

[19] Patents Registry
The Hong Kong Special Administrative Region
香港特別行政區
專利註冊處

[11] 1225731 B
EP 3077389 B1

[12]

**STANDARD PATENT SPECIFICATION
標準專利說明書**

[21] Application No. 申請編號

16114145.7

[51] Int.C1.8 C07D A61K A61P

[22] Date of filing 提交日期

13.12.2016

[54] CRYSTALLINE FORM OF (S)-2-(6-CHLORO-7-METHYL-1H-BENZO[D]IMIDAZOL-2-YL)-2-METHYL PYRROLIDIN-1-YL)(5-METHOXY-2-(2H-1,2,3-TRIAZOL-2-YL)PHENYL)METHANONE AND ITS USE AS OREXIN RECEPTOR ANTAGONISTS (S)-2-(6-氯-7-甲基-1H-苯並[D]咪唑-2-基)-2-甲基吡咯烷-1-基)(5-甲氧基-2-(2H-1,2,3-三唑-2-基)苯基)甲酮的晶形及其作為食欲素受體拮抗劑的用途

[30] Priority 優先權

03.12.2013 WO PCT/IB2013/060596

[43] Date of publication of application 申請發表日期

15.09.2017

[45] Publication of the grant of the patent 批予專利的發表日期

13.07.2018

EP Application No. & Date 歐洲專利申請編號及日期

EP 14824107.8 02.12.2014

EP Publication No. & Date 歐洲專利申請發表編號及日期

EP 3077389 12.10.2016

Date of Grant in Designated Patent Office 指定專利當局批予專利日期

13.09.2017

[73] Proprietor 專利所有人

Idorsia Pharmaceuticals Ltd

PATENT DEPARTMENT

HEGENHEIMERMATTWEG 91

CH-4123 ALLSCHWIL

SWITZERLAND

[72] Inventor 發明人

BOSS, Christoph

BROTSCHI, Christine

GUDE, Markus

HEIDMANN, Bibia

SIFFERLEN, Thierry

VON RAUMER, Markus

WILLIAMS, Jodi, T.

[74] Agent and / or address for service 代理人及/或送達地址

China Patent Agent (H.K.) Ltd.

22/F, Great Eagle Centre

23 Harbour Road

Wanchai HONG KONG

(11)

EP 3 077 389 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
13.09.2017 Bulletin 2017/37

(51) Int Cl.:
C07D 403/14 (2006.01) **A61K 31/4192** (2006.01)
A61P 25/00 (2006.01)

(21) Application number: **14824107.8**

(86) International application number:
PCT/IB2014/066508

(22) Date of filing: **02.12.2014**

(87) International publication number:
WO 2015/083070 (11.06.2015 Gazette 2015/23)

(54) **CRYSTALLINE FORM OF
(S)-(2-(6-CHLORO-7-METHYL-1H-BENZO[D]IMIDAZOL-2-YL)-2-METHYLPYRROLIDIN-1-YL)(5-METHOXY-2-(2H-1,2,3-TRIAZOL-2-YL)PHENYL)METHANONE AND ITS USE AS OREXIN RECEPTOR ANTAGONISTS**

KRISTALLINE FORM VON
(S)-(2-(6-CHLORO-7-METHYL-1H-BENZO[D]IMIDAZOL-2-YL)-2-METHYLPYRROLIDIN-1-YL)(5-METHOXY-2-(2H-1,2,3-TRIAZOL-2-YL)PHENYL)METHANONE UND DEREN VERWENDUNG ALS OREXINREZEPTORANTAGONISTEN

FORME CRISTALLINE DE
(S)-(2-(6-CHLORO-7-METHYL-1H-BENZO[D]IMIDAZOL-2-YL)-2-METHYLPYRROLIDIN-1-YL)(5-METHOXY-2-(2H-1,2,3-TRIAZOL-2-YL)PHENYL)METHANONE ET UTILISATION DE CELLE-CI EN TANT QU'ANTAGONISTES DES RECEPTEURS DE L'OREXINE

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

- **GUDE, Markus**
CH-4123 Allschwil (CH)
- **HEIDMANN, Bibia**
CH-4123 Allschwil (CH)
- **SIFFERLEN, Thierry**
CH-4123 Allschwil (CH)
- **VON RAUMER, Markus**
CH-4123 Allschwil (CH)
- **WILLIAMS, Jodi, T.**
CH-4123 Allschwil (CH)

(30) Priority: **03.12.2013 PCT/IB2013/060596**

(74) Representative: **Velker, Jörg et al**
c/o Idorsia Pharmaceuticals Ltd
Hegenheimermattweg 91
4123 Allschwil (CH)

(43) Date of publication of application:
12.10.2016 Bulletin 2016/41

(56) References cited:
WO-A1-03/002561 **WO-A1-2010/072722**
WO-A1-2013/182972

(73) Proprietor: **Idorsia Pharmaceuticals Ltd**
4123 Allschwil (CH)

(72) Inventors:

- **BOSS, Christoph**
CH-4123 Allschwil (CH)
- **BROTSCHI, Christine**
CH-4123 Allschwil (CH)

EP 3 077 389 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The invention relates to a novel crystalline forms of (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone (hereinafter also referred to as "COMPOUND"), processes for the preparation thereof, pharmaceutical compositions comprising said crystalline forms, pharmaceutical compositions prepared from such crystalline forms, and said compositions for use as orexin receptor antagonists in the treatment or prevention of sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, or appetite disorders.

[0002] Orexins (orexin A or OX-A and orexin B or OX-B) are neuropeptides found in 1998 by two research groups, orexin A is a 33 amino acid peptide and orexin B is a 28 amino acid peptide (Sakurai T. et al., *Cell*, 1998, 92, 573-585). Orexins are produced in discrete neurons of the lateral hypothalamus and bind to the G-protein-coupled receptors (OX₁ and OX₂ receptors). The orexin-1 receptor (OX₁) is selective for OX-A, and the orexin-2 receptor (OX₂) is capable to bind OX-A as well as OX-B. Orexin receptor antagonists are a novel type of nervous system or psychotropic drugs. Their mode of action in animals and humans involves either blockade of both orexin-1 and orexin-2 receptor (dual antagonists), or individual and selective blockade of either the orexin-1 or the orexin-2 receptor (selective antagonists) in the brain. Orexins were initially found to stimulate food consumption in rats suggesting a physiological role for these peptides as mediators in the central feedback mechanism that regulates feeding behaviour (Sakurai T. et al., *Cell*, 1998, 92, 573-585).

[0003] On the other hand, orexin neuropeptides and orexin receptors play an essential and central role in regulating circadian vigilance states. In the brain, orexin neurons collect sensory input about internal and external states and send short intrahypothalamic axonal projections as well as long projections to many other brain regions. The particular distribution of orexin fibers and receptors in basal forebrain, limbic structures and brainstem regions - areas related to the regulation of waking, sleep and emotional reactivity- suggests that orexins exert essential functions as regulators of behavioral arousal; by activating wake-promoting cell firing, orexins contribute to orchestrate all brain arousal systems that regulate circadian activity, energy balance and emotional reactivity. This role opens large therapeutic opportunities for medically addressing numerous mental health disorders possibly relating to orexinergic dysfunctions [see for example: Tsujino N and Sakurai T, "Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward systems.", *Pharmacol Rev*. 2009, 61:162-176; and Carter ME et al., "The brain hypocretins and their receptors: mediators of allostatic arousal.", *Curr Op Pharmacol*. 2009, 9: 39-45] that are described in the following sections. It was also observed that orexins regulate states of sleep and wakefulness opening potentially novel therapeutic approaches to insomnia and other sleep disorders (Chemelli R.M. et al., *Cell*, 1999, 98, 437-451).

[0004] Human memory is comprised of multiple systems that have different operating principles and different underlying neuronal substrates. The major distinction is between the capacity for conscious, declarative memory and a set of unconscious, non-declarative memory abilities. Declarative memory is further subdivided into semantic and episodic memory. Non-declarative memory is further subdivided into priming and perceptual learning, procedural memory for skills and habits, associative and non-associative learning, and some others. While semantic memory refers to the general knowledge about the world, episodic memory is autobiographical memory of events. Procedural memories refer to the ability to perform skill-based operations, as e.g. motor skills. Long-term memory is established during a multiple stage process through gradual changes involving diverse brain structures, beginning with learning, or memory acquisition, or formation. Subsequently, consolidation of what has been learned may stabilize memories. When long-term memories are retrieved, they may return to a labile state in which original content may be updated, modulated or disrupted. Subsequently, reconsolidation may again stabilize memories. At a late stage, long-term memory may be resistant to disruption. Long-term memory is conceptually and anatomically different from working memory, the latter of which is the capacity to maintain temporarily a limited amount of information in mind. Behavioural research has suggested that the human brain consolidates long-term memory at certain key time intervals. The initial phase of memory consolidation may occur in the first few minutes after we are exposed to a new idea or learning experience. The next, and possibly most important phase, may occur over a longer period of time, such as during sleep; in fact, certain consolidation processes have been suggested to be sleep-dependent [R. Stickgold et al., *Sleep-dependent memory consolidation*; *Nature* 2005, 437, 1272-1278]. Learning and memory processes are believed to be fundamentally affected in a variety of neurological and mental disorders, such as e.g. mental retardation, Alzheimer's disease or depression. Indeed, memory loss or impairment of memory acquisition is a significant feature of such diseases, and no effective therapy to prevent this detrimental process has emerged yet.

[0005] In addition, both anatomical and functional evidence from in vitro and in vivo studies suggest an important positive interaction of the endogenous orexin system with reward pathways of the brain [Aston-Jones G et al., *Brain Res* 2010, 1314, 74-90; Sharf R et al., *Brain Res* 2010, 1314, 130-138]. Selective pharmacological OXR-1 blockade reduced cue- and stress-induced reinstatement of cocaine seeking [Boutrel B, et al., "Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior." *Proc Natl Acad Sci* 2005, 102(52), 19168-19173; Smith RJ et al., "Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking." *Eur J Neurosci* 2009, 30(3), 493-503; Smith RJ et al., "Orexin/hypocretin is necessary for context-driven cocaine-seeking." *Neuropharmacology*

2010, 58(1), 179-184], cue-induced reinstatement of alcohol seeking [Lawrence AJ et al., Br J Pharmacol 2006, 148(6), 752-759] and nicotine self-administration [Hollander JA et al., Proc Natl Acad Sci 2008, 105(49), 19480-19485; LeSage MG et al., Psychopharmacology 2010, 209(2), 203-212]. Orexin-1 receptor antagonism also attenuated the expression of amphetamine- and cocaine-induced CPP [Gozzi A et al., PLoS One 2011, 6(1), e16406; Hutcheson DM et al., Behav

5 Pharmacol 2011, 22(2), 173-181], and reduced the expression or development of locomotor sensitization to amphetamine and cocaine [Borgland SL et al., Neuron 2006, 49(4), 589-601; Quarta D et al., "The orexin-1 receptor antagonist SB-334867 reduces amphetamine-evoked dopamine outflow in the shell of the nucleus accumbens and decreases the expression of amphetamine sensitization." Neurochem Int 2010, 56(1), 11-15].

10 [0006] The effect of a drug to diminish addictions may be modelled in normal or particularly sensitive mammals used as animal models [see for example Spealman et al, Pharmacol. Biochem. Behav. 1999, 64, 327-336; or T.S. Shippenberg, G.F. Koob, "Recent advances in animal models of drug addiction" in *Neuropsychopharmacology: The fifth generation of progress*; K.L.Davis, D. Charney, J.T.Doyle, C. Nemerooff (eds.) 2002; chapter 97, pages 1381-1397].

15 [0007] Several converging lines of evidence furthermore demonstrate a direct role of the orexin system as modulator of the acute stress response. For instance, stress (i.e. psychological stress or physical stress) is associated with increased arousal and vigilance which in turn is controlled by orexins [Sutcliffe, JG et al., Nat Rev Neurosci 2002, 3(5), 339-349]. Orexin neurons are likely to be involved in the coordinated regulation of behavioral and physiological responses in 20 stressful environments [Y. Kayaba et al., Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285:R581-593]. Hypocretin/orexin contributes to the expression of some but not all forms of stress and arousal [Furlong T M et al., Eur J Neurosci 2009, 30(8), 1603-1614]. Stress response may lead to dramatic, usually time-limited physiological, psychological and 25 behavioural changes that may affect appetite, metabolism and feeding behavior [Chrousos, GP et al., JAMA 1992, 267(9), 1244-1252]. The acute stress response may include behavioural, autonomic and endocrinological changes, such as promoting heightened vigilance, decreased libido, increased heart rate and blood pressure, or a redirection of 30 blood flow to fuel the muscles, heart and the brain [Majzoub, JA et al., European Journal of Endocrinology 2006, 155 (suppl_1) S71-S76].

35 [0008] As outlined above the orexin system regulates homeostatic functions such as sleep-wake cycle, energy balance, emotions and reward. Orexins are also involved in mediating the acute behavioral and autonomous nervous system response to stress [Zhang Wet al., "Multiple components of the defense response depend on orexin: evidence from orexin knockout mice and orexin neuron-ablated mice." Auton Neurosci 2006, 126-127, 139-145]. Mood disorders including all types of depression and bipolar disorder are characterized by disturbed "mood" and feelings, as well as by 40 sleeping problems (insomnia as well as hypersomnia), changes in appetite or weight and reduced pleasure and loss of interest in daily or once enjoyed activities [Liu X et al., Sleep 2007, 30(1): 83-90]. Thus, there is a strong rationale that disturbances in the orexin system may contribute to the symptoms of mood disorders. Evidence in humans, for instance, exists that depressed patients show blunted diurnal variation in CSF orexin levels [Salomon RM et al., Biol Psychiatry 2003, 54(2), 96-104]. In rodent models of depression, orexins were also shown to be involved. Pharmacological induction 45 of a depressive behavioral state in rats, for instance, revealed an association with increased hypothalamic orexin levels [Feng P et al., J Psychopharmacol 2008, 22(7): 784-791]. A chronic stress model of depression in mice also demonstrated an association of molecular orexin system disturbances with depressed behavioral states and a reversal of these molecular changes by antidepressant treatment [Nollet et al., NeuroPharm 2011, 61(1-2):336-46].

