

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2013/181421 A2

(43) International Publication Date
5 December 2013 (05.12.2013)

WIPO | PCT

(51) International Patent Classification:

H04W 76/02 (2009.01)

Pennsylvania 19406 (US). STERNBERG, Gregory S.; 7 Brookwood Road, Mt. Laurel, New Jersey 08054 (US).

(21) International Application Number:

PCT/US2013/043408

(74) Agent: HALT, JR., Gerald B.; Volpe and Koenig, P.C., United Plaza, Suite 1600, 30 S. 17th Street, Philadelphia, Pennsylvania 19103 (US).

(22) International Filing Date:

30 May 2013 (30.05.2013)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant: INTERDIGITAL PATENT HOLDINGS, INC. [US/US]; 200 Bellevue Parkway, Suite 300, Wilmington, Delaware 19809 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(72) Inventors: RAGHOTHAMAN, Balaji; 3933 Powell Road, Chester Springs, Pennsylvania 19425 (US). PRAGADA, Ravikumar V.; 309 Johnson Road, Collegeville, Pennsylvania 19426 (US). DENG, Zhuorong; 1864 West 12th Street, Brooklyn, New York 11223 (US). PANI, Diana; 730 Lusignan, Apartment 4, Montreal, Québec H3C 1Y9 (CA). PELLETIER, Ghyslain; 2055 rue De Valmont, Chomedey, Laval, Québec H7M 3J3 (CA). POITAU, Gwenaël; 7630 Rue Casgrain, Montreal, Québec H2R 1Y8 (CA). VANGANURU, Kiran K.; 3000 Valley Forge Circle, Apartment #1150, King of Prussia,

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR DEVICE-TO-DEVICE (D2D) MOBILITY IN WIRELESS SYSTEMS

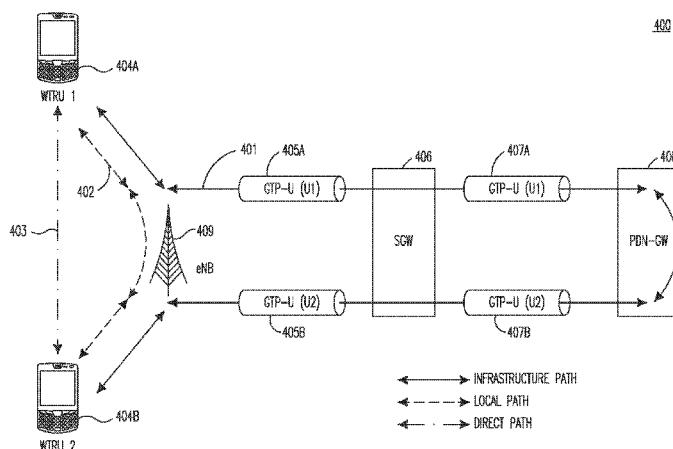


FIG. 4

(57) Abstract: A method and apparatus for mobility for device-to-device (D2D) communications is disclosed. A WTRU may store a proximity detection configuration that includes a measurement object corresponding to at least one discovery signal property, perform a proximity detection measurement to detect a discovery signal property, and then establish D2D communication. A radio resource control (RRC) Measurement Report may be received from a WTRU. Methods for D2D mobility procedures are also disclosed including mobility to or from a direct path, to or from a local path, to or from an infrastructure path, changing serving cell, and cell reselection. Other embodiments include: behavior upon mobility failure, radio link failure, and direct link failure. Security configuration and activation methods and apparatuses are also disclosed. Network methods for inter-eNB management are also disclosed. Finally, direct path proximity detection measurements and methods and apparatuses for triggering and establishing D2D sessions are disclosed.

WO 2013/181421 A2

Published:

- *without international search report and to be republished upon receipt of that report (Rule 48.2(g))*

METHOD AND APPARATUS FOR DEVICE-TO-DEVICE (D2D) MOBILITY IN WIRELESS SYSTEMS

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application Serial No. 61/653,643 filed May 31, 2012 and U.S. Provisional Application Serial No. 61/818,182 filed May 1, 2013, the contents of which are hereby incorporated by reference herein.

BACKGROUND

[0002] The demand for wireless mobile data continues to explode, and this is leading to a surge in the number of smart phones in usage throughout the world. The telecommunications industry has responded to demand with newer standards that may provide increases in spectral efficiency through the use of better multiple access, modulation and coding and multi-antenna techniques. Another dimension for capacity improvement has been through the increase in the density of deployment and correspondingly reducing the cell radius. In addition, heterogeneous topologies have been increasingly used, wherein small cells (micro/pico/femto) are deployed in conjunction with macro cells. Indoor coverage improvements through the use of remote radio-heads and distributed antennas may have also proliferated. However, small cell deployments may lead to a huge increase in mobility events, and the accompanying interference management issues may be complex. Large amounts of additional infrastructure may be needed, such as high capacity internet backhaul, power sources, and radio frequency (RF) equipment, which may need to be maintained.

SUMMARY

[0003] A method and apparatus for mobility for device-to-device (D2D) communications is disclosed. A WTRU may store a proximity detection

configuration that includes a measurement object corresponding to at least one discovery signal property. The WTRU may perform a proximity detection measurement to detect a discovery signal property and then establish D2D communication based on detecting the discovery signal property. A radio resource control (RRC) Measurement Report may be received from a WTRU. Methods for D2D mobility procedures are also disclosed including mobility to or from a direct path, to or from a local path, to or from an infrastructure path, changing serving cell, and cell reselection. Other embodiments include: behavior upon mobility failure, radio link failure, and direct link failure. Security configuration and activation methods and apparatuses are also disclosed. Network methods for inter-eNB management are also disclosed. Finally, direct path proximity detection measurements and methods and apparatuses for triggering and establishing D2D sessions are disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] A more detailed understanding may be had from the following description, given by way of example in conjunction with the accompanying drawings wherein:

[0005] FIG. 1A is a system diagram of an example communications system in which one or more disclosed embodiments may be implemented;

[0006] FIG. 1B is a system diagram of an example wireless transmit/receive unit (WTRU) that may be used within the communications system illustrated in FIG. 1A;

[0007] FIG. 1C is a system diagram of an example radio access network and an example core network that may be used within the communications system illustrated in FIG. 1A;

[0008] FIG. 2 is an example of device-to-device (D2D) architecture with a condensed view of a direct model;

[0009] FIG. 3 is an example of D2D architecture with an expanded view of the direct model;

[0010] FIG. 4 is an example of data path options for the intra-eNB case;

[0011] FIG. 5A is an example of infrastructure to Long Term Evolution (LTE) direct for the intra-eNB case;

[0012] FIG. 5B is a continuation of the example of infrastructure to Long Term Evolution (LTE) direct for the intra-eNB case;

[0013] FIG. 6A is an example of infrastructure to LTE direct for the inter-eNB case;

[0014] FIG. 6B is a continuation of the example of infrastructure to LTE direct for the inter-eNB case;

[0015] FIG. 7 shows a flow chart of an example in which the WTRU has the capability to recognize a failure to activate the direct path;

[0016] FIG. 8 is an example of an LTE direct path to infrastructure for the intra-eNB case;

[0017] FIG. 9 shows a high-level call flow diagram for the offloading to the infrastructure path from a non-LTE RAT on the direct path;

[0018] FIG. 10 is an example of an infrastructure to local path for the inter-eNB case;

[0019] FIG. 11A is an example of infrastructure handover during direct path call;

[0020] FIG. 11A1 is a continuation of the example of infrastructure handover during direct path call;

[0021] FIG. 11B shows a high-level call flow diagram for an example of the procedure a WTRU may perform during a handover;

[0022] FIG. 11C shows a flow chart of an example of the procedure a WTRU may perform following the completion of a mobility procedure such as a handover;

[0023] FIG. 12 shows a flow chart of an example method for the third mobility event type for cell reselection or IDLE mode mobility;

[0024] FIG. 13A shows a high-level call flow diagram by which a WTRU may handle radio link failure (RLF) failure in addition to undertaking the procedures described herein for baseline RLF handling;

[0025] FIG. 13B shows a high-level call flow for another RLF handling procedure;

[0026] FIG. 13C shows yet another a high-level call flow diagram for handling RLF;

[0027] FIG. 14A shows a flow chart of an example for a procedure pertaining to direct link failure (DLF);

[0028] FIG. 14B shows another flow chart of an example for a procedure pertaining to direct link failure (DLF);

[0029] FIG. 15 shows a flow chart of an example for a security procedure for D2D communication;

[0030] FIG. 16 shows a flow chart of an example for a procedure in which triggers for mobility and measurement events may be used;

[0031] FIG. 17A shows a flow chart of an example for when an inbound mobility trigger may be used for establishing a direct path when sufficient conditions exist; and

[0032] FIG. 17B shows a flow chart of an example for when an outbound mobility trigger may be used for switching from a direct path when insufficient conditions exist.

DETAILED DESCRIPTION

[0033] FIG. 1A is a diagram of an example communications system 100 in which one or more disclosed embodiments may be implemented. The communications system 100 may be a multiple access system that provides content, such as voice, data, video, messaging, broadcast, etc., to multiple

wireless users. The communications system 100 may enable multiple wireless users to access such content through the sharing of system resources, including wireless bandwidth. For example, the communications systems 100 may employ one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA), single-carrier FDMA (SC-FDMA), and the like.

[0034] As shown in FIG. 1A, the communications system 100 may include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, 102d, a radio access network (RAN) 104, a core network 106, a public switched telephone network (PSTN) 108, the Internet 110, and other networks 112, though it will be appreciated that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. By way of example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals and may include user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a smartphone, a laptop, a netbook, a personal computer, a wireless sensor, consumer electronics, and the like.

[0035] The communications systems 100 may also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b may be any type of device configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to one or more communication networks, such as the core network 106, the Internet 110, and/or the other networks 112. By way of example, the base stations 114a, 114b may be a base transceiver station (BTS), a Node-B, an eNode B, a Home Node B, a Home eNode B, a site controller, an access point (AP), a wireless router, and the like. While the base stations 114a, 114b are each depicted as a single element, it will be

appreciated that the base stations 114a, 114b may include any number of interconnected base stations and/or network elements.

[0036] The base station 114a may be part of the RAN 104, which may also include other base stations and/or network elements (not shown), such as a base station controller (BSC), a radio network controller (RNC), relay nodes, etc. The base station 114a and/or the base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic region, which may be referred to as a cell (not shown). The cell may further be divided into cell sectors. For example, the cell associated with the base station 114a may be divided into three sectors. Thus, in one embodiment, the base station 114a may include three transceivers, i.e., one for each sector of the cell. In another embodiment, the base station 114a may employ multiple-input multiple-output (MIMO) technology and, therefore, may utilize multiple transceivers for each sector of the cell.

[0037] The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d over an air interface 116, which may be any suitable wireless communication link (e.g., radio frequency (RF), microwave, infrared (IR), ultraviolet (UV), visible light, etc.). The air interface 116 may be established using any suitable radio access technology (RAT).

[0038] More specifically, as noted above, the communications system 100 may be a multiple access system and may employ one or more channel access schemes, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, the base station 114a in the RAN 104 and the WTRUs 102a, 102b, 102c may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may establish the air interface 116 using wideband CDMA (WCDMA). WCDMA may include communication protocols such as High-Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High-Speed Downlink Packet Access (HSDPA) and/or High-Speed Uplink Packet Access (HSUPA).

[0039] In another embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may establish the air interface 116 using Long Term Evolution (LTE) and/or LTE-Advanced (LTE-A).

[0040] In other embodiments, the base station 114a and the WTRUs 102a, 102b, 102c may implement radio technologies such as IEEE 802.16 (i.e., Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Interim Standard 2000 (IS-2000), Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile communications (GSM), Enhanced Data rates for GSM Evolution (EDGE), GSM EDGE (GERAN), and the like.

[0041] The base station 114b in FIG. 1A may be a wireless router, Home Node B, Home eNode B, or access point, for example, and may utilize any suitable RAT for facilitating wireless connectivity in a localized area, such as a place of business, a home, a vehicle, a campus, and the like. In one embodiment, the base station 114b and the WTRUs 102c, 102d may implement a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN). In another embodiment, the base station 114b and the WTRUs 102c, 102d may implement a radio technology such as IEEE 802.15 to establish a wireless personal area network (WPAN). In yet another embodiment, the base station 114b and the WTRUs 102c, 102d may utilize a cellular-based RAT (e.g., WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) to establish a picocell or femtocell. As shown in FIG. 1A, the base station 114b may have a direct connection to the Internet 110. Thus, the base station 114b may not be required to access the Internet 110 via the core network 106.

[0042] The RAN 104 may be in communication with the core network 106, which may be any type of network configured to provide voice, data, applications, and/or voice over internet protocol (VoIP) services to one or more of the WTRUs 102a, 102b, 102c, 102d. For example, the core network 106 may provide call

control, billing services, mobile location-based services, pre-paid calling, Internet connectivity, video distribution, etc., and/or perform high-level security functions, such as user authentication. Although not shown in FIG. 1A, it will be appreciated that the RAN 104 and/or the core network 106 may be in direct or indirect communication with other RANs that employ the same RAT as the RAN 104 or a different RAT. For example, in addition to being connected to the RAN 104, which may be utilizing an E-UTRA radio technology, the core network 106 may also be in communication with another RAN (not shown) employing a GSM radio technology.

[0043] The core network 106 may also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include circuit-switched telephone networks that provide plain old telephone service (POTS). The Internet 110 may include a global system of interconnected computer networks and devices that use common communication protocols, such as the transmission control protocol (TCP), user datagram protocol (UDP) and the internet protocol (IP) in the TCP/IP internet protocol suite. The networks 112 may include wired or wireless communications networks owned and/or operated by other service providers. For example, the networks 112 may include another core network connected to one or more RANs, which may employ the same RAT as the RAN 104 or a different RAT.

[0044] Some or all of the WTRUs 102a, 102b, 102c, 102d in the communications system 100 may include multi-mode capabilities, i.e., the WTRUs 102a, 102b, 102c, 102d may include multiple transceivers for communicating with different wireless networks over different wireless links. For example, the WTRU 102c shown in FIG. 1A may be configured to communicate with the base station 114a, which may employ a cellular-based radio technology, and with the base station 114b, which may employ an IEEE 802 radio technology.

[0045] FIG. 1B is a system diagram of an example WTRU 102. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a keypad 126, a display/touchpad 128, non-removable memory 130, removable memory 132, a power source 134, a global positioning system (GPS) chipset 136, and other peripherals 138. It will be appreciated that the WTRU 102 may include any sub-combination of the foregoing elements while remaining consistent with an embodiment.

[0046] The processor 118 may be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Array (FPGAs) circuits, any other type of integrated circuit (IC), a state machine, and the like. The processor 118 may perform signal coding, data processing, power control, input/output processing, and/or any other functionality that enables the WTRU 102 to operate in a wireless environment. The processor 118 may be coupled to the transceiver 120, which may be coupled to the transmit/receive element 122. While FIG. 1B depicts the processor 118 and the transceiver 120 as separate components, it will be appreciated that the processor 118 and the transceiver 120 may be integrated together in an electronic package or chip.

[0047] The transmit/receive element 122 may be configured to transmit signals to, or receive signals from, a base station (e.g., the base station 114a) over the air interface 116. For example, in one embodiment, the transmit/receive element 122 may be an antenna configured to transmit and/or receive RF signals. In another embodiment, the transmit/receive element 122 may be an emitter/detector configured to transmit and/or receive IR, UV, or visible light signals, for example. In yet another embodiment, the transmit/receive element 122 may be configured to transmit and receive both RF and light signals. It will

be appreciated that the transmit/receive element 122 may be configured to transmit and/or receive any combination of wireless signals.

[0048] In addition, although the transmit/receive element 122 is depicted in FIG. 1B as a single element, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may employ MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) for transmitting and receiving wireless signals over the air interface 116.

[0049] The transceiver 120 may be configured to modulate the signals that are to be transmitted by the transmit/receive element 122 and to demodulate the signals that are received by the transmit/receive element 122. As noted above, the WTRU 102 may have multi-mode capabilities. Thus, the transceiver 120 may include multiple transceivers for enabling the WTRU 102 to communicate via multiple RATs, such as UTRA and IEEE 802.11, for example.

[0050] The processor 118 of the WTRU 102 may be coupled to, and may receive user input data from, the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128 (e.g., a liquid crystal display (LCD) display unit or organic light-emitting diode (OLED) display unit). The processor 118 may also output user data to the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128. In addition, the processor 118 may access information from, and store data in, any type of suitable memory, such as the non-removable memory 130 and/or the removable memory 132. The non-removable memory 130 may include random-access memory (RAM), read-only memory (ROM), a hard disk, or any other type of memory storage device. The removable memory 132 may include a subscriber identity module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access information from, and store data in, memory that is not physically located on the WTRU 102, such as on a server or a home computer (not shown).

[0051] The processor 118 may receive power from the power source 134, and may be configured to distribute and/or control the power to the other components in the WTRU 102. The power source 134 may be any suitable device for powering the WTRU 102. For example, the power source 134 may include one or more dry cell batteries (e.g., nickel-cadmium (NiCd), nickel-zinc (NiZn), nickel metal hydride (NiMH), lithium-ion (Li-ion), etc.), solar cells, fuel cells, and the like.

[0052] The processor 118 may also be coupled to the GPS chipset 136, which may be configured to provide location information (e.g., longitude and latitude) regarding the current location of the WTRU 102. In addition to, or in lieu of, the information from the GPS chipset 136, the WTRU 102 may receive location information over the air interface 116 from a base station (e.g., base stations 114a, 114b) and/or determine its location based on the timing of the signals being received from two or more nearby base stations. It will be appreciated that the WTRU 102 may acquire location information by way of any suitable location-determination method while remaining consistent with an embodiment.

[0053] The processor 118 may further be coupled to other peripherals 138, which may include one or more software and/or hardware modules that provide additional features, functionality and/or wired or wireless connectivity. For example, the peripherals 138 may include an accelerometer, an e-compass, a satellite transceiver, a digital camera (for photographs or video), a universal serial bus (USB) port, a vibration device, a television transceiver, a hands free headset, a Bluetooth® module, a frequency modulated (FM) radio unit, a digital music player, a media player, a video game player module, an Internet browser, and the like.

[0054] FIG. 1C is a system diagram of the RAN 104 and the core network 106 according to an embodiment. As noted above, the RAN 104 may employ an E-UTRA radio technology to communicate with the WTRUs 102a, 102b, 102c over

the air interface 116. The RAN 104 may also be in communication with the core network 106.

[0055] The RAN 104 may include eNode-Bs 140a, 140b, 140c, though it will be appreciated that the RAN 104 may include any number of eNode-Bs while remaining consistent with an embodiment. The eNode-Bs 140a, 140b, 140c may each include one or more transceivers for communicating with the WTRUs 102a, 102b, 102c over the air interface 116. In one embodiment, the eNode-Bs 140a, 140b, 140c may implement MIMO technology. Thus, the eNode-B 140a, for example, may use multiple antennas to transmit wireless signals to, and receive wireless signals from, the WTRU 102a.

[0056] Each of the eNode-Bs 140a, 140b, 140c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, scheduling of users in the uplink and/or downlink, and the like. As shown in FIG. 1C, the eNode-Bs 140a, 140b, 140c may communicate with one another over an X2 interface.

[0057] The core network 106 shown in FIG. 1C may include a mobility management entity gateway (MME) 142, a serving gateway 144, and a packet data network (PDN) gateway 146. While each of the foregoing elements are depicted as part of the core network 106, it will be appreciated that any one of these elements may be owned and/or operated by an entity other than the core network operator.

[0058] The MME 142 may be connected to each of the eNode-Bs 140a, 140b, 140c in the RAN 104 via an S1 interface and may serve as a control node. For example, the MME 142 may be responsible for authenticating users of the WTRUs 102a, 102b, 102c, bearer activation/deactivation, selecting a particular serving gateway during an initial attach of the WTRUs 102a, 102b, 102c, and the like. The MME 142 may also provide a control plane function for switching between the RAN 104 and other RANs (not shown) that employ other radio technologies, such as GSM or WCDMA.

[0059] The serving gateway 144 may be connected to each of the eNode Bs 140a, 140b, 140c in the RAN 104 via the S1 interface. The serving gateway 144 may generally route and forward user data packets to/from the WTRUs 102a, 102b, 102c. The serving gateway 144 may also perform other functions, such as anchoring user planes during inter-eNode B handovers, triggering paging when downlink data is available for the WTRUs 102a, 102b, 102c, managing and storing contexts of the WTRUs 102a, 102b, 102c, and the like.

[0060] The serving gateway 144 may also be connected to the PDN gateway 146, which may provide the WTRUs 102a, 102b, 102c with access to packet-switched networks, such as the Internet 110, to facilitate communications between the WTRUs 102a, 102b, 102c and IP-enabled devices.

[0061] The core network 106 may facilitate communications with other networks. For example, the core network 106 may provide the WTRUs 102a, 102b, 102c with access to circuit-switched networks, such as the PSTN 108, to facilitate communications between the WTRUs 102a, 102b, 102c and traditional land-line communications devices. For example, the core network 106 may include, or may communicate with, an IP gateway (e.g., an IP multimedia subsystem (IMS) server) that serves as an interface between the core network 106 and the PSTN 108. In addition, the core network 106 may provide the WTRUs 102a, 102b, 102c with access to the networks 112, which may include other wired or wireless networks that are owned and/or operated by other service providers.

[0062] Smart phones, which have become increasingly powerful devices may be designed with multiple wideband radios and modems and the capability to process large amounts of data, as well as run multiple simultaneous applications. Allowing smart phones to communicate directly with each other when possible may enable the creation of alternate network topologies that allow smart phones to communicate directly while also co-existing with the

conventional cellular deployment. A device-to-device (D2D) architecture is an example of such an alternate topology.

[0063] FIG. 2 is an example of a device-to-device (D2D) architecture 200. FIG. 2 shows the D2D server 202 may be located within the 3GPP network 203 boundary. The D2D server 202 may be maintained as a single entity that is common to multiple operators and may be managed jointly by them, or it may be distributed as multiple entities, located partly in each operators' domain. The D2D server 202 may provide the WTRU 204 access to a D2D application 201.

[0064] Enabled by such direct WTRU-to-WTRU communications, Advanced Topology (AT) applications may include Advanced Topology - Relay (AT-R) and Advanced Topology - Local Offload (AT-LO). In the AT-R application, a Terminal WTRU (T-WTRU) may be able to exchange data with the network through a relay node, which may be a Helper WTRU (H-WTRU). The AT-LO application may allow the direct data communication between WTRUs in proximity of each other and under the control of the central network.

[0065] The AT-R application may include two modes, capacity mode and coverage mode. In the capacity mode, the T-WTRU may be associated with the network and may enlist the H-WTRU to augment the radio link capacity and improve data transmission capacity. While in the coverage mode, the T-WTRU may be out of network coverage and may rely on a H-WTRU to attain the network association. Both modes may be envisioned for low mobility WTRUs.

[0066] In the AT-LO application, WTRUs in proximity may either be a source or a sink for the information exchanged. The radio link between the WTRUs in AT-LO application may use licensed cellular spectrum or unlicensed or lightly-licensed spectrum.

[0067] The communication between WTRUs may occur in a dedicated channel called the cross link (XL), as opposed to the eNB to WTRU communications that may happen over the radio link. The XL may be in a separate band (out-band solution) or in the same band as the radio link, even in

adjacent frequency subcarriers. The H-WTRU and T-WTRU may communicate with each other either in Frequency Division Duplexing (FDD) or Time Division Duplexing (TDD) fashion. The related configuration may be defined by the network. The network may provide coarse resource allocation for the XL, and the WTRUs may have the freedom to handle the per-TTI resource allocation.

[0068] FIG. 3 is an expanded view of an example D2D architecture. WTRU 301A may connect to a D2D Application 311 via a RAN 302A, SGW 305A and PGW 306A on the data plane. Similarly WTRU 301B may connect to a D2D Application 311 via a RAN 302B, SGW 305B and PGW 306B on the data plane. The D2D Server 312 may connect via control plan interfaces to ANDSF 304A and 304B, MME 307A and 307B, HSS 303A and 303B, PCRF 308A and 308B, OCFS 309A and 309B, and E-SMLC 310A and 310B.

[0069] FIG 4 provides a high level architecture 400 for both the local and direct path options for D2D communication for an intra-eNB case. FIG. 4 shows the contrast between the cellular infrastructure path 401 and the local path 402 and direct path 403. WTRU1 404A and WTRU2 404B may communicate via their transmitters and receivers in a D2D session via eNB 409 over the direct path 403 or over the local path 402. When WTRU1 404A and WTRU2 404B communicate over the infrastructure path 401 via eNB 409, their communication may be routed through GTP-U tunnels 405A and 405B, the SGW 406, GTP-U tunnels 407A and 407B and the PDN-GW 408.

[0070] D2D communications have become a subject of discussion in 3GPP with the introduction of the Proximity Services (ProSe) study item in the SA1 group. The scope of ProSe may include both the direct path and the local path. In the direct path the physical communication may be directly between the D2D devices. In the local Path the communication may be through the eNB to which both the devices are connected.

[0071] Several use cases have also been defined as part of ProSe, each of which may bring up a different set of requirements for system design. These may be broadly categorized under social and public safety.

[0072] Examples of social use cases are given in the following. For a basic social use case, D2D users may be able to discover and be discoverable by other D2D users that belong to their user group (e.g. friends' list), and then may be able to use a social network application over the D2D link. The discovery may be performed without any WTRU location information. For Public discovery, a D2D user may be discoverable by any other D2D user without needing prior permission. For different Public Land Mobile Network (PLMN) discovery, D2D users belonging to different PLMNs may be discoverable to each other. A sub-set of this may be when the D2D users are also roaming. In a service continuity use case, D2D users may be able to move between direct path and infrastructure mode with no degradation perceivable by the user. For the location and presence use case, operators may be able to enhance their location and presence information with ProSe procedures.

[0073] Examples of the public safety (PS) use case include the following. For the basic PS use case, two authorized PS users may be able to communicate directly over a D2D link. A PS D2D user may be able to maintain multiple simultaneous 1-to-1 D2D sessions with different D2D PS users.

[0074] To achieve an integrated system architecture that may include D2D communication into a framework of cellular communication, mobility procedures may enable graceful transitions between cellular and D2D communications. The objective of mobility procedures may be to enable WTRUs to move from infrastructure links to direct links in an efficient manner, with reasonable delays, and with no loss of data in the process. Appropriate measurements of the D2D links and reporting of the same to the network may be used for this purpose. The triggering of mobility decisions by the network and/or WTRUs based on these reports in conjunction with other considerations may also be used.

[0075] The procedures may include all possible architecture options for D2D, including local path, direct path LTE, and direct path using other radio access technologies (RATs). The procedures may also take into consideration the various protocol architectures that could be used for D2D communication, and provide for the transition between these and the baseline 3GPP protocol architecture.

