°C, 1 min 72°C] + 5 min 72°C

PCR products are then purified using a QIAquick PCR purification column (QIAGEN).

25 In a separate reaction the amino acids 211-299 of gene III of filamentous phage M13 are amplified using the following oligonucleotides:

5'-CGTAAAAAAATTATTATTCGCAATTTC-3' (SEQ ID NO: 60)

5'-TTAAGACTCCTTATTACGCAGTATGTTAGC-3' (SEQ ID NO: 61)

The oligonucleotide SEQ ID NO: 60 is phosphorylated using T4 polynucleotide kinase 30 (Promega), to allow for later directional cloning of the PCR product. The phosphorylation proceeds in the following reaction:

	Oligonucleotide (SEQ ID NO: 60)	
	Ligation buffer (10x) (Promega)	1µl
	rATP (10mM)	2µl
35	T4 polynucleotide kinase (5U/µl)	1µl

- 168 -

H₂O 20μl

Samples are incubated at 37°C for 30 minutes followed by incubation at 65°C for 20 minutes to heat inactivate the T4 polynucleotide kinase.

5

The oligonucleotides are then used in the following PCR reaction:

	Template DNA	1μl
	pfu buffer (10x) (Promega)	5μl
	MgCl ₂ (25mM)	4μl
10	dNTP (2mM)	5μl
	oligonucleotide SEQ ID NO: 60 (10pmol/μl)	10μl
	oligonucleotide SEQ ID NO: 61 (10pmol/μl)	10μl
	pfu DNA polymerase (Promega 5U/μl)	0.4μl
	H ₂ O	to 50μl

15

Reactions are then cycled in a Perkin Elmer thermocycler PE 9700 or PE 2400 using the following program:

5 min 94°C + 30x [30sec 94°C, 30 sec. 59°C, 1 min 72°C] + 5 min 72°C

20 Reactions are electrophoresed in a 2% TAE/agarose gel and the 1276bp fragment isolated using a QIAquick gel purification kit (QIAGEN).

The modified nucleic acid fragments and the spacer sequence isolated from M13 phage are then ligated in the following reaction:

25	Modified nucleic acid fragment (2μg)	
	Spacer (2μg)	
	Ligation buffer (10x) (Promega)	2μl
	T4 DNA ligase (3U/μl) (Promega)	1μl
	H ₂ O	to 20μl

30

Samples are then incubated at 4°C overnight before being heat inactivated through incubation at 65°C for 20 minutes. The ligation reaction is then purified using a QIAquick PCR purification kit (Qiagen)

35 The resulting gene constructs are transcribed and translated *in vitro* using the Promega

E. coli S 30 Extract system for linear templates as per manufacturer's instructions, which are a modification of the protocol of Leslie *et al*, *J. Biol. Chem.* 266, 2632 – 1991.

5 The translation reaction is stopped by adding magnesium acetate [Mg(OAc)₂] to a final concentration of 50mM, chloroamphenicol to a final concentration of 50 μ M and cooling the samples on ice. The samples are then diluted 8 fold with ice-cold wash buffer (50mM Tris-HOAc, pH7.5/150mM NaCl/50mM Mg(Oac)₂/0.1% Tween 20) and centrifuged for 5 minutes at 4°C at 100,000g to remove any insoluble components.

10 The *in vitro* displayed library is then screened to isolate peptides that bind to α -FLAG monoclonal antibody. The monoclonal antibody is first adsorbed to a microtiter plate. Each well of a microtiter plate is rinsed twice with distilled water. The α -FLAG monoclonal antibody (α -FLAG M2, Sigma Aldrich) is diluted in TBS buffer to 20 μ g/ml and 100 μ l added per well. The antibody is allowed to adsorb at 4°C overnight.

15 The microtiter plate is then rinsed three times with TBS buffer and filled with 5% skim milk in distilled water. For blocking the skim milk solution is allowed to bind with gentle rocking for 1 hour at room temperature. The dish is then rinsed five times with double distilled water (ddH₂O) and filled with ddH₂O until use.

20 Prior to use, each well of the microtiter plate is washed with ice-cold wash buffer, and the supernatant from the centrifuged translation mixture applied (200 μ l per well). The plate is then gently rocked for 1 hour at room temperature. Each well of the microtiter plate is then washed with ice-cold wash buffer five times, and the bound ribosome

25 displayed peptides eluted using ice cold elution buffer (50mM Tris-HOAc, pH7.5/150mM NaCl/10mM EDTA/50 μ g/ml *E. coli* tRNA). Elution buffer (100 μ l) is added per well, and the plates gently rocked for 10 minutes at 4°C. The released mRNA is recovered using the RNeasy kit (QIAGEN) using manufacturer's instructions.

30 Recovered mRNAs are then reverse transcribed using Superscript reverse transcriptase (Invitrogen) according to manufacturer's instructions. The positive nucleic acid fragments are then amplified using PCR with the oligonucleotides (very first ones without random bases). PCR products are electrophoresed in a 2% TAE/agarose gel

35 and the PCR products recovered using QIAquick gel extraction kit. Recovered nucleic

- 170 -

acids are then sequenced using a Big Dye Terminator system (Perkin Elmer).

EXAMPLE 9

Identification of a peptide capable of inhibiting the dimerization of c-Jun.

A biodiverse nucleic acid fragment library was produced in the vector pMF4-5
5 (Phylogica Ltd, Australia) (SEQ ID NO: 62) essentially as described in Example 1. Amplified fragments were digested with *EcoRI* and *Acc651*. The resulting fragments were then purified using a QIAQuick PCR purification column (Qiagen) essentially according to manufacturer's instructions. The expression vector pMF4-5 was also digested with *EcoRI* and *Acc651*, treated with shrimp alkaline phosphatase and then
10 purified using a QIAQuick PCR purification column (Qiagen) essentially according to manufacturer's instructions. Ligations were then performed at a molar ratio of 10:1 insert:vector, and transformed into TOP10 electrocompetent cells (Invitrogen).

These vectors were then isolated from bacteria using standard methods and transformed
15 into the PRT51 yeast strain (with the genotype MAT α , his3, trp1, ura3, 6 LexA-LEU2, lys2::3 cIop-LYS2, CYH2R, ade2::G418-pZero-ade2, met15::Zeo-pBLUE-met15, his5::hygroR). Transformants were then aliquoted and snap frozen in 15% glycerol.

The bait and prey used in the present screen were JUN1 and JUNZ (these regions of c-Jun are shown in Figure 8). Briefly, nucleic acid encoding the JUN1 protein was cloned into the prey vector pJFK (SEQ ID NO: 63; Figure 5) in operable connection with a nuclear localisation signal, and a B42 activation domain. The nucleic acid encoding the JUNZ protein was cloned into the bait vector pDD (SEQ ID NO: 64; Figure 6) in operable connection with the LexA DNA binding domain. The pDD vector also contains a nucleic acid encoding the HIS3 gene (Figure 6). These vectors were then transformed into the yeast strain PRT480 (with the genotype MAT α , his3, trp1, ura3, 4 LexA-LEU2, lys2::3 cIop-LYS2, CANR, CYH2R, ade2::2 LexA-CYH2-ZEO, his5::1 LexA-URA3-G418).

30 The yeast that carry the bait and prey proteins and the potential blocking peptides were then mass mated, and from approximately 300,000 clones, 95 positives were identified (ie, approximately 1/3000).

Two methods of analysis were used to identify interaction-blocking activity:

The first of these comprised plating approximately 500 cells per half plate onto HTU media containing plates and counting the number of colonies growing after 3 days. In these conditions, an interaction of JUN1 and JUNZ enables the cells to grow. Accordingly, a reduction in the number of colonies indicates that the library being

5 screened comprises peptide inhibitors of the JUN1/JUNZ interaction.

The second screening method involved isolation and streaking of 10 individual colonies to new HTU media containing plates and analysing for growth of new single colonies. After 3 days, those that express a peptide inhibitor generally have very little or no new

10 growth, while those that do not express a peptide inhibitor have re-grown a streak of single colonies. As a positive control a known inhibitor of JUN1/JUNZ interaction, FosZ was used. As a negative control empty pYTB3 vector (Phylogica Ltd, Perth, Australia) with no peptide insert was used. A score of 1-10 given depending on growth of 10 individual clones of each peptide copared to the two control samples.

15 The score from method 1 and method 2 was then combined to determine if a specific colony expressed a peptide inhibotor of JUN1/JUNZ interaction. In the present case a cell expressing a peptide inhibitor was one that showed >50% reduction of growth compared to negative control in both tests.

20 All scoring was performed by two independent individuals and scores of both individuals were combined .

Following screening it was found that 60 of the clones were capable of inhibiting the

25 interaction of JUN1 and JUNZ.

Of the 60 clones identified, 27 were sequenced and analyzed to determine their most likely source using BLAST-P. Results of this analysis are set forth in Table 4.

- 173 -

Table 4
Characterization of peptides capable of blocking the interaction of JUNZ and JUN1.

Peptide #	Length (aa)	Native ORF (Yes/No)	Species
SP4	75	No	<i>Bacillus subtilis</i>
SP6	12	No	<i>Aquifex aeolicus</i>
SP8	39	Yes	<i>Helicobacter pylorii</i>
SP12	27	Yes	<i>Escherichia coli</i>
SP15	86	Yes	<i>Escherichia coli</i>
SP20	20	No	<i>Helicobacter pylorii</i>
SP21	25	No	<i>Borrelia burgdorferi</i>
SP22	40	Yes	<i>Bordatella pertussis</i>
SP24	26	No	<i>Haemophilus influenzae</i>
SP30	53	No	<i>Pseudomonas aeruginosa</i>
SP32	13	No	<i>Plasmodium falciparum</i>
SP33	11	No	<i>Haemophilus influenzae</i>
SP34	29	No	<i>Aquifex aeolicus</i>
SP35	62	Yes	<i>Pyrococcus horikoshii</i>
SP36	16	Yes	<i>Bacillus subtilis</i>
SP39	12	No	<i>Bordatella pertussis</i>
SP43	12	No	<i>Neisseria meningitidis</i>
SP54	32	Yes	<i>Escherichia coli</i>
SP58	45	No	<i>Bacillus subtilis</i>
SP60	20	No	<i>Bacillus subtilis</i>
SP66	39	Yes	<i>Bacillus subtilis</i>
SP72	38	No	<i>Haemophilus influenzae</i>
SP73	33	No	<i>Pyrococcus horikoshii</i>
SP76	24	No	<i>Thermoplasma volcanium</i>
SP77	18	No	<i>Thermoplasma volcanium</i>
SP79	12	No	<i>Haemophilus influenzae</i>
SP80	26	Yes	<i>Bacillus subtilis</i>

- 174 -

Note that 30% of the identified peptides are expressed in their native reading frame (i.e. they are identical to a region of a protein found in nature). This represents a significantly greater ($p<0.009$) number than would be expected by chance (as only 1 in 6 fragments would be expected to be in their native reading frame).

5

The sequence of the peptides identified in this screen are set forth in Table 5.

- 175 -

Peptide number	SEQ ID NO: of nucleotide sequence with flanking vector sequence	SEQ ID NO: of nucleotide sequence without flanking vector sequence	SEQ ID NO: of peptide sequence encoded by 1st ORF with flanking vector encoded sequence	SEQ ID NO: of peptide sequence encoded by 1st ORF without flanking vector encoded sequence	SEQ ID NO: of peptide sequence encoded by 1st ORF without flanking vector encoded sequence
SP4	65	67	66	68	68
SP5	69	71	70	72	72
SP6	73	75	74	76	76
SP8	77	79	78	80	80
SP12	81	83	82	84	84
SP15	85	87	86	88	88
SP18	89	91	90	92	92
SP20	93	95	94	96	96
SP21	97	99	98	100	100
SP22	101	103	102	104	104
SP24	105	107	106	108	108
SP29	109	111	110	112	112
SP30	113	115	114	116	116
SP32	117	119	118	120	120
SP33	121	123	122	124	124
SP34	125	127	126	128	128
SP35	129	131	130	132	132

- 176 -

Peptide number	SEQ ID NO: of nucleotide sequence with flanking vector sequence	SEQ ID NO: of nucleotide sequence without flanking vector sequence	SEQ ID NO: of peptide sequence encoded by 1st ORF with flanking vector encoded sequence	SEQ ID NO: of peptide sequence encoded by 1st ORF without flanking vector encoded sequence	SEQ ID NO: of peptide sequence encoded by 1st ORF without flanking vector encoded sequence
SP36		133	135	134	136
SP45		137	139	138	140
54		141	143	142	144
SP58		145	147	146	148
SP60		149	151	150	152
SP66		153	155	154	156
SP71		157	159	158	160
SP72, SP73, SP76, SP77		161	163	162	164
SP79		165	167	166	168
SP80		169	171	170	172
SP54-1		173	175	174	176
SP66-1		177	179	178	180

The ability of the peptides to interact with JUN1 was then confirmed with a forward two-hybrid assay. Each of the identified peptides capable of inhibiting the interaction of JUN1 and JUNZ was cloned into the bait vector pDD (SEQ ID NO: 61; Figure 6).
5 Additionally nucleic acid encoding a peptide known not to inhibit the interaction between JUN1 and JUNZ was also cloned into pDD. The pDD vector and the JUN1 prey vector was transformed into the yeast strain PRT480 and the interaction of the encoded peptide and JUN1 assessed by determining the amount of growth in the absence of uracil. An example of such a screen is shown in Figure 9.

10

EXAMPLE 10

The structure of a Jun dimerization inhibitory peptide mimics the structure of the leucine zipper of Jun

15

The structure of peptide 22 was determined using threading. Threading is useful for determining or predicting the structure of a particular protein based on the structure of a related protein, for example, where only sparse information on the sequence identity of a target protein is known. This method uses a library of unique protein folds that are 20 derived from structures deposited in the PDB. The sequence of the target protein is optimally threaded onto each protein fold in turn, allowing for relative insertions and deletions in the loop regions. The different trial threadings are each assigned an "energy" score based on summing the pairwise interactions between the residues in the given threading. The library of folds is ranked in ascending order of energy, with the 25 lowest energy being taken as the most probable match.

The sequence of Peptide 22 was threaded onto a Jun-Jun dimer to determine the secondary structure of the peptide, using Swiss-PDB Viewer software (Geneva Biomedical Research Institute). The threaded structure of peptide 22 is depicted in 30 Figure 10. Using this method it was determined that the peptide contained a number of leucine residues (or leucine like residues, e.g., methionine, valine or isoleucine) and hydrophobic molecules located approximately 3 to 4 amino acids after a leucine or leucine like amino acid to form a leucine zipper like structure. The structure of peptide 22 with the hydrophobic core is depicted in Figure 11). The leucine zipper like 35 structure is capable of binding to the leucine zipper of Jun.

Furthermore, the acidic amino acids in the FLAG epitope expressed as a fusion with the peptide formed a structure capable of binding to the basic region of Jun. This region of Jun normally binds to DNA. The structure of the amino acids of the FLAG epitope bound to residues Arg 276, Lys-273 and Arg-270 of Jun is shown in Figures 12 and 5 13).

By analyzing the other peptides isolated in the screen described *supra* it was determined that a number of these peptides also contained a number of leucine residues and hydrophobic amino acids positioned to facilitate formation of a leucine zipper-like 10 structure. Furthermore, several of these peptides also comprised acidic regions either formed by the FLAG epitope or a region of the peptide suitable for binding to the DNA binding region of Jun. The position of each of these regions and residues is shown in Table 6. Furthermore, the alignment of peptides is depicted in Figure 14.

Table 6: Characteristics of C-Jun dimerization inhibitory peptides

Peptide sequence	SEQ ID NO:	Leucine like subdomain	Leucine zipper-forming leucine zipper-HHE subdomain	Leucine like residues within 3-4 residues of Leu	Hydrophobic residues within 3-4 residues of Leu	Acidic region	Acidic residues
AYQSMCECSRFLDNASAPAMRANKRSEERVLCNLTVHRKHLHKITSDLFRTACCRN PFIFYGHKMMRMID	5-73	M(5), I(12), M(20), V(31), L(32), L(35), I(42), L(43), I(46), L(51), I(62), M(68), M(69), M(71), I(72)	A(15), A(23), L(35), T(36), I(46), T(47), T(54), M(71), I(72)	E(8), E(28), E(29), D(49), D(50), D(73)			
RSDYKDDDDKAYQSMFCECSRFLDNASAPAMRANKRSEERVLCNLTVHRKHLHKITSDL DLFRTACCRNPFIFYGHKMMRMID	14-82	M(15), I(22), M(30), V(41), L(42), I(45), I(52), L(53), I(56), I(61), I(72), M(78), M(79), M(81), I(82)	A(25), L(45), T(46), T(57), T(64), M(81), I(82)	3-9	D(3), D(6), D(7), D(8), D(9), E(18), E(38), E(39), D(60), D(69), D(83)		
TYQISINGPENKVVKMVFNDLINSRDRDAGFKARKDARDIASDYENISVNVNIPLWGGVVQR IISVVKLSTFPLICGXENKDVLIENFPMAKF	14-85	M(14), L(17), L(20), I(38), I(45), I(50), L(52), V(56), V(57), I(60), I(61), L(66), L(70), L(79), I(80), M(85)	L(17), Y(42), V(48), V(56), I(60), I(61), F(69), F(83), P(84), P(88)	E(9), D(19), D(26), D(34), D(37), D(41), E(43), E(74)			
RSDYKDDDDKTYQISINGPENKVVKMVFNDLINSRDRDAGFKARKDARDIASDYENISVNVN IPLWGGVVQRIISSVKLSTFPLICGXENKDVLIENFPMAKF	24-95	M(24), L(27), L(30), I(48), I(55), I(60), L(62), V(66), V(67), I(70), I(71), L(76), L(80), L(89), I(90), M(95)	L(27), Y(52), V(58), V(66), I(70), I(71), F(79), F(93), P(94), P(98)	3-9	D(3), D(6), D(7), D(8), D(9), E(19), D(29), D(36), D(44), D(47), D(51), E(53), B(84)		
RSDYKDDDKDSIRRXPENITSQEVAVIMSHPEVVNAVYFVRGDLPGD	14-48	I(14), I(21), V(26), V(29), L(30), M(31), V(36), V(37), V(41), V(44), L(48)	P(18), V(29), P(34), A(39), A(40), V(44), L(48)	3-9	D(3), D(6), D(7), D(8), D(9), E(19), D(47), D(51)		
VYAYFGXTGDVVEGVVDLVGAGVVAHAQADPQGQQQQGQAGQEEQADTD	1-24	V(1), V(11), V(12), V(14), V(16), L(18), V(19), I(21), V(24)	Y(4), V(14), V(16), V(19), I(21), A(22), V(24), A(27)	D(10), E(13), D(17), D(31), E(45), E(46), D(49), D(51)			
SIRGGIIESSSSKREKVRVGMILRTYNPNETEFSILHEFTVKFLKRRRLIQEADLSSSSL	2-58	I(2), I(7), V(16), V(18), M(20), L(22), I(34), L(35), L(54), I(58)	M(20), T(21), Y(25), F(38), V(39), A(51), I(52), I(42), I(47), L(48), I(52), L(54), I(58)	E(8), E(14), E(29), E(37), E(50), D(53)			
RSDYKDDDKSIRSGGIESSSSKREKVRVGMILRTYNPNETEFSILHEFTVKFLKRRRLIQEADLSSSSL EADLSSSSL	12-68	I(12), I(17), V(26), V(28), M(30), L(32), I(44), L(45), L(52), I(57), L(58), I(62), L(64), L(68)	I(31), Y(35), F(48), V(49), A(61), I(62), I(63)	3-9	D(3), D(6), D(7), D(8), D(9), E(18), E(24), E(39), E(47), E(60),		

Peptide sequence	SEQ ID NO:	Leucine zipper-like subdomain	Leucine forming leucine zipper-like subdomain	Leucine like residues	Hydrophobic residues within 3-4 residues of Leu	Hydrophobic region	Acidic region	Acidic residues
SFXAGYHGXSTSRTFLVGSVSATARKLVEATQETMIDYTCRRRPCSILTWTQLMHRYRY	16-53	L(16), V(17), V(20), L(22), V(28), M(35), I(36), L(47), L(52), M(53)	V(20), T(23), A(30), T(31), Y(50), Y(56)			D(63)	E(29), E(33), D(37)	
RSDYKDDDKSEXXAGYHGXSTSRTFLVGSVSATARKLVEATQETMIDYTCRRRPCSILTWTQLMHRYRY	26-63	L(26), V(27), V(30), L(37), V(38), M(45), I(46), L(57), L(62), M(63)	V(30), T(33), A(40), Y(60), Y(66)	T(41),	3-9	D(3), D(6), D(7), D(8), D(9), E(29), E(33), D(37)		
SIMAVAAQQPVALFLVGRQRGGQVGTDGGDQHLRTPLEHELCCRRCPSL	2-55	I(2), M(3), V(5), L(14), V(15), V(24), I(26), L(33), L(41), L(49), L(54), L(55)	A(4), V(5), L(41), Y(52), Y(58)			D(27), D(30), E(40)		
RSDYKDDDKSIMALAVAAQQPVALFLVGRQRGGQVGTDGGDQHLRTPLEHELCCRRCPSL	12-65	I(12), M(13), V(15), L(24), V(25), V(34), I(36), L(43), L(51), L(59), L(64), L(65)	A(14), V(15), P(46), L(51), Y(62), Y(68)		3-9	D(3), D(6), D(7), D(8), D(9), D(37), D(40), E(50)		
AYQSTIGAKSTLKLALTGTVYHADRGTVLWLEQQAISPKNNTAHAQQCRRRPCSILTWTQLMHRYRY	5-59	I(5), I(6), L(13), I(14), L(17), V(20), I(28), L(53), L(58), M(59)	A(8), A(16), L(17), V(20), V(23), L(30), Y(56), Y(62)			D(24), D(31)		
RSDYKDDDKAYQSTIIGACKSTLKLALTGTVYHADRGTVLWLEQQAISPNTAHAQQCRRRPCSILTWTQLMHRYRY	15-69	I(15), I(16), L(23), I(24), L(27), V(30), I(38), L(63), L(68), M(69)	A(18), A(26), L(27), V(30), A(33), L(40), Y(66), Y(72)		3-9	D(3), D(6), D(7), D(8), D(9), D(34), D(41)		
ELRSQIGPVPLIDASIPVLTGVPHMPGRTAAARGMHLERGRIM	2-41	L(2), L(6), V(9), L(1), I(12), V(16), V(18), L(19), V(20), M(24), L(36), I(40), M(41)	L(6), V(9), I(12), A(14), I(16), L(20), P(22), M(24), T(28), I(40)			E(1), D(13), E(37)		
RSDYKDDDKAYQSIGSTIWNSCQCMSEWCAFVRSCYGPGRGWMKPKEKRVPGLKSCCR	25-74	M(25), V(32), M(43), L(53), L(63), L(68), M(69)	A(30), Y(36), P(45), P(60), Y(66)		3-9	D(3), D(6), D(7), D(8), D(9)		
AYQSIGSTIWNSCQCMSEWCAFVRSCYGPGRGWMKPKEKRVPGLKSCCR	15-64	M(15), V(22), M(33), L(43), L(53), L(58), M(59)	A(20), Y(26), P(35), P(50), Y(56)					
RSDYKDDDKAYQSIGSTILAGYHGDTSRTFLVGSVSATARKLVEATQETMIDY	17-51	I(17), L(29), V(30), V(33), M(48)	Y(20), T(24), T(27), V(41),		3-9	D(3), D(6), D(7), D(8), D(9)		
AYQSIGSTIWNSCQCMSEWCAFVRSCYGPGRGWMKPKEKRVPGLKSCCR	7-41	L(7), L(19), V(20), V(23), L(30), V(31), M(38)	Y(10), T(14), T(17), A(25), T(26), A(27), A(33), T(34), Y(41)					
RSDYKDDDKAYQSIGSTILAGYHGDTSRTFLVGSVSATARKLVEATQETMIDY	16-71	M(16), V(18), V(24), L(27), V(28), V(37),	A(17), A(19), A(20), P(23), A(25),		3-9	D(3), D(6), D(7), D(8),		

Peptide sequence	SEQ ID NO:	Leucine zipper-like subdomain	Leucine like residues forming leucine zipper-like subdomain	Hydrophobic residues within 3-4 residues of Leu	Hydrophobic region	Acidic residues
AYQSIMeTAVAAQOPVAFIVGRRGRQVGDQHLRTPLEHLCRRRPFCSLAWIQL METHRYRY	6-61		L(46), L(50), L(54), L(62), L(67), M(68)	T(48), P(49), Y(65), Y(71)		D(9)
RSDYKDDDKAYQSIIAGKSTLIKALTGVYHADRGTIWLEGOAISPKNTAH AQQ	18-44		M(6), V(8), V(14), L(17), V(18), V(27), L(36), L(40), L(44), L(52), L(57), M(58)	A(7), A(9), P(13), A(15), T(38), P(39), Y(55), Y(61)		
AYQSIIAGKSTLIKALTGVYHADRGTIWLEGOAISPKNTAH AQQ	8-34		L(23), L(27), V(30), L(40)	A(18), A(26), Y(31), T(37), A(44)	T(22), T(28), A(33), A(34)	D(3), D(7), D(8), D(9)

EXAMPLE 11

c-Jun dimerization inhibitors reduce c-Jun mediated gene expression

5 The K562 cell line was stably-transfected with the AP-1 luciferase reporter of the
Mercury Profiling kit (Clontech, U.S.A.), and clonal cell line 26 established. In 6-well
tissue culture plate format, K562-AP1 cells were transfected with either pcDNA3
control, pcDNA3-Jun or pcDNA3-peptide using Lipofectamine2000 (Life
Technologies), according to manufacturer's instructions. Transfections were incubated
for 48 hours, cells collected and protein lysates extracted for luciferase assay according
10 to Mercury Profiling kit and associated protocols. Luciferase assays were performed in
independent triplicates, and results for each peptide subjected to statistical analysis
(SPSS software package) to determine if they were different to Jun (positive control for
AP-1 activation) or pcDNA-3 (negative control for AP-1 activation).

15 As shown in Figure 15 peptides SP36 (SEQ ID NO: 134), SP35 (SEQ ID NO: 130),
SP71 (SEQ ID NO: 158) and SP34 (SEQ ID NO: 126) are capable of significantly
reducing expression of a reporter gene placed in operable connection with an AP-1
regulatory region compared to control cells. As AP-1 mediated transcription is
mediated by, for example, c-Jun dimerization, these results indicate that each of these
20 peptides inhibit or reduce c-Jun dimerization.

Results from these studies indicate that a significant proportion of peptides identified
using the reverse hybrid screen ($p<0.05$) are capable of reducing AP-1 mediated gene
expression.

25

EXAMPLE 12

c-Jun dimerization inhibitors bind to c-Jun

HEK293 cells were cultured in DMEM + 10% FCS, 2mM L-glutamine. On the day
prior to transfection, cells were trypsinised and split into 6-well tissue culture plates so
30 that they reached 80-90% confluence for transfection. Cells were co-transfected with
pcDNA3-Jun (1.3 μ g) and pcDNA3-peptide (2.6 μ g) using Lipofectamine2000 reagent
(Life Technologies, U.S.A.) as per manufacturer's instructions. Forty-eight hours post-
transfection, transfected cells were scraped from the plates, collected by centrifugation
and proteins extracted in hypotonic lysis buffer (10mM Tris, 10mM NaCl, 2mM
35 EDTA, pH 7.5 + protease inhibitors (Roche, U.S.A.)). Salt concentration was adjusted

to 150mM by addition of NaCl, debris pelleted and proteins in supernatant collected in fresh tubes.

5 A small aliquot (40µl) of protein was set aside for western analysis. The remainder
was incubated by rotation at 4°C for two hours, with either anti-Flag conjugated
agarose beads (Sigma-Aldrich, U.S.A.) anti-Flag antibody (Sigma-Aldrich),
preconjugated to anti-mouse magnetic Dynabeads (Dynal Biotech, Norway) according
to manufacturer's directions. Protein complexes bound to conjugated beads were
collected by centrifugation or over a Dynal magnet, washed eight times for five
10 minutes with NET-2 buffer (50mM Tris-Cl pH7.5, 150mM NaCl, 0.05% Nonidet P-
40). Beads and associated complexes were resuspended in 3.3X Laemmli SDS loading
buffer, incubated for 5 minutes at 100°C, and stored at -20°C.

15 Co-immunoprecipitations and protein extracts were separated on 12% Tris-glycine
gels, transferred to membrane (Hybond C-super, Amersham), and probed with anti-Jun
primary antibody, anti-rabbit secondary (Amersham) and visualized with
autoradiograph exposure and an ECL detection kit (Amersham).

20 Anti-FLAG antibodies to capture FLAG tagged c-Jun inhibitory peptides from
mammalian cells in which they were expressed. Following separation of proteins by
SDS-PAGE and transfer to a membrane, membranes were probed with anti-c-Jun
antibodies. As shown in Figure 16, peptides SP15 (SEQ ID NO: 86), SP20 (SEQ ID
NO: 94), SP30 (SEQ ID NO: 114), and SP35 (SEQ ID NO: 130) were capable of
25 binding c-Jun to a level detectable in a co-immunoprecipitation. These results are
representative of assays in which it was found that the majority of peptides tested were
capable of co-immunoprecipitating c-Jun.

30 Furthermore, by comparing the total level of c-Jun in the cells to that obtained in a co-
immunoprecipitation, it is seen that several of the peptides bind a significant portion of
the c-Jun expressed in the cell.

EXAMPLE 13

c-Jun dimerization inhibitors reduce TNF-α mediated cell death

35 Neuronal PC12 cells were transfected with an expression construct encoding a c-Jun
dimerization inhibitor (e.g., peptide SP34 (SEQ ID NO: 126), SP36 (SEQ ID NO: 134)

or SP71 (SEQ ID NO: 158)). The cells were then exposed to an TNF- α , which has been shown to induce cell death in this cell line.

5 The PC12 cell line is derived from a transplantable rat pheochromocytoma (ATCC Accession Number: CRL-1721). Cells were maintained in DMEM +10% foetal calf serum (FCS), 15% horse serum, and 2mM L-glutamine, and were fed every three days and split no more than once before transfection and TNF exposure.

10 On day 1, PC12 cells were trypsinised to separate multicell aggregates, counted, and in duplicate for each peptide and control, 8×10^5 cells in 0.5ml were seeded per well in 24-well tissue culture plates. In each well, cells were transfected using Lipofectamine2000 reagent (Life Technologies, U.S.A.), with 4 μ l Lipofectamine2000 reagent diluted in 100 μ l DMEM complexed with 1.6 μ g plasmid diluted in 100 μ l DMEM. Transfections were incubated at 37°C/5% CO₂ overnight.

15 On day 2, transfected PC12 cells were collected by centrifugation, then resuspended in DMEM + 2mM L-glutamine and transferred to fresh 24-well tissue culture plates. TNFa (Roche, U.S.A.) diluted in DMEM + 2mM L-glutamine was added to the cells in each well to a final volume of 1ml and final concentration of 100ng/ml TNFa, and cells 20 were returned to the incubator for 48 hours.

25 On day 4, duplicate transfections were combined and the total cells were collected by centrifugation, fixed on charged slides and stained with a TUNEL assay kit (Promega, U.S.A.) as per manufacturer's protocol. For each slide, six different sections of 150 cells were counted for apoptosing (stained brown or with punctate brown staining) and non-apoptosing cells (counterstained green) and the percentage of apoptosing cells was calculated and then averaged. Peptide protection against TNFa-induced apoptosis was assessed by comparing the percentage of apoptosed cells to that of the pcDNA3 positive control (maximum apoptosis induction).

