发明名称：酰胺型聚合物/硅氧烷聚合物共混物及其制造工艺

摘要

本发明提供一种酰胺型聚合物/硅氧烷聚合物共混物的制备方法，包括下列步骤：制备一种硅氧烷聚合物乳液，其中包含分散在液体连续相中的硅氧烷聚合物；在反应前或反应中，将硅氧烷聚合物乳液加入酰胺型聚合反应介质中，其中反应介质包含：1) 二胺组分和二胺组分，二酸组分和二胺组分的低聚物，或者它们的混合物；然后将 b) 1 的各组分聚合，由此得到酰胺型聚合物/硅氧烷聚合物的共混物。本发明还提供一种酰胺型聚合物/硅氧烷聚合物的共混物。
权利要求书

1. 一种制造酰胺型聚合物/硅氧烷聚合物共混物的方法，该方法包括以下步骤:
 (a) 制备硅氧烷聚合物乳液，它包含分散于液体连续相中的一种硅氧烷聚合物；
 (b) 在反应前或反应中，将硅氧烷聚合物乳液引入到酰胺型聚合反应介质中，其中该反应介质包含 1) 一种二酸组分和一种二胺组分，二酸和二胺组分的一种低聚物，或它们的混合物；及
 (c) 聚合 b) 1 中的各组分，由此得到一种酰胺型聚合物/硅氧烷聚合物共混物。

2. 权利要求 1 的方法，其中连续相包含水，而基本上没有二醇存在，由此得到一种聚酰胺聚合物。

3. 权利要求 2 的方法，其中连续相包含从约 30%到约 100%的水。

4. 权利要求 2 的方法，其中连续相包含从约 70%到约 100%的水。

5. 权利要求 2 的方法，其中连续相基本由水组成。

6. 权利要求 1 的方法，其中连续相包含二醇组分，由此得到一种聚酰胺酯聚合物。

7. 权利要求 6 的方法，其中连续相包含从约 30%到约 100%的二醇。

8. 权利要求 6 的方法，其中连续相包含从约 70%到约 100%的二醇。

9. 权利要求 6 的方法，其中连续相基本由二醇组成。

10. 权利要求 6 的方法，其中二醇包含具有约 2-约 10 个碳原子的脂肪族或脂环族二醇，或者它们的混合物。

11. 权利要求 6 的方法，其中二醇包含乙二醇；1,3-亚丙基二醇；1,3-丙二醇；二缩三丙二醇；1,4-丁二醇；1,5-戊二醇；1,6-己二醇；1,7-庚二醇；1,8-辛二醇；1,9-壬二醇；新戊二醇；顺-或反-环己烷二甲醇；顺-或反-2,2,4,4-四甲基-1,3-环己二醇；二乙二醇，或它们的混合物。

12. 权利要求 6 的方法，其中二醇包含新戊二醇；乙二醇；顺-或反-环己烷二甲醇；1,4-丁二醇；或它们的混合物。

13. 权利要求 1 的方法，其中连续相包含水和二醇，由此得到一
种聚酰胺酯聚合物。

14. 权利要求 1 的方法，其中连续相包含一种或多种助溶剂，且
其中助溶剂包含水；甲醇；乙醇；丙醇；正丁醇；或它们的混合物。

15. 权利要求 1 的方法，其中硅氧烷聚合物包含聚二甲基硅氧烷
的均聚物或共聚物，其中均聚物或共聚物包含氧丙基；乙烯基；硫
基丙基；苯基甲基；环氧基或氮乙基氮丙基官能团。

16. 权利要求 1 的方法，其中硅氧烷聚合物是聚二甲基硅氧烷。

17. 权利要求 1 的方法，其中硅氧烷聚合物乳液中的硅氧烷聚合
物的粒径为约 0.20~约 1000 微米。

18. 权利要求 1 的方法，其中硅氧烷聚合物乳液中的硅氧烷聚合
物的粒径为约 0.1~约 10 微米。

19. 权利要求 1 的方法，其中硅氧烷聚合物乳液中的硅氧烷聚合
物的分子量为约 5,000~约 1,000,000 道尔顿。

20. 权利要求 1 的方法，其中硅氧烷聚合物乳液包含一种表面活
性剂，且其中的表面活性剂包含阴阳离子表面活性剂，阳离子表面活性
剂，非离子表面活性剂，或者它们的混合物。

21. 权利要求 1 的方法，其中硅氧烷聚合物在加入到酰胺型聚合
反应介质之前先进行交联。

22. 权利要求 1 的方法，其中硅氧烷聚合物乳液连续相和酰胺型
聚合反应介质分别包含水，二醇，或它们的混合物。

23. 权利要求 1 的方法，其中硅氧烷聚合物乳液中的硅氧烷聚合
物包含一种能在酰胺型聚合反应中进行反应的官能团，且其中的官能
团包含环氧氧化物；酸；羟基；氨；酰胺；碳酸酯；或它们的混合物。

24. 权利要求 1 的方法，其中硅氧烷聚合物包含聚二甲基硅氧烷
的均聚物或共聚物，并且其中均聚物或共聚物包含氧丙基；乙烯基；
硫基丙基；苯基甲基；环氧基或氮乙基氮丙基官能团。

25. 权利要求 1 的方法，其中二酸包含间苯二甲酸，对苯二甲酸；
环己烷二羧酸；含有 6-12 个碳原子的脂肪族二酸；或它们的混合物。

26. 权利要求 1 的方法，其中二胺包含间苯撑二甲胺；对苯撑二
甲胺；1,3-环己烷(二)甲胺；1,4-环己烷(二)甲胺；含有 6-12 个碳
原子的脂肪族二胺或内酰胺；含有 4-12 个碳原子的脂肪族二胺；或
它们的混合物。
27. 权利要求1的方法，其中酰胺型聚合物包含部分芳香性的酰胺，并且其中部分芳香性的聚酰胺包含聚（乙二酰间-苯撑二甲基二胺）；聚（间苯二甲酰乙二胺）；聚（乙二酰-共-间苯二甲酰乙二胺）；聚（乙二酰-共-对苯二甲酰乙二胺）；聚（间苯二甲酰-共-对苯二甲酰乙二胺）；或它们的混合物。

