
US 20190147163A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0147163 A1

Brown et al . (43) Pub . Date : May 16 , 2019

(54) INFERENTIAL EXPLOIT ATTEMPT
DETECTION

(71) Applicant : CrowdStrike , Inc . , Irvine , CA (US)

(72) Inventors : Daniel W . Brown , Beverly , MA (US) ;
Loren C . Robinson , West Deptford , NJ
(US) ; Ion - Alexandru Ionescu , Seattle ,
WA (US)

Publication Classification
(51) Int . CI .

G06F 21 / 56 (2006 . 01)
G06F 21 / 57 (2006 . 01)
G06F 21 / 55 (2006 . 01)

(52) U . S . Cl .
CPC G06F 21 / 566 (2013 . 01) ; G06F 2221 / 034

(2013 . 01) ; G06F 21 / 554 (2013 . 01) ; G06F
21 / 577 (2013 . 01)

(57) ABSTRACT
A security agent implemented on a monitored computing
device is described herein . The security agent is configured
to detect an action of interest (Aol) that may be probative of
a security exploit and to determine a context in which that
Aol occurred . Based on that context , the security agent is
further configured to decide whether the Aol is a security
exploit and can take preventative action to prevent the
exploit from being completed .

(73) Assignee : CrowdStrike , Inc .

(21) Appl . No . : 16 / 244 , 050
(22) Filed : Jan . 9 , 2019

(63)
Related U . S . Application Data

Continuation of application No . 15 / 213 , 004 , filed on
Jul . 18 , 2016 , now Pat . No . 10 , 216 , 934 .

SECURITY AGENT 102

ACTION
COLLECTOR (S)

108

OBSERVED
OBJECT ACTION

120
FILTER / LOGIC 110

POLICY 112
REQUEST EVENT

122

CALL STACK ACTOR
(CSA) 114

GENERATE
CHARACTERIZATION

124

RESPONSE
EVENT 126

EXPLOIT DETECTION
MODULE 116 FINGERPRINTING ACTOR

118 / POLICY 112 POLC 112
DETERMINE IF

ACTION IS EXPLOIT
128

- EXPLOIT DETECTION
EVENT

130

NETWORK 106

FINGERPRINT
EXPLOIT AND / OR
COMPUTING
CONTEXT

132 REMOTE SECURITY SERVICE
104

Patent Application Publication May 16 , 2019 Sheet 1 of 4 US 2019 / 0147163 A1

SECURITY AGENT 102
ACTION

COLLECTOR (S)
108

OBSERVED
OBJECT ACTION

120

FILTER / LOGIC 110

POLICY 112
REQUEST EVENT

122

CALL STACK ACTOR
(CSA) 114

GENERATE
CHARACTERIZATION

RESPONSE
EVENT 126

124
EXPLOIT DETECTION

MODULE 116 FINGERPRINTING ACTOR
118

POLICY 112

DETERMINE IF
ACTION IS EXPLOIT

128
EXPLOIT DETECTION

EVENT
130

NETWORK 106

7 FINGERPRINT
EXPLOIT AND / OR
COMPUTING
CONTEXT

132 REMOTE SECURITY SERVICE
104

Fig . 1

Patent Application Publication May 16 , 2019 Sheet 2 of 4 US 2019 / 0147163 A1

COMPUTING DEVICE 202

OBJECTS 208

PROCESS (ES)
210 THREAD (S) 212

SECURITY AGENT 206
ACTION

COLLECTOR (S)
214

FINGERPRINTING
ACTOR
224

FILTER / LOGIC AND POLICY 218
EVENT BUS 216

CALL STACK
ACTOR (CSA)

220

EXPLOIT
DETECTION
MODULE 222

OTHER EVENT
GENERATOR (S) /
CONSUMER (S)

226

COMMS MODULE
228

CALL STACK HEAP
230 232

SECURITY SERVICE DEVICE (S) 204

Fig . 2

Patent Application Publication May 16 , 2019 Sheet 3 of 4 US 2019 / 0147163 A1

COMPUTING DEVICE 300

PROCESSOR (S)
318 SYSTEM MEMORY 302

ROM / RAM REMOVABLE
STORAGE 320

OBJECT (S) 304
EXPLOIT (S) 306 NON - REMOVABLE

STORAGE 322

SECURITY AGENT 308 INPUT DEVICE (S)
324

FILTER / LOGIC
310

CORRELATOR (S)
314 OUTPUT DEVICE (S)

326

POLICY 312 DATA
STRUCTURE 316 COMMUNICATION

CONNECTION (S)
328

OTHER
COMPUTING
DEVICES 330

FIG . 3

Patent Application Publication May 16 , 2019 Sheet 4 of 4 US 2019 / 0147163 A1

- 400

RECEIVE A REQUEST TO EXAMINE A
CONTEXT OF AN ACTION OF INTEREST

(AOI) 402

BASED AT LEAST IN PART ON THE REQUEST , GENERATE A CHARACTERIZATION OF A
CALL STACK ASSOCIATED WITH THE AOI BASED AT LEAST IN PART ON WALKING

THROUGH THE CALL STACK 404

WALK THE CALL STACK 406 EXAMINE THE CALL STACK 414

NO
BROKEN STACK FRAME ?

408

INCLUDE AT LEAST PART OF
OBTAINED DATA IN

CHARACTERIZATION 412

YES

CONDUCT FURTHER ANALYSIS
410

DETERMINE , BASED AT LEAST IN PART ON THE CHARACTERIZATION , WHETHER THE
AOL INCLUDES A SECURITY EXPLOIT 416

CALCULATE A CONFIDENCE
SCORE 418

CONDUCT HEURISTIC MATCHING
424

SCORE EXCEEDS
THRESHOLD ?

420

MATCH ? OR FUZZY
MATCH ?

426 YES YES
NO

END
NO

END
GENERATE EXPLOIT

DETECTION EVENT 422

Fig . 4

US 2019 / 0147163 A1 May 16 , 2019

INFERENTIAL EXPLOIT ATTEMPT
DETECTION

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U . S . applica
tion Ser . No . 15 / 213 , 004 , filed Jul . 18 , 2016 and entitled
“ Inferential Exploit Attempt Detection , ” the entirety of
which is incorporated herein by reference .

[0008] FIG . 3 illustrates a component level view of a
monitored computing device configured with objects tar
geted by exploits and a security agent .
[0009] FIG . 4 illustrates an example process for receiving
a request to examine a context of an action of interest (AOI) ,
generating a characterization of a call stack associated with
the Aol based at least in part on walking through the call
stack , and determining based on the characterization
whether the Aol includes a security exploit .

