(19) World Intellectual Property **Organization**

International Bureau

(43) International Publication Date 22 September 2005 (22.09.2005)

(10) International Publication Number WO 2005/087005 A1

(51) International Patent Classification⁷: A01N 43/16

(21) International Application Number:

PCT/CA2005/000424

(22) International Filing Date: 18 March 2005 (18.03.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

2,461,261 18 March 2004 (18.03.2004) CA 2,470,669 17 June 2004 (17.06.2004)

(71) Applicant (for all designated States except US): AGRIBI-OTICS INC. [CA/CA]; 135 Turnbull Court, Unit A2, Cambridge, Ontario N1T 1C6 (CA).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): McIVER, John [CA/CA]; 66 Wellington Street North, Kitchener, Ontario N2H 5J5 (CA). CHEN, Chunquan [CA/CA]; 8A Cant Street, Cambridge, Ontario N1S 2R6 (CA). SCHULTZ, Birgit [CA/CA]; 6234 Evergreen Lane, Lancaster, Ontario K0C 1N0 (CA). McIVER, Hannah [CA/CA]; 270 Woolich Street, Guelph, Ontario N1H 3W1 (CA).
- (74) Agents: MANOLAKIS, Emmanuel et al.; Gowling Lafleur Henderson LLP, 1 Place Ville Marie, 37th Floor, Montreal, Québec H3B 3P4 (CA).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ISOFLAVONOID COMPOUNDS AND USE THEREOF

(57) Abstract: The use of a one or more Isoflavonoid compound Signals which may be with an agriculturally acceptable carrier, applied prior to planting, up to 365 days or more, either directly to the seed or transplant of a non-legume crop or a legume crop, or applied to the soil that will be planted either to a non-legume crop or a legume crop, for the purpose of increasing yield and/or improving seed germination and/or improving earlier seed emergence and/or improving nodulation and/or increasing crop stand density and/or improving plant vigour and/or improving plant growth, and/or increasing biomass, and/or earlier fruiting, all including in circumstances of seedling and plant transplanting.

WO 2005/087005 PCT/CA2005/000424

Isoflavonoid Compounds and Use Thereof

THE INVENTION

The invention relates to the use of a one or more Isoflavonoid compound Signals which may be with an agriculturally acceptable carrier, applied prior to planting, up to 365 days or more, either directly to the seed or transplant of a non-legume crop or a legume crop, or applied to the soil that will be planted either to a non-legume crop or a legume crop, for the purpose of increasing yield and/or improving seed germination and/or improving earlier seed emergence and/or improving nodulation and/or increasing crop stand density and/or improving plant vigour and/or improving plant growth, and/or increasing biomass, and/or earlier fruiting, all including in circumstances of seedling and plant transplanting.

Background

Agricultural Practices

Agriculture in the developing world frequently utilizes a practice of intercropping plant species to maximize land productivity. That practice frequently involves a legume crop interspaced row by row with another plant species of regional value. It has long been known that the non-leguminous crop generally benefits in yield for having been in intimate contact at the root level with the legumes. This has traditionally been thought to be due to the legumes known benefit of returning fixed plant-utilizable nitrogen to the soil through the residual of its own nitrogen-fixing symbiosis with the rhizobia bacteria. This nitrogen, it was viewed, was utilized by the intercrop growing better.

In the developed world intercropping legumes with other agricultural crops, while known and understood, is simply not feasible. It is a practice requiring hand field maintenance for best results and in volume agriculture the equipment does not lend itself to the disparity in plant heights and size experienced i.e. soybeans (a legume) is physically much different from maize.

North American Cropping practices

Intercropping practices from the developing world are, in developed countries, translated into crop rotation agricultural practices where a single crop is grown on the land one year and another crop is grown in the following year. These crops are so rotated as to best maintain the land and reduce its nutrient loss and may involve two, three or four crops in regular rotation year-by-year.

One of these crops will be a legume, the type depending on soil, markets, region etc and might involve soybeans, peas, beans, alfalfa, clover etc. — all legumes with their own symbiotic relationship with a particular rhizobia bacterial species — and each bacterial species producing a specific LCO structure for the particular plant species host.

It has long been held that the crop rotation must include a legume because of their ability to leave a nitrogen residue available to the following crop – that residue generally recognized to be a pound of Nitrogen for each bushel of legume seed harvested i.e. for soybeans 40-50 lbs N per acre available to the next, generally non-leguminous crop.

In North America the major crop rotations are (1) Corn-soybeans and used through the major production states of the USA – Illinois, Ohio, Iowa, Nebraska – and (2) Wheat-Peas, in western Canada.

Scientific Development

The legume symbiosis with rhizobia is now much better understood while not yet fully explained. It involves and requires a series of plant and microbial signals to initiate the plant tissue changes, which will protect and support the rhizobia internally to the root where it can undertake nitrogen gas conversion to plant utilizable nitrogen utilizing energy from the plant. Scientific and patent literature available to the skilled person, summarizing current knowledge include International Publication Number WO 00/04778, published February 3, 2000 and WO 01/26465, published April 19, 2001, both of Smith et al, and Canadian Serial Number 2,439,421, all incorporated herein by reference.

It is now known scientifically that the rhizobial signal sent to the legume plant to initiate root tissue changes is a Lipo-chito-oligosaccharide (LCO) and is termed Nod Factor in this application. Its production arises from the adjacent rhizobia bacteria receiving legume root exuded isoflavonoid chemicals — also termed Signals — that switch on the genes for the production of these LCOs. Signals are phenolic compounds, flavoned, isoflavones and flavanones, secreted by legume roots, which act as chemo-attractants to rhizobia and activators of the Nod genes.

It is further appreciated here through present studies and patents that LCOs have a plant growth function not restricted to legumes. It has been demonstrated that non-legume seeds as well as legume seeds germinate earlier in the presence of minute $(10^{-7} \text{ to } 10^{-12} \text{ M})$ levels of LCO in solution.

It has been further demonstrated that foliar LCO applications to many plants (corn, soybeans, peas, tomatoes) leads to their earlier flowering and higher yield. The mechanism for these phenomena continues to be under study.

The relationship and interaction of Nod Factors, Signals, with LCOs produced by rhizobia has been the subject of considerable investigation. For examples in U.S. Patent Number 5,141,745 Nodulation Inducing Factors, a principal object of this invention to identify a structurally related class of molecules, substituted flavones, which stimulate nodulation gene expression and elicit faster initiation of nodulation in legumes. The work describes the isolation and identification of substituted flavones which are nodulation gene-inducing factors. The invention relates in general to the field of legume-Rhizobium symbiosis and in particular to the identification of flavonoid compounds which stimulate expression of rhizobia nodulation genes and elicit faster rates of legume nodulation by rhizobia. These compounds are useful in general for selective control of gene expression and in particular in improved legume inoculating compositions.

In U.S. Patent Number 5,229,113, "Bradyrhizobium Japonicum Nodulation Inducing Factor", The work describes the identification of chemical compounds that induce expression of nodulation genes of Bradyrhizobium japonicum.

It is a principal object of this invention to identify molecules which stimulate nodulation gene expression in strains of B. japonicum.

In Canadian Patent Number 2,179,879, "Composition for Enhancing Grain Yield and Protein Yield of Legumes Grown Under Environmental Conditions that Inhibit or Delay Nodulation", this patent relates specifically to the use of the nod factors genestein or daidzein plus a strain of *B. japonicum* on legumes, specifically soybeans, grown under environmental conditions that inhibit or delay nodulation, specifically low root zone temperatures between 17°C and 25°C. It does not teach the use of the nod factor alone or in any other medium. It does not teach the use of nod factor alone or with any carrier in legumes grown under normal conditions. It does not envision the use of nod factor alone or with a carrier for use in non-legume crops.

While the relationship of Signals to LCOs and their effects on plants have been described under certain conditions, the effect of Signals and their compositions alone on the growth of non-legumes and legumes requires to be assessed.

The objects of the present invention include application and use of one or more Signals and compositions thereof to a non-legume *including* a seed, resulting in increased yield and/or improved seed germination, and/or improved emergence, and/or increased stand density, and/or increased biomass, and/or improved plant vigour, and/or improved plant growth and/or earlier fruiting; including but not limited to:

where the non-legume includes but is not limited to a seed, tuber, transplant, or vegetative cutting;

where the non-legume is grown for use in agriculture, horticulture, silviculture, or gardening;

where the non-legume is sown into land that had previously been sown to a legume crop, or which has an indigenous population of rhizobia;

where the non-legume is sown into land that had not previously been sown to a legume crop.

where a Signal is applied to the non-legume crop up to 365 days or more in advance of planting;

where a Signal is applied with an agriculturally acceptable carrier such as, but not limited to, water, liquid sugar solutions, seed treatments, inoculants, additives, extenders, herbicides, fungicides, insecticides, fertilizers, growth promoters, or horticultural media;

where the soil to be planted with the non-legume crop has been pre-treated with a specific symbiotic rhizobia or has an indigenous population of rhizobia;

where the seed has been treated with a specific symbiotic rhizobium or rhizobia.