28. 权利要求1的方法，其中酰胺型聚合物包含脂肪族聚酰胺，并且其中脂肪族聚酰胺包含聚乙酰乙二胺（尼龙2,6）；聚乙酰丁二胺（尼龙4,6）；聚乙酰乙二胺（尼龙6,6）；聚癸酸乙二胺（尼龙6,10）；聚十二碳二酰乙二胺（尼龙6,12）；聚乙酰辛二胺（尼龙8,6）；聚乙酰癸二胺（尼龙10,6）；聚乙酰十二碳二胺（尼龙12,6）；聚癸酸乙二胺（尼龙12,8）；或它们的混合物。

29. 权利要求1的方法，其中组分b1）包含二醇或丁二醇的一种低聚物以得到一种尼龙6,6型聚酰胺酯。

30. 权利要求1的方法，其中酰胺型聚合物/硅烷烷聚合物共混物由熔融相聚合来制备。

31. 权利要求1的方法，其中酰胺型聚合反应介质包含一种缓冲剂，且其中的缓冲剂包含乙酸钠；乙酸钾；乙酸锂；磷酸二氢钠；磷酸氢二钾；碳酸钠；或它们的混合物。

32. 权利要求1的方法，其中酰胺型聚合物的玻璃化转变温度（Tg）高于约40℃。

33. 权利要求1的方法，其中在聚合反应前或反应中，将玻璃纤维加入到酰胺型聚合反应介质中。

34. 权利要求33的方法，其中玻璃纤维为酰胺型聚合物/硅烷烷聚合物共混物重量的约10～约50wt.%。

35. 权利要求1的方法，其中在聚合反应前或反应中，将以下增强剂加入到酰胺型聚合反应介质中，它们包含碳纤维，云母，粘土，滑石，硅灰石，玻璃纤维，碳酸钙或它们的混合物。

36. 权利要求1的方法，其中硅烷烷聚合物乳液由机械乳化来制备。

37. 权利要求1的方法，其中在酰胺型聚合反应起始之前将硅烷烷聚合物乳液加入到酰胺型聚合反应介质中。
38. 权利要求1的方法，其中在酰胺型聚合反应期间将硅氧烷聚合物乳液加入到酰胺型聚合反应介质中。
39. 由权利要求1的方法所制得的产物。
40. 一种酰胺型聚合物/硅氧烷聚合物共混物，其中包含：
 （a）一种包含硅氧烷聚合物的硅氧烷聚合物乳液；和
 （b）酰胺型聚合物，其中此酰胺型聚合物通过在反应前或反应中将硅氧烷聚合物乳液加入到一种酰胺型聚合反应介质中而形成，其中反应介质包含1）一种二酸组分和一种二胺组分，二酸和二胺组分的一种低聚物，或它们的混合物。
41. 权利要求40的聚合物共混物，其中硅氧烷聚合物乳液包含：
 （a）一种硅氧烷聚合物；
 （b）一种表面活性剂；和
 （c）一种液体连续相。
42. 权利要求41的聚合物共混物，其中连续相包含水，而基本上没有二醇存在，由此得到一种聚酰胺聚合物。
43. 权利要求42的聚合物共混物，其中连续相包含从约30%到约100%的水。
44. 权利要求42的聚合物共混物，其中连续相包含从约70%到约100%的水。
45. 权利要求42的聚合物共混物，其中连续相基本由水组成。
46. 权利要求41的聚合物共混物，其中连续相包含二醇，由此得到一种聚酰胺酯聚合物。
47. 权利要求41的聚合物共混物，其中连续相包含水和二醇，由此得到一种聚酰胺酯。
48. 权利要求46的聚合物共混物，其中连续相包含从约30%到约100%的二醇。
49. 权利要求46的聚合物共混物，其中连续相包含从约70%到约100%的二醇。
50. 权利要求46的聚合物共混物，其中连续相基本由二醇组成。
51. 权利要求46的聚合物共混物，其中二醇包含具有约2~约10个碳原子的脂肪族或脂环族二醇，或者它们的混合物。
52. 权利要求46的聚合物共混物，其中二醇包含乙二醇；1,3-
亚丙基二醇；1, 3-丙二醇；二缩三丙二醇；1, 4-丁二醇；1, 5-戊二醇；1, 6-己二醇；1, 7-庚二醇；1, 8-辛二醇；1, 9-壬二醇；新戊二醇；顺-或反-环己烷二甲醇；顺-或反-2, 2, 4, 4-四甲基-1, 3-环丁二醇；二乙二醇，或它们的混合物。

53. 权利要求46所述聚合物共混物，其中二醇包含新戊二醇；乙二醇；顺-或反-环己烷二甲醇；1, 4-丁二醇；或它们的混合物。

54. 权利要求41所述聚合物共混物，其中连续相包含一种助溶剂，且其中助溶剂包含水；甲醇；乙醇；丙醇；正丁醇；或它们的混合物。

55. 权利要求41所述聚合物共混物，其中硅氧烷聚合物包含聚二甲基硅氧烷的均聚物或共聚物，其中均聚物或共聚物包含氢丙基；乙烯基；硫基丙基；苯基甲基；环氧基或羟乙基氢丙基官能团。

56. 权利要求41所述聚合物共混物，其中硅氧烷聚合物是聚二甲基硅氧烷。

57. 权利要求41所述聚合物共混物，其中硅氧烷聚合物乳液中的硅氧烷聚合物的粒径为约0.20～约1000微米。

58. 权利要求41所述聚合物共混物，其中硅氧烷聚合物乳液中的硅氧烷聚合物的粒径为约0.1～约10微米。

59. 权利要求41所述聚合物共混物，其中硅氧烷聚合物乳液中的硅氧烷聚合物的分子量为约5,000～约1,000,000道尔顿。

60. 权利要求41所述聚合物共混物，其中表面活性剂包含阴离子表面活性剂，阳离子表面活性剂，非离子表面活性剂，或者它们的混合物。

61. 权利要求41所述聚合物共混物，其中硅氧烷聚合物在加入到缩合聚合物反应之前先进行交联。

62. 权利要求41所述聚合物共混物，其中硅氧烷聚合物乳液连续相和酰胺型聚合反应介质分别包含水，二醇，或它们的混合物。

63. 权利要求41所述聚合物共混物，其中硅氧烷聚合物乳液中的硅氧烷聚合物包含一种能在酰胺型聚合反应中进行反应的官能团，且其中的官能团包含环氧化物；酸；羟基；氯；酰胺；碳酸酯；或它们的混合物。