DETAILED DESCRIPTION

Overview

BACKGROUND
[0002] With Internet use forming an ever greater part of
day to day life , malicious software often called " mal
ware ” — that steals or destroys system resources , data , and
private information is an increasing problem . Governments
and businesses devote significant resources to preventing
intrusions by malware . Malware comes in many forms , such
as computer viruses , worms , trojan horses , spyware , key
stroke loggers , adware , and rootkits . Some of the threats
posed by malware are of such significance that they are
described as cyber terrorism or industrial espionage .
[0003] To counter these threats , governments , enterprises ,
and individuals use a range of security applications and
services . Typically , these applications and services scan a
device for a signature of a security exploit . Responsive to
finding the signature , the applications and services quaran
tine or delete the exploit . The applications and services often
miss more sophisticated security exploits , however , and
often the applications and services are not configured to
detect exploits or take any actions until an exploit has gained
a substantial foothold on a device .
[0004] For example , actions taken by malicious code to
gain a foothold on a device (e . g . , through exploiting a
vulnerability in the device) are often also actions commonly
taken by benign code , so current measures either do not
attempt to take preventative measures at this initial stage of
an exploit or are limited to alerting a user , due to the high
likelihood of confusion of a benign action with a malicious
one . This failure to take action can result in further damage ,
loss , or difficulty in removing the exploit .

[0010] This disclosure describes , in part , inferential
exploit detection . In some examples , the techniques dis
cussed herein can be implemented on and / or for a computing
device and can include determining a computing context for
an action of interest (Aol) committed by an object (i . e . , a
function , module , process , or thread) executed by the com
puting device , where the Aol is an action that has a tendency
to be associated with security exploits of computing devices
and may therefore be suspicious . In some examples , objects
can include and / or be associated with other objects such as ,
for example , executable modules loaded in memory as a part
of a parent module , run by another module , and / or otherwise
associated with another module (i . e . , " loaded modules , "
" modules) . In some examples , the computing context can
include actions and / or states of the computing device that
led the computing device to commit the Aol . For example ,
the computing context can include a process or thread that
committed the Aol , what parameters or variables the Aol
used , what chain of function calls resulted in the Aol and
data related to one or more of those functions , register data ,
heap data , stack data , a suspicious event record (e . g . , a
record of the state and / or actions of the monitored device
that is saved when an Aol occurs) , etc .
[0011] The techniques discussed herein can detect that an
Aol is an exploit based at least in part on analyzing a
computing context and inferring from the computing context
that the Aol is an exploit . In some examples , the techniques
can take preventative action (e . g . , blocking the Aol or an
object associated with the Aol) without input from a user .
Former solutions for blocking an exploit were associated
with false positive rates that were too high to take preven
tative measures and therefore required user notification
and / or user input in order to take preventative measures . The
techniques discussed herein decrease false positive rates of
identifying benign actions as malicious ones , or , equiva
lently , increase a confidence that an action is malicious . In
some examples , the techniques discussed herein increase
that confidence to an adequate level that preventative actions
can be taken without requesting or receiving user input ,
thereby greatly increasing the ease for a user to implement
robust security for a computing device and preventing
greater damage from occurring due to an exploit by stopping
a preliminary action of the exploit .
[0012] The techniques discussed herein can include con
figuring a security agent with a call stack actor (CSA) or
configuring the security agent to operate with an indepen
dently configured CSA for inferential exploit attempt detec
tion , where detection of an attempted exploit is inferred from
a computing context that includes call stack analysis . More
over , the techniques discussed herein can additionally or

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] The detailed description is set forth with reference
to the accompanying figures . In the figures , the left - most
digit (s) of a reference number identifies the figure in which
the reference number first appears . The use of the same
reference numbers in different figures indicates similar or
identical items or features .
[0006] FIG . 1 illustrates an example overview of a secu
rity agent implemented on a monitored computing device
and actions taken by the security agent to inferentially detect
exploits from a computing context .
[0007] FIG . 2 illustrates an example security agent which
includes a filter / logic for detecting and generating event
notifications potentially relevant to security exploits , a call
stack actor for obtaining a computing context from which
the example security agent can inferentially detect security
exploits , an exploit detection module for determining
whether the data received from at least the call stack actor
and / or the filter / logic is indicative of an exploit , and a
fingerprinting actor for aggregating data about exploits and
the computing contexts the exploits occurred in in order to
provide more robust exploit deterrence and identification .

US 2019 / 0147163 A1 May 16 , 2019

alternatively include a security agent configured to create
and maintain a suspicious event record for inferential exploit
attempt detection .

Example Operation
[0013] FIG . 1 illustrates an example overview of a secu
rity agent implemented on a monitored computing device
and actions taken by that security agent to inferentially
detect exploits from a computing context . As illustrated in
FIG . 1 , a security agent 102 can be configured by , and
communicate with , a remote security service 104 over a
network 106 . An example security agent 102 is described in
greater detail in U . S . Pat . No . 9 , 043 , 903 , entitled “ Kernel
Level Security Agent ” and filed on Jun . 8 , 2012 . The security
agent 102 can include action collector (s) 108 , a filter / logic
110 and policy 112 , a call stack actor (CSA) 114 , an exploit
detection module 116 (which in some examples can be a
configuration of the security agent 102 and / or the CSA) , and
fingerprinting actor 118 .
[0014] In various implementations , the computing device
implementing the security agent 102 (referred to herein
interchangeably as the “ computing device and the “ moni
tored computing device ") and the device (s) of the remote
security service 104 may be connected by network 106 .
Network 106 may include any one or more networks , such
as wired networks , wireless networks , and combinations of
wired and wireless networks . Further , network 106 may
include any one or combination of multiple different types of
public or private networks (e . g . , cable networks , the Internet ,
wireless networks , etc .) . In some instances , computing
devices communicate over the network 106 using a secure
protocol (e . g . , https) and / or any other protocol or set of
protocols , such as the transmission control protocol / Internet
protocol (TCP / IP) .
[0015] The computing device implementing the security
agent 102 and the device (s) of the remote security service
104 may each be or include a server or server farm , multiple ,
distributed server farms , a mainframe , a work station , a
personal computer (PC) , a laptop computer , a tablet com
puter , a personal digital assistant (PDA) , a smartphone , a
wearable computing device , a smart vehicle , a cellular
phone , a media center , an embedded system , or any other
sort of device or devices . In one implementation , the device
(s) of the remote security service 104 represent a plurality of
computing devices working in communication , such as a
cloud computing network of nodes . In some implementa
tions , one or more of the computing device implementing
the security agent 102 and the device (s) of the remote
security service 104 represent one or more virtual machines
implemented on one or more computing devices . An
example computing device capable of serving as the com
puting device implementing the security agent 102 is illus
trated in FIG . 3 and is described below with reference to that
figure .
[0016] In various implementations , remote security ser
vice 104 may provide security service (s) to the computing
device implementing the security agent 102 and to any
number of other computing devices implementing other
instances of the security agent 102 . The remote security
service 104 may receive notifications of interesting events
from security agent 102 , including exploit detection event
notifications , as well as forensic data associated with those
interesting events and / or fingerprints from the fingerprinting
actor 118 . The remote security service 104 may determine if