30 As shown in Figure 17a-d, TNF α induced apoptosis in control cells. However, each of the peptides tested were capable of inhibiting TNF α induced apoptosis.

35 Figure 17e shows the percentage of cells undergoing apoptosis (detected using a TUNEL assay). Clearly, each of the tested peptides significantly reduce the level of apoptosis compared to control samples.

EXAMPLE 14

c-Jun dimerization inhibitors reduce UV mediated cell death

5 Cells were exposed to UV B radiation and the level of cell death determined. Briefly, corneal keratinocytes in culture were exposed to 10mins UV irradiation. Post-exposure, media was replaced with either normal media or media containing 10 micromolar peptide. Subsequently, cells were prepared for FACS analysis. FACS analysis was used to detect propidium iodide and the level of Annexin V in a cell to determine the 10 number of cells undergoing necrosis, early apoptosis or late apoptosis.

15 As shown in Figures 18a-c, control a portion of SIRC cells (not exposed to UVB) are necrotic and a portion are alive. Following exposure to UV B an increased number of SIRC cells are observed undergoing apoptosis. However, as shown in Figure 18c, peptide SP36 (SEQ ID NO: 134 or 136) is capable of reducing the number of cells undergoing apoptosis.

EXAMPLE 15

c-Jun dimerization inhibitors reduce cell death in an *in vitro* ischemia cell model

20 Primary neuronal cells were isolated and cultured in the presence of glutamate (250 μ M) for 25 minutes to induce cell death as a model of ischemia induced cell death.

25 Primary rat neurons were isolated from embryos (standard protocols), plated in cell culture dishes and maintained for 11 days in culture before experiment. Peptide was added 15 minutes to media before glutamate addition. Glutamate was added to final concentrations of 250 micromolar, for 5 mins at 37 degrees. Glutamate media removed, fresh media added. Assays for live cells done 24 hours later. Live cells were assayed using MTS assay.

30 As shown in Figure 19, glutamate caused a significant proportion of cells to die compared to control cells.

35 Peptides SP35 (SEQ ID NO: 130), SP36 (SEQ ID NO: 134) and SP71 (SEQ ID NO: 158) were capable of rescuing a significant proportion of cells from cell death. In fact, peptide SP36 was capable of rescuing almost all cells from cell death. The number of

cells expressing these peptides that survived exposure to glutamate was considerably greater than the number of cells expressing the known c-Jun dimerization inhibitory peptide TI-JIP (Barr *et al.*, *J Biol Chem.* 279:36327-38, 2004).

5 Furthermore, as shown in Figure 20, peptide SP36 rescued cells from glutamate induced cell death in a dose dependent manner with about 5 μ M of peptide rescuing about 100% of cells.

EXAMPLE 16

10 Analogue of c-Jun dimerization inhibitory peptides reduce cell death
in an *in vitro* ischemia cell model

15 Experiments were performed to determine the efficacy of D-amino acid forms of c-Jun inhibitory peptides in the treatment of ischemia. Peptides comprising D amino acids are protease resistant and, as a consequence, have a longer half-life when administered to a subject.

20 D amino acid forms of peptides SP35 (designated D35) (SEQ ID NO: 132) and SP36 (designated D36) (SEQ ID NO: 136) comprising D amino acids other than glycine were produced synthetically, as were peptides SP35, SP36 and TIJIP comprising L- amino acids. The retro-inverted peptides further comprised a TAT protein targeting domain fused to the C-terminus of the inverted peptide moiety and separated therefrom by a single L-glycine residue in each case. The amino acid sequences of the retro-inverted peptide analogues of SEQ ID NOs: 132 and 136 are set forth in SEQ ID NOs: 181 and 25 182, respectively.

30 Primary rat neuronal cells were isolated and cultured using methods known in the art. Cells were then incubated in the presence or absence of a test peptide, a positive control peptide (Ti JIP) or a combination of known small-molecule glutamate inhibitors (MK801 and CNQX). Cells were incubated in the presence of 250 μ M glutamate for 5 minutes to induce cell death representative of ischemia induced cell death.

As shown in Figure 21 in presence of glutamate approximately 3% of control cells survive (relative to the number of cells surviving in the absence of glutamate).

Addition of either D or L form of each peptide protects a considerable proportion of neurons from glutamate induced cell death (approximately equivalent to the level of protection conferred by known glutamate receptor inhibitors). When used at the same concentrations the protection offered by the D form of each peptide is either equivalent 5 (SP36 and D36) or superior (SP35 and D35) to the L form of the peptide.

EXAMPLE 17

c-Jun dimerization inhibitory peptides protect cells from acute ischemia

10

Cells at the core of an ischemic event (e.g., a stroke) are subject to anaerobic conditions leading to severe energy depletion and glutamate release, which causes necrotic cell death. Such a condition is mimicked by incubating cell cultures in anaerobic conditions.

15

To determine the effect of peptides 35 (SEQ ID NO: 130) and 36 (SEQ ID NO: 134) comprising either D- or L- amino acids on an acute ischemic effect, primary rat neuronal cells were isolated and cultured. Synthetic peptides were added to cultures and the cells maintained in an anaerobic chamber for approximately 35 minutes. Cell 20 survival was then measured.

Briefly, isolated rat neurons were treated with peptide for 15 mins pre-insult. After addition of peptide or control, Cells were washed in glucose free balanced salt solution containing deoxy glucose to prevent glycolysis. Cells were then incubated in anaerobic 25 incubator for 35 minutes. Post insult, solution was removed, fresh media added to cells and MTS assayed for live cells 24 hours later.

As shown in Figure 22 the peptides 35 and 36 comprising D-amino acids a considerable proportion of cells from cell death caused by acute ischemia. Peptides 30 comprising D-amino acids rescued more cells from cell death than corresponding cells with L-amino acids.

EXAMPLE 18

Identifying those peptides capable of inhibiting stroke

High affinity peptide inhibitors of c-Jun dimerization identified as described in the preceding examples are cloned into an adenoviral expression vector. Primary neuronal cell cultures are then infected with the peptides and subjected to an *in vitro* stroke simulation using an anaerobic incubation period of 10 minutes. The viability of the 5 neurons is ascertained at a number of time points subsequent to the ischemic event to determine the level of protection each peptide provides against apoptosis.

Purified synthesized TAT-peptide fusions are used. There is significant *in vivo* evidence that TAT-peptides can be successfully delivered to the brain using IV 10 delivery. To determine those peptides that exhibit the greatest *in vivo* stability and deliverability, IV injections of TAT-peptide fusions into rat and subsequent analysis of brain tissue at a number of time points and doses is performed to determine those peptides that undergo *in vivo* analysis.

15 TAT-peptide fusions are delivered intravenously at 1 hour pre-ischemia, and 3, 6, and 9 hours post-ischemia. The rat temporary occlusion of the MCA model is used to induce transient focal ischemia. Induction of focal ischemia involves placing a monofilament nylon suture to occlude the middle cerebral artery (MCA) for 45 minutes and maintaining blood pressure at 90 mmHg, followed by reperfusion. MCA occlusion and 20 re-establishment of blood flow is monitored using Laser Doppler. Animals are anesthetized during MCA occlusion to allow Laser Doppler and blood pressure monitoring. The animals are sacrificed at 72 hours following reperfusion and the area of infarction is determined, by incubating coronal brain sections in a 2% solution of triphenyltetrazolium chloride, which stains mitochondrial dehydrogenase activity. 25 Stained serial 1mm brain slices are scanned and analyzed using the NIH image system to calculate infarct volume. Total infarct volume is calculated by multiplying the area of infarct in each slice by the slice thickness and is expressed as a percentage of the contralateral unaffected hemisphere volume. For long term protection studies infarct volume is assessed at 3 weeks post-ischemia. The extent of infarct are expressed as a 30 percentage of the whole brain volume and data analyzed by ANOVA followed by post-hoc Bonferroni/Dunn test.

35 Behavioral testing following focal ischemia is performed 24, 48 and 72 hours following ischemia. Two tests are used. A cumulative 5-point scale of deficit in which a given score encompasses all deficits lower on the scale. The scale consists of: 0 = no apparent deficit; 1 = asymmetrical paw extension, torsion to paretic side (minor deficit), 2 = non-

responsive to touch on left face and shoulder (mild deficit), 3 = spontaneous circling to the paretic side (considerable deficit), 4 = seizures or no spontaneous movement(severe deficit).

5 In addition to these tests, a bilateral asymmetry paw test which assesses both motor and sensory impairment is employed. For this test, a single 20 x 14 mm rectangular piece of masking tape is applied with equal pressure to the pad of each forepaw. The time required by the animal to remove the tape is recorded (maximum time allowable for task 2 minutes).

10 TAT-peptide fusions are delivered intravenously at 1 hour pre-ischemia, and 3, 6, and 9 hours post ischemia. A rat two-vessel occlusion with hypotension model is used to induce transient global cerebral ischemia. This involves occluding both carotid arteries and lowering blood pressure to 45mmHg (by removing arterial blood) for 8 minutes, 15 followed by reperfusion and restoration of blood pressure. Parameters such as blood pH, pressure, gases and glucose, EEG, body and cranial temperature are monitored during the procedure. Following 8 minutes of global ischemia in this model there is no or little hippocampal CAI neuronal death for up to 24 hours post ischemia, but significant CAI neuronal death by 48-72 hours. At seven days post-ischemia there is 20 <5-6% CAI neuronal survival. Hippocampal neuronal viability is assessed at day 7 post-ischemia, by counting the number of viable CAI neurons in a 1000pM region at bregma section 3.8 in hippocampi from control and treated rats. For long term survival studies CAI neuronal counts are performed at 3 months. Data are analyzed by ANOVA, followed by post-hoc Bonferroni/Dunn.

25 The 8 arm radial-maze test, developed by Olton & Samuelson in 1976, has become one of the standard approaches to testing reference and working memory and spatial cognition in studies of hippocampal function in rats. The protocol requires animals to learn to enter only the baited arms of a maze in which alternate arms are baited, the 30 numbers of the different types of erroneous arm (never-baited or already-rewarded) entries made providing the measures of reference and spatial working memory. Maze training begins within three days of maze familiarization. After maze training, the following 7-8 days form the test phase of the experiment. Each day each animal is placed once on a central platform of the maze and left in the maze until they have 35 retrieved the rewards from all four baited arms, or until 10 minutes have elapsed. Records are kept of the total time elapsed until completion of the task, the path taken

around the maze and general demeanor (episodes of grooming, defecation, miction). This combination of measures allows estimation of levels of locomotor activity, the number of each type of error, and the spatial strategy employed (learned sequence of movements versus use of a spatial map). Comparisons of the performance of animals 5 subject to the various experimental treatments are made using the ANOVA, Chi-square and time series functions of the SPSS statistical program.

WE CLAIM:

1. A method of determining a peptide that binds to a target nucleic acid or target protein comprising:
 - (a) screening an expression library to identify a peptide expressed by the library that binds to the target protein or target nucleic acid;
 - 5 (b) selecting any one or more peptides from (a) that do not bind to said target protein or nucleic acid in their native environment; and
 - (c) selecting one or more peptides from (a) or (b) having conserved secondary structure and/or tertiary structure.
- 10 2. The method according to claim 1 additionally comprising determining the structure of the peptide(s) selected at (b).
- 15 3. The method according to claim 2 wherein the structure of the peptide is determined empirically.
- 20 4. The method according to claim 3 wherein the structure of the peptide is determined using a method selected from the group consisting of nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy, electron nuclear double resonance spectroscopy, X-ray crystallography, neutron crystallography, infrared absorption spectroscopy, ultraviolet absorption spectroscopy, optical rotatory dispersion analysis, circular dichroism and fluorescence polarization.
- 25 5. The method according to claim 2 wherein the structure of the peptide is determined using an *in silico* method.
6. The method according to claim 5 wherein the *in silico* method is a threading method.
- 30 7. The method according to claim 1 comprising identifying a plurality of peptides at (a).
8. The method according to claim 1 or claim 7 comprising selecting a plurality of peptides at (b).

9. The method according to claim 8 additionally comprising determining a secondary and/or tertiary structure that is conserved between two or more of the selected peptides.
- 5 10. The method according to claim 1 further comprising constructing the expression library.
11. The method according to claim 10 wherein the library is produced by a method comprising:
 - 10 (a) producing fragments from nucleic acid derived from two or more microorganisms and/or eukaryotes containing compact genomes, each of said microorganisms or eukaryotes having a substantially sequenced genome;
 - (b) inserting the nucleic acid fragments at (i) into a suitable expression construct thereby producing recombinant constructs, wherein each fragment is in operable connection with a promoter sequence that is capable of conferring expression of that fragment; and
 - 15 (c) expressing the peptide encoded by the recombinant construct (ii), thereby producing a candidate peptide.
- 20 12. The method according to claim 11 wherein nucleic acid from each of the microorganisms and/or eukaryotes containing compact genomes is inserted into a suitable expression construct in an amount that is proportional to the complexity and size of the genome of the organism.
- 25 13. The method according to claim 11 or claim 12 wherein the nucleic acid is derived from two or more microorganisms and/or eukaryotes containing compact genomes that are distinct from the organism in which the target protein or target nucleic acid naturally occurs.
- 30 14. The method according to any one of claims 11 to 13 wherein the microorganisms are selected from the group consisting of *Aeropyrum pernix*, *Aquifex aeolicus*, *Archaeoglobus fulgidis*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Chlamydia trachomatis*, *Desulfovibrio vulgaris*, *Escherichia coli*, *Haemophilus influenzae*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannaschii*, *Mycoplasma pneumoniae*, *Neisseria meningitidis*, *Pseudomonas aeruginosa*,
- 35

Pyrococcus horikoshii, *Synechocystis* PCC 6803, *Thermoplasma volcanium*, *Thermus thermophilus* and *Thermotoga maritima*.

15. The method according to any one of claims 11 to 13 wherein the
5 microorganisms are selected from the group consisting of *Archaeoglobus fulgidus*, *Aquifex aeolicus*, *Aeropyrum pernix*, *Bacillus subtilis*, *Bordetella pertussis*, *Borrelia burgdorferi*, *Chlamydia trachomatis*, *Escherichia coli* K12, *Haemophilus influenzae*, *Helicobacter pylori*, *Methanobacterium thermoautotrophicum*, *Methanococcus jannashii*, *Neisseria meningitidis*,
10 *Pyrococcus horikoshii*, *Pseudomonas aeruginosa*, *Synechocystis* PCC 6803, *Thermoplasma volcanicum*, *Thermotoga maritima*, *Acidobacterium capsulatum*, *Halobacterium salinarum*, *Desulfobacterium autotrophicum*, *Haloferax volcanii*, *Rhodopirellula baltica*, *Thermus thermophilus* HB27 and *Prochlorococcus marinus* MED4.
- 15
16. The method according to claim 1 wherein the library is screened by a method selected from the group consisting of yeast-2-hybrid, n-hybrid, reverse-2-hybrid, reverse n-hybrid, split two hybrid, bacterial display, phage display, retroviral display, covalent display and *in vitro* display.
- 20
17. The method according to claim 16 wherein the library is screened by a reverse 2-hybrid method.
- 25
18. The method according to claim 1 additionally comprising selecting a peptide having a conserved secondary or tertiary structure different to that of a protein or protein domain that binds to the target protein or target nucleic acid in nature.
19. The method according to any one of claims 1 to 18 additionally comprising characterizing a peptide selected at (c) by performing a process comprising:
25
30 (d) expressing in a cell comprising or expressing the target protein or target nucleic acid or introducing into a cell comprising or expressing the target nucleic acid or target protein the peptide; and
(e) determining the ability of the peptide to interact with the target nucleic acid or target protein in the cell.

20. The method according to claim 19 wherein the ability of the peptide to interact with the target protein or target nucleic acid in the cell is determined by determining the level of expression of a reporter gene the expression of which is placed operably under the control of the interaction of the peptide that the target nucleic acid or target protein.
5
21. The method according to claim 19, wherein the peptide inhibits the interaction of the target nucleic acid or target protein with another nucleic acid or protein and the ability of the peptide to interact with the target nucleic acid or target protein in the cell is determined by determining a reduced level of interaction between the target nucleic acid or target protein with the other nucleic acid or protein.
10
22. The method according to claim 21 wherein the ability of the target nucleic acid or target protein to interact with the other nucleic acid or protein in the cell is determined by determining the level of expression of a reporter gene the expression of which is placed operably under the control of the interaction of the target nucleic acid or target protein and the other nucleic acid or protein.
15
- 20 23. The method according to claim 22 wherein the reporter gene is placed operably under control of a AP-1 enhancer element.
24. The method according to claim 23 wherein the protein is c-Jun and the other protein is c-Jun and self-dimerisation of c-Jun induces expression of the reporter gene.
25
25. The method according to claim 19 wherein the ability of the peptide to interact with the target protein or target nucleic acid is determined by determining the level of a phenotype mediated by the target protein or target nucleic acid in a cell.
30
26. The method according to claim 25 wherein the phenotype is cell death and the peptide reduces or prevents cell death.
- 35 27. The method according to claim 26 wherein the cell death is induced by performing a process selected from the group consisting of:

- (a) contacting a cell with tumor necrosis factor α (TNF α) for a time and under conditions sufficient to induce cell death;
- (b) exposing a cell to ultraviolet radiation for a time and under conditions sufficient to induce cell death; and
- 5 (c) contacting a cell with glutamate for a time and under conditions sufficient to induce cell death.

28. The method according to claim 27 wherein the cell is a neuronal cell.

10 29. A method of determining a peptide that binds to a target nucleic acid or target protein comprising:

- (a) screening an expression library to identify a plurality of peptides expressed by the library that bind to the target protein or target nucleic acid;
- (b) selecting a plurality of the peptides from (a) that do not bind to said target

15 protein or nucleic acid in their native environment;

- (c) determining the structure of a plurality of the selected peptides;
- (d) determining a secondary and/or tertiary structure that is conserved between two or more of the selected peptides; and
- (e) selecting one or more peptides from (c) having the conserved secondary

20 structure and/or tertiary structure,
thereby determining a peptide that binds to a target nucleic acid or target protein.

30. The method according to claim 1 or claim 29 wherein the target protein is c-Jun.

25 31. The method according to claim 30 wherein the peptide that interacts with c-Jun additionally inhibits c-Jun self-dimerisation.

32. The method according to claim 30 or claim 31 wherein the peptide comprises a leucine zipper-like domain.

30 33. The method according to claim 32 wherein the leucine zipper-like domain comprises a plurality of amino acid residues spaced at most 6 to 12 residues apart, wherein the amino acid residues are selected from the group consisting of leucine, isoleucine, valine, methionine and mixtures thereof.

34. The method according to claim 33 wherein the amino acid residues are spaced 6 to 7 amino acid residues apart.
35. The method according to claim 33 or 34 wherein the leucine zipper-like domain 5 comprises at least 6 amino acid residues selected from the group consisting of leucine, isoleucine, valine, methionine and mixtures thereof.
36. The method according to any one of claims 33 to 35 wherein the amino acid residues are interspersed with hydrophobic amino acids.
37. The method according to claim 36 wherein each hydrophobic amino acid is 10 within 3 or 4 amino acids of one or more amino acid residue(s) selected from the group consisting of leucine, isoleucine, valine and methionine.
38. The method according to any one of claims 33 to 37 wherein the peptide 15 additionally comprises an acidic domain.
39. The method according to claim 38 wherein the acidic domain comprises four or more arginine residues.
40. A method of determining a peptide that binds to c-Jun, said method comprising: 20 (a) screening an expression library to identify a plurality of peptides expressed by the library that bind to c-Jun;
(b) selecting a plurality of the peptides from (a) that do not bind to c-Jun in their native environment;
(c) determining the structure of a plurality of the selected peptides; and
(e) selecting one or more peptides from (c) having a leucine zipper-like domain and 25 optionally, an acidic domain, thereby determining a peptide that binds to c-Jun.
41. The method according to claim 40 additionally comprising: 30 (f) determining a peptide selected at (e) that inhibits c-Jun self-dimerisation.
42. A process for producing a peptide that binds to a target protein or target nucleic acid, said method comprising: 35

- (i) performing a method according to any one of claims 1 to 41 to thereby identify or determine a peptide that binds to a target protein or target nucleic acid;
- (ii) optionally, determining the amount of the peptide;
- (iii) optionally, providing the name or structure of the peptide; and
- 5 (iv) providing the peptide.

43. A method of manufacturing a peptide that binds to a target protein or target nucleic acid for use in medicine comprising:

- (i) performing a method according to any one of claims 1 to 41 to thereby identify or determine a peptide that binds to a target protein and/or nucleic acid; and
- 10 (ii) using the peptide in the manufacture of a therapeutic or prophylactic for use in medicine.

15 44. A process for determining a peptide for the treatment of an ischemic disorder, said method comprising performing the method according to any one of claims 30 to 41 to thereby identify a peptide that binds to c-Jun, thereby identifying a peptide for the treatment of the ischemic disorder.

20 45. A process for providing a peptide for the treatment of an ischemic disorder, said method comprising:

- (i) performing a method according to any one of claims 30 to 41 to thereby identify a peptide that binds to c-Jun, thereby identifying a peptide for the treatment of an ischemic disorder;
- 25 (ii) optionally, determining the amount of the peptide;
- (iii) optionally, providing the name or structure of the peptide; and
- (iv) providing the peptide.

46. A process of manufacturing a medicament for the treatment of an ischemic disorder, said method comprising:

- (i) performing a method according to any one of claims 30 to 41 to thereby identify a peptide that binds to c-Jun, thereby identifying a peptide for the treatment of an ischemic disorder; and
- 30 (ii) using the peptide in the manufacture of a medicament for the treatment of an ischemic disorder.

35

NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178 and SEQ ID NO: 180.

58. An isolated or recombinant peptide encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177 and SEQ ID NO: 179.

15

59. A analogue of the peptide according to claim 57 or claim 58.

20

30 60. The analogue according to claim 59 wherein the analogue comprises D-amino acids.

25

35 61. An isolated or recombinant nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID

NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177 and SEQ ID NO: 179.

10

62. A pharmaceutical composition comprising the peptide according to any one of claims 47 to 54, 57 or 58 or the analogue according to any one of claims 55, 56, 59 or 60.

15

63. A method of treating ischemia, said method comprising administering a peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178 and SEQ ID NO: 180 or a pharmaceutical composition comprising same to a subject in need of treatment.

20

25

30

35

64. A method of treating ischemia, said method comprising administering an analogue of a peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID

NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 116, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 122, SEQ ID NO: 124, SEQ ID NO: 126, SEQ ID NO: 128, SEQ ID NO: 130, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 140, SEQ ID NO: 142, SEQ ID NO: 144, SEQ ID NO: 146, SEQ ID NO: 148, SEQ ID NO: 150, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 156, SEQ ID NO: 158, SEQ ID NO: 160, SEQ ID NO: 162, SEQ ID NO: 164, SEQ ID NO: 166, SEQ ID NO: 168, SEQ ID NO: 170, SEQ ID NO: 172, SEQ ID NO: 174, SEQ ID NO: 176, SEQ ID NO: 178 and SEQ ID NO: 180 or a pharmaceutical composition comprising same to a subject in need of treatment, wherein the amino acids in the peptide analogue are D-amino acids.

65. A method of treating an ischemia disorder, said method comprising administering a peptide encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 121, SEQ ID NO: 123, SEQ ID NO: 125, SEQ ID NO: 127, SEQ ID NO: 129, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 139, SEQ ID NO: 141, SEQ ID NO: 143, SEQ ID NO: 145, SEQ ID NO: 147, SEQ ID NO: 149, SEQ ID NO: 151, SEQ ID NO: 153, SEQ ID NO: 155, SEQ ID NO: 157, SEQ ID NO: 159, SEQ ID NO: 161, SEQ ID NO: 163, SEQ ID NO: 165, SEQ ID NO: 167, SEQ ID NO: 169, SEQ ID NO: 171, SEQ ID NO: 173, SEQ ID NO: 175, SEQ ID NO: 177 and SEQ ID NO: 179 or a pharmaceutical composition comprising same to a subject in need of treatment.

66. The method according to any one of claims 63 to 65 wherein the subject is suffering from or has suffered from ischemia.
67. The method according to any one of claims 63 to 65 wherein the subject is at 5 risk of experiencing a reperfusion injury following an ischemic event.
68. The method according to any one of claims 63 to 67 wherein the ischemia comprises a stroke.
69. A method of treating ischemia, said method comprising administering a peptide 10 comprising an amino acid sequence set forth in SEQ ID NO: 134 or composition comprising same to a subject in need of treatment.
70. A method of treating ischemia, said method comprising administering an 15 analogue of a peptide comprising an amino acid sequence set forth in SEQ ID NO: 132 or composition comprising same to a subject in need of treatment, wherein the amino acids other than glycine in said analogue are D-amino acids.
71. A method of treating ischemia, said method comprising administering a peptide 20 comprising an amino acid sequence set forth in SEQ ID NO: 136 or composition comprising same to a subject in need of treatment.
72. A method of treating ischemia, said method comprising administering an 25 analogue of a peptide comprising an amino acid sequence set forth in SEQ ID NO: 136 or composition comprising same to a subject in need of treatment, wherein the amino acids other than glycine in said analogue are D-amino acids.
73. A method of treating ischemia, said method comprising administering a peptide 30 comprising an amino acid sequence set forth in SEQ ID NO: 130 or composition comprising same to a subject in need of treatment.
74. A method of treating ischemia, said method comprising administering a peptide comprising an amino acid sequence set forth in SEQ ID NO: 130 or composition comprising same to a subject in need of treatment.

75. A method of treating ischemia, said method comprising administering a peptide comprising an amino acid sequence set forth in SEQ ID NO: 158 or composition comprising same to a subject in need of treatment.

5 76. A method of treating ischemia, said method comprising administering a peptide comprising an amino acid sequence set forth in SEQ ID NO: 160 or composition comprising same to a subject in need of treatment.

10 77. A method of treating ischemia, said method comprising administering a peptide according to any one of claims 47 to 54, 57 or 58 or the analogue according to any one of claims 55, 56, 59 or 60 or a pharmaceutical composition according to claim 62 to a subject in need of treatment.

15 78. A method of treating ischemia, said method comprising administering a nucleic acid that encodes a peptide according to any one of claims 47 to 54, 57 or 58 or a pharmaceutical composition comprising said nucleic acid to a subject in need of treatment.

20 79. The method according to any one of claims 63 to 78 wherein the peptide, analogue, nucleic acid or pharmaceutical composition is administered to a subject by a method selected from the group consisting of intravenous administration, intrathecal administration, intra-arterial administration, local administration following a craniotomy, and mixtures thereof.

25 80. Use of a peptide according to any one of claims 47 to 54, 57 or 58 or the analogue according to any one of claims 55, 56, 59 or 60 in medicine.

30 81. Use of a nucleic acid that encodes a peptide according to any one of claims 47 to 54, 57 or 58 in medicine.

82. A peptide analogue comprising the amino acid sequence set forth in SEQ ID NO: 182, wherein the amino acids in the peptide analogue other than glycine are D-amino acids.