[0076] Architectural enhancements may be used in order to incorporate D2D communication into the 3GPP Evolved Packet Core (EPC). These changes and additions to the existing architecture may be used to achieve the following: to enable the efficient operation of a large number of D2D-capable devices in the network; to enable the coexistence of D2D links along with the traditional cellular links; to fulfill all the deployment configurations envisioned for the 3GPP ProSe feature; and to fulfill all the service requirements for D2D communication as laid out by 3GPP.

[0077] D2D mobility procedures for a multitude of scenarios including intra and inter-eNB, intra and inter-PLMN are disclosed. The D2D mobility procedure used may be based on the system architecture and the specific mobility scenario.

[0078] Mobility in the D2D context may consist of several distinct types. A first type refers to a change in communication path (the offload scenario):

[0079] This type may be modeled as a reconfiguration for a WTRU in RRC CONNECTED mode that may be configured with a D2D session and/or service. The reconfiguration may initiate or modify the communication path, such that data between one or more WTRUs may switch to a direct communication path, to a local communication path, or to the infrastructure path.

[0080] A second type refers to a change of serving cell (the handover scenario): This type may involve a mobility event such as a handover from one serving cell to another serving cell. This handover may be inter-eNB for a WTRU in RRC CONNECTED mode that is configured with a D2D session and/or service.

[0081] A third type refers to cell reselection (IDLE mode mobility): A WTRU in RRC IDLE mode may be configured with a D2D session and/or service. For example, a WTRU may be receiving data transmissions on a D2D link, which was previously configured either by dedicated signaling before the WTRU moved to IDLE mode or by reception of broadcasted signaling. In this scenario, the WTRU may reselect a different cell while in RRC IDLE.

[0082] A key difference between the first two types is that in the offload scenario, the same infrastructure link, which may be for example the Uu interface, may continue to be used after the event. In contrast, the handover scenario may involve using a different infrastructure node after the event. Another differentiating aspect is that in the handover scenario, a failure during the handover process may lead to a radio link failure, which in turn may lead to a re-establishment procedure. In the offload scenario, however, a failure in the reconfiguration of the communication path may lead to sub-optimal performance but not necessarily to a state of radio-link failure from the RRC connectivity perspective.

[0083] For some services, a change in the communication path such as from a D2D link to the infrastructure path to a local communication path may not be desirable because the D2D services that are triggered primarily may rely on or be provided due to radio proximity between WTRUs.

[0084] Approaches for RRC Connectivity (L3 aspects) and for maintaining service connectivity (L2 aspects) including but not limited to the handling of concerned radio bearers, and/or IP flows for applicable services are described in the following.

[0085] The examples herein may be directed to two WTRUs, but may equally be generalized for a plurality of WTRUs that are active for a given service including a D2D communication. A first WTRU and second WTRU connected in a baseline call or direct path call in the examples described may be referred to herein as WTRU1 and WTRU2, respectively. Similarly, first eNB, second eNB,

and third eNB in the examples described may be referred to herein as eNB1, eNB2, and eNB3 respectively. The examples herein are not intended to limit the number of WTRUs, eNBs, or other network elements used in the methods and apparatuses disclosed.

[0086] FIGs. 5A-5B is a high-level call flow diagram 500 for a method 500 for offloading traffic for the infrastructure to LTE Direct Path offload scenario (Activation of Uu + CN Offload). FIGs. 5A-5B show the intra-eNB case, but this scenario may also apply when there are multiple eNBs. Moreover, the multiple eNBs may be under the same MME within the same PLMN. Additionally, data paths from two eNBs may lead to the same PGW.

[0087] WTRU1 501 and a WTRU2 502 may be connected to eNB 503 and engaged in a baseline call 510 with each other. WTRU1 501 may begin offload of the baseline call 510 with WTRU2 502 to the LTE direct path with a periodic or triggered discovery process 511. In the periodic discovery process 511, a WTRU1 501 or WTRU2 502 may look for discovery sequence transmissions by other WTRUs during pre-determined time instances. They also may transmit such sequences during their assigned time slots in order to be discovered by other WTRUs. Periodic discovery may be designed to assist the WTRUs in finding all discoverable WTRUs in their proximity. A discovery/measurement report 512 from one of the WTRUs may be produced that shows that WTRU1 501 and WTRU2 502 are in radio proximity, and the eNB can coordinate to setup an explicit measurement process in order to produce reliable layer 3 (L3) measurements. The MME 505 may also send the identities of the WTRU1 501 and WTRU2 502 via a message 513A to the eNB 503 and via a message 513B to the D2D server 506.

[0088] The network may alternatively enable triggered discovery. For example, WTRU1 501 and WTRU2 502 may be configured to discover each other by being provided each other's device addresses as well as discovery transmission patterns. This mode may enable the WTRUs to discover each other much faster.

The network may enable this triggered discovery mode after ensuring that WTRU1 501 and WTRU2 502 are capable of D2D communication. Location or other information may be used for triggered discovery. For example, discovery may be triggered when the WTRUs become connected to the same or geographically adjacent eNBs. Alternatively, discovery may be triggered by a Non-LTE other-RAT, such as Wi-Fi Direct. Triggered discovery may include the opportunity for repetitive measurements of each WTRU's direct path links, so that a reliable measurement report 516A and 516B may be generated after layer 3 (L3) filtering 515 over multiple individual measurements.

[0089] Following discovery, WTRU1 501 and WTRU2 502 may receive measurement configurations 514A and 514B that include extensions for direct path measurements and may be under control of the eNB 503. Elements or extensions to existing elements in MeasConfig IE may be defined for D2D specific measurements. These elements may include at least one of: MeasObjectD2D or ReportConfigD2D. In the measurement configurations 514A and 514B the network may provide carrier frequencies for out-of-band measurements or measurement gaps for in-band measurement occasions of the D2D link.

[0090] The WTRU1 501 and WTRU2 502 may respond to the measurement configurations 514A and 514B by sending the measurement reports 516A and 516B to the eNB 503. Once the measurement reports are received, the decision to offload from the infrastructure path to a direct path may be based on the measurement reports 516A and 516B. Measurement thresholds may also be configured based on which offload decision is taken. An offload may be triggered based on a single WTRU's measurement, or alternatively the eNB may wait for the other WTRUs' reports. For example, the network may determine that a direct path may be configured as a function of the reception of a measurement report 512 applicable to a direct path between two or more WTRUs when at least one such report is received by at least two WTRUs within a given period of time.

[0091] Network controlling entities may determine the direct path capabilities of the WTRU1 501 and WTRU2 502. For example, the eNB 503 may communicate with the D2D server 506 through the MME 505 in order to make a WTRU D2D capability request 517A and receive a WTRU D2D capability response 517B in order to then obtain the optimal D2D configuration. The D2D capabilities may include, among other things, the bands/channels in which the WTRUs are capable of performing direct path communication. A WTRU establishing a D2D session may be configured in a master or slave role. This role may impact the WTRU's behavior for D2D resource management, security, D2D access control, etc. A WTRU may be further configured to select D2D mobility procedures based on its current role. In a D2D group session, one WTRU may be configured in the master role.

[0092] WTRU1 501 and WTRU2 502 may receive the direct path configuration using the established RRC connection. The D2D configuration may be provided through RRCConnection Reconfiguration messages 518A and 518B. WTRU1 501 and WTRU2 502 may also be configured to acquire new filtering rules for the infrastructure and D2D paths from a NAS or RRC message (e.g. RRCConnection Reconfiguration message). In another example, WTRU1 501 and WTRU2 502 may receive NAS messages 519A and 519B from the MME 505. The WTRU1 501 and WTRU2 502 may respond by sending with NAS messages 520A and 520B to the MME 505. These messages may contain new uplink Traffic Flow Template (UL TFTs) to be used after D2D session establishment.

[0093] Following reception of the direct path configuration through RRCConnection Reconfiguration messages 518A and 518B and processing the RRCConnection Reconfiguration messages 518A and 518B, WTRU1 501 and WTRU2 502 may trigger establishment of the corresponding D2D links. WTRU1 501 and WTRU2 502 may exchange handshake signals 521 on the direct path that may be at the physical layer. Upon reception of these handshake signals 521, the WTRUs may transmit RRCConnection Reconfiguration Complete

messages 522A and 522B to the eNB, and may be ready to receive and transmit data in a D2D session.

[0094] A new set of IP addresses may be used for the D2D session. This set of IP addresses may belong to a different subnet than the infrastructure path. D2D WTRUs may be configured to acquire D2D IP addresses from the ProSe server. In another solution, a WTRU configured as a D2D session master WTRU may be configured to act as a local DHCP server and may assign the IP addresses related to this D2D session.

[0095] The infrastructure path radio bearers as well as the EPS bearers pertaining to the flow that was handed over to the direct path may have to be managed. Applicable EPS RAB(s) may be removed from the S1-u applicable to the concerned WTRU. The infrastructure path radio bearers may be deleted. The EPS bearers may be reconfigured as pure D2D EPS bearers by deleting the S1 and S5 interface components.

[0096] The deletion of the S1-U bearers between the eNB and the S-GW, as well as the S5 bearer between the SGW and PGW 504 may be accomplished by a modification of the MME-Initiated Dedicated Bearer Deactivation procedure. This procedure as described in the baseline LTE system includes releasing the radio bearers between the WTRU and eNB as well, but that need not be done in the context of D2D bearer modification described herein.

[0097] Applicable EPS RAB(s) may be maintained for the S1-u applicable to the concerned WTRU. Alternatively, the infrastructure radio bearers may be retained to allow for the possibility of dynamic switching of the flows between direct path and infrastructure path. Traffic from a given service may be mapped to either path, for example such that multi-path transmission may be supported. The EPS bearers may be reconfigured as special D2D EPS bearers that have both the infrastructure path data radio bearers (DRBs) and the direct path DRBs associated with them.

[0098] Core network context for applicable EPS RAB(s) may be maintained, but the S1-u may be deleted. Alternatively, the EPS bearers associated with the service for the applicable D2D session for the concerned WTRUs in the Core Network may be maintained, but the S1-u communication path for those bearers may be torn down. Upon a switch back to infrastructure path, the bearers may be reactivated e.g. without the need for a WTRU to perform a NAS service request or NAS service update procedure.

[0099] Using the data path from WTRU1 501 to WTRU2 502, the following actions may be taken in order to ensure seamless offload of data transmission with RLC AM bearers:

[0100] WTRU1 501 and WTRU2 502 may suspend any DRB(s) applicable to a service associated with direct path for the uplink (UL), downlink (DL), or both and may then transmit a RRC Reconfiguration Complete messages 522A and 522B, respectively, to the eNB 503. The eNB 503 may then send explicit RRC messages 523A and 523B commanding WTRU1 501 and WTRU2 502 to stop infrastructure transmission respectively of any data that is to be redirected to the direct path. WTRU1 501 and WTRU2 502 may also receive a PDCP Status PDU in the DL for a DRB.

[0101] eNB 503 may also provide WTRU1 501 and WTRU2 502 with the current PDCP Status 524A and 524B respectively from eNB 503, thus informing WTRUs 501 and 502 of the sequence numbers of the last in-sequence PDCP PDU that was successfully received at eNB 503. This may enable WTRU1 501 and WTRU2 502 to ascertain the starting points (i.e. the PDCP SDUs) for the direct path transmission. The WTRU may receive data for the DRB.

[0102] eNB 503 may continue transmitting 525A any remaining data in its transmit buffer to WTRU1 501 and WTRU2 502. eNB 503 may continue to forward its received PDUs 525B from in sequence PDCP SDUs from WTRU1 501 and WTRU2 502, onward to the SGW/PGW 504.

[0103] After forwarding all the data to the SGW/PGW 504, eNB 503 may transmit an end marker packet on a GTP-U tunnel between the eNB 503 and SGW/PGW 504. An end marker may be forwarded using the GTP-U protocol through the GTP tunnels 526A of WTRU1 501 to the SGW/PGW 504 and then to eNB 503. An end marker may also be forwarded using the GTP-U protocol through the GTP tunnels 526B of WTRU2 502 to the SGW/PGW 504 and then to eNB 503. This forwarding of an end marker may be enforced by using private extensions in the end marker. These private extensions may be used to define additional functionality that may not be native to the GTP-U protocol. In baseline LTE procedures, the end marker functionality may be used for denoting a switch in the data path from source to target eNB, and thus may involve forwarding of end markers from the PGW to the eNB. In contrast, for direct path communication mobility the transmission/forwarding of end markers from source to target eNB may be through the PGW. It may also be possible that WTRU 501 and WTRU 502 belong to two different PGWs, and there may be no GTP tunnel connectivity between the PGWs. In that case, the end marker approach may not be used, and other means may be employed. This is discussed in more detail in the inter-PLMN case below. Reception of end markers may include but are not limited to the following: (1) sending an acknowledgment to the source eNB; (2) sending a signal to a WTRU to start transmitting and receiving on the direct path starting from indicated PDCP sequence number (SN) in the end marker.

[0104] The reception of the end marker at eNB 503 may be an indication that there may be no further data packets from eNB 503 pertaining to the radio bearer communication that is to be switched to the direct path (for example all the data associated with the infrastructure based radio bearer has been sent to the WTRUs 501 and 502). eNB 503 may complete transmission of any remaining data to WTRU1 501 and WTRU2 502, and may then send an acknowledgment for the receipt of the end marker to the eNB1.

[0105] eNB 503 may then command WTRU1 501 and WTRU2 502 to start D2D transmissions 527A and 527B respectively. A direct path call 528 transmission then may start from the appropriate PDCP PDU, which is the one after the last PDCP PDU in the sequence received by eNB 503 based on the PDCP status report. This procedure may ensure that WTRU1 501 and WTRU2 502 do not receive redundant or incorrectly ordered data from each other over the direct path. The new direct path call 528 transmissions may be from an existing PDCP SDU queue or may start from a different unrelated PDCP SN. For example the WTRU may start from SN=0, since they may now pertain to a new bearer configured with different ciphering mechanisms. A WTRU may also be configured to complete a data path switch (infrastructure to/from D2D) based on synchronization messages delivered by higher layers. For example if the D2D session is related to an existing IMS session and if the WTRUs are configured to use a different IP subnet, SIP messages such as INFO, re-INVITE, OK and ACK may be used to synchronize and complete the switch between the IP addresses.

[0106] Following establishment of the direct path call 528, eNB 503 may send a path switch request 529 to the MME 505. The SGW/PGW 504 may send modify bearer messages 530, and the eNB 503 may send messages to delete the infrastructure bearers 531A and 531B.

[0107] FIGs. 6A-6B is a high-level call flow diagram for a method 600 for the offloading of traffic for the infrastructure to LTE direct path offload scenario (Activation of Uu + CN Offload) for the inter-eNB case. In this mobility situation, WTRU1 601 and a WTRU2 602 may be connected to eNB1 603A and eNB2 603B, respectively, and engaged in a baseline call 610 with each other as shown in FIG. 6.

[0108] WTRU1 601 may begin offload of the baseline call 610 with WTRU2 602 to the LTE direct path with a periodic or triggered discovery process 611. In the periodic discovery process 611, a WTRU may look for discovery sequence transmissions by other WTRUs during pre-determined time instances. They also

may transmit such sequences during their assigned time slots in order to be discovered by other WTRUs. Periodic discovery may be designed to assist the WTRUs in finding all discoverable WTRUs in their proximity. A discovery/measurement report 612 from WTRU1 601 may be produced that shows that WTRU2 602 is in radio proximity, and eNB1 603A may coordinate with eNB2 603B to setup an explicit measurement process in order to produce reliable layer 3 (L3) measurements. MME 604A may also send the identities of the WTRU1 601 and WTRU2 602 via a message 613A to the eNB1 603A and via a message 613B to the D2D server 606.

[0109] The network may alternatively enable triggered discovery. For example, WTRU1 601 and WTRU2 602 may be configured to discover each other by being provided each other's device addresses as well as discovery transmission patterns. This mode enables the WTRUs to discover each other much faster. The network may enable this triggered discovery mode after ensuring that WTRU1 601 and WTRU2 602 are capable of D2D communication. Location or other information may be used for triggered discovery. For example, discovery may be triggered when the WTRUs become connected to the same or geographically adjacent eNBs. Alternatively, discovery may be triggered by a Non-LTE other-RAT, such as Wi-Fi Direct. Triggered discovery may include the opportunity for repetitive measurements of each WTRU's direct path links, so that a reliable measurement report 616A and 616B may be generated after layer 3 (L3) filtering 615 over multiple individual measurements.

[0110] Following discovery, a WTRU may receive a measurement configuration. In WTRU1 601 may receive a measurement configuration 614A from eNB1 603A, and WTRU2 602 may receive a measurement configuration 614B from eNB2 603B. The measurement configurations 614A and 614B may include extensions for direct path measurements and are under control of eNB1 603A and eNB2 603B. New elements or extensions to existing elements in MeasConfig IE may be defined for D2D specific measurements. These new

elements may include at least one of: MeasObjectD2D or ReportConfigD2D. In the measurement configurations 614A and 614B the network also may provide carrier frequencies for out-of-band measurements or measurement gaps for in-band measurement occasions of the D2D link.

[0111] The measurement configuration 614A and 614B may be exchanged over the backhaul interface. For the inter-eNB case, eNB1 603A and eNB2 603B may have to coordinate the configuration over the X2 interface by sending a measurement configuration request 614C and 614D to each other. If an X2 interface does not exist between eNB1 603A and eNB2 603B, they may coordinate via MME1 604A and MME2 604B respectively via S10 interfaces. eNB 603A and eNB 603B may also query the D2D server 606 in order to obtain the mapping between the WTRUs' device discovery identifiers and other identifiers such as the RNTI used during the infrastructure connection.

[0112] Alternatively, for the inter-eNB case, a single network node may determine the measurement configurations 614A and 614B. For example, the node that may subsequently allocate, configure and control the scheduling of the radio resources for the corresponding session and/or direct path may determine the measurement configurations 614A and 614B. Such network nodes may be selected as a function of the localization of the service such that the node is selected because of its coverage area. In the case of a plurality of WTRUs, the node that has the best radio link quality and manages the most WTRUs may be selected.

[0113] The WTRU1 601 and WTRU2 602 may respond to the measurement configurations 614A and 614B by sending the measurement reports 616A and 616B to the eNB 603A and 603B respectively. Once the measurement reports are received, the decision to offload from the infrastructure path to a direct path may be based on the measurement reports 616A and 616B. Measurement thresholds may also be configured based on which offload decision is taken. An offload may

be triggered based on a single WTRU's measurement, or alternatively the eNBs may wait for the other WTRUs' reports. For example, the network may determine that a direct path may be configured as a function of the reception of measurement reports 616A and 616B applicable to the direct path between two or more WTRUs when at least one such report is received by at least two WTRUs within a given period of time.

[0114] Network controlling entities may determine the direct path capabilities of the WTRU1 601 and WTRU2 602. For example, the eNBs 603A and 603B may communicate with the D2D server 606 through the MME1 604A and MME2 604B in order to make a WTRU D2D capability request 617A and receive a WTRU D2D capability response 617B in order to then obtain the optimal D2D configuration. The D2D capabilities may include, among other things, the bands/channels in which the WTRUs are capable of performing direct path communication. A WTRU establishing a D2D session may be configured in a master or slave role. This role may impact the WTRU's behavior for D2D resource management, security, D2D access control, etc. A WTRU may be further configured to select D2D mobility procedures based on its current role. In a D2D group session, one WTRU may be configured in the master role.

[0115] WTRU1 601 and WTRU2 602 may then receive the Direct Path configuration using the established RRC connection. The D2D configuration may be provided through RRCConnection Reconfiguration messages 618A and 618B. WTRU1 601 and WTRU2 602 may also be configured to acquire new filtering rules for the infrastructure and D2D paths from a NAS or RRC message (e.g. RRCConnection Reconfiguration message). In another example, eNB1 603A may send D2D NAS establishment and security messages 619A to WTRU1 601 and MME 604A. Similarly, eNB2 603B may send D2D NAS establishment and security messages 619B to WTRU 602 and MME 604B.

[0116] These messages may contain new uplink Traffic Flow Template (UL TFTs) to be used after D2D session establishment.

[0117] Following reception of the direct path configuration through RRCConnection Reconfiguration messages 618A and 618B and processing the RRCConnection Reconfiguration messages 618A and 618B, WTRU1 601 and WTRU2 602 may trigger establishment of the corresponding D2D links. WTRU1 601 and WTRU2 602 may exchange handshake 621 signals on the direct path that may be at the physical layer. Upon reception of these handshake 621 signals, the WTRUs may transmit RRCConnection Reconfiguration Complete messages 622A and 622B to eNB1 603A and eNB2 603B respectively, and may be ready to receive and transmit data in a D2D session.

[0118] Using the data path from WTRU1 601 to WTRU2 602, the following actions may be taken in order to ensure seamless offload of data transmission with RLC AM bearers:

[0119] The WTRU may suspend any DRB(s) applicable to a service associated to Direct Path for the uplink (UL), downlink (DL), or both. WTRU1 601 and WTRU2 602 may then transmit a RRC Reconfiguration Complete message 622A and 622B respectively to eNB1 603A and eNB2 603B. The eNB1 603A and eNB2 603B may then send an explicit RRC message commanding WTRU1 601 and WTRU2 602 to stop infrastructure transmission 623A and 623B respectively of any data that is to be redirected to the direct path. The WTRU1 601 and WTRU2 602 may also receive a PDCP Status PDU in the DL for the DRB.

[0120] eNB1 603A and eNB2 603B may also provide WTRU1 601 and WTRU2 602 with the current PDCP Status 624A and 624B respectively from eNB1 603A and eNB2 603B, thus informing WTRU1 601 and WTRU2 602 of the sequence numbers of the last in-sequence PDCP PDU that was successfully received at each eNB. This may enable WTRU1 601 and WTRU2 602 to ascertain the starting points (i.e. the PDCP SDUs) for the direct path transmission. The WTRU may receive data for the DRB.

[0121] eNB1 603A may continue transmitting 625A any remaining data in its transmit buffer to WTRU1 601. Similarly, eNB2 603B may continue transmitting 626C data to WTRU2 602.

[0122] eNB1 603A may also continue to forward its received PDUs 625B from in sequence PDCP SDUs from WTRU1 601 and onward to the SGW/PGW 605. Similarly eNB2 603B may also continue to forward its received PDUs 625D from in sequence PDCP SDUs from WTRU2 602 and onward to the SGW/PGW 605. The network may use end markers between the source and target eNB 603.

[0123] After forwarding all the data to the SGW/PGW 605, eNB1 603A and eNB2 603B may transmit an end marker packet on a GTP-U tunnel between the eNBs and SGW/PGW 605. An end marker may be forwarded using the GTP-U protocol through the GTP tunnels 626A of WTRU1 601 to the SGW/PGW 605 and then to eNB2 603B. An end marker may also be forwarded using the GTP-U protocol through the GTP tunnels 626B of WTRU2 602 to the SGW/PGW 605 and then to eNB1 603A.

[0124] The reception of the end marker at eNB1 603A and eNB2 603B may be an indication that there may be no further data packets from the eNBs pertaining to the radio bearer communication that is to be switched to the direct path (for example all the data associated with the infrastructure based radio bearer has been sent to the WTRU1 601 and WTRU2 602). eNB1 603A may complete transmission of any remaining data to WTRU1 601, and eNB2 603B may complete transmission of any remaining data to WTRU2 602. eNB1 603A and eNB2 603B may then send each other acknowledgments for the receipt of the end marker over the X2 interface 627C and 627D.

[0125] eNB1 603A and eNB2 603B may then command WTRU1 601 and WTRU2 602 to start D2D transmission 627A and 627B respectively. A direct path call transmission 628 then may start from the appropriate PDCP PDU, which is the one after the last PDCP PDU in the sequence received by the eNBs

based on the PDCP status report. This procedure ensures that WTRU1 601 and WTRU2 602 do not receive redundant or incorrectly ordered data from each other over the direct path.

[0126] Following establishment of the direct path call 628, eNB1 603A may send a path switch request 629 to the MME 604A, which MME 604A may forward the path switch request 632 to MME 604B. The SGW/PGW 605 may send modify bearer message 630A, and MME 604B may send modify bearer message 630B. eNB1 603A and eNB2 603B may send messages to delete the infrastructure bearers 631A and 631B, respectively.

[0127] In the case where eNB1 603A and eNB2 603B belong to different MMEs, additional communication may occur between the MMEs over the S10 interface in order to reconcile the D2D capabilities and policies as part of the offload process. In case there is no X2 interface between eNB1 603A and eNB2 603B coordination may occur via the MMEs through the S10 interface.

[0128] In the case where WTRU1 601 and WTRU2 602 belong to different PLMNs, there may be several additional factors to be consider before the offload from the infrastructure path to the direct path may be executed.

[0129] First, it may be very likely that the two WTRU operators use different frequency bands/channels for direct path communication. Hence, during the configuration of the direct path, the two PLMNs may have to agree on which direct path frequency may be used and provide this information to the WTRU1 601 and WTRU2 602 as part of the RRConnection Reconfiguration messages 618A and 618B. It is also possible that different frequencies may be used for the two directions of the direct path. For example, there may be one frequency used for the WTRU1 601 to WTRU2 602 path and another for the WTRU2 602 to WTRU1 601.

[0130] In addition, the data from WTRU1 601 and WTRU2 602 may flow through two PGWs, which may belong to the same or different PLMNs. There may be no direct GTP-U tunnel between the PGWs and data may be routed as

regular IP data, either through the public or a private internet cloud. In this situation, end markers may not be provided through the GTP-U protocol. In the absence of this mechanism, some other method may be used to determine the end of the transmissions from eNB1 603A and eNB2 603B and vice versa. One possible technique may be based on inspection of the TCP or IP header data in the packets from the WTRU users. Some header information may be conveyed between eNB1 603A and eNB2 603B over the X2 interface, and the target eNB may look for that information in the incoming packets from its SGW in order to determine the last packet.

[0131] An alternative methodology may be to simply switch from infrastructure to direct path without accounting for all the packets that are enroute in the infrastructure path. In this scenario, the TCP layer may handle out-of-sequence events as it normally would.

[0132] FIG. 7 shows a flow chart in which the WTRU has the capability to recognize a failure to activate the direct path 700. The offloading process (e.g. the establishment and/or activation of the direct path) may fail for some reason. The WTRU may monitor the radio link during the offloading process 701. The WTRU may then determine that the offload failed. One method for determining a failure includes but is not limited to determine that the radio link quality of the direct path is below a certain threshold, 702. Other methods may include determining that the direct path is in a state of radio link failure or that security has not been successfully activated. Unsuccessful security activation includes but is not limited to failure to authenticate a transmission from another WTRU of the same session and/or direct path, or repeated header compression failure. The WTRU may determine such a failure after a certain configurable time such as from the expiration of a timer that is started at the beginning of the offload procedure, or after reception of the reconfiguration message, or after the transmission of the message that indicates completion of the reconfiguration procedure.