related notifications have been received from other instances
of security agent 102 and / or evaluate the interesting event (s)
based on one or more rules or heuristics .
[0017] . The remote security service 104 may further per
form any or all of generating an event and providing the
event to the security agent 102 (e . g . , for diagnostic , preven
tative , or healing purposes) , generating a configuration
update , generating an updated policy 112 , healing the com
puting device implementing the security agent 102 , deceiv
ing an adversary associated with malicious code , or notify
ing entities or persons associated with the computing device
implementing the security agent 102 of the potential mali
cious code . Upon generating a configuration update or an
updated policy 112 , the remote security service 104 may
provide the configuration update or the updated policy 112
to the security agent 102 .
[0018] The remote security service 104 can record finger
prints developed by the fingerprinting actor 118 , as dis
cussed below , and / or generate an updated policy 112 or a
configuration update for the security agent 102 or CSA 114
based at least in part on the fingerprints .
[0019] In some implementations , the security agent 102
may be any sort of security agent , such as a security agent
implemented at the kernel - level . The security agent 102 may
be installed by and configurable by the remote security
service 104 , receiving , and applying while live , reconfigu
rations of components of the security agent 102 . Such
reconfigurations may cause updates to any component (s) of
the security agent 102 , such as the action collector (s) 108 ,
the filter / logic 110 and policy 112 , the CSA 114 , the exploit
detection module 116 , or the fingerprinting actor 118 , in
some examples . The security agent 102 may perform at least
one of monitoring events on the computing device imple
menting that security agent 102 , maintaining state about
some or all of the events on that computing device , notifying
the remote security service 104 of one or more events on the
computing device , or taking action responsive to a security
exploit associated with one or more events on the computing
device .
0020] In some examples , the action collector (s) 108
observe all sorts of actions , including actions associated
with objects . To receive the events , the action collector (s)
108 may register with hooks or filters to receive notifications
of the occurrence or non - occurrence of certain events asso
ciated with objects or activities of interest . Action collector
(S) 108 may also monitor locations in memory or log files ,
or spawn a thread to do so , observing events associated with
the log files or memory locations . Action collector (s) 108
may observe multiple kinds of events , or each type of event
may be associated with a different individual action collector
108 . The events observed by the action collectors 108 may
be specified by a configuration of the security agent 102 .
[0021] The action collector (s) 108 can route observed
object actions 120 to the filter / logic 110 . These observed
actions can include events associated with actions such as ,
for example the creation or execution of objects (both
" creation " and " execution ” being referred to herein as
" execution ” of object (s)) and other actions by objects , which
may be referred to herein as an observed object action 120 .
If an observed object action 120 is qualified as an Aol as
discussed below , it can be routed as a request event 122 . The
CSA 114 can produce and / or route a response event 126 and
the exploit detection module 116 can produce and / or route
an exploit detection event 130 . The events 122 , 126 , and / or

US 2019 / 0147163 A1 May 16 , 2019

130 and other observed events / event notifications may be
routed via an event bus , which may form part of the
filter / logic 110 or be a separate component (although in FIG .
1 , this is only illustrated for routing request event 122 for
clarity) . The event bus may route events / event notifications
between the components of the security agent 102 .
[0022] The filter / logic 110 receives an object action 120
(e . g . , via an event notification) indicating an action com
mitted by an object executed by the computing device)
monitored by action collector (s) 108 . As used herein ,
" object " can be any function , module , process , or thread
executing on a computing device on which the security
agent 102 operates and / or is stored .
[0023] The filter / logic 110 can generate event notifications
such as a request event 122 if the object action originates
from an object of interest (Ool) or is an action of interest
(Aol) as specified by the policy 112 . The activities of interest
may include those that enable the exploit to gain persistence ,
migrate to other processes , steal credentials , etc . Example
Ools may include Internet browser plug - in threads (e . g . ,
Flash threads) , embedded macros , email application threads .
For example , policy 112 can specify that an action is an Aoi
if the action includes one or more of :

[0024] Creating a process , for example , creating of a
command line interface (CLI) ;

[0025] Creating a thread ;
[0026] Creating a remote thread (i . e . , creating a thread

in another process) , for example , dynamic - link library
(DLL) injection or other thread injection , which is an
action that can be used to escape one process and pivot
to another process ;

[0027] Creating a new script (e . g . , batch script , visual
basic script , powershell script) ;

[0028] Creating a new executable (e . g . , creating a por
table executable (PE)) ;

[0029] Accessing another process and reading from its
memory or writing to its memory ;

(0030) Creating a service (e . g . , a service can be used to
start a process and / or to start a process every time
system is rebooted) ;

[0031] Modifying a service binary (e . g . , changing por
table executable files on disk instead of writing them) ;

[0032] Writing a dump file ;
[0033] Decreasing security of a registration key or

industry key ;
[0034] A suspicious raw disk read ; or
[0035] Privilege escalation in some contexts (e . g . , user
account control requests for elevation) .

As used herein , the “ creations " discussed above may be
described as " dropping code ” on a computing device . The
actions discussed above may only be Aols when certain
objects commit them . For example , when an Internet
browser plug - in thread is compromised , activities such as
CLI creation , process migration , installation , or PE creation
and execution may be indicative of compromise of the
Internet browser plug - in thread by a security exploit . More
over , an identity of an object that originated an action itself
may determine whether or not an action taken by the
computing device is an Aol . For example , some plugins and
processes are more susceptible to vulnerabilities and are
therefore used for security exploits more often . Actions
taken by , or regarding , those plugins or processes may
therefore be an Aol . Such object are described herein as
" objects of interest " (Dols) .

[0036] The request event 122 generated by filter / logic 110
can be provided to CSA 114 in order to detect whether the
Aol is an exploit by inferring that the Aol is a security
exploit from a computing context at least partially derived
by the CSA 114 . Although FIG . 1 illustrates the CSA 114 as
being a portion of the configuration of the security agent
102 , it is contemplated that the CSA 114 can be configured
separately . In some examples , the request event 122 can
include an indication of a current context . For example , the
request event 122 can specify an identifier of a first object
associated with the Aol (e . g . , a thread such as an Internet
plugin) that is active and / or second object (s) related to the
Aol by virtue of their relation to the first object (e . g . , a
browser associated with the Internet browser plug - in
thread) . In some examples , the request event 122 can include
fields specifying one or more of an identifier and / or type of
the object committing the Aol , target data (data that is
requested to be analyzed and / or obtained by the CSA 114) ,
etc .
[0037] In various examples , the CSA 114 can generate a
characterization 124 of a call stack and / or a heap of the
computing device . As used herein , a characterization 124 of
the call stack can also be a characterization of the heap since
the call stack addresses code on the heap . However , some of
the details included in the characterization 124 generated by
the CSA 114 may specifically deal with data regarding the
heap in part or exclusively (e . g . , permissions of memory
locations in the stack , identifiers of functions that are asso
ciated with locations in the heap , etc .) . Therefore , as used
herein , the terms “ characterization , " " call stack character
ization , " " stack characterization , " and " characterization of
the stack ” can include characterizations of both the heap
(e . g . , data pertaining partly or exclusively to the heap) and
the call stack .
[0038] The CSA 114 can be configured to analyze a call
stack of a computing device in order to assist inferentially
analyzing whether an Aol is a security exploit . In some
examples , the call stack can be located in a memory only
accessible by a kernel mode of the computing device ,
memory accessible by a user mode of the computing device ,
and / or some combination thereof . A call stack can include a
list of identifiers of subroutines (e . g . , functions) , pointers to
the location (e . g . , an address or an address range of memory
such as a heap , for example) of code corresponding to the
functions in the list , and return addresses .
[0039] When a routine calls a subroutine , the routine
pushes a return address onto the call stack that will tell the
computing device where to return to continue executing the
routine when the subroutine has finished executing . The
subroutine may itself call a second subroutine and push an
entry onto the call stack (e . g . , the entries are frames)
including a return address within the subroutine so that
execution of the subroutine will continue once the second
subroutine will execute , and so on . Processing objects
includes repeating this process many times , thereby creating
a " chain " on the call stack . As used herein , an " active "
routine or subroutine is a routine that is currently executing
and has not finished processing the code associated with the
routine .
[0040] Call stacks typically include a list of functions In
some examples , the CSA 114 can add this data to the
characterization 124 . In some examples , the module of the
object with which the allocated or mapped memory is
associated can include or be associated with an identifier of