A further object of the present invention includes one or more Signal and compositions thereof, and their use, applied to the soil which will be planted with a non-legume crop, resulting in increased yield and/or improved seed germination, and/or improved emergence, and/or increased stand density, and/or increased biomass, and/or improved plant vigour, and/or improved plant growth; and/or earlier fruiting, including but not limited to:

where the non-legume is grown for use in agriculture, horticulture, silviculture, or gardening;

where the non-legume is sown into land that had previously been sown to a legume crop or has an indigenous population of rhizobia;

where the non-legume is sown into land that had not previously been sown to a legume crop;

where a Signal is applied with an agriculturally acceptable carrier such as, but not limited to, water, seed treatments, inoculants, herbicides, fungicides, insecticides, fertilizers, growth promoters, or horticultural media;

where the soil to be planted with the non-legume crop has been pre-treated with a specific symbiotic rhizobium or rhizobia or has an indigenous population of rhizobia;

where the seed has been treated with a specific symbiotic rhizobium or rhizobia;

A still further object of the present invention includes one or more Signal and compositions thereof, and their use, applied to a legume including a seed, resulting in increased yield and/or improved seed germination, and/or improved emergence, and/or increased stand density, and/or increased nodule numbers, and/or increased nodule weight, and/or increased biomass, and/or improved plant vigour, and/or improved plant growth; and/or earlier fruiting, including but not limited to:

where the legume includes but is not limited to a seed, tuber, transplant, or vegetative cutting;

where the legume is grown for use in agriculture, horticulture, silviculture, or gardening;

where the legume is sown into land that had previously been sown to a legume crop or has an indigenous population of rhizobia;

where the legume is sown into land that had not previously been sown to a legume crop;

where the Signal is applied to the legume crop up to 365 days or more in advance of planting;

where the Signal is applied with an agriculturally acceptable carrier such as, but not limited to, water, seed treatments, inoculants, herbicides, fungicides, insecticides, fertilizers, growth promoters, or horticultural media;

where the soil to be planted with the legume crop has been pre-treated with a specific symbiotic rhizobium or rhizobia or has an indigenous population of rhizobia;

where the seed has been treated with a specific symbiotic rhizobia.

A still further object of the present invention includes one or more Signal and compositions thereof, and their use, applied to the soil, which will be planted with a legume crop, resulting in increased yield and/or improved seed germination, and/or

increased stand density, and/or earlier emergence, and/or improved plant vigour, and/or improved plant growth, including but not limited to:

where the legume is grown for use in agriculture, horticulture, silviculture, or gardening;

where the legume is sown into land that had previously been sown to a legume crop or has an indigenous population of rhizobia;

where the legume is sown into land that had not previously been sown to a legume crop;

where the Signal is applied with an agriculturally acceptable carrier such as, but not limited to, water, liquid sugar solutions, seed treatments, inoculants, additives, extenders, herbicides, fungicides, insecticides, fertilizers, growth promoter, or horticultural media;

where the soil to be planted with the legume crop has been pre-treated with a specific symbiotic rhizobium or rhizobia or has an indigenous population of rhizobia;

where the seed has been treated with a specific symbiotic rhizobium or rhizobia;

Thus, the present invention is directed to one or more Signals and agricultural compositions thereof, and their use applied to legumes and non-legumes up to 365 days or more prior to planting in methods, either directly to a plant or crop or indirectly to the soil that will be planted, to increase yield, and/or improve germination, and/or improve emergence, and/or increase stand density, and or increase biomass, and/or improve plant vigour, and/or improve plant growth, and/or result in earlier fruiting, and/or increase nodule weight, and/or increase nodule number, all including in circumstances of seed planting, of seedling and plant transplanting, or emergence of sprouts from tubers and development of new plants from higher plant perinating structures.

Surprisingly, inventors have found that Signals and compositions thereof are useful as aforesaid in legume and non-legume plant families, and in methods relating to the improvements and increases, all as aforesaid, including in conditions which limit

growth, as well as optimal conditions for growth. The compositions and methods of the present invention find utility in growth limiting conditions, including conditions associated with pH stress, water stress and below or above an optimum temperature range, for plant or crop growth, germination, emergence and the like.

In accordance with the present invention, an "agricultural composition" and an "agriculturally effective amount of a composition" refer to a quantity sufficient, of one or more Signals, to result in a statistically significant enhancement, improvement or increase versus a control, as aforesaid, without detriment to plant, soil or crop. By "emergence" is meant observable growth above the rooting medium surface. By "germination" is meant observable root growth development from the embryo and by "field growth" is meant growth under conditions in the field as opposed to growth under more controlled conditions, such as in a greenhouse.

Seedling growth-stimulant

A Seed application of soybean isoflavonoid signals

In intercropping, the response of the non-legume crop may be explained as in fact due to the LCOs produced by the legume (bean) plants migrating to the roots of the non-legume and initiating a growth response in that crop. This is a reasonable assumption with present knowledge.

In view of knowledge of agriculture, of soybeans and soybean crop rotations with corn and of Peas in rotation with wheat, of legume isoflavonoid signals which induce increased nodulation through increased LCO production by the rhizobial cells, of manufacture and application of soybean and pea rhizobial seed-inoculants and the persistence of the rhizobia in soil, the present inventors have considered the application of soybean and other isoflavonoid signal in agriculturally effective and useful amounts to corn seed and other legume and non-legume species, including crop and horticultural varieties, including for transplanting, to cause the inducement of LCO production by the indigenous rhizobial population in the soil and that this LCO might lead to increased growth at the seedling stage when the young plants are being established and the other desirable effects all as aforesaid.

This concept was then broadened to encompass horticultural crops where the seeding and potting mix could be seeded with a level of Bradyrhizobium (for Soybeans) or of other Rhizobium species provided they were capable of inducement by their appropriate isoflavonoid signals to produce meaningful levels of LCO at the seedling roots where it could act as a growth stimulant to non-leguminous bedding plants and horticultural crops.

This was tested.

(1) Corn growth stimulation.

Potting soil was seeded (inoculated) with sufficient Bradyrhizobium japonicum from a commercial soybean inoculant to attain 100,000 active cells per gram of soil, a level mid point to recognized rotational corn bean land where the soil population will be between 10,000 and 1,000,000 active bacterial cells per gram of soil.

Corn seed coated with various levels of the isoflavonoid inducer, genistein, were planted in this soil in pots in the greenhouse in such a way that germination could be determined as well as height differences from the untreated control over the first month of growth. The levels tested were 0, 50, 100, 200, 300 and 400 uM genistein solution applied at the rate of 0.3 ml (300 ul) per 100 corn seeds, a normal application rate in agriculture.

Further batches of such treated seed were stored in a dry cool 22°C room for a period of up to 6 months and representative samples withdrawn monthly for retesting for germination and growth, thus determining the capacity of the concept for pretreatment of seed from the previous harvest at harvest time. These studies continue and are being improved in methodology as they progress.

(2) Bedding Plant growth stimulation

Potting mix was seeded with Bradyrhizobium japonicum at 500,000 and 5,000,000 active cells per ml of mix. Seeds of 8 different bedding plant varieties were sown in the seeded mix and genistein isoflavonoid inducer was applied to the

WO 2005/087005 PCT/CA2005/000424

10

rhizobia in a number of ways from coating the seeds to watering with the signal inducer.

The seeds were then assessed for germination either as increased amount or increased rate. The young seedlings were then assessed for growth as measured by height for a number of weeks while in the seedling trays.

Transplanted Growth

Cherry tomato seedlings (5-week old) were transplanted into 5" pots seeded with rhizobia at 1e6 cells/ml (2 and 20 uM Seed Coater) or without rhizobia (control and LCO treatments). Seed Coater and LCO solutions were prepared with water and 50ml/plant applied to plant after transplantation. Ripened fruit (orange or red) were collected 8 weeks after transplantation.

Summary: (1) Seed Coater soil applied to transplanted cherry tomato can enhance early fruit number. (2) Seed Coater signals more effective than LCO signal when applied to soil around transplanted roots.

