
THE NATIONAL MATHA UNA AT MAN UNITATE US009753757B2

(12) United States Patent
Dow et al .

(10) Patent No . : US 9 , 753 , 757 B2
(45) Date of Patent : * Sep . 5 , 2017

(58) (54) MACHINE LEARNING FOR VIRTUAL
MACHINE MIGRATION PLAN
GENERATION

Field of Classification Search
CPC GOOF 9 / 45558 ; G06F 2009 / 4557 ; GOWN

99 / 005
(Continued)

References Cited
U . S . PATENT DOCUMENTS

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US) (56)

(72)
7 , 761 , 401 B2 *

Inventors : Eli M . Dow , Wappingers Falls , NY
(US) ; Thomas D . Fitzsimmons ,
Poughkeepsie , NY (US) ; Jessie Yu ,
Wappingers Falls , NY (US) 8 , 180 , 298 B2 *

7 / 2010 Dorai . HO4L 67 / 325
706 / 45

5 / 2012 Drude HO4W 88 / 06
455 / 41 . 2

(Continued) (73) Assignee : INTERNATIONAL BUSINESS
MACHINES CORPORATION ,
Armonk , NY (US) OTHER PUBLICATIONS

@ (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 72 days .
This patent is subject to a terminal dis
claimer .

(21) Appl . No . : 14 / 841 , 803

(22) Filed : Sep . 1 , 2015

(65) Prior Publication Data

US 2016 / 0314014 A1 Oct . 27 , 2016

Bari et al . , " CONCR : Optimal VM Migration Planning in Cloud
Data Centers , ” 2014 IFIP Networking Conference , Jun . 2 - 4 , 2014 . *

(Continued)
Primary Examiner — Qing Chen
Assistant Examiner — Andrew M Lyons
(74) Attorney , Agent , or Firm — Cantor Colburn LLP ;
Steven Chiu
(57) ABSTRACT
Embodiments relate to generating a virtual machine (VM)
migration plan . A method includes determining an initial
mapping of VMs to hosts as an origin state and a final
mapping of VMs to hosts as a goal state . Candidate paths are
generated from the initial mapping to the final mapping . The
candidate paths are evaluated based on a heuristic state
transition cost from the origin state through intermediate
states to the goal state by recursively obtaining a list of
transitions that a parent state underwent . A heuristic goal
cost is identified to reach the goal state from the intermediate
states based on a fewest number of VM movements . The
VM migration plan is generated based on the heuristic state
transition cost of the candidate paths in combination with the
heuristic goal cost of a sequence of transitions from the
origin state to the goal state having a lowest total cost .

17 Claims , 7 Drawing Sheets

Related U . S . Application Data
(63) Continuation of application No . 14 / 694 , 011 , filed on

Apr . 23 , 2015 .
(51) Int . CI .

G06F 9 / 455 (2006 . 01)
GOON 99 / 00 (2010 . 01)

(52) U . S . CI .
CPC G06F 9 / 45558 (2013 . 01) ; G06N 99 / 2005

(2013 . 01) ; G06F 2009 / 4557 (2013 . 01)

400

402

SEQUENTIALLY SCAN A VIRTUAL MACHINE MIGRATION PLAN FOR ONE OR MORE VIRTUAL
MACHINES THAT MOVE AT LEAST TWICE TO DEFINE PARALLELISM GATES

404

GENERATE ONE OR MORE CANDIDATE PARALLEL MIGRATION PLANS BASED ON THE PARALLELISM
GATES IN COMBINATION WITH SERIAL MIGRATIONS FROM THE VIRTUAL MACHINE MIGRATION
PLAN , WHERE THE ONE OR MORE CANDIDATE PARALLEL MIGRATION PLANS EACH INCLUDE AT

LEAST TWO VIRTUAL MACHINE TO HOST MOVEMENTS PERFORMED IN PARALLEL

406

COMPARE THE ONE OR MORE CANDIDATE PARALLEL MIGRATION PLANS TO DETERMINE A
COMBINATION OF THE SERIAL MIGRATIONS AND AT LEAST ONE OF THE ONE OR MORE CANDIDATE

PARALLEL MIGRATION PLANS THAT MEETS MIGRATION CRITERIA WITH A LOWEST TOTAL
MIGRATION COST

US 9 , 753 , 757 B2
Page 2

OTHER PUBLICATIONS (58) Field of Classification Search
USPC . 718 / 1
See application file for complete search history .