US 2019 / 0147163 A1 May 16 , 2019

the module and / or the object (e . g . , “ flash ”) . In some
examples , the CSA 114 can include this information in the
characterization 124 .
[0041] For example , as the CSA 114 is walking the stack ,
it may come on a frame that associates a function , a pointer
to a location in memory at which a code associated with the
function is located , and a return address to a location in
memory . In some examples , the CSA 114 can determine
whether the memory to which the pointer and / or the return
address refers is associated with a loaded module (i . e . ,
whether it is allocated memory , as defined herein) .
[0042] In some examples , if the CSA 114 walks the call
stack and all the pointers and / or return addresses are within
ranges of addresses of memory allocated to modules of
objects , the CSA 114 can return an indication of this in the
characterization .
[0043] In some examples , the exploit detection module
116 can use indication (s) in the characterization 124 that the
pointers and / or return addresses are within ranges of
addresses of memory allocated to loaded object modules to
determine that the Aol is not associated with a security
exploit . In some examples , the exploit detection module 116
can decrease a confidence score that the Aol is associated
with a security exploit based on indication (s) in the charac
terization that the pointers and / or return addresses are within
ranges of addresses of memory allocated to modules of
objects .
[0044] In some examples , if the CSA 114 finds that a
pointer and / or a return address is located in memory outside
the ranges of addresses allocated to any loaded object
modules , the CSA 114 can obtain memory allocation infor
mation such as , for example , the memory permissions of the
memory location (e . g . , the exact address or a memory
allocation range associated with the address) referred to by
the pointer or return address , a size of an allocation of
memory to the subroutine that is associated with the pointer
or return address in the call stack . The CSA 114 can include
memory allocation information in the characterization .
[0045] In some examples , the exploit detection module
116 can increase a confidence that the Aol is a security
exploit when indication (s) in the characterization include an
indication that an allocation size of a subroutine is one page
and / or the allocation has read , write , execute , read and write ,
write and execute , or read and execute permissions . In some
examples , the exploit detection module 116 can determine
that the Aol is associated with a security exploit based at
least in part on an indication that a subroutine is associated
with a memory allocation having a size of one page and / or
having read , write , execute , read and write , write and
execute , or read and execute permissions . In some examples ,
the exploit detection module 116 can determine that the code
corresponding to the subroutine and / or the memory alloca
tion is shellcode .
[0046] The CSA 114 can additionally or alternatively
obtain stack information such as , for example , whether a
stack pointer points to an address different from an original
address that an operating system of the computing device
assigned (i . e . , stack pivoting , pivoting the stack pointer) .
Commonly , the operating system uses the stack pointer to set
up a heap location on the memory and / or to allocate memory
to an object . In some examples , the exploit detection module
116 can determine that code corresponding to a location to

which the stack pointer has been pivoted is likely shellcode
(e . g . , based on the response event 126 and / or the character
ization 124) .
[0047] In some examples , the CSA 114 can additionally or
alternatively obtain stack information that includes a thread
creation request and / or a process creation request informa
tion . For example , the CSA 114 can analyze a new start
address generated by the operating system or kernel for a
thread creation request to see whether the new start address
is located within a memory range allocated to a loaded
object module and , if it is not , whether allocation associated
with the new start address is one page and / or what permis
sions are granted to the allocation .
[0048] In some examples , the CSA 114 can also be con
figured to obtain and include in the characterization one or
more of : a name (or other identifier) of a subroutine , whether
subroutine code is allocated to memory dynamically (e . g . ,
when an address associated with the subroutine is outside a
loaded object module) , whether a subroutine is otherwise
associated with an object , an identifier of an object with
which a subroutine is associated , etc . In some examples , at
least one of these and / or parts of the other data discussed
above can be included in a characterization and used to
increase or decrease a confidence score that the Aol is a
security exploit , to identify code as being shellcode , to take
preventative actions , etc .
[0049] In particular , any identifier of an object that is
associated with an object that is frequently exploited (i . e . , an
Ool) can be used to effect the exploit detection determina
tion . For example , the object associated with the Ool may
have a name that includes “ flash _ " , where the under
score may be version , date information , extensions , etc . In
one example , the object associated with the OoI could be a
function . In that example , the function name can be identi
fied from DLL module metadata associated with the function
such as , export and / or import tables . In some examples , the
object associated with the Ool could be a module having a
module name associated therewith . The techniques dis
cussed herein can treat this as part of the computing context
of the Aol and , since Flash is frequently exploited , it can
treat the context as a vulnerable context (e . g . , by increasing
a confidence score that the Aol is a security exploit) . In some
examples , the action collector (s) can be configured to collect
and provide some of this data (e . g . , an object identifier or
type) .
[0050] In some examples , the CSA 114 can also be con
figured to determine whether dynamically allocated memory
on the heap was allocated for a potentially valid purpose by
an object such as , for example , dynamically allocating
memory on the heap for just - in - time (JIT) compilation . In
some examples , determining that memory was dynamically
allocated (and may therefore be associated with addresses in
the call stack that lie outside memory allocated to loaded
object modules) pursuant to one of these purposes (e . g . , JIT
compilation) can be reflected in the characterization and
accounted for by the exploit detection module 116 such as by
decreasing a confidence score .
[0051] In some examples , in order to accomplish the
functionality discussed above the CSA 114 can query a
kernel of the computing device for a list of addresses (i . e . ,
pointers and / or return addresses) from the call stack and can
further query the kernel for the additional information
discussed above (memory allocation information , stack