64. 权利要求41所述聚合物共混物，其中二酸包含间苯二甲酸；对苯二甲酸；环己烷二羧酸；含有6-12个碳原子的脂肪族二酸；或
它们的混合物。

65. 权利要求 41 的聚合物共混物，包含一种二胺，其中二胺包含间苯二甲胺；对苯二甲胺；1,3-环己烷（二）甲胺；1,4-环己烷（二）甲胺；含有6-12个碳原子的脂肪族二胺或内酰胺；含有4-12个碳原子的脂肪族二胺；或它们的混合物。

66. 权利要求 41 的聚合物共混物，包含一种部分芳香性的聚酰胺，其中部分芳香性的聚酰胺包含聚（己二酰-间-苯撑二甲基二胺）；聚（间苯二甲酰乙二胺）；聚（己二酰-共-间苯二甲酰乙二胺）；聚（己二酰-共-对苯二甲酰乙二胺）；聚（间苯二甲酰-共-对苯二甲酰乙二胺）；或它们的混合物。

67. 权利要求 41 的聚合物共混物，包含一种脂肪族聚酰胺，其中脂肪族聚酰胺包含聚己二酰乙二胺（尼龙 2, 6）；聚己二酰丁二胺（尼龙 4, 6）；聚己二酰乙二胺（尼龙 6, 6）；聚己二酰乙二胺（尼龙 6, 10）；聚十二烷二酰乙二胺（尼龙 6, 12）；聚己二酰辛二胺（尼龙 8, 6）；聚己二酰癸二胺（尼龙 10, 6）；聚己二酰十二烷二胺（尼龙 12, 6）；聚己二酰十二烷二胺（尼龙 12, 8）；或者它们的混合物。

68. 权利要求 41 的聚合物共混物，包含一种尼龙 6, 6 型聚酰胺酯。

69. 权利要求 41 的聚合物共混物，由熔融相聚合来制备。

70. 权利要求 41 的聚合物共混物，其中酰胺型聚合反应介质包含一种缓冲剂，且其中此缓冲剂包括乙酸钠，乙酸钾，乙酸锂，磷酸二氢钠，磷酸氢二钾，碳酸钠，或它们的混合物。

71. 权利要求 41 的聚合物共混物，其中酰胺型聚合物的玻璃化转变温度（Tg）高于约 40℃。

72. 权利要求 41 的聚合物共混物，其中在聚合反应前或反应中，将玻璃纤维加入到酰胺型聚合反应介质中。

73. 权利要求 72 的聚合物共混物，其中玻璃纤维为聚合物共混物重量的约 10～约 50wt.%。

74. 权利要求 41 的聚合物共混物，其中在聚合反应前或反应中，将以下增强剂加入到酰胺型聚合反应介质中，它们包含碳纤维，云母，粘土，滑石，硅灰石，玻璃纤维，碳酸钙或它们的混合物。

75. 权利要求 41 的聚合物共混物，其中硅氧烷聚合物乳液由机
械乳化来制备。

76. 权利要求 41 的聚合物共混物，其中在酰胺型聚合反应起始之前将硅氧烷聚合物乳液加入到酰胺型聚合反应介质中。

77. 权利要求 41 的聚合物共混物，其中在酰胺型聚合反应期间将硅氧烷聚合物乳液加入到酰胺型聚合反应介质中。

78. 权利要求 41 的聚合物共混物，其中该聚合物共混物是一种抗冲击改性的聚酰胺或聚酰胺酯。

79. 一种制造一种酰胺型聚合物/硅氧烷聚合物共混物的方法，其中包括以下步骤：
 （a）制备一种包含液体连续相的硅氧烷聚合物乳液；
 （b）将硅氧烷聚合物乳液加入到酰胺型聚合物中；和
 （c）挤出这种硅氧烷聚合物乳液和这种酰胺型聚合物，由此得到一种酰胺型聚合物/硅氧烷聚合物共混物。
说明书

酰胺型聚合物/硅氧烷聚合物共混物及其制造工艺

相关申请的相互参考文献

本申请要求序号为 60/139,966 的美国临时申请的优先权，该申请于 1999 年 6 月 18 日提交，在此以完整形式公开。

发明领域

本发明涉及用含有硅氧烷聚合物的硅氧烷聚合物乳液改性的酰胺型聚合物的制造工艺。硅氧烷聚合物乳液可以含有水，二醇，或它们的混合物，硅氧烷聚合物乳液另外也可以任选地含有助溶剂。本发明进一步涉及酰胺型聚合物/硅氧烷聚合物共混物。

发明背景

要得到如应用聚合物科学杂志（J. Appl. Polym. Sci.）(1994)，54(3)，p339-54 中所述的良好性能，分散相的大小非常关键。然而，这些已经公开的聚酰胺聚合物改性工艺每一种都要求单独的共混步骤。这些共混工艺都是能量密集型的，有时会导致聚合物物理性能的降低，特别是分子量，并且共混步骤需要更多的资源和更长的时间。

需要一种通过更经济的方法来生产聚合物共混物的工艺。本发明可以满足这一需要，在聚合反应器中能得到共混物，其中维持或提高了缩聚物的物理性能。

发明概述

一方面，本发明提供了酰胺型聚合物/硅氧烷聚合物共混物的一
种制造工艺，其中包括以下步骤:

a. 制备硅氧烷聚合物乳液，其中包含分散在液体连续相中的硅氧烷聚合物;

b. 在反应前或反应中，将硅氧烷聚合物乳液加入酰胺型聚合反应介质中，其中反应介质包含：1）二酸组分和二胺组分，二酸组分和二胺组分的低聚物，或者它们的混合物；以及

c. 将 b) 1 的各组分聚合，由此得到酰胺型聚合物/硅氧烷聚合物的共混物。

进一步本发明还提供了一种酰胺型聚合物/硅氧烷聚合物共混物，其中包含:

a. 含有硅氧烷聚合物的硅氧烷聚合物乳液；和

b. 酰胺型聚合物

其中酰胺型聚合物由以下方法制成：在反应前或反应中，将硅氧烷聚合物乳液加入酰胺型聚合反应介质中，其中反应介质包含：1）二酸组分和二胺组分，二酸组分和二胺组分的低聚物，或者它们的混合物。