Data List

Data List			
Table/Fig	Crop/parameter	Location	Planted time
number			1 1 1 1 1 1 1
Fig. 1	Soybean/germination	Greenhouse	Immediately
Fig. 2	Soybean/germination	Greenhouse	One month later
Fig. 3	Soybean/height	Greenhouse	Immediately
Fig. 4	Corn/germination	Greenhouse	Immediately.
Fig. 5	Corn/height	Greenhouse	Immediately
Fig. 6	Corn/height .	Greenhouse	One month later
Fig. 7	Tomato Transplant Fruit Number		
Fig. 8	Growth Promotion of Potato Tubers With Signals	Field	
Fig. 9	Growth Promotion of Potato Tubers With Signals	Greenhouse	
Table 1	Soybean/nodule	Greenhouse	Immediately
Table 2	Soybean/nodule	Greenhouse	One month later
Table 3	Corn/dry weight	Greenhouse	Immediately
Table 4	Corn/dry weight	Greenhouse	One month later
Table 5	Corn/yield	Field	Immediately
Table 6	Soybean/germination/yield	Field	5 weeks
Table 7	Soy/nodule/biomass	Field	5 weeks
Table 8	Pea/germination/nodule/biomass/yield	Field	Immediately
Table 9	Soybean/yield	5 field sites	Immediately
Table 10	Wheat/germination	Field	Immediately
Table 11	Corn/germination	5 field sites	Immediately
Table 12	Soybean/germination/yield	2 field sites	Immediately

Table 13	SeedCoater timing studies on soybeans and corn grown in greenhouse. Treatment of seed Coater increased plant biomass and soybean nodulation 4-5 weeks after planting. The efficacy kept up to 60 days after treatments.	,	
Table 14	SeedCoater treatments at different strengths on soybeans in field trials. The same experiment was conducted in Quebec and Ontario. Treatments of seedCoater from 300-800 uM increased soybean yield; yield from Ontario was statistical.		
Table 15	Comparison of SeedCoater formulations on soybeans in Quebec and Ontario. A formulation of seedCoater containing two isoflavonoids performed better than one with a single isoflavonoid at the same strength.		
Table 16	SeedCoater treatment on various soybean varieties in field trials at NK Canada. Five of 6 soybean varieties treated with seedCoater showed yield benefit of 2.2 bu/ac using 300 uM seedCoater.		
Table 17	SeedCoater plus seed treatments and inoculants on soybean in field trials. SeedCoater with or without inoculants performed better than seed treatments alone in soybean land.		
Table 18	Treatment of seedCoater on pea, soybeans and wheat grown in bean land.		a 11

	SeedCoater of 400 uM as a universal strength increased pea, soybean and wheat yields in field trials.	
Table 19	Comparison of SeedCoater formulations on grain and silage yield in corn. A formulation (400 uM) of seedCoater with two isoflavonoids performed better than one isoflavonoid in the formulation at the same strength on grain yield when corn was planted 30 days after treatment.	
Table 20	Corn seedCoater grown in different soil inoculation levels at University of Guelph. SeedCoater treatment resulted in best corn yield at a soil rhizobia level of 10 ³ cells/g soil. SeedCoater at 400 uM significantly increased corn grain yield over control.	
Table 21	Effect of seedCoater on corn yield when applied one year before planting. SeedCoater treated seed did not reduce percent emergence after 1 year on seed storage at room temperature and increased corn yield up to 19% over seed treatment control.	
Table 22	SeedCoater field trials on soybeans at multiple sites. SeedCoater with seed treatment increased soybean biomass and grain yield up to 1-2 bu/ac compared to control.	·
Table 23	SeedCoater field trials on corn at multiple sites. SeedCoater with Cruiser raised corn yield from 2 to 41 bu/ac	

	compared to Maxim XL treatment in average of multiple sites.	
Table 24	Signal applied to tomato seedling roots transplanted into soil inoculated with soybean rhizobia. Early yield were higher than control in fruit number and weight of all treatments.	

Table 1. Effect of SeedCoater Dose on soybean nodulation when soybean seed treated and sown immediately,

Cumulative weight and Number of nodules from 16 plants at 24 days

Total Nodule	Nodule	Nodule # vs	Nodule
number on 16	weight (g) of	control	weight vs.
plants	16 plants		control
253	0.119	0	0
		4	`aa a 404
315	0.147	24.50%	23.84%
260	0.135	2.70%	13.65%
281	0.121	11.20%	1.50%
306	0.127	20.94%	6.99%
313	0.125	23.70%	5.64%
	number on 16 plants 253 315 260 281 306	number on 16 weight (g) of plants 253 0.119 315 0.147 260 0.135 281 0.121 306 0.127	number on 16 plants weight (g) of plants control control control control plants 253 0.119 0 315 0.147 24.50% 260 0.135 2.70% 281 0.121 11.20% 306 0.127 20.94%

Notes:

Greenhouse study conducted in 4" pots inoculated with Apex at 10⁵ cells/g of greenhouse soil before planting, 8 pots per treatment. 100 gram of soybean seed was treated with 0.3 ml of each solution in a plastic bag. Treated seed was planted into pot immediately.

Conclusions:

- 1. All strengths of Seed Coater treated seed and planted immediately increased nodule number and weight.
- 2. 50 uM strength proved the best dose for both nodule number and weight when applied and planted immediately.

WO 2005/087005 PCT/CA2005/000424

16

Table 2. Effect of SeedCoater dose on soybean nodulation when soybean seed treated one month in advance of sowing.

Cumulative weight and Number of nodules from 16 plants at 23 days

Signal	Total Nodule	Nodule weight	Nodule # vs	Nodule weight
applied (uM)	number on 16	(g) of 16	control	vs. control
	plants	plants		,
0	336	0.18	0	0
50	373	0.19	11.01%	7.22%
100	365	0.19	8.63%	3.33%
200	369	0.20	9.82%	11.67%
300	410	0.24	22.02%	33.89%
400	382	0.20	13.69%	13.33%

Notes:

Greenhouse study conducted in 4" pots inoculated with inoculants at 10⁵ cells/g of greenhouse soil before planting, 8 pots per treatment. 100 gram of soybean seed was treated with 0.3 ml of each solution in a plastic bag. Treated seed was stored at room temperature for 30 days.

Conclusions:

1. All strengths of Seed Coater increased nodule number and nodule weight when applied 30 days in advance

WO 2005/087005

- 2. 300 uM strength was the best dose for both nodule number and weight when applied 30 days in advance.
- Application of Seed Coater 30 days in advance required a higher dose (300 uM) than when applied and sown immediately (50 uM Table 1).

WO 2005/087005 PCT/CA2005/000424

Table 3. Effect of Seed Coater dose on corn plant dry weight in greenhouse study (Planted immediately after treatment)

18

Dry weight (gram)/plant	Increased over control %		
0.8367			
0.9024	7.8%		
0.8987	7.4%		
0.9501	13.5%		
0.9672	15.6%		
0.9299	11.1%		
	0.8367 0.9024 0.8987 0.9501 0.9672		

Notes:

- 1. Inoculated Bradyrhizobium japonicum at 10⁵ cfu/ml in soil
- 2. Plant at time zero (Table 3) or 1 month later (Table 4)
- 3. 2 plants/pot and 8 pots/treatment
- 4. Greenhouse temperature over 30C for a few days in April, which affected plant growth in the greenhouse (Table 4) so that plants got bigger compared to plants in Table 3
- 5. Plants were harvested for biomass 31 days (Table 3) and 32 days (Table 4) after sowing

Conclusions:

No difference in plant height was seen, but plant dry matter increased by all treatments (7-15.6% over control) by 31 days after sowing.

Table 4. Effect of SeedCoater dose on Corn plant dry weight in greenhouse study (planted 1 month after treatment)

Dry weight (gram)/plant	Increased over control %		
3.0056			
3.2844	8.5%		
3.0650	1.8%		
3.6975	21.1%		
3.2456	7.3%		
3.3781	11.3%		
	3.0056 3.2844 3.0650 3.6975 3.2456		

Conclusion:

All Seed Coater treatments increased both plant height and dry weight at 32 days after sowing, but dry weight increased up to 21% at applied strength of 200 uM.

Table 5. Effect of SeedCoater dose on corn grain yield

eld Grain Yield
vs) (kg/ha)
4840.1 b
a 5713.6 a
4817.0 b
o 4546.4 b
Yes

Notes:

- 1. Treated seeds were stored at room temperature (20°C) for one month before planting
- 2. Soil was seeded with inoculants at 10⁵ cells/gram soil before planting
- 3. Seedling stand was examined 1 month after planting and data (not listed) showed that Seed Coater did not affect seed emergence when applied 1 month after treatment.
- Corn grain was harvested from the two middle rows of each plot (13.5 M²) at MAC farm (Harvesting date: Oct. 30, 2003, Seeding: May 23, 2003)
- 5. Grain yield corrected to dry weight by drying approx. 500 gram/plot at 60°C for days.