[0133] When a WTRU determines that the process is unsuccessful, the WTRU may initiate a procedure to re-establish the session over the infrastructure path. Offload failure timers, different from but equivalent to T304, may need to be defined in order to account for different air interface, network and processing delays associated with the infrastructure to direct path offload process. Once the WTRU determines a failure occurred, the WTRU may notify the eNB of the failure 703 and then re-establish the infrastructure session 704.

[0134] FIG. 8 shows a high-level call flow diagram for mobility procedures 800 in the intra-eNB case for offloading from the LTE direct path to the infrastructure path. WTRU1 801 and WTRU2 802 may be connected in a direct path call 810. Because WTRU1 801 and WTRU2 802 may already have connectivity to the eNB 803, they may already have established signaling and data radio bearers for the infrastructure path. Appropriate NAS and AS security information may already have been provided to the WTRUs as well.

[0135] During the course of direct path call 810 via a D2D server 806, WTRU1 801 and WTRU2 802 may constantly monitor the quality of the direct path radio link. If there is any deterioration, a measurement event 811 may be triggered which may cause WTRU1 801 or WTRU2 802 to trigger an RRC measurement report 812 to eNB 803 in response to the measurement event 811. eNB 803 may make the decision to switch the communication to the infrastructure path and initiate the offload process. eNB 803 may send RRC Reconfiguration request messages 813 and 814 to the WTRU1 801 and WTRU2 802, respectively. As part of the offload process, new DRBs may be created, whose configuration takes into account both eNB 803 and the capabilities of WTRU1 801 and WTRU2 802 on the infrastructure link. These new DRBs may use the security keys already available for the existing infrastructure path DRBs, or AS security may be freshly established.

[0136] Before switching from the direct path call 810, WTRU1 801 may send a PDCP Status PDU 815 to WTRU2 802 over the direct path. Similarly,

WTRU2 802 may send a PDCP Status PDU 816 over the direct path. The PDCP Status PDUs 815 and 816 may inform each other of their respective last received in-sequence PDCP PDU. This may enable the WTRU1 801 and WTRU2 802 to continue transmission over the infrastructure path starting at the appropriate queue position in order to avoid any data loss. Following transmission of the PDCP Status PDUs 815 and 816, WTRU1 801 may send eNB 803 a RRConnection Reconfiguration Complete message 817A, and likewise WTRU2 802 may send eNB 803 a RRConnection Reconfiguration Complete message 817B. The direct path switch request 818 may also be sent to the MME 805 in the CN and result in the establishing S1 and S5 components to the EPS bearer corresponding to the modified data radio bearer 819. It may be noted that when the WTRU1 801 and WTRU2 802 are engaged in direct path communication only, there may be no corresponding EPS bearer elements either in the SGW/PGW 804, and in that case there are no corresponding S1 and S5 tunnels. Hence, a modified Dedicated Bearer Activation procedure may be used in order to setup these EPS bearer elements. The procedure may end with an established infrastructure path call 820.

[0137] The solution for mobility procedures involving a non-LTE RAT direct path may depend on the protocol architecture used for the particular RAT. Solutions include but are not limited to superimposing a 3GPP LTE protocol stack on a non-LTE RAT including the MAC and PHY. In this approach, the non-LTE RAT WTRU connection may share the same IP address as that WTRU's LTE connection, and this IP address may be assigned by the PGW which may serve as the mobility anchor, as defined in LTE.

[0138] The deviations required for the non-LTE RAT may include the RRC Configuration of the MAC and PHY for the direct path including but not limited to parameters specific to the non-LTE RAT. Similarly, measurements of the non-LTE RAT may have to be configured. The LTE network may be aware of many of the details of the non-LTE RAT configuration.

[0139] Alternatively, the IP may be used directly on top of the non-LTE RAT MAC+PHY. In this solution, the non-LTE RAT's protocol may be completely disjointed from the LTE protocol stack. The eNB's RRC entity may not control the direct path communication, nor may the eNB take part in scheduling or resource allocation, in contrast to the LTE direct path described above. The WTRU's non-LTE RAT connection could have a different IP address, or it may have the same IP address as the LTE connection. In the latter case, the flow of traffic through the infrastructure path (LTE) or the direct path (non-LTE RAT) may be governed by the configuration of a logical interface (LIF). The LIF is an interface that hides the physical interface and the IP layer from each other, and was proposed to be used in the context of IP flow mobility. One approach as described below is that the 3GPP network can alter the configuration of the LIF using control plane signaling. In this configuration, the mobility procedures for infrastructure to direct path mobility may be summarized as follows:

[0140] FIG. 9 shows a high-level call flow diagram of a procedure 900 for the offloading to the infrastructure path from a non-LTE RAT on the direct path 900. WTRU1 901 may discover 910 WTRU2 902 either in LTE or in the non-LTE RAT. An LTE discovery may be followed by a non-LTE RAT discovery/measurement 911 triggered by the 3GPP network, such as by the D2D server 904. In addition, the D2D server or other 3GPP network entity may activate the non-LTE RAT radio 912 based on an LTE discovery or some other determination of proximity, such as when WTRU1 901 and WTRU2 902 are connected to the same or adjacent eNBs. Some information regarding the radio parameters of the non-LTE RAT may also be provided by the 3GPP network to facilitate efficient discovery. WTRU1 901 may send to eNB 903a measurement report 913 including the non-LTE RAT channel quality.

[0141] The eNB may decide to transfer the communication to the direct path 914. The configuration of the direct path may consist of providing the

appropriate logical interface as discussed above. This procedure may be analogous to an IP routing table update.

[0142] The non-LTE RAT protocol stack may process IP packets on direct path 915 that may arrive from the application in WTRU1 901 or WTRU2 902. The relevant infrastructure path DRBs and EPS bearers 916 elements may be deleted. For direct path to infrastructure offload, the reverse process may be followed. A measurement event from WTRU1 901 or WTRU2 902 that may indicate that the infrastructure path might be higher quality than the direct path leading to a reconfiguration of the LIF and a setup of the appropriate radio and EPS bearers.

[0143] FIG. 10 shows a high-level call flow diagram for a method 1000 of offloading from the infrastructure path to the local path. The offload from infrastructure to local path may transparent to WTRU1 1001 and WTRU2 1002. A D2D server may not have role in this offload when there are no direct over the air links involved. Both the intra-eNB and inter-eNB procedure is described herein.

[0144] WTRU1 1001 and WTRU2 1002 may be connected in an infrastructure call 1010, through eNB1 1003A and eNB2 1003B, respectively. When the decision to offload to a local path is made, eNB1 1003A may make a local path setup request 1011 to set up a local path over the X2 interface to eNB2 1003B. After receiving a local path setup response 1012, eNB1 1003A may stop forwarding additional packets to the SGW 1004, and transmit an end marker 1013 over the GTP-U tunnel. This end marker reaches eNB2 1003B, which may send an acknowledgement to eNB1 1003A over X2 in the form of a Local Path Start 1015 message. Similarly, eNB2 1003B may stop forwarding additional packets to the SGW 1004, and transmit an end marker 1014 over the GTP-U tunnel. This end marker reaches eNB1 1003A, which may send an acknowledgement to eNB2 1003B over X2 in the form of a Local Path Start 1016 message.

[0145] RRC Reconfiguration requests 1018A and 1018B may be sent from the eNB1 1003A to WTRU1 1001 and from eNB2 1003B to WTRU2 1002 respectively. WTRU1 1001 may send a RRC Reconfiguration response 1019A to eNB1 1003A. Similarly WTRU2 1002 may send a RRC Reconfiguration response 1019B to eNB2 1003B. A path switch request 1020 may be sent to the MME 1005. The MME 1005 may delete the S1, S5 link via messages 1021 and 1022 for the EPS bearers corresponding to the relevant DRBs. Alternatively, the eNBs may terminate the user data protocol stack below the IP layer 1017. For example the user data protocol stack may be terminated below the MAC layer. In this design, the PDCP/RLC transmissions may be between the WTRUs, and the eNB may act as a relay at the MAC layer.

[0146] A local path call 1023 may then commence and packets are routed over the X2 interface. The source eNB terminates the user packets at the IP layer and forwards them to the target eNB over the local path route.

[0147] The offloading from the local path back to the infrastructure path may involve the modification of the EPS bearer to include the S1 and S5 interface setup. An RRC reconfiguration may be required to switch from a below-IP termination to an IP termination at the eNBs, if applicable.

[0148] The procedure for local to LTE direct path offloading is similar to that for infrastructure path to direct path described above. Periodic or triggered discovery between the WTRUs may be followed by a radio reconfiguration for the direct path bearer. The data handling is simpler, since the local path over X2 may be used to transmit the equivalent of the end markers in the infrastructure case. This requires the definition of a new message over X2. Once these end markers are acknowledged, the direct path transmission may proceed.

[0149] Offloading from the LTE direct path to local path is similar to others described herein. The Path Switch option in this case is replaced by an option to create an X2 pipe for the data transfer if one does not already exist.

[0150] Offloads between LTE and non-LTE direct paths may happen when the WTRUs support both direct path options in their hardware configurations. The WTRUs may perform discovery and measurements of both direct paths in some pre-configured sequence. The device identifiers in both RATs and the mapping between them may be managed by the 3GPP network. Once the discovery/measurement report is provided to the eNB, the eNB may make the decision to offload the communication from one direct RAT to another. In the case of an LTE-compatible non-LTE RAT protocol, the procedure may become primarily an RRC Connection Reconfiguration procedure to change the radio bearer configuration. In the case of an LTE-incompatible non-LTE RAT, it may be desired to reconfigure the LIF and add/delete radio bearers and EPS bearers.

[0151] Another mobility event type includes a change of serving cell (the handover scenario). FIGs. 11A-11A1 is a high-level call flow diagram for an infrastructure handover (HO) during a direct path communication 1100. The procedure in FIG. 11A-11A1 enables WTRUs to continue their direct path communication with minimal disruption. In the absence of this procedure, the WTRUs may have to close their direct path connection and re-establish it after the infrastructure handover is complete.

[0152] In this scenario WTRU1 1101 is connected 1110 to eNB1 1103A, and WTRU2 1102 connected 1110 to eNB2 1103B. A direct path call 1111 between WTRU1 1101 and WTRU2 1102 may be configured and may be in progress. A measurement event 1112 occurs when WTRU2 1102 moves closer to eNB3 1103C. WTRU2 1102 may send a measurement report 1113 to eNB2 1103B triggering a handover for the infrastructure path. eNB2 1103B may transmit a handover request 1114 to eNB3 1103C on the X2 interface and also may transmit the handover command 1115 to WTRU2 1102. Following receipt of the handover command, WTRU2 1102 may begin a random access channel (RACH) process 1116 and send a handover confirmation message 1117 to eNB2 1103B.

[0153] The handover request 1114 may also contain the current configuration of the direct path. Such configuration may include one or more identities. For example, such an identity may be that of WTRU1 1101, eNB1 1103A and/or a D2D session identity, which may also be referred to as a D2D communication identity. The eNB3 1103C may verify the WTRUs' D2D capabilities and D2D policies 1118 with the D2D server 1105 and MME 1106. eNB3 1103C may contact eNB1 1103A over X2 with a D2D configuration request 1119, and eNB2 1103B may respond with a D2D configuration response 1120. Once eNB1 1103A and eNB3 1103C have the D2D configuration negotiated, eNB1 1103A may send a RRC Reconfiguration request 1121A to WTRU1 1101, and eNB3 1103C may send a RRC Reconfiguration request 1121B to WTRU2 1102. The resultant configuration also depends on whether eNB1 1103A and eNB3 1103C establish a peer relationship or if one of the eNBs takes on a master role with respect to this particular direct path.

[0154] WTRU1 1101 and WTRU2 1102 may also provide each other with PDCP Status 1122A and 1122B respectively so that the communication can be continued at the appropriate queue position. The WTRUs may also receive signaling that triggers a discovery or proximity process as described above, which is useful in the case where the direct path requires reconfiguration of one or more physical layer parameters including but not limited to frequency or resource allocation. If the new direct path is in a different frequency band, then the WTRUs may tune to that new direct path frequency 1123A and 1123B respectively. WTRU1 1101 and WTRU2 1102 may then go through a PHY handshake process in order to re-affirm their direct path association in the new band.

[0155] WTRU1 1101 may then send a RRC Reconfiguration response 1125A to eNB1 1103A. Similarly WTRU2 1102 may send a RRC Reconfiguration response 1125B to eNB3 1103C. The direct path call 1126 may then be re-established.

[0156] A WTRU may also perform procedures triggered by a mobility event. Such mobility events include but are not limited to the following: a WTRU initiating a re-establishment of a D2D session back to the infrastructure path, a handover procedure in which a WTRU receives control signaling from the network that reconfigures the direct path used or that indicates mobility for the WTRUs' RRC connection, security reconfiguration and/or restart, and other similar events that may be considered as a transient state during a mobility procedure.

[0157] FIG. 11B shows a high-level call flow diagram for an example of the procedure 1130 that a WTRU may perform during a handover. WTRU1 1101 and WTRU2 1102 may be involved in a D2D session such as a direct path call 1131. WTRU1 1101 may then inform WTRU2 1102 of its HO status by sending a HO preparation message 1132. WTRU2 1102 may also send a D2D session suspended message 1133 over the D2D link. Accordingly WTRU1 1101 may then suspend transmission and/or reception of data and control signaling on the D2D link. If D2D link access is distributed and common inter-cell resources are used for D2D channels (intra or inter band), WTRU1 1101 may continue the D2D session. Use of these messages by the WTRU1 1101 may be configurable. Alternatively or additionally, the HO preparation message 1135 or D2D session suspended message 1136 may be transmitted by the eNB 1103. WTRU1 1101 may also switch its master/slave configuration for the D2D session. WTRU2 1102 may also suspend any D2D transmission to WTRU1 1101 until it receives an indication that the procedure 1130 has completed, by receiving a HO completion message 1134 from WTRU1 1101 on the direct path link from the network.

[0158] If WTRU1 1101 was configured as the D2D session master, WTRU2 1102 may be configured to take over the master role for the session (e.g. in case of a 1-to-1 session) or, WTRU2 1102 may be configured to start a new master election with other WTRUs from the same D2D session (e.g. for a group session).

[0159] Semi-static D2D resources may be allocated for communication between the WTRUs. In this case a WTRU may consider the allocated resources to be invalid upon an indication of the start of mobility on the direct path. One solution may be that WTRU2 1102 considers allocated resources to be released once WTRU2 1102 receives the HO preparation message 1132. WTRU2 1102 may also be configured to scan for resources 1137 in order to obtain a new resource assignment from eNB 1103 for communications with WTRU1 1101. Another solution may be that allocated resources may be kept for a maximum duration (timer T1) and WTRU2 1102 may be configured to scan for the HO completion message 1134 on those resources. In the case where no message has been received at timer expiration then the resources may be considered as released. In an alternative solution, the HO completion message 1134 may be received from the network. WTRU2 1102 may reset the timing information related to WTRU1 1101 (as WTRU1 may itself update its timing reference in the target cell). This timing information may be related to a D2D timing advance, a reference time to open a Rx window for WTRU1 message reception, or the like.

[0160] FIG. 11C shows a flow chart of the procedure 1140 a WTRU performs following the completion of a mobility procedure such as a handover. The WTRU may reset its list of discovered services and D2D WTRUs, 1141. The WTRU may further request new discovery processes, 1142, from its serving eNB for one or more services which were discovered in the previous cell and/or were in an ongoing discovery process. Alternatively, the eNB may already know this list of services (communicated e.g. by the ProSe server or by the source eNB) and may directly configure the WTRU to start new discovery processes, 1143. The WTRU may maintain a list of discovered services/WTRUs from its former serving cell. After a HO, the WTRU may transmit the list of discovered services/WTRUs, 1144, of discovered services/WTRUs to its new serving cell. Alternatively, the eNB may already have this list as it may have been communicated by the ProSe server or by the source eNB. The WTRU may also update the timing information,

1145, for the direct path, which may be based on the timing advance acquired in the serving cell. The WTRU may acquire updated transmission power information, 1146, for the direct path, including but not limited to the maximum power value allowed in the cell. The WTRU may transmit a buffer status report, 1147, which may include the amount of data available for transmission for the D2D session and/or to request resources for transmission on a direct path. In the case of a multicast D2D session suspended during HO, the WTRU may acquire the COUNT (HFN+SN) value, 1148, associated with the data flow from a session master message or from its serving eNB so that it can resynchronize to the multicast traffic. Moreover, a session master WTRU may be configured to transmit the COUNT (HFN+SN) value, 1149, associated with the data flow to another WTRU, which may be the WTRU that may have previously indicated that it was performing a mobility procedure.

[0161] FIG. 12 shows a flow chart of an example method 1200 the third mobility event type which is cell reselection or IDLE mode mobility. A WTRU in RRC IDLE mode may be configured with a D2D session and/or service. For example, a WTRU may be receiving data transmissions on a D2D link, which was previously configured either by dedicated signaling before the WTRU moved to IDLE mode or configured from the reception of broadcasted signaling. The WTRU may reselect a different cell while in RRC IDLE. A WTRU in RRC IDLE mode may select the best suitable cell, 1210, as a function of the possibility of maintaining the D2D session. The WTRU may determine whether or not the D2D link is valid, 1211, in the selected cell. If it is not, the WTRU may initiate a RRC Connection Establishment procedure, 1212, in the selected cell, such that it may move from direct path to an infrastructure path. RRC Connection Establishment messages may be sent by the WTRU. The WTRU then may reacquire parameters related to the D2D session, 1213, such that a different D2D link may be used in the selected cell.

[0162] In each of three mobility event types described above, the WTRU and the network may have to measure and monitor the radio link and also manage any failures that may happen due to sudden deterioration of the links. During a D2D session, in addition to the infrastructure radio link failure (RLF) in baseline cellular networks, D2D systems are also prone to the additional case of direct path radio link failure, which may also be referred to as direct link failure (DLF).

[0163] When WTRUs are engaged in a direct path communication, the infrastructure radio link may fail. One example is when an RLF occurs. FIG. 13A shows an example method 1300 by which a WTRU may handle RLF failure in addition to undertaking the procedures described herein for baseline RLF handling. WTRU1 1301 and WTRU2 1302 are connected in a direct path call 1310. WTRU1 1301 may then immediately cease all communication on the direct path 1311. This may eventually lead WTRU2 1302 to detect a RLF 1312 on the direct link. In this case, allocated resources may be revoked 1313 by eNB 1303 upon Uu RLF.

[0164] FIG. 13B shows a high-level call flow for another RLF handling procedure 1318. WTRU1 1301 may transmit a D2D link failure message such as an RLF message 1321 to WTRU2 1302 on direct path indicating RLF has occurred. WTRU1 1301 and WTRU2 1302 may then cease communication 1322 allowing for a graceful disconnection 1323 of the D2D link.

[0165] FIG. 13C shows yet another procedure 1330 for handling RLF. WTRU1 1301 and WTRU2 1302 may continue its direct path call 1331 for as long as its current grant of resources from eNB1 1303 allows it to do. eNB1 1303 may suspend allocation of new resources 1332A and 1332B for the direct path upon UL or DL failure. While the WTRUs are continuing their direct call 1331, WTRU1 1301 and WTRU2 1302 may re-establish connectivity to the network and/or re-establish the direct path 1333, which may use the last direct path measurement and the physical identity of the other WTRU as stored in the

VarRLFReport IE. RRC re-establishment procedures may include notification information about any ongoing D2D session prior to detection of the RLF condition. As part of baseline RLF handling, WTRU1 1301 may go through a Connection Reestablishment procedure to re-establish the direct path 1333 if it is able to find an appropriate cell in a short period of time. In order to re-establish the direct path 1333, WTRU1 1301 and WTRU2 1302 may provide their previous physical cell ID 1334 to eNB2 1304. An additional field may be inserted in the RRC Connection Reestablishment Request that informs eNB2 1304 that a D2D call was also in progress. This may also enable eNB2 1304 to query 1335 eNB1 1303 over the X2 interface to obtain the previous D2D configuration, and possibly negotiate the new configuration. This may then be provided to WTRU1 1301 and WTRU2 1302 as part of the RRC Connection Reestablishment message, and the D2D call can continue.

[0166] FIG. 14A shows a flow chart for a procedure 1400 pertaining to direct link failure (DLF) handling, which may also be referred to as a D2D link failure. WTRU may monitor the direct path for various direct path link events, 1410. WTRU may then determine DLF, 1411A and suspend transmission on the direct path, 1412.

[0167] WTRUs in RRC Connected mode may trigger a report 1413 (either a measurement report, a DLF report, a proximity detection report) to the eNB and/or initiate a mobility procedure to continue the D2D session. The WTRU may suspend transmission on the direct path 1412 for the concerned D2D session until a valid transmission path is established for the D2D session.

[0168] For a WTRU that is transmitting in a D2D session on a direct link, it may determine if DLF on the UL, DL, or both, 1411B. For example, when the WTRU determines DLF 1411A and it precludes further transmissions, it may continue to attempt reception of transmissions with other WTRU(s) on the D2D link unless it is instructed otherwise by the network and/or while proximity is detected and/or while the D2D session remains valid. In another example, if the

WTRU determines UL DLF only, it may continue attempting reception of transmissions on the direct path but suspend transmissions on the direct path until some condition is met. The condition may include but is not limited to the WTRU regaining a valid timing alignment, and/or the WTRU receiving RRC signaling that enables the WTRU to perform transmissions on the D2D link. The WTRU may also transmit data for the D2D session over the infrastructure path if possible based on the WTRU's configuration.

[0169] Alternatively or additionally, DLF may be indicated to the eNB by the WTRU when the WTRUs trigger a report, 1413. In one example, RRC signaling may be used by the WTRU such as a RRC connection re-establishment with cause indicating "direct path failure" or the like. The WTRU may still have connectivity on the infrastructure link and thus may use such signaling. The eNB may also enable communication to continue over the infrastructure path. Coordination of this process between eNBs over the X2 interface may be used in inter-eNB cases. This procedure is similar to a direct path to infrastructure handover described above. One deviation may be that the PDCP status cannot be exchanged between the WTRUs over the direct path due to the DLF, leading to a possibility of out-of-sequence or lost PDCP PDUs during the handover. An alternative may be to force the WTRUs to report the PDCP status to the eNB(s) over the infrastructure path and to communicate the same to the peer WTRU before completing the handover.

[0170] The WTRU may determine DLF according to direct path link events 1410 including but not limited to any of the following techniques:

[0171] According to a technique, physical layer out-of-synch indications for the direct path may be used. The WTRU may determine that the D2D link is experiencing failure when a number of consecutive out-of-sync indications is received from the physical layer for the direct path, e.g., where an out-of-sync is defined as a failure to receive reference signature sequences such as described in the physical layer. This number may be configurable.

[0172] According to another technique, RLC failure detection may be used. The WTRU may determine that the D2D link is experiencing failure when at least one RLC retransmission fails, or when a number of RLC retransmissions may have failed (e.g. a maximum RLC of retransmissions is reached). This number may be configurable. This may also apply when RLC retransmissions are defined as part of the direct path protocol functionalities. The WTRU may determine UL only DLF, DL only DLF, or UL and DL DLF in this case.

[0173] According to another technique, HARQ failure detection may be used. The WTRU may determine that the D2D link is experiencing failure when at least one (or a configured number) HARQ processes fails, and/or when a number of HARQ retransmissions may have failed (e.g. a maximum number of HARQ retransmissions is reached). This number may be configurable. This may be applicable when RLC is either not supported as part of the direct path protocol functionalities or not configured for the D2D session/D2D link. The WTRU may determine UL only DLF, DL only DLF, or UL and DL DLF in this case.

[0174] According to another technique, indications received from a peer on the direct path may be used. The WTRU may determine that the D2D link is experiencing failure when it receives an indication that one or more peer WTRUs are leaving the direct path communication and/or the D2D session, e.g. and the WTRU may detect that no other WTRUs are active for the session. This may be possible by considering only transmitting WTRUs in the session.

[0175] According to another technique, unsuccessful service discovery/proximity detection may be used. The WTRU may determine that the D2D link is experiencing failure when it determines that discovery/proximity detection for one or more WTRUs is unsuccessful. For example, such detection may be used periodically while the WTRU is active on the direct path, such that continued proximity may be evaluated. If the detection fails, the WTRU may determine that resources allocated by the NW for the Direct Path link are no longer valid. This may be possible when the WTRU detects that no other WTRUs

are active for the session. This may be possible by considering only transmitting WTRUs in the session.

[0176] According to another technique, invalid session parameters may be used. The WTRU may determine that the D2D link is experiencing failure when it determines that resources allocated by the network for the direct path link are no longer valid. Examples include but are not limited to: time expiration of the validity of the allocated resources, detection of a change in scheduling information received for the serving cell that corresponds to the resources of the direct path in case D2D resources are allocated by broadcast signaling, by a broadcast channel dedicated to allocation of resources to D2D session and/or to direct path. The WTRU may determine UL DLF only in such case, in particular when the resources may have been allocated by dedicated signaling and/or were dedicated to the concerned WTRU only.

[0177] According to another technique, invalid security states may be used. The WTRU may determine that the D2D link is experiencing failure when it determines that there is a problem with security for the D2D link and/or for the D2D session. For example, the WTRU may determine that security activation has failed, that security state is no longer valid, or/and that security is no longer synchronized. The WTRU may also determine DLF according to at least one of the following events related to the infrastructure link and/or the established RRC connection.

[0178] According to another technique, RRC Connection state transitions may be used. The WTRU may determine that the D2D link is experiencing failure when it performs a transition to RRC IDLE for the connection with the infrastructure (e.g. such as upon reception of the RRC connection release). Possibly, the WTRU determines UL DLF only in such case.

[0179] Cell is no longer accessible to the WTRU: the WTRU may determine that the D2D link is experiencing failure when it determines that the serving cell that corresponds to the resources allocated to the D2D link is no longer accessible

(e.g. the cell is barred for the WTRU's class, or the cell only accepts emergency services and the D2D session is no of such service class).

[0180] Uplink timing synchronization no longer valid: the WTRU may determine that the D2D link is experiencing failure when it determines that the uplink timing alignment for transmissions in the serving cell is no longer valid. The WTRU determines UL DLF only in such case.

[0181] The WTRU may also determine that a D2D session is failing/terminating when it detects at least one of but not limited to the following conditions: the WTRU determines DLF for the direct path, or any condition that may lead to it as described above; the WTRU determines that mobility failed (for example HO failed, or mobility for the direct path has failed; and the WTRU receives a RRC Connection Reconfiguration message with mobilityControlInformation IE (e.g. a HO command) that has no configuration for a direct path, and the WTRU was active with communications on a direct path in the source cell.

[0182] FIG. 14B shows another flow chart for a procedure 1418 pertaining to direct link failure (DLF) also referred to as a D2D link failure. The WTRU may be in RRC IDLE mode and may monitor the direct path for various direct path link events, 1420. The WTRU may then determine DLF, 1421, and initiate a RRC Connection Establishment, 1422, for the purpose of service continuity over an infrastructure path. RRC Connection Establishment messages may be sent by the WTRU.