References Cited (56)
U . S . PATENT DOCUMENTS

8 , 185 , 894 B1 * 5 / 2012 Watson G06F 9 / 485
718 / 1

8 , 370 , 473 B2 * 2 / 2013 Glikson G06F 9 / 4856
709 / 223

8 , 880 , 477 B2 * 11 / 2014 Barker G06F 9 / 5088
707 / 649

9 , 052 , 938 B1 * 6 / 2015 Bhide GO6F 9 / 45533
9 , 336 , 042 B1 * 5 / 2016 Brenneman H04L 41 / 0813
9 , 438 , 466 B1 * 9 / 2016 O ' Gorman H04L 29 / 06

2005 / 0267885 A1 * 12 / 2005 Klier . G06F 17 / 2211
2007 / 0266383 Al * 11 / 2007 White GO6F 9 / 4856

718 / 1
2009 / 0070771 A1 * 3 / 2009 Yuyitung G06Q 10 / 06

718 / 105
2009 / 0300173 A1 * 12 / 2009 Bakman G06F 11 / 008

709 / 224
2010 / 0100879 A1 * 4 / 2010 Katiyar . G06F 8 / 20

718 / 1
2011 / 0161491 Al * 6 / 2011 Sekiguchi G06F 9 / 4856

709 / 224
2011 / 0161859 Al * 6 / 2011 Zhang GO6F 3 / 018

715 / 773
2012 / 0042311 A1 * 2 / 2012 Biran GO6F 9 / 45558

718 / 1
2012 / 0054731 A1 * 3 / 2012 Aravamudan G06F 8 / 63

717 / 170
2012 / 0137285 A1 * 5 / 2012 Glikson G06F 9 / 5077

718 / 1
2012 / 0284710 A1 * 11 / 2012 Vinberg GO6F 9 / 45533

718 / 1
2012 / 0297307 A1 * 11 / 2012 Rider G06F 11 / 3433

715 / 736
2012 / 0324112 A1 * 12 / 2012 Dow GO6F 9 / 5077

709 / 226
2013 / 0339956 A1 * 12 / 2013 Murase GO6F 9 / 505

718 / 1
2013 / 0346619 A1 * 12 / 2013 Panuganty HO4L 41 / 12

709 / 226
2014 / 0215073 A1 * 7 / 2014 Dow H04L 67 / 10

709 / 226
2015 / 0089010 A1 * 3 / 2015 Tsirkin G06F 12 / 126

709 / 212
2016 / 0034362 A1 * 2 / 2016 Al - Wahabi G06F 11 / 203

714 / 4 . 1

Lester , Patrick , “ A * Pathfinding for Beginners , ” Jul . 18 , 2005 , last
retrieved from www . policyalmanac . org / games / aStarTutorial . htm on
Jan . 22 , 2017 . *
Wikipedia , “ A * search algorithm , ” Mar . 1 , 2015 , last retrieved from
https : / / en . wikipedia . org / w / index . php ? title = A * _ search _ algorithm
& oldid = 649438130 on Jan . 22 , 2017 . *
Akoush et al . , “ Predicting the Performance of Virtual Machine
Migration , ” 2010 IEEE International Symposium on Modeling ,
Analyzis & Simulation of Computer and Telecommunication Sys
tems , Sep . 23 , 2010 . *
Al - Haj , Saeed and Al - Shaer , Ehab , “ A Formal Approach for Virtual
Machine Migration Planning , ” 9th International Conference on
Network and Service Management , Jan . 30 , 2014 . *
Hu et al . , " A Quantitative Study of Virtual Machine Live Migra
tion , ” Proceedings of the 2013 ACM Cloud and Autonomic Com
puting Conference , 2013 . *
Petrucci , Vinicius , “ Thesis Proposal : Dynamic Optimization of
Power and Performance for Virtualized Server Clusters , ” Sep . 2010 ,