WO 2005/087005 PCT/CA2005/000424

21

Conclusions:

- 1. All treatments of Seed Coater increased corn grain yield by 6%-25.6% over control
- 2. 400 uM significantly increased both wet and dry grain yield

Table 6. Effect of Seed Coater dose on soybean seed germination and final grain yield

•	•	
Treatments	Germination %	Yield
		(Kg/ha)
200 μM one month	46.00a	2102.19 a
300 μM one month	37.75b	1970.14 b
400 μM one month	42.00ab	2040.86 a
Untreated Control	39.25b	1530.57 c
Significance at 5%	Yes	Yes

Table 7. Effect of Seed Coater dose on soybean nodulation and biomass

Treatments	Growing Stages						
		V3			Blooming		
	Nodule	Nodule	Shoot	Nodule	Nodule	Shoot	
	Number	Dry Weight	Dry	Number	Dry Weight	Dry	
•	on	(g) from	Weight	on	(g) of	Weight	
	5 plants	5 plants	(g) from	5 plants	5 plants	(g) of	
			5 plants	•		5 plants	
200 µM one	122.8	0.2281	7.9	184	0.4994	21.70	
300 μM one month	96.5	0.2629	7.4	186	0.4994	23.56	
400 μM one month	121.8	0.2689	6.77	161	0.4304	19.64	
Untreated Control	104.0	0.2012	5.21	164	0.4329	15.31	
Significance at 5%	No	No	No	No	No	No	

Notes:

1. Experiment was conducted on E. Lods farm of McGill University in 2003.

- 2. Seeds pre-treated by Seed Coater on April 4, 2003 and stored at room temperature (20°C), and sown on May 30 (5 weeks).
- 3. Germination or stand % was examined on July 2, counting seedling in 2-meter long row from two middle rows of each plot.
- 4. Soil was seeded with rhizobia at 10⁵ cells/gram on May 30 just before planting
- 5. Soybean grain in whole plot was harvested by a combine on Oct.17, 2003

Conclusions:

There were:

- 1. Increased seed emergence by strength at 200 and 400 uM dosages, and statistically significant at 200 uM strength.
- 2. Significantly increased grain yield by all treatments.
- 3. Increased nodulation and biomass by all treatments, however, not statistically.

Table 8. Effect of SeedCoater Dose on pea seed emergence, nodulation and yield under field conditions

					•		
Treatments	Stand	Nodule	Nodule	Average	Dry	Bu/acre	Increase
	%	Number	Weight	nodule weight	Weight	,	in bu/ac
		on 5	(g) of 5	(mg)	(g) of 5		barao
	ı	plants	plants	(mg)	Shoots		
Control	95	217.75	0.2227	1.04b	8.81	26.5b	0
50μ M	93	265.75	0.2633	1.13ab ⁽	10.17	29.8a	3.3
100μΜ	98	287.75	0.2991	1.24ab	8.61	28.0ab	1.5
200μΜ	91.25	196.25	0.2931	1.52a	10.14	29.6a	3.1
400 μM	87.5	216.5	0.2585	1.20ab	9.01	29.4a	2.9
600μΜ	93	245.75	0.2970	1.33ab	9.02	28.3ab	1.8
Significant 5%	NS	NS	NS	Yes	NS	Yes	

Notes:

- 1. Experiment was conducted on E. Lods farm of McGill University in 2003.
- Make stock solution of Naringenin (70 mM) and Hesperetin (30 mM) with DMSO and dilute to the strengths needed for each seed treatment with water.
- 3. Pea seed (cv. Delta) was treated and planed immediately in plots which was seeded with Rhizobia at 10⁵ cells/gram of soil.
- 4. Seed germination was examined on June 9, 2003 (sown on May 16, 2003).

- 5. Nodulation examined on June 27, 2003 by sampling 5 plants per plot.
- 6. Pea was harvested on August 6, 2003 using a combine and grain was dried at 60°C for 3 days.

Conclusions:

- 1. There is no difference among treatments on extent of germination of pea.
- 2. Seeds treated with SeedCoater at $100\mu M$ showed the maximum germination. There was no significant difference when compared to control.
- 3. SeedCoater increased nodulation and biomass, but not significantly. However, nodule weight was significantly improved at 200 uM.
- 4. Most treatments significantly increased pea grain yield, some up to 3 bu/ac.

27

Table 9. Response in soybean yield (Bu/ac) at 5 sites

Locations	Treatments					
	Untreated control	Warden RTA (W-	W-RTA + Seed			
		RTA)	Coater			
Brookston, IN	32.97	31.50	40.03			
Tolono, IL	36.43	33.80	37.73			
Walbash, IN	43.78	44.85	45.14			
Wolcott, IN	31.03	36.70	35.83			
Mt. Hope, WI	32.90	34.39	38.13			
Average yield of 5 sites	35.42	36.25	39.37			
% vs. control	0.00	2.34	11.15			
% vs. W-RTA	-2.29	0.00	8.61			
Significant at 5%	В	В	A			

Notes:

- 1. Seeds were treated at 300 uM and planted immediately in repeat soybean lands at 5 sites.
- 2. High quality soybean seed commercially treated with Fungicide (Warden RTA) was employed in this trial.

WO 2005/087005 PCT/CA2005/000424

28

Conclusion:

 Seed Coater significantly increased soybean grain yield over yields from untreated and Warden RTA seeds.

Table 10. Effect of SeedCoater Dose on spring wheat seed emergence (%) in field trial

Percent of treated seed emerged at 4 weeks

Treatments	1	2	3	4	Average
Control	56	64	52	36	52b
100uM	68	72	60	64	66ab
200uM	60	72	80	64	69a
400uM	60	68	68	76	68a
600uM	80	60	80	48	67ab

Notes:

- 1. 100 treated wheat seeds were planted in each plot of field immediately.
- 2. Spring wheat seed was coated by chemicals.
- 3. Emergence was examined at 4 weeks after sowing in field.
- 4. The field trial was terminated because plots were damaged by animals. No yield data available from this trial.

Conclusion:

Seed Coater significantly improved wheat seed emergence at strength of 200-400 uM.

Table 11. Effect of Seed Coater treatment on fungicide (Maxim XL) treated corn seed emergence at 5 sites in USA, 2003

(% Field Emergence)

Treatments	Indiana	Illinois	lowa (1)	lowa (2)	Nebraska	Average
MaximXL	86.88	86.07	76.79	58.21	84.29	78.448b
MaximXL +	85.63	85	79.29	77.5	91.07	83.698a
Seed Coater			-			

Notes:

- 1. 250 uM (liquid) of Seed Coater directly applied to corn seed (Hybrid) at 3ml/kg seed before sowing.
- 2. Seeds treated with Seed Coater were sown immediately after treatment at 5 sites.
- 3. Chemical (fungicide) coated corn seed was used in this trial.
- 4. The Contracted field trials failed and contractor did not submit any yield data.

Conclusions:

Seed Coater significantly improved corn seed emergence.

Table 12. Effect of Seed Coater on soybean stand and grain yield in field trials.

Treatment	Plant	s/M ²	Grain yield (kg/ha)		
	Huron Park	Ridgetown	Huron Park	Ridgetown	
Untreated control	21.2 ab	56	1926 a	3177 ab	
Seed Coater	22.23 a	49	2026 a	3227 a	
Inoculant 2	19.8 ab	53	1992 a	2967 с	
Inoculant 1	13.88 b	47	1842 b	3056 bc	
Significant	LSD _{0.05}	NS	LSD _{0.1}	LSD _{0.1}	

Notes:

- 1. Seed Coater treated seed immediately planted in repeat soybean lands.
- 2. Soybean seed was treated with Seed Coater of 300 uM at 3ml/kg seeds.

Conclusions:

- 1. In general, Seed Coater did not negatively affect soybean seed emergence in the fields.
- Seed Coater increased soybean grain yield over other inoculant treatments and control. However, significance was only seen over control (at 0.1 alpha).
 The increase was not significant over other inoculant treatments.

Table 13. Early growth promotion by pre-treatment of SeedCoater on soybean and corn seeds in greenhouse

Crops and	Days pre-treatment before planting							
treatments	Da	y 0	Day 10		Day 30		Day 60	
Soybeans	Nodules (mg)	Plant height (cm)	Nodules (mg)	Plant height (cm)	Nodules (mg)	Plant height (cm)	Nodules (mg)	Plant height (cm)
300 uM	195.9	41.1	264.4	53.5	222.7	72.0	183.6	67.0
Control	188.2	39.8	248.4	51.1	201.5	69.9	171.1	62.8
Corn	Height (cm)	Biomass (mg)	Height (cm)	Biomass (mg)	Height (cm)	Biomass (mg)	Height (cm)	Biomass (mg)
400 uM	N/A	7.25	108.5	10.28	127.3	12.98	139.2	12.64
Control	N/A	6.71	105.0	9.25	124.3	12.03	133.4	12.48

Notes:

Chemical seed treatments for soybean (Apron Maxx RTA) and corn (Maxim XL) were used in this study. One kg seed was treated with 3 ml of Signal, SeedCoater solution in a plastic bag and treated seeds were stored at 17°C. Five seeds were planted in a 5" pot in 0, 10, 30 and 60 days after treatment, in greenhouse, 10 pots each treatment. Mixture of Sunshine Mix® and Turfase (1:1) as plant growth medium was inoculated with soybean inoculant *B. japonicum* at 10⁵ cells/g. Seed emergence and stand were counted 7 days after sowing, and each pot thinned to the best two seedlings per pot. Plants were harvested at approximately 30 days and measurements were taken for plant height, biomass and nodulation (soybeans).