[0183] In LTE systems, the WTRU may maintain a single security context, which is associated with an RRC connection. The WTRU may additionally maintain a security context associated with a D2D service, a D2D session, or a D2D link. These security contexts may include a number of security parameters, such as key and/or an encryption algorithm. FIG. 15 shows a flow chart for a security procedure for D2D communication 1500.

[0184] In D2D communication, a WTRU in CONNECTED mode may receive a session-specific security configuration, 1510, from the network, for example together with the configuration of the D2D link. Alternatively or additionally, a WTRU in CONNECTED mode and that is configured to transmit data in a session may provide its security parameters over the established infrastructure link, such that any WTRU that may be a receiver of a D2D session receives the security parameters and may subsequently apply those to any data received from that WTRU. For a session with a plurality of transmitting WTRUs, a WTRU that receives during the session may thus be configured with one security configuration 1510 per WTRU. For example, the receiving WTRU may use the identity of the transmitting WTRU to determine what security context to apply, if any.

[0185] The WTRU may then determine what security parameters, 1511, to apply as a function of the application. Alternatively or additionally, a WTRU may be configured by the application that generates data for the corresponding D2D session with relevant security parameters. Such parameters may be fixed (e.g. as part of the subscriber's information, service groups or the likes) or obtained by higher layers.

[0186] The WTRU may then derive the security key, 1512, using a specific set of keys, or key hierarchy. A WTRU may be configured to derive the security key for a D2D session based on one or a combination of an entity including but not limited to the following: K_{ASME} (Access Security Management Entity) at the NAS level, K_{eNB} at the AS level, K_{ProSe} generated by the ProSe server (e.g. a key associated to the service); $K_{DirectPath}$ generated by the network (e.g. a key associated to the D2D link or D2D connection). For example, one or more of the above keys may be part of the security context of a D2D communication. The WTRU may then perform key derivation using the latter two parameters for encryption and authentication keys used for data and/or control signaling exchanged on a direct path.

[0187] For each of the above mentioned keys, the key validity may be associated with a geographical area. For example, the WTRU may perform security-related procedures. WTRU may use a key that is specific to a given D2D connection/link. A WTRU may be configured to derive a security key, 1512, for a D2D session at least in part using a K_{eNB} Key, or more generally using a key that is associated with and/or assigned by one or more eNB(s). This security key may be referred to as a RAN key. It may be further configured to release a D2D session when it changes its serving cell if the K_{eNB} is not valid anymore. In yet another example, it may be further configured to maintain the D2D session if it is configured as the session master or release it if it is configured as a session slave. In the case where the D2D session is maintained, the session master may be configured to request a key update based on the new K_{eNB} from its serving cell.

[0188] The K_{eNB} key may be associated to the physical resource of the direct path and/or of the D2D communication. The K_{eNB} key may thus differ from the one used for the infrastructure path (i.e. it may be different from the key used for activating security towards the RAN). The key may be common to one or more eNBs including any eNB that may allocate a set of resources and/or control physical layer parameters or scheduling. The key may also be common to any WTRU that is involved including any WTRU that is actively transmitting and/or receiving on a set of resources for a given session and/or for a given direct path.

[0189] A WTRU may be configured to derive security key, 1512, for D2D at least in part by using a K_{ASME} key, or by using a key that is associated with or assigned by the NAS layer. For example, this may be a CN key. It may be further configured to release a D2D session when it changes its serving MME because the K_{ASME} may not be valid anymore. It may be further configured to maintain the D2D session if it is configured as the session master or release the D2D session if it is configured as a session slave. In the case where the D2D

session is maintained, the session master may be configured to request a key update based on the new K_{ASME} from its serving cell.

[0190] The K_{ASME} key may be associated with a specific D2D session, service, and/or group of WTRUs sharing the same subscription and/or capabilities such as a Public Safety unit. The K_{ASME} key may thus differ from the one used for the infrastructure path, and according it may be different from the key used by the WTRU to access network services. The key may be known by one or more network nodes. For example any eNB that may allocate a set of resources and/or control physical layer parameters or scheduling, and/or any WTRU that is involved in a D2D session and may be actively transmitting and/or receiving on a set of resources for a given session and/or for a given direct path.

[0191] The WTRU may use a key that is specific to a given D2D session. A WTRU may be configured to derive a security key, 1512, for D2D at least in part using a K_{ProSe} key. In one solution, it may be further configured to release a D2D session when it changes its serving ProSe server because K_{ProSe} may not be valid following the server change. It may be further configured to maintain the D2D session if it is configured as the session master or release it if it is configured as a session slave. In the case where the D2D session is maintained, the session master may request a key update based on the new K_{ProSe} from its serving cell. In the case where the D2D session is maintained, the session master may be configured to request a key update based on the new K_{ProSe} from its serving cell.

[0192] The K_{ProSe} key may be associated with a specific D2D communication service. The key may be known by one or more network nodes such as any eNB that may allocate a set of resources and/or control physical layer parameters or scheduling, and/or any WTRU that is involved in a D2D session and may be actively transmitting and/or receiving on a set of resources for a given session and/or for a given direct path.

[0193] WTRU may use a key that is specific to a given D2D direct path. A WTRU may be configured to derive a security key 1512 for D2D from K_{DirectPath}.

The $K_{\text{DirectPath}}$ key may be associated with a specific Direct Path. The key may be known by one or more network nodes such as any eNB that may allocate a set of resources and/or control physical layer parameters or scheduling, and/or any WTRU that is involved in a D2D communication session and may be actively transmitting and/or receiving on a set of resources for a given session and/or for a given direct path. The $K_{\text{DirectPath}}$ key may be valid only while the corresponding radio resources are valid.

[0194] If security with authentication is configured and if security requires activation, the WTRU may first activate security, 1513, when it receives data on the D2D link for which the WTRU may verify authentication using the algorithm and key retrieved from the security context. Security activation may be applicable for a D2D link when the security context is common to all transmitting WTRUs for the D2D link. It may also be common to a D2D session when the security context is common to all transmitting WTRUs in a session. Security activation may also be applicable per WTRU from which data may be received. Such authentication information may be present for any PDU received, or for specific PDUs. Such PDUs may be control PDUs exchanged over the D2D link, or any PDU with a specific sequence number (e.g. the first PDU in the session, or any PDU with a given period x such as corresponding to $SN \bmod(x)=0$). When the PDCP is configured for traffic exchanged on a D2D link, it may perform the security functions as described herein.

[0195] Failure to activate security, 1513, or security failure, may lead to service re-establishment as described herein. The WTRU may fail to activate security, or it may lose synchronization and fail to activate security, 1513. When the WTRU detects a failure, the WTRU may initiate a procedure such that the service may be re-established such as a new session setup, as a mobility event away from the direct path communication, or it may terminate the D2D session altogether as in the mobility event type procedures described herein.

[0196] When a mobility event occurs, the WTRU may perform at least one of the following: The WTRU may restart security which may include having the WTRU activate security, 1513, for the direct path and apply the new security configuration, 1510, to the first transmission after the security configuration, 1510, when a mobility event occurs. The WTRU may activate security, 1513, when the mobility event is from infrastructure to a transparent local path as detailed above, which may include transparent forwarding by the network when there is a path-specific security context. The WTRU may activate security, 1513, when the mobility event is from the infrastructure to direct path as detailed above. The WTRU may also activate security 1513 when the mobility event is from the direct path to the local path as detailed herein, including when the network decodes the data and sends it using the WTRU-specific security context or vice-versa.

[0197] Otherwise, the WTRU may continue security without any modification after the reconfiguration of the link. Such as when the mobility event is from infrastructure to local path including when the network decodes the data and sends it using the WTRU-specific security context or vice-versa. WTRU may also continue security without any when the mobility event is from direct path to a transparent local path as detailed herein, including when transparent forwarding is used by the network when there is a path-specific security context, or vice-versa.

[0198] FIG. 16 shows a flow chart for a procedure 1600 in which triggers for mobility and measurement events may be used. The WTRU may be configured with and maintain a proximity detection configuration, 1610, which may also be referred to as a measurement configuration. Such a configuration may include at least one measurement identity including but not limited to a measurement object linked to a measurement configuration and/or discovery signal properties. Measurements may be performed on transmissions received for the D2D link such as reference signals or on discovery signals associated with

other WTRUs of the same D2D session, or on any other signals suitable for assessing link availability and/or link quality such as physical layer measurements described herein.

[0199] Measurement configurations and reporting for the direct path are described herein. In order to assist the reporting of D2D measurements by the WTRU to the eNB, additional IE(s), such as a MeasResultsD2D, may be added to the existing MeasResults IE. Other-RAT measurements may also be accommodated in this IE. Similarly, additions can be made to the ReportConfigEUTRA IE, or a separate ReportConfigD2D IE may be created in order to specify the measurement reporting configuration for D2D. L3 filtering parameters for the D2D measurements can be specified separately, say as a filterCoefficientD2D IE.

[0200] New measurement events may be created that trigger a detection report 1611 from the WTRU to the eNB. The WTRU may be configured with D2D-specific events including but not limited to the following: the direct path is higher than an absolute threshold; the direct path is worse than an absolute threshold; the direct path is better than infrastructure path by a threshold.

[0201] Some other criteria that may be used to trigger or gate the reporting of D2D measurements or as triggers for mobility decisions are listed below.

[0202] The interference level detected in the D2D frequency at a WTRU may also be a criterion. The interference level may be more indicative of the deliverable data capacity than the path loss measure. For example, the RSRQ measured on the potential D2D link may be taken into account. It may also be a two-step criterion such that when RSRQ is below a certain threshold and the RSRP of the actual configured D2D link is above another threshold. The RSRQ threshold may also be configured and reported when a D2D link is established and being used such as when the RSRQ goes above a threshold.

[0203] The current mobility state (speed) of the WTRU may also be a criterion. For example, if the WTRU is moving at a high speed switching to D2D links may be delayed. This may avoid frequent switching of links and therefore data loss. However, if both WTRUs in a prospective D2D link are moving at a high speed but consistently report good measurements of the D2D link between them, one implication is that they are traveling in the same direction (maybe together, as in group mobility scenarios), and hence a D2D link may be established between them. Mobility estimation may be based on Doppler measurements, on existing Mobility State Estimation (MSE) algorithms, or as tracked by the network (e.g. by tracking macro mobility).

[0204] Alternatively or additionally the WTRU may have a proximity detection configuration, 1610, that is separate from other quality measurements. The WTRU may be configured for reception of signals related to detection of the proximity of another WTRU, also referred to as proximity detection. Alternatively or additionally, the WTRU may be configured with a proximity reporting configuration. Such configuration may include provide the WTRU the capability to determine, upon successful proximity detection, whether or not to trigger a detection report, 1611. This may, for example, be a function of the received signal itself e.g. as a function of the resource in time and/or frequency of the signal or as a function of a signature received in the said signal.

[0205] The WTRU may have a list of detection objects corresponding to WTRUs and/or services, which may be indexed using a parameter that may include an identity. Such an identity may correspond to a potential peer WTRU and/or to a D2D session, which may also be referred to as a D2D communication identity. The WTRU may receive control signaling that modifies the activation state of the proximity detection configuration, 1610. For example, such control signaling may be received in a DCI on PDCCH (possibly scrambled by a RNTI applicable for a group of WTRUs e.g. WTRUs that are D2D-capable and/or interested in a specific service), or as a MAC CE, or as RRC signaling. It may also

be received on a broadcast or groupcast channel e.g. a channel that would provide information about available D2D sessions in a given area/cell. The control signaling may include the index to the applicable proximity detection object.

[0206] The WTRU may trigger a detection report, 1611, if it receives a signal that corresponds to its proximity detection configuration, 1610. For example, the WTRU may trigger a detection report based on the detection configuration, 1611, if it determines that the detected proximity signal corresponds to at least one of a specific signal, WTRU, and/or D2D session. This may be based on including but not limited to the following: a signature received in the signal, an identity, an index determined as a function of the signal and a configured set of resources for proximity detection, a specific session associated with the detected signal such as a session ID, or a type of link associated with the detected signal (e.g. whether the link is with infrastructure support or not).

[0207] A proximity detection configuration, 1610, may include but is not limited to the following objects.

[0208] A proximity detection object: Such an object may include one or more properties of a signal. For example, this may include at least one of a frequency and/or an index to a resource. The WTRU may use the object configuration to determine where it may attempt proximity detection. For example, the object may include a list of signals and/or identities associated with an identity of a D2D service and/or session.

[0209] A proximity reporting configuration: a reporting configuration may correspond to a list of reporting criteria. For example, this may include but is not limited to an index to a resource (if not provided by the proximity detection object), a WTRU identity, a service identity and/or a direct path type. Such a configuration may additionally include whether or not additional measurements may be required to determine if proximity detection is successful. The WTRU may use the proximity reporting configuration to determine, once detection is successful, whether or not to trigger a detection report based on the detection

configuration 1611. Additional criteria may include a periodic or a single event description. Such a configuration may additionally include a reporting format, which may include for example the number of detected signals and/or WTRUs/services to report.

[0210] A proximity detection identity may correspond to a list of identities that may link a detection object with a proximity detection configuration 1610. For example, the WTRU may include such an identity in the detection reporting (or possibly also in a measurement report as described herein) such that the network may determine what specific signal is being reported.

[0211] Proximity measurement gap configuration: such a configuration may be associated with the detection process. For example, this may be useful for a WTRU that is connected to a macro layer only and/or that does not have a cell configured in the frequency/band of the proximity detection configuration 1610 such that the WTRU may not miss data transfers on the infrastructure path or be required to turn on an additional transceiver chain for the sole purpose of proximity detection.

[0212] The WTRU may trigger a proximity detection report, 1611, when an event occurs including but not limited to the following events.

[0213] The WTRU may be configured to detect the presence of one or more WTRUs in a given frequency using a proximity detection configuration 1610 and no satisfactory measurements are available, such as when the received signal strength is insufficient and/or the D2D session is not active.

[0214] The WTRU may be configured to detect the presence of one or more WTRUs in a given frequency using a proximity detection configuration 1610 and no associated measurement is configured.

[0215] When the WTRU trigger a proximity detection report 1611, the WTRU may initiate transmission of an RRC SDU over a SRB of the WTRU's configuration.

[0216] The network may respond by configuring a direct path and/or associated reference signals. For the network side, the network node may determine from the reception of a proximity detection report, 1611, whether or not one or more direct paths that correspond to a detected signal should be configured and activated. For example, WTRUs may subsequently receive a configuration for the direct path 1612 and may initiate transmission of additional reference signals that are suitable for radio quality measurements (for example RSRP or similar) to enable further measurements, and/or may initiate a handshake procedure to establish the D2D link in accordance with the methods described herein.

[0217] The network may respond by configuring measurements for the direct path and/or associated reference signals according to any other methods described herein. The network node may also determine from the reception of a proximity detection report 1611 whether or not it may instruct to WTRU to perform at least one action including but not limited to the following actions:

[0218] Perform a measurement for the direct path (or its corresponding reference signals) that may correspond to the detected signal if they are not already configured for that WTRU and/or if no such measurement report was received with the detection report.

[0219] Perform RRC reconfiguration that may configure direct path (and/or its corresponding reference signals) to the WTRU's configuration (for example, if a receive measurement report indicates sufficient radio quality) according to any other methods described herein.

[0220] FIG. 17A-B show flow charts for procedures 1700 and 1718 in which the WTRU may consider proximity detection in combination with measurements for triggers. The WTRU may be configured with one measurement object per D2D session and/or per peer WTRU for the given D2D session. A D2D session may correspond to a single D2D link. A measurement object may include a list of one or more entries where each entry may consist of at least one discovery signal

property. There may be one such entry for each possible peer of the measurement object configuration. For example, a D2D-capable WTRU may be interested in establishing or may already be active in a given D2D session. Discovery signal properties may correspond to proximity detection information such as a WTRU identity or signature, a time-domain position and/or a frequency domain position for the discovery signal or the like. Such lists may correspond to a whitelisted set of WTRUs such as a set of WTRUs for a given D2D session. Such configurations may also include information such as the type of service associated to the discovery signal or such as the type of direct path. For example, the configuration may include information corresponding to whether the direct path uses an infrastructure mode or not or alternatively some information regarding the type of reference signals that may be used for RSRP measurements.

[0221] FIG. 17A shows a flow chart for when an inbound mobility trigger may be used for establishing a direct path when sufficient conditions exist. For example, the WTRU may start performing a proximity detection measurement, 1710, for a measurement object that includes the D2D measurement extension when the WTRU is interested in establishing a direct path for a corresponding service. This proximity detection measurement, 1710, may be on a received reference signal as described above for example. Alternatively or additionally, it may trigger a measurement report, 1712, for a measurement object that includes the D2D measurement extension when the WTRU is interested in establishing a direct path for a corresponding D2D service. The WTRU may then successfully detect at least one corresponding peer WTRU, 1711, for the D2D service. When a proximity detection measurement, 1710, has been started and the measurement has met a triggering criterion, the WTRU may trigger a measurement report, 1712, such as in case of infrastructure mode. Alternatively or additionally the WTRU may initiate acquisition of the D2D link 1713 to establish D2D communication according to any other methods described herein.

[0222] FIG. 17B shows a flow chart for when an outbound mobility trigger may be used for switching from a direct path when insufficient conditions exist. For example, while active on the Direct Path, the WTRU may perform measurements for a measurement object that includes the D2D measurement extension that corresponds to the ongoing D2D session, 1720. In such cases, when the WTRU determines that a measurement event, 1721 occurred (e.g. such as indicating that the quality of the link is below a certain threshold) and triggers a measurement report, 1722, it may no longer successfully detect proximity of at least one other WTRU in the D2D session. In that case, the WTRU may then initiate a procedure to move or handover from the D2D session and/or to re-establish the D2D session, 1723, according to any other methods described herein.

[0223] Embodiments:

1. A method for mobility in device-to-device (D2D) communications.
2. The method as in embodiment 1, wherein mobility involves handover of a user in a D2D session from one eNB to another.
3. The method as in any of the preceding embodiments, wherein mobility involves reconfigurations, wherein the reconfigurations include a change in communication path, a change in serving cell, or a cell reselection.
4. The method as in any of the preceding embodiments, wherein reconfigurations that initiate or change a direct communication path.
5. The method as in any of the preceding embodiments, wherein for reconfigurations a same infrastructure link continues to be used after an event.
6. The method as in any of the preceding embodiments, wherein for handover a different infrastructure node is used after the event.
7. The method as in any of the preceding embodiments, wherein for handover a failure leads to a radio link failure that calls for re-establishment.

8. The method as in any of the preceding embodiments, wherein for reconfigurations a failure leads to sub-optimal performance but not to radio link failure.

9. The method as in any of the preceding embodiments, wherein a first wireless transmit/receive unit (WTRU), WTRU1, is connected to a first evolved node B (eNB), eNB1, and a second WTRU, WTRU2, is connected to a second eNB, eNB2.

10. The method as in any of the preceding embodiments, wherein for an intra-eNB case, the same eNB is used.

11. The method as in any of the preceding embodiments, wherein for an inter-eNB case, different eNBs are used.

12. The method as in any of the preceding embodiments, wherein two eNBs are under the same mobility management entity (MME) within the same Public Land Mobile Network (PLMN).

13. The method as in any of the preceding embodiments, wherein the data paths from the two eNBs lead to the same Packet Data Network (PDN) gateway (PGW).

14. The method as in any of the preceding embodiments, wherein the two WTRUs discover each other on a direct path link either during periodic discovery or by a triggered discovery process.

15. The method as in any of the preceding embodiments, wherein for periodic discovery, the WTRUs look for discovery sequence transmissions by other WTRUs during a pre-determined time instance.

16. The method as in any of the preceding embodiments, wherein WTRUs transmit discovery sequences during an assigned time slot to be discovered by other WTRUs.

17. The method as in any of the preceding embodiments, wherein periodic discovery assists WTRUs to find all discoverable WTRUs in the proximity.

18. The method as in any of the preceding embodiments, wherein for the triggered discovery process, WTRU1 and WTRU2 are provided an address and discovery transmission patterns of the others' device.

19. The method as in any of the preceding embodiments, wherein triggered discovery is enabled by a network after identifying that the WTRUs are capable of D2D communication.

20. The method as in any of the preceding embodiments, wherein location information triggers discovery.

21. The method as in any of the preceding embodiments, wherein triggered discovery includes repetitive measurement of the WTRUs direct path links.

22. The method as in any of the preceding embodiments, wherein two eNBs coordinate to setup an explicit measurement process for periodic discovery.

23. The method as in any of the preceding embodiments, wherein the network provides carrier frequencies wherein measurements have to be performed for D2D link if out-of-band.

24. The method as in any of the preceding embodiments, wherein the networks provides measurement gaps to enable measurement occasions when in-band.

25. The method as in any of the preceding embodiments, wherein the measurement configuration is under the control of one eNB for the intra-band case.

26. The method as in any of the preceding embodiments, wherein the measurement configuration requires coordination between eNB1 and eNB2 for the inter-band case.

27. The method as in any of the preceding embodiments, wherein coordination between eNB1 and eNB2 occurs over an X2 interface.

28. The method as in any of the preceding embodiments, wherein coordination between eNB1 and eNB2 occurs via an S10 interface with the help of the MME.

29. The method as in any of the preceding embodiments, wherein the eNBs query an MME server for mapping between the WTRUs device discovery identifier.

30. The method as in any of the preceding embodiments, wherein a single network node determines the measurement configuration.

31. The method as in any of the preceding embodiments, wherein the decision to handover from infrastructure to direct path is taken on the basis of the measurement results.

32. The method as in any of the preceding embodiments, wherein a measurement threshold is configured.

33. The method as in any of the preceding embodiments, wherein handover is triggered based on the measurement of a single WTRU.

34. The method as in any of the preceding embodiments, wherein the eNBs communicate with a D2D server through the MME to determine the D2D capabilities of a WTRU.

35. The method as in any of the preceding embodiments, wherein the D2D capabilities include the band or channel in which the WTRU is capable of performing a direct path communication.

36. The method as in any of the preceding embodiments, wherein eNB1 and eNB2 communicate over the X2 to determine the specifics of the D2D configuration for the inter-eNB case.

37. The method as in any of the preceding embodiments, wherein the WTRU establishing a D2D session is configured as a master or slave.

38. The method as in any of the preceding embodiments, wherein new IP addresses are used for the D2D session.

39. The method as in any of the preceding embodiments, wherein the D2D configuration is provided through an RRC Connection Reconfiguration message.

40. The method as in any of the preceding embodiments, wherein the WTRU is configured to acquire new filtering rules for infrastructure and D2D paths for NAS or RRC messages.

41. The method as in any of the preceding embodiments, wherein the WTRUs exchange handshake signals on the direct path.

42. The method as in any of the preceding embodiments, wherein the handshake signals are at the physical layer.

43. The method as in any of the preceding embodiments, wherein the WTRUs transmit an RRCConnection Reconfiguration Complete message to the eNB.

44. The method as in any of the preceding embodiments, wherein infrastructure radio bearers and EPS bearers are managed.

45. The method as in any of the preceding embodiments, wherein the infrastructure radio bearers are deleted.

46. The method as in any of the preceding embodiments, wherein the infrastructure radio bearers are retained.

47. The method as in any of the preceding embodiments, wherein the EPS bearers are reconfigured as pure D2D EPS bearers.

48. The method as in any of the preceding embodiments, wherein the EPS bearers are reconfigured by deleted an S1 and S5 interface components.

49. The method as in any of the preceding embodiments, wherein the deletion of the S1 and S5 interface components is accomplished by an MME-initiated Dedicated Bearer Deactivation procedure.

50. The method as in any of the preceding embodiments, wherein the Dedicated Bearer Deactivation procedure includes releasing the radio bearers between the WTRU and eNB.

51. The method as in any of the preceding embodiments, wherein the EPS bearers are reconfigured as special D2D EPS bearers having both infrastructure path data radio bearers (DRBs) and direct path DRBs.

52. The method as in any of the preceding embodiments, wherein the EPS bearers associated with the service are maintained for the D2D session for the WTRUs in the core network (CN).

53. The method as in any of the preceding embodiments, wherein S1-U communication paths for the EPS bearers are torn down.

54. The method as in any of the preceding embodiments, wherein eNB1 transmits a radio resource control (RRC) message to WTRU1 to stop transmission of any data that is redirected to the direct path.

55. The method as in any of the preceding embodiments, wherein eNB1 provides WTRU1 with the current packet data convergence protocol (PDCP) status.

56. The method as in any of the preceding embodiments, wherein the PDCP status informs WTRU1 of the sequence number of the last in-sequence PDCP protocol data unit (PDU) that was successfully received at eNB1.

57. The method as in any of the preceding embodiments, wherein WTRU1 ascertains the starting point.

58. The method as in any of the preceding embodiments, wherein eNB1 transmits remaining data in a transmit buffer of eNB1 to WTRU1.

59. The method as in any of the preceding embodiments, wherein eNB1 forwards received data packets from in sequence PDCP service data units (SDUs) from WTRU1 to a serving gateway (SGW).

60. The method as in any of the preceding embodiments, wherein eNB1 transmits an End Marker packet on a General Packet Radio Service (GPRS) Tunneling Protocol (GTP)-User Plane (GTP-U) between eNB1 and the SGW.

61. The method as in any of the preceding embodiments, wherein the End Marker is forwarded to the PGW using the GTP-U protocol through GTP tunnels of WTRU1.

62. The method as in any of the preceding embodiments, wherein the End Marker is forwarded through GTP tunnels of WTRU2 to eNB2.

63. The method as in any of the preceding embodiments, wherein the End Marker is enforced using Private Extensions.

64. The method as in any of the preceding embodiments, wherein the private extensions define additional functionality.

65. The method as in any of the preceding embodiments, wherein WTRU1 and WTRU2 belong to two different PGWs.

66. The method as in any of the preceding embodiments, wherein there is not GTP tunnel connectivity between PGW1 and PGW2.

67. The method as in any of the preceding embodiments, wherein the reception of the End Marker at eNB2 indicates no further data from eNB1.

68. The method as in any of the preceding embodiments, wherein eNB2 completes transmission of remaining data to WTRU2.

69. The method as in any of the preceding embodiments, wherein eNB2 transmits an acknowledgement for receipt of the End Marker to eNB2.

70. The method as in any of the preceding embodiments, wherein the acknowledgement is transmitted over the X2 interface for the inter-eNB1 case.

71. The method as in any of the preceding embodiments, wherein eNB1 commands WTRU1 to start transmission on the direct path based on the transmitted PDCP status report.

72. The method as in any of the preceding embodiments, wherein transmission on the direct path starts off from the PDCP PDU after the last in sequence received by eNB1.

73. The method as in any of the preceding embodiments, wherein the WTRU is configured to complete a data path switch based on synchronization messages delivered by higher layers.