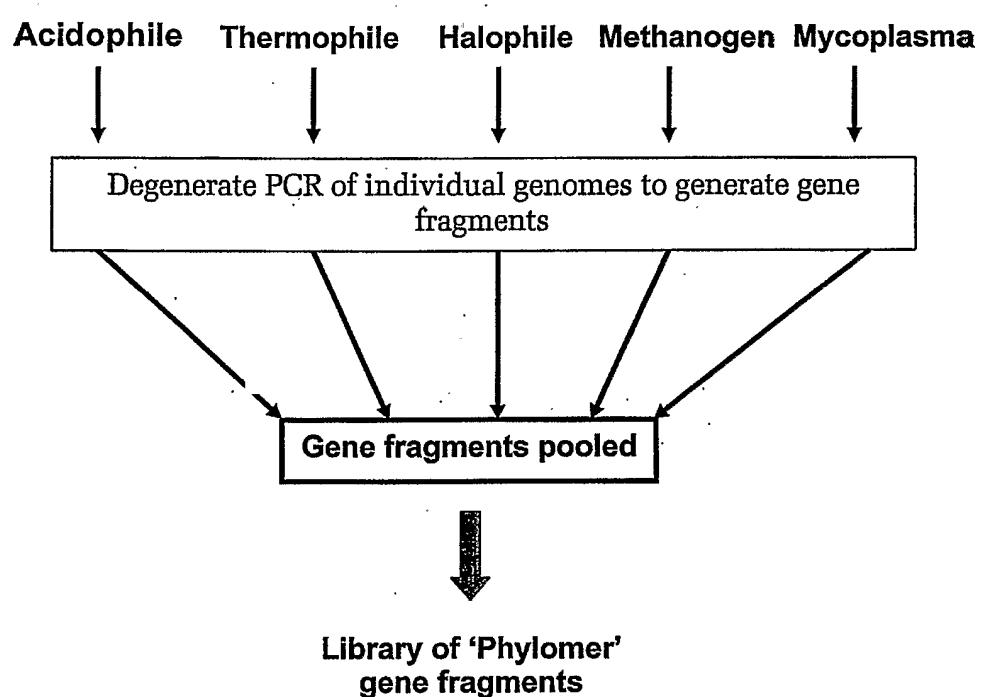
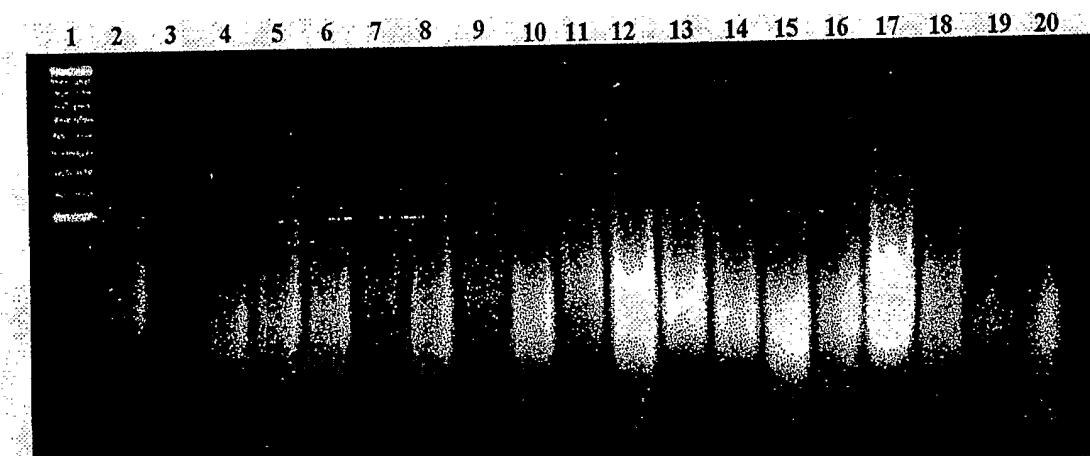