50 [0009] The orexin system is also involved in stress-related appetitive/reward seeking behaviour (Berridge CW et al., Brain Res 2009, 1314, 91-102). In certain instances, a modulatory effect on stress may be complementary to an effect on appetitive/reward seeking behaviour as such. For instance, an OX₁ selective orexin receptor antagonist was able to prevent footshock stress induced reinstatement of cocaine seeking behaviour [Boutrel, B et al., Proc Natl Acad Sci 2005, 102(52), 19168-19173]. In addition, stress is also known to play an integral part in withdrawal which occurs during cessation of drug taking (Koob, GF et al., Curr Opin Investig Drugs 2010, 11(1), 63-71).

55 [0010] Orexins have been found to increase food intake and appetite [Tsujino, N, Sakurai, T, Pharmacol Rev 2009, 61(2) 162-176]. As an additional environmental factor, stress can contribute to binge eating behaviour, and lead to obesity [Adam, TC et al. Physiol Behav 2007, 91(4) 449-458]. Animal models that are clinically relevant models of binge eating in humans are described for example in W. Foulds Mathes et al.; Appetite 2009, 52, 545-553.

60 [0011] A number of recent studies report that orexins may play a role into several other important functions relating to arousal, especially when an organism must respond to unexpected stressors and challenges in the environment [Tsujino N and Sakurai T. Pharmacol Rev. 2009, 61:162-176; Carter ME, Borg JS and deLecea L., Curr Op Pharmacol. 2009, 9: 39-45; C Boss, C Brisbare-Roch, F Jenck, Journal of Medicinal Chemistry 2009, 52: 891-903]. The orexin system interacts with neural networks that regulate emotion, reward and energy homeostasis to maintain proper vigilance states. Dysfunctions in its function may thus relate to many mental health disorders in which vigilance, arousal, wakefulness or attention is disturbed.

65 [0012] The compound (2R)-2-{(1S)-6,7-dimethoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]-3,4-dihydro-1H-isoquinolin-2-yl}-N-methyl-2-phenyl-acetamide (WO2005/118548), a dual orexin receptor antagonist, showed clinical efficacy in humans when tested for the indication primary insomnia. In the rat, the compound has been shown to decrease alertness,

characterized by decreases in both active wake and locomotion; and to dose-dependently increase the time spent in both REM and NREM sleep [Brisbare et al., *Nature Medicine* 2007, 13, 150-155]. The compound further attenuated cardiovascular responses to conditioned fear and novelty exposure in rats [Furlong T M et al., *Eur J Neurosci* 2009, 30(8), 1603-1614]. It is also active in an animal model of conditioned fear: the rat fear-potentiated startle paradigm (WO2009/047723) which relates to emotional states of fear and anxiety diseases such as anxieties including phobias and post traumatic stress disorders (PTSDs). In addition, intact declarative and non-declarative learning and memory has been demonstrated in rats treated with this compound [WO2007/105177, H Dietrich, F Jenck, *Psychopharmacology* 2010, 212, 145-154]. Said compound furthermore decreased brain levels of amyloid-beta (A β) as well as A β plaque deposition after acute sleep restriction in amyloid precursor protein transgenic mice [JE Kang et al., "Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle.", *Science* 2009, 326(5955): 1005-1007]. The accumulation of the A β in the brain extracellular space is hypothesized to be a critical event in the pathogenesis of Alzheimer's disease. The so-called and generally known "amyloid cascade hypothesis" links A β to Alzheimer's disease and, thus, to the cognitive dysfunction, expressed as impairment of learning and memory. The compound has also been shown to induce antidepressant-like activity in a mouse model of depression, when administered chronically [Nollet et al., *NeuroPharm* 2011, 61(1-2):336-46]. Moreover, the compound has been shown to attenuate the natural activation induced by orexin A in fasted hungry rats exposed to food odors [MJ Prud'homme et al., *Neuroscience* 2009, 162(4), 1287-1298]. The compound also displayed pharmacological activity in a rat model of nicotine self-administration [LeSage MG et al., *Psychopharmacology* 2010, 209(2), 203-212]. Another dual orexin receptor antagonist, N-biphenyl-2-yl-1-[(1-methyl-1H-benzimidazol-2-yl)sulfanyl]acetyl-L-prolinamide inhibited nicotine-reinstatement for a conditioned reinforcer and reduced behavioral (locomotor sensitization) and molecular (transcriptional responses) changes induced by repeated amphetamine administration in rodents [Winrow et al., *Neuropharmacology* 2009, 58(1), 185-94].

[0013] Orexin receptor antagonists comprising a 2-substituted saturated cyclic amide derivatives (such as 2-substituted pyrrolidine-1-carboxamides) are known for example from WO2008/020405, WO2008/038251, WO2008/081399, WO2008/087611, WO2008/117241, WO2008/139416, WO2009/004584, WO2009/016560, WO2009/016564, WO2009/040730, WO2009/104155, WO2010/004507, WO2010/038200, WO2001/096302, WO2002/044172, WO2002/089800, WO2002/090355, WO2003/002559, WO2003/032991, WO2003/041711, WO2003/051368, WO2003/051873, WO2004/026866, WO2004/041791, WO2004/041807, WO2004/041816, WO2009/003993, WO2009/003997, WO2009/124956, WO2010/060470, WO2010/060471, WO2010/060472, WO2010/063662, WO2010/063663, WO2010/072722, WO2010/122151, and WO2008/150364. A particular pyrrolidine derived compound is disclosed in Langmead et. al, *Brit. J. Pharmacol.* 2004, 141, 340-346 as being highly orexin-1 selective. WO2003/002561 discloses certain N-aryl cyclic amine derivatives, encompassing benzimidazol-2-yl-methyl substituted pyrrolidine derivatives, as orexin receptor antagonists. Despite the great number of prior art compounds and their high structural variability, all compounds share a common structural feature, i.e. in position 2 of the saturated cyclic amide a linker group such as at least a methylene group (or longer groups such as -CH₂-NH-CO-, -CH₂-NH-, -CH₂-O-, -CH₂-S-, etc.) link the cyclic amide to the respective aromatic ring system substituent. Despite the substantial conformational changes that may be expected from the removal of a linker between two rigid structural elements, the compound of the present crystalline forms, that has a benzimidazole ring directly attached to a pyrrolidine amide in position 2, is a dual antagonist of the orexin 1 receptor and of the orexin 2 receptor and, thus, is of potential use in the treatment of disorders relating to orexinergic dysfunctions, comprising especially sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, or appetite disorders; and especially in the treatment of sleep disorders, anxiety disorders, and addiction disorders.

[0014] It has now been found that certain crystalline forms of COMPOUND may under certain conditions be found. Said crystalline forms of COMPOUND are novel and may have advantageous properties in view of the potential use of COMPOUND as active pharmaceutical ingredient. Such advantages may include better flow properties; less hydroscopicity; better reproducibility in manufacturing (for example better filtration parameters, better reproducibility of formation, and/or better sedimentation); and/or defined morphology. Such crystalline forms of COMPOUND may be particularly suitable in a process of manufacturing certain pharmaceutical compositions, especially lipid-based pharmaceutical compositions.

50 Description of the Figures

[0015]

Figure 1 shows the X-ray powder diffraction diagram of COMPOUND in amorphous form as obtained from Reference Example 1. The X-ray diffraction diagram shows amorphous material.

Figure 2 shows the X-ray powder diffraction diagram of COMPOUND in a crystalline form 1 as obtained from Example 1. The X-ray diffraction diagram shows peaks having a relative intensity, as compared to the most intense peak in

the diagram, of the following percentages (relative peak intensities given in parenthesis) at the indicated angles of refraction 2theta (selected peaks from the range 3-40° 2theta with relative intensity larger than 10% are reported): 8.6° (84%), 11.5° (45%), 13.4° (44%), 14.6° (43%), 15.2° (100%), 15.5° (72%), 17.1 (36%), 18.4° (22%), 19.3° (42%), 19.8° (27%), 21.3° (62%), 21.9° (14%), 22.4° (36%), 23.1 (13%), 23.5° (25%), 25.7° (27%), 26.4° (36%), 26.8° (22%), 27.9° (22%), and 29.7° (17%)

Figure 3 shows the X-ray powder diffraction diagram of COMPOUND in a crystalline form 2 as obtained from Example 2. The X-ray diffraction diagram measured with method 2 shows peaks having a relative intensity, as compared to the most intense peak in the diagram, of the following percentages (relative peak intensities given in parenthesis) at the indicated angles of refraction 2theta (selected peaks from the range 3-40° 2theta with relative intensity larger than 10% are reported): 7.2° (38%), 10.9° (69%), 13.4° (83%), 14.3° (70%), 14.5° (70%), 14.9° (71%), 16.1° (14%), 17.2° (47%), 18.3° (82%), 19.8° (14%), 20.0° (11%), 20.6° (15%), 20.9° (85%), 21.1° (100%), 21.8° (44%), 22.3° (14%), 22.9° (27%), 24.0° (71%), 27.7° (13%), 25.0° (17%), 25.2° (30%), 27.0° (16%), 27.3° (32%), 28.9° (13%), 30.1° (45%), 30.4° (13%), 32.7° (11%), and 36.0° (16%)

For avoidance of any doubt, the above-listed peaks describe the experimental results of the X-ray powder diffraction shown in Figure 2, respectively Figure 3. It is understood that, in contrast to the above peak list, only a selection of characteristic peaks is required to fully and unambiguously characterize of the COMPOUND in the respective crystalline form of the present invention.

In the X-ray diffraction diagrams of Fig. 1 to Fig 3 the angle of refraction 2theta (2θ) is plotted on the horizontal axis and the counts on the vertical axis.

Figure 4 shows the gravimetric vapour sorption diagram of COMPOUND in amorphous free base form as obtained from Reference Example 1.

Figure 5 shows the gravimetric vapour sorption diagram of COMPOUND in a crystalline form 1 as obtained from Example 1.

Figure 6 shows the gravimetric vapour sorption diagram of COMPOUND in a crystalline form 2 as obtained from Example 2.

[0016] In the gravimetric vapour sorption diagrams of Figure 4 to Figure 6 the relative humidity (% RH) is plotted on the horizontal axis and the mass change (% dm) on the vertical axis.

Detailed Description of the Invention

[0017]

1) A first embodiment of the invention relates to crystalline forms of COMPOUND (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone; characterized by:

- a. the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ : 8.6°, 15.2°, and 21.3°; or
- b. the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2θ : 13.4°, 18.3°, and 24.0°.

It is understood, that the crystalline forms according to embodiment 1) comprise COMPOUND in a crystalline form of the free base (i.e. not in form of a salt). Furthermore, said crystalline forms may comprise non-coordinated and / or coordinated solvent. Coordinated solvent is used herein as term for a crystalline solvate. Likewise, non-coordinated solvent is used herein as term for physiosorbed or physically entrapped solvent (definitions according to Polymorphism in the Pharmaceutical Industry (Ed. R. Hilfiker, VCH, 2006), Chapter 8: U.J. Griesser: The Importance of Solvates). Crystalline form 1 in particular is a hemihydrate, i.e. it comprises about 0.5 equivalents of coordinated water, and may comprise additional non-coordinated solvent such as isopropanol, ethanol and / or water, especially water. Crystalline form 2 in particular comprises no coordinated water, but may comprise non-coordinated solvent such as isopropanol, ethanol and / or water.

2) Another embodiment relates to a crystalline form of COMPOUND according to embodiment 1), characterized by

the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 8.6°, 15.2°, and 21.3°.

5 3) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 8.6°, 15.2°, and 21.3° according to embodiment 1); or to such crystalline form according to embodiment 2), characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 8.6°, 11.5°, 13.4°, 14.6°, 15.2°, 15.5°, 19.3°, 21.3°, 22.4°, and 26.4°.

10 4) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 8.6°, 15.2°, and 21.3° according to embodiment 1); or to such crystalline form according to embodiment 2) or 3), which essentially shows the X-ray powder diffraction pattern as depicted in Figure 2.

15 5) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 8.6°, 15.2°, and 21.3° according to embodiment 1); or to such crystalline form according to any one of embodiments 2) to 4), which has a broad endothermal event in the range of about 50 to 160°C as determined by differential scanning calorimetry using the method as described herein.

20 6) In another embodiment the present invention relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 8.6°, 15.2°, and 21.3° according to embodiment 1); or to such crystalline form according to any one of embodiments 2) to 5), wherein said form is obtainable by:

25 a) mixing 2 g of COMPOUND as amorphous material with 8 mL of an ethanol/water mixture with volume/volume ratio of 1/4;
 b) adding about 0.05 g seed crystals of COMPOUND in crystalline form 1 (obtainable for example by using the procedure of example 1 below);
 30 c) shaking at 300 rpm for about 16 hours at room temperature;
 d) filtering and washing the cake with 2 mL ethanol/water 1/4 (v/v) and drying the product at room temperature and reduced pressure of about 10 mbar for 4 hours; and
 e) open equilibration at room temperature and about 60% relative humidity for 2 hours.

35 7) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 8.6°, 15.2°, and 21.3° according to embodiment 1); or to such crystalline form according to any one of embodiments 2) to 6), wherein said crystalline form is a hemi-hydrate (i.e. it contains about 0.5 equivalents of coordinated water per equivalent of COMPOUND; wherein it is understood that said about 0.5 equivalents of coordinated water correspond to a crystalline form having a water content of about 1.96 %.)

40 8) Another embodiment relates to a crystalline form of COMPOUND according to embodiment 1, characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 13.4°, 18.3°, and 24.0°.

45 9) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 13.4°, 18.3°, and 24.0° according to embodiment 1); or to such crystalline form according to embodiment 8), characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 10.9°, 13.4°, 14.3°, 14.9°, 18.3°, 20.9°, 21.1°, 21.8°, 24.0°, and 30.1 °.

50 10) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 13.4°, 18.3°, and 24.0° according to embodiment 1); or to such crystalline form according to embodiment 8) or 9), which essentially shows the X-ray powder diffraction pattern as depicted in Figure 3.