74. The method as in any of the preceding embodiments, wherein the WTRU detects a handover failure.

75. The method as in any of the preceding embodiments, wherein the WTRU detects a handover failure based on radio link quality, radio link failure, unsuccessful security configuration, or header compression failure.

76. The method as in any of the preceding embodiments, wherein the call between WTRU1 and WTRU2 is continued over the infrastructure path if handover fails.

77. The method as in any of the preceding embodiments, wherein a handover failure timer is used to account for different air interface, network, and processing delays.

78. The method as in any of the preceding embodiments, wherein eNB1 and eNB2 belong to different MMEs.

79. The method as in any of the preceding embodiments, wherein WTRU1 and WTRU2 belong to two different PLMNs.

80. The method as in any of the preceding embodiments, wherein two operators use different frequency bands for direct path communication.

81. The method as in any of the preceding embodiments, wherein the two PLMNs agree on which direct path frequency to use.

82. The method as in any of the preceding embodiments, wherein the two PLMNs provide the direct path frequency to the WTRUs as part of the RRC Reconfiguration.

83. The method as in any of the preceding embodiments, wherein different frequencies are used for two direction of the direct path.

84. The method as in any of the preceding embodiments, wherein data is routed as regular IP data through either a public or private internet cloud.

85. The method as in any of the preceding embodiments, wherein the IP header data in the packets from the user is inspected.

86. The method as in any of the preceding embodiments, wherein header information is conveyed between eNB1 and eNB2 over the X2 interface.

87. The method as in any of the preceding embodiments, wherein a target eNB looks for information in the incoming packets from the SGW to determine the last packet.

88. The method as in any of the preceding embodiments, wherein without accounting for the packet en-route via the infrastructure, the infrastructure is switched to direct path.

89. The method as in any of the preceding embodiments, wherein a transmission protocol (TCP) layer handles out-of-sequence events.

90. The method as in any of the preceding embodiments, wherein WTRU1 and WTRU2 monitor the quality of the direct path radio link.

91. The method as in any of the preceding embodiments, wherein measurement events are triggered if there is deterioration of the direct path radio link.

92. The method as in any of the preceding embodiments, wherein the triggering of a measurement event causes an RRC measurement report to be transmitted to the eNB.

93. The method as in any of the preceding embodiments, wherein the eNB decides to switch the communication to the first infrastructure path and initiates handover.

94. The method as in any of the preceding embodiments, wherein the eNB transmits RRC Reconfiguration messages to the WTRUs.

95. The method as in any of the preceding embodiments, wherein new DRBs are created as part of the reconfiguration.

96. The method as in any of the preceding embodiments, wherein the new DRBs use a security key available for the existing infrastructure path DRBs.

97. The method as in any of the preceding embodiments, wherein WTRU1 and WTRU2 exchange PDCP status PDUs over the direct path.

98. The method as in any of the preceding embodiments, wherein WTRUs continue transmission over the infrastructure from the appropriate queue position to avoid data loss.

99. The method as in any of the preceding embodiments, wherein the path switch is reflected in a core network by adding S1 and S5 components to the EPS bearer corresponding to the new DRBs.

100. The method as in any of the preceding embodiments, wherein when the WTRUs are engaged in direct path communications only, there is no corresponding EPS bearer elements in either the SGW or PGW.

101. The method as in any of the preceding embodiments, wherein a modified Dedicated Bearer Activation procedure is used to setup these EPS bearer elements.

102. The method as in any of the preceding embodiments, wherein another RAT WTRU connection shares the same IP address as an LTE connection of the WTRU.

103. The method as in any of the preceding embodiments, wherein deviations for the another RAT include RRC Configuration of the MAC and PHY for the direct path.

104. The method as in any of the preceding embodiments, wherein IP is used directly on top of another RAT MAC and PHY.

105. The method as in any of the preceding embodiments, wherein the protocol of the another RAT is disjointed from the LTE protocol stack.

106. The method as in any of the preceding embodiments, wherein the RRC entity of the eNB does not control the direct path communication.

107. The method as in any of the preceding embodiments, wherein the another RAT connection of the WTRU has a different IP address as the LTE connection.

108. The method as in any of the preceding embodiments, wherein the another RAT connection of the WTRU has a same IP address as the LTE connection.

109. The method as in any of the preceding embodiments, wherein the flow of traffic through the infrastructure path or direct path is governed by the configuration of a logical interface (LIF).

110. The method as in any of the preceding embodiments, wherein the LIF is an interface that hides the physical layer interface and the IP layer from each other.

111. The method as in any of the preceding embodiments, wherein the LIF is used in the context of IP mobility flow.

112. The method as in any of the preceding embodiments, wherein WTRU1 discovers WTRU2 in LTE or in the another RAT.

113. The method as in any of the preceding embodiments, wherein LTE discovery is followed by the another RAT discovery triggered by the network.

114. The method as in any of the preceding embodiments, wherein the another RAT identity is provided by the D2D server.

115. The method as in any of the preceding embodiments, wherein the another RAT is activated by the network based on LTE discovery.

116. The method as in any of the preceding embodiments, wherein WTRU1 transmits a measurement report including the another RAT channel quality.

117. The method as in any of the preceding embodiments, wherein the eNB decides to transfer the communication to the direct path.

118. The method as in any of the preceding embodiments, wherein the configuration of the direct path consists of providing the appropriate logical interface.

119. The method as in any of the preceding embodiments, wherein further IP packets arriving from the application in the WTRU are processed by the another RAT protocol stack and transmitted over the direct path.

120. The method as in any of the preceding embodiments, wherein the relevant infrastructure path DRBs and EPS bearer elements are deleted.

121. The method as in any of the preceding embodiments, wherein a decision to handover to a local path is made.

122. The method as in any of the preceding embodiments, wherein when the decision to handover is made, eNB1 requests to setup a local path over the X2 interface to eNB2.

123. The method as in any of the preceding embodiments, wherein after receiving a response, eNB2 stops forwarding packets to the SGW and transmits an End Marker over the GTP-U tunnel.

124. The method as in any of the preceding embodiments, wherein the End Marker reaches eNB2.

125. The method as in any of the preceding embodiments, wherein eNB2 transmits an acknowledgement to eNB1 over the X2 interface in the form of a local path start message.

126. The method as in any of the preceding embodiments, wherein the local path communication begins if the source eNB terminates the user packets at the IP layer and forwards them to the target eNB over the local path route.

127. The method as in any of the preceding embodiments, wherein the eNBs terminate the user data protocol stack below the IP layer.

128. The method as in any of the preceding embodiments, wherein the PDCP and RLC transmission between the WTRUs and the eNB act as a relay at the MAC layer.

129. The method as in any of the preceding embodiments, wherein S1 and S5 links for the EPS bearers corresponding to the relevant DRBs are deleted.

130. The method as in any of the preceding embodiments, wherein the path switch option is replaced by an option to create an X2 pipe for data transfer.

131. The method as in any of the preceding embodiments, wherein the WTRU supports LTE and non-LTE RAT direct paths.

132. The method as in any of the preceding embodiments, wherein the network manages the device identifiers in all RATs and a mapping among them.

133. The method as in any of the preceding embodiments, wherein the WTRU performs discovery and measurements in all direct paths.

134. The method as in any of the preceding embodiments, wherein a discovery report is provided to the eNB to use as a basis for handover decisions.

135. The method as in any of the preceding embodiments, wherein the radio bearer reconfiguration procedure is a RRC Connection Reconfiguration.

136. The method as in any of the preceding embodiments, wherein the reconfiguration includes reconfiguration of the LIF, radio bearer deletion and EPR bearer addition and deletion.

137. The method as in any of the preceding embodiments, wherein a mobility event occurs when WTRU2 moves closer to eNB3 and a handover is triggered for the infrastructure path.

138. The method as in any of the preceding embodiments, wherein the WTRUs close their direct path connection and re-establish it after the handover is complete.

139. The method as in any of the preceding embodiments, wherein eNB2 transmits a D2D handover request to eNB3 over the X2 interface.

140. The method as in any of the preceding embodiments, wherein D2D handover request includes the current configuration of the direct path and the identities of WTRU1 and eNB1.

141. The method as in any of the preceding embodiments, wherein the configuration includes at least one of a plurality of identities.

142. The method as in any of the preceding embodiments, wherein eNB3 verifies D2D capabilities of the WTRU and D2D policies with the D2D server.

143. The method as in any of the preceding embodiments, wherein after handover is complete, eNB3 contacts eNB1 over the X2 interface to negotiate a D2D configuration.

144. The method as in any of the preceding embodiments, wherein the resultant configuration depends on the relationship between eNB1 and eNB3.

145. The method as in any of the preceding embodiments, wherein eNB1 and eNB3 transmit RRC Reconfigurations to WTRU1 and WTRU2, respectively, to reconfigure the direct path.

146. The method as in any of the preceding embodiments, wherein the WTRU initiates a re-establishment of a D2D session back to the infrastructure path after receiving control signaling from the network that reconfigures the path used for the D2D session or that indicates mobility for the WTRU's RRC connection.

147. The method as in any of the preceding embodiments, wherein the WTRU informs other WTRUs in the D2D session of its handover status.

148. The method as in any of the preceding embodiments, wherein the eNB informs other WTRUs in the D2D session of the handover status of other WTRUs.

149. The method as in any of the preceding embodiments, wherein the WTRU suspends transmission and reception of data and/or control signaling for the D2D link associated with a mobility procedure.

150. The method as in any of the preceding embodiments, wherein the WTRU switches its configuration role from master to slave.

151. The method as in any of the preceding embodiments, wherein the WTRU switches its configuration role to master.

152. The method as in any of the preceding embodiments, wherein the WTRU receives a handover preparation and session suspended message from another WTRU.

153. The method as in any of the preceding embodiments, wherein the WTRU receives signaling that triggers a discovery detection process.

154. The method as in any of the preceding embodiments, wherein the WTRU receives signaling that triggers a proximity detection process.

155. The method as in any of the preceding embodiments, wherein if the new direct path is in a different frequency band, the WTRUs tune to that frequency and go through the PHY handshake process to re-affirm the direct path association in the new band.

156. The method as in any of the preceding embodiments, wherein the WTRUs exchange PDCP status to continue communication at an appropriate queue position.

157. The method as in any of the preceding embodiments, wherein the WTRUs transmit the RRC Reconfiguration Complete message.

158. The method as in any of the preceding embodiments, wherein the WTRUs resume transmission and reception following receipt and transmission of the RRC Reconfiguration Complete message.

159. The method as in any of the preceding embodiments, wherein the WTRU resets its list of discovered services and WTRUs.

160. The method as in any of the preceding embodiments, wherein the WTRU maintains a list of discovered services and WTRUs from another cell.

161. The method as in any of the preceding embodiments, wherein the WTRU updates the timing information for the direct path.

162. The method as in any of the preceding embodiments, wherein the WTRU acquires transmission power information for the direct path.

163. The method as in any of the preceding embodiments, wherein the WTRU transmits a buffer status report (BSR) including an amount of data for transmission or the D2D session.

164. The method as in any of the preceding embodiments, wherein the WTRU acquires a COUNT value associated with a data flow to use as a basis for resynchronizing to multicast traffic.

165. The method as in any of the preceding embodiments, wherein the WTRU transmits the COUNT value to another WTRU.

166. The method as in any of the preceding embodiments, wherein the WTRU performs a cell reselection procedure.

167. The method as in any of the preceding embodiments, wherein the WTRU selects a cell based on a function of the possibility to maintain the D2D session.

168. The method as in any of the preceding embodiments, wherein the WTRU determines whether the D2D session is valid on a selected cell.

169. The method as in any of the preceding embodiments, wherein the WTRU acquires parameters related to the D2D session such that a different D2D link may be used.

170. The method as in any of the preceding embodiments, wherein the WTRU and the network measure and monitor the radio link.

171. The method as in any of the preceding embodiments, wherein the WTRU and the network manage failures that happen due to sudden deterioration of the links.

172. The method as in any of the preceding embodiments, wherein direct path radio link failure (RLF) occurs in D2D.

173. The method as in any of the preceding embodiments, wherein direct link failure (DLF) occurs in D2D.

174. The method as in any of the preceding embodiments, wherein WTRU1 immediately ceases all communication on the direct path.

175. The method as in any of the preceding embodiments, wherein WTRU2 detects a direct link failure based on WTRU1 ceasing all communication on the direct path.

176. The method as in any of the preceding embodiments, wherein WTRU1 transmits a message indicating RLF to WTRU2 on the direct path before ceasing communication.

177. The method as in any of the preceding embodiments, wherein WTRU1 continues direct path transmission for as long as the current grant from eNB1 allows.

178. The method as in any of the preceding embodiments, wherein WTRU1 stores the last direct path measurement and physical identity of WTRU2 as part of a VarRLFReport.

179. The method as in any of the preceding embodiments, wherein WTRU1 transmits the VarRLFReport to WTRU2 upon connection reestablishment.

180. The method as in any of the preceding embodiments, wherein WTRU1 goes through a connection reestablishment procedure if it is able to find an appropriate cell in a short period of time as part of baseline RLF handling.

181. The method as in any of the preceding embodiments, wherein as part of reestablishment, WTRU1 provides a previous physical cell ID of WTRU1 to the new eNB.

182. The method as in any of the preceding embodiments, wherein an additional field is inserted in the RRC Connection Reestablishment request informing eNB2 that a D2D call was in progress.

183. The method as in any of the preceding embodiments, wherein eNB2 is enabled to query eNB1 over the X2 interface to obtain the previous D2D configuration.

184. The method as in any of the preceding embodiments, wherein eNB2 negotiates with eNB1 a new D2D configuration.

185. The method as in any of the preceding embodiments, wherein the new D2D configuration is provided to WTRU1 as part of the RRC Reconfiguration Reestablishment message.

186. The method as in any of the preceding embodiments, wherein the WTRU determines DLF and suspends transmission on the direct path.

187. The method as in any of the preceding embodiments, wherein the WTRU in RRC IDLE mode initiates a RRC Connection Establishment for service continuity over the infrastructure path.

188. The method as in any of the preceding embodiments, wherein the DLF is determined separately for the uplink and downlink.

189. The method as in any of the preceding embodiments, wherein the D2D call continues.

190. The method as in any of the preceding embodiments, wherein DLF is a configured number of consecutive out-of-sync indications for direct path.

191. The method as in any of the preceding embodiments, wherein DLF is an RLC retransmission failure.

192. The method as in any of the preceding embodiments, wherein DLF is indicated to the eNB by the WTRU.

193. The method as in any of the preceding embodiments, wherein coordination is required between eNBs over the X2 interface in an inter-eNB case.

194. The method as in any of the preceding embodiments, wherein WTRUs report PDCP status to the eNBs over the infrastructure path.

195. The method as in any of the preceding embodiments, wherein the WTRU determines DLF based on at least one the following events associated with the direct path link: RLC failure, HARQ failure, indication of failure from peer on direct path, unsuccessful discovery detection, unsuccessful proximity detection, invalid session parameters, invalid security states, RRC Connection state transition, inaccessible cells, invalid uplink timing synchronization.

196. The method as in any of the preceding embodiments, wherein the WTRU receives a session specific security configuration.

197. The method as in any of the preceding embodiments, wherein the WTRU provides its security parameters over the established infrastructure link such that it is enabled to become a receiver of a D2D session.

198. The method as in any of the preceding embodiments, wherein the WTRU generates data for the D2D session with security parameters.

199. The method as in any of the preceding embodiments, wherein the WTRU derives a security key from one of K_{ASME} (Access Security Management Entity) at the NAS level, K_{eNB} at the AS level, K_{ProSe} generated by the ProSe server (e.g. a key associated to the service), or $K_{DirectPath}$ generated by the network (e.g. a key associated to the D2D link or D2D connection).

200. The method as in any of the preceding embodiments, wherein the key validity is associated with a geographic area.

201. The method as in any of the preceding embodiments, wherein the WTRU first activates security when it receives data on the D2D link for which the WTRU verifies authentication using an algorithm and key retrieved from a security context.

202. The method as in any of the preceding embodiments, wherein the PDCP performs security functions.

203. The method as in any of the preceding embodiments, wherein the WTRU initiates a re-establishment procedure after a security activation failure.

204. The method as in any of the preceding embodiments, wherein the WTRU determine D2D session is terminating when at least one of determining DLF, determining handover failed, receiving a RRC Connection Reconfiguration message.

205. The method as in any of the preceding embodiments, wherein the WTRU is configured with a measurement configuration.

206. The method as in any of the preceding embodiments, wherein the measurement configuration includes additional information elements (IEs).

207. The method as in any of the preceding embodiments, wherein a MeasResultsD2D is added to an existing MeasResults information element (IE).

208. The method as in any of the preceding embodiments, wherein a ReportConfigD2D is added to the existing ReportConfigEUTRA IE.

209. The method as in any of the preceding embodiments, wherein an interference level detected in the D2D frequency at the WTRU is a criteria to trigger reporting of D2D measurements.

210. The method as in any of the preceding embodiments, wherein the interference level is indicative of the deliverable data capacity.

211. The method as in any of the preceding embodiments, wherein current mobility speed of the WTRU is a criteria to trigger reporting of D2D measurements.

212. The method as in any of the preceding embodiments, wherein the WTRU refrains from switching D2D links when the WTRU is in high speed mobility.

213. The method as in any of the preceding embodiments, wherein the WTRU as a proximity detection configuration.

214. The method as in any of the preceding embodiments, wherein the WTRU has an indexed list of detection objects associated with WTRUs and services.

215. The method as in any of the preceding embodiments, wherein the WTRU triggers a detection report when receiving a detection configuration.

216. The method as in any of the preceding embodiments, wherein the detection configuration includes a proximity detection object, a proximity reporting configuration, a proximity detection identity, a proximity measurement gap configuration.

217. The method as in any of the preceding embodiments, wherein the WTRU initiates transmission of an RRC SDU over a SRB of the WTRU's configuration.

218. The method as in any of the preceding embodiments, wherein the network responds to a detection report by configuring a direct path.

219. The method as in any of the preceding embodiments, wherein the WTRU considers proximity detection in combination with measurements for triggers.

220. The method as in any of the preceding embodiments, wherein the WTRU receives an inbound mobility trigger when conditions are sufficient for Direct Path.

221. The method as in any of the preceding embodiments, wherein the WTRU sends an outbound mobility trigger when conditions are insufficient for Direct Path.

222. A WTRU configured to perform a method as in any preceding embodiment comprising:

a receiver;

a transmitter; and

a processor in communication with the transmitter and the receiver.

223. A base station configured to perform a method as in any of embodiments 1-221.

224. An integrated circuit configured to perform a method as in any of embodiments 1-221.

225. An access point (AP) configured to perform a method as in any of embodiments 1-221.

226. A network configured to perform a method as in any of embodiments 1-221.

227. A method of mobility for device-to-device (D2D) communication in a first evolved Node B (eNB), the method comprising:

receiving a radio resource control (RRC) Measurement Report from a first wireless transmit/receive unit (WTRU);
transmitting a second WTRU capability request to a D2D server;
receiving a second WTRU capability response from the D2D server;
transmitting a D2D configuration request to a second eNB;
receiving a D2D configuration response from the second eNB;
transmitting a start direct path message to the second eNB; and
transmitting a path switch request to a mobility management entity (MME).

[0224] Although features and elements are described above in particular combinations, one of ordinary skill in the art will appreciate that each feature or element can be used alone or in any combination with the other features and elements. In addition, the methods described herein may be implemented in a computer program, software, or firmware incorporated in a computer-readable medium for execution by a computer or processor. Examples of computer-readable media include electronic signals (transmitted over wired or wireless connections) and computer-readable storage media. Examples of computer-readable storage media include, but are not limited to, a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs). A processor in association with software may be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.

* * *

CLAIMS

What is claimed:

1. A method for use in a wireless transmit/receive unit (WTRU) for establishing a device-to-device (D2D) communication, the method comprising:
 - storing in memory, by the WTRU, a proximity detection configuration, wherein the proximity detection configuration includes a measurement object corresponding to at least one discovery signal property;
 - performing, by the WTRU, a proximity detection measurement;
 - detecting, by the WTRU, the at least one discovery signal property based on the proximity detection measurement; and
 - establishing, by the WTRU, D2D communication based on detecting the at least one discovery signal property.
2. The method of claim 1, further comprising:
 - triggering, by the WTRU, a measurement report to an eNB.
3. The method of claim 1, further comprising:
 - receiving, by the WTRU, the proximity detection configuration from an eNB.
4. The method of claim 1, wherein establishing D2D communication is based on receiving at least one RRCCconnection Reconfiguration message from an eNB.
5. The method of claim 1, wherein the at least one discovery signal property includes an identity for a WTRU or an identity for a D2D communication.

6. The method of claim 1, wherein the proximity detection measurement is performed on a received reference signal.

7. The method of claim 1, further comprising:
detecting, by the WTRU, the at least one discovery signal property is below a threshold; and
initiating, by the WTRU, a handover to an infrastructure path.

8. The method of claim 1, further comprising:
receiving, by the WTRU, a security configuration for the D2D communication;
determining, by the WTRU, security parameters applicable to the D2D communication;
activating, by the WTRU, security for the D2D communication.

9. A wireless transmit/receive unit (WTRU) configured for establishing a device-to-device (D2D) communication, the WTRU comprising:
memory configured to store a proximity detection configuration, wherein the proximity detection configuration includes a measurement object corresponding to at least one discovery signal property;
a receiver configured to perform a proximity detection measurement and further configured to detect the at least one discovery signal property based on the proximity detection measurement; and
a transmitter configured to establish D2D communication based on detecting the at least one discovery signal property.

10. The WTRU of claim 9, further comprising:
the transmitter configured to trigger a measurement report to an eNB.

11. The WTRU of claim 9, further comprising:
the receiver configured to receive the proximity detection configuration from an eNB.
12. The WTRU of claim 9, wherein establishing D2D communication is based on receiving at least one RRCCoNnection Reconfiguration message from an eNB.
13. The WTRU of claim 9, wherein the at least one discovery signal property includes an identity for a WTRU or an identity for a D2D communication.
14. The WTRU of claim 9, wherein the proximity detection measurement is performed on a received reference signal.
15. The WTRU of claim 9, further comprising:
the receiver configured to detect the at least one discovery signal property is below a threshold; and
the transmitter configured to initiate a handover to an infrastructure path.
16. The WTRU of claim 9, further comprising:
the receiver configured to receive a security configuration for the D2D communication; and
a processor configured to determine security parameters applicable to the D2D communication and further configured to activate, by the WTRU, security for the D2D communication.
17. A method for link failure handling in a device-to-device (D2D) communication, the method comprising:

sending, by a WTRU, a D2D link failure message, wherein the WTRU is connected in the D2D communication;

ceasing, by the WTRU, all communication in the D2D communication; and disconnecting, by the WTRU, the D2D communication.

18. The method of claim 17, wherein the link failure is on an infrastructure radio link.

19. The method of claim 17, wherein the link failure is on a direct path radio link.

20. The method of claim 17, further comprising:

sending, by the WTRU, a RRC Connection Establishment message to re-establish the D2D communication.