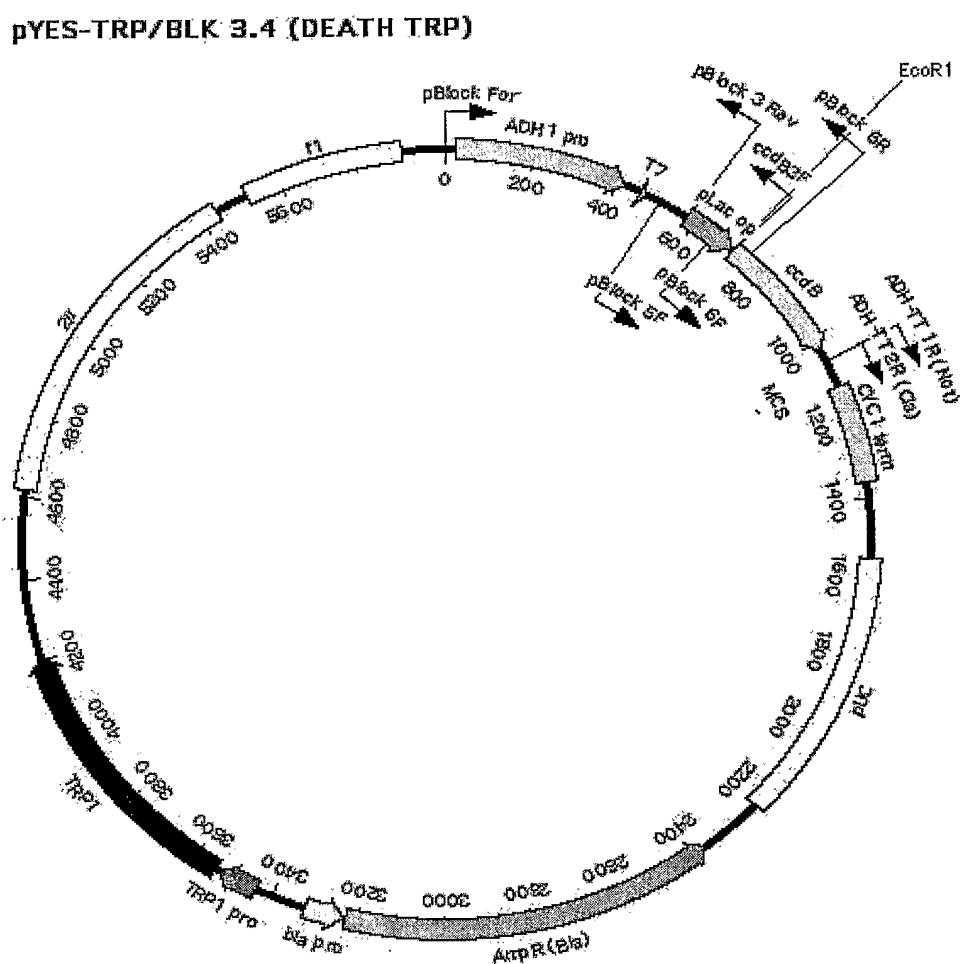
FIGURE 1

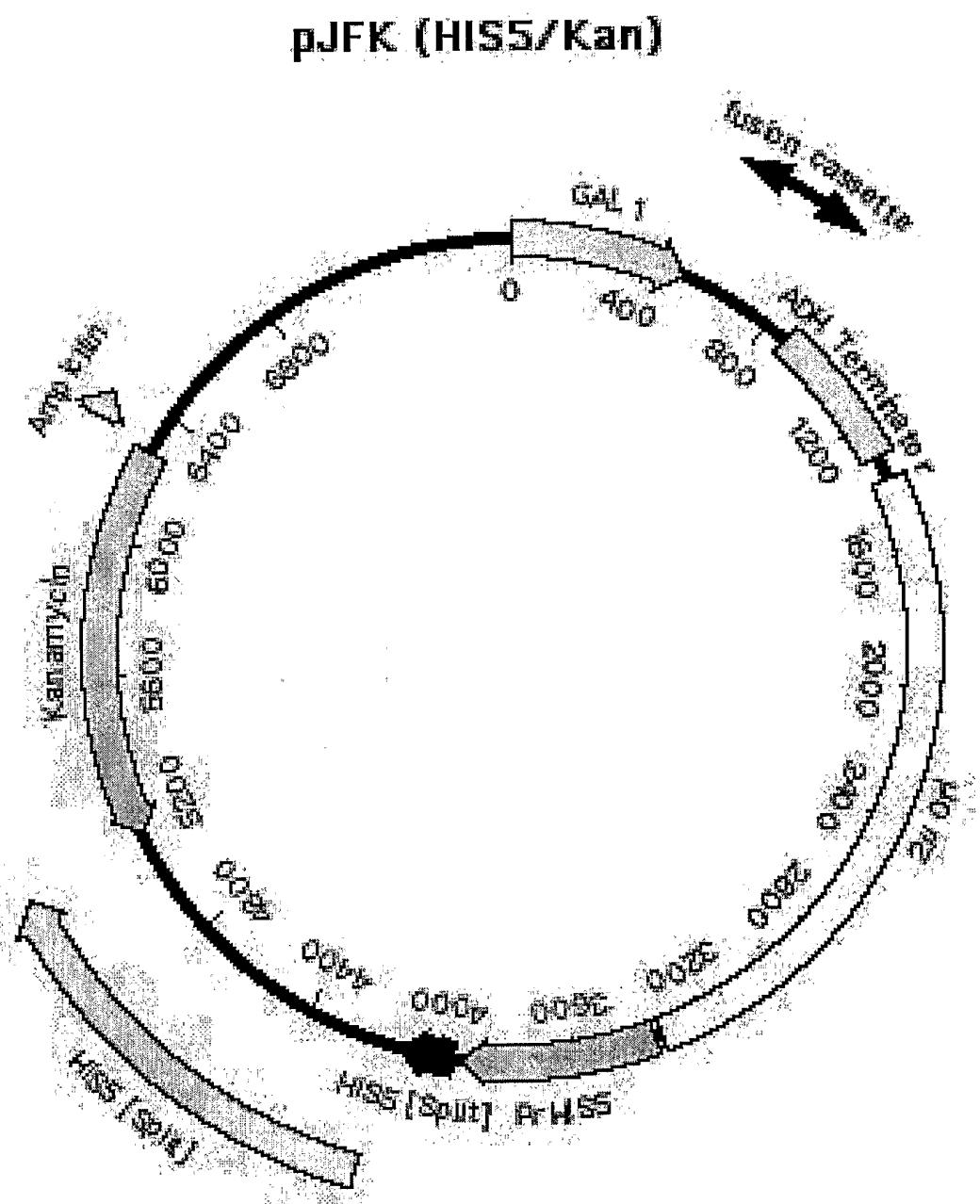
2/25

1. 100 bp ladder (NEB), 2-20 BGF PCR products from all 19 bacterial species

FIGURE 2

3/25




FIGURE 3

4/25

FIGURE 4

5/25

FIGURE 5

6/25

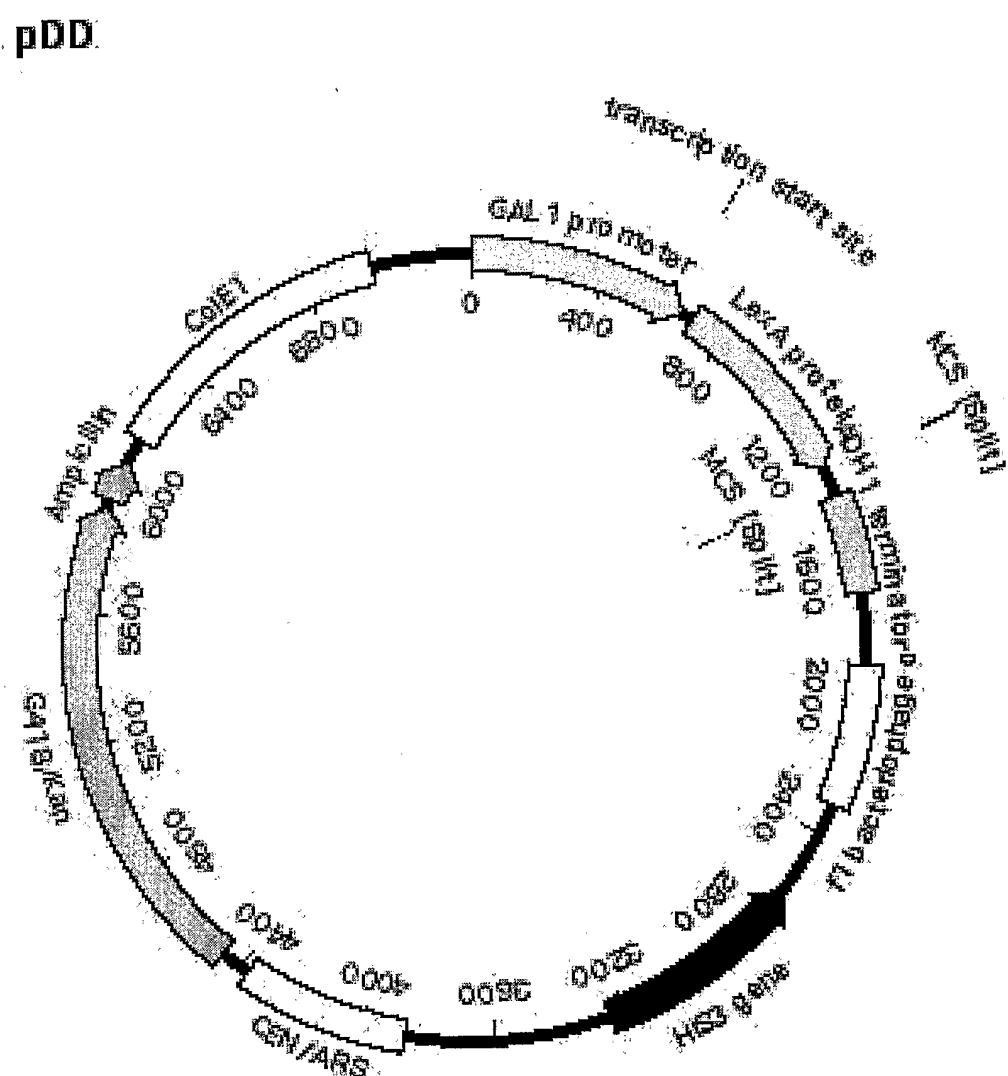


FIGURE 6

7/25

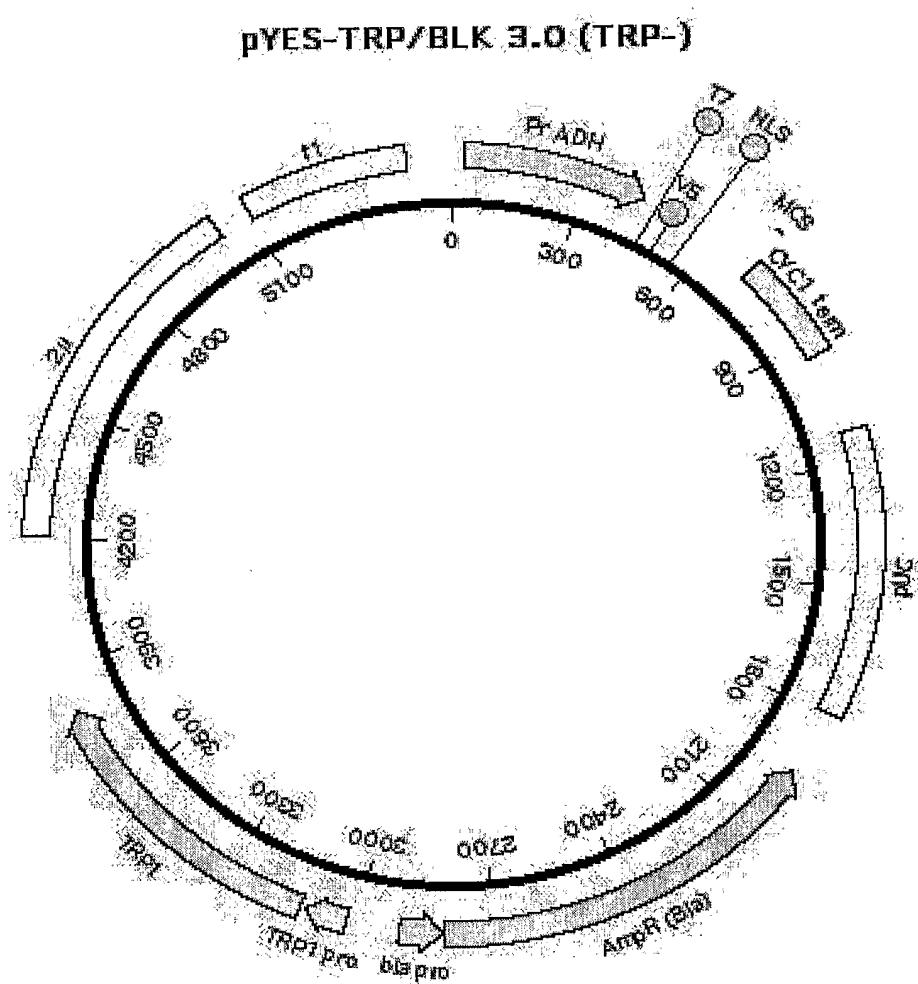


FIGURE 7

8/25

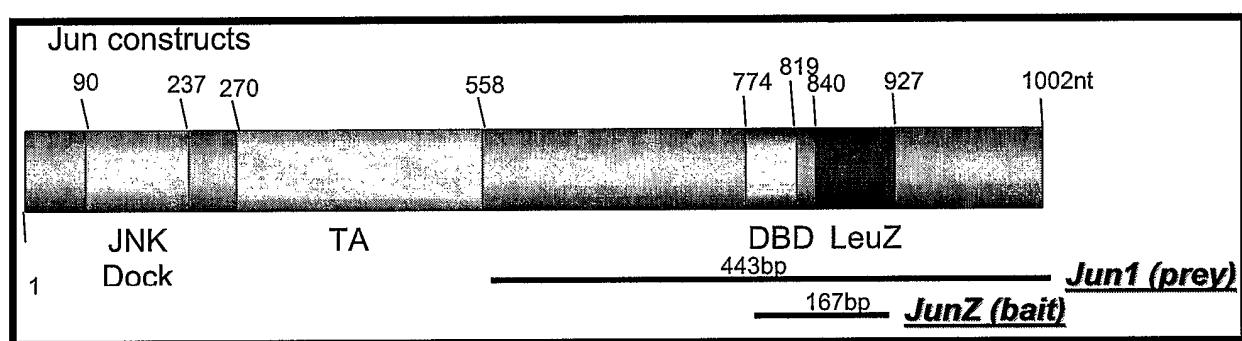


FIGURE 8

9/25

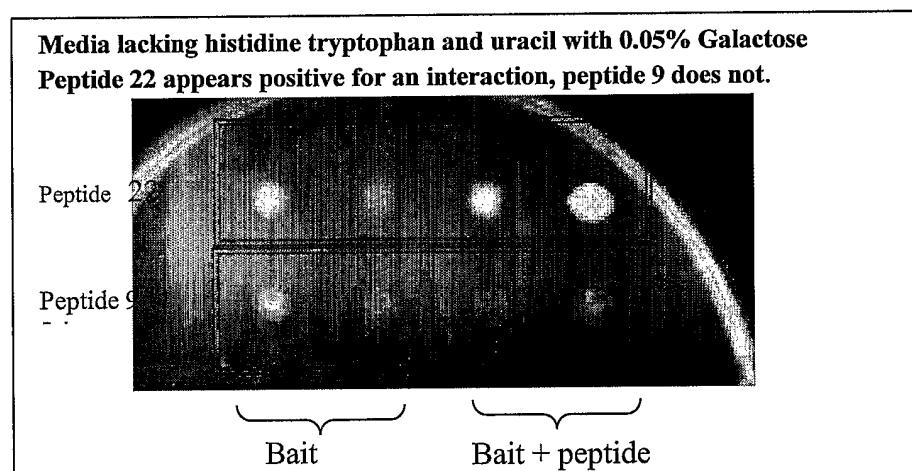


FIGURE 9

10/25

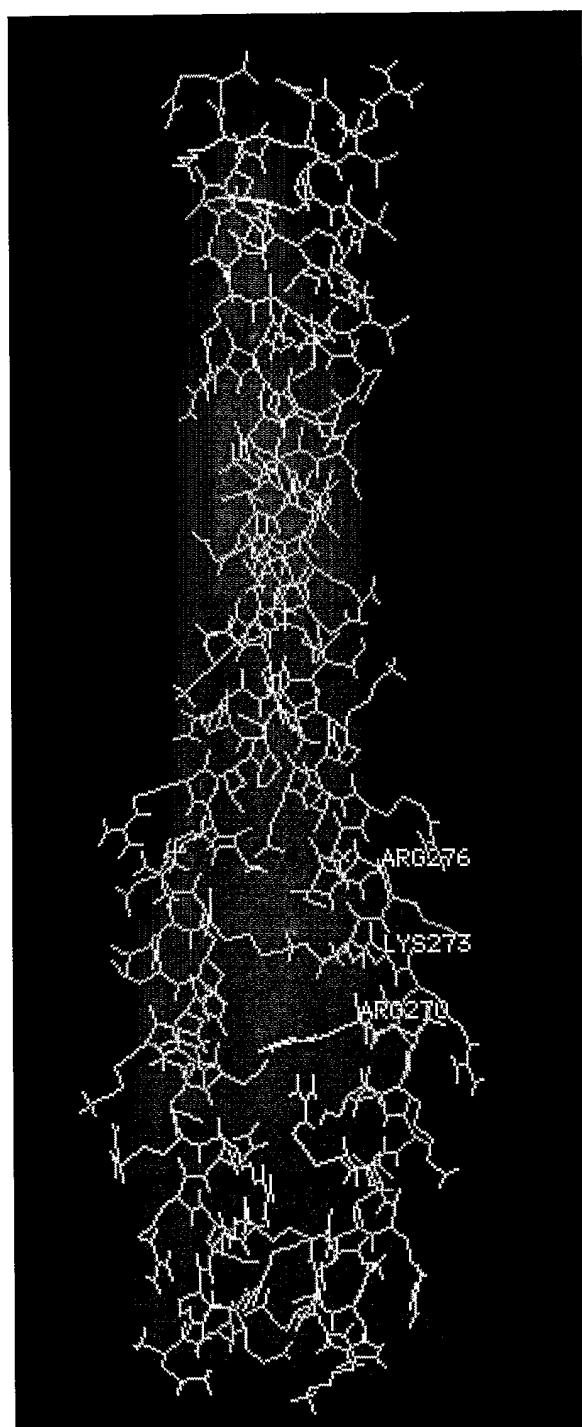


FIGURE 10

15/25

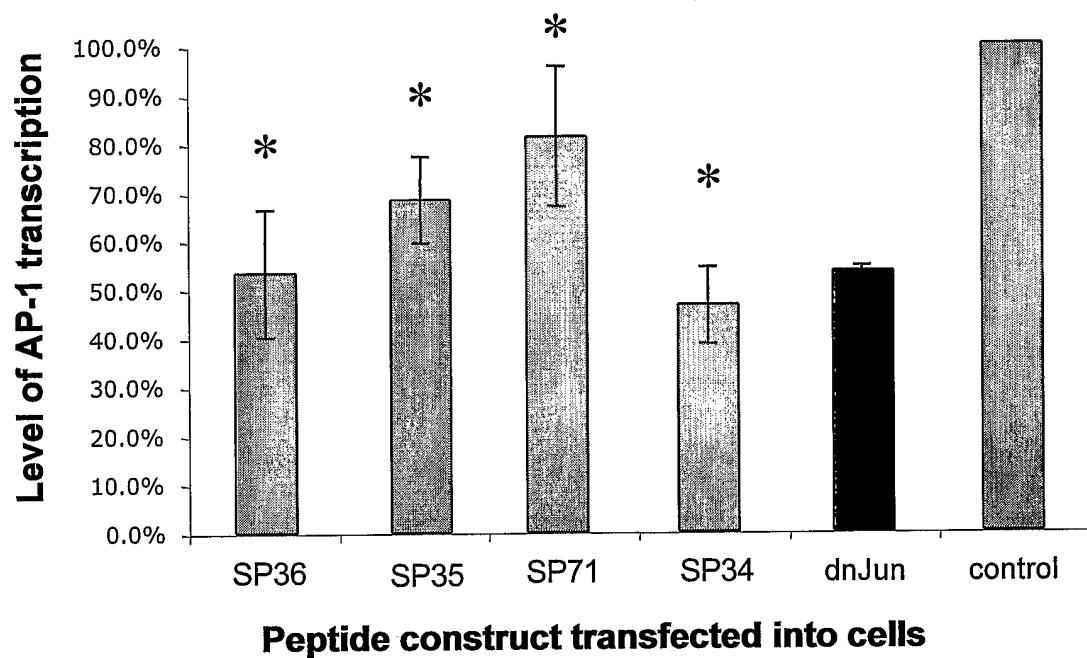


FIGURE 15

16/25

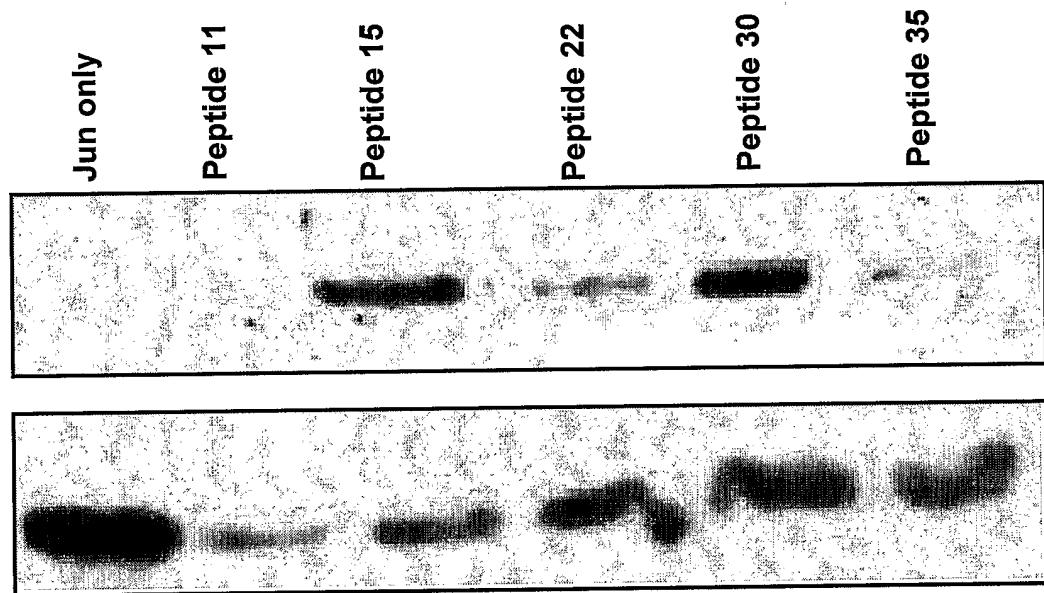


FIGURE 16

17/25

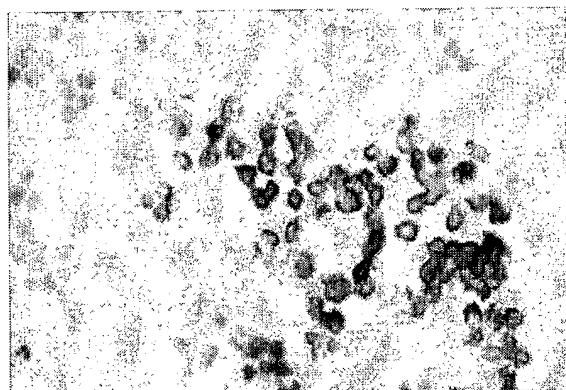


FIGURE 17a

FIGURE 17b

18/25

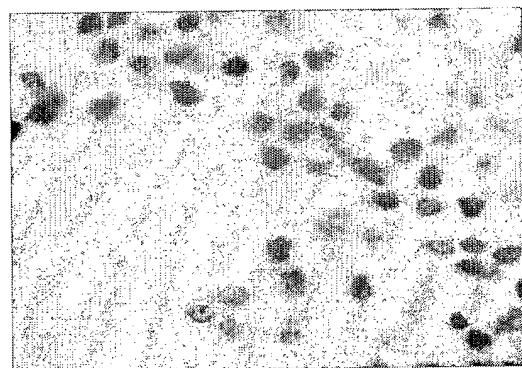


FIGURE 17c

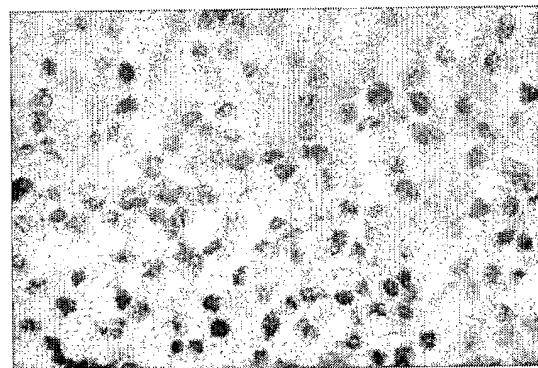


FIGURE 17d

19/25

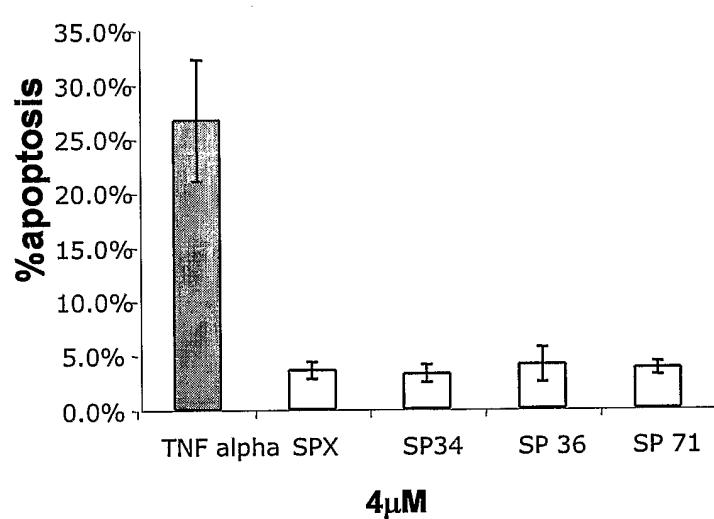


FIGURE 17e

20/25

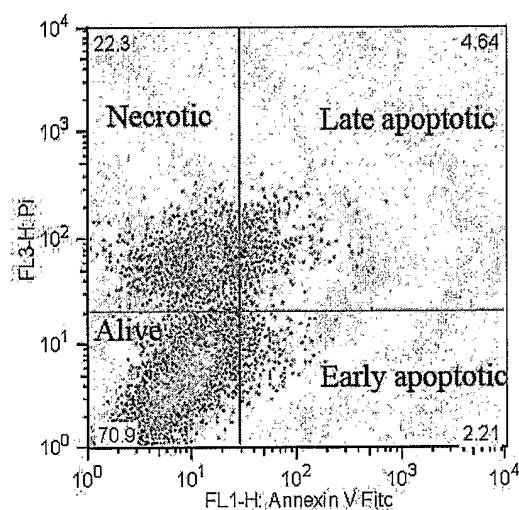


FIGURE 18a

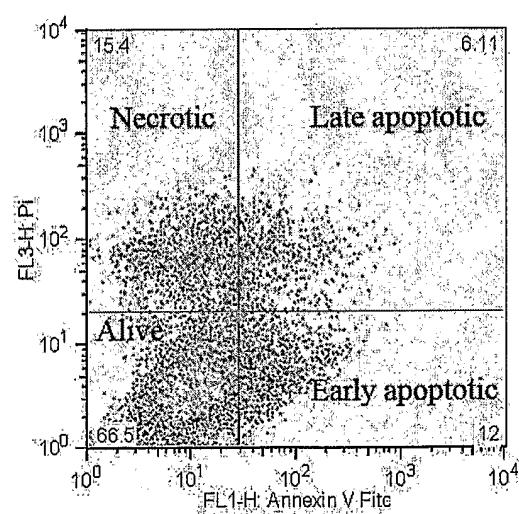


FIGURE 18b

21/25

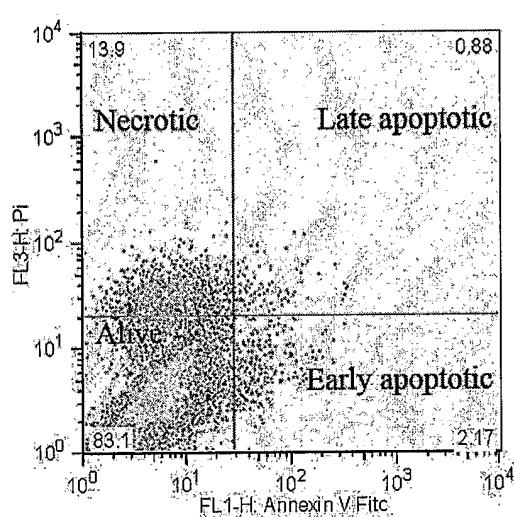


FIGURE 18c

22/25

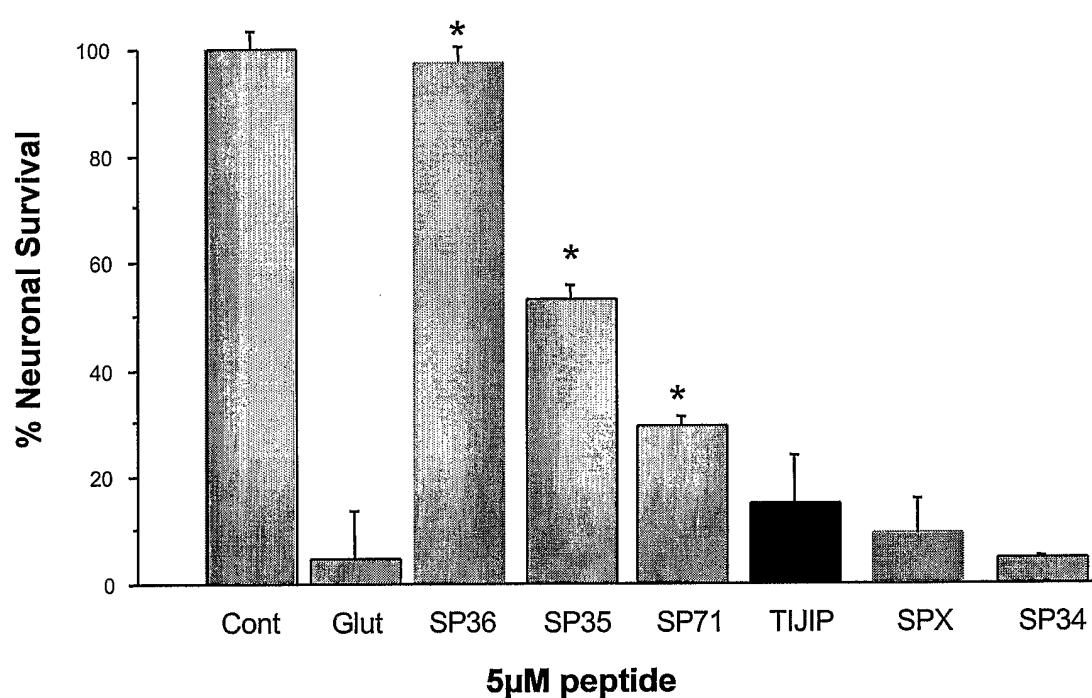


FIGURE 19

23/25

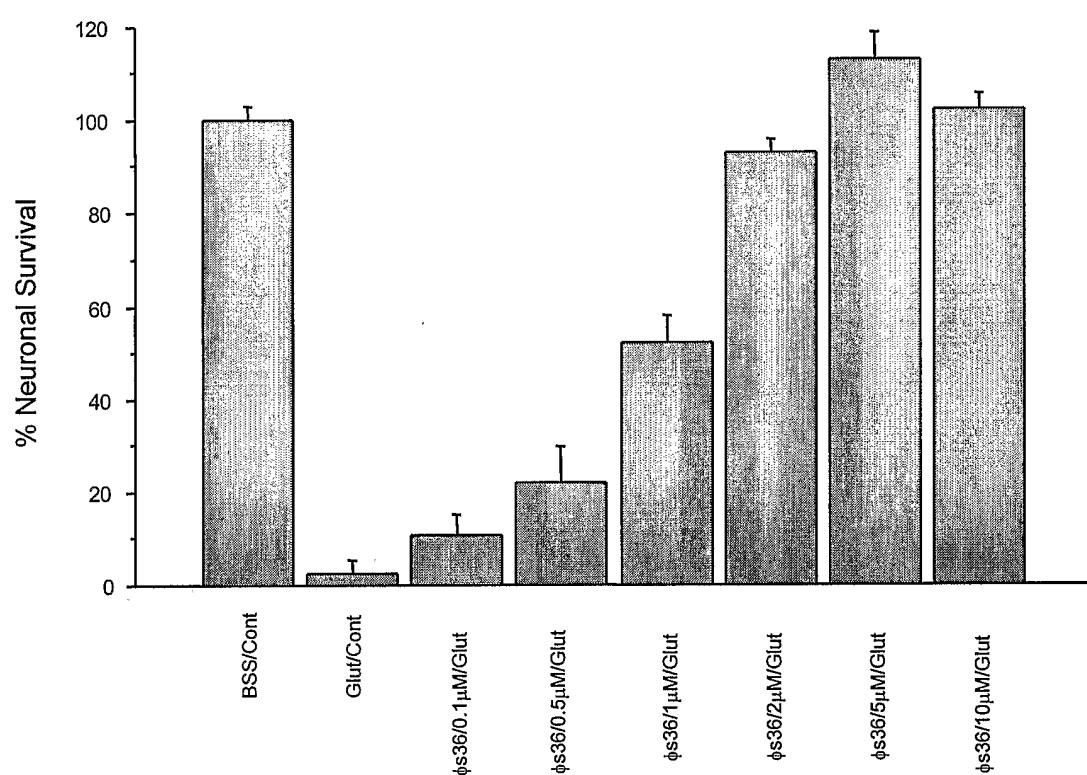


FIGURE 20

24/25

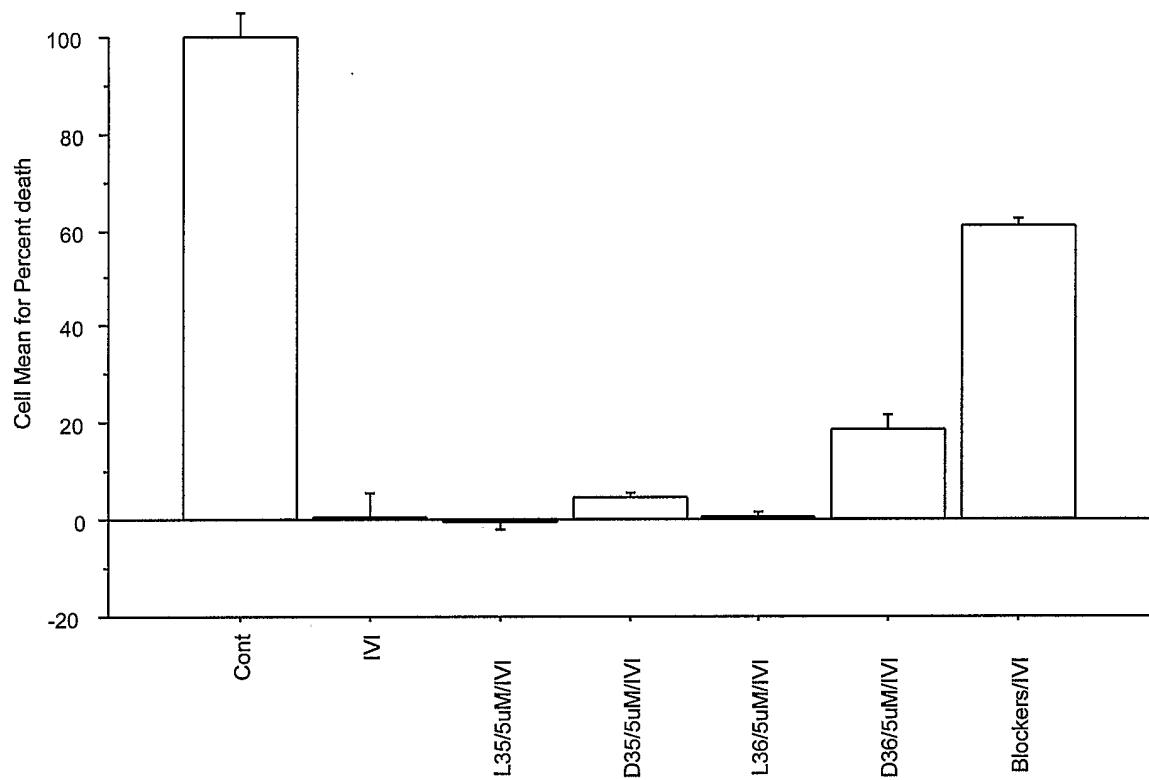


FIGURE 21

25/25

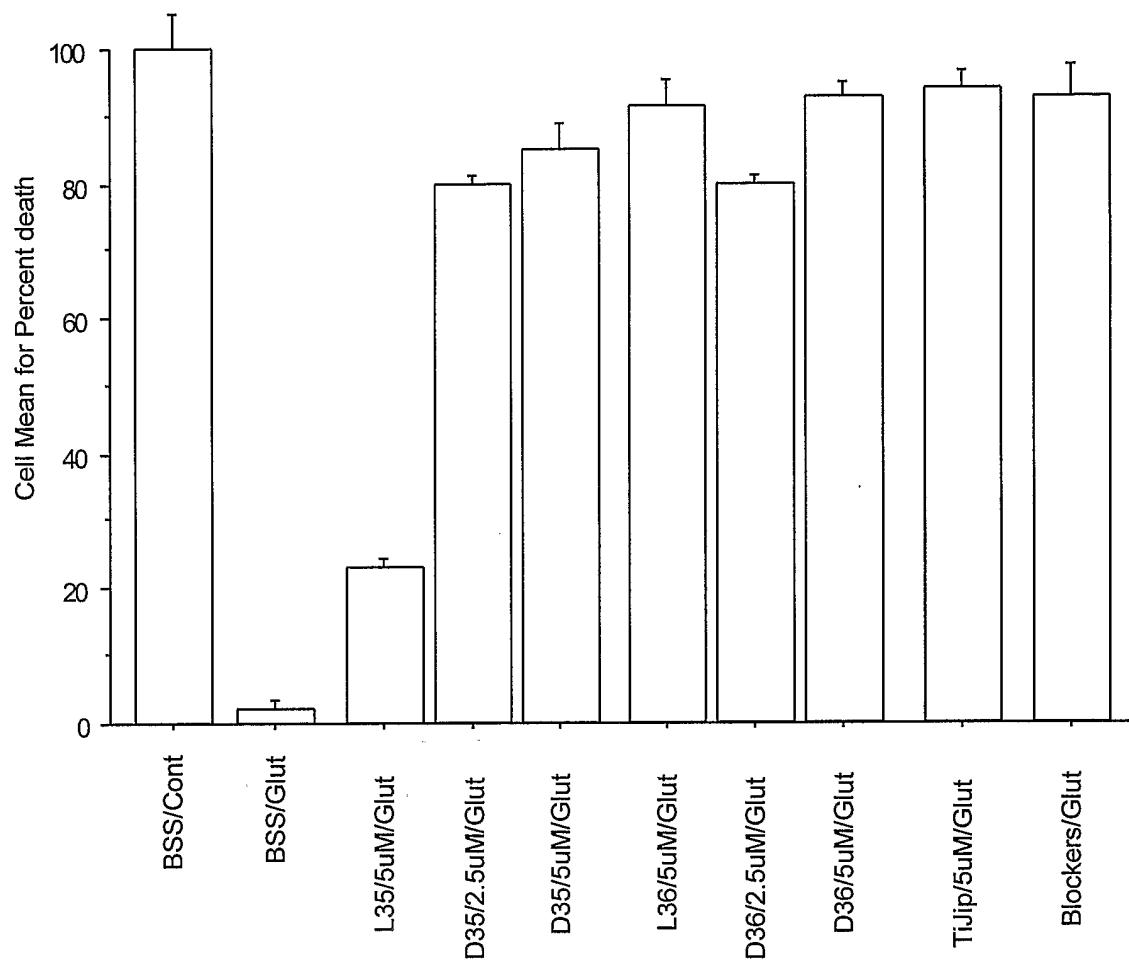


FIGURE 22

SEQUENCE LISTING

5 <110> Phylogica Limited
<120> Methods of screening biodiverse gene fragment libraries and uses
of biological modulators isolated therefrom
10 <130> 123266
<150> US60/603,525
<151> 2004-08-20
15 <160> 182
<170> PatentIn version 3.3
20 <210> 1
<211> 6
<212> DNA
<213> artificial sequence
25 <220>
<223> Kozak sequence
30 <220>
<221> misc_feature
<222> (2)..(3)
<223> n is a, c, g, or t
35 <400> 1
rnnatg 6
40 <210> 2
<211> 8
<212> DNA
<213> artificial sequence
45 <220>
<223> Kozak sequence
<400> 2
ccrccatg 8
50 <210> 3
<211> 11
<212> DNA
<213> artificial sequence
55 <220>
<223> Kozak sequence
<400> 3
gccagccatg g 11
60 <210> 4
<211> 8
<212> DNA
<213> artificial sequence

<220>
<223> Kozak sequence

5 <400> 4
ctaccatg 8

10 <210> 5
<211> 10
<212> DNA
<213> artificial sequence

15 <220>
<223> Shine Dalgarno sequence

20 <400> 5
gaagaagata 10

25 <210> 6
<211> 7
<212> DNA
<213> artificial sequence

30 <220>
<223> Translational slippage sequence

35 <400> 6
aaaaaac 7

40 <210> 7
<211> 7
<212> DNA
<213> artificial sequence

45 <220>
<223> Translational slippage sequence

50 <400> 7
aaattta 7

55 <210> 8
<211> 7
<212> DNA
<213> artificial sequence

60 <220>
<223> Translational slippage sequence

131 <400> 9
132 gggaaac 7

133 5 <210> 10
134 <211> 7
135 <212> DNA
136 <213> artificial sequence

137 10 <220>
138 <223> Translational slippage sequence

139 <400> 10
140 gggcccc 7

141 15 <210> 11
142 <211> 7
143 <212> DNA
144 <213> artificial sequence

145 <220>
146 <223> Translational slippage sequence

147 20 <400> 11
148 gggttta 7

149 <210> 12
150 <211> 7
151 <212> DNA
152 <213> artificial sequence

153 <220>
154 <223> Translational slippage sequence

155 <400> 12
156 gggtttt 7

157 25 <210> 13
158 <211> 7
159 <212> DNA
160 <213> artificial sequence

161 <220>
162 <223> Translational slippage sequence

163 <400> 13
164 tttaaac 7

165 <210> 14
166 <211> 7
167 <212> DNA
168 <213> artificial sequence

169 <220>
170 <223> Translational slippage sequence

171 30 <400> 14
172 tttaaat 7

5 <210> 15
<211> 6
<212> DNA
<213> artificial sequence
10 <220>
<223> Translational slippage sequence
<400> 15
ttttta 6
15 <210> 16
<211> 7
<212> DNA
<213> artificial sequence
20 <220>
<223> Translational slippage sequence
<400> 16
ggattta 7
25 <210> 17
<211> 7
<212> DNA
<213> artificial sequence
30 <220>
<223> Translational slippage sequence
<400> 17
cttaggc 7
35
40 <210> 18
<211> 7
<212> DNA
<213> artificial sequence
45 <220>
<223> Translational slippage sequence
<400> 18
gcgagtt 7
50 <210> 19
<211> 7
<212> DNA
<213> artificial sequence
55 <220>
<223> Translational slippage sequence
<400> 19
tcctgat 7
60 <210> 20
<211> 7
<212> DNA
<213> artificial sequence

<220>
<223> Translational slippage sequence

5 <400> 20
aaaaaaag 7

10 <210> 21
<211> 7
<212> DNA
<213> artificial sequence

15 <220>
<223> Translational slippage sequence

20 <400> 21
aaaaaaaa 7

25 <210> 22
<211> 7
<212> DNA
<213> artificial sequence

30 <220>
<223> Translational slippage sequence

35 <400> 22
aaaaaaac 7

40 <210> 23
<211> 7
<212> DNA
<213> artificial sequence

45 <220>
<223> Translational slippage sequence

50 <400> 23
gggaaaag 7

55 <210> 24
<211> 7
<212> DNA
<213> artificial sequence

60 <220>
<223> Translational slippage sequence

150 <400> 25
ggggaaaa 7

5 <210> 26
<211> 7
<212> DNA
<213> artificial sequence

10 <220>
<223> Translational slippage sequence

150 <400> 26
tttaaag 7

15 <210> 27
<211> 7
<212> DNA
20 <213> artificial sequence

150 <220>
<223> Translational slippage sequence

25 <400> 27
aaaggggg 7

150 <210> 28
30 <211> 3
<212> DNA
<213> artificial sequence

150 <220>
35 <223> Translational slippage sequence

150 <400> 28
ctt 3

40 <210> 29
<211> 17
<212> PRT
<213> artificial sequence

45 <220>
<223> Penetratin protein transduction domain peptide

50 <400> 29
Cys Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys
1 5 10 15

55 Lys

60 <210> 30
<211> 21
<212> PRT
<213> artificial sequence

<220>

<223> Pep 1 protein transduction domain peptide

<400> 30

5 Lys Glu Thr Trp Trp Glu Thr Trp Trp Thr Glu Trp Ser Gln Lys Lys
1 5 10 15

10 Lys Lys Arg Lys Val
20

15 <210> 31
<211> 13
<212> PRT
<213> artificial sequence

20 <220>
<223> HIV-1 TAT protein transduction domain peptide

25 <400> 31

Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln
1 5 10

30 <210> 32
<211> 27
<212> PRT
<213> artificial sequence

35 <220>
<223> signal sequence based peptide 1 protein transduction domain
peptide

40 <400> 32

Gly Ala Leu Phe Leu Gly Trp Leu Gly Ala Ala Gly Ser Thr Met Gly
1 5 10 15

45 Ala Trp Ser Gln Pro Lys Lys Arg Lys Val
20 25

50 <210> 33
<211> 16
<212> PRT
<213> artificial sequence

55 <220>
<223> Signal sequence based peptide 2 protein transduction domain
peptide

60 <400> 33

Ala Ala Val Ala Leu Leu Pro Ala Val Leu Leu Ala Leu Leu Ala Pro
1 5 10 15

<210> 34
<211> 26
<212> PRT
<213> artificial sequence

<220>
<223> Transportan protein transduction domain peptide

5 <400> 34

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Lys Ile Asn Leu Lys
1 5 10 15

10 Ala Leu Ala Ala Leu Ala Lys Lys Ile Leu
20 25

15 <210> 35
<211> 18
<212> PRT
<213> artificial sequence

20 <220>
<223> amphiphilic model peptide protein transduction domain peptide
<400> 35

25 Lys Leu Ala Leu Lys Leu Ala Leu Lys Ala Leu Lys Ala Ala Leu Lys
1 5 10 15

30 Leu Ala

35 <210> 36
<211> 11
<212> PRT
<213> artificial sequence

40 <220>
<223> Polyarginine protein transduction domain peptide
<400> 36

45 Arg
1 5 10

50 <210> 37
<211> 5
<212> DNA
<213> artificial sequence

55 <220>
<223> P2A initiator sequence

55 <400> 37
tcgga

60 <210> 38
<211> 46
<212> DNA
<213> artificial sequence

<220>

<223> Tagged random primer

5 <220>
<221> misc_feature
<222> (41)..(46)
<223> n is a, c, g, or t

10 <400> 38
gactacaagg acgacgacga caaggcttat caatcaatca nnnnnn 46

15 <210> 39
<211> 49
<212> DNA
<213> artificial sequence

20 <220>
<223> Tagged random primer

25 <220>
<221> misc_feature
<222> (41)..(49)
<223> n is a, c, g, or t

30 <400> 39
gactacaagg acgacgacga caaggcttat caatcaatca nnnnnnnn 49

35 <210> 40
<211> 40
<212> DNA
<213> artificial sequence

40 <220>
<223> Oligonucleotide for preparing expression library

45 <400> 40
gagagaattc aggtcagact acaaggacga cgacgacaag 40

50 <210> 41
<211> 5562
<212> DNA
<213> artificial sequence

55 <220>
<223> Vector - pDEATH-Trp

60 <400> 41
ctagcgattt tggcatgag atcagatcaa cttttttct tttttttct tttctctctc 60
ccccgttgtt gtctcaccat atccgcaatg aaaaaaaaaat gatggaagac actaaaggaa 120
aaaattaacg acaaagacag caccaacaga tgcgttgtt ccagagctga tgaggggtat 180
ctcgaagcac acgaaacttt ttccattcattt cattcacgca cactactctc taatgagcaa 240
65 cggatacgg ctttcttcc agttacttga atttggaaata aaaaaaaaaat tgctgtcttg 300
ctatcaagta taaatagacc tgcaattatt aatctttgt ttccctcgta ttgttctcg 360
tccctttctt cttgtttct ttttctgcac aatatttcaa gctataccaa gcataacaatc 420

	aactccaagc ttccccggat cggactacta gcagctgtaa tacgactcac tatagggaat	480
5	attnaagctca ccatgggtaa gcctatccct aaccctctcc tcggtctcga ttctacacaa	540
	gctatgggtg ctcctccaaa aaagaagaga aaggtagctg aattcgagct cagatctcag	600
	ctgggcccgg taccaattga tgcatacgata ccggtaactag tcggaccgca tatgcccgg	660
10	cgtaccgcgg ccgcgtcgagg catgcatacgata gaggccgca tcataattt agttatgtca	720
	cgcttacatt cacgcctcc ccccacatcc gctctaaccg aaaaggaagg agttagacaa	780
	cctgaagtct aggtccctat ttattttttt atagttatgt tagtattaag aacgttattt	840
15	atatttcaaa tttttctttt ttttctgtac agacgcgtgt acgcatactaa cattatactg	900
	aaaaccttgc ttgagaaggt ttgggacgc tcgaaggctt taatttgcgg ccctgcatta	960
20	atgaatcgcc caacgcgcgg ggagaggcgg ttgcgtatt gggcgcttcc cgcgttcc	1020
	gctcaactgac tcgctgcgtcg ccgtcggtcg gctgcggcga gcggtatcag ctcactcaaa	1080
	ggcgtaata cggttatcca cagaatcagg ggataacgcgaa gaaagaaca tgtgagcaaa	1140
25	aggccagcaa aagcccagga accgtaaaaaa gcccgcgttg ctggcggtttt tccataggct	1200
	ccgccccctt gacgagcatc acaaaaatcg acgctcaagt cagagggtggc gaaaccgcac	1260
30	aggactataa agataccagg cgttccccc tggaaagctcc ctgcgtgcgtctt ctctgttcc	1320
	gaccctgccc cttaccggat acctgtccgc ctttctccct tcgggaagcg tggcgcttcc	1380
	tcatacgctca cgctgttaggt atctcagttc ggtgttaggtc gttcgctcca agctgggtcg	1440
35	tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgcttga	1500
	gtccaaccccg gtaagacacg acttacgccc actggcagca gccactggta acaggattag	1560
40	cagagcgagg tatgttaggcg gtgcatacaga gttcttgaag tggtggccta actacggcta	1620
	cactagaagg acagtatttg gtatctgcgc tctgctgaag ccagttaccc tcggaaaaag	1680
	agttggtagc tcttgatccg gcaaacaac caccgctggt agcgggtggtt tttttgtttt	1740
45	caagcagcag attacgcgcgca gaaaaaaagg atctcaagaa gatccttga tctttctac	1800
	ggggctgac gctcagtgga acgaaaactc acgttaagggtt attttggtca ttagattatc	1860
50	aaaaaggatc ttacacccatca tcctttaaa taaaaatgtaa agttttaaat caatctaaag	1920
	tatatacgat taaactttgtt ctgcacatgtt ccaatgcctt atcgtgagg cacctatctc	1980
	agcgatctgt ctatccgtt catccatgt tgcctgactc cccgtcggtt agataactac	2040
55	gatacgggag cgcttaccat ctggccccag tgctgcaatg ataccgcgag acccacgctc	2100
	accggctcca gatttatcag caataaacca gccagccgga agggccgagc gcagaagtgg	2160
60	tcctgcaact ttatccgcctt ccattccagtc tattaaattgt tgccggaaag cttagatgttt	2220
	tagttcgcca gttaatagtt tgcgcacgt tggtgcatt gctacaggca tcgtgggtgc	2280
	acgctcgatcg tttggatgg ctccatttcg ctccgggttcc caacgatcaa ggcgagttac	2340

	atgatcccc atgttgtgca aaaaagcggt tagctccttc ggtcctccga tcgttgtcag	2400
5	aagtaagttg gccgcagtgt tatcaactcat gtttatggca gcactgcata attctcttac	2460
	tgtcatgcca tccgtaagat gctttctgt gactggtag tactcaacca agtcattctg	2520
	agaatagtgt atgcggcgac cgagttgctc ttgcccggcg tcaacacggg ataataccgc	2580
10	gccacatagc agaactttaa aagtgtcat cattggaaaa cgttctcgg ggcgaaaaact	2640
	ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa cccactcgtg cacccaaactg	2700
	atcttcagca tctttactt tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa	2760
15	tgccgcaaaa aagggaataa gggcgacacg gaaatgttga atactcatac tcttccttt	2820
	tcaatattat tgaagcattt atcagggtta ttgtctcatg agcggataca tatttgaatg	2880
20	tattnagaaa aataaacaaa taggggttcc gcgcacattt ccccgaaaaag tgccacctga	2940
	cgtctaagaa accattatta tcatgacatt aacctataaa aataggcgta tcacgaggcc	3000
25	cttcgtctt caagaaattc ggtcgaaaaa agaaaaggag agggccaaga gggagggcat	3060
	tgtgactat tgagcacgtg agtatacgtg attaagcaca caaaggcagc ttggagtatg	3120
	tctgttatta atttcacagg tagttctggt ccattggtga aagtttgcgg cttgcagagc	3180
30	acagaggccg cagaatgtgc tctagattcc gatgctgact tgctgggtat tatatgttg	3240
	cccaatagaa agagaacaat tgaccgggtt attgcaagga aaatttcaag tcttgtaaaa	3300
	gcatataaaa atagttcagg cactccgaaa tacttggttg gcgtgtttcg taatcaacct	3360
35	aaggaggatg ttttggctct ggtcaatgat tacggcattt atatcgtcca actgcacgga	3420
	gatgagtcgt ggcaagaata ccaagagttc ctcggttgc cagttattaa aagactcgta	3480
40	tttccaaaag actgcaacat actactcagt gcagcttac agaaacctca ttctgtttatt	3540
	cccttggttt attcagaagc aggtgggaca ggtgaacttt tggattggaa ctcgatttct	3600
	gactgggttga aggcaaga gaggccccgag agcttacatt ttatgttagc tggtgactg	3660
45	acgcccagaaa atgttgtga tgcgtttaga ttaaatggcg ttattgggtgt tgatgtaa	3720
	ggaggtgtgg agacaaatgg tgtaaaagac tctaacaaaaa tagcaaattt cgtcaaaaat	3780
50	gctaagaaat aggttattac tgagtagtat ttattnaagt attgttgtc cacttgcctg	3840
	cagcttctca atgatattcg aatacgtttt gaggagatac agcctaataat ccgacaaaact	3900
55	gttttacaga tttacgatcg tacttggttac ccatcattga attttgaaca tccgaacctg	3960
	ggagttttcc ctgaaacaga tagtataattt gaacctgtat aataatataat agtctagcgc	4020
	tttacggaag acaatgtatg tatttgggtt cctggagaaaa ctattgcattc tattgcata	4080
60	gtaatcttgc acgtcgcatc cccgggttcat tttctgcgtt tccatcttgc acttcaatag	4140
	catatctttt ttaacgaagc atctgtgcattt cattttgttag aacaaaaatg caacgcgaga	4200
	gcgctaattt ttcaaacaaa gaatctgagc tgcattttta cagaacagaa atgcaacgcg	4260

	aaagcgctat tttaccaacg aagaatctgt gcttcatttt tgtaaaacaa aaatgcaacg	4320
5	cgagagcgct aatttttcaa acaaagaatc tgagctgcat ttttacagaa cagaaatgca	4380
	acgcgagagc gctattttac caacaaagaa tctatacttc tttttgttc tacaaaaaatg	4440
	catcccgaga gcgctatTT tctaacaaag catcttagat tactttttt ctccttgc	4500
10	cgctctataa tgcagtctct tgataacttt ttgcactgta ggtccgttaa ggtagaaga	4560
	aggctacttt ggtgtctatt ttctcttcca taaaaaaagc ctgactccac ttcccgcgtt	4620
	tactgattac tagcgaagct gcgggtgcat ttttcaaga taaaggcatc cccgattata	4680
15	ttctataccg atgtggattt cgcatacttt gtgaacagaa agtgatagcg ttgatgattc	4740
	ttcattggtc agaaaattat gaacggtttc ttctatTTtgc tctctatata ctacgtatag	4800
20	gaaaatgtta catttcgta ttgtttcga ttcactctat gaatagttct tactacaatt	4860
	ttttgtcta aagagtaata ctagagataa acataaaaaa tgtagaggc gagtttagat	4920
	gcaagttcaa ggagcgaaag gtggatgggt aggttatata gggatatagc acagagatata	4980
25	atagcaaaga gatactttt agcaatgttt gtggaaagcgg tattcgcaat gggaaagctcc	5040
	accccggttgcataatcagaa aagccccaaa aacaggaaga ttgtataagc aaatatttaa	5100
30	attgtaaacg ttaatattttt gttaaaattc gcgttaaattt tttgttaaat cagctcattt	5160
	tttaacgaat agcccgaaat cggccaaatc ccttataat caaaagaata gaccgagata	5220
	gggttgagtgt ttgttccagt ttccacaag agtccactat taaagaacgt ggactccaac	5280
35	gtcaaaaggc gaaaaagggt ctatcaggc gatggccac tacgtgaacc atcaccctaa	5340
	tcaagttttt tgggtcgag gtgcgtaaa gcagtaaattc ggaagggtaa acggatgccc	5400
40	ccatttagag cttgacgggg aaagccggcg aacgtggcga gaaaggaagg gaagaaagcg	5460
	aaaggagcgg gggctagggc ggtggaaagt gtaggggtca cgctggcgt aaccaccaca	5520
	cccgccgcgc ttaatggggc gctacaggcgc gctgtgggat ga	5562
45	<210> 42	
	<211> 40	
	<212> DNA	
50	<213> artificial sequence	
	<220>	
	<223> Oligonucleotide for library preparation	
55	<400> 42	40
	agaggaattc aggtcagact acaaggacga cgacgacaag	
60	<210> 43	
	<211> 27	
	<212> DNA	
	<213> artificial sequence	
	<220>	

<223> Oligonucleotide for library preparation
<400> 43
cagaagctta aggacgacga cgacaag 27
5
<210> 44
<211> 27
<212> DNA
10 <213> artificial sequence

<220>
<223> Oligonucleotide for library preparation

15 <400> 44
caggaattca aggacgacga cgacaag 27

<210> 45
20 <211> 28
<212> DNA
<213> artificial sequence

<220>
25 <223> Oligonucleotide for library preparation

<400> 45
caggaattcc aaggacgacg acgacaag 28

30
<210> 46
<211> 29
<212> DNA
<213> artificial sequence
35
<220>
<223> Oligonucleotide for library preparation

<400> 46
40 caggaattca caaggacgac gacgacaag 29

<210> 47
<211> 16
45 <212> DNA
<213> artificial sequence

<220>
<223> Adaptor oligonucleotide
50
<400> 47
aattcgaacc ccttcg 16

55 <210> 48
<211> 12
<212> DNA
<213> artificial sequence
60
<220>
<223> Adaptor oligonucleotide

<400> 48
cgaaggggtt cg 12

5 <210> 49
 <211> 17
 <212> DNA
 <213> artificial sequence
 .
 <220>
 <223> Adaptor oligonucleotide
10 <400> 49
 aattcgaacc ctttcgc 17
 .
15 <210> 50
 <211> 13
 <212> DNA
 <213> artificial sequence
 .
20 <220>
 <223> Adaptor oligonucleotide
 .
 <400> 50
 gcgaagggt tcg 13
25
 .
 <210> 51
 <211> 18
 <212> DNA
 <213> artificial sequence
 .
 <220>
 <223> Adaptor oligonucleotide
 .
35 <400> 51
 aattcgaacc ctttcg 18
 .
 .
40 <210> 52
 <211> 14
 <212> DNA
 <213> artificial sequence
 .
 <220>
 <223> Adaptor oligonucleotide
 .
 <400> 52
 cgcgaagggt ttcg 14
 .
50 <210> 53
 <211> 16
 <212> DNA
 <213> artificial sequence
 .
55 <220>
 <223> Adaptor oligonucleotide
 .
 <400> 53
 agctcgaagg ggttcg 16
 .
 .
60 <210> 54
 <211> 12

15

<212> DNA		
<213> artificial sequence		
5 <220>		
<223> Adaptor oligonucleotide		
<400> 54		
cgaacccctt cg		
10 <210> 55		
<211> 89		
<212> DNA		
<213> artificial sequence		
15 <220>		
<223> Tagged random oligonucleotide		
20 <220>		
<221> misc_feature		
<222> (81)..(89)		
<223> n is a, c, g, or t		
25 <400> 55		
tttccccgaat tgtgagcgga taacaataga aataattttt tttaacttta agaaggagat		
atatccatgg actacaaaaga nnnnnnnnnn		
30 <210> 56		
<211> 61		
<212> DNA		
<213> artificial sequence		
35 <220>		
<223> Oligonucleotide for library preparation		
40 <400> 56		
ggggcccaagc agtaataata cgagtcacta tagggagacc acaacggttt cccgaattgt		
g		
45 <210> 57		
<211> 23		
<212> DNA		
<213> artificial sequence		
50 <220>		
<223> Adaptor oligonucleotide		
<400> 57		
tttaaggcagc tcgatagcag cac		
55 <210> 58		
<211> 23		
<212> DNA		
60 <213> artificial sequence		
<220>		
<223> Adaptor oligonucleotide		