US 2019 / 0147163 A1 May 16 , 2019

information , etc .) . In some examples , the CSA 114 operates
in kernel mode and can therefore directly access hardware of
the computing device .
[0052] In some examples , the CSA 114 is configured with
a stack - walking API . The stack - walking API can be config
ured to “ fuzzy ” walk the stack . In other words , when the
CSA 114 encounters a frame (i . e . , a “ broken frame ”) in the
call stack where the subroutine associated with the broken
frame has a return address that does not return the CSA 114
to an address that is located within a routine that called the
subroutine (or within another loaded module) , the CSA 114
is able to continue walking the stack from a frame proximate
to the broken stack . In other implementations the CSA 114
can resume walking the call stack (i . e . , " recover ") from a
frame that is further from the broken frame . For example , the
CSA 114 can choose a frame from which to walk based on
one or more of fuzzy selection logic or interest in a particular
routine . For example , since a broken frame was discovered
that is associated with a particular subroutine , the CSA 114
could decide to skip examining the rest of the frames
attributable to a root routine that includes the subroutine
since that routine is compromised . In some examples , the
fuzzy stack walking API can operate in a kernel mode of the
computing device .
[0053] In some examples , after the CSA 114 recovers from
discovering the broken frame , the CSA 114 can walk back
on the stack until the CSA 114 obtains further data that can
affect a confidence score and / or that can be included in the
characterization . For example , the CSA 114 can continue to
walk the call stack until the CSA 114 unwinds the stack to
a routine that is associated with an identifier of an object that
is frequently exploited . In some examples , the CSA 114 can
continue to walk back on the call stack until enough infor
mation is acquired to form the characterization or until the
CSA 114 either acquires target data corresponding to infor
mation about rules of a policy or finds that it cannot acquire
the target data (where target data can be data that is
requested to be analyzed by the request event and / or corre
sponds to rules of the policy , as discussed below) .
[0054] As described above , the CSA can generate a
response event 126 that can include at least part of the
characterization . Upon generating a response event 126 , the
CSA 114 can provide the response event 126 to the event
bus , which may route the event in accordance with a
configuration of the security agent 102 . In some examples ,
the response event can include a set of flags . In an imple
mentation that utilizes flags , the flag values can correspond
to parameters of a rule of a policy that the exploit detection
module 116 can use to determine whether or not the Aol is
a security exploit . In some examples , the flag values can
correspond to parameters that a configuration of exploit
detection module 116 uses to determine whether or not the
Aol is a security exploit .
[0055] For example , the policy can include a policy rule
that an Aol should be treated as a security exploit if the CSA
encounters a frame in the call stack that (1) is associated
with code that has a stack address (i . e . , a point or a return
address) that lies outside a range of memory addresses
allocated to a loaded object module , (2) is associated with
heap memory having a size of one page , and (3) has write
and execute permissions . Or , another example , the configu
ration of exploit detection module 116 can be configured to
treat the Aol as a security exploit for conditions (1) - (3) . In

this case , flags values of the response event 126 could
indicate whether or not any of conditions (1) - (3) are true , for
example .
[0056] In some examples , information about a policy rule
or configuration of the exploit detection module 116 can be
provided as part of the request event 122 . In some examples ,
the CSA 114 can use this information about the policy rule
to determine what data the CSA 114 can seek to obtain
and / or what data to include in the characterization . The CSA
114 can use this information as " target data ” that the CSA
114 can seek to obtain .
[0057) In some examples , the characterization and the
response event 126 includes any portion of the data obtained
by the CSA 114 . In some examples , the response event 126
includes one entry per broken frame and / or one entry per
frame associated with heap memory that contains evidence
of shellcode . As used herein , “ evidence ” includes any data
that will cause the exploit detection module 116 , pursuant to
its configuration , to modify a confidence score and / or a
determination of whether the Aol is a security exploit .
[0058] In some examples , the exploit detection module
116 can calculate a confidence score that the Aol is a security
exploit based at least in part on the response event 126 (and ,
in some examples , the request event 122 as well) . In that
case , the exploit detection module 116 can create an exploit
detection event 130 if a calculated confidence score exceeds
a score threshold (e . g . , the score threshold can be set by the
remote security service 104 in some examples) . In additional
or alternate examples , the exploit detection module 116 can
ascertain how well the response event 126 (and the request
event 122 in some examples) matches an exploit heuristic
(e . g . , a heuristic defined by a policy or configuring the
exploit detection module 116) . An example of an exploit
heuristic could be when the CSA 114 discovers a broken
frame that has an address that is associated with memory on
the heap that is one page in size and has write and execute
permissions . Upon generating an exploit detection event
130 , the exploit detection module 116 can provide the
exploit detection event to the event bus , which may route the
event in accordance with a configuration of the security
agent 102 , which may include fingerprinting actor 118 . In
some examples , the exploit detection module 116 can addi
tionally or alternatively provide , over network (s) 106 , the
exploit detection event 130 and / or other related information
to the remote security service 104 .
[0059] In some examples , responsive to reception of the
exploit detection event 130 the security agent and / or the
remote security service 104 can take preventative actions .
For example , the security agent 102 can label code associ
ated with a broken frame as shellcode , destroying an object
or a portion of an object associated with the shell code ,
stopping or preventing execution of the Aol and / or an object
related to the Aol , stopping or preventing an input / output
operation , stopping or preventing a network operation ,
patching the vulnerability , or causing the computing device
to reboot . The security agent can be configured to take
preventative action automatically i . e . , without receiving
and / or requesting user input) . For example , the security
agent 102 can take preventative action when the confidence
score that an Aol is a security exploit exceeds a threshold
value . In some examples , the security agent 102 can also be
configured to notify a user that preventative action was
taken .

US 2019 / 0147163 A1 May 16 , 2019

[0060] In response to receiving an exploit detection event
130 , the remote security service 104 can update the policy
utilized by the filter or logic or update the configuration of
the security agent 102 and / or CSA 114 . The remote security
service 104 can also provide instructions or other updates to
the security service 104 to diagnose , prevent , or heal based
on the exploit .
[0061] Responsive to receiving the exploit detection event
130 , the fingerprinting actor 118 can be configured to
" fingerprint ” identified exploits and / or the computing con
text 132 in which they occurred (where the computing
context refers to any of the data discussed herein) . Finger
printing can include storing at the computing device or
providing to the remote security service 104 information
regarding the exploit and / or the computing context as a
structured item such as a database (i . e . , " fingerprint ” herein)
with sufficient information to distinguish between and iden
tify one or more of the type of vulnerability that was
exploited , where the vulnerability is located in an object
module , and / or what exploit package was use (e . g . , name ,
version number , variant , etc . of malware) . In some
examples , sufficient information can include at least a por -
tion of the characterization , at least a portion of data
obtained or observed by the security agent 102 and / or CSA
114 at some point from the time an action was collected ,
and / or the Aol . The information could also include infor
mation about the stack frames , which in some examples can
be reported in the response event by the CSA 114 .
[0062] In some examples , the fingerprinting actor 118
and / or the remote security service 104 can be configured to
use a database of fingerprints to identify a vulnerability in an
object module based on one or more of the Aol , the exploit
detection event , fingerprint (s) , or the characterization , the
vulnerability corresponding to a location in the object mod
ule that was exploited . The fingerprinting actor 118 and / or
the remote security service 104 can also be configured to
identify an exploit package that was used to exploit the
vulnerability based on one or more fingerprints . In some
examples , fingerprint data can be used to identify what type
of vulnerability was exploited after the exploit detection
event 130 is received by the exploit detection module 116 .
If an existing vulnerability does not exist (e . g . , a vulnerabil
ity known and therefore included in a policy or configuration
of the security agent 102) , the fingerprinting actor 118 can
create an elevated event for the vulnerability , which it can
transmit to the remote security service 104 and / or conduct
further analysis on to determine if the vulnerability may be
a zero - day vulnerability (e . g . , an undiscovered and
unpatched vulnerability) .