last retrieved from http : / / www2 . ic . uff . br / ~ vpetrucci / proposal . pdf on
Mar . 27 , 2017 . *
Wang et al . , “ A Decentralized Virtual Machine Migration Approach
of Data Centers for Cloud Computing , ” Mathematical Problems in
Engineering , 2013 . *
Xu , Gaochao et al . , “ A Heuristic Location Selection Strategy of
Virtual Machine Based on the Residual Load Factor , ” Journal of
Computational Information Systems 9 : 18 , 2013 . *
Zhao et al . , “ A Heuristic Placement Selection of Live Virtual
Machine Migration for Energy - Saving in Cloud Computing Envi
ronment , ” PLoS One , Sep . 24 , 2014 . *
List of IBM Patents or Patent Applications Treated as Related , Sep .
1 , 2015 , 2 pages .
U . S . Appl . No . 14 / 694 , 011 , filed Apr . 23 , 2015 , Entitled : “ Machine
Learning for Virtual Machine Migration Plan Generation , ” First
Named Inventor : Eli M . Dow .
List of IBM Patents or Patent Applications Treated as Related , Apr .
27 , 2017 , 2 pages .
U . S . Appl . No . 15 / 496 , 372 , filed Apr . 25 , 2017 , Entitled : " Machine
Learning for Virtual Machine Migration Plan Generation , ” First
Named Inventor : Eli M . Dow .

.

* cited by examiner

OS * * *

cret

U . S . Patent

wwwxYYYYYYYY
vivin
t

* *

* * * *

*

*

2 JOMPUTER SYSTEM / SERVER

097

W WWWWWWWWW

Beit

AN

LY

W

www STORAGE
DAUDUL

oooo
ooooooo00oodoooooooooooooooood

XXXXXXXXXXXXXXXXXX

Sep . 5 , 2017

wwwNTM NSSON
myM00000000000

poo0000000

40

mod

mm

77W

0000000000000000000000000000000000000OOOOOOOOOOOOOOOOoo000000000000000000000000

- = 0
Y

42

YYY

g

MMXXXXX
*

*

Sheet 1 of 7

MMMMMMMM
MMMM

Masia

VO

NETWOX ADAPTER

.

: : 11 : 17 : 1111111

NEFACES

TTTTTTTTTTTTTT

MMMMMMMMM
WW

3

(

S0100
pooooooo00000000000

estdestacadesea escascade

S

FIG . 1

US 9 , 753 , 757 B2

US 9 , 753 , 757 B2 Sheet 2 0f7 Sep . 5 , 2017 U , S , Patent

L

?

??????????????????????????????

? ???????????
8 ???

?? r ????????? } ?????????????????????????? ?????????????? ??? ?????????????????????? ? ???????????????????????? ??? ???????????????
*

???? ?????????????????

? ???????????
i rrrrrrrrrr

????????????????????? ????? ??????? ?????
???????????????????? ???

?????????????? ?? .

???????????
?

? ????? ?? 4 ???

?????????

FIG . 2
???????? . ?

t ? ??? ? ?????? ???? ??? ?

????????
wwww

???? ????? ?????? ??? ?? ? ?????? ? ? ?? ???

?????????????????? ?
???????????? ??? ? 23 ?? ?????? ????????????? ? thr

????????????? ?????? ; ???? ??? 1 ; rrrnwnnnmnnmnnnn ?????????? ???
F8

?????????????? ? ?????
??????? ?