	<400> 58	
	tgctgctat cgagctgctt aaa	23
5	<210> 59	
	<211> 51	
	<212> DNA	
	<213> artificial sequence	
10	<220>	
	<223> Oligonucleotide for library preparation	
	<400> 59	
	agaccgcgtt agaggccca aggggttatg gaattcacct ttaagcagct c	51
15	<210> 60	
	<211> 26	
	<212> DNA	
20	<213> artificial sequence	
	<220>	
	<223> Oligonucleotide for amplifying fragment of gene III of M13	
25	<400> 60	
	cgtaaaaaaaa ttattattcg caattc	26
	<210> 61	
30	<211> 30	
	<212> DNA	
	<213> artificial sequence	
	<220>	
35	<223> Oligonucleotide for amplifying fragment of gene III of M13	
	<400> 61	
	ttaagactcc ttattacgca gtatgttagc	30
40	<210> 62	
	<211> 6482	
	<212> DNA	
	<213> artificial sequence	
45	<220>	
	<223> Vector - pMF4-5	
	<400> 62	
50	cgtaccatt atcttagcct aaaaaaacct tctctttgga actttcagta atacgcttaa	60
	ctgctcattg ctatattgaa gtacggatta gaagccgccc agcgggtgac agccctccga	120
	aggaagactc tcctccgtgc gtcctcgct tcaccggctcg cgttcctgaa acgcagatgt	180
55	gcctcgcc gcactgctcc gaacaataaa gattctacaa tactagcttt tatggttatg	240
	aagaggaaaa attggcagta acctggcccc acaaacccttc aaatgaacga atcaaattaa	300
60	caaccatagg atgataatgc gattagttt ttagccttat ttctgggta attaatcagc	360
	gaagcgatga ttttgatct attaacagat atataaatgc aaaaactgca taaccacttt	420
	aactaatact ttcaacattt tcggttgtta ttacttctta ttcaaatgt aaaaaagtat	480

	caacaaaaaaaa ttgttaatat acctctatac tttaacgtca aggaggaatt aagcttatgg	540
5	gtgctcctcc aaaaaagaag agaaaggtag ctggtatcaa taaagatatc gaggagtgca	600
	atgccatcat tgagcagttt atcgactacc tgccgaccgg acaggagatg ccgatggaaa	660
	tggcgatca ggcgattaac gtggtgccgg gcatgacgccc gaaaaccatt ctgcacgccc	720
10	ggccgcccgt ccagcctgac tggctgaaat cgaatggttt tcatgaaattt gaagcggatg	780
	ttaacgatac cagcctcttg ctgagtgag atgcctccta cccttatgtat gtgccagatt	840
15	atgcctctcc cgaattccgt tgcgcaggta ccagactact gagcggccgc aatctcgaga	900
	agctttggac ttcttcgcca gaggtttgggt caagtctcca atcaaggttg tcggcttg	960
	taccttgcca gaaatttacg aaaagatgga aaagggtcaa atcggttgcatacgatgt	1020
20	tgacacttct aaataagcga atttctttag atttatgatt tttatttata aataagttat	1080
	aaaaaaaaata agtgtataca aattttaaag tgactcttag gttttaaaac gaaaattctt	1140
25	gttcttgagt aactcttcc tgcgcaggta gttgtttct caggtatagc atgaggcgc	1200
	tcttatttgcac cacacctcta ccggcatgccc gagcaaatgc ctgcaaatgc ctccccattt	1260
	cacccaaatttgc tagatatgct aactccagca atgagttgat gaatctcggt gtgtat	1320
30	tgcctcaga ggacaacacc tgggtgtatc gttctccac acggatccctc tagatgcac	1380
	tagcggccgc ttgcacctgc agcaattctg aaccagtcctt aaaaacgagta aataggaccg	1440
35	gcaattcttc aagcaataaa caggaatacc aattattaaa agataactta gtcagatcg	1500
	acaataaaagc ttgtggaaa aatgcgcctt attcaatctt tgctataaaa aatggccaa	1560
	aatctcacat tggaaagacat ttgtatgacct catttcttca aatgaaggc ctaacggagt	1620
40	tgactaatgt tggggaaat tggagcgata agcgtgtttc tgccgtggcc aggacaacgt	1680
	atactcatca gataacagca atacctgatc actacttcgc actagttctt cggtaatctatg	1740
	catatgatcc aatatcaaag gaaatgtatg cattgaaggta tgagactaat ccaatttgg	1800
45	agtggcagca tatagaacag ctaaagggtt gtcgtgaagg aagcatacga taccccgat	1860
	ggaatggat aatatcacat gaggtacttag actaccttc atcctacata aatagacgca	1920
50	tataagtacg catttaagca taaacacgcac cttatgtatgtt atatataat	1980
	acaggcaaca cgcagatata ggtgcgcacgt gaacagttagt ctgtatgtgc gcagctcg	2040
	ttgcattttc ggaagcgctc gttttcgaa acgctttgaa gttccttattc cgaagttcc	2100
55	attctctaga aagtataatggc acttcagatgc gctttgaaa accaaaagcg ctctgaagac	2160
	gcactttcaa aaaacaaaaa acgcacccgga ctgttaacgcag ctactaaaat attgcgaaata	2220
60	ccgcttccac aaacattgtt caaaagtatc tctttgttat atatctctgt gcttatatccc	2280
	tatataacccat acccatccac ctttcgttcc ttgtacttgc atctaaactc gacctctaca	2340
	ttttttatgt ttatctctag tattacttgc ttagacaaaaa aattgttagta agaactattc	2400

	atagagtcaa tcgaaaacaa tacgaaaatg taaacattc ctatacgtag tatatagaga	2460
5	caaaatagaa gaaaccgttc ataatttct gaccaatgaa gaatcatcaa cgctatcact	2520
	ttctgttcac aaagtatgcg caatccacat cggatagaa tataatcggg gatgcctta	2580
	tcttggaaaa atgcacccgc agcttcgcta gtaatcaga aacgcggaa gtggagtcag	2640
10	gttttttta tggaagagaa aatagacacc aaagtagcct tcttctaacc ttaacggacc	2700
	tacagtgc当地 aaagttatca agagactgca ttatagagcg cacaaaggag aaaaaaaagta	2760
15	atctaagatg ctgggtttaga aaaatagcgc tctcggatg cattttgtt gaacaaaaaaa	2820
	gaagtataga ttctttgtt gtaaaaatgc gctctcgctg tgcatttctg ttctgtaaaa	2880
	atgcagctca gattcttgtt ttgaaaaatt agcgctctcg cgttgcattt ttgttttaca	2940
20	aaaatgaagc acagattctt cgttggtaaa atagcgctt cgcgttgcatt ttctgttctg	3000
	taaaaatgca gctcagattc tttgtttgaa aaattagcgc tctcgcgtt cattttgtt	3060
25	ctacaaaatg aagcacagat gttcgtaaa caaagatatg ctattgaagt gcaagatgga	3120
	aacgcagaaa atgaaccggg gatgcgacgt gcaagattac ctatgcaata gatgcaatag	3180
	tttctccagg aaccgaaata catacattgt cttccgtaaa gcgctagact atatattatt	3240
30	atacaggttc aaatatacta tctgtttcag ggaaaactcc caggttcgga tggtaaaaat	3300
	tcaatgatgg gtaacaagta cgatcgtaaa tctgtaaaac agtttgcgg atattaggct	3360
35	gtatctccctc aaagcgtatt cgaatatcat tgagaagctg caggcaagtg cacaaacaat	3420
	acttaaataa atactactca gtaataaccc atttcttagc atttttgacg aaatttgcta	3480
	ttttgtttaga gtcttttaca ccatttgtt ccacacctcc gcttacatca acaccaataa	3540
40	cgccatttaa tctaagcgca tcaccaacat ttctggcgt cagtcacca gctaacataa	3600
	aatgttaagct ttctggggttc ttctgccttc caacccagtc agaaatcgag ttccaatcca	3660
	aaagttcacc tgcacccactt gttctgaat caaacaaggg aataaacgaa tgaggttct	3720
45	gtgaagctgc actgagtagt atgttgcagt ctggaaa tacgagtctt ttaataactg	3780
	gcaaaaccgag gaactcttgg tattcttgc acgactcatc tccatgcagt tggacgatata	3840
50	caatgccgtt atcattgacc agagccaaaa catcctcattt aggttgatta cgaaacacgc	3900
	caaccaagta ttctggagtg cctgaactat ttatatagc ttatacaaga ctgttggat	3960
55	tccttgcaat aaccgggtca attgttctt ttcttattggg cacacatata atacccagca	4020
	agtcagcatc ggaatctaga gcacattctg cggcctctgt gctctgcaag ccgcaaaactt	4080
	tcaccaatgg accagaacta cctgtgaaat taataacaga catactccaa gctgccttt	4140
60	tgtgcttaat cacgtatact cacgtgctca atagtcacca atgcctccc tcttggccct	4200
	ctccctttct ttatcgacc gaatttcttg aagacgaaag ggcctcgtga tacgcttatt	4260
	tttataggtt aatgtcatga taataatggt ttcttagacg tcaggtggca ctgggggg	4320

	aaatgtgcgc ggaaccctta tttgtttatt tttctaaata catcaaata tgtatccgct	4380
5	catgagacaa taaccctgat aaatgcttca ataatattga aaaaggaaga gtatgagtat	4440
	tcaacatttc cgtgtcgccc ttattccctt ttttgcggca ttttgccttc ctgttttgc	4500
	tcacccagaa acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg	4560
10	ttacatcgaa ctggatctca acagcggtaa gatcctttag agtttcgccc ccgaagaacg	4620
	ttttccaaatg atgagcactt ttaaaagttct gctatgtggc gcggattat cccgtgttga	4680
15	cgccgggcaa gagcaactcg gtcgcccgt acactattct cagaatgact tggtttagta	4740
	ctcaccagtc acagaaaagc atcttacgga tggcatgaca gtaagagaat tatgcagtgc	4800
	tgccataacc atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc	4860
20	gaaggagcta accgctttt tgcacaacat gggggatcat gtaactcgcc ttgatcgttg	4920
	ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt gacaccacga tgcctgttagc	4980
	aatggcaaca acgttgcgca aactattaac tggcgaacta cttactctag cttccggca	5040
25	acaattaata gactggatgg aggcggataa agttgcagga ccacttctgc gctcgccct	5100
	tccggctggc tggtttattt ctgataaaatc tggagccggt gagcgtgggt ctcgcggat	5160
30	cattgcagca ctggggccag atggtaagcc ctcccgtatc gtagttatct acacgacggg	5220
	gagtcaggca actatggatg aacgaaatag acagatcgct gagataggtg cctcactgat	5280
	taagcattgg taactgtcag accaagttta ctcataatata cttagattt atttaaaact	5340
35	tcatttttaa tttaaaagga tctaggtgaa gatcctttt gataatctca tgaccaaaat	5400
	cccttaacgt gagtttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc	5460
40	ttcttgagat ctttttttc tgcgcgtat ctgctgttg caaacaaaaa aaccaccgct	5520
	accagcggtg gtttgttgc cggatcaaga gctaccaact cttttccga aggttaactgg	5580
	cttcagcaga ggcgcagatac caaatactgt cttctagtg tagccgtatg taggccacca	5640
45	cttcaagaac tctgttagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc	5700
	tgctgccagt ggcgataagt cgtgtcttac cgggttggac tcaagacgt agttaccgg	5760
50	taaggcgcag cggtcgggct gaacgggggg ttctgtgcaca cagccagct tggagcgaac	5820
	gacctacacc gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttccgca	5880
	agggagaaaag gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag	5940
55	ggagcttcca gggggaaaacg cctggtatct ttatagtccct gtcgggttcc gccacctctg	6000
	acttgagcgt cgattttgt gatgctcgatc agggggccgg agcctatgga aaaacgccc	6060
60	caacgcggcc ttttacggt tccctggcatt ttgctggcct tttgctcaca tggctttcc	6120
	tgcgttatcc cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataaccgc	6180
	tcgcccgcagg cgaacgaccgc agcgcagcga gtcagtgagc gaggaagcgg aagagcggcc	6240

	aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggacgcacag	6300
5	gtttcccgac tggaaagcgg gcagttagcgc caacgcattt aatgtgagtt agctcactca	6360
	ttaggcaccc caggctttac actttatgct tccggctcgatgttggtg gaattgtgag	6420
	cggataacaa tttcacacag gaaacagcta tgacatgattt acgaatata tcgagctcg	6480
10	ta	6482
	<210> 63	
15	<211> 7551	
	<212> DNA	
	<213> artificial sequence	
	<220>	
20	<223> Vector - pJFK	
	<400> 63	
	ccccatttac tttagcctaaa aaaaccttct ctttggaaact ttcagtaata cgcttaactg	60
25	ctcattgcta tattgaagta cggttagaa gccggccgagc gggtgacagc cctccgaagg	120
	aagactctcc tccgtgcgtc ctcgtcttca cgggtcgcgt tcctgaaacg cagatgtgcc	180
	tcgcgcgcga ctgctccgaa caataaagat tctacaatac tagctttat ggttatgaag	240
30	aggaaaaattt ggcagtaacc tggccccaca aaccttcaaa tgaacgaatc aaatataacaa	300
	ccataggatg ataatgcgt tagttttta gccttatttc tggggtaattt aatcagcga	360
	gcatgatgtt ttgatctattt aacagatata taaatgcataa aactgcataa ccactttaac	420
35	taataacttcc aacatttcg gtttgttattt cttcttatttca aatgtataa aaagtatcaa	480
	caaaaaattt ttaatataacc tctataactttt aacgtcaagg aggaatataag cttatgggtg	540
40	ctcctccaaa aaagaagaga aaggttagctg gtatcaataa agatatcgag gagtgcaatg	600
	ccatcattga gcagtttattt gactacctgc gcaccggaca ggagatgccc atggaaatgg	660
	cggatcaggc gattaacgtg gtgcggggca tgacgcccggaa aaccattttt caccggggc	720
45	cgccgatcca gcctgactgg ctgaaatcga atggttttca tgaaatttgc gcgatgttta	780
	acgataccag cctcttgctg agtggagatg ctccttaccc ttatgtgtc ccagattatg	840
50	cctctcccgaa attcggccgaa ctcgagaagc tttggacttc ttgcggcagag gtttggtaa	900
	gtctccaaatc aagggtgtcg gcttgcgtac ctggccagaa atttacgaaa agatggaaaa	960
	gggtcaaatc gttggtagat acgttgcgtc cacttctaaa taagcgttattt tcttgcgtt	1020
55	tatgatttttt attattaaat aagtataaa aaaaataagt gtatacaat tttaaagtga	1080
	ctcttaggtt ttaaaacgaa aattcttgcgtt cttggacttac tctttccgtt aggtcagg	1140
60	gctttctcag gtatagcatg aggtcgctt tattgaccac acctcttaccc gcatgcccgg	1200
	caaatgcctg caaatcgctc cccatttcac ccaattgttag atatgcgttac tccagcaatg	1260
	agttgatgaa tctcggtgtt tattttatgtt cctcagagga caacacgtt tgcgttacgtt	1320

	aaactcccag	gttcggatgt	tcaaaattca	atgatggta	acaagtacga	tcgtaaatct	3300
5	gtaaaacagt	ttgtcggata	ttaggctgta	tctcctcaaa	gcgtattcga	tctgtcttc	3360
	gccgaaacct	gtttgatgac	tacttcatca	atttttttt	tttctgccgc	attccaaagg	3420
	tcataacttt	gcaaaaataa	aggtaaatg	gttaaaaatt	gttacataa	ataaggtgac	3480
10	cggttatatt	gagactttc	ctggacagta	actaatacag	aagccattgg	taatgcaata	3540
	atttatttga	tcatgtgact	acgatccggg	tgagactatt	caaaaaagga	gtcaagcatt	3600
15	gaaataatta	atgactaatac	cgaagttaat	tgttaggagt	caattgttt	ttccaatgaa	3660
	tggaatctga	gatgactaaa	ctaccaattt	tcaatagttc	atggtatagt	gacgtagtt	3720
	gtgctttttt	ttcttggatc	tgttgactca	cttcaattga	tgtttcttac	cctgacatga	3780
20	catacttgat	attttatctc	tcacgttata	taacttgaaa	aggatgcaca	cagttctgtt	3840
	caatatacc	tccaaatatgt	aaaaacagtt	tttccattga	ttactcttaa	tttgtttcct	3900
	gctaaaccag	cagtacgtgt	gtgccgtata	tattaaaatt	acactatggt	ttttgatttg	3960
25	aaaagaattt	tttagaccaaa	aatttataac	ttggAACCTT	atcgctgtgc	aagagatgat	4020
	ttcaccgagg	gtatattgct	agacgccaat	gaaaatgccc	atggacctac	tccagttgaa	4080
30	ttgagcaaga	ccaatttaca	tcgttacccg	gatcctcacc	aattggagtt	caagaccgca	4140
	atgacgaaat	acaggaacaa	aacaaggagt	tatgccaatg	acccagaggt	aaaaccttta	4200
	actgctgaca	atctgtgcct	aggtgtggaa	tctgatgaga	gtattgatgc	tattattaga	4260
35	gcatgctgtg	ttcccggaa	agaaaagatt	ctggttcttc	caccaacata	ttctatgtac	4320
	tctgtttgtg	caaacattaa	tgatatagaa	gtcgtccaaat	gtccttaac	tgtttccgac	4380
40	ggttctttc	aaatggatac	cgaagctgta	ttaaccattt	tgaaaaacga	ctcgctaatt	4440
	aagttgatgt	tcgttacttc	accaggtaat	ccaaccggag	ccaaaattaa	gaccagttt	4500
	atcgaaaagg	tcttacagaa	ttgggacaat	gggttagtgc	ttgttgatga	agcttacgta	4560
45	gatttttgtg	gtggctctac	agctccacta	gtcaccaagt	atcctaactt	ggttactttg	4620
	caaactctat	ccaagtcat	cggtttagcc	gggatttaggt	tgggtatgac	atatgcaaca	4680
50	gcagagttgg	ccagaatttt	aaatgcaatg	aaggcgcctt	ataatatttc	ctccctagcc	4740
	tctgaatatg	cactaaaagc	tgttcaagac	agtaatctaa	agaagatgga	agccacttcg	4800
	aaaataatca	atgaagagaa	aatgcgcctc	ttaaaggaat	taactgcttt	ggattacggt	4860
55	gatgaccaat	atgttggtgg	attagatgct	aattttcttt	taatacggat	caacgggggt	4920
	gacaatgtct	tggcaaagaa	gttatattac	caattggcta	ctcaatctgg	ggttgtcgtc	4980
60	agattttagag	gtaacgaatt	aggctgttcc	ggatgtttga	gaattaccgt	tggaacccat	5040
	gaggagaaca	cacatttgat	aaagtacttc	aaggagacgt	tatataagct	ggccaaatgaa	5100
	taaatagacg	tcaacaaaat	tcagaagaac	tcgtcaagaa	ggcgatagaa	ggcgatgcgc	5160

	tgcaaatcg gaggcgat accgtaaagc acgaggaagc ggtcagccca ttgcggcca	5220
5	agctttcag caatatcacg ggtagccaac gctatgtcct gatagcggtc cgccacaccc	5280
	agccggccac agtcgatgaa tccagaaaaag cggccatttt ccaccatgtatccggcaag	5340
	caggcatcgc catgggtcac gacgagatcc tgcgcgtcgg gcatgctcgc cttgagcctg	5400
10	gcgaacagtt cggctggcgc gagccctga tgctttcgt ccagatcatac ctgatcgaca	5460
	agaccggctt ccatccgagt acgtgctcgc tcgatgcgtat gtttcgttg gtggtcgaat	5520
	gggcaggtag ccggatcaag cgtatgcagc cgccgcattt catcagccat gatggatact	5580
15	ttctcggcag gagcaaggtg agatgacagg agatcctgcc cggcacttc gccaaatagc	5640
	agccagttccc ttcccgcttc agtgacaacg tcgagcacag ctgcgcaagg aacgcccgtc	5700
20	gtggccagcc acgatagccg cgctgcctcg tcttcgtt cattcaggc accggacagg	5760
	tcggcttga caaaaagaac cggcgcccc tgcgctgaca gccggAACAC ggcggcatca	5820
25	gagcagccga ttgtctgttg tgcccaagtca tagccgaata gcctctccac ccaagcggcc	5880
	ggagaacctg cgtcaatcc atcttggtca atcatgcgaa acgatcctca tcctgtctct	5940
	tgatcagatc ttgatccccct ggcgcattcag atccttggcg gcgagaaagc catccagttt	6000
30	actttgcagg gcttccaaac cttaccagag ggccgcggcag ctggcaattc cggttcgctt	6060
	gctgtccata aaaccgcaca gtctagctat cgccatgtaa gcccaactgca agtacacgtc	6120
	tttctctttg cgcttgcgtt ttcccttgc cagatagccc agtagctgac attcatccgg	6180
35	ggtcagcacc gtttctgcgg actggcttac tacgtaaaaa ggatcttagt gaagatcctt	6240
	tttgataatc tcatgaccaa aatcccttaa cgtgagttt cgtgactccc cgtcaggcaa	6300
40	ctatggatga acgaaataga cagatcgctg agataggtgc ctcaactgatt aagcattgg	6360
	aactgtcaga ccaagtttac tcatatatac tttagattga tttaaaactt catttttaat	6420
	ttaaaaggat ctaggtgaag atcccttttataatctcat gaccaaaatc ccttaacgtg	6480
45	agttttcggtt ccactgagcg tcagaccccg tagaaaaagat caaaggatct tctttagatc	6540
	cttttttctt ggcgttaatc tgctgttgc aaacaaaaaaa accaccgcta ccagcgggtgg	6600
50	tttggggcc ggtcaagag ctaccaactc ttttccgaa ggtaactggc ttcaaggag	6660
	cgcagataacc aaatactgtc ttcttagtgcg agccgtatgtt aggccaccac ttcaagaact	6720
	ctgttagcacc gcctacatac ctcgcctcgc taatcctgtt accagtggtc gctgccagtg	6780
55	gcgataagtc gtgtcttacc ggggtggact caagacgata gttaccggat aaggcgcagc	6840
	ggtcgggctg aacgggggggt tcgtgcacac agcccgatgg ggagcgaacg acctacaccg	6900
60	aactgagata cctacagcgt gagctatgag aaagcgccac gcttccgaa gggagaaagg	6960
	cggacaggtt tccggtaagc ggcagggtcg gaacaggaga ggcgcacgagg gagcttccag	7020
	ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg ccacctctga ctgagcgtc	7080

	gatttttgtg atgctcgta gggggcgga gcctatggaa aaacgcacgc aacgcggcct	7140
5	ttttacggtt cctggcctt tgctggcctt ttgctcacat gttcttcct gcgttatccc	7200
	ctgattctgt ggataaccgtt attaccgcct ttgagtgagc tgataaccgtt cgccgcagcc	7260
	gaacgaccga ggcgcagcgag tcagtgagc aggaagcgga agagcgccca atacgcaaac	7320
10	cgcctctccc cgccgcgttgg ccgattcatt aatgcagctg gcacgcacagg tttcccgact	7380
	ggaaagcggtt cagtgagcgc aacgcaatta atgtgagtta gctcaactcat taggcacccc	7440
	aggctttaca ctttatgctt ccggctcgta tggatgtgg aattgtgagc ggataacaat	7500
15	ttcacacagg aaacagctat gacatgatta cgaattaatt cgagctcggt a	7551
	<210> 64	
20	<211> 7308	
	<212> DNA	
	<213> artificial sequence	
	<220>	
25	<223> Vector - pDD	
	<400> 64	
	cttgaatttt caaaaattct tactttttt ttggatggac gcaaaagaatg ttaataatca	60
30	tattacatgg cattaccacc atatacatat ccatatacat atccatatct aatcttactt	120
	atatgttgg gaaatgtaaa gagccccatt atcttagcct aaaaaaacct tctctttgg	180
	actttcagta atacgcttaa ctgctcattt cttatattgaa gtacggatta gaagccgccc	240
35	agcgggtgac agccctccga aggaagactc tccctccgtgc gtcctcgtct tcaccggcgt	300
	cgttcctgaa acgcagatgt gcctcgcgccc gcactgctcc gaacaataaaa gattctacaa	360
40	tactagctt tatggttatg aagaggaaaa attggcagta acctggcccc acaaacccttc	420
	aaatgaacga atcaaattaa caaccatagg atgataatgc gattagtttt ttagccttat	480
	ttctgggtt attaatcagc gaagcgatga tttttgtatc attaacagat atataaatgc	540
45	aaaaactgca taaccacttt aactaatact ttcaacattt tcggtttgc ttacttctta	600
	ttcaaatgtt ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca	660
50	aggagaaaaa accccggatc aagggtgcga tatgaaagcg ttaacggcca ggcaacaaga	720
	ggtgtttgat ctcatccgtg atcacatcg ccagacaggat atgcccggca cgcgtgcgg	780
	aatcgcgcag cgtttgggt tccgttcccc aaacgcggct gaagaacatc tgaaggcgct	840
55	ggcacgcaaa ggcgttatttgc aaattgtttc cggcgcattca cgcgggattc gtctgttgc	900
	ggaagaggaa gaagggttgc cgctggtagg tcgtgtggct gccggtaac cacttctggc	960
60	gcaacagcat attgaaggcattatcaggt cgatccttcc ttattcaagc cgaatgctga	1020
	tttcctgctg cgcgtaagcg ggtatgtcgat gaaagatatc ggcattatgg atggtgactt	1080
	gctggcagtg cataaaaactc aggatgtacg taacggttagt gtcgttgcg cacgtattga	1140

	tgacgaagtt accgttaagc gcctgaaaaa acagggcaat aaagtgcgaac tggccaga	1200
5	aaatagcgag tttaaaccaa ttgtcgtaga tcttcgtcag cagagctca ccattgaagg	1260
	gctggcggtt ggggttattc gcaacggcga ctggctggaa ttccgggaa tccgtcgacc	1320
	atggcggccg ctcgagtcga cctcagccca agctaattcc gggcgaattt ctatgattt	1380
10	atgattttta ttataaaata agttataaaaa aaaataagt tatacaaattt taaaagtgac	1440
	tcttaggttt taaaacgaaa attcttgcgtt ttagtaact ctttcctgta ggtcagggtt	1500
	ctttctcagg tatagcatga ggtcgctt attgaccaca cctctaccgg catgccgagc	1560
15	aaatgcctgc aaatcgctcc ccatttcacc caattgtaga tatgctaact ccagcaatga	1620
	gttcatgaaat ctcggtgtgtt attttatgtc ctcagaggac aacaccgtt gtaatccgtc	1680
20	cgagctccaa ttccgcctat agtgagtcgt attacaattc actggccgtc gttttacaac	1740
	gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg cttgcagca catccccctt	1800
	tcgcccagctg gcgtaatagc gaagaggccc gcaccgatcg cccttccaa cagttgcgc	1860
25	gcctgaatgg cgaatggcgc gacgcgcctt gtagcggcgc attaagcgcg gccccgttgg	1920
	tggttacgcg cagcgtgacc gctacacttg ccagcgcctt agcgcgcctt ctttcgctt	1980
30	tcttccttc ctttcgcgc acgttcgcgc gctttcccg tcaagctcta aatcgggggc	2040
	tccctttagg gttccgatattt agtgcgttac ggcacctcga ccccaaaaaa cttgattagg	2100
	gtgatggttc acgttagtggg ccacgcctt gatagacggt ttttcgcctt ttgacgttgg	2160
35	agtccacgtt cttaatagt ggactcttgc tccaaactgg aacaacactc aaccctatct	2220
	cggtctattt ttttgattta taagggattt tgccgatttc ggcctattgg taaaaaaatg	2280
40	agctgattta aaaaaattt aacgcgaaatt ttaacaaaat attaacgttt acaatttcct	2340
	gatgcggtat ttctccctta cgcatctgtg cggattttca caccgcataat gatccgtcga	2400
	gtcaagaga aaaaaaaga aaaagcaaaa agaaaaaagg aaagcgcgc tcgttgcgaa	2460
45	tgacacgtat agaatgatgc attaccttgc catcttcgtt atcatactgt tcgtatacat	2520
	acttactgac attcataggt atacatataat acacatgtat atatatcgta tgctgcagct	2580
50	ttaaataatc ggtgtcaacta cataagaaca ctttgggtgg agggAACATC gttggatcca	2640
	ttggggcggagg tggcttctct tatggcaacc gcaagagcct tgaacgcact ctcactacgg	2700
	tgtatgatcat tcttcgcctcg cagacaatca acgtggaggg taattctgct agcctctgca	2760
55	aagctttcaa gaaaatgcgg gatcatctcg caagagagat ctccactttt ctccctttgc	2820
	aaaccaagtt cgacaactgc gtacggcctg ttgcggaaat ctaccaccgc tctggaaagt	2880
60	gcctcatcca aaggcgcggaa tcctgatcca aacctttta ctccacgcgc cagtagggcc	2940
	tctttaaaag cttgaccgag agcaatcccg cagtcgttgc tgggtgtatg gtcgtctatg	3000
	tgtaagtcac caatgcactc aacgattagc gaccagccgg aatgcgttgc cagagcatgt	3060