1/24

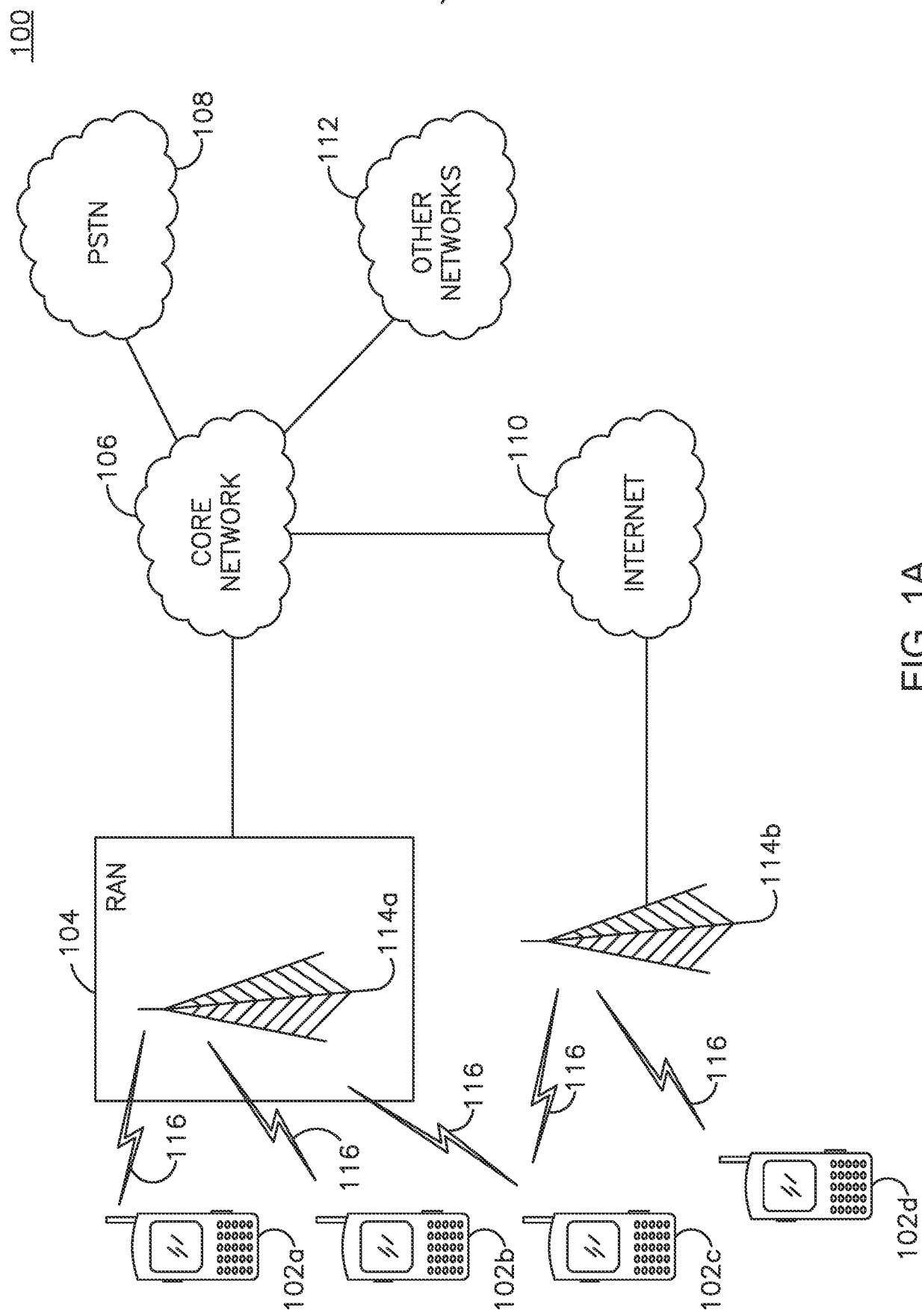


FIG. 1A

2/24

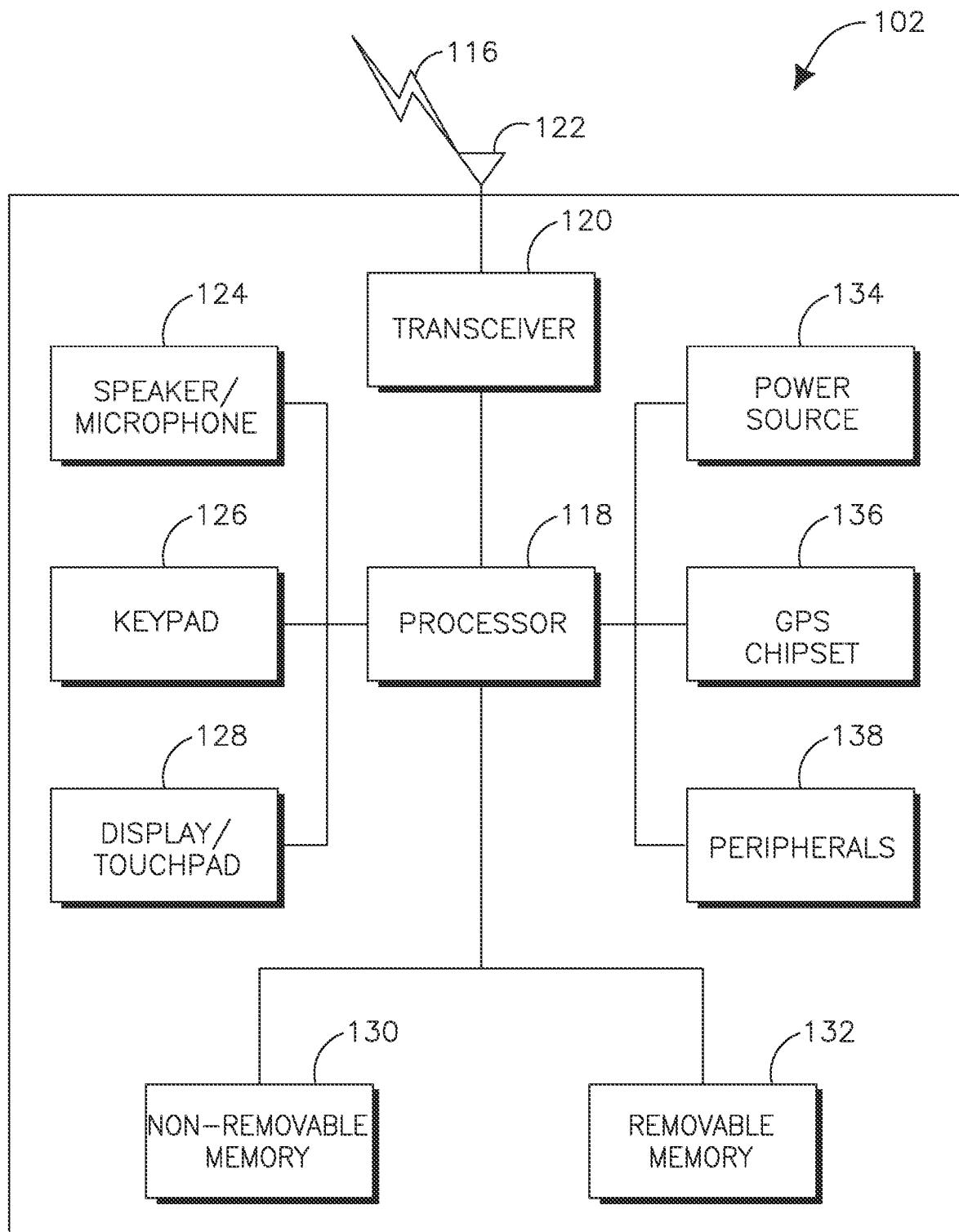


FIG. 1B

3/24

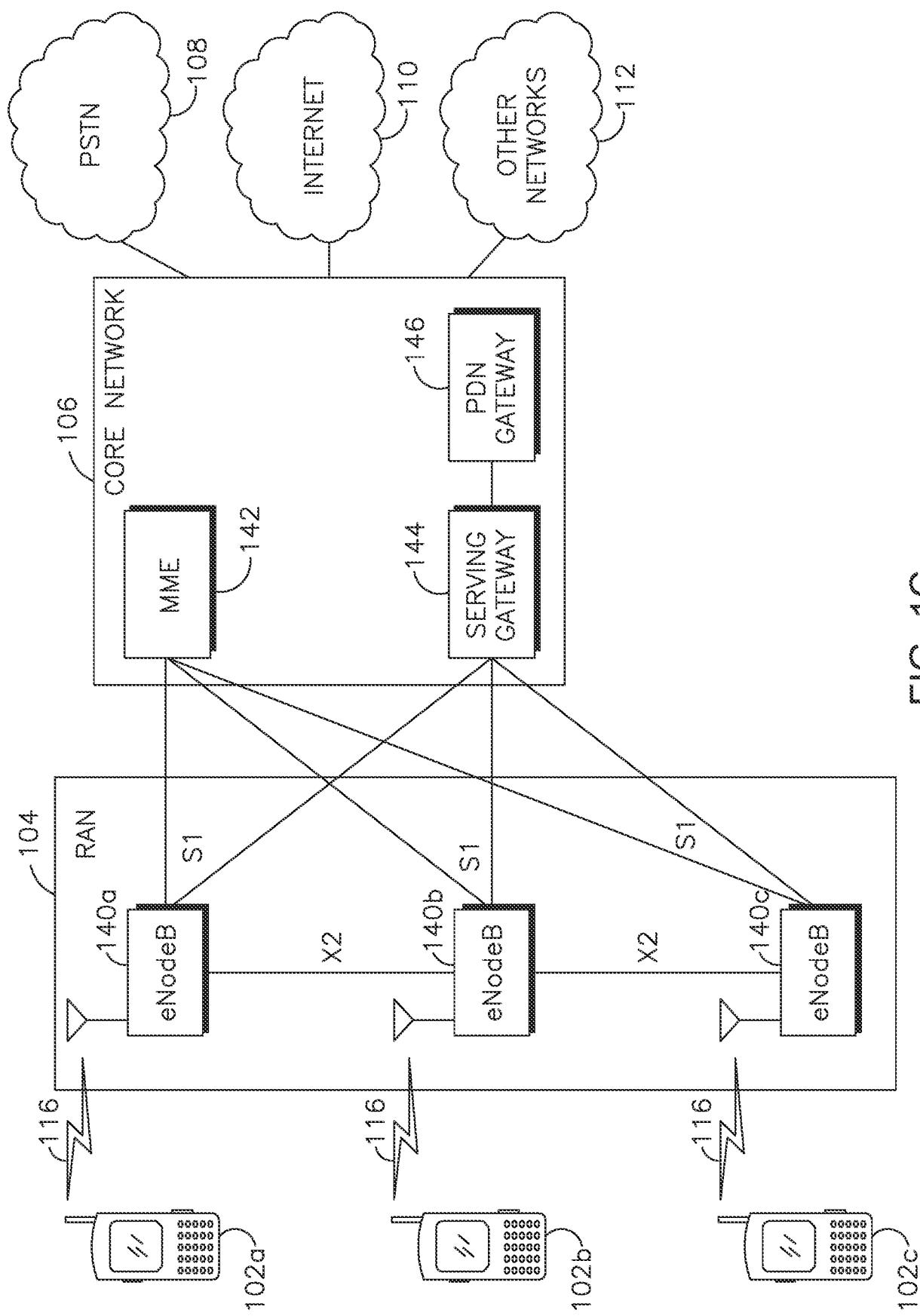


FIG. 1C

4/24

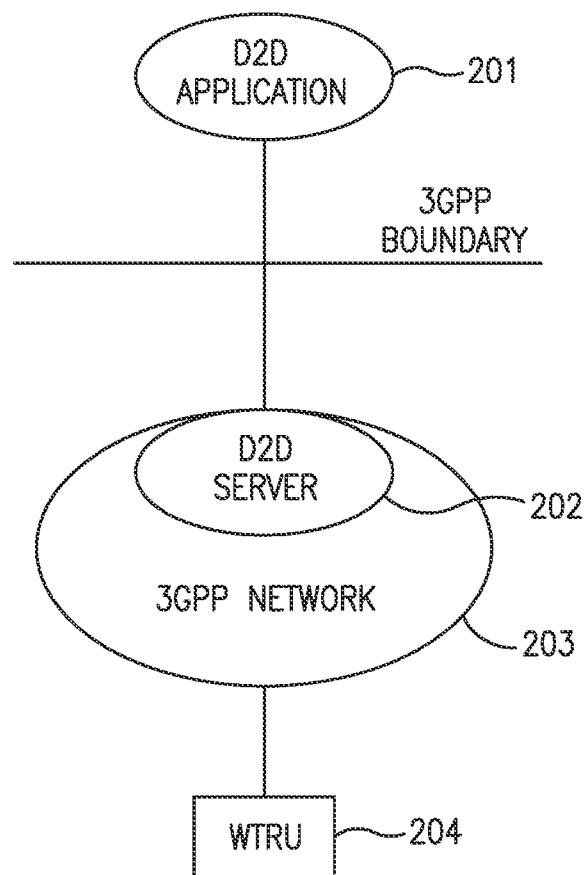

200

FIG. 2

5/24

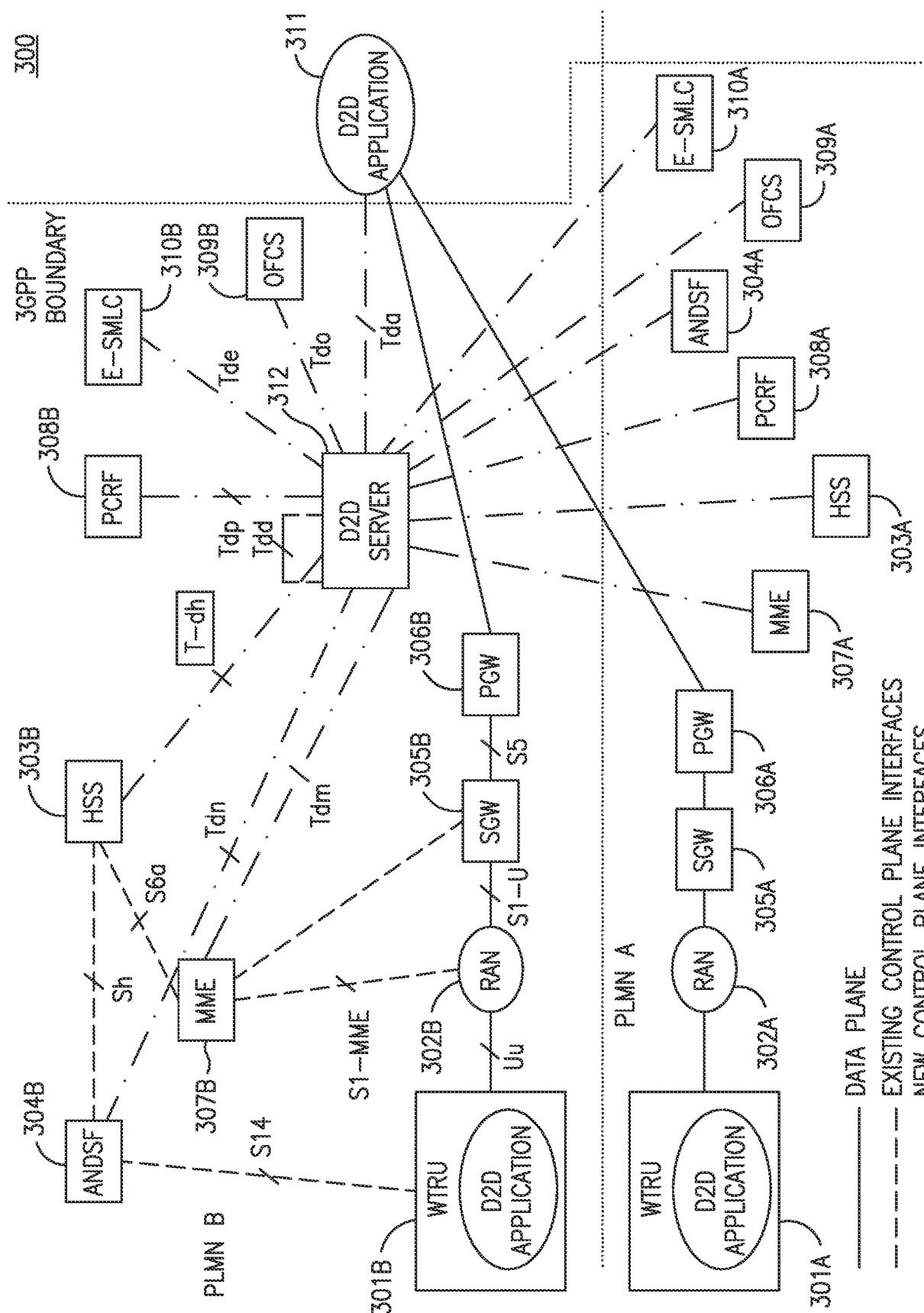


FIG. 3

6/24

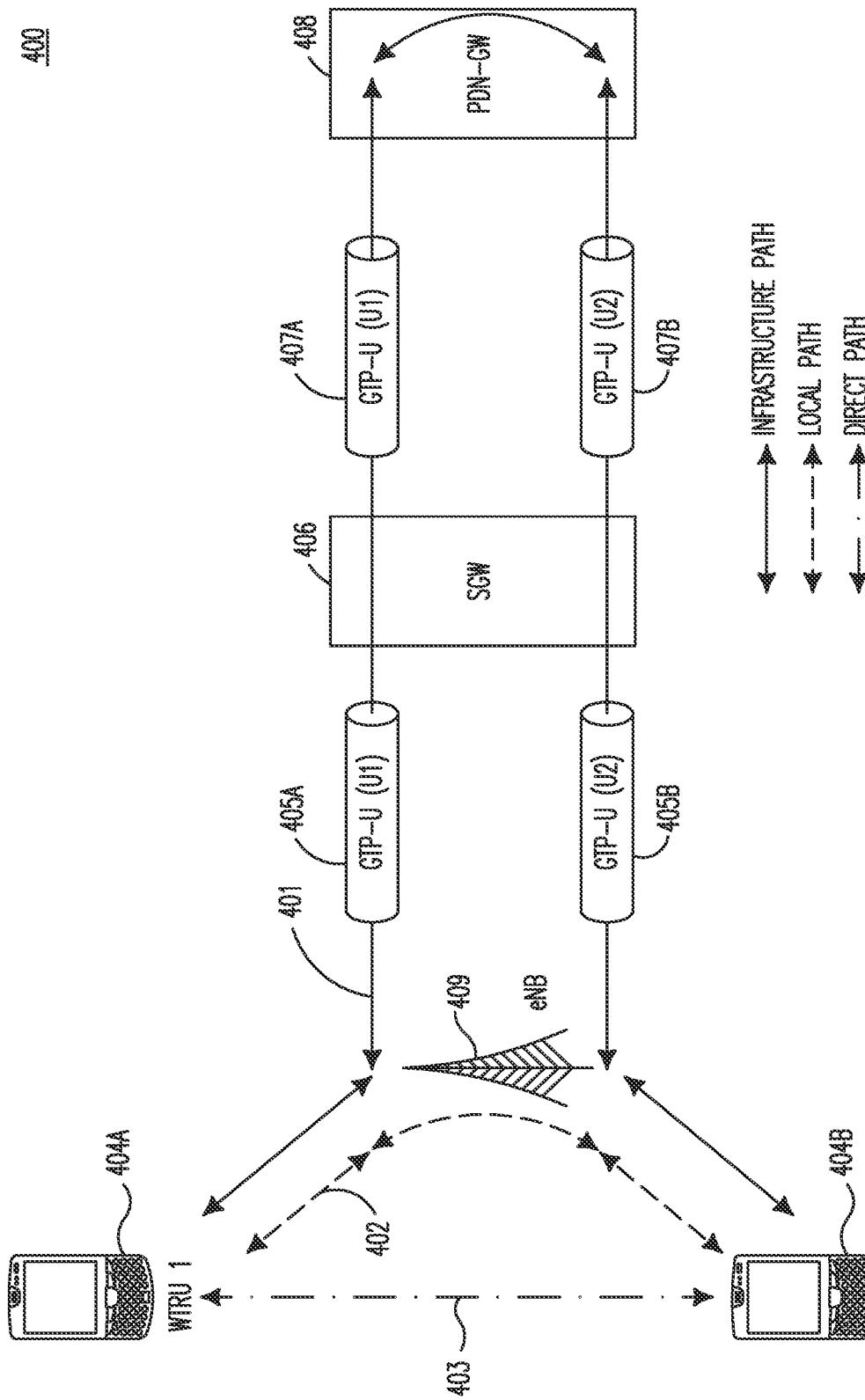
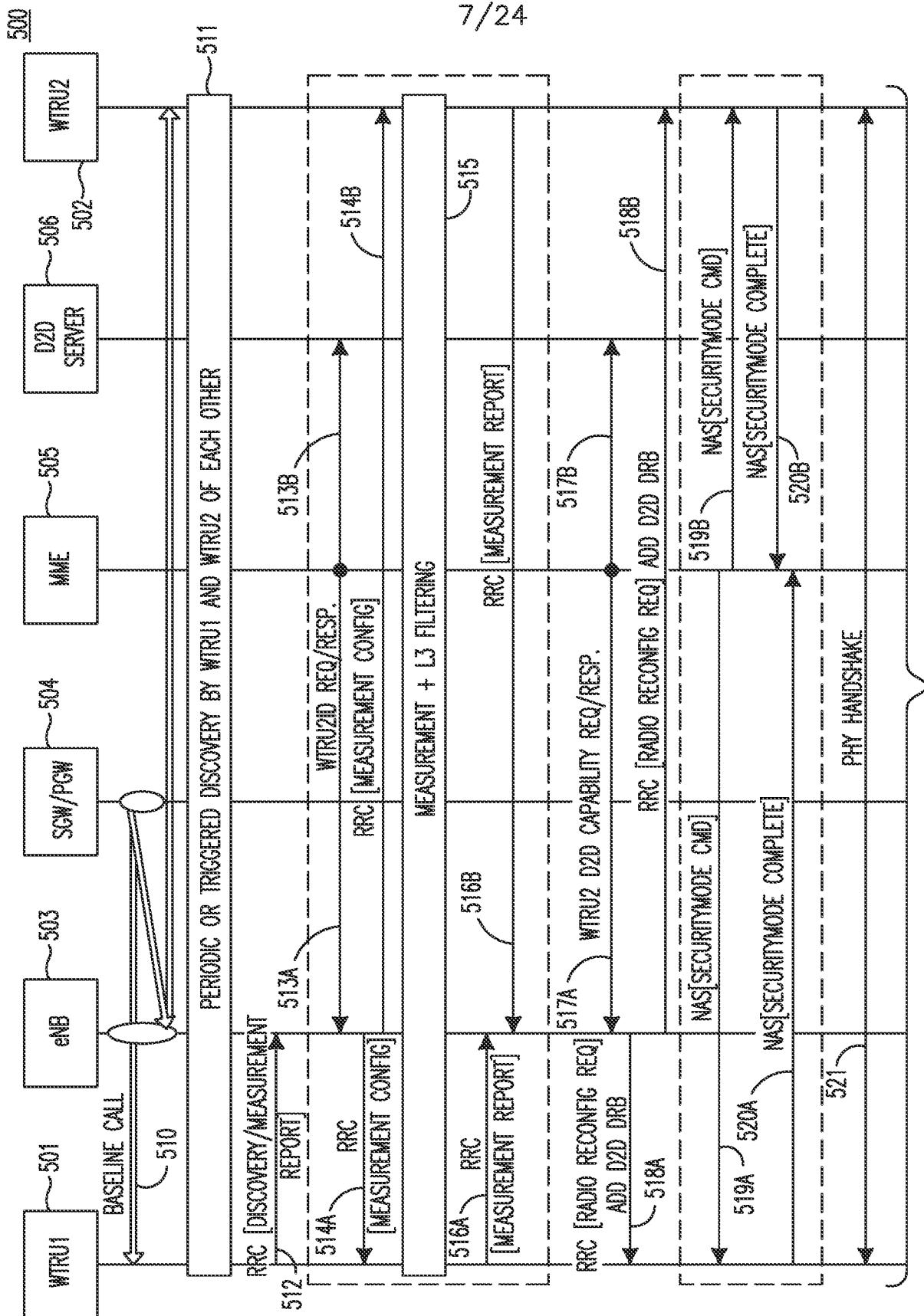



FIG. 4

CONTINUED ON FIG. 5B

8/24

FROM FIG. 5A

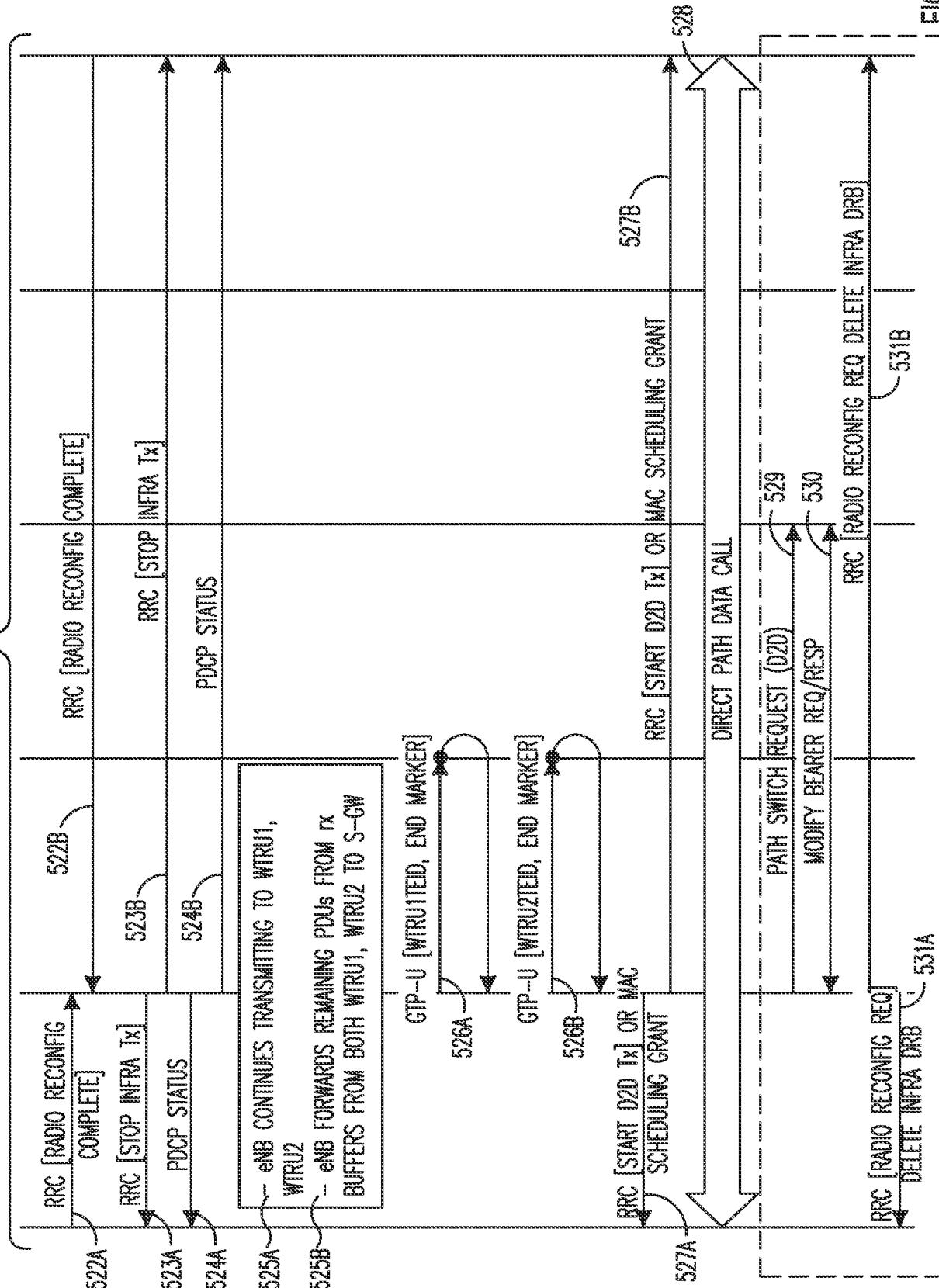
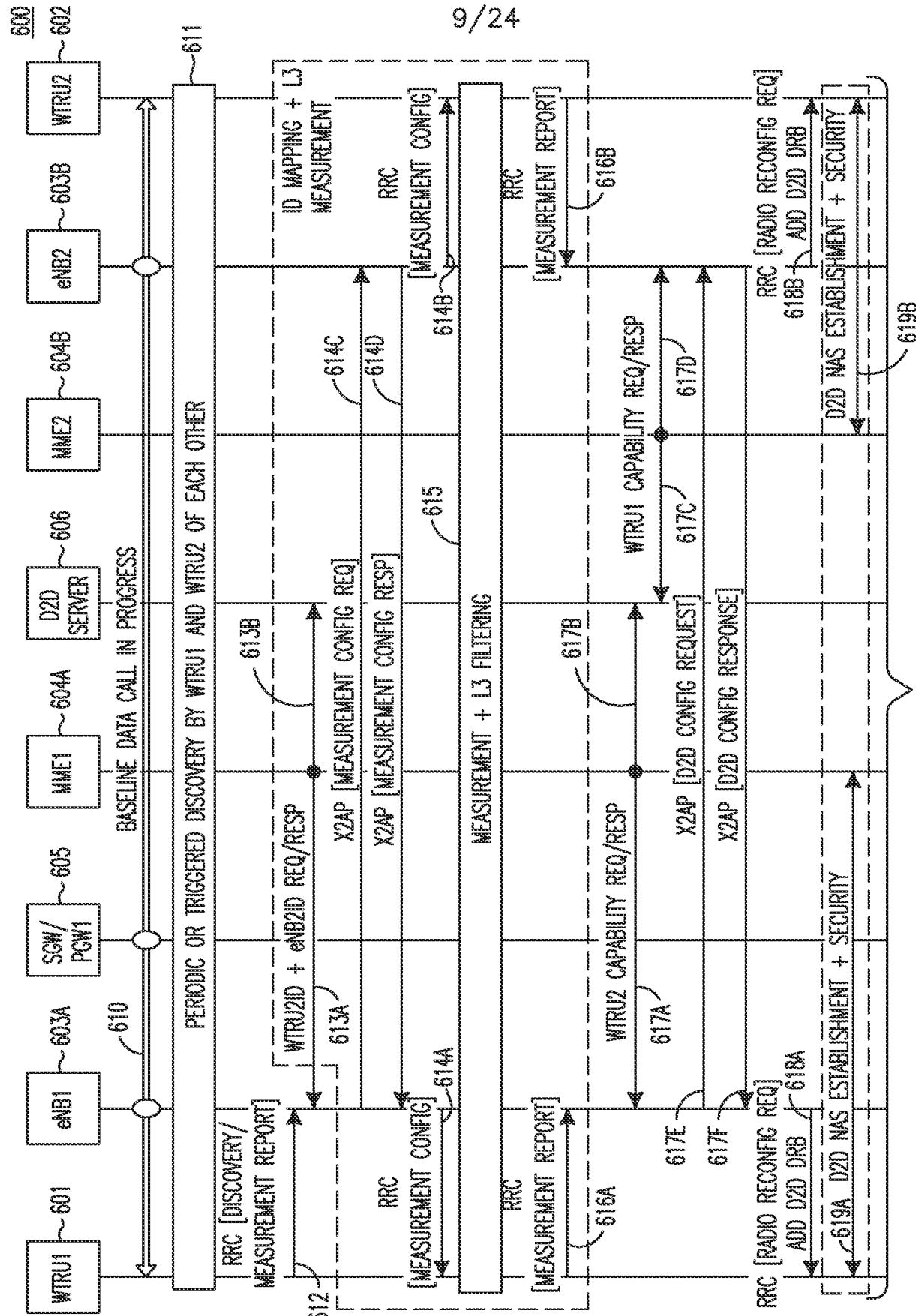