US 9 , 753 , 757 B2 Sheet 3 0f7 Sep . 5 , 2017 U , S , Patent

? ???? ? » - fT « ??? ? ? ! ? (. fF ??? ??? ? ; f ? ????? ? - ; » : r ?????? ? 4 : f ?????? ? ?? fr

????????? ??? : 1 - ; ir ??? ? ! ! ! ? . ? ! ? 4 ? % F

ifti . it / ? ???????? ??? : ? ? ! 11 ?? 1 ? ? . xv - ? : ???????? ? ??? ? ??? ? : fir : : ??
? ???????

? » : ? : 1 ? ? ?? ? ? ? ? ???? ? rit f

? ? ?? -) ftre ? ii x
«
ifqrxw 418

???? ? xf ? « ????????????? ? ; iiii M ? f

? ? r ? ? ? ? - 1 ! , ? ' ! ?? ? ? r s ?? ???????? ?
? ? ; iq ???

di ? ? ? Pr ? ???????? ? ; T PriJ
£ ; f ?????????????????? ?

- ! r
fy . i ? s

???????????? ? ? ? ????????????? ? : ? f ff ????? " ; ; 341 * ; * ???

?

???????????? ? 68

116 : : ????? ; : 14 ??? - ff ?? » : ffrigi : ' ? ; 1 ; ? ??? : ?? : : : - ? ; q : : ?????

???????

?? ?? ; ; ; ; ; ; ??

??? fr . 4i1

?????? ? x ??? ? } ??? ; ; i ??? ????? '

?????????? ht f
wwwrw ? ?
??????? Prw 43554433 ? ??? ??????????????????? ??? . ? ? iffg ? : ? 11 - ; - ????

: : : ? ???? ? ? ?? ? if f
' r

???????????????

- ; trritya ???? ? ? ? i ? ? ? r ?? ?
6 ??????????? ??????????????? ????????? ? ?????????

14 : ?????????????????? ??? ? ; tijF ??????????? imiifr . 4f rv - td : i

111 ? ?????? ? 41 ? « ! ! 1 ? | ????????? ???? ? : ; 4 :

14 : * ??? i fr ??? ? ! ! ! J ?

? ? ;

? ?????????????
????

? ??????? - wwwr ?? & © GGGG ?? 3 ? ?? ??????????????????????????????? 6 ? ??

???? - t # } } - : . & - ? ? ? ?? ?????????? ?? » - ? wiff

s
- irir
-

???? ???????????? ? : iii ? ?? ? ? irr ?????????????????????? M ?????????? ? ????????????????? ????? ? iiiiiimuiiiiiitiiiimi ????? r ???] moi

41 . fuiit ? ?

; ir ??? ? : ; . - ; ? ! ! ! ?? ? ? ? 4 . ? ? ??????? rv * * 43 ; ???????? ; ; M ? ? ? ? ????
11 - ; ivi ? - * ??? ? ; % 1 : : 41 - fiifr ??

???????? ? : ? ? ????? 11 ??

?

FIG . 3
?? ? ? ? ? ? ? ? ????? 55 ? ?????????????? 5111111111111 ???? ? ? ? ivita ? ; ir & ? ??? i ! - iii ? r dif : fm ? ? 43 =

* 41 ??????? -
qz « ui : f

?? d tv ???? ?
! - ' i ?? ? ' r } * * * ? ??? - ff ??? , ; - ith ?????
; ? ; : * ???????????? $ 16 ? ???? ?

? ' : & ? * * ? 4 ?? ; * £ ?? ? * * 4 "

r ' r

i ? » -
. ' f '

et -

if ? ? ? ? ? ????? * : ??? it mi

6 ?

???? q141 :
???
-

: - r " ni .

? ! * * : ???? 310 ??

???????? ; * I ???? ? ? 143 - t : : ? . ? : f :
- itur ?? ; " ; 41 ' ; ????? » : ?? ? ?? ? ?

dii ; - ; : . 4 * ' r ? : yaki

fir ? ? - ii ; ! ? :

13 F ?? " ? ; ?? - iifi ? -
t i1rrx - i

?••• # # i ??? : £

??? : f ?

r ????? ??? ius f1 tv
? - : : : : F … H

? ??????? - ! wyid ! ? » & ff ? :

irrrrrrr + + + + + +

? ?????? ? ?