5	atcatatggc ccagaaaccc tatacctgtg tggacgttaa tcacttgcga ttgtgtggcc tgttctgcta ctgcttctgc ctcttttct gggaaagatcg agtgctctat cgctaggggaa ccacccttta aagagatcg aatctgaatc ttggtttcat ttgtaatacg ctttactagg gctttctgct ctgtcatctt tgccttcgtt tatcttgcc gctcatttt tagtataattc	3120 3180 3240 3300
10	ttcgaagaaa tcacattact ttatataatg tataattcat tatgtgataa tgccaatcgc taagaaaaaa aaagagtcat ccgctagggtg gaaaaaaaaaa aatgaaaatc attaccgagg cataaaaaaa tatagagtgt actagaggag gccaaagagta atagaaaaag aaaattgcgg gaaaggactg tgttatgact tccctgacta atgccgtgtt caaacgatac ctggcagtga	3360 3420 3480 3540
15	ctcctagcgc tcaccaagct cttaaacgg aattatggtg cactctcagt acaatctgct ctgatgccgc atagttaaagc cagccccgac acccgccaaac acccgctgac gcccctgac gggcttgcgtct gctccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca	3600 3660 3720
20	tgtgtcagag gtttcaccg tcaccccgaa aacgcgcgag acgaaaggc ctcgtgatac gcctatttt ataggttaat gtcatgataa taatggttc ttaggacgga tcgcttgcct gtaacttaca cgccctcgat atcttttaat gatggaataa tttggaaatt tactctgtgt	3780 3840 3900
25	ttatttattt ttatgtttt tatttggatt ttagaaagta aataaagaag gtagaaagagt tacggaatga agaaaaaaaaaa ataaacaaag gttaaaaaaaaaa tttcaacaaa aagcgtactt tacatatata tttatttagac aagaaaagca gattaaatag atatacattc gattaacgat	3960 4020 4080
30	aagtaaaatg taaaatcaca ggattttcgt gtgtggtctt ctacacagac aagatgaaac aattcggcat taataccctga gagcaggaag agcaagataa aaggtagtat ttgttggcga	4140 4200
35	tccccctaga gtctttaca tcttcggaaa acaaaaaacta tttttcttt aattttttt tttactttct atttttaatt tatatatata tattaaaaaaaaaa tttaaatttat aattttttt atagcacgtg atgaaaagga cccaggtggc actttcggg gaaatgtgcg cggaaaccct	4260 4320 4380
40	atttggttat ttttctaaat acattcaat atgtatccgc tcacccgaca ataaccctga taaatgcttc aataaaattgg tcacccggcc agcgacatgg aggcccagaa taccctcctt	4440 4500
45	gacagtcttgc acgtgcgcag ctcagggca tgatgtgact gtcggccgtat catttagccc atacatcccc atgtataatc atttgcattcc atacattttg atggccgcac ggccgcgaagc aaaaattacg gtcctcgct gcagacactgc gagcagggaa acgctccct cacagacgcg	4560 4620 4680
50	ttgaattgtc cccacggccgc gcccctgttag agaaatataa aaggtagga tttgccactg agtttcttct ttcatataact tcctttaaa atcttgcttag gatacagttc tcacatcaca	4740 4800
55	tccgaacata aacaaccatg ggtaaggaaa agactcagtttgcaggccg cgattaaatt ccaacatgga tgctgattta tatgggtata aatgggctcg cgataatgtc gggcaatcag gtgcgacaat ctatcgatttgc tttggaaagc ccgtgcgcg agagttgtttt ctgaaacatg	4860 4920 4980

	gcaaaggtag cgttgccaat gatgttacag atgagatggc cagactaaac tggctgacgg	5040
5	aatttatgcc tcttccgacc atcaaggcatt ttatccgtac tcctgatgat gcatggttac	5100
	tcaccactgc gatccccggc aaaacagcat tccaggtatt agaagaatat cctgattcag	5160
	gtgaaaatat tggatgcg ctggcagtgt tcctgcgccc gttgcattcg attcctgttt	5220
10	gtaattgtcc ttttaaacgc gatcgctat ttcgtctcgc tcaggcgcaa tcacgaatga	5280
	ataacggttt ggttgcg agtgattttg atgacgagcg taatggctgg cctgttgaac	5340
	aagtctggaa agaaatgcat aagctttgc cattctcacc ggattcagtc gtcactcatg	5400
15	gtgatttctc acttgataac cttattttg acgaggggaa attaataggt tgtattgtat	5460
	ttggacgagt cggaatcgca gaccgatacc aggatcttgc catcctatgg aactgcctcg	5520
20	gtgagtttgc tccttcatta cagaaacggc ttttcaaaa atatggtatt gataatcctg	5580
	atatgaataa attgcagttt catttgc tgcgttgc ttctaatca gtcctcggag	5640
	atccgtcccc cttttccccc gtcgatatca tgtaatttagt tatgtcacgc ttacattcac	5700
25	cccccccccc cacatccgct ctaaccgaaa aggaaggagt tagacaacct gaagtctagg	5760
	tccctattta ttttttata gttatgttag tattaagaac gttatttata tttcaaaattt	5820
30	ttctttttt tctgtacaga cgcgtgtacg catgtAACat tatactgaaa accttgcttgc	5880
	agaagggtttt gggacgctcg aaggctttaa ttgcagct ggggtctcgc ggtcggtatc	5940
	attgcagcac tggggccaga tggtaagccc tcccgatcg tagttatcta cacgacgggc	6000
35	agtcaaggcaa ctatggatga acgaaataga cagatcgctg agatagggtgc ctcactgatt	6060
	aagcattggtaactgtcaga ccaagtttac tcataatatac tttagattga tttaaaaactt	6120
40	catttttaat ttAAAAGGAT cttagtgaag atccttttttataatctcat gacAAAAATC	6180
	ccttaacgtg agttttcggtt ccactgagcg tcagaccccg tagaaaaagat caaaggatct	6240
	tctttagatc cttttttct gcggtaaatc tgctgttgc aaacaaaaaa accaccgcta	6300
45	ccagcggtgg ttgtttgcc ggtcaagag ctaccaactc ttttccgaa ggtactggc	6360
	ttcagcagag cgcagataacc aaatactgtc cttctgttgc agccgttagtt aggccaccac	6420
50	ttcaagaact ctgttagcacc gcctacatac ctcgtctgc taatccgttt accagtggct	6480
	gctgccagtgcgataagtc gtgtcttacc ggggtggact caagacgata gttaccggat	6540
	aaggcgcagc ggtcggtgg aacgggggggt tcgtgcacac agcccagtt ggagcgaacg	6600
55	acccatcccg aactgagata cctacagcgt gacatttgag aaagcgccac gcttccgaa	6660
	gggagaaaagg cggacaggtt tccggtaagc ggcagggtcg gaacaggaga ggcacgagg	6720
60	gagcttccag gggggaaacgc ctggatctt tatagtcctg tcgggtttcg ccacctctga	6780
	cttgagcgtc gatTTTGTG atgctcgta gggggccga gcctatggaa aaacgcccagc	6840
	aacgcggcct ttttacggtt cctggcctt tgctggcctt ttgctcacat gttctttcct	6900

	gcgttatccc ctgattctgt ggataaccgt attaccgcct ttgagtgagc tgataccgct	6960
5	cgcgcagcc gaacgaccga gcgcagcgag tcagtgagcg aggaagcggg agagcgccca	7020
	atacgcaaac cgccctctccc cgcgcttgg ccgattcatt aatgcagctg gcacgacagg	7080
	tttcccact ggaaagcggg cagtgagcgc aacgcaatta atgtgagttt gctcactcat	7140
10	taggcacccc aggcttaca ctttatgctt ccggctcgta tgggtgtgg aattgtgagc	7200
	ggataacaat ttcacacagg aaacagctat gaccatgatt accccaagct cgaaattaac	7260
	cctcactaaa gggaaacaaaa gctggtaccg ggccccccct cgaaatttc	7308
15		
	<210> 65	
	<211> 254	
	<212> DNA	
20	<213> artificial sequence	
	<220>	
	<223> c-Jun self dimerization inhibitory peptide (SP4) with vector	
	sequence	
25		
	<220>	
	<221> CDS	
	<222> (1)...(249)	
30		
	<400> 65	
	agg tca gac tac aag gac gac gac aag gct tat caa tcc atg ttc	48
	Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Met Phe	
	1 5 10 15	
35		
	tgt gaa agc cgc ttc ctg gac aat gca tct gcc cct gcc atg agg aat	96
	Cys Glu Ser Arg Phe Leu Asp Asn Ala Ser Ala Pro Ala Met Arg Asn	
	20 25 30	
40		
	gca aag agg cgt tcc gaa gag cgg gtc ctg tgt aac ctg aca gtt cat	144
	Ala Lys Arg Arg Ser Glu Glu Arg Val Leu Cys Asn Ile Thr Val His	
	35 40 45	
45		
	aga aaa cac att ttg cac aag atc aca agt gat gac ctc ttc cgg acg	192
	Arg Lys His Ile Leu His Lys Ile Thr Ser Asp Asp Leu Phe Arg Thr	
	50 55 60	
50		
	gcc ttc tgc aga aat ccg ttt atc ttt tat ggc cac aag atg atg cgc	240
	Ala Phe Cys Arg Asn Pro Phe Ile Phe Tyr Gly His Lys Met Met Arg	
	65 70 75 80	
55		
	atg att gat tgata	254
	Met Ile Asp	
60		
	<210> 66	
	<211> 83	
	<212> PRT	
	<213> artificial sequence	
	<220>	
	<223> Synthetic Construct	

<400> 66

1	Arg	Ser	Asp	Tyr	Lys	Asp	Asp	Asp	Lys	Ala	Tyr	Gln	Ser	Met	Phe
					5				10					15	

5

20	Cys	Glu	Ser	Arg	Phe	Leu	Asp	Asn	Ala	Ser	Ala	Pro	Ala	Met	Arg	Asn
						25							30			

10

35	Ala	Lys	Arg	Arg	Ser	Glu	Glu	Arg	Val	Leu	Cys	Asn	Leu	Thr	Val	His
							40						45			

15

50	Arg	Lys	His	Ile	Leu	His	Lys	Ile	Thr	Ser	Asp	Asp	Leu	Phe	Arg	Thr
						55						60				

20

65	Ala	Phe	Cys	Arg	Asn	Pro	Phe	Ile	Phe	Tyr	Gly	His	Lys	Met	Met	Arg
						70			75				80			

Met Ile Asp

25

30	<210>	67														
	<211>	224														
	<212>	DNA														
	<213>	artificial sequence														

<220>

<223> c-Jun self dimerization inhibitory peptide (SP4)

35

35	<220>															
	<221>	CDS														
	<222>	(1)..(222)														

40

40	<400>	67														
	gct	tat	caa	tcc	atg	ttc	tgt	gaa	agc	cgc	ttc	ctg	gac	aat	gca	tct
	Ala	Tyr	Gln	Ser	Met	Phe	Cys	Glu	Ser	Arg	Phe	Leu	Asp	Asn	Ala	Ser
	1				5					10				15		

45

45	gcc	cct	gcc	atg	agg	aat	gca	aag	agg	cgt	tcc	gaa	gag	cgg	gtc	ctg
	Ala	Pro	Ala	Met	Arg	Asn	Ala	Lys	Arg	Arg	Ser	Glu	Arg	Val	Leu	
	20						25						30			

50

50	tgt	aac	ctg	aca	gtt	cat	aga	aaa	cac	att	ttg	cac	aag	atc	aca	agt
	Cys	Asn	Leu	Thr	Val	His	Arg	Lys	His	Ile	Leu	His	Lys	Ile	Thr	Ser
	35						40					45				

55

55	gat	gac	ctc	ttc	cg	ac	gcc	ttc	tgc	aga	aat	ccg	ttt	atc	ttt	tat
	Asp	Asp	Leu	Phe	Arg	Thr	Ala	Phe	Cys	Arg	Asn	Pro	Phe	Ile	Phe	Tyr
	50				55						60					

60

60	ggc	cac	aag	atg	atg	cg	atg	att	gat	tga	ta					
	Gly	His	Lys	Met	Met	Arg	Met	Ile	Asp							
	65					70										

<210> 68

<211> 73

<212> PRT

5 <213> artificial sequence
<220>
<223> Synthetic Construct
<400> 68

10 Ala Tyr Gln Ser Met Phe Cys Glu Ser Arg Phe Leu Asp Asn Ala Ser
1 5 10 15

15 Ala Pro Ala Met Arg Asn Ala Lys Arg Arg Ser Glu Glu Arg Val Leu
20 25 30

20 Cys Asn Leu Thr Val His Arg Lys His Ile Leu His Lys Ile Thr Ser
35 40 45

25 Asp Asp Leu Phe Arg Thr Ala Phe Cys Arg Asn Pro Phe Ile Phe Tyr
50 55 60

30 Gly His Lys Met Met Arg Met Ile Asp
65 70

35 <210> 69
<211> 38
<212> DNA
<213> artificial sequence

40 <220>
<223> c-Jun self dimerization inhibitory peptide (SP5) with vector
35 sequence

45 <220>
<221> CDS
<222> (1)...(36)

50 <400> 69
agg tca gac tac aag gac gac gac gac aag gct tat ca
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr
45 5 10

55 <210> 70
<211> 12
<212> PRT
<213> artificial sequence

60 <220>
<223> Synthetic Construct
<400> 70

65 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr
60 1 5 10

70 <210> 71
<211> 8
<212> DNA

<213> artificial sequence
<220>
<223> c-Jun self dimerization inhibitory peptide (SP5)
5
<220>
<221> CDS
<222> (1)..(6)
10
<400> 71
gct tat ca
Ala Tyr
1
15
<210> 72
<211> 2
<212> PRT
20 <213> artificial sequence

<220>
<223> c-Jun self dimerization inhibitory peptide (SP24)
25 <400> 72

Ala Tyr
1

30 <210> 73
<211> 240
<212> DNA
<213> artificial sequence
35 <220>
<223> c-Jun self dimerization inhibitory peptide (SP6) with vector
sequence

40 <220>
<221> CDS
<222> (1)..(54)

45 <220>
<221> misc_feature
<222> (56)..(56)
<223> n is a, c, g, or t

50 <220>
<221> misc_feature
<222> (84)..(84)
<223> n is a, c, g, or t

55 <220>
<221> misc_feature
<222> (130)..(130)
<223> n is a, c, g, or t

60 <220>
<221> misc_feature
<222> (163)..(163)
<223> n is a, c, g, or t

```

<220>
<221> misc_feature
<222> (178)..(178)
<223> n is a, c, g, or t
5
<220>
<221> misc_feature
<222> (184)..(184)
<223> n is a, c, g, or t
10
<220>
<221> misc_feature
<222> (205)..(205)
<223> n is a, c, g, or t
15
<220>
<221> misc_feature
<222> (207)..(208)
<223> n is a, c, g, or t
20
<220>
<221> misc_feature
<222> (234)..(234)
<223> n is a, c, g, or t
25
<220>
<221> misc_feature
<222> (239)..(239)
<223> n is a, c, g, or t
30
<400> 73
agg tca gac tac aag gac gac gac aag gct tat caa tct aag aga 48
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Lys Arg
1 5 10 15
35
ctt tga anatagtgtc caattggcat gtgccacagn taaccaactt actgcaatca 104
Leu
40
ttacccgtga caccaaagac tttgtntgag agtcctttgc ctatttactc ccctgcggna 164
cgaagtgatt gatnataagn ttgtcgcgcg tcgtccctgt ngnnctgacc tgcctaccaa 224
gttgatggcn tcgcnt 240
45
<210> 74
<211> 17
<212> PRT
50 <213> artificial sequence
<220>
<223> Synthetic Construct
55 <400> 74
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Lys Arg
1 5 10 15
60
Leu

```

5 <210> 75
 <211> 210
 <212> DNA
 <213> artificial sequence
10 <220>
 <221> CDS
 <222> (1) .. (24)

15 <220>
 <221> misc_feature
 <222> (26) .. (26)
 <223> n is a, c, g, or t

20 <220>
 <221> misc_feature
 <222> (54) .. (54)
 <223> n is a, c, g, or t

25 <220>
 <221> misc_feature
 <222> (100) .. (100)
 <223> n is a, c, g, or t

30 <220>
 <221> misc_feature
 <222> (133) .. (133)
 <223> n is a, c, g, or t

35 <220>
 <221> misc_feature
 <222> (148) .. (148)
 <223> n is a, c, g, or t

40 <220>
 <221> misc_feature
 <222> (154) .. (154)
 <223> n is a, c, g, or t

45 <220>
 <221> misc_feature
 <222> (175) .. (175)
 <223> n is a, c, g, or t

50 <220>
 <221> misc_feature
 <222> (177) .. (178)
 <223> n is a, c, g, or t

55 <220>
 <221> misc_feature
 <222> (204) .. (204)
 <223> n is a, c, g, or t

60 <220>
 <221> misc_feature
 <222> (209) .. (209)
 <223> n is a, c, g, or t

 <400> 75

gct tat caa tct aag aga ctt tga anatagtgtc caattggcat gtgccacagn 54
 Ala Tyr Gln Ser Lys Arg Leu
 1 5

5 taaccaactt actgcaatca ttacccgtga caccaaagac tttgtntgag agtcctttgc 114
 ctatTTactc ccctgcggna cgaagtgatt gatnataagn ttgtcgcgca tcgtccctgt 174
 ngnnctgacc tgcctaccaa gttgatggcn tcgcnt 210

10

<210> 76
 <211> 7
 <212> PRT
 15 <213> artificial sequence

<220>
 <223> Synthetic Construct

20 <400> 76

Ala Tyr Gln Ser Lys Arg Leu
 1 5

25

<210> 77
 <211> 387
 <212> DNA
 <213> artificial sequence

30

<220>
 <223> c-Jun self dimerization inhibitory peptide (SP8) with vector sequence

35

<220>
 <221> CDS
 <222> (1)...(120)

40 <400> 77

agg tca gac tac aag gac gac gac aag gct tat caa tca atc ata 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile
 1 5 10 15

45 gct aat gaa gag gag agg gag aaa aat ttt gca tcc agc aaa aag gac 96
 Ala Asn Glu Glu Arg Glu Lys Asn Phe Ala Ser Ser Lys Lys Asp
 20 25 30

50 gga tcc tat acc gat ctc ttg tga aacgaatgaa aaatagctct taaatccaga 150
 Gly Ser Tyr Thr Asp Leu Leu
 35

tatgtgtaag aatgcctcca tgattcgtgg atcagaggat tgatagacca gagcttgc 210

55 tcgtcgtcct tggatgtctga cctggatcca attgtatgtatcgatcgatccgtt 270
 ccgcatatgc ccgggcgtac cgcggccgtcgaggatgc atctagaggg ccgcatcatg 330

60 taatttagtta tggcacgtttt acattcacgc cctcccccca catccgtct aaccgaa 387

<210> 78
 <211> 39
 <212> PRT

<213> artificial sequence
 <220>
 <223> Synthetic Construct
 5 <400> 78
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile
 1 5 10 15
 10 Ala Asn Glu Glu Glu Arg Glu Lys Asn Phe Ala Ser Ser Lys Lys Asp
 20 25 30
 15 Gly Ser Tyr Thr Asp Leu Leu
 35
 20 <210> 79
 <211> 357
 <212> DNA
 <213> artificial sequence
 25 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP8)
 30 <220>
 <221> CDS
 <222> (1)...(90)
 <400> 79
 gct tat caa tca atc ata gct aat gaa gag gag agg gag aaa aat ttt 48
 35 Ala Tyr Gln Ser Ile Ile Ala Asn Glu Glu Arg Glu Lys Asn Phe
 1 5 10 15
 gca tcc agc aaa aag gac gga tcc tat acc gat ctc ttg tga 90
 Ala Ser Ser Lys Lys Asp Gly Ser Tyr Thr Asp Leu Leu
 40 20 25
 aacgaatgaa aaatagctct taaatccaga tatgtgtaag aatgcctcca tgattcgtgg 150
 atcagaggat tgatagacca gagcttgcg tcgtcgtcct tggatgtctga cctggatcca 210
 45 attgatgcat cgataccggt actagtcgga ccgcataatgc ccggccgtac cgccggccgct 270
 cgaggcatgc atctagaggg ccgcataatgc taattgtt tggcacgtt acattcacgc 330
 50 cctcccccca catccgcctct aaccgaa 357
 <210> 80
 <211> 29
 55 <212> PRT
 <213> artificial sequence
 <220>
 <223> Synthetic Construct
 60 <400> 80
 Ala Tyr Gln Ser Ile Ile Ala Asn Glu Glu Glu Arg Glu Lys Asn Phe
 1 5 10 15

Ala Ser Ser Lys Lys Asp Gly Ser Tyr Thr Asp Leu Leu
 20 25

5

<210> 81
 <211> 193
 <212> DNA
 10 <213> artificial sequence

<220>
 <223> c-Jun self dimerization inhibitory peptide (SP12) with vector
 sequence

15

<220>
 <221> CDS
 <222> (1)..(123)

20

<400> 81
 agg tca gac tac aag gac gac gac aag gct tat caa gag tcc acc 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Glu Ser Thr
 1 5 10 15

25

aaa gcg ctg gtg gaa ggt ggc gcg gat ctg atc ctg att gaa acc gtt 96
 Lys Ala Leu Val Glu Gly Ala Asp Leu Ile Leu Ile Glu Thr Val
 20 25 30

30

ctt gtc gtc gtc ctt gta gtc tga cctggatcca attgtatgcat 143
 Leu Val Val Val Val Leu Val Val
 35 40

cgataccggt actagtcgga ccgcataatgc ccggggcgtac cgccggccgct 193

35

<210> 82
 <211> 40
 <212> PRT
 40 <213> artificial sequence

<220>
 <223> Synthetic Construct

45

<400> 82
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Glu Ser Thr 48
 1 5 10 15

50

Lys Ala Leu Val Glu Gly Ala Asp Leu Ile Leu Ile Glu Thr Val
 20 25 30

55

Leu Val Val Val Val Leu Val Val
 35 40

60

<210> 83
 <211> 163
 <212> DNA
 <213> artificial sequence

<220>

<223> c-Jun self dimerization inhibitory peptide (SP12)

5 <220>
 <221> CDS
 <222> (1)..(93)

10 <400> 83
 gct tat caa gag tcc acc aaa gcg ctg gtg gaa ggt ggc gcg gat ctg 48
 Ala Tyr Gln Glu Ser Thr Lys Ala Leu Val Glu Gly Gly Ala Asp Leu
 1 5 10 15

15 atc ctg att gaa acc gtt ctt gtc gtc gtc ctt gta gtc tga 93
 Ile Leu Ile Glu Thr Val Leu Val Val Val Val Leu Val Val
 15 20 25 30

20 cctggcacca attgatgcat cgataccggt actagtcgga ccgcataatgc ccggggcgtac 153
 cgccggccgct 163

25 <210> 84
 <211> 30
 <212> PRT
 <213> artificial sequence

30 <220>
 <223> Synthetic Construct

35 <400> 84
 Ala Tyr Gln Glu Ser Thr Lys Ala Leu Val Glu Gly Gly Ala Asp Leu
 1 5 10 15

40 Ile Leu Ile Glu Thr Val Leu Val Val Val Val Leu Val Val
 35 20 25 30

45 <210> 85
 <211> 273
 <212> DNA
 <213> artificial sequence

50 <220>
 <221> CDS
 <222> (1)..(273)

55 <220>
 <221> misc_feature
 <222> (247)..(247)
 <223> n is a, c, g, or t

60 <400> 85
 agg tca gac tac aag gac gac gac gac aag act tat caa tca atc aat 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Thr Tyr Gln Ser Ile Asn
 60 5 10 15

65 ggc cca gaa aat aaa gtg aaa atg tat ttt ttg aat gat tta aat ttc 96

Gly Pro Glu Asn Lys Val Lys Met Tyr Phe Leu Asn Asp Leu Asn Phe
 20 25 30

5 tct aga cgc gat gct gga ttt aaa gca aga aaa gat gca cg^g gac att 144
 Ser Arg Arg Asp Ala Gly Phe Lys Ala Arg Lys Asp Ala Arg Asp Ile
 35 40 45

10 gct tca gat tat gaa aac att tct gtt aac att cct cta tgg ggt 192
 Ala Ser Asp Tyr Glu Asn Ile Ser Val Val Asn Ile Pro Leu Trp Gly
 50 55 60

15 gga gta gtc cag aga att att agt tct gtt aag ctt agt aca ttt ctc 240
 Gly Val Val Gln Arg Ile Ile Ser Ser Val Lys Leu Ser Thr Phe Leu
 65 70 75 80

20 tgc ggt ntt gaa aat aaa gat gtt tta att ttc 273
 Cys Gly Xaa Glu Asn Lys Asp Val Leu Ile Phe
 85 90

25 <210> 86
 <211> 91
 <212> PRT
 <213> artificial sequence

30 <220>
 <221> misc_feature
 <222> (83)..(83)
 <223> The 'Xaa' at location 83 stands for Ile, Val, Leu, or Phe.

35 <220>
 <223> Synthetic Construct

 <400> 86

40 Gly Pro Glu Asn Lys Val Lys Met Tyr Phe Leu Asn Asp Leu Asn Phe
 20 25 30

45 Ser Arg Arg Asp Ala Gly Phe Lys Ala Arg Lys Asp Ala Arg Asp Ile
 35 40 45

50 Ala Ser Asp Tyr Glu Asn Ile Ser Val Val Asn Ile Pro Leu Trp Gly
 50 55 60

55 Gly Val Val Gln Arg Ile Ile Ser Ser Val Lys Leu Ser Thr Phe Leu
 65 70 75 80

60 Cys Gly Xaa Glu Asn Lys Asp Val Leu Ile Phe
 85 90

<210> 87
 <211> 243
 <212> DNA
 <213> artificial sequence

<220>
 <223> c-Jun self dimerization inhibitory peptide (SP15)

5 <220>
 <221> CDS
 <222> (1)..(243)

10 <220>
 <221> misc_feature
 <222> (217)..(217)
 <223> n is a, c, g, or t

15 <400> 87
 act tat caa tca atc aat ggc cca gaa aat aaa gtg aaa atg tat ttt 48
 Thr Tyr Gln Ser Ile Asn Gly Pro Glu Asn Lys Val Lys Met Tyr Phe
 1 5 10 15

20 ttg aat gat tta aat ttc tct aga cgc gat gct gga ttt aaa gca aga 96
 Leu Asn Asp Leu Asn Phe Ser Arg Arg Asp Ala Gly Phe Lys Ala Arg
 20 25 30

25 aaa gat gca cgg gac att gct tca gat tat gaa aac att tct gtt gtt 144
 Lys Asp Ala Arg Asp Ile Ala Ser Asp Tyr Glu Asn Ile Ser Val Val
 35 40 45

30 aac att cct cta tgg ggt gga gta gtc cag aga att att agt tct gtt 192
 Asn Ile Pro Leu Trp Gly Val Val Gln Arg Ile Ile Ser Ser Val
 50 55 60

35 aag ctt agt aca ttt ctc tgc ggt ntt gaa aat aaa gat gtt tta att 240
 Lys Leu Ser Thr Phe Leu Cys Gly Xaa Glu Asn Lys Asp Val Leu Ile
 65 70 75 80

40 ttc 243
 Phe

45 <210> 88
 <211> 81
 <212> PRT
 <213> artificial sequence

50 <220>
 <221> misc_feature
 <222> (73)..(73)
 <223> The 'Xaa' at location 73 stands for Ile, Val, Leu, or Phe.

55 <400> 88
 Thr Tyr Gln Ser Ile Asn Gly Pro Glu Asn Lys Val Lys Met Tyr Phe
 1 5 10 15

60 Leu Asn Asp Leu Asn Phe Ser Arg Arg Asp Ala Gly Phe Lys Ala Arg
 20 25 30

Lys Asp Ala Arg Asp Ile Ala Ser Asp Tyr Glu Asn Ile Ser Val Val
 35 40 45

Asn Ile Pro Leu Trp Gly Gly Val Val Gln Arg Ile Ile Ser Ser Val
 50 55 60

5 Lys Leu Ser Thr Phe Leu Cys Gly Xaa Glu Asn Lys Asp Val Leu Ile
 65 70 75 80

10 Phe

15 <210> 89
 <211> 320
 <212> DNA
 <213> artificial sequence

20 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP18) with vector sequence

25 <220>
 <221> CDS
 <222> (1)..(54)

30 <400> 89
 agg tca gac tac aag gac gac gac aag gct tat caa tca atc ata 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile
 1 5 10 15

35 cat tga ctacaaggac gacgacgaca aggcttatca atcaatcaat gggggccctgc 104
 His

40 tgaagattca acgttcttcg ccttccttg cttttgaata tcttcgatta tgatttgttc 164
 acattcaatg cctaatagcc gttttcttg tcgtcgctgt cctttagtgc tgacctggta 224
 ccaattgatg catcgatacc ggtactagtc ggaccgcata tgcggccgct cgagcatgca 284
 tcttagagggc cctattctat agtgtcacct aaatgc 320

45 <210> 90
 <211> 17
 <212> PRT
 <213> artificial sequence

50 <220>
 <223> Synthetic Construct

55 <400> 90
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile
 1 5 10 15

60 His

```

<210> 91
<211> 290
<212> DNA
<213> artificial sequence
5
<220>
<223> c-Jun self dimerization inhibitory peptide (SP18)

10 <220>
<221> CDS
<222> (1)...(24)

15 <400> 91
      gct tat caa tca atc ata cat tga ctacaaggac gacgacgaca aggcttatca      54
      Ala Tyr Gln Ser Ile Ile His
      1           5

20 atcaatcaat gggccctgc tgaagattca acgttcttcg cctctcccttg ctttgaata      114
      tcttcgattt tgattttttc acattcaatg cctaatagcc gtttttcttg tcgtcgctgt
      cctttagtgc tgacctggta ccaattgtatg catcgatacc ggtactatgtc ggaccgcata      174
      234

25 tgcggccgct cgagcatgca tctagaggc cctattctat agtgtcacct aaatgc      290

<210> 92
<211> 7
30 <212> PRT
<213> artificial sequence

35 <220>
<223> Synthetic Construct

35 <400> 92

      Ala Tyr Gln Ser Ile Ile His
      1           5

40

<210> 93
<211> 211
<212> DNA
45 <213> artificial sequence

<220>
<223> c-Jun self dimerization inhibitory peptide (SP20) with vector      48
      sequence

50

<220>
<221> CDS
<222> (1)...(90)

55 <400> 93
      agg tca gac tac aag gac gac gac aag att tat tca tca att cta      48
      Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ile Tyr Ser Ser Ile Leu
      1           5           10           15

60 tgg ggg aca aaa tgg tgc gtt tta ttg gta ata aca ccc taa
      Trp Gly Thr Lys Trp Cys Val Leu Leu Val Ile Thr Pro      90
      20           25

```

tctatagaga tggtgattga ttgataagcc ttctcgctcg cgtccttgt a gtctgacctg 150
 gtaccaattg atgcatcgat accggtaacta gtcggaccgc atatgcccgg gcgtaccgcg 210
 5 g 211

10 <210> 94
 <211> 29
 <212> PRT
 <213> artificial sequence

15 <220>
 <223> Synthetic Construct
 15 <400> 94

Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ile Tyr Ser Ser Ile Leu
 1 5 10 15

20 Trp Gly Thr Lys Trp Cys Val Leu Leu Val Ile Thr Pro
 20 25

25 <210> 95
 <211> 181
 <212> DNA
 <213> artificial sequence

30 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP20)

35 <220>
 <221> CDS
 <222> (1)...(60)

40 <400> 95
 att tat tca tca att cta tgg ggg aca aaa tgg tgc gtt tta ttg gta 48
 Ile Tyr Ser Ser Ile Leu Trp Gly Thr Lys Trp Cys Val Leu Leu Val
 1 5 10 15

45 ata aca ccc taa tctatagaga tggtgattga ttgataagcc ttctcgctcg 100
 Ile Thr Pro

cgtccttgt a gtctgacctg gtaccaattg atgcatcgat accggtaacta gtcggaccgc 160
 50 atatgcccgg gcgtaccgcg g 181

55 <210> 96
 <211> 19
 <212> PRT
 <213> artificial sequence

60 <220>
 <223> Synthetic Construct
 <400> 96

Ile Tyr Ser Ser Ile Leu Trp Gly Thr Lys Trp Cys Val Leu Leu Val
 1 5 10 15

Ile Thr Pro

5

<210> 97
 <211> 120
 <212> DNA
 10 <213> artificial sequence

<220>
 <223> c-Jun self dimerization inhibitory peptide (SP21) with vector

15 <220>
 <221> CDS
 <222> (1)..(105)

20 <220>
 <221> misc_feature
 <222> (53)..(53)
 <223> n is a, c, g, or t

25 <400> 97
 agg tca gac tac aag gac gac gac aag atc att att tat att ttc 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ile Ile Ile Tyr Ile Phe
 1 5 10 15

30 ctt anc atc tct aat agc atc aaa aac atc ttc gac aat atg ggt aaa 96
 Leu Xaa Ile Ser Asn Ser Ile Lys Asn Ile Phe Asp Asn Met Gly Lys
 20 25 30

35 atc aga taa ctccatcata tcaag 120
 Ile Arg

40 <210> 98
 <211> 34
 <212> PRT
 <213> artificial sequence

45 <220>
 <221> misc_feature
 <222> (18)..(18)
 <223> The 'Xaa' at location 18 stands for Asn, Ser, Thr, or Ile..

50 <220>
 <223> Synthetic Construct

<400> 98

55 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ile Ile Ile Tyr Ile Phe
 1 5 10 15

Leu Xaa Ile Ser Asn Ser Ile Lys Asn Ile Phe Asp Asn Met Gly Lys
 20 25 30

60 Ile Arg

5 <210> 99
 <211> 90
 <212> DNA
 <213> artificial sequence
 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP21)

10 <220>
 <221> CDS
 <222> (1)..(75)

15 <220>
 <221> misc_feature
 <222> (23)..(23)
 <223> n is a, c, g, or t

20 <400> 99
 atc att att tat att ttc ctt anc atc tct aat agc atc aaa aac atc
 Ile Ile Ile Tyr Ile Phe Leu Xaa Ile Ser Asn Ser Ile Lys Asn Ile
 1 5 10 15

25 ttc gac aat atg ggt aaa atc aga taa ctccatcata tcaag
 Phe Asp Asn Met Gly Lys Ile Arg
 20

30 <210> 100
 <211> 24
 <212> PRT
 <213> artificial sequence

35 <220>
 <221> misc_feature
 <222> (8)..(8)
 <223> The 'Xaa' at location 8 stands for Asn, Ser, or Ile.