55 11) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 13.4°, 18.3°, and 24.0° according to

embodiment 1); or to such crystalline form according to any one of embodiments 8) to 10), which has a melting point of about 152°C as determined by differential scanning calorimetry using the method as described herein.

5 12) In another embodiment the present invention relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 13.4°, 18.3°, and 24.0° according to embodiment 1); or to such crystalline form according to any one of embodiments 8) to 11), wherein said form is obtainable by:

10 a) mixing 10 mg of COMPOUND in crystalline form 1 in 0.05 mL acetonitrile;
 b) stirring in a closed 4 mL vial for up to three days;
 c) isolating; and drying at reduced pressure (2 mbar) and room temperature for 2 hours.

15 13) Another embodiment relates to a crystalline form of COMPOUND characterized by the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 13.4°, 18.3°, and 24.0° according to embodiment 1); or to such crystalline form according to any one of embodiments 8) to 12), wherein said crystalline form is an anhydrate (i.e. it contains no coordinated water).

20 [0018] For avoidance of any doubt, whenever one of the above embodiments refers to "peaks in the X-ray powder diffraction diagram at the following angles of refraction 20", said X-ray powder diffraction diagram is obtained by using combined Cu K α 1 and K α 2 radiation, without K α 2 stripping; and it should be understood that the accuracy of the 20 values as provided herein is in the range of +/- 0.1-0.2°. Notably, when specifying an angle of refraction 2theta (20) for a peak in the invention embodiments and the claims, the 20 value given is to be understood as an interval from said value minus 0.2° to said value plus 0.2° (20 +/- 0.2°); and preferably from said value minus 0.1 to said value plus 0.1° (20 +/- 0.1°).

25 [0019] Where the plural form is used for compounds, solid, pharmaceutical compositions, diseases and the like, this is intended to mean also a single compound, solid, or the like.

30 [0020] The term "enantiomerically enriched" is understood in the context of the present invention to mean especially that at least 90, preferably at least 95, and most preferably at least 99 per cent by weight of the COMPOUND are present in form of one enantiomer of the COMPOUND. It is understood that COMPOUND is present in enantiomerically enriched absolute (S)-configuration.

35 [0021] The term "essentially pure" is understood in the context of the present invention to mean especially that at least 90, preferably at least 95, and most preferably at least 99 per cent by weight of the crystals of a COMPOUND are present in a crystalline form according to the present invention, especially in a single crystalline form of the present invention.

40 [0022] When defining the presence of peak in e.g. an X-ray powder diffraction diagram, a common approach is to do this in terms of the S/N ratio (S = signal, N = noise). According to this definition, when stating that a peak has to be present in an X-ray powder diffraction diagram, it is understood that the peak in the X-ray powder diffraction diagram is defined by having an S/N ratio (S = signal, N = noise) of greater than x (x being a numerical value greater than 1), usually greater than 2, especially greater than 3.

45 [0023] In the context with stating that the crystalline form essentially shows an X-ray powder diffraction pattern as depicted in Fig. 2 or Fig. 3, respectively, the term "essentially" means that at least the major peaks of the diagram depicted in said figures, i.e. those having a relative intensity of more than 10%, especially more than 20%, as compared to the most intense peak in the diagram, have to be present. However, the person skilled in the art of X-ray powder diffraction will recognize that relative intensities in X-ray powder diffraction diagrams may be subject to strong intensity variations due to preferred orientation effects.

50 [0024] Unless used regarding temperatures, the term "about" placed before a numerical value "X" refers in the current application to an interval extending from X minus 10% of X to X plus 10% of X, and preferably to an interval extending from X minus 5% of X to X plus 5% of X. In the particular case of temperatures, the term "about" placed before a temperature "Y" refers in the current application to an interval extending from the temperature Y minus 10 °C to Y plus 10 °C, preferably to an interval extending from Y minus 5 °C to Y plus 5 °C, notably to an interval extending from Y minus 3 °C to Y plus 3 °C. Room temperature means a temperature of about 25 °C. When in the current application the term n equivalent(s) is used wherein n is a number, it is meant and within the scope of the current application that n is referring to about the number n, preferably n is referring to the exact number n.

55 [0025] Whenever the word "between" or "to" is used to describe a numerical range, it is to be understood that the end points of the indicated range are explicitly included in the range. For example: if a temperature range is described to be between 40°C and 80°C (or 40°C to 80°C), this means that the end points 40°C and 80°C are included in the range; or if a variable is defined as being an integer between 1 and 4 (or 1 to 4), this means that the variable is the integer 1, 2, 3, or 4.

56 [0026] The expression % w/w refers to a percentage by weight compared to the total weight of the composition considered. Likewise, the expression v/v refers to a ratio by volume of the two components considered. The expression

"vol" signifies volumes (in L, e.g. of solvent) per weight (in kg, e.g. of reactant). For example 7 vol signifies 7 liters (of solvent) per kg (of reactant).

[0027] The crystalline forms, especially the essentially pure crystalline forms, of COMPOUND according to any one of embodiments 1) to 13) can be used as medicaments, e.g. in the form of pharmaceutical compositions for enteral or parenteral administration.

5 12) Another embodiment thus relates to a crystalline form of COMPOUND (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1) to 13) for use as a medicament.

10 The crystalline solid, especially the essentially pure crystalline solid, of COMPOUND according to any one of embodiments 1) to 13) may be used as single component or as mixtures with other crystalline forms or the amorphous form of COMPOUND.

15 The production of the pharmaceutical compositions can be effected in a manner which will be familiar to any person skilled in the art (see for example Remington, The Science and Practice of Pharmacy, 21st Edition (2005), Part 5, "Pharmaceutical Manufacturing" [published by Lippincott Williams & Wilkins]) by bringing the crystalline forms of the present invention, optionally in combination with other therapeutically valuable substances, into a galenical administration form together with suitable, non-toxic, inert, pharmaceutically acceptable solid or liquid carrier materials and, if desired, usual pharmaceutical adjuvants.

20 14) A further embodiment of the invention relates to pharmaceutical compositions comprising as active ingredient a crystalline form of COMPOUND (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1) to 13), and at least one pharmaceutically acceptable carrier material.

25 Such pharmaceutical compositions according to embodiment 14) are especially useful for the prevention or treatment of diseases or disorders related to the orexin system, such as especially sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, or appetite disorders.

30 15) A further embodiment of the invention relates to a pharmaceutical composition according to embodiment 14), wherein said pharmaceutical composition is in form of a tablet.

35 16) A further embodiment of the invention relates to a pharmaceutical composition according to embodiment 14), wherein said pharmaceutical composition is in form of a capsule.

40 17) A further embodiment of the invention relates to a crystalline form of COMPOUND (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1) to 13) [especially the crystalline form according to any one of embodiments 2) to 7)], for use in the manufacture of a pharmaceutical composition, wherein said pharmaceutical composition comprises as active ingredient the COMPOUND (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone, and at least one pharmaceutically acceptable carrier material.

45 For avoidance of any doubt, embodiment 17) refers to the crystalline form according to any one of embodiments 1) to 13) [especially the crystalline form according to any one of embodiments 2) to 7)] which is suitable / which is used as final isolation step of COMPOUND (e.g. in order to meet the purity requirements of pharmaceutical production), whereas the final pharmaceutical composition according to embodiment 17) may or may not contain said crystalline form (e.g. because the originally crystalline form of COMPOUND is further transformed during the manufacturing process and / or is dissolved in the pharmaceutically acceptable carrier material(s); thus, in the final pharmaceutical composition, COMPOUND may be present in non-crystalline form, in another crystalline form, or in dissolved form, or the like).

50 18) A further embodiment of the invention thus relates to a pharmaceutical composition comprising as active ingredient the COMPOUND (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone, wherein said pharmaceutical composition is manufactured using a crystalline form of COMPOUND (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1) to 13) [especially the crystalline form according to any one of embodiments 2) to 7)] and at least one pharmaceutically acceptable carrier material.

55 19) A further embodiment of the invention relates to a pharmaceutical composition according to embodiment 18),

wherein said pharmaceutical composition is in form of a capsule.

20) A further embodiment of the invention relates to a pharmaceutical composition according to embodiments 18) or 19), wherein such pharmaceutical composition is a lipid-based formulation (for reference see for example C.W. 5 Pouton, C.J.H. Porter, Advanced Drug Delivery Reviews 60 (2008) 625-637, the disclosure of which is fully incorporated).

21) A further embodiment of the invention relates to a pharmaceutical composition according to embodiments 18), 10 wherein such pharmaceutical composition is a solid amorphous dispersion.

22) A further embodiment of the invention relates to a pharmaceutical composition according to embodiment 21), wherein said pharmaceutical composition is in form of a tablet, or in form of a capsule.

Such pharmaceutical compositions according to embodiments 18) to 22) are especially useful for the prevention or 15 treatment of diseases or disorders related to the orexin system, such as sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, or appetite disorders; especially for the prevention or treatment of diseases or disorders above where a short onset of action is required (as especially sleep disorders or anxiety disorders).

23) A further embodiment of the invention relates to a crystalline form of COMPOUND (S)-(2 -(6-chloro-7-methyl- 20 1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1) to 13), for use in the prevention or treatment of diseases or disorders related to the orexin system, notably mental health diseases or disorders relating to orexinergic dysfunctions.

24) A further embodiment of the invention relates to a crystalline form of COMPOUND (S)-(2 -(6-chloro-7-methyl- 25 1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1) to 13), for use in the preparation of a medicament for the prevention or treatment of diseases or disorders related to the orexin system, notably mental health diseases or disorders relating to orexinergic dysfunctions.

30 25) A further embodiment of the invention relates to pharmaceutical compositions according to any one of embodiments 14) to 16), or 18) to 22), for the prevention or treatment of diseases or disorders related to the orexin system, notably mental health diseases or disorders relating to orexinergic dysfunctions.

35 26) A further embodiment of the invention relates to any one of embodiments 23) to 25), wherein said diseases or disorders related to the orexin system are mental health diseases or disorders relating to orexinergic dysfunctions selected from the group consisting of sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, and appetite disorders (especially sleep disorders, anxiety disorders, and addiction disorders).

40 25) A further embodiment of the invention relates to any one of embodiments 22) to 25), wherein said diseases or disorders related to the orexin system are mental health diseases or disorders relating to orexinergic dysfunctions selected from the group consisting of sleep disorders selected from the group consisting of dyssomnias, parasomnias, sleep disorders associated with a general medical condition and substance-induced sleep disorders; anxiety disorders; and addiction disorders.

45 [0028] Such disorders relating to orexinergic dysfunctions are diseases or disorders where an antagonist of a human orexin receptor is required, notably mental health disorders relating to orexinergic dysfunctions. The above mentioned disorders may in particular be defined as comprising sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, or appetite disorders. In one sub-embodiment, the above mentioned disorders comprise especially anxiety disorders, addiction disorders and mood disorders, notably anxiety disorders and addiction disorders.

50 In another sub-embodiment, the above mentioned disorders comprise especially sleep disorders.

[0029] In addition, further disorders relating to orexinergic dysfunctions are selected from treating, controlling, ameliorating or reducing the risk of epilepsy, including absence epilepsy; treating or controlling pain, including neuropathic pain; treating or controlling Parkinson's disease; treating or controlling psychosis including acute mania and bipolar disorder; treating or controlling stroke, particularly ischemic or haemorrhagic stroke; blocking an emetic response i.e. nausea and vomiting; and treating or controlling agitation, in isolation or co-morbid with another medical condition.

[0030] Anxiety disorders can be distinguished by the primary object or specificity of threat, ranging from rather diffuse as in generalized anxiety disorder, to circumscribed as encountered in phobic anxieties (PHOBs) or post-traumatic stress disorders (PTSDs). Anxiety disorders may, thus, be defined as comprising generalized anxiety disorders (GAD), obses-

sive compulsive disorders (OCDs), acute stress disorders, posttraumatic stress disorders (PTSDs), panic anxiety disorders (PADs) including panic attacks, phobic anxieties (PHOBs), specific phobia, social phobia (social anxiety disorder), avoidance, somatoform disorders including hypochondriasis, separation anxiety disorder, anxiety disorders due to a general medical condition, and substance induced anxiety disorders. In a sub-embodiment, particular examples of circumscribed threat induced anxiety disorders are phobic anxieties or post-traumatic stress disorders. Anxiety disorders especially include post-traumatic stress disorders, obsessive compulsive disorders, panic attacks, phobic anxieties, and avoidance.

[0031] Addiction disorders may be defined as addictions to one or more rewarding stimuli, notably to one rewarding stimulus. Such rewarding stimuli may be of either natural or synthetic origin. Examples of such rewarding stimuli are substances / drugs {of either natural or synthetic origin; such as cocaine, amphetamines, opiates [of natural or (semi-)synthetic origin such as morphine or heroin], cannabis, ethanol, mescaline, nicotine, and the like}, which substances / drugs may be consumed alone or in combination; or other rewarding stimuli {of either natural origin (such as food, sweet, fat, or sex, and the like), or synthetic origin [such as gambling, or internet/IT (such as immoderate gaming, or inappropriate involvement in online social networking sites or blogging), and the like]}. In a sub-embodiment, addiction disorders relating to psychoactive substance use, abuse, seeking and reinstatement are defined as all types of psychological or physical addictions and their related tolerance and dependence components. Substance-related addiction disorders especially include substance use disorders such as substance dependence, substance craving and substance abuse; substance-induced disorders such as substance intoxication, substance withdrawal, and substance-induced delirium. The expression "prevention or treatment of addictions" (i.e. preventive or curative treatment of patients who have been diagnosed as having an addiction, or as being at risk of developing addictions) refers to diminishing addictions, notably diminishing the onset of addictions, to weakening their maintenance, to facilitating withdrawal, to facilitating abstinence, or to attenuating, decreasing or preventing the occurrence of reinstatement of addiction (especially to diminishing the onset of addictions, to facilitating withdrawal, or to attenuating, decreasing or preventing the occurrence of reinstatement of addiction).