Conclusions:

- 1. Treatment with Signals increased plant biomass and soybean modulation 4-5 weeks after planting. The efficacy kept up to 60 days after treatment.
- 2. SeedCoater increased soybean plant biomass, height and nodulation up to 60 days after treatment.

- 3. SeedCoater increased plant biomass and height of corn up to 60 days after treatment.
- 4. SeedCoater showed no negative effects corn on and soybean seed emergence or stand compared to untreated control.

WO 2005/087005

Table 14. Soybean grain Yield Promotion of Soybeans treated with SeedCoater in field trials

Treatment	Days pre-	Loca	itions		Increased %
	treatment	VARS	MAC	Average	over control
300 uM	0	57.89	38.24	48.1	21.9
	30	51.70	48.34	50.0	26.9
400 uM	. 0	59.89	43.15	51.5	30.7
	30	51.70	37.86	44.8	13.6
500 uM	0	63.69	30.22	47.0	19.1
	30	62.44	40.36	51.4	30.4
600 uM	0	67.40	41.34	54.4	37.9
	30 ·	52.56	33.03	42.8	8.5
800 uM	30	52.25	37.85	45.1	14.3
Control	N/A	39.58	39.28	39.4	0

Notes:

Experiments with the same design were conducted at Macdonald Agricultural College (MAC) of McGill University, Quebec and Vaughn Agricultural Research Service Ltd.(VARS), Cambridge, Ontario. Before planting, the soil was inoculated with soybean inoculant at 10⁵ cells/g mixed into the top 20 cm of soil. Bare soybean seeds were treated using various formulations of SeedCoater 30 days in advance of planting or at planting time.

Conclusion:

The use of SeedCoater in concentrations of 300 to 600 uM increased average soybean grain yield at both locations.

Table 15. Comparison of one active ingredient (genistein) with two (genistein and daidzein) in SeedCoater formulations used in soybean yield trials at VARS and MAC

Strength and Ingredients	Days pre- treatment	Loca	2 808 E 2 14 10 mm - 10 mm - 2 mm	Average (bu/ac)	Increased % over control	
	ticament	VARS	MAC	(uu/ac)	over control	
400 uM (G)	30	62.2	34.5	48.35	3.9	
400 uM (G/D)	30	67.1	38.0	52.58	13.0	
Control	N/A	58.7	34.4	46.54	0.0	

Notes:

Experiments with the same design were conducted at Macdonald Agricultural Collect (MAC) of McGill University, Quebec and Vaughn Agricultural Research Service Ltd. (VARS), Cambridge, Ontario. Before planting, the soil was inoculated with soybean inoculant at 10⁵ cells/g mixed into the top 20 cm of soil. Bare soybean seeds were treated using two formulations of SeedCoater 30 days in advance of planting or at planting time.

Conclusions:

- 1. Results from the two sites indicated that the formulation of two active ingredients in SeedCoater ("G/D") applied on soybean seed increased yield better than the formulation of one ingredient ("G") at the same strength of 400 uM.
- 2. SeedCoater 'G' was however effective at increasing yield versus the control.

Table 16. Grain yield of SeedCoater treatments on various soybean varieties in field trials at Syngenta Seeds (NK) Canada

Soybean	Grain yiel	d (bu/ac)	Maturity (days	after planting)
Varieties	Untreated	Treated	Untreated	Treated
S00-F8	40.6	44.8	114	113
S02-M9	45.4	48.6	115	114
S04-Z9	48.8	51.2	117	117
S08-C3 (X309R)	54.7	56.1	122	121
S08-V7 (X408R)	57.7	60.7	121	122
S10-T1	52.8	51.6	122	123
Mean Yield	50	52.2	118.5	118.3
LSD _{0.05}	1	0.6		

SeedCoater at 300 uM containing 3% of methanol as organic solvent was used in this experiment. Seed was pre-treated for 30 days before planting.

- 1. Five of 6 soybean varieties treated with SeedCoater showed a yield benefit using 300 uM SeedCoater.
- 2. Treatment of SeedCoater significantly increased soybean yield up to 2.2 bu/ac compared to relevant untreated control.

Table 17. SeedCoater treatment of soybeans also treated with commercial seed pre-treatment

Treatment	Days Pre- Treatment	Seed treated by Warden RTA	Seed treated by Yield Shield
300 uM	30	67.0	67.7
300 uM+	30+0	66.7	67.9
Inoculant			
Control	N/A	64.0	65.3

- 1. SeedCoater (300 uM) containing 3% of methanol as a solvent was used in this study.
- 2. Soybean seeds were pre-treated with a commercial seed treatment by The Tryon Group Inc., USA and then treated a second time with SeedCoater 30 days in advance of planting, and then treated a third time using a commercial soybean inoculant applied at planting time (300 uM + inoculant).
- 3. Treated seeds were planted into land in Woodstock, Illinois that had a history of soybeans.

- 1. SeedCoater applied sequentially with or with chemicals increased soybean grain yield up to 2.5 bu/ac compared to control.
- 2. Chemical seed treatments did not affect efficacy of SeedCoater on soybean yield.
- 3. The use of inoculants on treated seeds did not provide any additional yield benefit compared to SeedCoater.

Table 18. Effects of SeedCoater on yields when applied to field peas, spring wheat and white beans in Eastern Canada

				Cro	ps		
	Days pre-	Field	Peas	Spring	wheat	White	
Treatment	treatment	Yield	% over	Yield	% over	Yield	% over control
		(bu/ac)	control	(bu/ac)	control	(bu/ac)	7-854 N. N. S.
400 uM	0	45.57	7.0	26.78**	18.1	41.06	8.9
	30	50.03**	17.5				
Control	N/A	42.60	0	22.67	0	37.71	0

^{**} statistically significant at 5%

- 1. Pea and spring wheat trials were conducted at MAC farm in land inoculated with a pea inoculant at 10⁵ cells/g mixed into the top 20 cm soil. The white bean trail was conducted in bean repeat land at the Huron Research Station of Ridgetown College in Exeter, Ontario. Pea seed was treated with SeedCoater 30 days before planting or at planting time (day 0) whereas the spring wheat and white bean seed was treated on the day of planting.
- 2. The white bean seed was pre-treated using a chemical seed treatment (Apron Maxx), whereas bare pea seed was employed in this study.
- 3.Application rate of SeedCoater was 10 g/kg for wheat seed and 3 ml/kg for bean and pea seeds.

- 1. SeedCoater at 400 uM increased yields of field peas, white beans and spring wheat up to 4 bu/ac compared to correspondent controls.
- 2. SeedCoater significantly increased yields of field peas at 5% statistical level when applied 30 days before planting
- 3. SeedCoater significantly increased yields of spring wheat yield at 5% statistical level.

Table 19. Comparison of corn yields (grain and silage) from the use of two SeedCoater formulations in field trials conducted at VARS and MAC

g. a		VARS		MAC			
Strength and Ingredient	Days Pre- treatment	Grain yiek (bu/ac)	Increase over control	Silage yiel (ton/ha)	Increased % over control	Grain yield (bu/ac)	Increase % over control
400 uM	0	1555				154.59**	19.8
(G)	30	145.73	1.9	16.61	11.4		
400 uM (G/D)	30	159.04	11.2	15.94	6.9		
Control	N/A	142.99	0	14.91	0	129.05	0

^{**} Statistically significant compared to relevant control

Corn seed was pre-treated with Maxim XL seed treatment, and then treated with SeedCoater. Treated seeds were planted in soil seeded with a soybean inoculant 10⁵ cells/g mixed into the top 20 cm soil. In a second trial at MAC, bare corn seed was treated with SeedCoater and was planted in a field in which soybeans were grown previously, without the addition of soil inoculation, on day 0.

- 1. A formulation (400 uM) of seedCoater with two isoflavonoids performed better than one isoflavonoid in the formulation at the same strength on grain yield when corn was planted 30 days after treatment.
- SeedCoater increased yield of both grain and silage corn in this study.
- 3. Corn seed treated with SeedCoater at 400 uM of genistein and planted in soybean land without the addition of soybean inoculant on day 0 can significantly increase corn yield up to 19.8% over control.
- 4. Both formulations of SeedCoater resulted in increased yields.