FIG. 5B

CONTINUED ON FIG. 6B
FIG. 6A

10/24

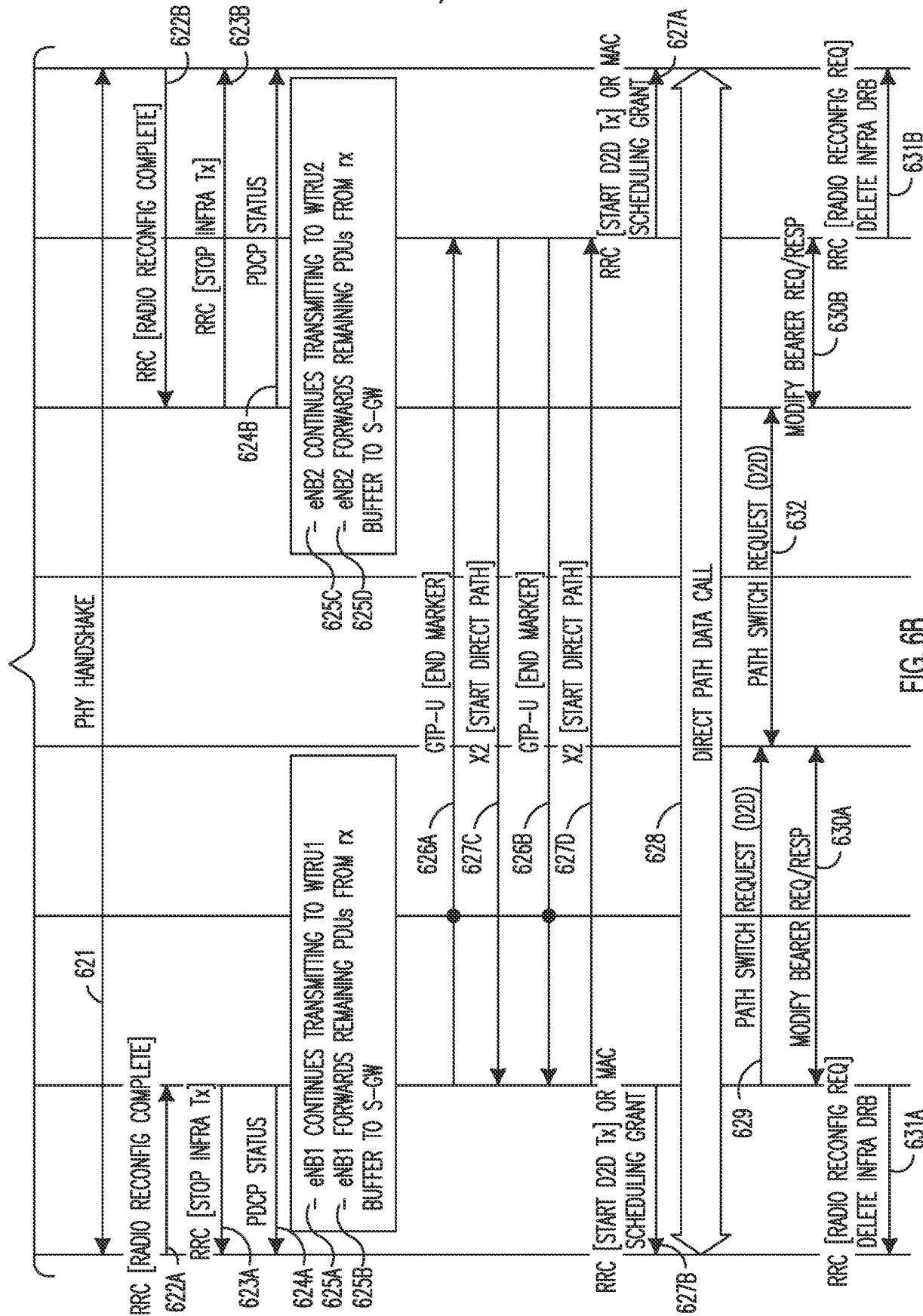


FIG. 6B

11/24

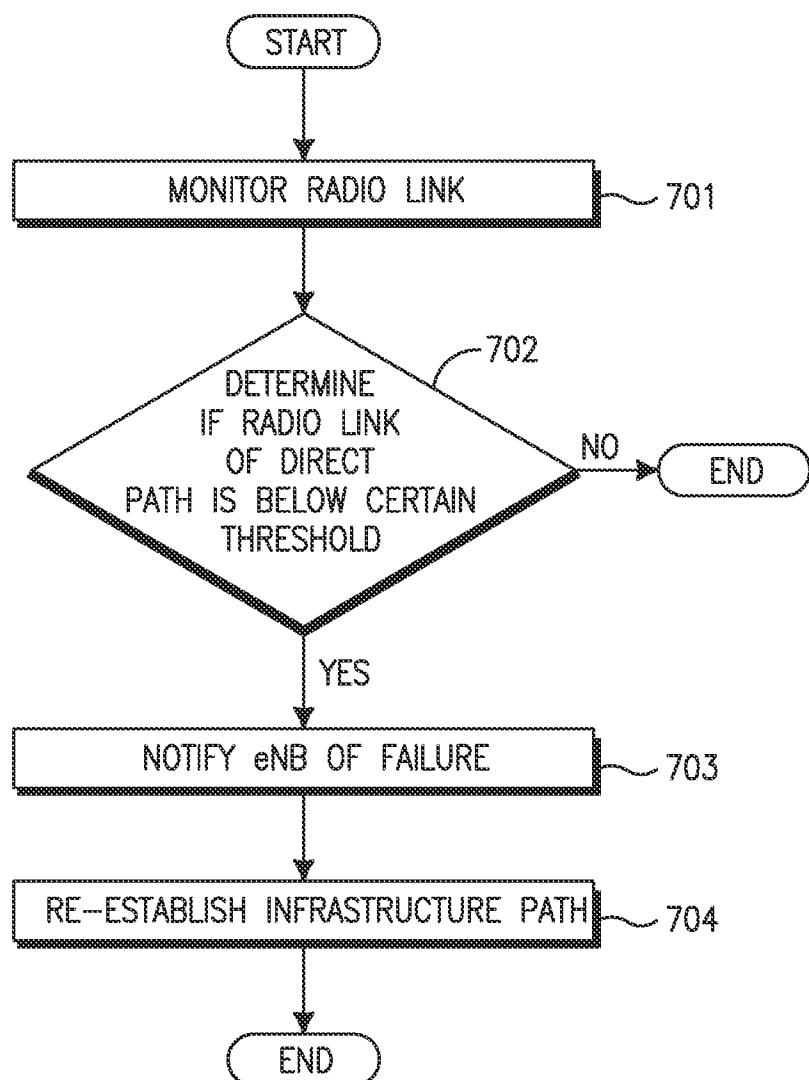

700

FIG. 7

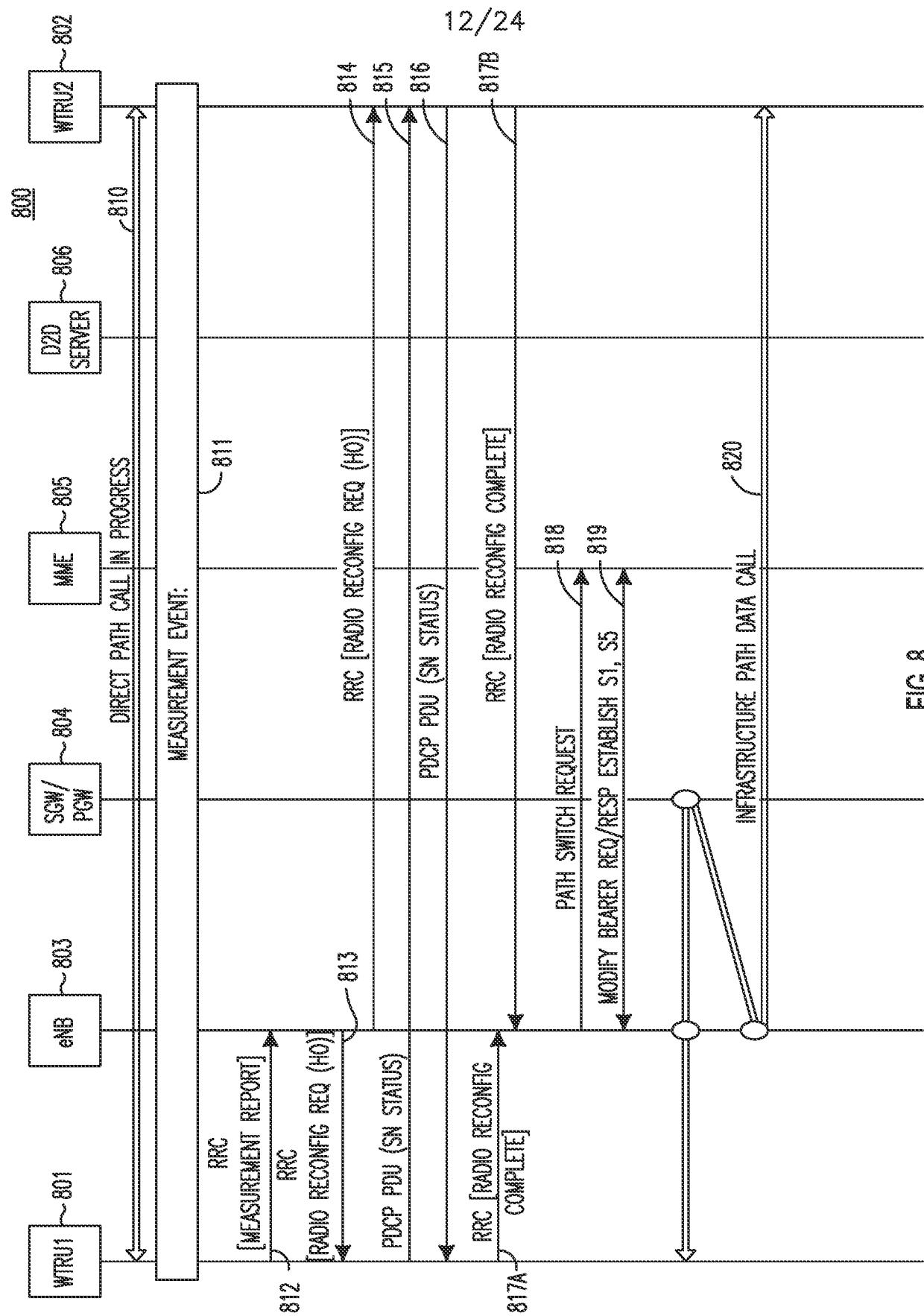


FIG. 8

13/24

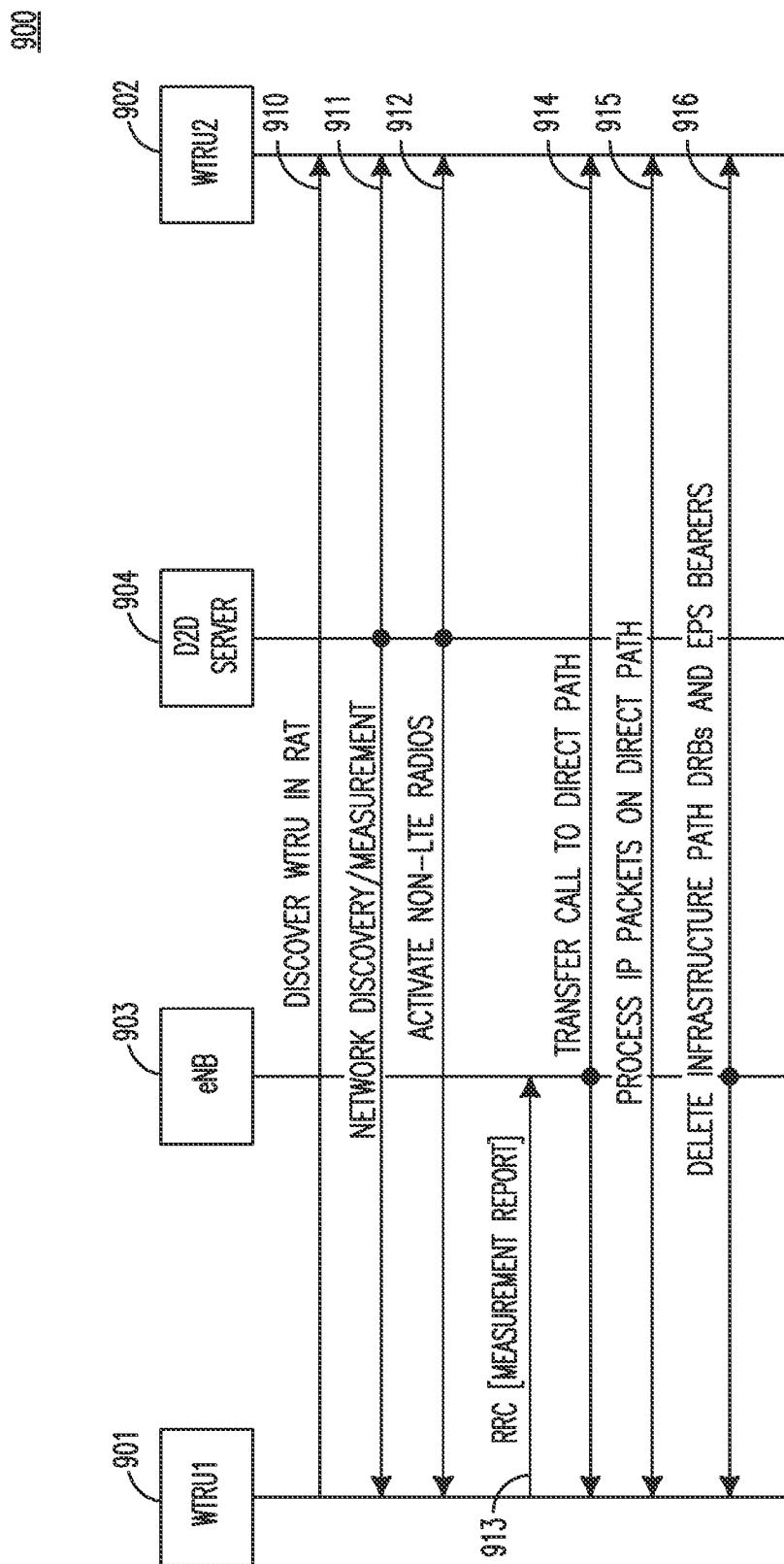
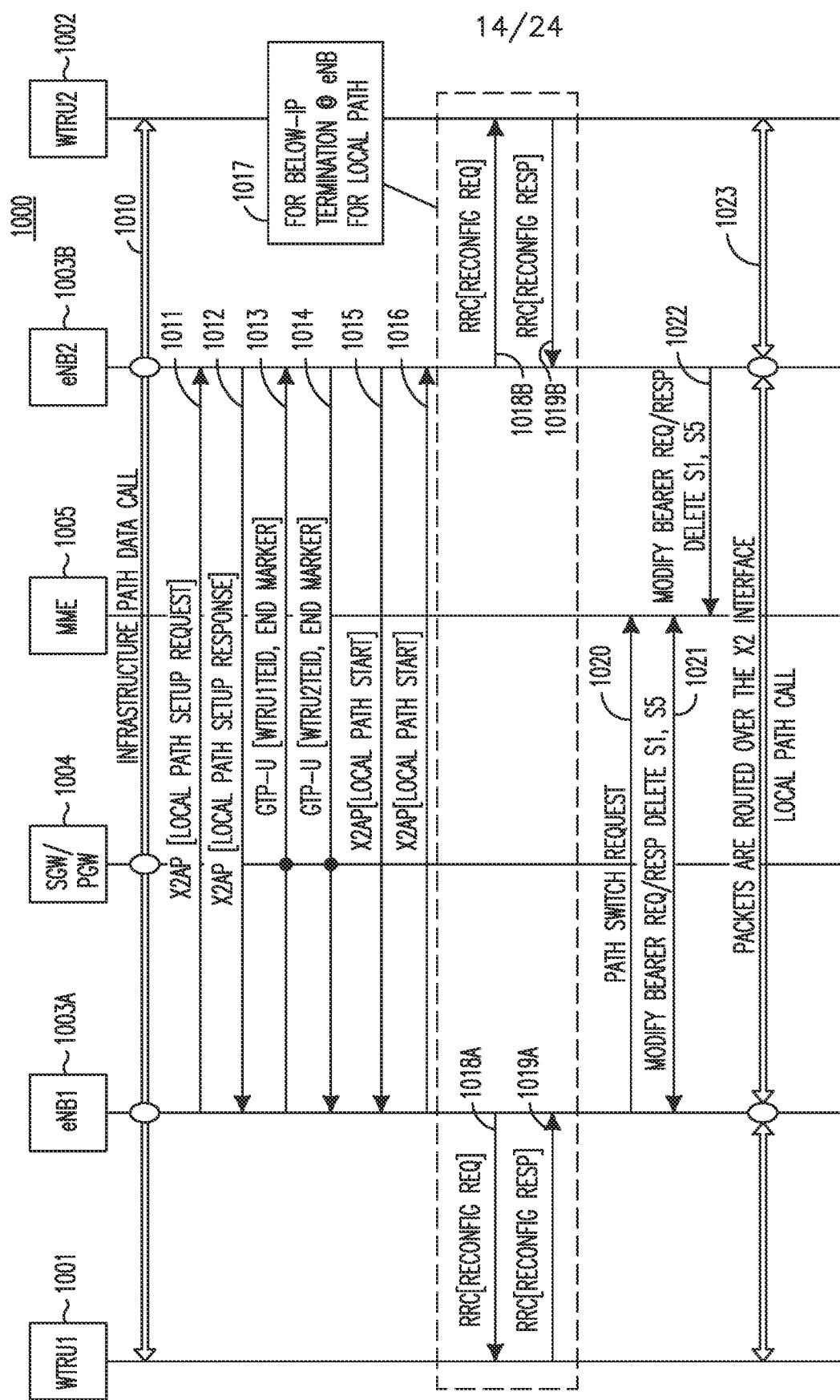