[0032] Mood disorders include major depressive episode, manic episode, mixed episode and hypomanic episode; depressive disorders including major depressive disorder, dysthymic disorders; bipolar disorders including bipolar I disorder, bipolar II disorder (recurrent major depressive episodes with hypomanic episodes), cyclothymic disorder; mood disorders including mood disorder due to a general medical condition (including the subtypes with depressive features, with major depressive-like episode, with manic features, and with mixed features), substance-induced mood disorder (including the subtypes with depressive features, with manic features, and with mixed features). Such mood disorders are especially major depressive episode, major depressive disorder, mood disorder due to a general medical condition; and substance-induced mood disorder.

[0033] Appetite disorders comprise eating disorders and drinking disorders. Eating disorders may be defined as comprising eating disorders associated with excessive food intake and complications associated therewith; anorexias; compulsive eating disorders; obesity (due to any cause, whether genetic or environmental); obesity-related disorders including overeating and obesity observed in Type 2 (non-insulin-dependent) diabetes patients; bulimias including bulimia nervosa; cachexia; and binge eating disorder. Particular eating disorders comprise metabolic dysfunction; dysregulated appetite control; compulsive obesities; bulimia or anorexia nervosa. In a sub-embodiment, eating disorders may be defined as especially comprising anorexia nervosa, bulimia, cachexia, binge eating disorder, or compulsive obesities. Drinking disorders include polydipsias in psychiatric disorders and all other types of excessive fluid intake. Pathologically modified food intake may result from disturbed appetite (attraction or aversion for food); altered energy balance (intake vs. expenditure); disturbed perception of food quality (high fat or carbohydrates, high palatability); disturbed food availability (unrestricted diet or deprivation) or disrupted water balance.

[0034] Cognitive dysfunctions include deficits in attention, learning and especially memory functions occurring transiently or chronically in psychiatric, neurologic, neurodegenerative, cardiovascular and immune disorders, and also occurring transiently or chronically in the normal, healthy, young, adult, or especially aging population. Cognitive dysfunctions especially relate to the enhancement or maintenance of memory in patients who have been diagnosed as having, or being at risk of developing, diseases or disorders in which diminished memory (notably declarative or procedural) is a symptom [in particular dementias such as frontotemporal dementia, or dementia with Lewy bodies, or (especially) Alzheimer's disease]. Especially, the term "prevention or treatment of cognitive dysfunctions" relates to the enhancement or maintenance of memory in patients who have a clinical manifestation of a cognitive dysfunction, especially expressed as a deficit of declarative memory, linked to dementias such as frontotemporal dementia, or dementia with Lewy bodies, or (especially) Alzheimer's disease. Furthermore, the term "prevention or treatment of cognitive dysfunctions" also relates to improving memory consolidation in any of the above mentioned patient populations.

[0035] Sleep disorders comprise dyssomnias, parasomnias, sleep disorders associated with a general medical condition and substance-induced sleep disorders. In particular, dyssomnias include intrinsic sleep disorders (especially insomnias, breathing-related sleep disorders, periodic limb movement disorder, and restless leg syndrome), extrinsic sleep disorders, and circadian-rhythm sleep disorders. Dyssomnias notably include insomnia, primary insomnia, idiopathic

insomnia, insomnias associated with depression, emotional/mood disorders, aging, Alzheimer's disease or cognitive impairment; REM sleep interruptions; breathing-related sleep disorders; sleep apnea; periodic limb movement disorder (nocturnal myoclonus), restless leg syndrome, circadian rhythm sleep disorder; shift work sleep disorder; and jet-lag syndrome. Parasomnias include arousal disorders and sleep-wake transition disorders; notably parasomnias include 5 nightmare disorder, sleep terror disorder, and sleepwalking disorder. Sleep disorders associated with a general medical condition are in particular sleep disorders associated with diseases such as mental disorders, neurological disorders, neuropathic pain, and heart and lung diseases. Substance-induced sleep disorders include especially the subtypes insomnia type, parasomnia type and mixed type, and notably include conditions due to drugs which cause reductions 10 in REM sleep as a side effect. Sleep disorders especially include all types of insomnias, sleep-related dystonias; restless leg syndrome; sleep apneas; jet-lag syndrome; shift work sleep disorder, delayed or advanced sleep phase syndrome, or insomnias related to psychiatric disorders. In addition, sleep disorders further include sleep disorders associated with aging; intermittent treatment of chronic insomnia; situational transient insomnia (new environment, noise) or short-term 15 insomnia due to stress; grief; pain or illness.

[0036] In the context of the present invention, it is to be understood that, in case certain environmental conditions such 15 as stress or fear (wherein stress may be of social origin (e.g. social stress) or of physical origin (e.g. physical stress), including stress caused by fear) facilitate or precipitate any of the disorders or diseases as defined before, the present compounds may be particularly useful for the treatment of such environmentally conditioned disorder or disease.

[0037] The present invention also relates to a process for the preparation of COMPOUND in enantiomerically enriched 20 form, and to processes for the preparation and characterization of the crystalline forms of COMPOUND (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of embodiments 1) to 13). Said processes are described in embodiments 6) and 12), as well as in the 25 procedures of the experimental part below.

Experimental Procedures:

Abbreviations (as used hereinbefore or hereinafter):

[0038]

30	Ac	Acetyl (such as in OAc = acetate, AcOH = acetic acid)
	AcOH	Acetic acid
	anh.	Anhydrous
	aq.	aqueous
	atm	Atmosphere
35	tBME	tert-Butylmethylether
	Boc	<i>tert</i> -Butoxycarbonyl
	Boc ₂ O	di- <i>tert</i> -Butyl dicarbonate
	BSA	Bovine serum albumine
	Bu	Butyl such as in tBu = <i>tert</i> -butyl = tertiary butyl
40	CC	Column Chromatography on silica gel
	CHO	Chinese Hamster Ovary
	conc.	Concentrated
	DCE	1,2-Dichloroethane
	DCM	Dichloromethane
45	DEA	Diethylamine
	DIPEA	Diisopropylethylamine
	DMF	<i>N,N</i> -Dimethylformamide
	DMSO	Dimethyl sulfoxide
	EDC ELSD	Evaporative Light-Scattering Detection
50	eq	Equivalent(s)
	ES	Electron spray
	Et	Ethyl
	Et ₂ O	Diethyl ether
	EtOAc	Ethyl acetate
55	EtOH	Ethanol
	Ex.	Example
	FC	Flash Chromatography on silica gel
	FCS	Foatal calf serum

Fig	Figure
FLIPR	Fluorescent imaging plate reader
h	Hour(s)
5	
HATU	1-[Bis(dimethylamino)methylene]-1 <i>H</i> -1,2,3-triazolo[4,5- <i>b</i>]pyridinium 3-oxid hexafluorophosphate
HBS	Hank's balanced salt solution
HBUT	<i>N,N,N',N'</i> -Tetramethyl- <i>O</i> -(1 <i>H</i> -benzotriazol-1-yl)uronium hexafluorophosphate
HEPES	4-(2-Hydroxyethyl)-piperazine-1-ethanesulfonic acid
¹ H-NMR	Nuclear magnetic resonance of the proton
HPLC	High performance liquid chromatography
10	
LC-MS	Liquid chromatography - Mass Spectroscopy
Lit.	Literature
M	Exact mass (as used for LC-MS)
Me	Methyl
15	
MeCN	Acetonitrile
MeOH	Methanol
MeI	Methyl iodide
MHz	Megahertz
μ l	microliter
min	Minute(s)
20	
MS	Mass spectroscopy
N	Normality
Pd(OAc) ₂	Palladium diacetate
Pd(PPh ₃) ₄	Tetrakis(triphenylphosphine)palladium(0)
PL-HCO ₃	Polymer supported hydrogen carbonate
25	
Ph	Phenyl
PPh ₃	Triphenylphosphine
prep.	Preparative
RH	relative humidity
RT	Room temperature
30	
sat.	Saturated
TBTU	O-(Benzotriazol-1-yl)- <i>N,N,N',N'</i> -tetramethyluronium tetrafluoroborate
TEA	Triethylamine
TFA	trifluoroacetic acid
Tf	Trifluoromethansulfonyl
35	
THF	Tetrahydrofuran
t _R	Retention time
UV	Ultra violet

I-Chemistry

40 [0039] All temperatures are stated in °C. The commercially available starting materials were used as received without further purification. Compounds are purified by flash column chromatography on silica gel (FC) or by preparative HPLC. Compounds described in the invention are characterized by LC-MS (retention time t_R is given in min.; molecular weight obtained from the mass spectrum is given in g/mol, using the conditions listed below). If the mass is not detectable the compounds are also characterized by ¹H-NMR (400 MHz: Bruker; chemical shifts are given in ppm relative to the solvent used; multiplicities: s = singlet, d = doublet, t = triplet; p = pentuplet, hex = hexet, hept = heptet, m = multiplet, br = broad, coupling constants are given in Hz).

Preparative HPLC for purification of compounds (conditions C)

50 [0040] Column: Waters XBridge (10 μ m, 75 x 30 mm). Conditions: MeCN [eluent A]; water + 0.5% NH₄OH (25% aq.) [eluent B]; Gradient: 90% B → 5% B over 6.5 min. (flow: 75 ml/min.). Detection: UV + ELSD.

Preparative HPLC for purification of compounds (conditions D)

55 [0041] Column: Waters Atlantis T3 OBD (10 μ m, 75 x 30 mm). Conditions: MeCN [eluent A]; water + 0.5% HCOOH [eluent B]; Gradient: 90% B → 5% B over 6.4 min. (flow: 75 ml/min.). Detection: UV + ELSD.

LC-MS with acidic conditions

[0042] Apparatus: Agilent 1100 series with mass spectroscopy detection (MS: Finnigan single quadrupole). Column: Agilent Zorbax SB-Aq, (3.5 um, 4.6 x 50mm). Conditions: MeCN [eluent A]; water + 0.04% TFA [eluent B]. Gradient: 5 95% B → 5% B over 1.5 min. (flow: 4.5 ml/min.). Detection: UV + MS.

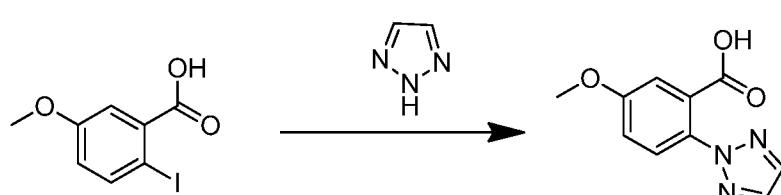
X-ray powder diffraction analysis (XRPD)

[0043] 10 X-ray powder diffraction patterns were collected on a Bruker D8 Advance X-ray diffractometer equipped with a Lynxeye detector operated with CuK_α-radiation in reflection mode (coupled two Theta/Theta). Typically, the X-ray tube was run at of 40kV/40mA. A step size of 0.02° (2θ) and a step time of 76.8 sec over a scanning range of 3 - 50° in 2θ were applied. The divergence slit was set to fixed 0.3. Powders were slightly pressed into a silicon single crystal sample holder with depth of 0.5 mm and samples were rotated in their own plane during the measurement. Diffraction data are reported using combined Cu K_{α1} and K_{α2} radiation, without K_{α2} stripping. The accuracy of the 2θ values as provided herein is in the range of +/- 0.1-0.2° as it is generally the case for conventionally recorded X-ray powder diffraction patterns.

Gravimetric vapour sorption (GVS) analysis

[0044] 20 Measurements were performed simultaneously for the COMPOUND amorphous free base and the COMPOUND crystalline form 1 and crystalline form 2 on a multi sample instrument SPS-100n (Projekt Messtechnik, Ulm, Germany) operated in stepping mode at 25°C. The sample was allowed to equilibrate at 40% RH before starting a pre-defined humidity program (40-0-95-0-95-40% RH, steps of 5% ΔRH and with a maximal equilibration time of 24 hours per step were applied. About 20 to 30 mg of each sample was used. The hygroscopic classification is done according to the European Pharmacopeia Technical Guide (1999, page 86), e.g., slightly hygroscopic: increase in mass is less than 2% and equal to or greater than 0.2% mass/mass; hygroscopic: increase in mass is less than 15% and equal to or greater than 2% mass/mass. The mass change between 40% relative humidity and 80% relative humidity in the first adsorption scan is considered.

Differential scanning calorimetry (DSC)

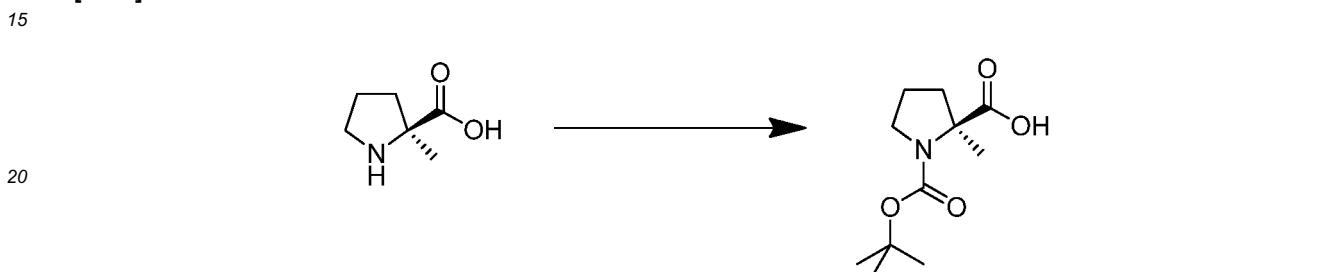

[0045] 30 DSC data were collected on a Mettler Toledo STARe System (DSC822e module, measuring cell with ceramic sensor and STAR software version 9.20) equipped with a 34 position auto-sampler. The instrument was calibrated for energy and temperature using certified indium. Typically 1-5 mg of each sample, in an automatically pierced aluminium pan, was heated at 10°C min⁻¹, unless stated otherwise, from -20°C to 280°C. A nitrogen purge at 20 ml min⁻¹ was maintained over the sample. Peak temperatures are reported for melting points.

Thermogravimetric analysis (TGA)

[0046] 40 TGA data were collected on a Mettler Toledo STARe System (TGA851e module and STAR software version 9.20) equipped with a 34 position auto-sampler. Typically about 5 mg of a sample, in an automatically pierced aluminium pan, was heated at 10°C min⁻¹, unless stated otherwise, from 30°C to 250°C. A nitrogen purge at 10 ml min⁻¹ was maintained over the sample.