Table 20. Corn SeedCoater study using different inoculation levels of soil

Main Factor (soil inoculant levels)	Yield (bu/ac)	Sub-factor (Signal levels)	Yield (bu/ac)
0	68.62	0	67.51
10 ³ cells/g	68.66	400 uM	70.97
10 ⁴ cells/g	69.56	500 uM	70.58
10 ⁵ cells/g	67.99	600 uM	66.60
LSD 0.05	6.59		3.28

The SeedCoater treated seed was planted using conventional tillage near Rockwood, Ontario on a field that has not grown soybeans before and did not contain populations of *Bradyrhizobium japonicum*. The corn trial was arranged as a split plot design with 4 replications, main factor (soil inoculant levels) and sub-factor (signal levels). Each plot was 15 m long by 3 m wide with 4 rows per plot and 75 cm spacing between rows. Plots were inoculated with *B. japonicum* to rates at 10³, 10⁴ and 10⁵ cells/g in the top 20 cm soil. SeedCoater was treated onto bare corn seed (hybrid Direct Seed D46) at Agribiotics Inc. over 30 days before planting.

- 1. Seedcoater at 400 uM, was the best treatment and increased corn grain yield over control at 5% statistical level.
- 2. The treatment of SeedCoater at 400-500 uM could increase corn grain yield up 5% over control when planted in soybean inoculant seeded soil.
- 3. SeedCoater treatment performed best at 10³ cells/g soil inoculated rate.

Table 21. Effect of SeedCoater on corn yields when applied one year before planting

Treatment	\$ production for the selection (2000) and the selection of the selection o	w days after nent*	Planted 1 year	after treatment**
	Emerge %	Yield (bu/ac)	Emerge %	Yield (bu/ac)
Maxim XL	78.4	224.85	91.95	100
Maxim XL+250 uM Seedcoater	83.7	239.03	93.00	119.3

Notes:

The experiment was conducted in multiple field locations in the USA. Emergence data were obtained from 5 sites and yield data was obtained from the Nebraska site. The experiment using 1-year pre-treated corn seeds was arranged in two locations in Illinois by The Tryon Group Inc. in 2004. Pretreated corn seed using Maxim XL (chemical seed treatment) was employed in this study.

- 1. Seedcoater treated seed did not reduce emergence percentage after 1 year of storage at room temperature
- 2. Seedcoater treated seed resulted in increased corn yield up to 19% over seed treatment control.

^{*} the emergence percentage was average of 5 sites (same data in Table 11) and corn yield from Nebraska, USA.

^{**} data of emerge and yield came from 2 Illinois sites.

Table 22. SeedCoater field trials on soybeans in multiple sites in USA

Treatments		Planting	*************************************	
1 realments	G/plant**	Carly Yield (bu/ac)	G/plant**	rmal Yield (bu/ac)
Apron-Maxim	71.18	63.5	165.00	50
Apron-Maxim-Seedcoater	73.66	64.6	163.75	52
Apron-Maxim-Cruiser-Seedcoater	78.24	65.6	177.25	52

Notes; * Early planting from April 24 to May 7, 2004, and normal planting on May 20.

** grams – dried weight per plant

Notes:

The average of biomass data (gram/plant) was observed at soybean blooming stages which were different at each site. The yield data in the table were average of 4 sites (Missouri, Wisconsin, SE Iowa, and Minnesota) for early planting and one site (Iowa) for normal. Chemical pre-treated soybean seed was used in this study.

Conclusion:

Seedcoater with seed treatments increased soybean biomass and grain yield up to 1-2 bu/ac compared to control.

Table 23. Seedcoater field trials on corn in multiple sites in USA

		Planting	times*	
Treatments	Ea		Norn	
Maxim XL	180	196	128	170
	Higher rate of Cruiser	Lower rate of Cruiser	Higher rate of Cruiser	Lower rate of Cruiser
Maxim XL + Cruiser + SeedCoater	184	205	169	172

Notes; *Corn seeds were planted in the middle of April as "early" planting time and from April 28 to May 3 as "normal" planting time, and corn yield data in table indicate in bu/ac.

Notes:

The field trials were conducted in Stanton, Hampton, Bloomington, Illinois, Iowa, Geneva Minnesota and Wisconsin for early planting studies and Stanton, two sites in Hampton, and two sites in Bloomington for normal planting studies.

Conclusion:

SeedCoater with Maxim XL + Cruiser raised corn yield from 2 to 41 bu/ac compared to Maxim XL alone treatment, in the average of multiple sites in USA.

Table 24. Signal applied to tomato seedling roots transplanted into soil inoculated with soybean rhizobia

	Early Yield			Total Yield				
Treatments	Fruit /plot	% vs etrl	Kg/plot	% vs etrl	Fruit /plot	% vs etrl	Kg/plot	% vs etrl
100 ml water as Control/plant	58	0	10.41	0	219	0	25.60	0
100 ml genistein at 1 uM/plant	67.75	16.81	12.02	15.47	241.5	10.27	27.10	5.86
100 ml genistein at 10 uM/plant	66.25	14.22	11.64	11.82	217.75	-0.57	25.91	1.21
100 ml genistein at 50 uM/plant	71	22.41	12.85	23.44	198.5	-9.36	25.77	0.66

- 1. Soil was inoculated with soybean rhizobia at 10⁶ cells/g mixed into the top 20 cm soil.
- 2. Tomato seedlings at 6-7 leaf stage were transplanted in field, 6 plants/plot sized 4.5 M by 1.5 M area and 4 replicates each treatment.
- 3. Applied 100 ml signal solution of each strength or water to transplanted tomato root system.
- 4. Signal would induce LCO in situ around root system to promote plant growth.
- 5. Trials were conducted at MacDonald College, McGill University, Montreal.

- 1. All treatments increased fruit weight over control.
- 2. Early yield of fruit numbers of all treatments were higher and the 50 uM rate was statistically higher than control.
- 3. Early yield of fruit weight of all treatments were higher and the 50 uM rate was statistically higher than control.
- 4. A similar study was conducted on cherry tomato in greenhouse (see figure 7).

Growth Promotion of Potato Tubers With Signals Grown in the Field Notes:

- 1. Microtubers (cv. Bintje, tuber size from 0.5-0.7g) were soaked in each test solution overnight at 25° C in the incubator. Treatment rate was 50 ml/treatment, and 50 ml water as control.
- 2. Seeded soybean inoculant into soil at 10⁶ cells/g in the top 20 cm soil before planting.
- 3. Treated potato tubers were planted in soil 10-15 cm deep, 10 tubers in 10 M² plot and supplied 500 ml of water to each tuber in ground after planting.
- 4. Planted date: August 20, 2004 and harvested date: October 15, 2004.

- 1. Treatment of potato microtubers soaked in 300 uM genistein solution overnight increased potato tuber yield up to 17.7% over control. See Fig. 8.
- 2. The higher concentration of treatments (300-500 uM) resulted in larger tuber size. See Fig. 8.

Growth Promotion of Tubers With Signals and Grown in the Greenhouse Notes:

- 1. Potato minitubers (cv. Norland, size from 10-15g) were immersed in each genistein solution overnight (24 hr) at room temperature and planted in 10" pots containing Sunshine Mix seeded with soybean inoculant at 10⁶ cells/g.
- 2. Greenhouse temperature was maintained at 20/25°C dark/light.
- 3. One tuber was planted in each pot and 8 replicates each treatment were completely randomized on two greenhouse benches.
- 4. Slow release fertilizer (20-20-20) was applied at 50g/pot.
- 5. Plated date: September 1, 2004.Harvested date: November 9, 2004 Conclusions:
 - 1. All treatments statistically increased potato tuber yield, and treatment of 300 uM showed the best growth promotion. See Fig. 9.
 - 2. Treated potato seeds exhibited increased sprout numbers for each tuber, and soaking seed in 300 uM solution was the best treatment to stimulate sprout number. See Fig. 9.

WO 2005/087005 PCT/CA2005/000424

47

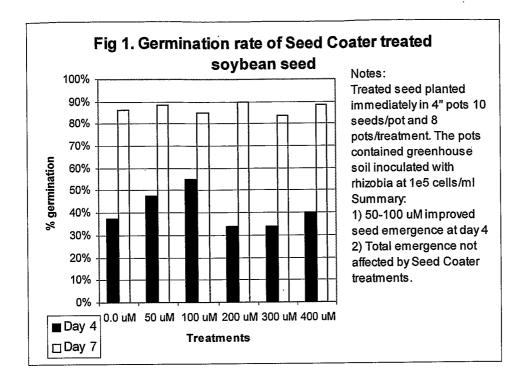
CONCLUSION

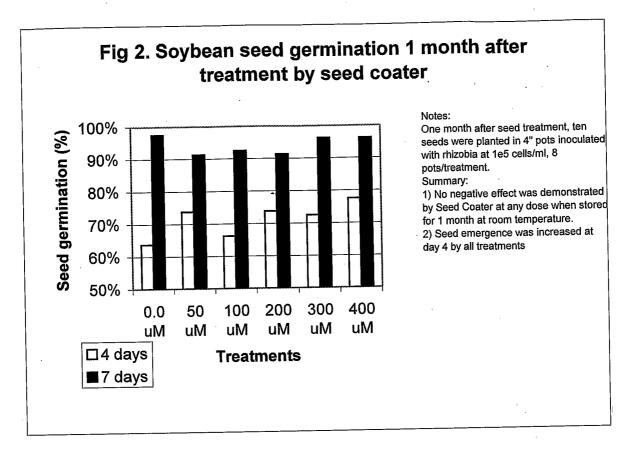
The present invention demonstrates that one or more Isoflavonoid compound Signals which may be with an agriculturally acceptable carrier, applied prior to planting, up to 365 days or more, either directly to a non-legume crop or a legume crop, or applied to the soil that will be planted either to a non-legume crop or a legume crop, have utility for the purpose of increasing yield and/or improving seed germination and/or improving earlier seed emergence and/or improving nodulation and/or increasing crop stand density and/or improving plant vigour and/or improving plant growth, and/or increasing biomass, and/or earlier fruiting, all including in circumstances of seedling and plant transplanting.