? ? ?????????????????? ??? ?????????????????????
? ? ; ; ; ; ??????????????

????????????????????????
?????????????????????????? ? wwwvwwwmwwww ? 3

??????????
' wwwrw ?

? : . : £1 - « + ??? irai ???? : xii

fat . 4fri
?? 1 ? ????? » ! ; % } }

- -

??????????????????

? ? ? ? rv - ? ? ? ? ??? ???? ? ????????? ? : ?? : : : - - iifr ? ? Tr

4 ? ???? Ifry y ??? : iJ ?? ? | ????? ?? ?
??? ??? ??? ? f ? ?????? ?????? ?

?????? - ir ???? ? ; Hai

qvirpi : fr : ; ? - i ; ? : r -

tirm ?? ???? ? : ? ii fiti / f
rrwxxxxxxxxx « ? ? ?

www - www
?

???? wI ; r - ? ; : w ? ? wiF ? if ? «
iv - v

? ?

? ? ! ? ?? - ? » #

irir ; 111 ' r ' - $ - # &
cfr frei ? 8 - ir ?? ? :

?????????? ! ??

?? ? jir - f ; « : ! . ????? 4 : 53 ? ??????
???? » + ??????? (; i ?

? ? is ??? ? ; ? - f ? ??????? r * 34 ?

???? ! i : j ?

100

102B

HOST

U . S . Patent

108
I

110 110

102C

HOST

HOST

VM4

108

Open
VM5

Open

108

110 ,

SER

VM6

VM7

VM9

VM8

U *

I

. # R # # #

VM1

VM2
VM3

Open

Hypervisor
104B

Sep . 5 , 2017

ET

Hypervisor
104C

Hypervisor
104A

106

HOST

102D

HOST

108

Sheet 4 of 7

102A

110

108

VM14

VM15
VM16

Open

VM10

VM11
VM12
VM13

Hypervisor
104E

Hypervisor
104D

102E

FIG . 4

US 9 , 753 , 757 B2

200

INTERMEDIATE STATE

U . S . Patent

206

Intermediate Mapping of VMs to Hosts

208

INTERMEDIATE STATE
INTERMEDIATE STATE

Sep . 5 , 2017

Intermediate Mapping of VMs to Hosts

ORIGIN STATE

Intermediate Mapping of VMs to Hosts

GOAL STATE

Initial Mapping of VMs to Hosts

Final Mapping of VMs to Hosts

INTERMEDIATE STATE
INTERMEDIATE STATE

Sheet 5 of 7

202

204

Intermediate Mapping of VMs to Hosts

Intermediate Mapping of VMs to Hosts

208A

206A

INTERMEDIATE STATE
208B

FIG . 5

Intermediate Mapping of VMs to Hosts

206B -

US 9 , 753 , 757 B2

300

302

U . S . Patent

DETERMINE AN INITIAL MAPPING OF A PLURALITY OF VIRTUAL MACHINES TO A PLURALITY OF HOSTS AS AN ORIGIN STATE

304

DETERMINE A FINAL MAPPING OF THE VIRTUAL MACHINES TO THE HOSTS AS A GOAL STATE

306

Sep . 5 , 2017

GENERATE A PLURALITY OF CANDIDATE PATHS TO TRANSITION FROM THE INITIAL MAPPING TO THE FINAL MAPPING

308

EVALUATE THE CANDIDATE PATHS BASED ON A HEURISTIC STATE TRANSITION COST TO TRANSITION FROM THE ORIGIN STATE THROUGH INTERMEDIATE STATES TO THE GOAL STATE BY RECURSIVELY OBTAINING A LIST OF TRANSITIONS THAT A PARENT STATE UNDERWENT TO REACH THE PARENT STATE FROM THE ORIGIN STATE

Sheet 6 of 7

310

IDENTIFY A HEURISTIC GOAL COST TO REACH THE GOAL STATE FROM THE INTERMEDIATE STATES BASED ON A FEWEST NUMBER OF VIRTUAL MACHINE MOVEMENTS