working with a kernel - level security agent 206 installed on
the computing device 202 . The computing device 202 may
include a plurality of objects 208 , such as process (es) 210
and thread (s) 212 . The kernel - level security agent 206
includes action collector (s) 214 , an event bus 216 , filter /
logic and policy 218 , call stack actor CSA 220 , an exploit
detection module 222 , fingerprinting actor 224 , other event
generator (s) / consumer (s) 226 , and a communication module
228 . The computing device 202 may also include a call stack
230 and a heap 232 , either or both of which can be accessible
from user mode and / or kernel mode . In some examples , the
call stack 230 and the heap 232 are only accessible via
kernel mode .
[0065] In various embodiments , the computing device 202
and security service device (s) 204 and network may be same
sort of devices , service , and network described above .
Likewise , the security agent 206 may be an example of
security agent 102 , action collector (s) 214 may be an
example of action collector (s) 108 , event bus 216 may be an
example of the event bus described above with reference to
FIG . 1 , filter / logic and policy 218 may be examples of
filter / logic 110 and policy 112 , CSA 222 may be an example
of CSA 114 , exploit detection module 222 may be an
example of exploit detection module 116 , and fingerprinting
actor 224 may be an example of fingerprinting actor 118 .
[0066] In some implementations , the plurality of objects
208 may include any sort of components of the computing
device 202 , such as process (es) 210 and thread (s) 212 . The
plurality of objects 208 may also include trees , modules , or
any other sort of components . For example , a thread 212
may be a vulnerable thread that is targeted by a security
exploit . An example of such a thread the Internet browser
plug - in / Flash thread and its activities is described above
with respect to FIG . 1 .
[0067] As illustrated in FIG . 2 , the event bus 216 and
filter / logic and policy 218 may serve as routing , filtering ,
and analysis component (s) which connect the other compo
nents in the architecture of the security agent 206 . The event
bus 216 and filter / logic and policy 218 may receive events
from other components and either route those received
events , filter and route a subset of those received events , or
analyze received events and generate and route further
received events . The actions taken upon any received events
by the event bus 216 and filter / logic and policy 218 may be
driven by a configuration of the security agent 206 and the
policy .
[0068] Event generator (s) and consumer (s) 226 may
include modules that take actions , such as CSA 220 , exploit
detection module 222 , fingerprinting actor 224 , and other
actors . Actors may receive events via the event bus 216 and
take some action or actions based on the events . For
example , an actor may receive an exploit detection event and
take a preventative action based on the exploit detection
event . Also or instead , the actor may store information
associated with the event in a data structure or communicate
information associated with the event to the communication
module 228 for transmission to the security service device (s)
204 . In further implementations , upon receiving an exploit
detection event , the actor may retrieve additional informa
tion from a data structure and based on the exploit detection
event and the additional information may take some action ,
such as a preventive action .
10069] In various embodiments , the communications
module 228 may represent network protocol stack (s) , net

Example Security Agent
[0063] FIG . 2 illustrates an example security agent which
includes a filter / logic for detecting and generating event
notifications potentially relevant to security exploits , a call
stack actor for obtaining a computing context from which
the example security agent can inferentially detect security
exploits , an exploit detection module for determining
whether the data received from at least the call stack actor
and / or the filter / logic is indicative of an exploit , and a
fingerprinting actor for aggregating data about exploits and
the computing contexts they occurred in in order to provide
more robust exploit deterrence and identification .
10064] As illustrated , a computing device 202 may receive
security services from remote security service device (s) 204

US 2019 / 0147163 A1 May 16 , 2019

work interface driver (s) , and any other network interface
components utilized by the kernel - level security agent 206
to communicate with the security service device (s) 204 over
one or more networks . The communications module 228
may be a kernel mode component of the computing device
202 . Further , the communications module 228 may transmit
events , other notifications , and data associated events from
the kernel - level security agent 206 to the security service
device (s) 204 . The communications module 228 may also
transmit configuration updates received from the security
service device (s) 204 to a configuration manager of the
kernel - level security agent 206 and healing instructions
and / or events from the security service device (s) 204 to the
event bus 216 for filtering and / or dispatch .

[0074] Computing device 300 also has input device (s)
324 , such as a keyboard , a mouse , a touch - sensitive display ,
voice input device , etc . , and output device (s) 326 such as a
display , speakers , a printer , etc . These devices are well
known in the art and need not be discussed at length here .
0075] Computing device 300 also contains communica
tion connections 328 that allow the computing device 300 to
communicate with other computing devices 330 , such as the
security service device (s) 204 .

Example System
[0070] FIG . 3 illustrates a component level view of a
computing device configured with objects targeted by
exploits and a security agent . As illustrated , computing
device 300 comprises a system memory 302 storing object
(s) 304 targeted by exploits 306 and a security agent 308 that
includes a filter / logic 310 , a policy 312 , correlator (s) 314 ,
and a data structure 316 . Also , computing device 300
includes processor (s) 318 , a removable storage 320 and
non - removable storage 322 , input device (s) 324 , output
device (s) 326 and communication connections 328 for com
municating with other computing devices 330 .
[0071] In various embodiments , system memory 302 is
volatile (such as RAM) , non - volatile (such as ROM , flash
memory , etc .) or some combination of the two . The object
304 may be any sort of object , such as a function , process ,
or thread that is compromised by a security exploit 306 .
Examples of such objects 304 and exploits 306 are examples
of similarly named components described further herein .
The security agent 308 and its filter / logic 310 , policy 312 ,
correlator (s) 314 , and data structure 316 are also examples
of similarly named components further describe herein .
10072] In some embodiments , the processor (s) 318 is a
central processing unit (CPU) , a graphics processing unit
(GPU) , or both CPU and GPU , or other processing unit or
component known in the art .
[0073] Computing device 300 also includes additional
data storage devices (removable and / or non - removable)
such as , for example , magnetic disks , optical disks , or tape .
Such additional storage is illustrated in FIG . 3 by removable
storage 320 and non - removable storage 322 . Non - transitory
computer - readable media may include volatile and nonvola
tile , removable and non - removable media implemented in
any method or technology for storage of information , such
as computer readable instructions , data structures , program
modules , or other data . System memory 302 , removable
storage 320 and non - removable storage 322 are all examples
of non - transitory computer - readable storage media . Non
transitory computer - readable storage media include , but are
not limited to , RAM , ROM , EEPROM , flash memory or
other memory technology , CD - ROM , digital versatile disks
(DVD) or other optical storage , magnetic cassettes , mag
netic tape , magnetic disk storage or other magnetic storage
devices , or any other non - transitory medium which can be
used to store the desired information and which can be
accessed by the computing device 300 . Any such non
transitory computer - readable media may be part of the
computing device 300 .