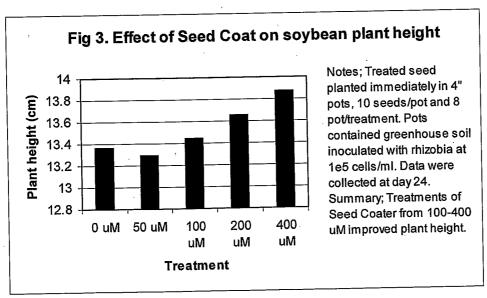
Although the invention herein has been described as aforesaid by way of one or more preferred embodiments, the skilled person will understand it can be modified without departing from the spirit and nature of the invention as defined in the appended claims.

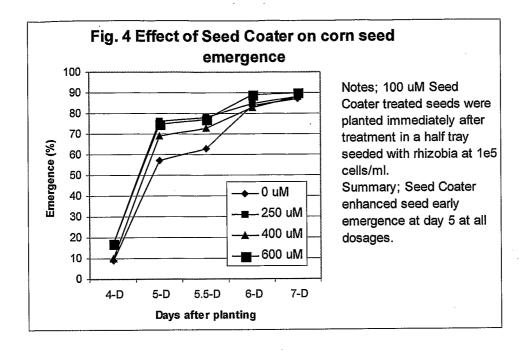
CLAIMS

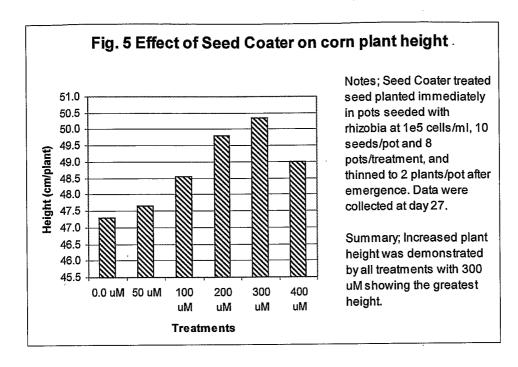
- 1. The use of one or more Signal or an agricultural composition thereof to increase yield and/or improve seed germination, and/or increase stand density, and/or result in earlier emergence, and/or improve plant vigour, and/or improve plant growth, and/or increase biomass, and/or result in earlier fruiting in a non-legume plant or crop thereof, by applications to said plant or crop.
- 2. The use as in Claim 1 where the non-legume plant or crop thereof is a seed, tuber, transplant, or vegetative cutting.
- 3. The use as in Claim 1 or 2 where the non-legume is grown for use in agriculture, horticulture, silviculture, or gardening.
- 4. The use as in any one of Claim 1 to 3 above, where the non-legume is sown into land that had previously been sown to a legume crop, or which has an indigenous population of rhizobia.
- 5. The use as in any one of Claims 1 to 3 above, where the non-legume is sown into land not previously sown to a legume crop.
- 6. The use as in any one of Claims 1 to 5 above, where the Signal is applied up to 365 days in advance of planting.
- 7. The use as in any one of Claims 1 to 6 above, where the one or more Signal is applied with an agriculturally acceptable carrier, comprising one or more selected from the group of water, seed treatments, inoculants, herbicides, fungicides, insecticides, fertilizers, growth promoters, and horticultural media.

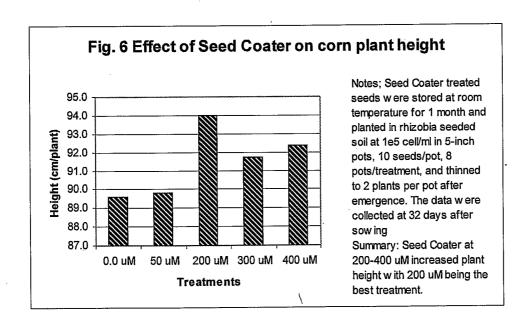

- 8. The use as in any one of Claims 1 to 7 above, where the soil to be planted to the non-legume crop has been pre-treated with a specific symbiotic rhizobia or has an indigenous population of rhizobia.
- 9. The use as in any one of Claims 1 to 8 where the non-legume has been treated with a specific symbiotic rhizobia.
- 10. The application of one or more Signal or agricultural composition thereof to soil which will be planted to a non-legume plant or crop, to increase yield and/or improve seed germination, and/or increase stand density, and/or increase biomass, and/or result in earlier emergence, and/or result in earlier fruiting, and/or improve plant vigour, and/or improve plant growth, in said plant or crop.
- 11. The application as in Claim 10 where the non-legume is grown for use in agriculture, horticulture, silviculture, or gardening
- 12. The application as in Claims 10 or 11 where the non-legume is sown into land that had previously been sown to a legume crop or has an indigenous population of rhizobia
- 13. The application as in any one of Claims 10 or 11 where the non-legume is sown into land that had not previously been sown to a legume crop.
- 14. The application as in any one of Claims 10 to 13, where the Signal is applied with an agriculturally acceptable carrier comprising any one or more selected from water, seed treatments, inoculants, herbicides, fungicides, insecticides, fertilizers, growth promoters, and horticultural media.
- 15. The application as in any one of Claims 10 to 14 where the soil to be planted to the non-legume crop has been pre-treated with one or more symbiotic rhizobia or has an indigenous population of rhizobia.

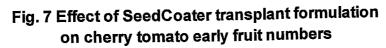

- 16. The application as in any one of Claims 10 to 15 where the plant or crop has been treated with one or more symbiotic rhizobia.
- 17. The use of one or more Signal or agricultural composition thereof to increase yield and/or improve seed germination, and/or increase stand density, and/or increase biomass, and/or result in earlier emergence, and/or result in earlier fruiting, and/or improve plant vigour, and/or improve plant growth, and/or increase nodule number, and/or increased nodule weight, in a legume plant or crop thereof, by application to said plant or crop.
- 18. The use as in Claim 17 where the legume is a seed, tuber, transplant, or vegetative cutting.
- 19. The use as in Claim 17 or 18 where the legume is grown for use in agriculture, horticulture, silviculture, or gardening
- 20. The use as in any one of Claims 17 to 19 where the legume is sown into land that had previously been sown to a legume crop or has an indigenous population of rhizobia.
- 21. The use as in any one of Claims 17 to 19 where the legume is sown into land that had not previously been sown to a legume crop.
- 22. The use as in any one of Claims 17 to 21 where the Signal is applied up to 365 days in advance of planting.
- 23. The use as in any one of Claims 17 to 22 where the Signal is applied with an agriculturally acceptable carrier comprising one or more selected from water, seed treatments, inoculants, herbicides, fungicides, insecticides, fertilizers, growth promoters, or horticultural media.

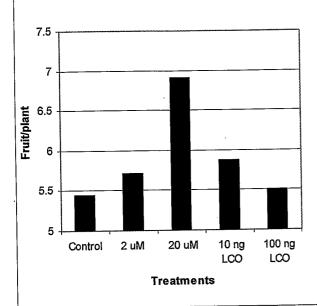

- 24. The use as in any one of Claims 17 to 23 where the soil to be planted to the legume crop has been pre-treated with one or more symbiotic rhizobia or has an indigenous population of rhizobia.
 - 25. The use as in any one of Claims 17 to 24 where the plant or crop has been treated with one or more specific symbiotic rhizobia.
 - 26. The application of one or more Signal or agricultural composition thereof to soil, which will be planted to a legume plant or crop, to increase yield and/or improve seed germination, and/or increase stand density, and/or earlier emergence, and/or improve plant vigour, and/or improve plant growth, and/or increase nodule number, and/or increase nodule weight, and/or increase biomass, and/or result in earlier fruiting in said plant or crop.
 - 27. The application as in Claim 26 where the legume is grown for use in agriculture, horticulture, silviculture, or gardening.
 - 28. The application as in Claims 26 or 27 where the legume is sown into land that had previously been sown to a legume crop or has an indigenous population of rhizobia.
 - 29. The application as in Claims 26 or 27 where the legume is sown into land that had not previously been sown to a legume crop
 - 30. The application as in any one of Claims 26 to 29 where the Signal is applied with an agriculturally acceptable carrier comprising one or more selected from water, seed treatments, inoculants, herbicides, fungicides, insecticides, fertilizers, growth promoter, or horticultural media.
 - 31. The application as in any one of Claim 26 to 30 where the soil to be planted to the legume crop has been pre-treated with one or more symbiotic rhizobia or has an indigenous population of rhizobia.