Reference Example 1**1) Synthesis of 5-methoxy-2-(2H-1,2,3-triazol-2-yl)benzoic acid**

[0047]

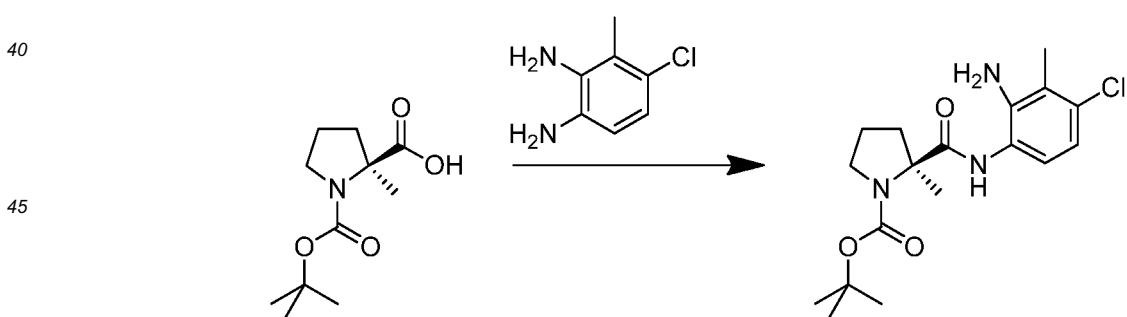


[0048] 2-Iodo-5-methoxy benzoic acid (15.0 g; 53.9 mmol) is dissolved in anhydrous DMF (45 ml) followed by the

addition of 1H-1,2,3-triazole (7.452 g; 108 mmol) and cesium carbonate (35.155 g; 108 mmol). By the addition of cesium carbonate the temperature of the reaction mixture increases to 40°C and gas evolved from the reaction mixture. Copper(I)iodide (514 mg; 2.7 mmol) is added. This triggers a strongly exothermic reaction and the temperature of the reaction mixture reaches 70°C within a few seconds. Stirring is continued for 30 minutes. Then the DMF is evaporated under reduced pressure followed by the addition of water (170 ml) and EtOAc (90 ml). The mixture is vigorously stirred and by the addition of citric acid monohydrate the pH is adjusted to 3-4. The precipitate is filtered off and washed with water and EtOAc and discarded. The filtrate is poured into a separation funnel and the phases are separated. The water phase is extracted again with EtOAc. The combined organic layers are dried over MgSO_4 , filtered and the solvent is evaporated to give 7.1 g of 5-methoxy-2-(2H-1,2,3-triazol-2-yl)benzoic acid as a white powder of 94% purity (6 % impurity is the regioisomerically N1-linked triazolo-derivative); t_R [min] = 0.60; $[\text{M}+\text{H}]^+ = 220.21$

2) Synthesis of (S)-1-(tert-butoxycarbonyl)-2-methylpyrrolidine-2-carboxylic acid

[0049]

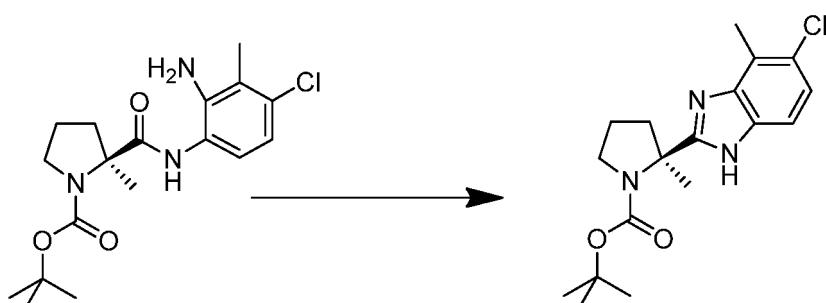

25 **[0050]** 2-Methyl-L-proline hydrochloride (99.7 g; 602 mmol) is dissolved in a 1/1-mixture of MeCN and water (800 ml) and triethylamine (254 ml; 1810 mmol) is added. The temperature of the reaction mixture slightly rises. The reaction mixture is cooled to 10°C to 15°C followed by careful addition of a solution of Boc_2O (145 g; 662 mmol) in MeCN (200 ml) over 10 minutes. Stirring at RT is continued for 2 hours. The MeCN is evaporated under reduced pressure and aq. NaOH solution (2M; 250 ml) is added to the residual aq. part of the reaction mixture. The water layer is washed with Et_2O (2x 300 ml) then cooled to 0°C followed by slow and careful addition of aq. HCl (25%) to adjust the pH to 2. During this procedure a suspension forms. The precipitate is filtered off and dried at HV to give 110.9 g of the title compound as a beige powder; t_R [min] = 0.68; $[\text{M}+\text{H}]^+ = 230.14$

30

35

3) Synthesis of (S)-tert-butyl 2-((2-amino-4-chloro-3-methylphenyl)carbamoyl)-2-methylpyrrolidine-1-carboxylate

[0051]


50 **[0052]** (S)-1-(tert-butoxycarbonyl)-2-methylpyrrolidine-2-carboxylic acid (60 g; 262 mmol) and HATU (100 g; 264 mmol) is suspended in DCM (600 ml) followed by the addition of DIPEA (84.6 g; 654 mmol) and 6-chloro-2,3-diaminotoluene (41 g; 262 mmol). The reaction mixture is stirred at rt for 14 hours then concentrated under reduced pressure and to the residue is added water followed by the extraction of the product with EtOAc (3x). The combined organic layers are washed with brine, dried over MgSO_4 , filtered and the solvent is evaporated under reduced pressure to give 185 g of the title compound as a dark brownish oil, which is used in the next step without further purification; t_R [min] = 0.89; $[\text{M}+\text{H}]^+ = 368.01$

55

4) Synthesis of (S)-tert-butyl 2-(5-chloro-4-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidine-1-carboxylate
[0053]

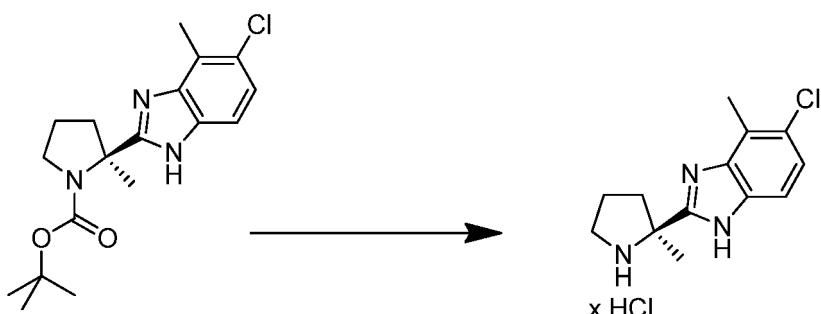
5

10

15

20

[0054] (S)-tert-butyl 2-((2-amino-4-chloro-3-methylphenyl)carbamoyl)-2-methylpyrrolidine-1-carboxylate (185 g; 427 mmol) are dissolved in AcOH (100%; 611 ml), heated to 100°C and stirring continued for 90 minutes. The AcOH is evaporated under reduced pressure and the residue is dissolved in DCM followed by careful addition of saturated sodium bicarbonate solution. The phases are separated, the aq. phase is extracted once more with DCM, the combined aq. phases are dried over MgSO_4 , filtered and the solvent is evaporated under reduced pressure to give 142.92 g of the title compound as a dark brown oil which is used in the next step without further purification; $t_{\text{R}} [\text{min}] = 0.69$; $[\text{M}+\text{H}]^+ = 350.04$


25

5) Synthesis of (S)-5-chloro-4-methyl-2-(2-methylpyrrolidin-2-yl)-1H-benzo[d]imidazole hydrochloride

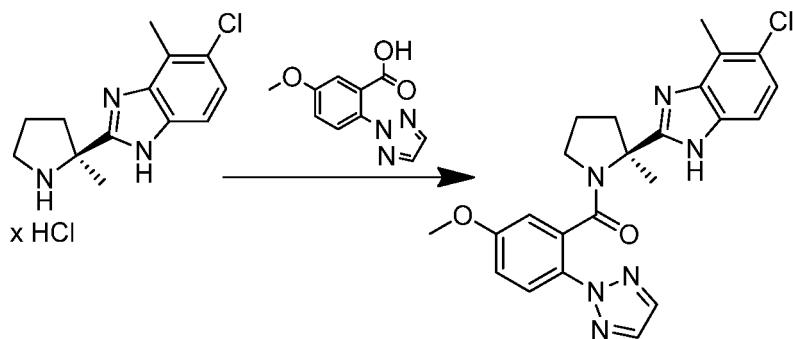
[0055]

30

35

40

[0056] (S)-tert-butyl 2-(5-chloro-4-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidine-1-carboxylate (355.53 g; 1.02 mol) are dissolved in dioxane (750 ml) followed by careful addition of HCl solution in dioxane (4M; 750 ml; 3.05 mol). The reaction mixture is stirred for 3 hours followed by the addition of Et_2O (800 ml) which triggered precipitation of the product. The solid is filtered off and dried at high vacuum to give 298.84 g of the title compound as a reddish powder; $t_{\text{R}} [\text{min}] = 0.59$; $[\text{M}+\text{H}]^+ = 250.23$


45

6) Synthesis of [(S)-2-(5-chloro-4-methyl-1H-benzoimidazol-2-yl)-2-methyl-pyrrolidin-1-yl]-[5-methoxy-2-[1,2,3]triazol-2-yl-phenyl]-methanone

[0057]

50

55

[0058] (S)-5-chloro-4-methyl-2-(2-methylpyrrolidin-2-yl)-1H-benzo[d]imidazole hydrochloride (62.8 g; 121 mmol) is dissolved in DCM (750 ml) followed by the addition of 5-methoxy-2-(2H-1,2,3-triazol-2-yl)benzoic acid (62.8 g; 121 mmol) and DIPEA (103 ml; 603 mmol). Stirring is continued for 10 minutes followed by the addition of HATU (47 g; 124 mmol). The reaction mixture is stirred for 16 hours at RT. The solvents are evaporated under reduced pressure and the residue is dissolved in EtOAc (1000 ml) and washed with water (3x 750 ml). The organic phase is dried over MgSO_4 , filtered and the solvent is evaporated under reduced pressure. The residue is purified by CC with EtOAc / hexane = 2 / 1 to give 36.68 g of the title compound as an amorphous white powder. t_{R} [min] = 0.73; $[\text{M}+\text{H}]^+ = 450.96$

Table 1: Characterisation data for COMPOUND as free base in amorphous form

Technique	Data Summary	Remarks
XRPD	Amorphous	see Fig. 1
Elemental analysis	Consistent.	
Hygroscopicity	Slightly hygroscopic (mass change of about 0.7%), Hysteresis and sorption of up to 2.7% moisture mass/mass. Variability in sorption behavior first to second cycle	see Fig. 4

II. Preparation of crystalline forms of COMPOUND

Example 1: Preparation and characterization of COMPOUND in crystalline form 1

a) Preparation of seeding material of COMPOUND in crystalline Form 1

[0059] 0.2 g of COMPOUND as amorphous material was dissolved in 2 mL of MeOH in a 7 mL vial. The sample was left open at ambient and evaporated over weekend. An amorphous mass with some few crystals was obtained as observed under crossed polars. 0.05 mL MeOH was added, the vial was closed and the sample was sonicated for 1 minute and heated to 40°C. Repeating such procedure 3 to 4 times lead to further crystallization and after about 15 min the sample was further shaken at 25°C for 1h. Thereafter the solid was isolated, dried at reduced pressure (2 mbar, room temperature) for 4 hours and allowed to equilibrate open at room temperature and 58% relative humidity for 2 hours. An off white powder was obtained which is COMPOUND in crystalline form 1. It might be necessary to repeat such procedure several times to obtain sufficient material to be used for seeding.

[0060] Alternatively, 0.4 mL of an ethanol/water mixture with volume/volume ratio of 1/4 can be added to 0.1 g of COMPOUND as amorphous material. Such mixture is allowed to stand closed for up to three days. Isolation, drying and equilibration as described above results in COMPOUND in crystalline form 1

b) Preparation of COMPOUND in crystalline Form 1

[0061] 2 g of COMPOUND is mixed with 8 mL of an ethanol/water mixture with volume/volume ratio of 1/4 and about 0.05 g of seeds obtained with a procedure as described above. The sample is shaken overnight at room temperature and the solid was isolated, dried at reduced pressure (2 mbar, room temperature) for 4 hours and allowed to equilibrate open at room temperature and 58% relative humidity for 2 hours. An off white powder was obtained which is COMPOUND in crystalline form 1.

Table 2: Characterisation data for COMPOUND in crystalline form 1

Technique	Data Summary	Remarks
XRPD	Crystalline	see Fig. 2
1H-NMR	Consistent	
DSC	broad endothermal event in the range of about 50 to 160°C	
TGA	Mass loss of 2.0% in the range 30 to 170°C	
Hygroscopicity	Non hygroscopic (mass change smaller than 0.1%)	See Fig. 5

Example 2: Preparation and characterization of COMPOUND in crystalline form 2

[0062] 0.05 mL of acetonitrile and 0.01 g of COMPOUND in crystalline form 1 are mixed with a magnetic stirrer in a 4 mL glass at room temperature for up to 3 days. The solid is isolated and dried under reduced pressure (30 min at 2mbar) and the solid is COMPOUND is crystalline form 2.

[0063] Alternatively 0.1 mL of methyl-isobutylketone and 0.015 g of COMPOUND in crystalline form 1 are mixed with a magnetic stirrer in a 4 mL glass at room temperature for up to 3 days. The solid is isolated and dried under reduced pressure (2 hours at 2mbar) and the solid is COMPOUND is crystalline form 2.