40 <220>
 <223> Synthetic Construct

<400> 100
 Ile Ile Ile Tyr Ile Phe Leu Xaa Ile Ser Asn Ser Ile Lys Asn Ile
 1 5 10 15

45 Phe Asp Asn Met Gly Lys Ile Arg
 20

50 <210> 101
 <211> 143
 <212> DNA
 <213> artificial sequence

55 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP22) with vector

60 <220>
 <221> CDS
 <222> (1)..(141)

5	<400> 101 agg tca gac tac aag gac gac gac aag aag gac tcc ata cgg cgg Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Lys Asp Ser Ile Arg Arg 1 5 10 15	48
10	cgc ggc gag aat att tcc tcg cag gaa gtc gag gcc gtc ctc atg tcg Arg Gly Glu Asn Ile Ser Ser Gln Glu Val Glu Ala Val Leu Met Ser 20 25 30	96
15	cat ccc gaa gtc gtc aat gcc gcg gtc tac ccc gta cgc ggc gat ct His Pro Glu Val Val Asn Ala Ala Val Tyr Pro Val Arg Gly Asp 35 40 45	143
20	<210> 102 <211> 47 <212> PRT <213> artificial sequence	
25	<220> <223> Synthetic Construct	
30	<400> 102 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Lys Asp Ser Ile Arg Arg 1 5 10 15	
35	Arg Gly Glu Asn Ile Ser Ser Gln Glu Val Glu Ala Val Leu Met Ser 20 25 30	
40	His Pro Glu Val Val Asn Ala Ala Val Tyr Pro Val Arg Gly Asp 35 . 40 45	
45	<210> 103 <211> 113 <212> DNA <213> artificial sequence	
50	<220> <223> c-Jun self dimerization inhibitory peptide (SP22)	
55	<220> <221> CDS <222> (1)..(111)	
60	<400> 103 aag gac tcc ata cgg cgg cgc ggc gag aat att tcc tcg cag gaa gtc Lys Asp Ser Ile Arg Arg Gly Glu Asn Ile Ser Ser Gln Glu Val 1 5 10 15	48
65	gag gcc gtc ctc atg tcg cat ccc gaa gtc gtc aat gcc gcg gtc tac Glu Ala Val Leu Met Ser His Pro Glu Val Val Asn Ala Ala Val Tyr 20 25 30	96
70	ccc gta cgc ggc gat ct Pro Val Arg Gly Asp 35	113

5 <210> 104
 <211> 37
 <212> PRT
 <213> artificial sequence
 <220>
 <223> Synthetic Construct
 10 <400> 104
 Lys Asp Ser Ile Arg Arg Arg Gly Glu Asn Ile Ser Ser Gln Glu Val
 1 5 10 15
 15 Glu Ala Val Leu Met Ser His Pro Glu Val Val Asn Ala Ala Val Tyr
 20 25 30
 20 Pro Val Arg Gly Asp
 35
 25 <210> 105
 <211> 192
 <212> DNA
 <213> artificial sequence
 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP24) with vector
 30 sequence
 <220>
 <221> CDS
 35 <222> (1)...(111)
 <400> 105
 agg tca gac tac aag gac gac gac aag cta tat caa tca cta ctc 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Lys Leu Tyr Gln Ser Leu Leu
 40 1 5 10 15
 act gct acc aaa gaa ttg ctt ttt gtc gcg cct gta gca aaa gca ttc
 Thr Ala Thr Lys Glu Leu Leu Phe Val Ala Pro Val Ala Lys Ala Phe 96
 20 25 30
 45 aca tcg tgt gat tga ttgataagcc ttctcgctgt cgtccttgta gtctgaccctg
 Thr Ser Cys Asp 151
 35
 50 gtaccaaattt atgcatcgat accggtaacta gtcggaccgc a 192
 <210> 106
 <211> 36
 <212> PRT
 <213> artificial sequence
 <220>
 <223> Synthetic Construct
 60 <400> 106
 Arg Ser Asp Tyr Lys Asp Asp Asp Lys Leu Tyr Gln Ser Leu Leu
 1 5 10 15

Thr Ala Thr Lys Glu Leu Leu Phe Val Ala Pro Val Ala Lys Ala Phe
20 25 30

5

Thr Ser Cys Asp
35

10 <210> 107
<211> 162
<212> DNA
<213> artificial sequence

15 <220>
<223> c-Jun self dimerization inhibitory peptide (SP24)

20 <220>
<221> CDS
<222> (1)...(81)

25 <400> 107
ctatcaatcaacttcactgctaccaaa gaa ttg ctt ttt gtc gcg 48
Leu Tyr Gln Ser Leu Leu Thr Ala Thr Lys Glu Leu Leu Phe Val Ala
1 5 10 15

30 cctgtacaaa gca ttc aca tcg tgt gat tga ttgataagcc ttctcgctgt 101
Pro Val Ala Lys Ala Phe Thr Ser Cys Asp
20 25

35 cgtccttgta gtctgacctg gtaccaattg atgcatcgat accggacta gtcggaccgc 161

40 <210> 108
<211> 26
<212> PRT
<213> artificial sequence

45 <220>
<223> Synthetic Construct

50 <400> 108
Leu Tyr Gln Ser Leu Leu Thr Ala Thr Lys Glu Leu Leu Phe Val Ala
1 5 10 15

55 Pro Val Ala Lys Ala Phe Thr Ser Cys Asp
20 25

60 <210> 109
<211> 236
<212> DNA
<213> artificial sequence

60 <220>
<223> c-Jun self dimerization inhibitory peptide (SP29) with vector
sequence

```

<220>
<221> CDS
<222> (1)..(72)
5 <400> 109
agg tca gac tac aag gac tac tgg tgg ggt cct ttc att ccc ccc ttt      48
Arg Ser Asp Tyr Lys Asp Tyr Trp Trp Gly Pro Phe Ile Pro Pro Phe
1           5           10           15
10 ttc tgg aga cta aat aaa atc tga tattatatcg actctagagt cgccggccgca      102
Phe Trp Arg Leu Asn Lys Ile
20
15 attcttaatt aattcattac ttgtacagct cgtccatgcc gagagtgate cccggggccg      162
tcacgaactc cagcaggacc atgtgatcgc gcttctcggtt ggggtctttg ctcagggccg      222
actgggtgct cagg                                236
20
<210> 110
<211> 23
<212> PRT
25 <213> artificial sequence

<220>
<223> Synthetic Construct

30 <400> 110
Arg Ser Asp Tyr Lys Asp Tyr Trp Trp Gly Pro Phe Ile Pro Pro Phe
1           5           10           15
35 Phe Trp Arg Leu Asn Lys Ile
20
40 <210> 111
<211> 218
<212> DNA
<213> artificial sequence

45 <220>
<223> c-Jun self dimerization inhibitory peptide (SP29)

50 <220>
<221> CDS
<222> (1)..(42)

<400> 111
55 tac tgg tgg ggt cct ttc att ccc ccc ttt ttc tgg aga cta      42
Tyr Trp Trp Gly Pro Phe Ile Pro Pro Phe Phe Trp Arg Leu
1           5           10
55 aataaaatct gatattatat cgactctaga gtcgcggccg caattctaa ttaattcatt      102
60 acttgtacag ctcgtccatg ccgagagtga tcccgccggc ggtcacgaac tccagcagga      162
ccatgtgatc gcgcttctcg ttggggtctt tgctcaggc ggactgggtg ctcagg      218

```

5 <210> 112
 <211> 14
 <212> PRT
 <213> artificial sequence
 10 <220>
 <223> Synthetic Construct
 <400> 112
 15 Tyr Trp Trp Gly Pro Phe Ile Pro Pro Phe Trp Arg Leu
 1 5 10
 20 <210> 113
 <211> 412
 <212> DNA
 <213> artificial sequence
 25 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP30) with vector
 sequence
 30 <220>
 <221> CDS
 <222> (1)..(186)
 <400> 113
 35 agg tca gac tac aag gac gac gac aag gtc tac gcc tac ttc ggt
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Val Tyr Ala Tyr Phe Gly
 1 5 10 15
 aac acc ggc gat gtt gtc gaa gta ggc gta gac ctt gta ggt atc gcc
 40 Asn Thr Gly Asp Val Val Glu Val Gly Val Asp Leu Val Gly Ile Ala
 20 25 30
 ggc gtt gcc cac gct cag gcc gct gac ccg cag ggc cag cag caa cag
 45 Gly Val Ala His Ala Gln Ala Ala Asp Pro Gln Gly Gln Gln Gln
 35 40 45
 ggc cag cag gcc ggc cag gag gaa cag gcc gac acc gat tga
 50 Gly Gln Ala Gly Gln Glu Glu Gln Ala Asp Thr Asp
 55 55 60
 ttgataagcc ttgtcgctgt cgtcccttgta gtctgacctg gtaccaattg atgcacatcgat
 accggtaacta gtcggaccgc atatgcccgg gcgtaccgcg gcccgtcgag gcatgcacatct
 60 agagggccgc atcatgtaat tagttatgtc acgcttacat tcacgccctc cccccacatc
 cgctctaacc gaaaaggaag gagttagaca acctgaagtc taggtc
 65 <210> 114
 <211> 61
 <212> PRT
 <213> artificial sequence
 70 <220>
 <223> Synthetic Construct
 <400> 114

50

Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Val Tyr Ala Tyr Phe Gly
 1 5 10 15

5 Asn Thr Gly Asp Val Val Glu Val Gly Val Asp Leu Val Gly Ile Ala
 20 25 30

10 Gly Val Ala His Ala Gln Ala Ala Asp Pro Gln Gly Gln Gln Gln
 35 40 45

15 Gly Gln Gln Ala Gly Gln Glu Glu Gln Ala Asp Thr Asp
 50 55 60

20 <210> 115
 <211> 382
 <212> DNA
 <213> artificial sequence

25 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP30)

30 <400> 115
 gtc tac gcc tac ttc ggt aac acc ggc gat gtt gtc gaa gta ggc gta 48
 Val Tyr Ala Tyr Phe Gly Asn Thr Gly Asp Val Val Glu Val Gly Val
 1 5 10 15

35 gac ctt gta ggt atc gcc ggc gtt gcc cac gct cag gcc gct gac ccg 96
 Asp Leu Val Gly Ile Ala Gly Val Ala His Ala Gln Ala Ala Asp Pro
 20 25 30

40 cag ggc cag cag caa cag ggc cag cag gcc ggc cag gag gaa cag gcc 144
 Gln Gly Gln Gln Gln Gly Gln Gln Ala Gly Gln Glu Glu Gln Ala
 35 40 45

45 gac acc gat tga ttgataagcc ttgtcgctgt cgtcccttgta gtctgaccc 196
 Asp Thr Asp
 50 50

gtaccaattg atgcatcgat accggtaacta gtcggaccgc atatgcccgg gcttaccgc 256

55 gccgctcgag gcatgcatct agagggccgc atcatgtaat tagttatgtc acgcttacat 316

50 tcacgccctc cccccacatc cgctctaacc gaaaaggaag gagttagaca acctgaagtc 376

55 taggtc 382

60 <210> 116
 <211> 51
 <212> PRT
 <213> artificial sequence

65 <220>
 <223> Synthetic Construct

70 <400> 116

Val Tyr Ala Tyr Phe Gly Asn Thr Gly Asp Val Val Glu Val Gly Val
 1 5 10 15

5 Asp Leu Val Gly Ile Ala Gly Val Ala His Ala Gln Ala Ala Asp Pro
 20 25 30

10 Gln Gly Gln Gln Gln Gly Gln Gln Ala Gly Gln Glu Glu Gln Ala
 35 40 45

15 Asp Thr Asp
 50

20 <210> 117
 <211> 213
 <212> DNA
 <213> artificial sequence

25 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP32) with vector
 sequence

30 <220>
 <221> CDS
 <222> (1)...(66)

35 <400> 117
 agt tca gac tac aag gac gac gac aat acc ccc cac tcc tcc gat 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Asn Thr Pro His Ser Ser Asp
 1 5 10 15

40 ggc cac aat aat ccc taa aatctcagtg tttcctccag tttttgctag 96
 Gly His Asn Asn Pro
 20

45 aatcataggc tggtaaattta cttcagtgat tccttctaca aagctaaaca atgataactg 156

50 attgattgat aagccttgat gtcgtcgtcc ttgttagtctg acctggtaacc aattgat 213

55 <210> 118
 <211> 21
 <212> PRT
 <213> artificial sequence

60 <220>
 <223> Synthetic Construct

65 <400> 118

70 Arg Ser Asp Tyr Lys Asp Asp Asp Asn Thr Pro His Ser Ser Asp 156
 1 5 10 15

75 Gly His Asn Asn Pro
 20

<210> 119

<211> 186
<212> DNA
<213> artificial sequence

5 <220>
<223> c-Jun self dimerization inhibitory peptide (SP32)

10 <220>
<221> CDS
<222> (1)..(39)

15 <400> 119
aat acc ccc cac tcc tcc gat ggc cac aat aat ccc taa aatctcagtg 49
Asn Thr Pro His Ser Ser Asp Gly His Asn Asn Pro
1 5 10

16 ttcctccag ttttgctag aatcataggc tggtaaattta cttcagtgtat tccttctaca 109

20 aagctaaaca atgataactg attgattgtat aagccttgtc gtcgtcgtcc ttgtagtctg 169
acctggtacc aattgtat 186

25 <210> 120
<211> 12
<212> PRT
<213> artificial sequence

30 <220>
<223> Synthetic Construct

35 <400> 120
Asn Thr Pro His Ser Ser Asp Gly His Asn Asn Pro
1 5 10

40 <210> 121
<211> 205
<212> DNA
<213> artificial sequence

45 <220>
<223> c-Jun self dimerization inhibitory peptide (SP33) with vector
sequence

50 <220>
<221> CDS
<222> (1)..(60)

55 <220>
<221> misc_feature
<222> (192)..(192)
<223> n is a, c, g, or t

60 <400> 121
agg tca gac tac aag gac gac gac gac aag gct tat caa tca atc aaa 48
Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Lys
1 5 10 15

65 tgg cca atg taa attgtcggtg cgccaggaaa gagcgtcgggt ttgtgtttgt 100
Trp Pro Met

cgatgatttt aagtgtttcg agcggatcaa acttaggaag aagaatcatt taacacctgt 160
5 tacagaaggg cttgtcgtcg tcgtccttgt antctgacct gaatt 205

10 <210> 122
<211> 19
<212> PRT
<213> artificial sequence

15 <220>
<223> Synthetic Construct
<400> 122

20 Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Lys
1 5 10 15

25 Trp Pro Met

30 <210> 123
<211> 175
<212> DNA
<213> artificial sequence

35 <220>
<221> CDS
<222> (1)..(30)

40 <220>
<221> misc_feature
<222> (162)..(162)
<223> n is a, c, g, or t

45 <400> 123
45 gct tat caa tca atc aaa tgg cca atg taa attgtcggtg cgccaggaaa 50
Ala Tyr Gln Ser Ile Lys Trp Pro Met
1 5

50 gagcgtcgggt ttgtgttgtt cgatgatttt aagtgtttcg agcggatcaa acttaggaag 110
aagaatcatt taacacctgt tacagaaggg cttgtcgtcg tcgtccttgt antctgacct 170
gaatt 175

55 <210> 124
<211> 9
<212> PRT
<213> artificial sequence

60 <220>
<223> Synthetic Construct
<400> 124

Ala Tyr Gln Ser Ile Lys Trp Pro Met
 1 5

5
 <210> 125
 <211> 225
 <212> DNA
 <213> artificial sequence

10
 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP34) with vector sequence

15
 <220>
 <221> CDS
 <222> (1)..(120)

20 <400> 125 48
 agg tca gac tac aag gac gac gac aag gct tat caa tca ata aat
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Asn
 1 5 10 15

25 tcg tca cca gta ttg cct gaa aat agt caa gaa tta tca ctt cac tta 96
 Ser Ser Pro Val Leu Pro Glu Asn Ser Gln Glu Leu Ser Leu His Leu
 20 25 30

aag caa cac gta aca aaa tca tga aagaatatac caaaaatgtt aatgttgc 150
30 Lys Gln His Val Thr Lys Ser
 35

agaaaattac aagaagaaga taaaataaaag ggtgttagaag aaaacaataa agatgaatta 210

35 atgcagggtg atgat 225

<210> 126
 <211> 39

40 <212> PRT
 <213> artificial sequence

<220>
 <223> Synthetic Construct

45 <400> 126

Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Asn 76
 1 5 10 15

50
 Ser Ser Pro Val Leu Pro Glu Asn Ser Gln Glu Leu Ser Leu His Leu
 20 25 30

55
 Lys Gln His Val Thr Lys Ser
 35

60 <210> 127
 <211> 195
 <212> DNA
 <213> artificial sequence

<220>
 <223> c-Jun self dimerization inhibitory peptide (SP34)

5 <220>
 <221> CDS
 <222> (1)..(90)

10 <400> 127
 gct tat caa tca ata aat tcg tca cca gta ttg cct gaa aat agt caa 48
 Ala Tyr Gln Ser Ile Asn Ser Ser Pro Val Leu Pro Glu Asn Ser Gln
 1 5 10 15

15 gaa tta tca ctt cac tta aag caa cac gta aca aaa tca tga 90
 Glu Leu Ser Leu His Leu Lys Gln His Val Thr Lys Ser
 20 25

20 aagaatatat caaaaatgatca tgaattagca agaaaattac aagaagaaga taaaataaag 150

25 ggtgtagaag aaaacaataa agatgaatta atgcagggtg atgat 195

25 <210> 128
 <211> 29
 <212> PRT
 <213> artificial sequence

30 <220>
 <223> Synthetic Construct

30 <400> 128
 Ala Tyr Gln Ser Ile Asn Ser Ser Pro Val Leu Pro Glu Asn Ser Gln
 1 5 10 15

35 Glu Leu Ser Leu His Leu Lys Gln His Val Thr Lys Ser
 20 25

40 <210> 129
 <211> 245
 <212> DNA
 <213> artificial sequence

45 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP35) with vector sequence

50 <220>
 <221> CDS
 <222> (1)..(87)

55 <220>
 <221> misc_feature
 <222> (234)..(234)
 <223> n is a, c, g, or t

60 <400> 129
 agg tca gac tac aag gac gac gac gac aag gct tat caa tca atc cgg 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Arg
 1 5 10 15

tct gga ggg ata gag tct agt tcg aaa agg gag agg taa gggtgtggaat 97
 Ser Gly Gly Ile Glu Ser Ser Ser Lys Arg Glu Arg
 20 25

5 gaccctaagg acttacaatc caaacgaaac cttcttctctt attcttcacg agtttgtgaa 157
 gttccttaag aggaggagac tacttcaaga gccatagac ttgtcgctgt cgtccttgta 217
 gtctgacctg gtaccanttg atgcacatcg 245

10 <210> 130
 <211> 28
 <212> PRT
 15 <213> artificial sequence

<220>
 <223> Synthetic Construct

20 <400> 130
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Arg
 1 5 10 15

25 Ser Gly Gly Ile Glu Ser Ser Ser Lys Arg Glu Arg
 20 25

30 <210> 131
 <211> 215
 <212> DNA
 <213> artificial sequence

35 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP35)

40 <220>
 <221> CDS
 <222> (1)..(57)

<220>
 <221> misc_feature
 45 <222> (204)..(204)
 <223> n is a, c, g, or t

<400> 131
 gct tat caa tca atc cgg tct gga ggg ata gag tct agt tcg aaa agg 48
 50 Ala Tyr Gln Ser Ile Arg Ser Gly Gly Ile Glu Ser Ser Ser Lys Arg
 1 5 10 15

gag agg taa gggtgtggaat gaccctaagg acttacaatc caaacgaaac 97
 Glu Arg

55 cttcttctctt attcttcacg agtttgtgaa gttccttaag aggaggagac tacttcaaga 157

60 gccatagac ttgtcgctgt cgtccttgta gtctgacctg gtaccanttg atgcacatcg 215

<210> 132
 <211> 18
 <212> PRT

<220>
 <223> c-Jun self dimerization inhibitory peptide (SP36)

5 <220>
 <221> CDS
 <222> (1)...(48)

10 <400> 135
 gga cta caa gga cga cga cga caa ggt tat caa tca atc aag cca tga 48
 Gly Leu Gln Gly Arg Arg Arg Gln Gly Tyr Gln Ser Ile Lys Pro
 1 5 10 15

15 ttgatctccg atatatgaat tcaggtcaga ctacaagga 87

20 <210> 136
 <211> 15
 <212> PRT
 <213> artificial sequence

25 <220>
 <223> Synthetic Construct

30 <400> 136
 Gly Leu Gln Gly Arg Arg Arg Gln Gly Tyr Gln Ser Ile Lys Pro
 1 5 10 15

35 <210> 137
 <211> 220
 <212> DNA
 <213> artificial sequence

40 <220>
 <221> CDS
 <222> (1)...(219)

45 <220>
 <221> misc_feature
 <222> (184)...(184)
 <223> n is a, c, g, or t

50 <400> 137
 agg tca gac tac aag gac gac gac aag gct tat caa tca atc ggc 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Gly
 1 5 10 15

55 <400> 137
 agc atc tgg aac agc tgc caa tgc atg agt ttc tgg tgc gca ttc gtg 96
 Ser Ile Trp Asn Ser Cys Gln Cys Met Ser Phe Trp Cys Ala Phe Val
 20 25 30

60 <400> 137
 cgc agc tgt tat ggg cct ggg cgc ggc tgg atg aag ccg aag cgt cgg 144
 Arg Ser Cys Tyr Gly Pro Gly Arg Gly Trp Met Lys Pro Lys Arg Arg
 35 40 45

<400> 137
 cgc gta ccg gga ttg aag tct tgt cgt cgt cct tgt ngt ctg acc 192
 Arg Val Pro Gly Leu Lys Ser Cys Arg Arg Pro Cys Xaa Leu Thr

50	55	60	
----	----	----	--

tgg tac caa ttg atg cat cga tac cggt
 Trp Tyr Gln Leu Met His Arg Tyr Arg
 5 65 70

220

10 <210> 138
 <211> 73
 <212> PRT
 <213> artificial sequence

15 <220>
 <221> misc_feature
 <222> (62)..(62)
 <223> The 'Xaa' at location 62 stands for Ser, Gly, Arg, or Cys.

20 <220>
 <223> Synthetic Construct

25 <400> 138

Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Gly
 1 5 10 15

Ser Ile Trp Asn Ser Cys Gln Cys Met Ser Phe Trp Cys Ala Phe Val
 20 25 30

30 Arg Ser Cys Tyr Gly Pro Gly Arg Gly Trp Met Lys Pro Lys Arg Arg
 35 40 45

35 Arg Val Pro Gly Leu Lys Ser Cys Arg Arg Arg Pro Cys Xaa Leu Thr
 50 55 60

Trp Tyr Gln Leu Met His Arg Tyr Arg
 40 65 70

45 <210> 139
 <211> 190
 <212> DNA
 <213> artificial sequence

50 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP45)

55 <220>
 <221> CDS
 <222> (1)..(189)

60 <220>
 <221> misc_feature
 <222> (154)..(154)
 <223> n is a, c, g, or t

<400> 139

gct tat caa tca atc ggc agc atc tgg aac agc tgc caa tgc atg agt	48
Ala Tyr Gln Ser Ile Gly Ser Ile Trp Asn Ser Cys Gln Cys Met Ser	
1 5 10 15	

60

ttc tgg tgc gca ttc gtg cgc agc tgt tat ggg cct ggg cgc ggc tgg 96
Phe Trp Cys Ala Phe Val Arg Ser Cys Tyr Gly Pro Gly Arg Gly Trp
20 25 30

5 atg aag ccg aag cgt cgg cgc gta ccg gga ttg aag tct tgt cgt cgt 144
Met Lys Pro Lys Arg Arg Val Pro Gly Leu Lys Ser Cys Arg Arg
35 40 45

10 cgt cct tgt ngt ctg acc tgg tac caa ttg atg cat cga tac cgg t 190
Arg Pro Cys Xaa Leu Thr Trp Tyr Gln Leu Met His Arg Tyr Arg
50 55 60

15 <210> 140
<211> 63
<212> PRT
<213> artificial sequence

20 <220>
<221> misc_feature
<222> (52)..(52)
<223> The 'Xaa' at location 52 stands for Ser, Gly, Arg, or Cys.

25 <220>
<223> Synthetic Construct

<400> 140

30 Ala Tyr Gln Ser Ile Gly Ser Ile Trp Asn Ser Cys Gln Cys Met Ser 15
1 5 10 15

35 Phe Trp Cys Ala Phe Val Arg Ser Cys Tyr Gly Pro Gly Arg Gly Trp
20 25 30

Met Lys Pro Lys Arg Arg Val Pro Gly Leu Lys Ser Cys Arg Arg
35 40 45

40 Arg Pro Cys Xaa Leu Thr Trp Tyr Gln Leu Met His Arg Tyr Arg
50 55 60

45 <210> 141
<211> 153
<212> DNA
<213> artificial sequence

50 <220>
<223> c-Jun self dimerization inhibitory peptide (SP54) with vector
sequence

55 <220>
<221> CDS
<222> (1)..(153)

60 <220>
<221> misc_feature
<222> (47)..(47)
<223> n is a, c, g, or t

<400> 141
 agg tca gac tac aag gac gac gac aag gct tat caa tca ttc cnc 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Phe Xaa
 1 5 10 15
 5
 ttg gca ggc tac cac ggc gac act tcg aga aca ttt cta gtg ggt tcg 96
 Leu Ala Gly Tyr His Gly Asp Thr Ser Arg Thr Phe Leu Val Gly Ser
 20 25 30
 10 gta tcc gca act gcc cga aaa tta gtt gaa gcg act caa gaa acg atg 144
 Val Ser Ala Thr Ala Arg Lys Leu Val Glu Ala Thr Gln Glu Thr Met
 35 40 45
 att gat tat 153
 15 Ile Asp Tyr
 50

20 <210> 142
 <211> 51
 <212> PRT
 <213> artificial sequence

25 <220>
 <221> misc_feature
 <222> (16)..(16)
 <223> The 'Xaa' at location 16 stands for His, Arg, Pro, or Leu.

30 <220>
 <223> Synthetic Construct

<400> 142
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Phe Xaa
 35 1 5 10 15

Leu Ala Gly Tyr His Gly Asp Thr Ser Arg Thr Phe Leu Val Gly Ser
 20 25 30

40 Val Ser Ala Thr Ala Arg Lys Leu Val Glu Ala Thr Gln Glu Thr Met
 35 40 45

45 Ile Asp Tyr
 50

50 <210> 143
 <211> 123
 <212> DNA
 <213> artificial sequence

55 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP54)

60 <220>
 <221> CDS
 <222> (1)..(123)

<220>
 <221> misc_feature

```

<222> (17)..(17)
<223> n is a, c, g, or t

<400> 143
5 gct tat caa tca ttc cnc ttg gca ggc tac cac ggc gac act tcg aga      48
Ala Tyr Gln Ser Phe Xaa Leu Ala Gly Tyr His Gly Asp Thr Ser Arg
1                      5                      10                      15

10 aca ttt cta gtg ggt tcg gta tcc gca act gcc cga aaa tta gtt gaa      96
Thr Phe Leu Val Gly Ser Val Ser Ala Thr Ala Arg Lys Leu Val Glu
20                      25                      30

15 gcg act caa gaa acg atg att gat tat      123
Ala Thr Gln Glu Thr Met Ile Asp Tyr
35                      40

<210> 144
<211> 41
20 <212> PRT
<213> artificial sequence

<220>
25 <221> misc_feature
<222> (6)..(6)
<223> The 'Xaa' at location 6 stands for His, Arg, Pro, or Leu.

<220>
<223> Synthetic Construct
30 <400> 144

Ala Tyr Gln Ser Phe Xaa Leu Ala Gly Tyr His Gly Asp Thr Ser Arg
1                      5                      10                      15
35

Thr Phe Leu Val Gly Ser Val Ser Ala Thr Ala Arg Lys Leu Val Glu
20                      25                      30

40 Ala Thr Gln Glu Thr Met Ile Asp Tyr
35                      40

45 <210> 145
<211> 323
<212> DNA
<213> artificial sequence

50 <220>
<223> c-Jun self dimerization inhibitory peptide (SP58) with vector
sequence

55 <220>
<221> CDS
<222> (1)..(222)

60 <400> 145
60 agg tca gac tac aag gac gac gac aag gct tat caa tca atc atg      48
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Met
1                      5                      10                      15

gca gtg gct gcc cag cag ccg gtc gcg ttc ctg gta ggc cgc cag cgt      96

```

	Ala Val Ala Ala Gln Gln Pro Val Ala Phe Leu Val Gly Arg Gln Arg			
	20	25	30	
5	cgc cgc ggt cag gta gga atc gac tcc ggc gat cag cac ctt cga aca		144	
	Arg Arg Gly Gln Val Gly Ile Asp Ser Gly Asp Gln His Leu Arg Thr			
	35	40	45	
10	ccc ctg ttc cat gag ctt tgt cgt cgt cct tgt agt ctg gcc tgg		192	
	Pro Leu Phe His Glu Leu Cys Arg Arg Pro Cys Ser Leu Ala Trp			
	50	55	60	
	tac caa ttg atg cat cga tac cgg tac tag tcggaccgca tatgccccgg		242	
	Tyr Gln Leu Met His Arg Tyr Arg Tyr			
	65	70		
15	cgtaccgcgg ccgctcgagg catgcata gagggccgca tcatgttaatt agttatgtca		302	
	cgcttacatt cacgcccattcc c		323	
20	<210> 146			
	<211> 73			
	<212> PRT			
	<213> artificial sequence			
25	<220>			
	<223> Synthetic Construct			
	<400> 146			
30	Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Met			
	1	5	10	15
35	Ala Val Ala Ala Gln Gln Pro Val Ala Phe Leu Val Gly Arg Gln Arg			
	20	25	30	
40	Arg Arg Gly Gln Val Gly Ile Asp Ser Gly Asp Gln His Leu Arg Thr			
	35	40	45	
	Pro Leu Phe His Glu Leu Cys Arg Arg Pro Cys Ser Leu Ala Trp			
	50	55	60	
45	Tyr Gln Leu Met His Arg Tyr Arg Tyr			
	65	70		
50	<210> 147			
	<211> 293			
	<212> DNA			
	<213> artificial sequence			
55	<220>			
	<223> c-Jun self dimerization inhibitory peptide (SP58)			
60	<220>			
	<221> CDS			
	<222> (1)...(192)			
	<400> 147			

gct tat caa tca atc atg gca gtg gct gcc cag cag ccg gtc gcg ttc 48
 Ala Tyr Gln Ser Ile Met Ala Val Ala Ala Gln Gln Pro Val Ala Phe
 1 5 10 15

5 ctg gta ggc cgc cag cgt cgc cgc ggt cag gta gga atc gac tcc ggc 96
 Leu Val Gly Arg Gln Arg Arg Arg Gly Gln Val Gly Ile Asp Ser Gly
 20 25 30

10 gat cag cac ctt cga aca ccc ctg ttc cat gag ctt tgt cgt cgt cgt 144
 Asp Gln His Leu Arg Thr Pro Leu Phe His Glu Leu Cys Arg Arg Arg
 35 40 45