进一步本发明还提供酰胺型聚合物/硅氧烷聚合物共混物的一种制造方法，其中包括以下步骤:

a. 制备含有液体连续相的硅氧烷聚合物乳液;

b. 将硅氧烷聚合物乳液加入到酰胺型聚合物中；和

c. 混合硅氧烷聚合物乳液和酰胺型聚合物，由此得到酰胺型聚合物/硅氧烷聚合物的共混物。

本发明另外的优点将在以下的描述中阐明，并且在描述中是显而易见的，或可以从本发明的实施中得知。本发明的优点可通过所附权利要求书中特别指出的条款及其组合认识及获得。应该明白，前面的一般性描述和随后的详细描述都只是示范性和说明性的，而不是对本发明的限制。

发明详述

通过参考对本发明的优选实施方案及其中实施例的下列详细描述，可以更容易地理解本发明。

在公开和描述本文的内容和方法之前，应该明白本发明不限定于特定的合成方法或特定的配方，而当然是可以变动的。也应明白此处
所用名词只是为描述特定实施方案而并非限定性的。

在本说明书和随后的权利要求书中，将参考若干名词，它们具有以下定义：

不定冠词和定冠词的单数形式包括其对应的复数形式，除非文中特别指明。

“任选的”或“任选地”是指，随后描述的事件或条件可以发生也可以不发生，以及描述内容包括所述事件或条件发生和不发生的情况。

“硅氧烷聚合物乳液”在此定义为连续相中聚合物粒子的分散体，聚合物粒子优选的大小范围是约 0.20～约 1000 微米。更优选的聚合物粒径范围是约 0.1～约 10 微米。本发明中硅氧烷聚合物的优选分子量是约 5,000～约 1,000,000 道尔顿。优选用乳液聚合工艺生产聚合物粒子。另外，此乳液也可由直接乳化来生产，例如，机械乳化工艺。

“二醇”是乙二醇或二羟基醇的同义词，“多元醇”是含有三个或更多羟基的多羟基醇。

缩写“nm”指纳米，“Tg”指玻璃化转变温度。

在本申请全文中参考出版物的地方，这些出版物在此是以整体形式公开的，并引为本申请的参考文献，以更全面地描述本发明所属领域的技术状况。

在此“范围”经常是指从大约某一特定值，和/或到大约另一特定值。当表达这一范围时，应该明白另一个实施方案是从某一特定值和/或到另一特定值。与此类似，当值表示大致范围时用前缀“大约”，而应理解特定值是另一实施方案。

一方面，本发明提供了酰胺型聚合物/硅氧烷聚合物共混物的一种制造工艺，其中包括以下步骤：

a. 制备硅氧烷聚合物乳液，其中包含分散在液体连续相中的硅氧烷聚合物；

b. 在反应前或反应中，将硅氧烷聚合物乳液加入到酰胺型聚合反应介质中，其中反应介质包含：1）二胺组分和二胺组分，二胺组分和二胺组分的低聚物，或者它们的混合物；以及

c. 将 b) 1 的各组分聚合，由此得到酰胺型聚合物/硅氧烷聚合物
共混物。

进一步本发明还提供了一种酰胺型聚合物/硅氧烷聚合物的共混物，其中包含：
a. 含有硅氧烷聚合物的硅氧烷聚合物乳液；和
b. 酰胺型聚合物

其中酰胺型聚合物由以下方法制成：在反应前或反应中，将硅氧烷聚合物乳液加入到酰胺型聚合反应介质中，其中反应介质包含：1）二酸组分和二胺组分，二酸组分和二胺组分的低聚物，或者它们的混合物。

进一步本发明还提供了酰胺型聚合物/硅氧烷聚合物共混物的一种制造方法，其中包括以下步骤：
1. 制备含有液体连续相的硅氧烷聚合物乳液；
2. 将硅氧烷聚合物乳液加入到酰胺型聚合物中；和
3. 挤出硅氧烷聚合物乳液和酰胺型聚合物，由此得到酰胺型聚合物/硅氧烷聚合物的共混物。

2. 硅氧烷聚合物乳液

在一个具体实施方案中，本发明提供了含有分散于连续相中的大量硅氧烷聚合物颗粒的硅氧烷聚合物乳液。本发明中的硅氧烷聚合物可以优选含有官能团，这些官能团可以包含氨基，环氧基，乙烯基，巯基，碳酸酯，异氰酸酯或硅烷。在一个特别优选的具体实施方案中，硅氧烷聚合物是以硅醇为端基的聚二有机硅氧烷（“PDOS”）。其它优选的硅氧烷聚合物包括烷基硅氧烷或氨基丙基硅氧烷。

硅氧烷聚合物乳液优选含有至少一种表面活性剂以稳定乳液连续相中分散的硅氧烷聚合物颗粒。乳液中平均粒径优选约0.1-约10μm。可以通过以下方法制备这种乳液，例如，将环状或线状寡聚硅氧烷聚合物，如 PDOS，在表面活性剂的帮助下分散到连续水相中，随后通过加入酸性或碱性催化剂来进行乳液聚合。这种乳液在其它一些公开文献中可以找到，例如，美国专利 4,954,565，4,618,642，3,294,725，和 2,891,920，所有这些公开文献都是分别以其整体形式在此引作参考文献。

在另一个具体实施方案中，硅氧烷聚合物乳液通过直接（机械）乳化工艺生产。在这种工艺中，连续相液体的混合物如水和/或二醇、
硅氧烷聚合物和一种或多种表面活性剂，用常规混合设备或高剪切设备如 Microfuidizer™在高剪切条件下处理。制备这些聚合物乳液的方法在美国专利 4,177,177 和 4,788,001 中给出。这些公开文献都是分别以其整体形式在此引作参考文献。例如，PDOS 可在恒定剪切力下缓慢加入到表面活性剂和水和/或二醇中，然后所得 PDOS 乳液可以用已知的常规交联 PDOS 的方法交联。

在另一个具体实施方案中，连续相包含水分，其中基于连续相的总重量，水分含量为约 1-约 100 重量%；优选地，基于连续相的总重量，水分含量为约 10-约 100 重量%；进一步优选地，基于连续相的总重量，水分含量为约 20-约 100 重量%。进一步优选地，基于连续相的总重量，水分含量为约 30-约 100 重量%；更优选地，水分含量为约 40-约 100 重量%；更优选地，水分含量为约 50-约 100 重量%。在更优选的实例中，基于连续相的重量，水分含量为约 60-约 100 重量%；更优选地，水分含量为约 70-约 100 重量%；更优选地，水分含量为约 80-约 100 重量%；更优选地，水分含量为约 90-约 100 重量%。