312

GENERATE THE VIRTUAL MACHINE MIGRATION PLAN BASED ON THE HEURISTIC STATE TRANSITION COST OF THE CANDIDATE PATHS IN COMBINATION WITH THE HEURISTIC GOAL COST OF A SEQUENCE OF TRANSITIONS FROM THE ORIGIN STATE TO THE GOAL STATE HAVING A LOWEST TOTAL COST

FIG . 6

US 9 , 753 , 757 B2

400

U . S . Patent

402

SEQUENTIALLY SCAN A VIRTUAL MACHINE MIGRATION PLAN FOR ONE OR MORE VIRTUAL
MACHINES THAT MOVE AT LEAST TWICE TO DEFINE PARALLELISM GATES

404

Sep . 5 , 2017

GENERATE ONE OR MORE CANDIDATE PARALLEL MIGRATION PLANS BASED ON THE PARALLELISM GATES IN COMBINATION WITH SERIAL MIGRATIONS FROM THE VIRTUAL MACHINE MIGRATION PLAN , WHERE THE ONE OR MORE CANDIDATE PARALLEL MIGRATION PLANS EACH INCLUDE AT LEAST TWO VIRTUAL MACHINE TO HOST MOVEMENTS PERFORMED IN PARALLEL

Sheet 7 of 7

406

COMPARE THE ONE OR MORE CANDIDATE PARALLEL MIGRATION PLANS TO DETERMINE A COMBINATION OF THE SERIAL MIGRATIONS AND AT LEAST ONE OF THE ONE OR MORE CANDIDATE PARALLEL MIGRATION PLANS THAT MEETS MIGRATION CRITERIA WITH A LOWEST TOTAL MIGRATION COST FIG . 7

US 9 , 753 , 757 B2

US 9 , 753 , 757 B2

10

MACHINE LEARNING FOR VIRTUAL with the heuristic goal cost of a sequence of transitions from
MACHINE MIGRATION PLAN the origin state to the goal state having a lowest total cost .

GENERATION Additional features and advantages are realized through
the techniques of the present invention . Other embodiments

DOMESTIC PRIORITY 5 and aspects of the invention are described in detail herein
and are considered a part of the claimed invention . For a

This application is a continuation of U . S . patent applica - better understanding of the invention with the advantages
tion Ser . No . 14 / 694 , 011 filed Apr . 23 , 2015 , the content of and the features , refer to the description and to the drawings .
which is incorporated by reference herein in its entirety .

10 BRIEF DESCRIPTION OF THE DRAWINGS
BACKGROUND

The subject matter which is regarded as the invention is
The present disclosure relates to management of virtual particularly pointed out and distinctly claimed in the claims

machines and , more specifically , using machine learning for at the conclusion of the specification . The forgoing and other
virtual machine migration plan generation . 15 features , and advantages of the invention are apparent from

A contemporary virtual machine (VM) is a software the following detailed description taken in conjunction with
implementation of a machine (i . e . , a computer) that executes the accompanying drawings in which :
programs like a physical machine . The VM typically emu - FIG . 1 depicts a cloud computing node according to an
lates a physical computing environment , but requests for embodiment ;
central processing unit (CPU) , memory , hard disk , network 20 FIG . 2 depicts a cloud computing environment according
and other hardware resources are managed by a virtualiza - to an embodiment ;
tion layer which translates these requests to the underlying FIG . 3 depicts abstraction model layers according to an
physical hardware . VMs are created within a virtualization embodiment ;
layer , such as a hypervisor or a virtualization platform that FIG . 4 depicts a block diagram of a virtual machine to
runs on top of a client or server operating system . The 25 host mapping where machine learning can be applied for
virtualization layer is typically used to create many indi - virtual machine migration plan generation according to an
vidual , isolated VMs within a single , physical machine . embodiment ;
Multiple VMs are typically used in server consolidation , FIG . 5 depicts a block diagram of possible state transi
where different services that were previously run on indi tions analyzed during machine learning to generate a virtual
vidual machines are instead run in isolated VMs on the same 30 machine migration plan generation according to an embodi
physical machine . ment ;