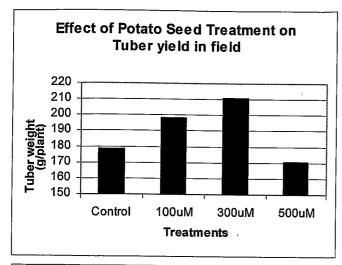

WO 2005/087005


32. The application as in any one of Claims 26 to 31 where the plant or crop has been treated with one or more symbiotic rhizobia.









Notes: Cherry tomato seedlings (5-w eek old) were transplanted into 5" pots seeded with rhizobia at 1e6 cells/ml (2 and 20 uM Seed Coater) or without rhizobia (control and LCO treatments). Seed Coater and LCO solutions were prepared with water and 50ml/plant applied to plant after transplantation. Ripened fruit (orange or red) were collected 8 w eeks after transplantation. Summary; (1) Seed Coater soil applied to transplanted cherry tomato can enhance early fruit number. (2) SeedCoater signals more effective than LCO signal when applied to soil around transplanted roots

Figure 8. Growth promotion of potato tubers with signals grown in the field

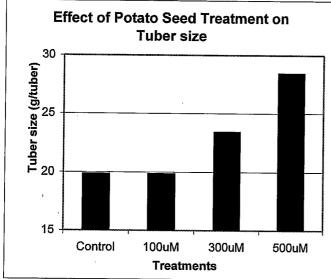
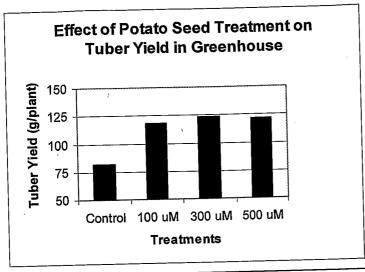
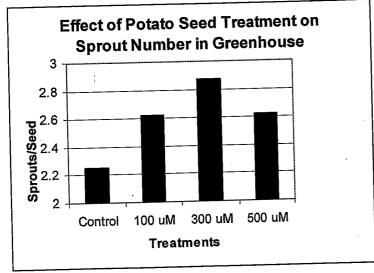




Figure 9. Growth promotion of potato tubers with signals grown in the greenhouse, 2004

International application No. PCT/CA2005/000424

A. CLASSIFICATION OF SUBJECT MATTER IPC(7): A01N 43/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC(7): A01N 43/16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used) Canadian Patent Database, Delphion, STN (legume, signal, flavonoid*)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	US 5.141.745, ROLFE et al. 25 August 1992 columns 1 and 4-5 cited in the application	17-32
х	WO97-26363, COCKING, E. C. D. 24 July 1997 claims	1-16
Y	CA 2.243.669, SMITH et al. 21 January 2000 claims	1-16
Y .	CA 2.285.727, SMITH et al. 8 April, 2001 pages 2-4	1-32

[X] F	Further documents are listed in the cont	inuation of Box C.	[X]	See patent family annex.
*	Special categories of cited documents :		"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"	document defining the general state of the art wl to be of particular relevance	nich is not considered	"X"	
"E"	earlier application or patent but published on or filing date	after the international	• *	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L"	document which may throw doubts on priority c cited to establish the publication date of another special reason (as specified)	laim(s) or which is citation or other	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O"	document referring to an oral disclosure, use, ex		"&"	document member of the same patent family
"P"	document published prior to the international filth the priority date claimed	ing date but later than		
Date	of the actual completion of the internat	ional search	Date	of mailing of the international search report
9 May	y 2005 (09-05-2005)		11 Ju	ly 2005 (11-07-2005)
Name	e and mailing address of the ISA/CA		Autho	orized officer
Place 50 Vi Gatin	dian Intellectual Property Office du Portage I, C114 - 1st Floor, Box Po ictoria Street deau, Quebec K1A 0C9 mile No.: 001(819)953-2476	CT	Sopi	nie Beaudoin (819) 956-6128

rnational application No. _ \(\textstyle \cappa \) CA2005/000424

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of the first sheet					
This internation reasons:	nal search report has not been established in respect of certain claims under Article 17(2)(a) for the following				
1. [] Claim becau	Nos.: se they relate to subject matter not required to be searched by this Authority, namely:				
2. [X] Claim becau that n	Nos.: 1-32 se they relate to parts of the international application that do not comply with the prescribed requirements to such an extent o meaningful international search can be carried out, specifically:				
	earch has been limited to the definition of the term "signal" found on page 3 of the description wherein "signal" means lic compounds, flavones, isoflavones and flavanones.				
3. [] Claim becau	Nos.: se they are dependant claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box No. III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)				
This International	I Searching Authority found multiple inventions in this international application, as follows:				
	required additional search fees were timely paid by the applicant, this international search report covers all able claims.				
	searchable claims could be searched without effort justifying additional fees, this Authority did not invite ent of additional fees.				
	ly some of the required additional search fees were timely paid by the applicant, this international search report only those claims for which fees were paid, specifically claim Nos.:				
	quired additional search fees were timely paid by the applicant. Consequently, this international search report is				
restric	ted to the invention first mentioned in the claims; it is covered by claim Nos. :				
Ren	nark on Protest [] The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.				
	[] The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.				
	[] No protest accompanied the payment of additional search fees.				

International application No. PCT/CA2005/000424

Category*	Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.						
Y	WO 01-26465, SMITH et al. 19 April 2001 pages 1, 4, 6 cited in the application	1-32					
37							
X Y	CA 2.179.879, SMITH et al. 24 February 2004 pages 1, 3, 5-6, 10 cited in the application	17-32 10-16					
Y	WO 00-04778, SMITH et al. 3 February 2000 pages 1-4 cited in the application	17-32					
Y	US 5.229.113, KOSSLAK et al. 20 July 1993 columns 5, 9-11 cited in the application	10-16, 26-32					
X	CA 2.439.421, BEGUM et al.	17-32					
Y	4 October 2001 pages 1-3, claims cited in the application	10-16					
X	Soil Biol. Biochem., HUNGRIA et al. vol. 29, No. 5/6, (1997) p.819-830 abstract, pages 819, 822, 825-826	17-25, 26-32					
	J. Plant Biochem. & Biotech., JAIN et al. vol. 11, (January 2002), p. 1-10 pages 1-3, 6-8	17-25					
	EP 245.931, ROLFE et al. 19 November 1991 page 4	1-32					

Information on patent family members

International application No. PCT/CA2005/000424

Patent Document Cited in Search Report	Publication Date	Patent Family Member(s)	Publication Date	
US5141745	25-08-1992	AU593627 B2 AU7073387 A EP0245931 A2 NZ219751 A ZA8702087 A	15-02-1990 01-10-1987 19-11-1987 26-02-1990 29-06-1988	
WO9726363	24-07-1997	AU1394697 A GB9601110D D0	11-08-1997 20-03-1996	
CA2243669	21-01-2000	AT230928T T AU4892499 A CA2338108 A1 DE69904939D D1 DK1098567T T3 EP1098567 A1 ES2192389T T3 MXPA01000755 A WO0004778 A1	15-02-2003 14-02-2000 03-02-2000 20-02-2003 02-06-2003 16-05-2001 01-10-2003 08-04-2002 03-02-2000	
CA2285727	08-04-2001	AU7766700 A CA2382614 A1 EP1221846 A1 IL149032D D0 WO0126465 A1	23-04-2001 19-04-2001 17-07-2002 10-11-2002 19-04-2001	
WO0126465	19-04-2001	AU7766700 A CA2285727 A1 CA2382614 A1 EP1221846 A1 IL149032D D0	23-04-2001 08-04-2001 19-04-2001 17-07-2002 10-11-2002	
CA2179879	26-12-1997	NONE		
WO0004778	03-02-2000	AT230928T T AU4892499 A CA2243669 A1 CA2338108 A1 DE69904939D D1 DK1098567T T3 EP1098567 A1 ES2192389T T3 MXPA01000755 A	15-02-2003 14-02-2000 21-01-2000 03-02-2000 20-02-2003 02-06-2003 16-05-2001 01-10-2003 08-04-2002	
US5229113	20-07-1993	NONE		
CA2439421	04-10-2001	AU2990501 A WO0172126 A1	08-10-2001 04-10-2001	
EP245931	19-11-1987	AU7073387 A AU593627 B2 US5141745 A NZ219751 A ZA8702087 A	01-10-1987 15-02-1990 25-08-1992 26-02-1990 29-06-1988	