在一个更优选的具体实施方案中，本发明中硅氧烷聚合物乳液的连续相包含二醇组分。用作硅氧烷聚合物乳液组分的连续相，二醇组分包括，但不限于，含有约 2-约 10 个碳原子的任意脂肪族或脂环族二醇或它们的混合物。优选的二醇包括乙二醇，1,3-亚丙基二醇，丙二醇，二缩三丙二醇，1,4-丁二醇，1,5-戊二醇，1,6-己二醇，1,7-庚二醇，1,8-辛二醇，1,9-壬二醇，新戊二醇，顺-或反-环己烷二甲醇，顺-或反-2,2,4,4-四甲基-1,3-环丁二醇，二乙二醇，2,2,4,4-三甲基-1,3-戊二醇，2-甲基-1,3-丙二醇，2-甲基-1,3-戊二醇，或它们的混合物。更优选的二醇包括乙二醇，丙二醇，二缩三丙二醇，1,4-丁二醇，二乙二醇，新戊二醇，顺-和反-环己烷二甲醇，或它们的混合物；再更优选的二醇包括新戊二醇，乙二醇，顺-或反-环己烷二甲醇，1,4-丁二醇，或它们的混合物。优选地，二醇包括含有约 2-约 10 个碳原子的脂肪族或脂环族二醇，或它们的混合物。

在本发明的一个具体实施方案中，硅氧烷聚合物乳液的连续相中二醇组分的含量，基于连续相总重量，为约 1-约 100 重量%；优选地，为连续相重量的约 10-约 100 重量%；进一步优选地，为连续相重量的约 20-约 100 重量%。在更优选的实例中，基于连续相的总重量，
二醇组分含量为约 30-约 100 重量%；更优选地，二醇组分含量为约 40-约 100 重量%；更优选地，二醇组分含量为约 50-约 100 重量%；更优选地，基于连续相的重量，二醇组分含量为约 60-约 100 重量%。在更优选的实例中，二醇组分含量为连续相重量的约 70-约 100 重量%；在更优选的实例中，二醇组分含量为约 80-约 100 重量%；在更优选的实例中，二醇组分含量为约 90-约 100 重量%。在更优选的实例中，硅氧烷聚合物乳液的连续相基本上由二醇组成。

在优选的具体实施方案中，二醇组分基本上由二缩三丙二醇，1, 4-丁二醇，新戊二醇，环己烷二甲醇，或它们的混合物组成。

连续相的总重量包括水分和/或二醇组分及任意助溶剂的重量。任意的表面活性剂或添加组分的重量不包括在连续相的总重量内。

除了水分和/或二醇组分以外，连续相可以含有一种或多种多元醇组分。可用于连续相的代表性多元醇组分包括但不限于，甘油，三羟甲基丙烷，季戊四醇，1, 2, 6-己三醇，山梨醇，1, 1, 4, 4-四羟甲基环己烷，三-(2-羟乙基)异氧脲酸酯，季戊四醇，或它们的混合物。除低分子量多元醇外，也可以使用较高分子量的多元醇（分子量约 400 - 约 3000），还可以优选使用三醇，来源于含有约 2-约 3 个碳原子的烯氧化合物，如环氧乙烷或环氧丙烷，与含有约 3-约 6 个碳原子的多元醇起始物，如甘油进行缩合。
硅氧烷聚合物乳液的连续相也可以包含助溶剂。这些助溶剂包括但不限于水，甲醇，乙醇，丙醇，正丁醇，或它们的混合物。基于硅氧烷聚合物乳液连续相的总重量，助溶剂含量可以小于约 60 重量%，更优选小于约 40 重量%。

优选地，用于形成本发明乳液的硅氧烷聚合物可以在将乳液加入到酸胺型聚合反应之前进行交联。文献中有许多方法来交联硅氧烷聚合物乳液，例如，美国专利 4,370,160 公开了包含通过用紫外线辐射离散颗粒的分散体而制备的固体 PDOS 的微粒，如微球和微胶囊。这些离散颗粒分散于紫外光透明的流体连续相中，并且是可紫外固化的球形颗粒，液体 PDOS 组分含有被包埋的物质。

在另一个例子中，美国专利 4,618,642 也公开了交联硅氧烷颗粒水性乳液的方法。该交联是通过将一种含有羟基官能化 PDOS 分散颗粒的阴离子乳液，一种二羧酸二烷基锡和一种三官能度的有机硅烷混合来进行的。美国专利 5,674,937 也公开了固化相反转的硅氧烷聚合物乳液的方法。

本发明中的硅氧烷聚合物乳液也可以用乳液聚合技术来制备。这种乳液可以由以下方法制备，例如，将环状或线形的硅氧烷聚合物低聚物，如 PDOS，在表面活性剂的辅助下分散于乙二醇连续相中，然后通过加入酸性或碱性催化剂进行乳液聚合。合适的酸性和碱性催化剂的例子见于以下公开文献，例如，美国专利 4,954,595，4,618,642，3,294,725 和 2,891,920。

II. 将硅氧烷聚合物引入聚酰胺型聚合物共混物

在一个主要的实施方案中，本发明涉及将硅氧烷聚合物乳液引入形成聚酰胺型聚合物的反应中，从而得到将聚合物颗粒加入到聚酰胺型聚合物共混物中的产物。正如上面第 I 部分中所述，引入聚合反应中的硅氧烷聚合物乳液在此被称之为分散于连续相中的硅氧烷聚合物颗粒。

在硅氧烷聚合物乳液中，溶剂或连续相可含有水，二醇，多元醇，或它们的混合物。进一步，硅氧烷聚合物乳液的连续相可以基本上由或可以由水，二醇或多元醇组成，或者可以包含任意比例的上述组分。

在连续相中包含二醇的硅氧烷聚合物乳液中，连续相中的二醇可
与酯、酸或酰胺的官能团，或者含有形成酰胺型聚合物的反应介质的混合物发生共反应，在此共反应中，优先形成聚酰胺酯。