A persistent challenge to providers of cloud hosting and FIG . 6 depicts a flow diagram of a process for generating
other network management services is the efficient use of a virtual machine migration plan according to an embodi
system resources . Efficient allocation of VMs to different ment ; and
network nodes , e . g . , network servers , is desired in order to 35 FIG . 7 depicts a flow diagram of a process for including
maximize the use of network resources and reduce the parallelism when generating a virtual machine migration
number of physical servers and / or physical resources plan according to an embodiment .
required to provide computing services to customers . Mod
ern virtual machine management software seeks either con DETAILED DESCRIPTION
solidation of VMs for power savings or load - balancing for 40
performance . While various methods for computing a better Exemplary embodiments relate to using machine learning
load - balanced or consolidated goal state exist , the process of for virtual machine (VM) migration plan generation .
determining a migration plan to get from the system ' s Embodiments can enforce both a colocation and an anti
current state to the desired goal is particularly challenging colocation policy using colocation and anti - colocation con
as a large number of intermediate states may be needed and 45 tracts .
some intermediate states may not be directly achievable due A VM migration plan can be created by processing a first
to a number of system constraints . mapping of VMs to hosts along with a second mapping of

VMs to hosts . Pre - processing can be performed followed by
SUMMARY machine search techniques with heuristics and pruning

50 mechanisms to generate serialized optimal paths from the
According to an embodiment , a method for generating a first state (i . e . , an origin state) to a second state (i . e . , a goal

virtual machine migration plan using machine learning is state) . The serialized output can be further processed into a
provided . The method includes determining an initial map - parallel plan that achieves faster convergence (i . e . , time to
ping of a plurality of virtual machines to a plurality of hosts achieve the goal state from the origin state) through live
as an origin state and determining a final mapping of the 55 guest migration . The net result is that convergence time to an
virtual machines to the hosts as a goal state . Candidate paths idealized virtual data center from an arbitrary virtualized
are generated to transition from the initial mapping to the data center is reduced drastically .
final mapping . The candidate paths are evaluated based on a A naïve migration plan generation solution considers only
heuristic state transition cost to transition from state - to - state the present mapping of VMs to hosts along with the ideal
from the origin state through a plurality of intermediate 60 ized mapping of VMs to host . For instance , a loop may
states to the goal state by recursively obtaining a list of identify the original host for each VM and the idealized
transitions that a parent state underwent to reach the parent destination host for that same VM . In practice , simply begin
state from the origin state . A heuristic goal cost is identified executing migrations according to such a scheme is not
to reach the goal state from the intermediate states based on possible . Constraints such as hypervisor low - memory con
a fewest number of virtual machine movements . The virtual 65 ditions , VM : VM anti - colocation constraints , and VM : Host
machine migration plan is generated based on the heuristic anti - colocation constraints quickly foil such schemes in
state transition cost of the candidate paths in combination anything beyond a trivial cloud computing environment .

US 9 , 753 , 757 B2

What is needed is a method for finding a substantially . The consumer does not manage or control the underlying
optimal path from the current (origin) state to the optimized cloud infrastructure including networks , servers , operating
(goal) state according to a set of valid transition rules that systems , or storage , but has control over the deployed
must be enforced at each step along the way . In exemplary applications and possibly application hosting environment
embodiments , a variation of an A - star (A *) search algorithm 5 configurations .
can be employed to generate a VM migration plan . Infrastructure as a Service (IaaS) : the capability provided

It is understood in advance that although this disclosure to the consumer is to provision processing , storage , net
includes a detailed description on cloud computing , imple - works , and other fundamental computing resources where
mentation of the teachings recited herein are not limited to the consumer is able to deploy and run arbitrary software ,
a cloud computing environment . Rather , embodiments of the 10 which can include operating systems and applications . The
present invention are capable of being implemented in consumer does not manage or control the underlying cloud
conjunction with any other type of computing environment infrastructure but has control over operating systems , stor
now known or later developed . age , deployed applications , and possibly limited control of