Example Process
[0076] FIG . 4 illustrates an example process . This process
is illustrated as a logical flow graph , each operation of which
represents a sequence of operations that can be implemented
in hardware , software , or a combination thereof . In the
context of software , the operations represent computer
executable instructions stored on one or more computer
readable storage media that , when executed by one or more
processors , perform the recited operations . Generally , com
puter - executable instructions include routines , programs ,
objects , components , data structures , and the like that per
form particular functions or implement particular abstract
data types . The order in which the operations are described
is not intended to be construed as a limitation , and any
number of the described operations can be combined in any
order and / or in parallel to implement the processes .
[0077] FIG . 4 illustrates an example process 400 for
receiving a request to examine a context of an action of
interest (Aol) , generating a characterization of a call stack
associated with the Aol based at least in part on walking
through the call stack , and determining based on the char
acterization whether the Aol includes a security exploit .
10078] . The process includes , at 402 , receiving , by a call
stack actor (CSA) , a request to examine a context of an Aol .
In some examples , the Aol could have been generated by an
object such as a process or a thread (e . g . , an Internet browser
plug - in thread or an email application thread) . Further , the
receiving may be based on a configurable policy of a
security agent that is configured with the CSA .
100791 . At 404 , the CSA can , based at least in part on the
request , generate a characterization of a call stack associated
with the Aol , the generating based at least in part on walking
through the call stack at 406 .
[0080] At 408 (which can be part of the characterization
generation 404) , if the CSA encounters a frame in the call
stack where the subroutine associated with the frame has a
return address that does not return the CSA to an address that
is located within a routine that called the subroutine , the
frame is broken and the CSA , at 410 , may conduct further
analysis of the subroutine related to the frame (e . g . , the CSA
can obtain memory allocation information associated with
the subroutine on the heap , etc .) .
[0081] At 412 (which can also be part of the character
ization generation 404) , if the CSA does not encounter a
broken stack frame , the CSA can include at least part of the
obtained data in the characterization . If the CSA encounters
a broken stack frame , the characterization can include an
indication of this and at least a portion of the data uncovered
during further analysis at 410 .
[0082] At 414 , the CSA can additionally or alternatively
examine the call stack (which can also be part of the
characterization generation 404) . For example , the CSA can
determine whether a stack pointer has been moved (e . g . ,
pivoted) from an original location , etc .

US 2019 / 0147163 A1 May 16 , 2019

[0083] At 416 , a security agent can determine , based at
least in part on the characterization , whether the Aol
includes a security exploit . In some examples , this can
include , at 418 , calculating a confidence score (e . g . , based
on the characterization and / or other data available such as ,
for example , an identifier of an Ool , a fingerprint , a heuristic
fuzzy match score , or a knowledge repository) . If the
confidence score exceeds a threshold at 420 , the process 400
can further include generating an exploit detection event at
422 ; if the threshold is not exceeded , the process can end . In
some examples , the security agent can additionally or alter
natively , attempt to match the characteristic to an exploit
heuristic at 424 . If the characteristic matches the heuristic at
426 or fuzzy matches the heuristic , in some examples , the
security agent can generate an exploit detection event at 422 .

Example Clauses
[0084] A . A method comprising : receiving , by a call stack
actor (CSA) , a request to examine a context of an action of
interest (Aol) ; generating , by the CSA and based at least in
part on the request , a characterization of a call stack asso
ciated with the Aol , the generating based at least in part on
walking through the call stack ; and determining , by a
security agent and based at least in part on the character
ization , that the Aol includes a security exploit .
[0085] B . A method as paragraph A recites , the determin
ing that the Aol includes the security exploit further com
prises determining that the characterization meets at least a
portion of a heuristic defining characteristics of security
exploits .
10086) C . A method as either paragraph A or B recites , the
call stack including multiple frames and the characterization
of a frame of the call stack including one or more of : a
module identifier of a module associated with an address of
the frame , a return address , an indicator of whether a return
address is associated with memory previously allocated for
an object , the object including one of a function , a module ,
a process , or a thread , a memory region associated with the
frame , an object identifier of a process or a thread associated
with a memory region , permissions of a memory region , or
a size of a memory region .
[0087] D . A method as any one of paragraphs A - C recites ,
the determining that the Aol includes the security exploit is
based at least in part on one or more of : determining that the
return address is outside memory previously allocated for an
object ; determining that the object identifier is associated
with a vulnerable object ; determining that permissions of the
memory region include two or more of read , write , and
execute ; or determining that the memory region is one page
in length .
[0088] E . A method as any one of paragraphs A - D recites ,
the determining including determining that the return
address is outside memory previously allocated for an object
and the method further including treating code that the
return address points to as malicious code .
[0089] F . A method as any one of paragraphs A - E recites ,
further comprising committing a preventative action without
receiving input from a user and based at least in part on the
determining that the Aol includes the security exploit .
10090] G . A method as any one of paragraphs A - F recites ,
the preventative action including one or more of : stopping or
preventing execution of the Aol , stopping or preventing
execution of an object associated with the Aol , stopping or