FIG. 9

१०

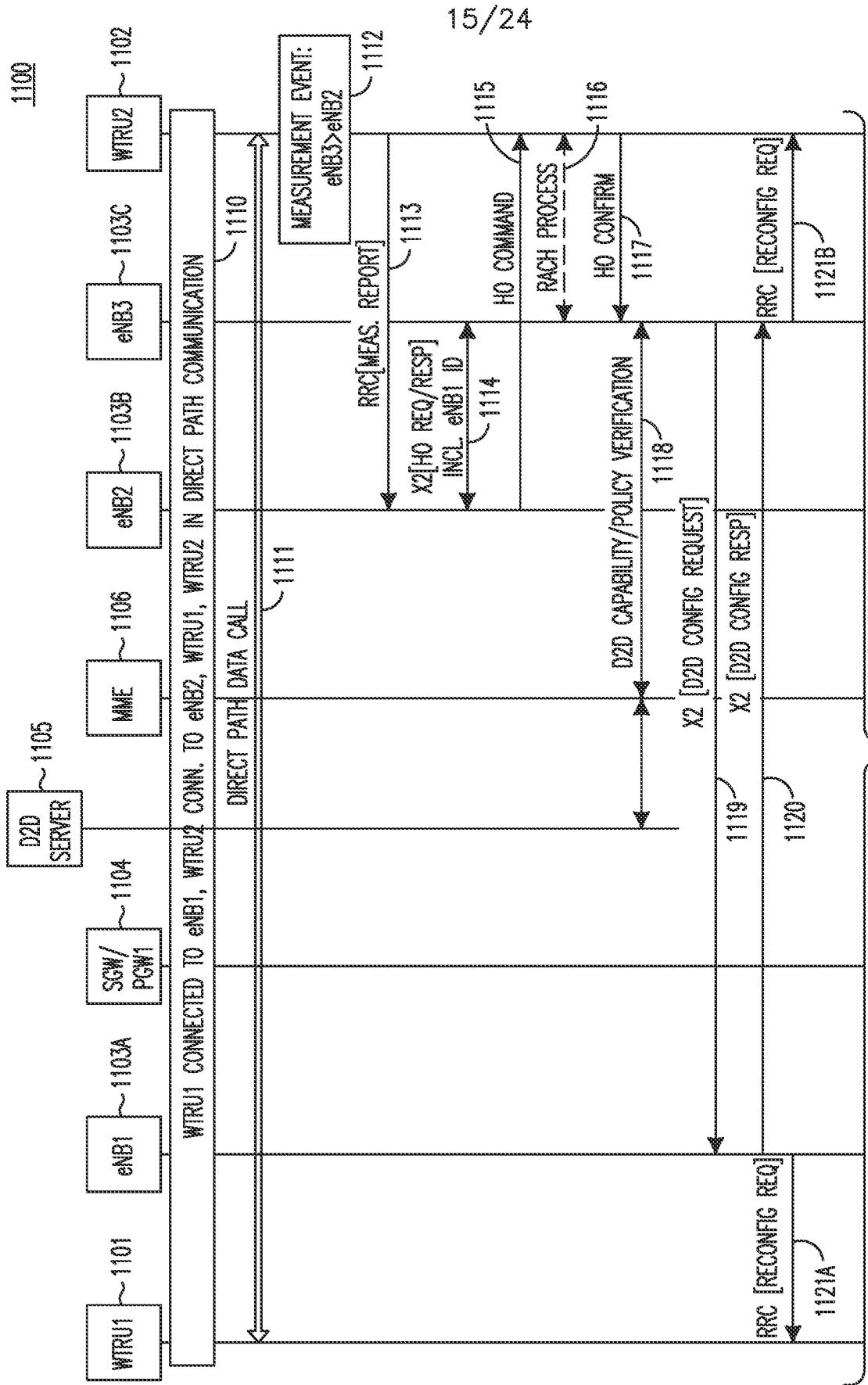


FIG. 11A

16/24

FROM FIG. 11A

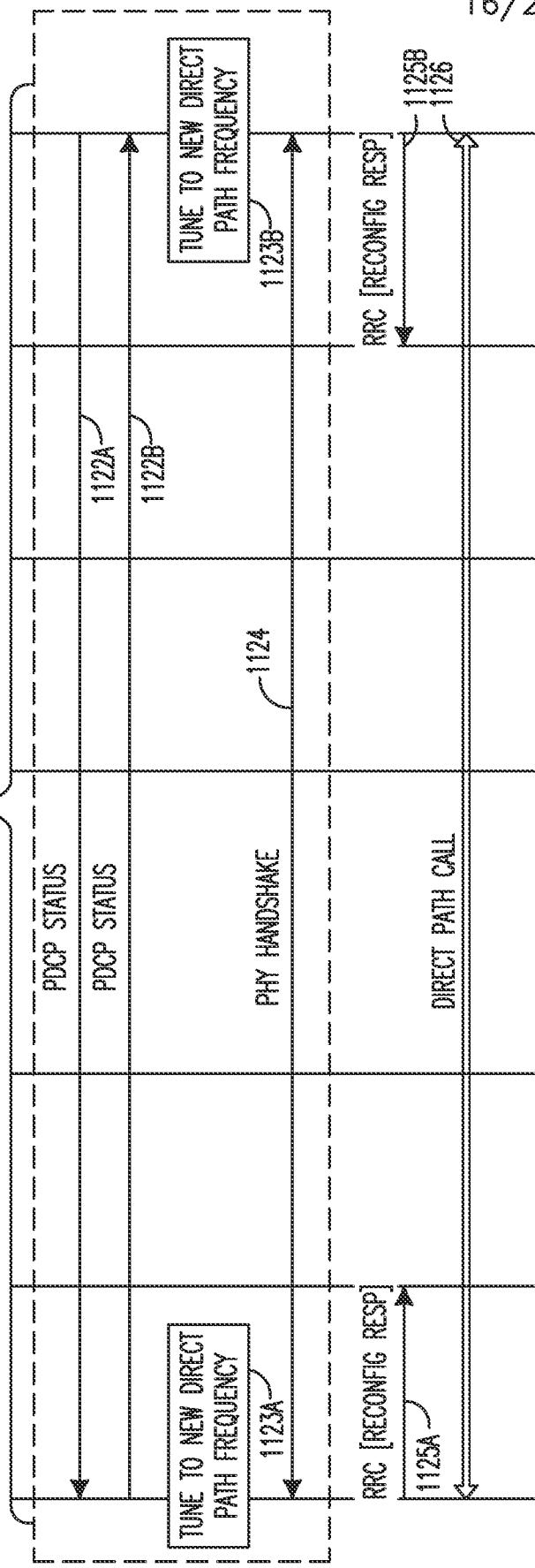


FIG. 11A1

17/24

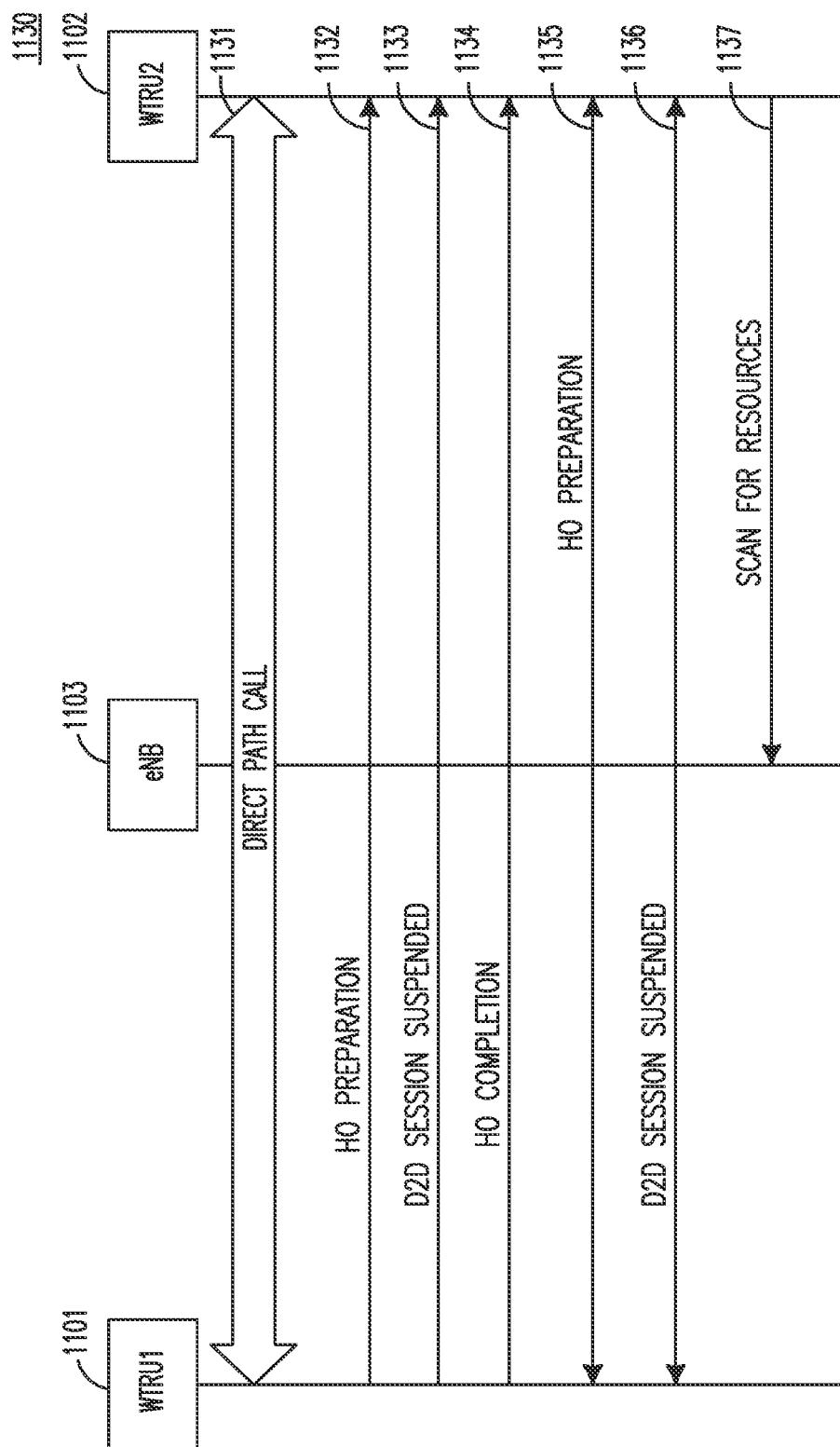


FIG. 11B

18/24

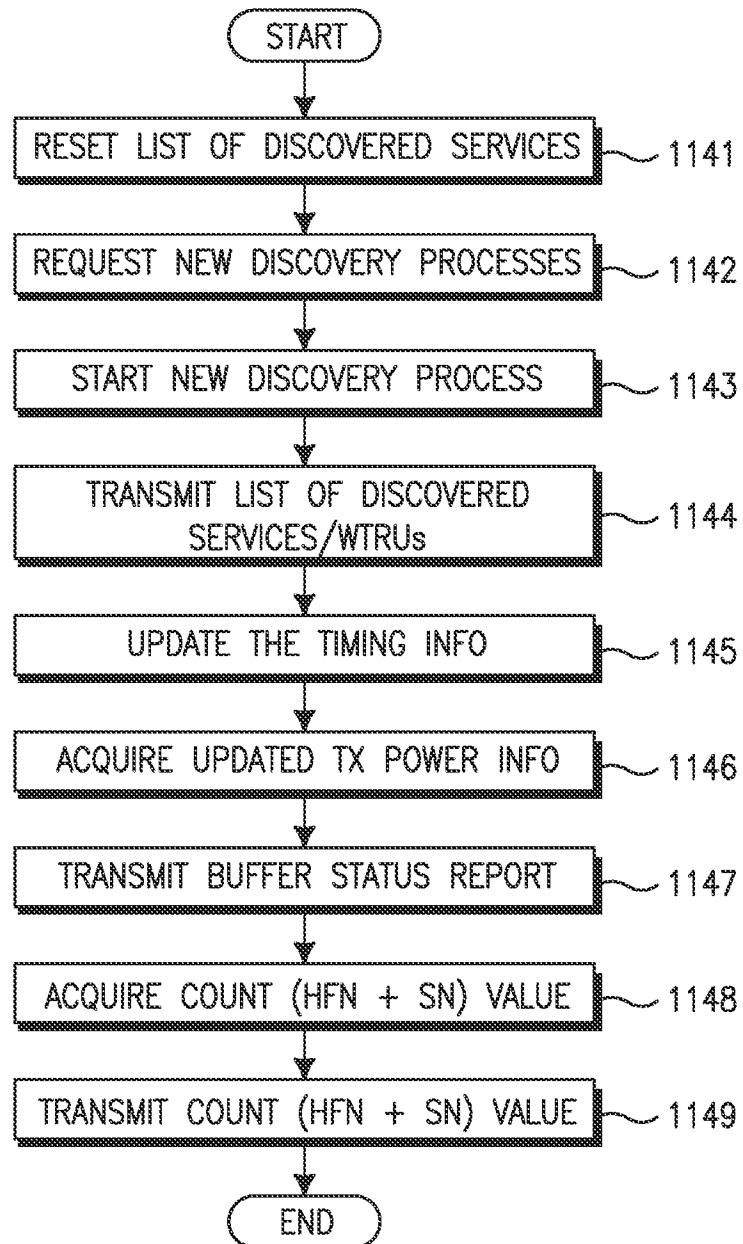

1140

FIG. 11C

19/24

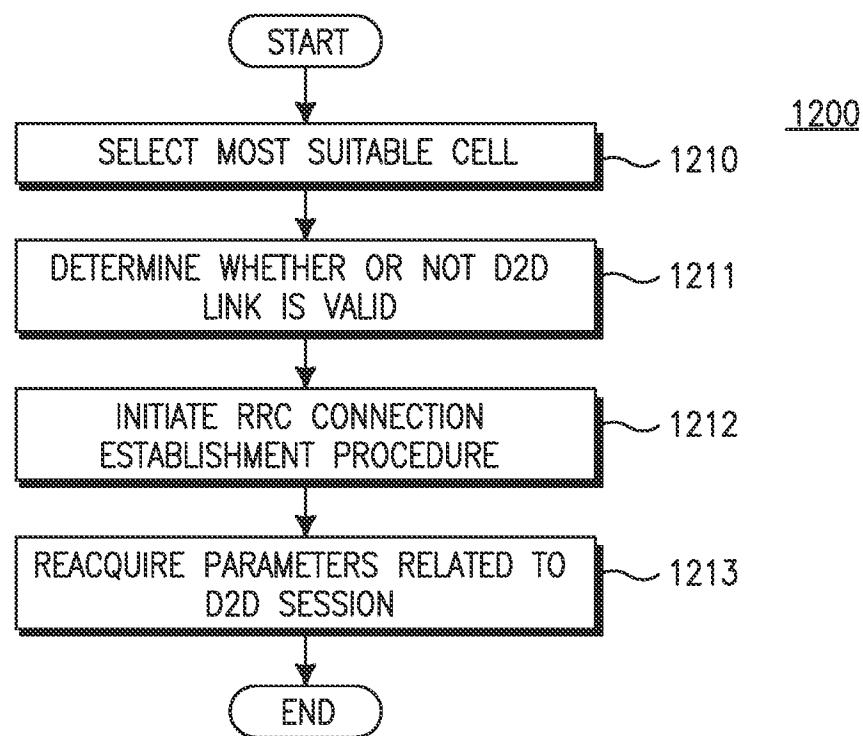
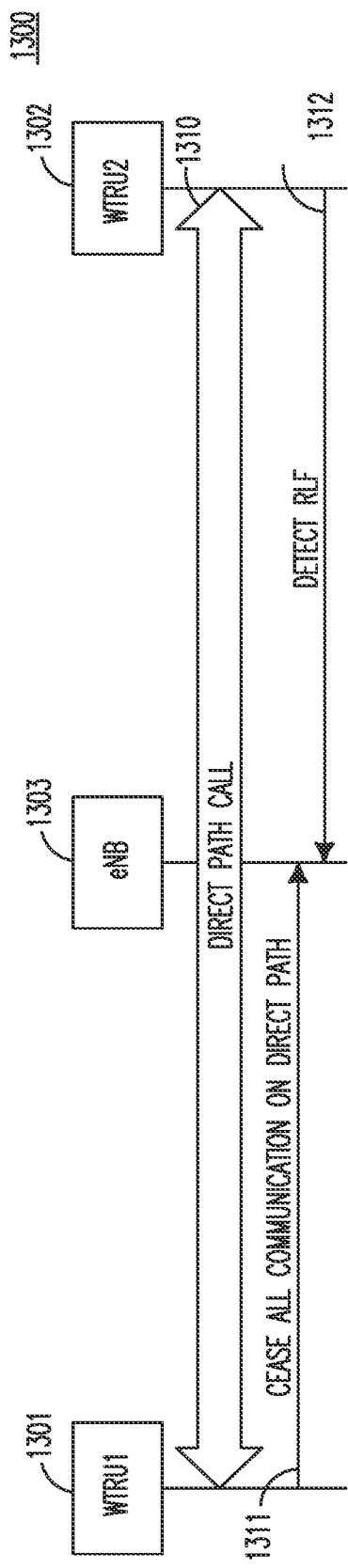
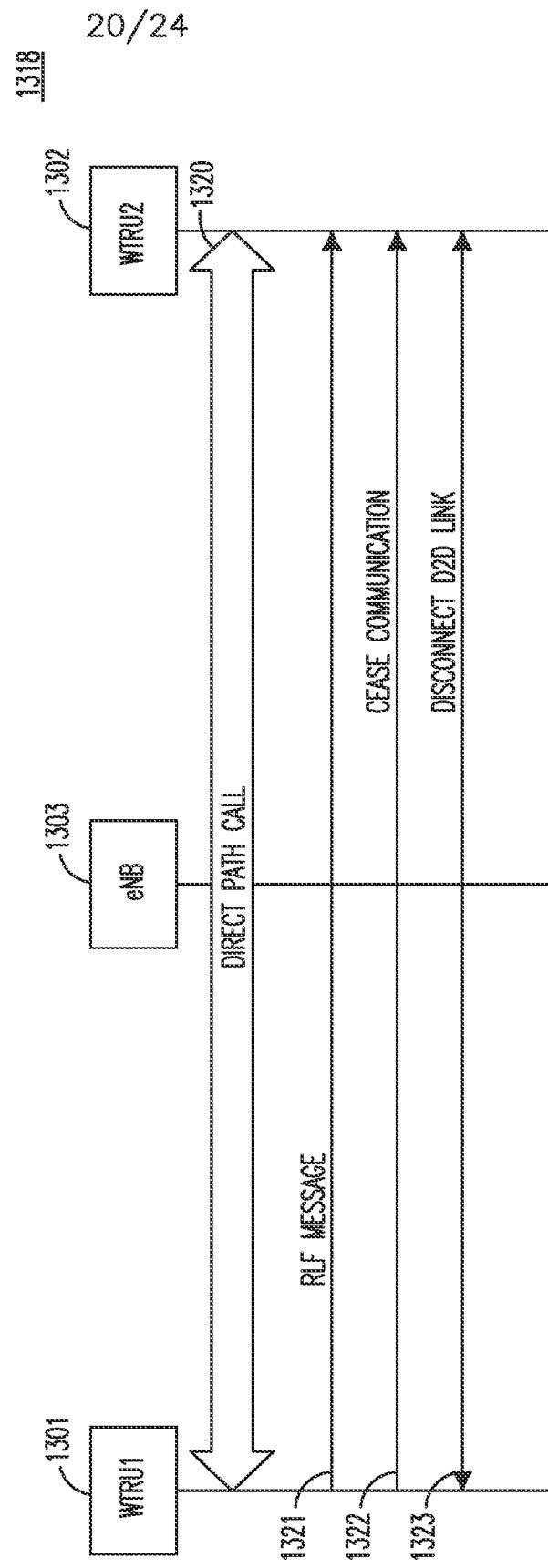
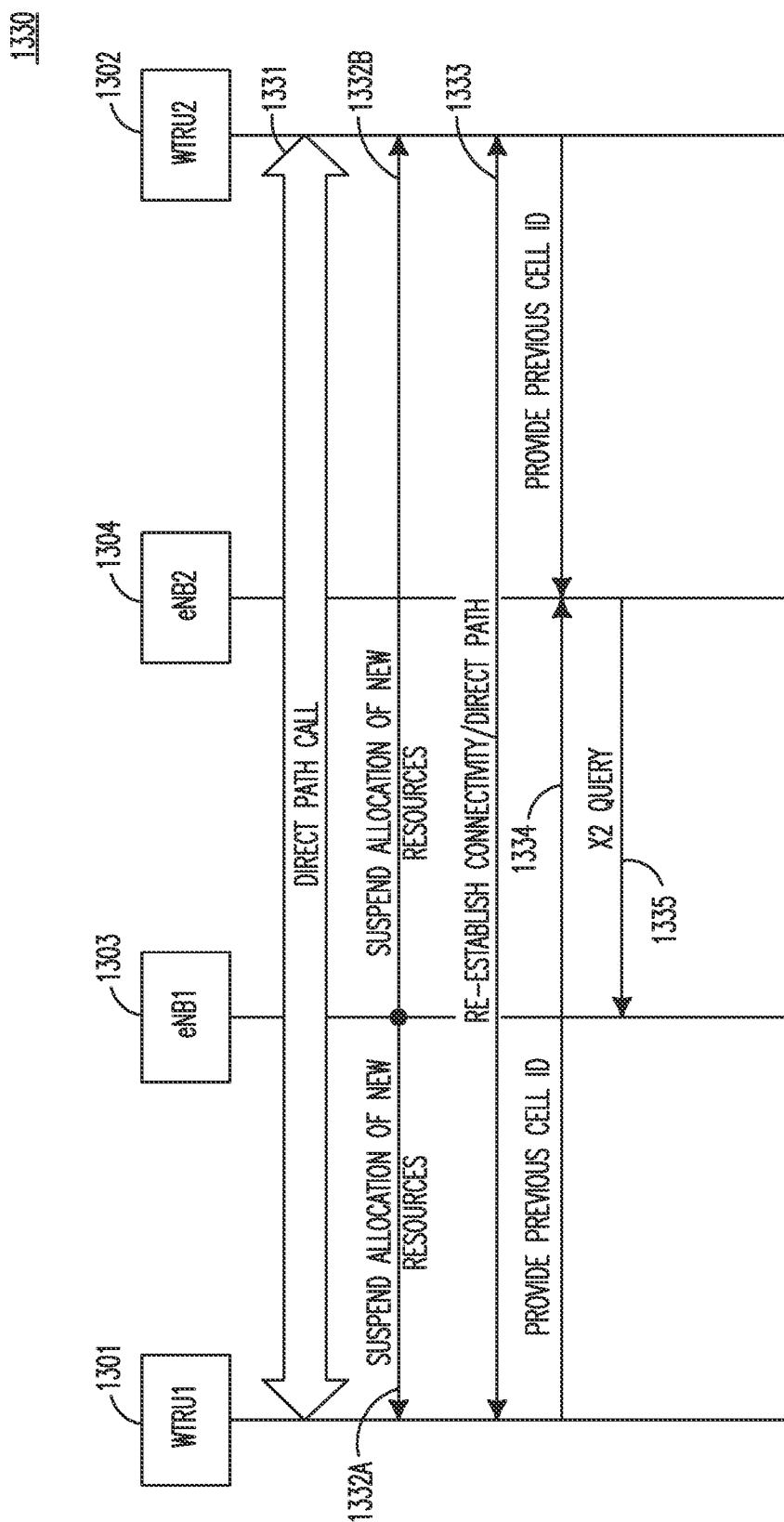




FIG. 12



HIG 134

236

21/24

13C
EG

22/24

1400

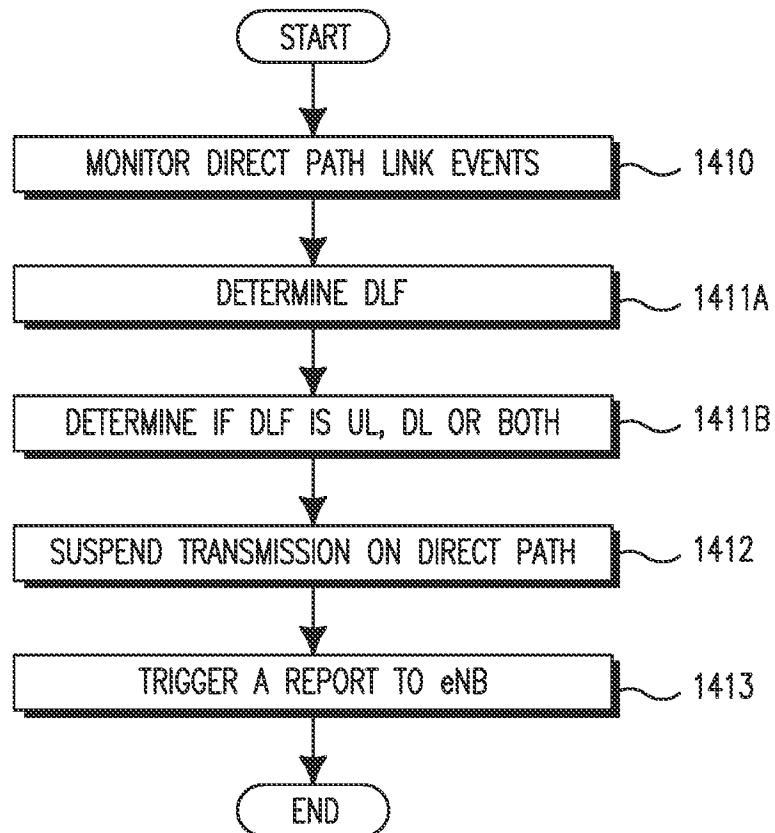


FIG. 14A

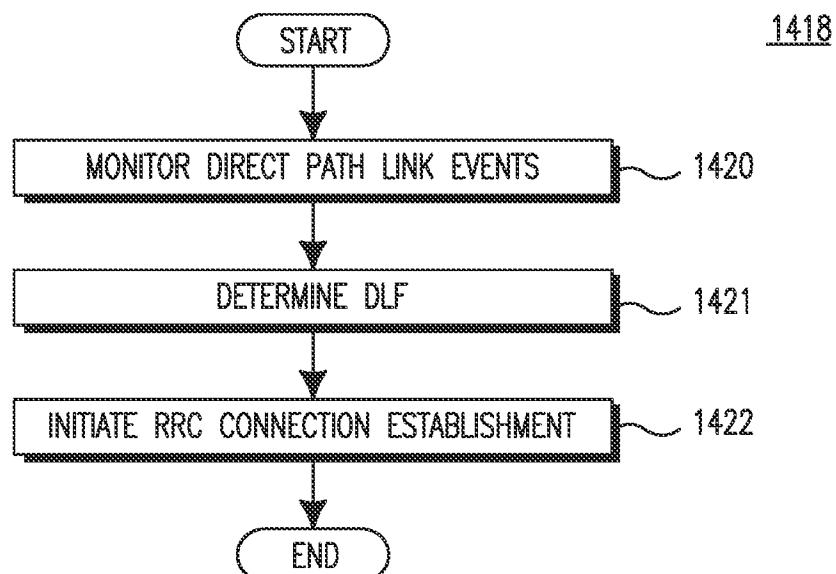
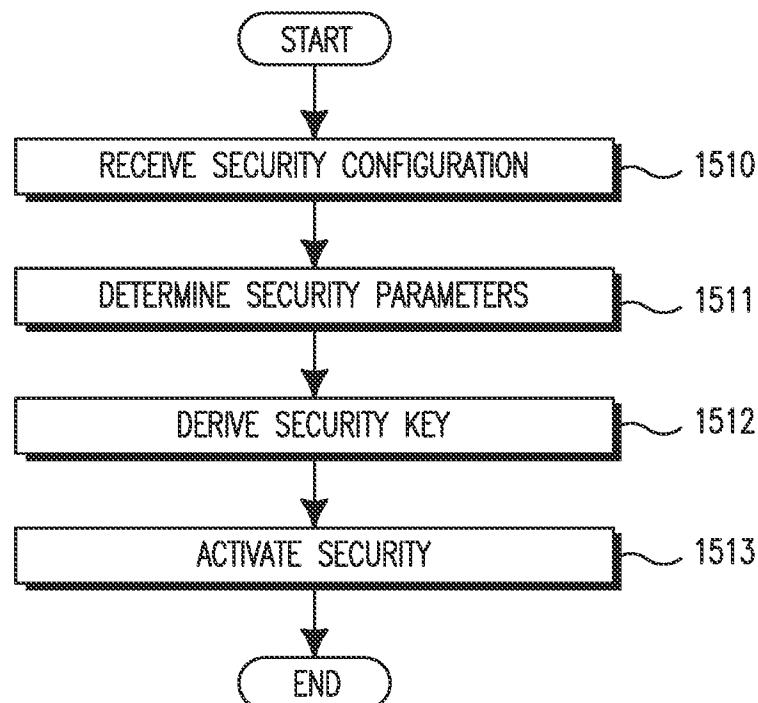
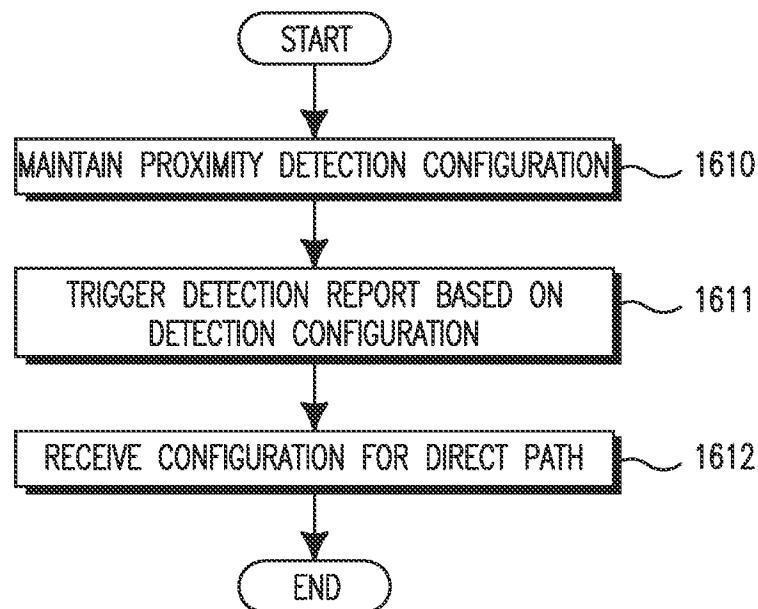




FIG. 14B

23/24

15001600

24/24

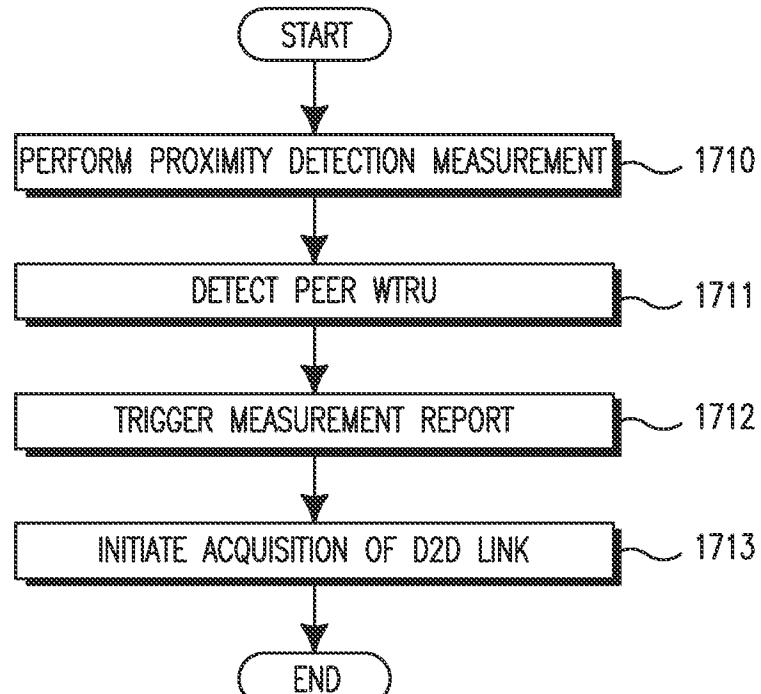


FIG. 17A

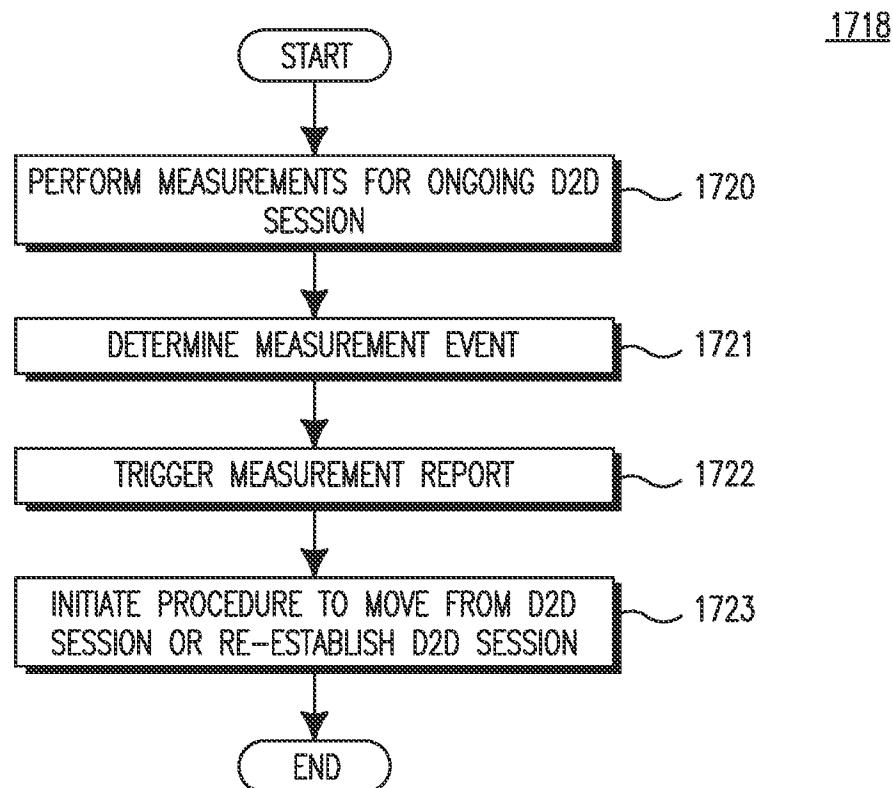


FIG. 17B