Table 3: Characterisation data for COMPOUND in crystalline form 2

Technique	Data Summary	Remarks
XRPD	Crystalline	see Fig. 3
1H-NMR	Consistent	
DSC	Melt endotherm with melting point at about 152°C	
Hygroscopicity	Slightly hygroscopic (mass change of about 0.7%) Hysteresis and sorption of up to 1.1 % moisture mass/mass.	See Fig. 6

III. Biological assays

[0064] To further characterize the biological activity of COMPOUND, antagonistic activities on both orexin receptors have been measured using the following procedure:

In vitro assay: Intracellular calcium measurements:

[0065] Chinese hamster ovary (CHO) cells expressing the human orexin-1 receptor and the human orexin-2 receptor, respectively, are grown in culture medium (Ham F-12 with L-Glutamine) containing 300 µg/ml G418, 100 U/ml penicillin, 100 µg/ml streptomycin and 10 % heat inactivated fetal calf serum (FCS). The cells are seeded at 20'000 cells / well into 384-well black clear bottom sterile plates (Greiner). The seeded plates are incubated overnight at 37°C in 5% CO₂.

[0066] Human orexin-A as an agonist is prepared as 1 mM stock solution in MeOH: water (1:1), diluted in HBSS containing 0.1 % bovine serum albumin (BSA), NaHCO₃: 0.375g/l and 20 mM HEPES for use in the assay at a final concentration of 3 nM.

[0067] Antagonists are prepared as 10 mM stock solution in DMSO, then diluted in 384-well plates using DMSO followed by a transfer of the dilutions into in HBSS containing 0.1 % bovine serum albumin (BSA), NaHCO₃: 0.375g/l and 20 mM HEPES. On the day of the assay, 50 µl of staining buffer (HBSS containing 1% FCS, 20 mM HEPES, NaHCO₃: 0.375g/l, 5 mM probenecid (Sigma) and 3 µM of the fluorescent calcium indicator fluo-4 AM (1 mM stock solution in DMSO, containing 10% pluronic) is added to each well. The 384-well cell-plates are incubated for 50 min at 37°C in 5% CO₂ followed by equilibration at RT for 30 min before measurement.

[0068] Within the Fluorescent Imaging Plate Reader (FLIPR Tetra, Molecular Devices), antagonists are added to the plate in a volume of 10 µl/well, incubated for 120 min and finally 10 µl/well of agonist is added. Fluorescence is measured for each well at 1 second intervals, and the height of each fluorescence peak is compared to the height of the fluorescence peak induced by an approximate EC₇₀ (for example 5 nM) of orexin-A with vehicle in place of antagonist. The IC₅₀ value (the concentration of compound needed to inhibit 50 % of the agonistic response) is determined and may be normalized using the obtained IC₅₀ value of a on-plate reference compound. Optimized conditions are achieved by adjustment of pipetting speed and cell splitting regime. The calculated IC₅₀ values may fluctuate depending on the daily cellular assay

performance. Fluctuations of this kind are known to those skilled in the art. Average IC_{50} values from several measurements are given as mean values.

[0069] COMPOUND has been measured on the orexin-1 receptor with an IC_{50} value of 2 nM.

[0070] COMPOUND has been measured on the orexin-2 receptor with an IC_{50} value of 3 nM.

5

Measurement of brain and systemic concentration after oral administration:

[0071] In order to assess brain penetration, the concentration of the compound is measured in plasma ([P]), and brain ([B]), sampled 3 h (or at different time points) following oral administration (e.g. 100 mg/kg) to male wistar rats. The compound is formulated e.g. in 100% PEG 400. Samples are collected in the same animal at the same time point (+/- 5 min). Blood is sampled from the vena cava caudalis into containers with EDTA as anticoagulant and centrifuged to yield plasma. Brain is sampled after cardiac perfusion of 10 mL NaCl 0.9% and homogenized into one volume of cold phosphate buffer (pH 7.4). All samples are extracted with MeOH and analyzed by LC-MS/MS. Concentrations are determined with the help of calibration curves.

15

[0072] Results obtained for COMPOUND:

3 h after oral administration (100 mg/kg), n = 3): [P] = 1280 ng / ml; [B] = 1808 ng / g.

Sedative effects: EEG, EMG and behavioural indices of alertness recorded by radiotelemetry in vivo in Wistar rats.

20

[0073] Electroencephalography (EEG) and Electromyography (EMG) signals were measured by telemetry using TL11M2-F20-EET miniature radiotelemetric implants (Data Science Int.) with two pairs of differential leads.

[0074] Surgical implantation was performed under general anesthesia with Ketamin/Xylazin, for cranial placement of one differential pair of EEG electrodes and one pair of EMG leads inserted in either side of the muscles of the neck. After surgery, rats recovered in a thermoregulated chamber and received analgesic treatment with subcutaneous buprenorphine twice a day for 2 d. They were then housed individually and allowed to recover for a minimum of 2 weeks. Thereafter, rats-in their home cage-were placed in a ventilated sound-attenuating box, on a 12-h light / 12-h dark cycle, for acclimatization before continuous EEG / EMG recordings started. The telemetric technology that we used in this study allows accurate and stress-free acquisition of biosignals in rats placed in their familiar home cage environment, with no recording leads restricting their movements. Variables analyzed included four different stages of vigilance and sleep, spontaneous activity in the home cage and body temperature. Sleep and wake stages were evaluated using a rodent scoring software (Somnologica Science) directly processing electrical biosignals on 10 s contiguous epochs. The scoring is based on frequency estimation for EEG and amplitude discrimination for EMG and locomotor activity. Using these measurements, the software determines the probability that all components within each epoch best represent active waking (AW), quiet waking (QW), non-REM-sleep (NREM) or REM-sleep (REM). The percentage of total time spent in AW, QW, NREM- and REM-sleep was calculated per 12 h light or dark period. The latency to the onset of the first significant NREM- and REM-sleep episodes and the frequency and duration of those episodes were also calculated. AW, QW, NREM- and REM-sleep, home cage activity and body temperature were measured at baseline for at least one total circadian cycle (12 h-night, 12 h-day) before a test compound was administered. If baseline measurements indicated that animals were stable, test compound or vehicle was given in the evening by oral gavage at the end of the baseline 12-h day period, immediately before the nocturnal rise in orexin and activity in rats. All variables were subsequently recorded for 12 h following administration of the orexin receptor antagonist.

[0075] COMPOUND has been tested in this assay (oral dosage: 30 mg/kg po; effects analyzed over 6 hours): Results are: -24% on active wake, -31% on home cage activity, +27% on NREM sleep, +53% on REM sleep; when compared to vehicle controls.

Claims

50

1. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone; **characterized by:**

- the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2 θ : 8.6°, 15.2°, and 21.3°; or
- the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 2 θ : 13.4°, 18.3°, and 24.0°.

55

2. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-

methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claim 1, **characterized by** the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 8.6°, 15.2°, and 21.3°; wherein said X-ray powder diffraction diagram is obtained by using combined Cu K α 1 and K α 2 radiation, without K α 2 stripping; and the accuracy of the 20 values is in the range of 20 +/- 0.2°.

5

3. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claim 1, **characterized by** the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 0: 8.6°, 11.5°, 13.4°, 14.6°, 15.2°, 15.5°, 19.3°, 21.3°, 22.4°, and 26.4°; wherein said X-ray powder diffraction diagram is obtained by using combined Cu K α 1 and K α 2 radiation, without K α 2 stripping; and the accuracy of the 20 values is in the range of 20 +/- 0.2°.

10

4. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claims 2 or 3, which essentially shows the X-ray powder diffraction pattern as depicted in Figure 2.

15

5. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 2 to 4, wherein said crystalline form is a hemi-hydrate.

20

6. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 2 to 5, obtainable by:
 - a) mixing 2 g of COMPOUND as amorphous material with 8 mL of an ethanol/water mixture with volume/volume ratio of 1/4;
 - b) adding about 0.05 g seed crystals of COMPOUND in crystalline form 1;
 - c) shaking at 300 rpm for about 16 hours at room temperature;
 - d) filtering and washing the cake with 2 mL ethanol/water 1/4 (v/v) and drying the product at room temperature and reduced pressure of about 10 mbar for 4 hours; and
 - e) open equilibration at room temperature and about 60% relative humidity for 2 hours.

25

7. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claim 1, **characterized by** the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 13.4°, 18.3°, and 24.0°; wherein said X-ray powder diffraction diagram is obtained by using combined Cu K α 1 and K α 2 radiation, without K α 2 stripping; and the accuracy of the 20 values is in the range of 20 +/- 0.2°.

30

8. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claim 1, **characterized by** the presence of peaks in the X-ray powder diffraction diagram at the following angles of refraction 20: 10.9°, 13.4°, 14.3°, 14.9°, 18.3°, 20.9°, 21.1°, 21.8°, 24.0°, and 30.1°; wherein said X-ray powder diffraction diagram is obtained by using combined Cu K α 1 and K α 2 radiation, without K α 2 stripping; and the accuracy of the 20 values is in the range of 20 +/- 0.2°.

35

9. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to claims 7 or 8, which essentially shows the X-ray powder diffraction pattern as depicted in Figure 3.

40

10. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 7 to 9, wherein said crystalline form is an anhydrate.

45

11. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 7 to 10, obtainable by:
 - a) mixing 10 mg of COMPOUND in crystalline form 1 in 0.05 mL acetonitrile;
 - b) stirring in a closed 4 mL vial for up to three days;
 - c) isolating; and drying at reduced pressure and room temperature for 2 hours.

50

12. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-

methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 1 to 11, for use as a medicament.

5 13. A pharmaceutical composition comprising as active ingredient a crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 1 to 11, and at least one pharmaceutically acceptable carrier.

10 14. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 1 to 11, for use in the manufacture of a pharmaceutical composition, wherein said pharmaceutical composition comprises as active ingredient the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone, and at least one pharmaceutically acceptable carrier material.

15 15. A crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 1 to 11, or a pharmaceutical composition according to claim 13 for use in the treatment or prevention of a disease or disorder selected from the group consisting of sleep disorders selected from the group consisting of dyssomnias, parasomnias, sleep disorders associated with a general medical condition and substance-induced sleep disorders; anxiety disorders; and addiction disorders.

20 16. Use of a crystalline form of the compound (S)-(2-(6-chloro-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone according to any one of claims 1 to 11 for the preparation of a medicament for the treatment or prevention of a disease or disorder selected from the group consisting of sleep disorders, anxiety disorders, addiction disorders, cognitive dysfunctions, mood disorders, and appetite disorders.

25 **Patentansprüche**

1. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone; **gekennzeichnet durch**:

30 • die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 20: 8,6°, 15,2° und 21,3°; oder
• die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 20: 13,4°, 18,3° und 24,0°.

35 2. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone nach Anspruch 1, **gekennzeichnet durch** die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 20: 8,6°, 15,2° und 21,3°; wobei das genannte Röntgenpulverbeugungsdiagramm durch Verwenden kombinierter Cu K α 1- und K α 2-Strahlung, ohne K α 2-Stripping, erhalten wird; und die Genauigkeit der 20-Werte im Bereich von 20 +/- 0,2° liegt.

40 3. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone nach Anspruch 1, **gekennzeichnet durch** die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 20: 8,6°, 11,5°, 13,4°, 14,6°, 15,2°, 15,5°, 19,3°, 21,3°, 22,4° und 26,4°; wobei das genannte Röntgenpulverbeugungsdiagramm durch Verwenden kombinierter Cu K α 1- und K α 2-Strahlung, ohne K α 2-Stripping, erhalten wird; und die Genauigkeit der 20-Werte im Bereich von 20 +/- 0,2° liegt.

45 4. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone nach Anspruch 2 oder 3, die im Wesentlichen das in Figur 2 gezeigte Röntgenpulverbeugungsmuster aufweist.

50 5. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone nach einem der Ansprüche 2 bis 4, wobei die genannte kristalline Form ein Halbhydrat ist.

55 6. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone nach einem der Ansprüche 2 bis 5, erhältlich durch:

5 a) Mischen von 2 g der VERBINDUNG als amorphes Material mit 8 ml eines Ethanol/Wasser-Gemischs mit einem Volumen/Volumen-Verhältnis von 1/4;

b) Zugeben von etwa 0,05 g Impfkristallen der VERBINDUNG in kristalliner Form 1;

c) Schütteln mit 300 rpm für etwa 16 Stunden bei Raumtemperatur;

d) Filtrieren und Waschen des Kuchens mit 2 ml Ethanol/Wasser 1/4 (v/v) und Trocknen des Produkts bei Raumtemperatur und reduziertem Druck von etwa 10 mbar für 4 Stunden; und

e) offene Äquilibrierung bei Raumtemperatur und etwa 60 % relative Feuchte für 2 Stunden.

10 7. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach Anspruch 1, **gekennzeichnet durch** die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 20: 13,4°, 18,3° und 24,0°; wobei das genannte Röntgenpulverbeugungsdiagramm durch Verwenden kombinierter Cu K α 1- und K α 2-Strahlung, ohne K α 2-Stripping, erhalten wird; und die Genauigkeit der 20-Werte im Bereich von 20 +/- 0,2° liegt.

15 8. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach Anspruch 1, **gekennzeichnet durch** die Anwesenheit von Peaks im Röntgenpulverbeugungsdiagramm bei den folgenden Brechungswinkeln 20: 10,9°, 13,4°, 14,3°, 14,9°, 18,3°, 20,9°, 21,1°, 21,8°, 24,0° und 30,1°; wobei das genannte Röntgenpulverbeugungsdiagramm durch Verwenden kombinierter Cu K α 1- und K α 2-Strahlung, ohne K α 2-Stripping, erhalten wird; und die Genauigkeit der 20-Werte im Bereich von 20 +/- 0,2° liegt.

20 9. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach Anspruch 7 oder 8, die im Wesentlichen das in Figur 3 gezeigte Röntgenpulverbeugungsmuster aufweist.

25 10. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 7 bis 9, wobei die genannte kristalline Form ein Anhydrat ist.

30 11. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 7 bis 10, erhältlich durch:

a) Mischen von 10 mg der VERBINDUNG in kristalliner Form 1 in 0,05 ml Acetonitril;

b) Röhren in einer geschlossenen 4-ml-Phiole für bis zu drei Tage;

c) Isolieren; und Trocknen bei reduziertem Druck und Raumtemperatur für 2 Stunden.

40 12. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 1 bis 11 zur Verwendung als Medikament.

45 13. Pharmazeutische Zusammensetzung, die als Wirkstoff eine kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 1 bis 11 und wenigstens einen pharmazeutisch akzeptablen Träger beinhaltet.