preventing an input / output operation , stopping or prevention
network operations , or causing a computing device that
committed the Aol to reboot .
[0091] H . A method as any one of paragraphs A - G recites ,
the determining including : calculating a confidence score
based at least in part on the characterization , and determin
ing that Aol includes a security exploit based at least in part
on the confidence score exceeding a threshold confidence
score .
[0092] I . A computing device including : a processor ; a call
stack actor (CSA) configured to be executed by the proces
sor on the computing device , the CSA including : logic
configured to receive a request to perform analysis of an
action of interest (Aol) and provide a characterization to a
security agent ; and a call stack walker configured to : identify
addresses of memory devoted to a call stack associated with
the Aol , and generate the characterization from the call stack
associated with the Aol based at least in part on walking the
call stack starting at an entry associated with the Aol ; and the
security agent configured to be executed by the processor on
the computing device , the security agent including logic
configured to receive the characterization and determine that
the Aol is a security exploit of the computing device based
at least in part on the characterization .
[0093] J . A computing device as paragraph I recites , the
security agent further including logic to prevent the security
exploit from being completed without receiving user input .
(0094] K . A computing device as either paragraph I or J
recites , the CSA operating in a kernel mode of the comput
ing device and the call stack being accessible by a kernel of
the computing device .
[0095] L . A computing device as any one of paragraphs
I - K recites , the call stack walker of the CSA configured to
fuzzy walk the call stack , fuzzy walking including : encoun
tering a frame in the call stack that breaks a trace of the call
stack ; recording information about the frame , the informa
tion including one or more of a return address associated
with the frame , a memory associated with the frame , a
process or a thread associated with the frame or the memory
region , or a function associated with the frame ; and con
tinuing to walk the call stack from a frame proximate to the
frame in the call stack that breaks the trace .
10096] M . A computing device as any one of paragraphs
I - L recites , the CSA configured to fuzzy walk the call stack
in order to obtain an object identifier of a function , module ,
process , or thread that initiated a chain of functions reflected
in the call stack that resulted in the Aol and the CSA further
configured to include the object identifier in the character
ization .
10097] N . A computing device as any one of paragraphs
I - M recites , the call stack being accessible by a kernel of the
computing device and the CSA configured to fuzzy walk the
call stack in kernel mode .
[0098] 0 . A computing device as any one of paragraphs
I - N recites , the generating the characterization of the call
stack including : obtaining a list of addresses of the memory
associated with the call stack and the Aol , the list of
addresses being associated with frames of the call stack ;
querying a kernel of the computing device for details related
to at least one frame of the frames , the details including one
or more of : a function associated with the frame , a stack
pointer associated with the frame , a return address associ
ated with the frame , a location in the memory associated
with the return address or the stack pointer , memory allo

US 2019 / 0147163 A1 May 16 , 2019

[0105] V . Computer - readable media having stored thereon
computer - executable instructions to accomplish the opera
tions of any one of paragraphs A - H .
[0106] W . Means for accomplishing the operations of any
one of paragraphs A - H .

cation information regarding the location , the memory allo
cation information including an indication of whether the
location is within a memory range that has been allocated to
an object , the object including a function , module , process ,
or thread , an object identifier associated with the object to
which the memory range is allocated if the location is within
a memory range that has been allocated to an object ,
permissions of the location or memory associated with the
object , a size of the location , or a size of code associated
with the object .
[0099] P . A computing device as any one of paragraphs 1 - 0
recites , wherein the CSA chooses what details to include in
the characterization based at least in part on one or more of
the request to perform analysis or a type of the Aol from
among identified types of Aols .
[0100] Q . A computing device as any one of paragraphs
I - P recites , the security agent further including logic to :
responsive to determining that the Aol is the security exploit
of the computing device , treat as malicious code a portion of
code stored on the memory and referred to in the charac
terization ; store in the memory or transmit to a remote
memory a copy of the malicious code ; associate one or more
of a vulnerability identifier , offset identifier , or an exploit
name with the copy of the malicious code ; store in the
memory or transmit to the remote memory the character
ization ; and gather and store in the memory or transmit to the
remote memory additional information , the additional infor
mation including one or more of a name , version , or address
ranges of the malicious code loaded in the memory .
[0101] R . A computing device as any one of paragraphs
I - Q recites , the logic being further configured to use one or
more of copies of malicious code , vulnerability identifiers ,
offset identifiers , exploit names , characterizations , or addi
tional information to improve accuracy of determining
whether the Aol is the security exploit .
[0102] S . A system including : a processor ; a memory
having stored thereon computer - executable instructions that ,
when executed by the one or more processors , configure the
system to perform operations including : detecting an action
of interest (Aol) from among actions taken by the system ;
identifying a record stored in the memory and recording
previous actions taken by the system that resulted in the Aol ;
examining a record for evidence that the Aol is an exploit of
the system , the record being stored on the memory ; and
taking preventative measures regarding the Aol when the
record contains evidence that the Aol is an exploit .
[0103] T . A system as paragraph S recites , the record being
a call stack and the operations further including : walking the
call stack , starting at a frame corresponding to the Aol in the
call stack , until : the walking reaches a stack frame that is
associated with a return address that is not associated with
a module loaded on the memory , or the walking reaches an
end of the call stack or a root thread or root process ; and
responsive to the walking reaching the stack frame that is
associated with the return address that is not associated with
a module loaded on the memory , continuing walking from a
subsequent entry in the call stack until the walking reaches
an end of the call stack or root thread or root process , the
subsequent entry being further from both an entry corre
sponding to the previous function and an entry correspond
ing to a function that committed the Aol .
[0104] U . A system implementing the method of any one
of paragraphs A - H .

Conclusion
[0107] Although the subject matter has been described in
language specific to structural features and / or methodologi
cal acts , it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described . Rather , the specific
features and acts are disclosed as example forms of imple
menting the claims .
[0108] The modules described herein represent instruc
tions that can be stored in any type of computer - readable
medium and can be implemented in software and / or hard
ware . All of the methods and processes described above can
be embodied in , and fully automated via , software code
modules and / or computer - executable instructions executed
by one or more computers or processors , hardware , or some
combination thereof . Some or all of the methods can alter
natively be embodied in specialized computer hardware .
[0109] Conditional language such as , among others ,
" can , " " could , ” “ may ” or “ might , ” unless specifically stated
otherwise , are understood within the context to present that
certain examples include , while other examples do not
include , certain features , elements and / or operations . Thus ,
such conditional language is not generally intended to imply
that certain features , elements and / or operations are in any
way required for one or more examples or that one or more
examples necessarily include logic for deciding , with or
without user input or prompting , whether certain features ,
elements and / or operations are included or are to be per
formed in any particular example .
[0110] Conjunctive language such as the phrase " at least
one of X , Y or Z , " unless specifically stated otherwise , is to
be understood to present that an item , term , etc . can be either
X , Y , or Z , or any combination thereof . Unless explicitly
described as singular , “ a ” means singular and plural .
[0111] Any routine descriptions , elements or blocks in the
flow diagrams described herein and / or depicted in the
attached figures should be understood as potentially repre
senting modules , segments , or portions of code that include
one or more computer - executable instructions for imple
menting specific logical functions or elements in the routine .
Alternate implementations are included within the scope of
the examples described herein in which elements or func
tions can be deleted , or executed out of order from that
shown or discussed , including substantially synchronously
or in reverse order , depending on the functionality involved
as would be understood by those skilled in the art .
0112] It should be emphasized that many variations and
modifications can be made to the above - described examples ,
the elements of which are to be understood as being among
other acceptable examples . All such modifications and varia
tions are intended to be included herein within the scope of
this disclosure and protected by the following claims .
What is claimed is :
1 . A method comprising :
receiving , by a call stack actor (CSA) , a request to

examine a context of an action of interest (AOI) ;
generating , by the CSA and based at least in part on the

request , a characterization of a call stack associated

US 2019 / 0147163 A1 May 16 , 2019

with the Aol , the generating based at least in part on
walking through the call stack ; and

determining , by a security agent and based at least in part
on the characterization , that the Aol includes a security
exploit .