连续相的总重量包括水分、二醇组分、多元醇组分和/或助溶剂的重量，如果有的话还包括其它组分。任何表面活性剂的重量均不包括在连续相的总重量中。

另外，在温度为约 200-320°C 的挤出机中，硅氧烷聚合物乳液可以直接掺混入完全或部分形成的缩聚物中。在此工艺中，因为硅氧烷聚合物乳液直接加入到酰胺型聚合物中，不需要从硅氧烷聚合物乳液中分离回收硅氧烷聚合物。这提供了一种与现有技术更经济的工艺。

正如所指，硅氧烷聚合物乳液可在反应的任何阶段加入，最终的共混物可受硅氧烷聚合物乳液加入时间的影响。假如不受任何相关机理的约束，可以认为酰胺型聚合物/硅氧烷聚合物共混物的性能能够受到硅氧烷聚合物乳液加入时间的影响。也就是说，硅氧烷聚合物乳液中的硅氧烷聚合物和酰胺型聚合物之间的特定化学相互作用受到加入时间的影响，并进而影响最终共混物的性能。

酰胺型聚合物/硅氧烷聚合物共混物中硅氧烷聚合物的含量可以在很大范围内变化。然而，特别优选共混物中硅氧烷聚合物的含量大于共混物重量的约 5%；进一步说，酰胺型聚合物/硅氧烷聚合物共混物中硅氧烷聚合物的含量优选介于共混物重量的约 5-约 50%；更优选地，介于共混物重量的约 5-约 25%。

此处所用名词“聚酰胺”是指在共混物聚酰胺部分的范畴内的任何单元类型的聚酰胺，包括但不限于，均聚酰胺和共聚酰胺（两种或多种类型的酸和/或二胺单体单元残基）。本发明的聚酰胺优选包含一种酸残基和一种二胺残基。本发明聚酰胺的酸残基总数约 100mol%，本发明聚酰胺的二胺残基总计约 100mol%。应该理解相应衍生物的使用，尤其是这些酸的酸酐、酯和酰氯在整个申请中包括在名词“酸残基”中。除了酸残基和二胺残基外，聚酰胺可包含其它改性残基。这些改性残基包括，但不限于二醇，它会生成聚酰胺酯。

当用于本发明的酰胺型聚合物是聚酰胺时，该聚合物可以是脂肪族的、部分芳香族或完全芳香族的。这种聚酰胺的组合也包括在本发明的范围内。“部分芳香族聚酰胺”是指部分芳香族聚酰胺的酰胺连
接处含有至少一个芳环和一个非芳香族部分。

聚酰胺由二酸和二胺制备。聚酰胺由以下化合物形成：间苯二甲酸，对苯二甲酸，环己烷二羧酸和间-或对-苯撑二甲基二胺，1,3-或1,4-环己烷（二）甲胺，含有约6-约12个碳原子的脂肪族二酸，含有6-12个碳原子的脂肪族氨基酸或内酰胺，含有约4-约12个碳原子的脂肪族二胺，或它们的混合物。也可以使用其它众所周知的形式聚酰胺的二酸和二胺。聚酰胺也可含有少量三官能度或四官能度的共聚单体如1,2,4-苯三酸酐，苯均四酸二酐，或其它可形成聚酰胺的多元酸和本领域内已知的多元胺。

优选的部分芳香性聚酰胺包括：聚（己二酰间-苯撑二甲基二胺），聚（间苯二甲酰乙二胺），聚（己二酰-共-间苯二甲酰乙二胺），聚（己二酰-共-对苯二甲酰乙二胺），和聚（间苯二甲酰-共-对苯二甲酰乙二胺），或它们的混合物。

优选的脂肪族聚酰胺包括：聚己二酰乙二胺（尼龙2,6），聚己二酰丁二胺（尼龙4,6），聚己二酰己二胺（尼龙6,6），聚癸二酰己二胺（尼龙6,10），聚十二碳二酰己二胺（尼龙6,12），聚己二酰辛二胺（尼龙8,6），聚己二酰癸二胺（尼龙10,6），聚己二酰十二碳二胺（尼龙12,6），聚癸二酰十二碳二胺（尼龙12,8），或者它们的混合物。

酰胺型聚合物通常通过熔融相聚合由二酸-二胺复合物制备，这种复合物可由原位或逐步反应来制备。两种方法中，都用二酸和二胺作为原料。另外，也可用二酸的酯形式，优选二甲酯。如果使用酯，反应必须在相对较低的温度下进行，一般约80°C-约120°C，直至酯转化成酰胺，然后将混合物加热到优选的聚合温度。

通过控制二酸-二胺的比例来控制所得酰胺型聚合物的分子量。过量的二胺会产生较高浓度的末端氨基。如果由逐步反应制备二酸-二胺复合物，要在聚合之前加入过量的二胺。聚合反应可以在常压或加压下进行。

在一个优选的具体实施方案中，本发明的酰胺型聚合物可以由二胺和二酸的低聚物来制备。这种低聚物优选在合适的反应物存在下进一步反应，以得到本发明中的酰胺型聚合物。

当在酰胺型聚合反应中存在二醇时，优先形成聚酰胺酯。二醇可
以在硅氧烷聚合物乳液中存在，或者将二醇加入到酰胺型聚合反应介质中。在一个优选的具体实例中，将乙二醇和/或丁二醇加入到酰胺型聚合反应介质中以得到聚酰胺酯。硅氧烷聚合物乳液的连续相中合适的二醇组分包括但不限于，第 I 部分中描述的二醇组分。

本发明优选基本上呈线型的酰胺型聚合物。酰胺型聚合物可以用少量的一种或多种支化剂进行改性。此处支化剂定义为含有至少三个能参与酰胺型聚合物生成反应的官能团，如氨基、羟基或羧酸酯基的分子。

可用于制备本发明酰胺型聚合物的支化剂包括但不限于，甘油，季戊四醇，1,2,4-苯磺酰醇，苯甲酸二醇，醇石酸，或它们的混合物。如果在酰胺型聚合反应中使用支化剂，基于酰胺型聚合物的总重量，支化剂用量的优选范围是约 0.1~约 2.0 wt%，更优选约 0.2~约 1.0 wt%。

少量加入支化剂对于酰胺型聚合物的物理性能没有明显的不利影响，并且提供了附加的熔融强度，这对薄膜挤出操作是非常有用的。在酰胺型共聚物中加入较多支化剂会导致酰胺型共聚物物理性能大大降低，例如延展性降低。