15 cct tgt agt ctg gcc tgg tac caa ttg atg cat cga tac cgg tac tag 192
 Pro Cys Ser Leu Ala Trp Tyr Gln Leu Met His Arg Tyr Arg Tyr
 50 55 60

tcggaccgca tatgccccgg cgtaaccggcgg ccgctcgagg catgcatactta gagggccgca 252
 tcatgttaatt agttatgtca cgcttacatt cacgcccctcc c 293

20

<210> 148
 <211> 63
 <212> PRT
 25 <213> artificial sequence

<220>
 <223> Synthetic Construct

30 <400> 148

Ala Tyr Gln Ser Ile Met Ala Val Ala Ala Gln Gln Pro Val Ala Phe 48
 1 5 10 15

35 Leu Val Gly Arg Gln Arg Arg Arg Gly Gln Val Gly Ile Asp Ser Gly 96
 20 25 30

40 Asp Gln His Leu Arg Thr Pro Leu Phe His Glu Leu Cys Arg Arg Arg 144
 35 40 45

45 Pro Cys Ser Leu Ala Trp Tyr Gln Leu Met His Arg Tyr Arg Tyr 192
 50 55 60

50

<210> 149
 <211> 253
 <212> DNA
 <213> artificial sequence

<220>
 <223> c-Jun self dimerization inhibitory peptide (SP60) with vector sequence

55

<220>
 <221> CDS
 <222> (1)..(84)

60 <400> 149

agg tca gac tac aag gac gac gac aag gct aat caa ttg ccc aaa
 Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Asn Gln Leu Pro Lys

48

1	5	10	15		
ata ctt gct gga cgg ctt ata ttt ata aag tgc taa ctgcgcttga Ile Leu Ala Gly Arg Leu Ile Phe Ile Lys Cys				94	
5	20	25			
ttgattgata agcttctcggt cgtcgccctt gtatgtcgac ctgggtaccaa ttgatgcac				154	
gataccggta ctagtcggac cgcatatgcc cgggcgtacc gggccgcctc gaggcatgca				214	
10	tctagagggc cgcatcatgt aattagttat gtcacgctt			253	
15	<210> 150				
	<211> 27				
	<212> PRT				
	<213> artificial sequence				
20	<220>				
	<223> Synthetic Construct				
	<400> 150				
Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Asn Gln Leu Pro Lys					
25	1	5	10	15	
Ile Leu Ala Gly Arg Leu Ile Phe Ile Lys Cys					
	20	25			
30					
	<210> 151				
	<211> 223				
	<212> DNA				
35	<213> artificial sequence				
	<220>				
	<223> c-Jun self dimerization inhibitory peptide (SP60)				
40	<220>				
	<221> CDS				
	<222> (1)..(54)				
45	<400> 151				
	gct aat caa ttg ccc aaa ata ctt gct gga cgg ctt ata ttt ata aag			48	
	Ala Asn Gln Leu Pro Lys Ile Leu Ala Gly Arg Leu Ile Phe Ile Lys				
	1	5	10	15	
50	tgc taa ctgcgcttga ttgattgata agcttctcggt cgtcgccctt gtatgtcgac			104	
	Cys				
55	ctgggtaccaa ttgatgcac gataccggta ctagtcggac cgcatatgcc cgggcgtacc			164	
	gcccgcctc gaggcatgca tctagagggc cgcatcatgt aattagttat gtcacgctt			223	
60	<210> 152				
	<211> 17				
	<212> PRT				
	<213> artificial sequence				
	<220>				

<223> Synthetic Construct

<400> 152

5 Ala Asn Gln Leu Pro Lys Ile Leu Ala Gly Arg Leu Ile Phe Ile Lys
1 5 10 15

10 Cys

15 <210> 153
<211> 231
<212> DNA
<213> artificial sequence

20 <220>
<223> c-Jun self dimerization inhibitory peptide (SP66) with vector
sequence

25 <220>
<221> CDS
<222> (1)..(225)

30 <400> 153
agg tca gac tac aag gac gac gac aag gct tat caa tca atc ata 48
Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile
1 5 10 15

35 ggg gcg gga aaa tca acg cta atc aaa gca tta act ggc gta tac cac 96
Gly Ala Gly Lys Ser Thr Leu Ile Lys Ala Leu Thr Gly Val Tyr His
20 25 30

40 gcc gat cgc ggc acc atc tgg ctg gaa ggc cag gct atc tca ccg aaa 144
Ala Asp Arg Gly Thr Ile Trp Leu Glu Gly Gln Ala Ile Ser Pro Lys
35 40 45

45 aat acc gcc cac gcg caa caa tgt cgt cgt cct tgt agt ctg acc 192
Asn Thr Ala His Ala Gln Gln Cys Arg Arg Pro Cys Ser Leu Thr
50 55 60

tgg tac caa ttg atg cat cga tac cgg tac tag tcggac 231
Trp Tyr Gln Leu Met His Arg Tyr Arg Tyr
65 70

50 <210> 154
<211> 74
<212> PRT
<213> artificial sequence

55 <220>
<223> Synthetic Construct

<400> 154

60 Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile
1 5 10 15

Gly Ala Gly Lys Ser Thr Leu Ile Lys Ala Leu Thr Gly Val Tyr His
20 25 30

Ala Asp Arg Gly Thr Ile Trp Leu Glu Gly Gln Ala Ile Ser Pro Lys
 35 40 45

5

Asn Thr Ala His Ala Gln Gln Cys Arg Arg Arg Pro Cys Ser Leu Thr
 50 55 60

10

Trp Tyr Gln Leu Met His Arg Tyr Arg Tyr
 65 70

15

<210> 155
 <211> 201
 <212> DNA
 <213> artificial sequence

20

<220>
 <223> c-Jun self dimerization inhibitory peptide (SP66)

25

<220>
 <221> CDS
 <222> (1)..(195)

30

<400> 155
 gct tat caa tca atc ata ggg gcg gga aaa tca acg cta atc aaa gca 48
 Ala Tyr Gln Ser Ile Ile Gly Ala Gly Lys Ser Thr Leu Ile Lys Ala
 1 5 10 15

35

tta act ggc gta tac cac gcc gat cgc ggc acc atc tgg ctg gaa ggc 96
 Leu Thr Gly Val Tyr His Ala Asp Arg Gly Thr Ile Trp Leu Glu Gly
 20 25 30

40

cag gct atc tca ccg aaa aat acc gcc cac gcg caa caa tgt cgt cgt 144
 Gln Ala Ile Ser Pro Lys Asn Thr Ala His Ala Gln Gln Cys Arg Arg
 35 40 45

45

cgt cct tgt agt ctg acc tgg tac caa ttg atg cat cga tac cgg tac 192
 Arg Pro Cys Ser Leu Thr Trp Tyr Gln Leu Met His Arg Tyr Arg Tyr
 50 55 60

50

tag tcggac 201

<210> 156
 <211> 64
 <212> PRT
 <213> artificial sequence

55

<220>
 <223> Synthetic Construct

60

<400> 156
 Ala Tyr Gln Ser Ile Ile Gly Ala Gly Lys Ser Thr Leu Ile Lys Ala
 1 5 10 15

Leu Thr Gly Val Tyr His Ala Asp Arg Gly Thr Ile Trp Leu Glu Gly
 20 25 30

Gln Ala Ile Ser Pro Lys Asn Thr Ala His Ala Gln Gln Cys Arg Arg
 35 40 45

5 Arg Pro Cys Ser Leu Thr Trp Tyr Gln Leu Met His Arg Tyr Arg Tyr
 50 55 60

10 <210> 157
 <211> 281
 <212> DNA
 <213> artificial sequence

15 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP71) with vector
 sequence

20 <220>
 <221> CDS
 <222> (1)..(90)

25 <220>
 <221> misc_feature
 <222> (136)..(136)
 <223> n is a, c, g, or t

30 <400> 157
 48
 agg tca gac tac aag gac ccc ttt ttc tgg aga cta aat aaa atc ttt
 Arg Ser Asp Tyr Lys Asp Pro Phe Trp Arg Leu Asn Lys Ile Phe
 1 5 10 15

35 tat ttt atc gac tct aga gtc gcg gcc gca att ctt aat taa
 90
 Tyr Phe Ile Asp Ser Arg Val Ala Ala Ala Ile Leu Asn
 20 25

40 ttcattactt gtacagctcg tccatgccga gagtgatccc ggccggngtc acgaactcca
 150
 gcaggaccat gtgatcgccgc ttctcggtgg ggtctttgtc cagggcggac tgggtgctca
 210
 ggtatgggtt gtccggcagc agcacggggc cgtcgccgat ggggtgttc tgctggtagt
 270
 ggtcggcagc
 281

45 <210> 158
 <211> 29
 <212> PRT
 50 <213> artificial sequence

<220>
 <223> Synthetic Construct

55 <400> 158
 Arg Ser Asp Tyr Lys Asp Pro Phe Trp Arg Leu Asn Lys Ile Phe
 1 5 10 15

60 Tyr Phe Ile Asp Ser Arg Val Ala Ala Ala Ile Leu Asn
 20 25

5 <210> 159
 <211> 263
 <212> DNA
 <213> artificial sequence
 10 <220>
 <221> CDS
 <222> (1)..(72)
 15 <220>
 <221> misc_feature
 <222> (118)..(118)
 <223> n is a, c, g, or t
 20 <400> 159
 ccc ttt ttc tgg aga cta aat aaa atc ttt tat ttt atc gac tct aga 48
 Pro Phe Phe Trp Arg Leu Asn Lys Ile Phe Tyr Phe Ile Asp Ser Arg
 1 5 10 15
 25 gtc gcg gcc gca att ctt aat taa ttcattactt gtacagctcg tccatgccga 102
 Val Ala Ala Ala Ile Leu Asn
 20
 gagtgatccc ggcggngtc acgaactcca gcaggaccat gtgatcgccgc ttctcggtgg
 30 ggtctttgct cagggcggac tgggtgctca ggtagtggtt gtcgggcagc agcacggggc 222
 cgtcgccgat ggggtgttc tgctggtagt ggtcggcgag c
 35 <210> 160
 <211> 23
 <212> PRT
 <213> artificial sequence
 40 <220>
 <223> Synthetic Construct
 <400> 160
 45 Pro Phe Phe Trp Arg Leu Asn Lys Ile Phe Tyr Phe Ile Asp Ser Arg 89
 1 5 10 15
 50 Val Ala Ala Ala Ile Leu Asn
 20
 <210> 161
 <211> 153
 <212> DNA
 <213> artificial sequence
 55 <220>
 <223> c-Jun self dimerization inhibitory peptides (SP72, SP73, SP76, SP77) with vector sequence
 60 <220>
 <221> CDS

<222> (1)...(153)
 <400> 161
 5 agt tca gac tac aag gac gac gac aag gag ctc aga tct cag ctg 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Glu Leu Arg Ser Gln Leu
 1 5 10 15
 ggc ccg gta cca att gat gca tcg ata ccg gta cta gtc gga ccg cat 96
 Gly Pro Val Pro Ile Asp Ala Ser Ile Pro Val Leu Val Gly Pro His
 10 20 25 30
 atg ccc ggg cgt acc gcg gcc gct cga ggc atg cat cta gag ggc cgc 144
 Met Pro Gly Arg Thr Ala Ala Ala Arg Gly Met His Leu Glu Gly Arg
 35 40 45
 15 atc atg taa 153
 Ile Met
 50
 20 <210> 162
 <211> 50
 <212> PRT
 <213> artificial sequence
 25 <220>
 <223> Synthetic Construct
 <400> 162
 30 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Glu Leu Arg Ser Gln Leu 153
 1 5 10 15
 35 Gly Pro Val Pro Ile Asp Ala Ser Ile Pro Val Leu Val Gly Pro His 30
 20 25 30
 40 Met Pro Gly Arg Thr Ala Ala Ala Arg Gly Met His Leu Glu Gly Arg 153
 35 40 45
 Ile Met
 50
 45 <210> 163
 <211> 123
 <212> DNA
 50 <213> artificial sequence
 <220>
 <223> c-Jun self dimerization inhibitory peptides (SP72, SP73, SP76, SP77)
 55
 <220>
 <221> CDS
 <222> (1)...(123)
 60 <400> 163
 gag ctc aga tct cag ctg ggc ccg gta cca att gat gca tcg ata ccg 48
 Glu Leu Arg Ser Gln Leu Gly Pro Val Pro Ile Asp Ala Ser Ile Pro
 1 5 10 15

gta cta gtc gga ccg cat atg ccc ggg cgt acc gcg gcc gct cga ggc 96
Val Leu Val Gly Pro His Met Pro Gly Arg Thr Ala Ala Arg Gly
20 25 30

5 atg cat cta gag ggc cgc atc atg taa 123
Met His Leu Glu Gly Arg Ile Met
35 40

10 <210> 164
<211> 40
<212> PRT
<213> artificial sequence

15 <220>
<223> Synthetic Construct

<400> 164

20 Glu Leu Arg Ser Gln Leu Gly Pro Val Pro Ile Asp Ala Ser Ile Pro
1 5 10 15

25 Val Leu Val Gly Pro His Met Pro Gly Arg Thr Ala Ala Arg Gly
20 25 30

30 Met His Leu Glu Gly Arg Ile Met
35 40

35 <210> 165
<211> 60
<212> DNA
<213> artificial sequence

40 <220>
<223> c-Jun self dimerization inhibitory peptide (SP79) with vector
sequence

45 <220>
<221> CDS
<222> (1)...(60)

<400> 165
agg tca gac tac aag gac gac gac aag gct tat caa tca atc aaa 48
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ile Lys
50 1 5 10 15

55 tgg cca atg taa 60
Trp Pro Met

60 <210> 166
<211> 19
<212> PRT
<213> artificial sequence

<220>
<223> Synthetic Construct

<400> 166
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Lys
 1 5 10 15
5
 Trp Pro Met

10
 <210> 167
 <211> 30
 <212> DNA
 <213> artificial sequence

15
 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP79)

20 <220>
 <221> CDS
 <222> (1) .. (30)

<400> 167
25 gct tat caa tca atc aaa tgg cca atg taa 30
 Ala Tyr Gln Ser Ile Lys Trp Pro Met
 1 5

30 <210> 168
 <211> 9
 <212> PRT
 <213> artificial sequence

35 <220>
 <223> Synthetic Construct

<400> 168

40 Ala Tyr Gln Ser Ile Lys Trp Pro Met
 1 5

<210> 169
45 <211> 111
 <212> DNA
 <213> artificial sequence

<220>
50 <223> c-Jun self dimerization inhibitory peptide (SP80) with vector
 sequence

<220>
55 <221> CDS
 <222> (1) .. (111)

<400> 169
 agg tca gac tac aag gac gac gac gac aag gct tat caa tca tcc act 48
60 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ser Thr
 1 5 10 15

ggt agt gct gcc atc ctc ttc aat ttc cgt cga atg ggg atc gtg ata
 Gly Ser Ala Ala Ile Leu Phe Asn Phe Arg Arg Met Gly Ile Val Ile 96

20 25 30 111

5 ata att cag atc taa
Ile Ile Gln Ile
35

10 <210> 170
<211> 36
<212> PRT
<213> artificial sequence

15 <220>
<223> Synthetic Construct
<400> 170

20 Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Ser Thr
1 5 10 15

25 Gly Ser Ala Ala Ile Leu Phe Asn Phe Arg Arg Met Gly Ile Val Ile
20 25 30

30 <210> 171
<211> 81
<212> DNA
<213> artificial sequence

35 <220>
<223> c-Jun self dimerization inhibitory peptide (SP80)

40 <220>
<221> CDS
<222> (1)...(81)

45 <400> 171
gct tat caa tca tcc act ggt agt gct gcc atc ctc ttc aat ttc cgt 48
Ala Tyr Gln Ser Ser Thr Gly Ser Ala Ala Ile Leu Phe Asn Phe Arg
1 5 10 15

50 cga atg ggg atc gtg ata ata att cag atc taa
Arg Met Gly Ile Val Ile Ile Ile Gln Ile 81
20 25

55 <210> 172
<211> 26
<212> PRT
<213> artificial sequence

60 <220>
<223> Synthetic Construct
<400> 172

Ala Tyr Gln Ser Ser Thr Gly Ser Ala Ala Ile Leu Phe Asn Phe Arg
1 5 10 15

Arg Met Gly Ile Val Ile Ile Ile Gln Ile
20 25

5

<210> 173
<211> 207
<212> DNA
10 <213> artificial sequence

<220>
<223> c-Jun self dimerization inhibitory peptide (SP54-1) with vector sequence

15

<220>
<221> CDS
<222> (1)..(207)

20 <220>
<221> misc_feature
<222> (47)..(47)
<223> n is a, c, g, or t

25 <400> 173
agg tca gac tac aag gac gac gac aag gct tat caa tca ttc cnc 48
Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Phe Xaa
1 5 10 15

30 ttg gca ggc tac cac ggc gac act tcg aga aca ttt cta gtg ggt tcg 96
Leu Ala Gly Tyr His Gly Asp Thr Ser Arg Thr Phe Leu Val Gly Ser
20 25 30

35 gta tcc gca act gcc cga aaa tta gtt gaa gcg act caa gaa acg atg 144
Val Ser Ala Thr Ala Arg Lys Leu Val Glu Ala Thr Gln Glu Thr Met
35 40 45

40 att gat tat act tgt cgt cgt cct tgt agt ctg acc tgg tac caa 192
Ile Asp Tyr Thr Cys Arg Arg Pro Cys Ser Leu Thr Trp Tyr Gln
50 55 60

45 ttg atg cat cga tac 207
Leu Met His Arg Tyr
65

50 <210> 174
<211> 69
<212> PRT
<213> artificial sequence

55 <220>
<221> misc_feature
<222> (16)..(16)
<223> The 'Xaa' at location 16 stands for His, Arg, Pro, or Leu.

60 <220>
<223> Synthetic Construct

<400> 174

Arg Ser Asp Tyr Lys Asp Asp Asp Lys Ala Tyr Gln Ser Phe Xaa
1 5 10 15

Leu Ala Gly Tyr His Gly Asp Thr Ser Arg Thr Phe Leu Val Gly Ser
 20 25 30

5

Val Ser Ala Thr Ala Arg Lys Leu Val Glu Ala Thr Gln Glu Thr Met
 35 40 45

10

Ile Asp Tyr Thr Cys Arg Arg Arg Pro Cys Ser Leu Thr Trp Tyr Gln
 50 55 60

15

Leu Met His Arg Tyr
 65

20

<210> 175
 <211> 177
 <212> DNA
 <213> artificial sequence

25

<220>
 <223> c-Jun self dimerization inhibitory peptide (SP54-1)

30

<220>
 <221> CDS
 <222> (1)..(177)

35

<220>
 <221> misc_feature
 <222> (17)..(17)
 <223> n is a, c, g, or t

40

<400> 175
 gct tat caa tca ttc cnc ttg gca ggc tac cac ggc gac act tcg aga
 Ala Tyr Gln Ser Phe Xaa Leu Ala Gly Tyr His Asp Thr Ser Arg
 1 5 10 15

45

48
 aca ttt cta gtg ggt tcg gta tcc gca act gcc cga aaa tta gtt gaa
 Thr Phe Leu Val Gly Ser Val Ser Ala Thr Ala Arg Lys Leu Val Glu
 20 25 30

50

96
 gcg act caa gaa acg atg att gat tat act tgt cgt cgt cct tgt
 Ala Thr Gln Glu Thr Met Ile Asp Tyr Thr Cys Arg Arg Pro Cys
 35 40 45

55

144
 agt ctg acc tgg tac caa ttg atg cat cga tac
 Ser Leu Thr Trp Tyr Gln Leu Met His Arg Tyr
 50 55

60

177
 <210> 176
 <211> 59
 <212> PRT
 <213> artificial sequence

<220>
 <221> misc_feature
 <222> (6)..(6)
 <223> The 'Xaa' at location 6 stands for His, Arg, Pro, or Leu.

<220>
 <223> Synthetic Construct
 <400> 176
5 Ala Tyr Gln Ser Phe Xaa Leu Ala Gly Tyr His Gly Asp Thr Ser Arg
 1 5 10 15
10 Thr Phe Leu Val Gly Ser Val Ser Ala Thr Ala Arg Lys Leu Val Glu
 20 25 30
15 Ala Thr Gln Glu Thr Met Ile Asp Tyr Thr Cys Arg Arg Arg Pro Cys
 35 40 45
20 Ser Leu Thr Trp Tyr Gln Leu Met His Arg Tyr
 50 55
25 <210> 177
 <211> 165
 <212> DNA
 <213> artificial sequence
30 <220>
 <223> c-Jun self dimerization inhibitory peptide (SP66-1) with vector
 sequence
35 <220>
 <221> CDS
 <222> (1)...(165)
40 <400> 177
 agg tca gac tac aag gac gac gac aag gct tat caa tca atc ata 48
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile
 1 5 10 15
45 ggg gcg gga aaa tca acg cta atc aaa gca tta act ggc gta tac cac 96
 Gly Ala Gly Lys Ser Thr Leu Ile Lys Ala Leu Thr Gly Val Tyr His
 20 25 30
50 gcc gat cgc ggc acc atc tgg ctg gaa ggc cag gct atc tca ccg aaa 144
 Ala Asp Arg Gly Thr Ile Trp Leu Glu Gly Gln Ala Ile Ser Pro Lys
 35 40 45
55 aat acc gcc cac gcg caa caa 165
 Asn Thr Ala His Ala Gln Gln
 50 55
60 <210> 178
 <211> 55
 <212> PRT
 <213> artificial sequence
 <220>
 <223> Synthetic Construct
 <400> 178
 Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile

1	5	10	15		
Gly Ala Gly Lys Ser Thr Leu Ile Lys Ala Leu Thr Gly Val Tyr His					
5	20	25	30		
Ala Asp Arg Gly Thr Ile Trp Leu Glu Gly Gln Ala Ile Ser Pro Lys					
35 40 45					
10					
Asn Thr Ala His Ala Gln Gln					
50 55					
15	<210> 179				
<211> 165					
<212> DNA					
<213> artificial sequence					
20	<220>				
<223> c-Jun self dimerization inhibitory peptide (SP66-1)					
25	<220>				
<221> CDS					
<222> (1)..(135)					
<400> 179					
30	agg tca gac tac aag gac gac gac aag gct tat caa tca atc ata				48
Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile					
1 5 10 15					
35	ggg gcg gga aaa tca acg cta atc aaa gca tta act ggc gta tac cac				96
Gly Ala Gly Lys Ser Thr Leu Ile Lys Ala Leu Thr Gly Val Tyr His					
20 25 30					
<400> 180					
Ala Asp Arg Gly Thr Ile Trp Leu Glu Gly Gln Ala Ile					
40	35	40	45		145
ataccgcccc ca cgcgcaacaa					165
45	<210> 180				
<211> 45					
<212> PRT					
<213> artificial sequence					
50	<220>				
<223> Synthetic Construct					
<400> 180					
55	Arg Ser Asp Tyr Lys Asp Asp Asp Asp Lys Ala Tyr Gln Ser Ile Ile				
1 5 10 15					
Gly Ala Gly Lys Ser Thr Leu Ile Lys Ala Leu Thr Gly Val Tyr His					
60	20	25	30		
Ala Asp Arg Gly Thr Ile Trp Leu Glu Gly Gln Ala Ile					
35 40 45					

5 <210> 181
 <211> 29
 <212> PRT
 <213> artificial sequence

10 <220>
 <223> retro-inverted peptide analogue of SEQ ID NO: 132 comprising a TAT protein targeting domain fused to the retro-inverted peptide moiety by a C-terminal glycine residue, wherein the complete sequence of SEQ ID NO: 132 has been reversed and wherein every amino acid residue other than glycine has been inverted (i.e., substituted for the corresponding D-amino acid residue).

15 <400> 181

 Arg Glu Arg Arg Ser Ser Ser Gln Ile Gly Gly Ser Arg Ile Ser Gln
 1 5 10 15

20 Tyr Ala Gly Arg Arg Gln Arg Arg Lys Lys Arg Arg Gly
 20 25

25 <210> 182
 <211> 26
 <212> PRT
 <213> artificial sequence

30 <220>
 <223> retro-inverted peptide analogue of SEQ ID NO: 136 comprising a TAT protein targeting domain fused to the retro-inverted peptide moiety by a C-terminal glycine residue, wherein the complete sequence of SEQ ID NO: 136 has been reversed and wherein every amino acid residue other than glycine has been inverted (i.e., substituted for the corresponding D-amino acid residue).

35 <400> 182

 Pro Lys Ile Ser Gln Tyr Gly Gln Arg Arg Arg Gly Gln Leu Gly Gly
 1 5 10 15

40 Arg Arg Arg Gln Arg Arg Lys Lys Arg Arg Gly
 20 25

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU2005/001255

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl. ⁷: A61K 38/02, C07K 2/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
GENEBANK, DGENE (SEQ ID NO:132, SEQ ID NO:136)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P/X	WO 2004/074479 A (PHYLOGICA LIMITED) 2 September 2004. SEQ ID NOs: 133 and 134 comprise SEQ ID NO:132 of the present application. SEQ ID NO: 136 comprises SEQ ID NO: 136 of the present application SEQ ID NO: 137 is identical to SEQ ID NO: 136 of the present application.	57-82
A	Ren S.X. et al, GenBank Database [online], Accession Number: AAN49594, 28 April 2003, "Putative outermembrane protein [Leptospira interrogans serovar lai str. 56601]". This sequence comprises a region homologous to SEQ ID NO: 132	
A	Nascimento, A.L. et al, GenBank Database [online], Accession Number: AAS70149, 22 March 2004, "Serine/threonine kinase [Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130]". This sequence comprises a region homologous to SEQ ID NO: 132.	

Further documents are listed in the continuation of Box C

See patent family annex

<p>* Special categories of cited documents:</p> <p>"A" document defining the general state of the art which is not considered to be of particular relevance</p> <p>"E" earlier application or patent but published on or after the international filing date</p> <p>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</p> <p>"O" document referring to an oral disclosure, use, exhibition or other means</p> <p>"P" document published prior to the international filing date but later than the priority date claimed</p>	<p>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</p> <p>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</p> <p>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</p> <p>"&" document member of the same patent family</p>
---	---

Date of the actual completion of the international search 27 October 2005	Date of mailing of the international search report 17 NOV 2005
--	---

Name and mailing address of the ISA/AU AUSTRALIAN PATENT OFFICE PO BOX 200, WODEN ACT 2606, AUSTRALIA E-mail address: pct@ipaaustralia.gov.au Facsimile No. (02) 6285 3929	Authorized officer TERRY MOORE Telephone No : (02) 6283 2632
--	---

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/AU2005/001255

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Bolotin, A. et al, GenBank Database [online], Accession Number: AAV59791, 21 January 2005, "DNA polymerase III alpha subunit [Streptococcus thermophilus LMG 18311]". This sequence comprises a region homologous to SEQ ID NO: 132.	
A	Strausberg, R.L. et al, GenBank Database [online], Accession Number: AAH36335, 20 May 2005, "BTBD12 protein [Homo sapiens]". This sequence comprises a region homologous to SEQ ID NO: 136.	
A	Katinka, M.D. et al, GenBank Database [online], Accession Number: CAD25932, 16 April 2005, "TRANSCRIPTION FACTOR TFIID [Encephalitozoon cuniculi GB-M1]". This sequence comprises a region homologous to SEQ ID NO: 136.	
A	Bloecker, H. et al, GenBank Database [online], Accession Number: CAH10659, 22 September 2004, "hypothetical protein [Homo sapiens]". This sequence comprises a region homologous to SEQ ID NO: 136.	

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/AU2005/001255**Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See Supplemental Box I

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
57-82, as they relate to SEQ ID NO: 132 and SEQ ID NO: 136.

See Supplemental Box II for further explanation.

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU2005/001255

Supplemental Box I

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: III

The ISA has identified three groups of inventions:

Group I (Claims 1-46): Methods of identifying peptides that bind to c-jun.

Group II (Claims 47-56, and 63-79): Use of peptides, containing a leucine zipper or specific peptides identified by the method of Group I, to treat ischemia

Group III (Claims 57-63, and 80-82): Specific peptide sequences identified by the method of Group I.

Although Groups I - III share the common feature of the method of the Group I (i.e. methods of identifying peptides that bind to c-jun), this does not represent a special technical feature. Methods of identifying peptides that bind to c-jun are known:

Chevray, P.M. and Nathans, D., (1992) *Proceedings of the National Academy of Science (USA)*, **89**, 5789-5793 discloses methods to identify proteins that interact with the leucine zipper of c-jun.

Therefore, there is no special technical feature unifying Groups I-III. As such Group I and Group II are regarded as separate inventions.

There is a further lack of unity within the claimed peptide/encoding nucleic acid sequences (i.e. SEQ ID NOS: 65-180). The common feature uniting all of the sequences within the claimed sequences is they are (or encode) inhibitors of c-jun dimerization. However, this is not a special technical feature, as inhibitors of c-jun dimerization are known:

(i) Yao, S. et al, (1998) *Biopolymers*, **47**(4): 277-83.
This citation discloses a peptide inhibitor of c-Jun dimerization based on the leucine zipper region of fos.

(ii) Granger-Schnarr, M. et al, (1992) *Proceeding of the National Academy of Science (USA)*, **89**, 4236-4239.
This citation discloses a fusion peptide comprising a bacterial repressor (LexA) and the leucine zipper from either c-jun or c-fos. The resultant fusion peptide inhibits ras mediated transformation by interfering with the dimerization of transcription factors involved in the transformation process (ie. c-jun).

(iii) Basbous, J. et al, (2003) *Journal of Biological Chemistry*, **278** (44): 43620-43627.
This citation discloses a novel viral protein (HBZ) that contains a leucine zipper. This protein down regulates viral transcription by interacting with c-jun, and attenuating activation of AP-1. This citation confirms HBZ interacts with c-jun *in vivo*, and suppresses transactivation by c-jun by decreasing the DNA binding activity of c-jun.

Furthermore, given the nature of the claimed sequences and the invention, it is appropriate to apply the Markush approach. Although the claimed sequences all share a common property that they are (or encode) inhibitors of c-jun dimerization, this property is known (see above citations). It is noted that some, but not all, of the claimed sequences contain leucine zippers. However, leucine zippers are also known so this cannot be a special technical feature. Thus, according to the Markush approach, these sequences do not represent a single invention.

As there is no special technical feature unifying all of the claimed sequences, each of the claimed peptide/encoding nucleic acids represents a separate invention.

Given the large number of inventions, and the lack of information in the specification as to how these might be divided, the international authority has not determined the exact number of inventions.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU2005/001255

Supplemental Box II

(To be used when the space in any of Boxes I to VIII is not sufficient)

Continuation of Box No: III.3

In response to the invitation to pay, the applicant agreed to pay one additional search fee in order for the search to encompass the sequences:

- SEQ ID NO: 132 (its encoding nucleic acid, SEQ ID NO: 131; and its retro-inverted analogue, SEQ ID NO: 181), and
- SEQ ID NO: 136 (its encoding nucleic acid, SEQ ID NO: 135; and its retro-inverted analogue, SEQ ID NO: 182).

With the response to the Invitation to Pay the attorney furnished a set of draft claims similar in scope to claims 57-82 as filed. After communications with the attorney, the ISA agreed to search the subject matter of claims 57-82 as they relate to SEQ ID NO: 132 and SEQ ID NO: 136,

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/AU2005/001255

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document Cited in Search Report				Patent Family Member			
WO	2004074479	AU	42759/00	AU	2003302489	CA	2372464
		EP	1179059	NZ	515329	US	2003215846
		WO	0068373				
Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.							
END OF ANNEX							