50 14. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 1 bis 11 zur Verwendung bei der Herstellung einer pharmazeutischen Zusammensetzung, wobei die genannte pharmazeutische Zusammensetzung als Wirkstoff die Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon und wenigstens ein pharmazeutisch akzeptables Trägermaterial beinhaltet.

55 15. Kristalline Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanon nach einem der Ansprüche 1 bis 11 oder pharmazeutische Zusammensetzung nach Anspruch 13 zur Verwendung bei der Behandlung oder Verhütung einer Krankheit oder Störung, ausgewählt aus der Gruppe bestehend aus Schlafstörungen, ausgewählt aus der Gruppe bestehend aus Dyssomnien, Parasomnien, Schlafstörungen in Verbindung mit einem allgemeinen medizinischen Zustand und substanzinduzierten Schlafstörungen; Angststörungen; und Suchtstörungen.

16. Verwendung einer kristallinen Form der Verbindung (S)-(2-(6-Chlor-7-methyl-1H-benzo[d]imidazol-2-yl)-2-methylpyrrolidin-1-yl)(5-methoxy-2-(2H-1,2,3-triazol-2-yl)phenyl)methanone nach einem der Ansprüche 1 bis 11 zur Herstellung eines Medikaments zur Behandlung oder Verhütung einer Krankheit oder Störung, ausgewählt aus der Gruppe bestehend aus Schlafstörungen, Angststörungen, Suchtstörungen, kognitiven Dysfunktionen, Gemütszustandsstörungen und Appetitstörungen.

Revendications

- Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1H-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2H-1,2,3-triazol-2-yl)phényl)méthanone ; **caractérisée par** :
 - la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2 θ suivants : 8,6°, 15,2° et 21,3°; ou
 - la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2 θ suivants : 13,4°, 18,3° et 24,0°.
- Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1H-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2H-1,2,3-triazol-2-yl)phényl)méthanone selon la revendication 1, **caractérisée par** la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2 θ suivants : 8,6°, 15,2° et 21,3° ; où ledit diagramme de diffraction des rayons X sur poudre est obtenu en utilisant des rayonnements CuK α 1 et CuK α 2 combinés sans soustraction des raies de diffraction dues au rayonnement CuK α 2 ; et où l'exactitude des valeurs de 2 θ est dans la plage de 20 +/- 0,2°.
- Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1H-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2H-1,2,3-triazol-2-yl)phényl)méthanone selon la revendication 1, **caractérisée par** la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2 θ suivants : 8,6°, 11,5°, 13,4°, 14,6°, 15,2°, 15,5°, 19,3°, 21,3°, 22,4° et 26,4° ; où ledit diagramme de diffraction des rayons X sur poudre est obtenu en utilisant des rayonnements CuK α 1 et CuK α 2 combinés sans soustraction des raies de diffraction dues au rayonnement CuK α 2 ; et où l'exactitude des valeurs de 2 θ est dans la plage de 20 +/- 0,2°.
- Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1H-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2H-1,2,3-triazol-2-yl)phényl)méthanone selon les revendications 2 ou 3, qui présente essentiellement le profil de diffraction des rayons X sur poudre illustré à la Figure 2.
- Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1H-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2H-1,2,3-triazol-2-yl)phényl)méthanone selon l'une quelconque des revendications 2 à 4, où ladite forme cristalline est un hémhydrate.
- Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1H-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2H-1,2,3-triazol-2-yl)phényl)méthanone selon l'une quelconque des revendications 2 à 5, qui peut être obtenue par :
 - mélange de 2 g du COMPOSÉ en tant que matériau amorphe dans 8 ml d'un mélange éthanol/eau dans un rapport de 1/4 en volume/volume ;
 - addition d'environ 0,05 g de germes cristallins du COMPOSÉ sous la forme cristalline 1 ;
 - secouement à 300 tr/min pendant environ 16 heures à température ambiante ;
 - filtration et lavage du gâteau avec 2 ml d'un mélange éthanol/eau à 1/4 (v/v) et séchage du produit à température ambiante et sous pression réduite d'environ 10 mbars pendant 4 heures ; et
 - équilibration en ouvert à température ambiante et à une humidité relative de 60 % environ pendant 2 heures.
- Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1H-benzo[d]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2H-1,2,3-triazol-2-yl)phényl)méthanone selon la revendication 1, **caractérisée par** la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2 θ suivants : 13,4°, 18,3° et 24,0° ; où ledit diagramme de diffraction des rayons X sur poudre est obtenu en utilisant des rayonnements CuK α 1 et CuK α 2 combinés sans soustraction des raies de diffraction dues au rayonnement CuK α 2 ; et où l'exactitude des valeurs de 2 θ est dans la plage de 20 +/- 0,2°.

8. Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1*H*-benzo[*d*]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2*H*-1,2,3-triazol-2-yl)phénol)méthanone selon la revendication 1, **caractérisée par** la présence de raies sur le diagramme de diffraction des rayons X sur poudre aux angles de réfraction 2θ suivants : 10,9°, 13,4°, 14,3°, 14,9°, 18,3°, 20,9°, 21,1°, 21,8°, 24,0° et 30,1° ; où ledit diagramme de diffraction des rayons X sur poudre est obtenu en utilisant des rayonnements $\text{CuK}\alpha 1$ et $\text{CuK}\alpha 2$ combinés sans soustraction des raies de diffraction dues au rayonnement $\text{CuK}\alpha 2$; et où l'exactitude des valeurs de 2θ est dans la plage de 2θ +/- 0,2°.

5

9. Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1*H*-benzo[*d*]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2*H*-1,2,3-triazol-2-yl)phénol)méthanone selon les revendications 7 ou 8, qui présente essentiellement le profil de diffraction des rayons X sur poudre illustré à la Figure 3.

10

10. Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1*H*-benzo[*d*]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2*H*-1,2,3-triazol-2-yl)phénol)méthanone selon l'une quelconque des revendications 7 à 9, où ladite forme cristalline est un anhydrate.

15

11. Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1*H*-benzo[*d*]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2*H*-1,2,3-triazol-2-yl)phénol)méthanone selon l'une quelconque des revendications 7 à 10, qui peut être obtenue par :

20

- a) mélange de 10 mg du COMPOSÉ sous la forme cristalline 1 dans 0,05 ml d'acétonitrile ;
- b) agitation dans une fiole de 4 ml bouchée pendant jusqu'à trois jours ;
- c) isolation ; et séchage sous pression réduite et à température ambiante pendant 2 heures.

25

12. Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1*H*-benzo[*d*]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2*H*-1,2,3-triazol-2-yl)phénol)méthanone selon l'une quelconque des revendications 1 à 11 pour une utilisation en tant que médicament.

30

13. Composition pharmaceutique comprenant, comme ingrédient actif, une forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1*H*-benzo[*d*]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2*H*-1,2,3-triazol-2-yl)phénol)méthanone selon l'une quelconque des revendications 1 à 11 et au moins un véhicule pharmaceutiquement acceptable.

35

14. Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1*H*-benzo[*d*]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2*H*-1,2,3-triazol-2-yl)phénol)méthanone selon l'une quelconque des revendications 1 à 11 pour une utilisation dans la fabrication d'une composition pharmaceutique, où ladite composition pharmaceutique comprend, comme ingrédient actif, le composé qu'est la (S)-(2-(6-chloro-7-méthyl-1*H*-benzo[*d*]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2*H*-1,2,3-triazol-2-yl)phénol)méthanone et au moins un matériau véhicule pharmaceutiquement acceptable.

40

15. Forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1*H*-benzo[*d*]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2*H*-1,2,3-triazol-2-yl)phénol)méthanone selon l'une quelconque des revendications 1 à 11 ou composition pharmaceutique selon la revendication 13 pour une utilisation dans le traitement ou la prévention d'une maladie ou affection sélectionnée dans le groupe consistant en les suivantes : troubles du sommeil sélectionnés dans le groupe consistant en des dyssomnies, parasomnies, troubles du sommeil liés à une affection médicale générale et troubles du sommeil induits par des substances ; troubles anxieux ; et troubles addictifs.

45

16. Utilisation d'une forme cristalline du composé qu'est la (S)-(2-(6-chloro-7-méthyl-1*H*-benzo[*d*]imidazol-2-yl)-2-méthylpyrrolidin-1-yl)(5-méthoxy-2-(2*H*-1,2,3-triazol-2-yl)phénol)méthanone selon l'une quelconque des revendications 1 à 11 dans la préparation d'un médicament pour le traitement ou la prévention d'une maladie ou affection sélectionnée dans le groupe consistant en des troubles du sommeil, troubles anxieux, troubles addictifs, dysfonctionnements cognitifs, troubles de l'humeur et troubles de l'appétit.