在本发明的一个具体实施方案中，得到了酰胺型聚合物/硅氧烷聚合物共混物。在一个优选的具体实例中，提供了一种制造这种材料的方法，它基于以下步骤：a）制备硅氧烷聚合物乳液，其中硅氧烷聚合物分散于液体连续相中；b）将硅氧烷聚合物乳液加入到酰胺型聚合反应介质中，介质包含 1）二胺组分和二酸组分，二胺和二酸的低聚物，或者它们的混合物；和 c）聚合 b）1 中的各组分，由此得到一种酰胺型聚合物/硅氧烷聚合物共混物。

在涉及到本发明酰胺型聚合物的一个特别优选的具体实施方案中，硅氧烷聚合物乳液的液体连续相包含水分，而基本上不存在二醇和/或多元醇，以得到一种酰胺型聚合物。在本发明的一个方面，硅氧烷聚合物乳液中的硅氧烷聚合物加入到酰胺型聚合物中，以得到一种酰胺型聚合物/硅氧烷聚合物共混物。

在涉及到本发明酰胺型聚合物的一个进一步特别优选的具体实施方案中，液体连续相包含二醇组分以得到聚酰胺酯聚合物。在本实例的一个方面，将硅氧烷聚合物乳液中的硅氧烷聚合物加入到酰胺型聚
合物中，以得到聚酰胺酯型聚合物/硅氧烷聚合物的共混物。

在涉及到本发明酰胺型聚合物的一个进一步特别优选的具体实施方案中，液体连续相包含水和二醇的混合物。在本实例的一个方面，将硅氧烷聚合物乳液中的硅氧烷聚合物加入酰胺型聚合物中，以得到酰胺型聚合物/硅氧烷聚合物共混物。本领域内技术人员会认识到，通过改变硅氧烷聚合物乳液中乙二醇的量，可以改变聚酰胺酯中酯部分的数目。因此，在本发明的各种优选具体实例中，改变液体连续相中的二醇/水的比例会得到具有不同酯部分量的聚酰胺酯类聚合物。

在本发明的一个具体实例中，加入到酰胺型反应介质中的硅氧烷聚合物在此定义为分散于连续相中的聚合物颗粒，聚合物颗粒的优选粒径范围为约 0.020 微米到约 1000 微米，更优选的聚合物粒径范围为约 0.1 微米到约 10 微米。

本发明的工艺不要求从连续相中分离出硅氧烷聚合物乳液中的硅氧烷聚合物，例如，通过喷雾干燥的方法。因而，本发明克服了制备芯-壳聚合物的必要性或从乳液中回收聚合物的必要性。此外因为共混发生于聚合反应器中制备酰胺型聚合物期间，所以不需要聚合物/聚合物后续共混步骤，而此步骤耗能大，成本高，且经常导致酰胺型聚合物分子量的降低。

硅氧烷聚合物乳液可以在不同阶段加入到酰胺型聚合反应中。例如，在酰胺型聚合反应中，硅氧烷聚合物乳液可以在以下时间加入 1）“最前面”与原料一起加入；2）聚合反应开始后；3）聚合期间；或 4）聚合快完成时。最终共混物会受硅氧烷聚合物乳液加入时间的影响。假设没有任何相关机理的约束，可以认为酰胺型聚合物共混物中的硅氧烷聚合物的尺寸和形状会受硅氧烷聚合物乳液加入时间的影响。也就是说，加入时间影响硅氧烷聚合物和酰胺型聚合物之间的特定化学相互作用，并进而影响最终共混物的性能。

本发明的聚合物组合物可以是缓冲。缓冲剂能用来控制，在其它用途中，聚酰胺酯中二甘醇的形成。优选的缓冲剂包括乙酸钠，乙酸钾，乙酸锂，磷酸二氢钠，磷酸氢二钠，碳酸钠，或它们的混合物。缓冲剂用于限制酸性物质的量，否则它会引起二醇脱水形成醚二醇。因此，通过使用缓冲剂希望能限制此类酸性物质的量。
为了得到高分子量的酰胺型聚合物，反应的最后阶段一般在高真空条件下进行（＜约10毫米汞柱）。

其它成分可以任选地加入到发明的组合物中，以提高酰胺型聚合物/硅氧烷聚合物共混物的性能。例如，在此可以包括以下成分：增强剂，表面润湿剂，去套叠剂，稳定剂，抗氧化剂，紫外光吸收剂，脱模剂，金属失活剂，着色剂如氧化铁红和炭黑，成核剂，磷酸盐稳定剂，沸石，填料，或它们的混合物，以及类似的成分。所有这些添加剂以及它们的用途对本领域内技术人员来讲都是熟知的。这些化合物的任何一种都可使用，只要它们不防碍实现本发明的目标。

在涉及将增强剂添加到发明组合物中的一个特别优选的具体实施方案中，可以将玻璃纤维加入到酰胺型聚合物组合物中以使得到的组合物获得特别的优点。本发明中玻璃纤维的平均标准直径通常优选大于约5微米，变化范围是约1～约20微米。无论其是否束成纤维，以及是否纤维再束成纱、绳或粗纱及类似形状，玻璃纤维的长度对本发明都不重要。然而，为了制备本组合物，优选使用约1.5～约10毫米长的短切原丝形式的玻璃纤维，且优选长度小于约6毫米。

在组合物的颗粒和模板件中，其长度甚至会更短，因为在掺混期间会发生相当程度的片断化。然而正希望这样，因为当纤维长度介于约0.03～约1毫米之间时注塑模板件表现出最好的性能。特别优选的玻璃纤维平均标准直径为大于约5微米，优选约5～约14微米，并且分散于模板件中的平均纤维长度为约0.15～约0.4毫米。这样，玻璃纤维均匀分散且模板件表现出一致和均衡的机械性能，尤其是表面平滑度。

基于聚合物组合物的总重量，玻璃纤维的用量可在约10～约50 wt%的范围内变化，优选约10～约40 wt%。通常这些玻璃纤维用偶联剂如氨基硅烷和环氧硅烷和钛酸酯，以及粘附促进剂如环氧化合物、氨基甲酸乙酯、纤维素、淀粉、藻酸酯，以及类似物进行成形。

在一个具体实施方案中，当在聚合物模制组合物中存在玻璃纤维时，基于酰胺型聚合物/硅氧烷聚合物共混物的总重量百分比等于100%，聚合物优选占组合物总重量的约70～约85 wt%。在聚合物模制组合物中，聚合物优选包含酰胺型聚合物。

除了玻璃纤维以外，其它可以使用的增强剂的例子包括但不限
于，碳纤维，云母，粘土，滑石，硅灰石，碳酸钙或它们的组合。本发明的聚合物组合物可以用玻璃和上述其它增强剂，如云母或滑石，或其它添加剂的混合物来增强。

按照本发明，硅氧烷聚合物乳液和玻璃纤维及其它增强剂可以在不同的加工阶段加入酰胺型聚合反应中。在本发明的一个特别优选的具体实例中，玻璃纤维直接加入到酰胺型聚合反应中，因为在此阶段玻璃纤维能有效地共混而不需要如挤出等的后续共混步骤，以使玻璃纤维进入组合物中。这对本发明来说非常有利，因为后续共混步骤耗能大且成本高，并且经常导致酰胺型聚合物分子量的降低。

根据本发明制造的酰胺型聚合物组合物的最终用途包括抗冲击改性的聚合物，弹性体，高度阻透膜和涂层，改良的阻透聚合物，和具有改良的机械性能如拉伸强度提高、断裂伸长提高、耐候性能更佳和弯曲强度提高的聚合物。其它最终用途包括工程树脂，涂料，防渗用容器和模制塑料。通过本发明生产的聚合物可用于热塑性工程树脂，弹性体，膜，板和容器用塑料。

在一个优选的具体实施方案中，制备了一种抗冲击改性的酰胺型聚合物，它包含来自于硅氧烷聚合物乳液的硅氧烷聚合物。在另一个优选的具体实例中，制备了一种烃基官能化的酰胺型聚合物涂覆，它包含来自于硅氧烷聚合物乳液的硅氧烷聚合物。

在本发明的一个具体实例中，改性的酰胺型聚合物，包括但不限于一种抗冲击改性塑料，是由含有硅氧烷聚合物的硅氧烷聚合物乳液，其中硅氧烷聚合物是交联的或未交联的聚合物，和酰胺型聚合物来生产的。

根据本发明制造的改性酰胺型聚合物/硅氧烷聚合物共混物的组合物的最终用途包括抗冲击改性的聚合物，弹性体，高度阻透膜和涂层，改良的阻透聚合物，和具有改良的机械性能如拉伸强度提高、断裂伸长提高、耐候性能更佳和弯曲强度提高的聚合物。其它最终用途包括工程树脂，涂料，防渗用容器和模制塑料。通过本发明生产的聚合物共混物可用于热塑性工程树脂，弹性体，膜，板和容器用塑料。

在一个更优选的具体实例中，制备了一种抗冲击改性的酰胺型聚合物，它包含硅氧烷聚合物乳液以得到改性酰胺型聚合物/硅氧烷聚合物共混物。在本发明的一个特别优选的具体实例中，改性酰胺型聚
合物，包括但不限于一种抗冲击改性塑料，是由硅氧烷聚合物乳液和改性酰胺型聚合物生产的。

在一个主要的具体实例中，本发明涉及将硅氧烷聚合物乳液引入到形成改性酰胺型聚合物的反应中，由此得到一种高分子共混物，其中硅氧烷聚合物分散于改性酰胺型/硅氧烷聚合物共混物中。

在一个更优选的具体实例中，提供了改性酰胺型聚合物/硅氧烷聚合物的共混物。

实施例

提供以下实施例是为了将怎样制造此类物质的组合物以及如何评价此处要求权利的方法向本领域的一般技术人员提供完全的公开和描述，而并非试图对本发明的范围进行限制。已经努力确保相关数字的精确性（如量、温度等），但应允许一些误差和偏差。除非另有指明，份数以重量计，温度以℃计或是室温，压力等于或接近大气压。

实施例 1

向 34/45 升的颈口、厚壁、1 升的圆底烧瓶中加入 146.14g(1.00mol) 己二酰 (D)，167.66g(1.01mol) 的 1,6-己二胺 (MW=116.2w/70%H₂O (NA))，46.99g 硅乳胶组合物，和 180.10g(10.00mol) 蒸馏水 (H₂O)。计算 NA 过量 1%，水计算量为 NA 摩尔数的 10 倍。此反应不需催化剂，也不要求抽真空，但在制备这些聚酰胺期间，需要用 400torr 的真空。低真空使聚酰胺分子量增加，但并不太强，不足以抽掉任何必要成分。

制备聚酰胺/硅氧烷复合物的顺序见表 1
表 1. 制备 D(NA)/橡胶复合物（Murloy）的顺序

标记：S=使用搅拌器，T=使用阱（Service Traps），C=加催化剂

<table>
<thead>
<tr>
<th>阶段</th>
<th>时间</th>
<th>温度</th>
<th>真空度</th>
<th>搅拌速度</th>
<th>能量标记</th>
<th>估计结束时间</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>°C</td>
<td>Torr</td>
<td>RPM</td>
<td>% S T C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>115</td>
<td>730</td>
<td>415</td>
<td>0 0 0 0</td>
<td>12:08:32</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>115</td>
<td>730</td>
<td>415</td>
<td>0 0 0 0</td>
<td>12:53:32</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>120</td>
<td>730</td>
<td>415</td>
<td>0 0 0 0</td>
<td>12:56:32</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>120</td>
<td>730</td>
<td>415</td>
<td>0 0 0 0</td>
<td>13:11:32</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>135</td>
<td>730</td>
<td>415</td>
<td>0 0 0 0</td>
<td>13:15:32</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>135</td>
<td>730</td>
<td>15</td>
<td>0 0 0 0</td>
<td>13:45:32</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>275</td>
<td>730</td>
<td>175</td>
<td>0 0 0 0</td>
<td>14:45:32</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>60</td>
<td>285</td>
<td>415</td>
<td>0 0 0 0</td>
<td>15:45:32</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>285</td>
<td>400</td>
<td>250</td>
<td>0 0 0 0</td>
<td>15:51:32</td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>285</td>
<td>400</td>
<td>250</td>
<td>0 0 0 0</td>
<td>17:06:32</td>
</tr>
</tbody>
</table>

*在这两个阶段搅拌器主要由手动控制。

具体参考相关的优选实例详细描述了本发明，但应该理解，在不偏离本发明的范围和精神的条件下，可以进行变化和改进。