50

Figure 1

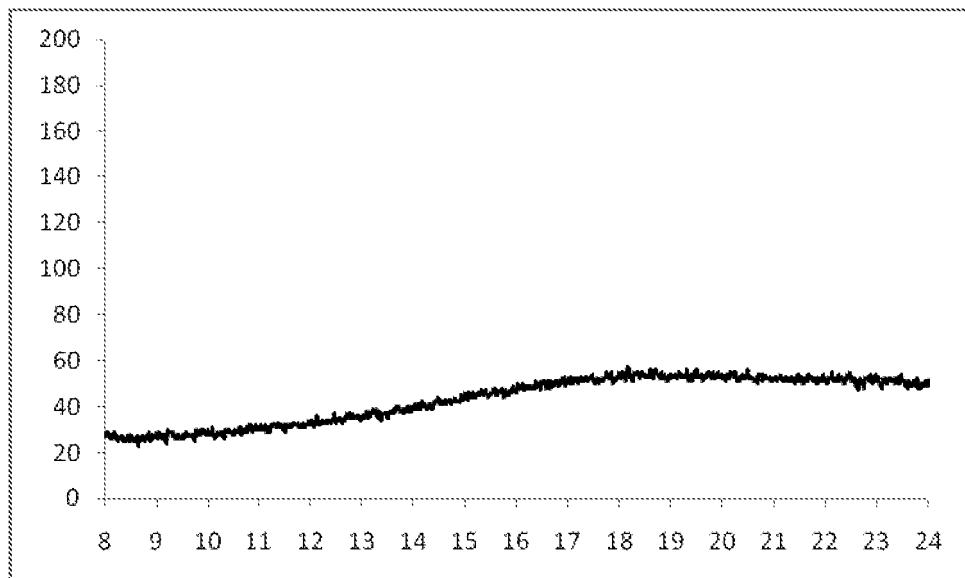


Figure 2

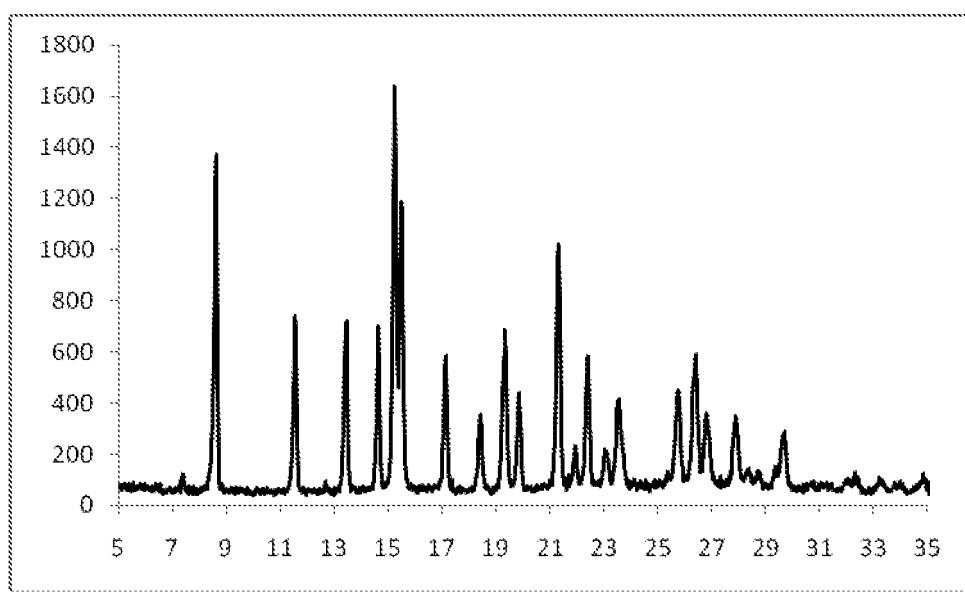


Figure 3

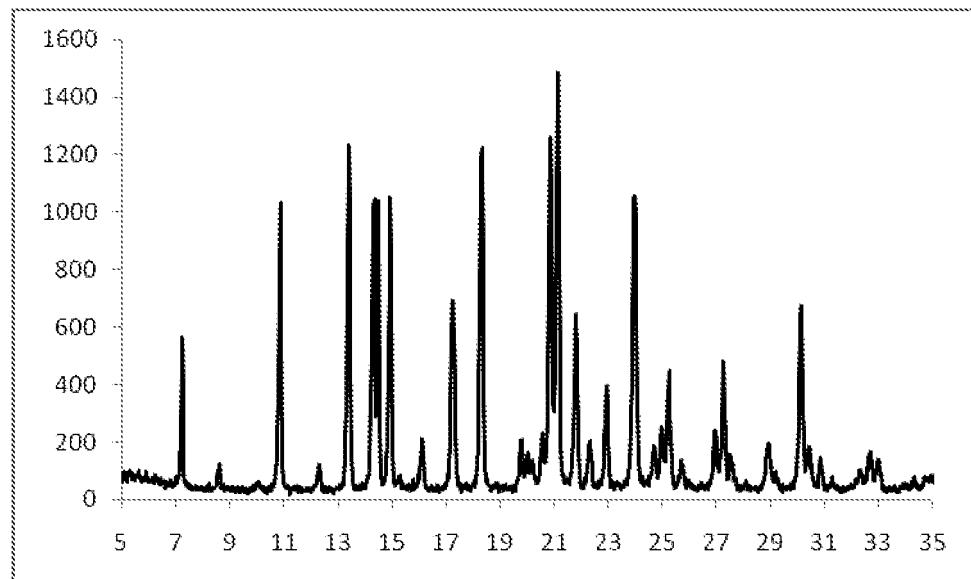


Figure 4

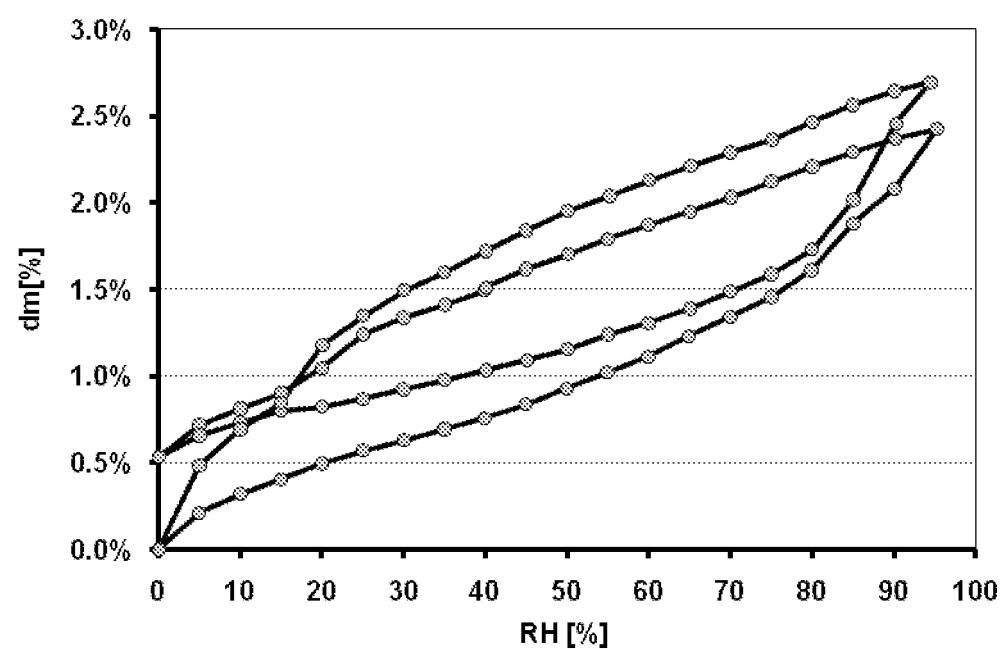


Figure 5

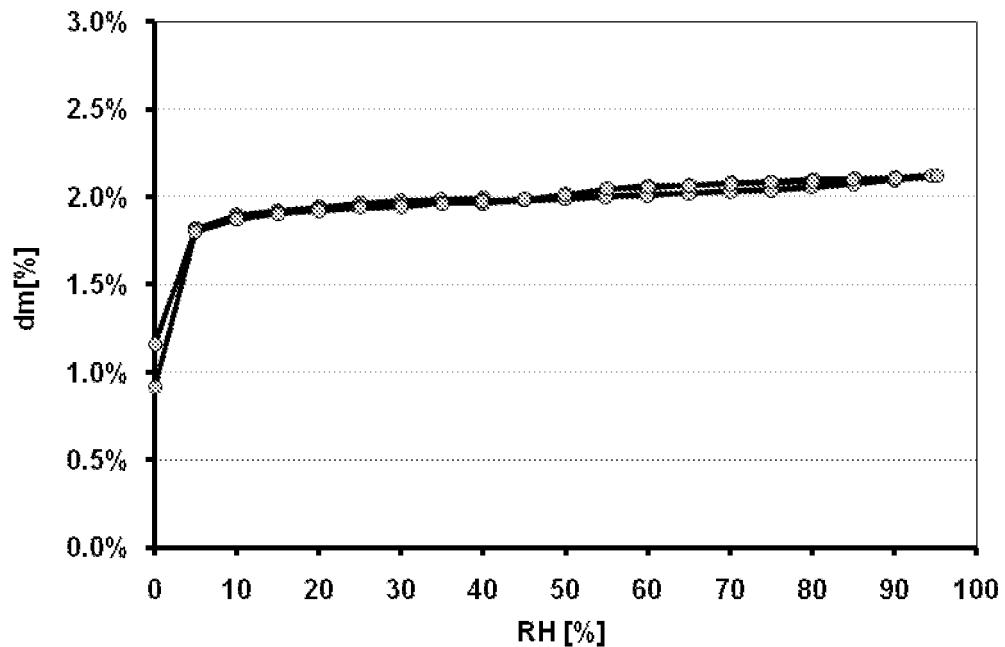
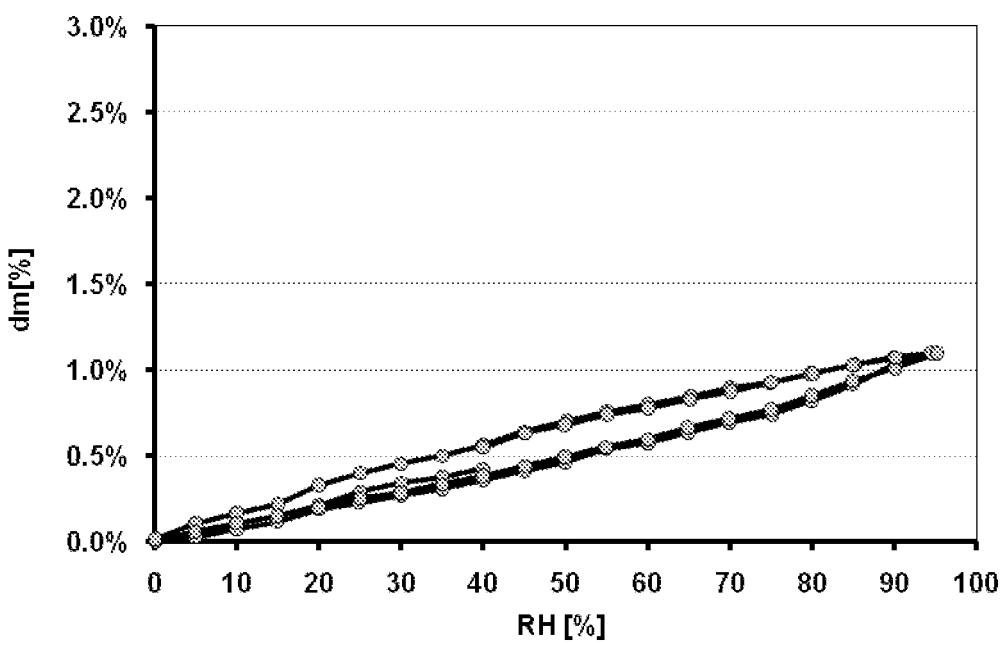



Figure 6

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2005118548 A [0012]
- WO 2009047723 A [0012]
- WO 2007105177 A [0012]
- WO 2008020405 A [0013]
- WO 2008038251 A [0013]
- WO 2008081399 A [0013]
- WO 2008087611 A [0013]
- WO 2008117241 A [0013]
- WO 2008139416 A [0013]
- WO 2009004584 A [0013]
- WO 2009016560 A [0013]
- WO 2009016564 A [0013]
- WO 2009040730 A [0013]
- WO 2009104155 A [0013]
- WO 2010004507 A [0013]
- WO 2010038200 A [0013]
- WO 2001096302 A [0013]
- WO 2002044172 A [0013]
- WO 2002089800 A [0013]
- WO 2002090355 A [0013]
- WO 2003002559 A [0013]
- WO 2003032991 A [0013]
- WO 2003041711 A [0013]
- WO 2003051368 A [0013]
- WO 2003051873 A [0013]
- WO 2004026866 A [0013]
- WO 2004041791 A [0013]
- WO 2004041807 A [0013]
- WO 2004041816 A [0013]
- WO 2009003993 A [0013]
- WO 2009003997 A [0013]
- WO 2009124956 A [0013]
- WO 2010060470 A [0013]
- WO 2010060471 A [0013]
- WO 2010060472 A [0013]
- WO 2010063662 A [0013]
- WO 2010063663 A [0013]
- WO 2010072722 A [0013]
- WO 2010122151 A [0013]
- WO 2008150364 A [0013]
- WO 2003002561 A [0013]

Non-patent literature cited in the description

- **SAKURAIT. et al.** *Cell*, 1998, vol. 92, 573-585 [0002]
- **TSUJINON ; SAKURAIT.** Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward systems. *Pharmacol Rev.*, 2009, vol. 61, 162-176 [0003]
- **CARTER ME et al.** The brain hypocretins and their receptors: mediators of allostatic arousal. *Curr Op Pharmacol.*, 2009, vol. 9, 39-45 [0003]
- **CHEMELLI R.M. et al.** *Cell*, 1999, vol. 98, 437-451 [0003]
- **R. STICKGOLD et al.** Sleep-dependent memory consolidation. *Nature*, 2005, vol. 437, 1272-1278 [0004]
- **ASTON-JONES G et al.** *Brain Res*, 2010, vol. 1314, 74-90 [0005]
- **SHARF R et al.** *Brain Res*, 2010, vol. 1314, 130-138 [0005]
- **BOUTREL B et al.** Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. *Proc Natl Acad Sci*, 2005, vol. 102 (52), 19168-19173 [0005]
- **SMITH RJ et al.** Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. *Eur J Neurosci*, 2009, vol. 30 (3), 493-503 [0005]
- **SMITH RJ et al.** Orexin/hypocretin is necessary for context-driven cocaine-seeking. *Neuropharmacology*, 2010, vol. 58 (1), 179-184 [0005]
- **LAWRENCE AJ et al.** *Br J Pharmacol*, 2006, vol. 148 (6), 752-759 [0005]
- **HOLLANDER JA et al.** *Proc Natl Acad Sci*, 2008, vol. 105 (49), 19480-19485 [0005]
- **LESAGE MG et al.** *Psychopharmacology*, 2010, vol. 209 (2), 203-212 [0005] [0012]
- **GOZZI A et al.** *PLoS One*, 2011, vol. 6 (1), e16406 [0005]
- **HUTCHESON DM et al.** *Behav Pharmacol*, 2011, vol. 22 (2), 173-181 [0005]
- **BORGLAND SL et al.** *Neuron*, 2006, vol. 49 (4), 589-601 [0005]

- **QUARTA D et al.** The orexin-1 receptor antagonist SB-334867 reduces amphetamine-evoked dopamine outflow in the shell of the nucleus accumbens and decreases the expression of amphetamine sensitization. *Neurochem Int*, 2010, vol. 56 (1), 11-15 [0005]
- **SPEALMAN et al.** *Pharmacol. Biochem. Behav.*, 1999, vol. 64, 327-336 [0006]
- Recent advances in animal models of drug addiction. **T.S. SHIPPENBERG ; G.F. KOOB.** Neuropsychopharmacology: The fifth generation of progress. 2002, vol. 97, 1381-1397 [0006]
- **SUTCLIFFE, JG et al.** *Nat Rev Neurosci*, 2002, vol. 3 (5), 339-349 [0007]
- **Y. KAYABA et al.** *Am. J. Physiol. Regul. Integr. Comp. Physiol.*, 2003, vol. 285, R581-593 [0007]
- **FURLONG T M et al.** *Eur J Neurosci*, 2009, vol. 30 (8), 1603-1614 [0007] [0012]
- **CHROUSOS, GP et al.** *JAMA*, 1992, vol. 267 (9), 1244-1252 [0007]
- **MAJZOUN, JA et al.** *European Journal of Endocrinology*, 2006, vol. 155 (1), S71-S76 [0007]
- **ZHANG WET.** Multiple components of the defense response depend on orexin: evidence from orexin knockout mice and orexin neuron-ablated mice. *Auton Neurosci*, 2006, vol. 126-127, 139-145 [0008]
- **LIU X et al.** *Sleep*, 2007, vol. 30 (1), 83-90 [0008]
- **SALOMON RM et al.** *Biol Psychiatry*, 2003, vol. 54 (2), 96-104 [0008]
- **FENG P et al.** *J Psychopharmacol*, 2008, vol. 22 (7), 784-791 [0008]
- **NOLLET et al.** *NeuroPharm*, 2011, vol. 61 (1-2), 336-46 [0008] [0012]
- **BERRIDGE CW et al.** *Brain Res*, 2009, vol. 1314, 91-102 [0009]
- **BOUTREL, B et al.** *Proc Natl Acad Sci*, 2005, vol. 102 (52), 19168-19173 [0009]
- **KOOB, GF et al.** *Curr Opin Investig Drugs*, 2010, vol. 11 (1), 63-71 [0009]
- **TSUJINO, N ; SAKURAI, T.** *Pharmacol Rev*, 2009, vol. 61 (2), 162-176 [0010]
- **ADAM, TC et al.** *Physiol Behav*, 2007, vol. 91 (4), 449-458 [0010]
- **W. FOULDS MATHES et al.** *Appetite*, 2009, vol. 52, 545-553 [0010]
- **TSUJINO N ; SAKURAI T.** *Pharmacol Rev.*, 2009, vol. 61, 162-176 [0011]
- **CARTER ME ; BORG JS ; DELECEA L.** *Curr Op Pharmacol*, 2009, vol. 9, 39-45 [0011]
- **C BOSS ; C BRISBARE-ROCH ; F JENCK.** *Journal of Medicinal Chemistry*, 2009, vol. 52, 891-903 [0011]
- **BRISBARE et al.** *Nature Medicine*, 2007, vol. 13, 150-155 [0012]
- **H DIETRICH ; F JENCK.** *Psychopharmacology*, 2010, vol. 212, 145-154 [0012]
- **JE KANG et al.** Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. *Science*, 2009, vol. 326 (5955), 1005-1007 [0012]
- **MJ PRUD'HOMME et al.** *Neuroscience*, 2009, vol. 162 (4), 1287-1298 [0012]
- **WINROW et al.** *Neuropharmacology*, 2009, vol. 58 (1), 185-94 [0012]
- **LANGMEAD.** *Brit. J. Pharmacol.*, 2004, vol. 141, 340-346 [0013]
- Pharmaceutical Industry. **U.J. GRIESSE**R. The Importance of Solvates. VCH, 2006 [0017]
- Pharmaceutical Manufacturing. **REMINGTON**. The Science and Practice of Pharmacy. Lippincott Williams & Wilkins, 2005 [0027]
- **C.W. POUTON ; C.J.H. PORTER.** *Advanced Drug Delivery Reviews*, 2008, vol. 60, 625-637 [0027]
- *the European Pharmacopeia Technical Guide*, 1999, 86 [0044]