Cloud computing is a model of service delivery for select networking components (e . g . , host firewalls) .
enabling convenient , on - demand network access to a shared 15 Deployment Models are as follows :
pool of configurable computing resources (e . g . networks , Private cloud : the cloud infrastructure is operated solely
network bandwidth , servers , processing , memory , storage , for an organization . It may be managed by the organization
applications , virtual machines , and services) that can be or a third party and may exist on - premises or off - premises .
rapidly provisioned and released with minimal management Community cloud : the cloud infrastructure is shared by
effort or interaction with a provider of the service . This cloud 20 several organizations and supports a specific community that
model may include at least five characteristics , at least three has shared concerns (e . g . , mission , security requirements ,
service models , and at least four deployment models . policy , and compliance considerations) . It may be managed

Characteristics are as follows : by the organizations or a third party and may exist on
On - demand self - service : a cloud consumer can unilater - premises or off - premises .

ally provision computing capabilities , such as server time 25 Public cloud : the cloud infrastructure is made available to
and network storage , as needed automatically without the general public or a large industry group and is owned by
requiring human interaction with the service ' s provider . an organization selling cloud services

Broad network access : capabilities are available over a Hybrid cloud : the cloud infrastructure is a composition of
network and accessed through standard mechanisms that two or more clouds (private , community , or public) that
promote use by heterogeneous thin or thick client platforms 30 remain unique entities but are bound together by standard
(e . g . , mobile phones , laptops , and PDAs) . ized or proprietary technology that enables data and appli
Resource pooling : the provider ' s computing resources are cation portability (e . g . , cloud bursting for load balancing

pooled to serve multiple consumers using a multi - tenant between clouds) .
model , with different physical and virtual resources dynami A cloud computing environment is service oriented with
cally assigned and reassigned according to demand . There is 35 a focus on statelessness , low coupling , modularity , and
a sense of location independence in that the consumer semantic interoperability . At the heart of cloud computing is
generally has no control or knowledge over the exact an infrastructure comprising a network of interconnected
location of the provided resources but may be able to specify nodes .
location at a higher level of abstraction (e . g . , country , state , Referring now to FIG . 1 , a schematic of an example of a
or datacenter) . 40 cloud computing node is shown . Cloud computing node 10

Rapid elasticity : capabilities can be rapidly and elastically is only one example of a suitable cloud computing node and
provisioned , in some cases automatically , to quickly scale is not intended to suggest any limitation as to the scope of
out and rapidly released to quickly scale in . To the consumer , use or functionality of embodiments of the invention
the capabilities available for provisioning often appear to be described herein . Regardless , cloud computing node 10 is
unlimited and can be purchased in any quantity at any time . 45 capable of being implemented and / or performing any of the
Measured service : cloud systems automatically control functionality set forth hereinabove .

and optimize resource use by leveraging a metering capa - In cloud computing node 10 there is a computer system /
bility at some level of abstraction appropriate to the type of server 12 , which is operational with numerous other general
service (e . g . , storage , processing , bandwidth , and active user purpose or special purpose computing system environments
accounts) . Resource usage can be monitored , controlled , and 50 or configurations . Examples of well - known computing sys
reported providing transparency for both the provider and tems , environments , and / or configurations that may be suit
consumer of the utilized service . able for use with computer system / server 12 include , but are

Service Models are as follows : not limited to , personal computer systems , server computer
Software as a Service (SaaS) : the capability provided to systems , thin clients , thick clients , hand - held or laptop

the consumer is to use the provider ' s applications running on 55 devices , multiprocessor systems , microprocessor - based sys
a cloud infrastructure . The applications are accessible from tems , set top boxes , programmable consumer electronics ,
various client devices through a thin client interface such as network PCs , minicomputer systems , mainframe computer
a web browser (e . g . , web - based e - mail) . The consumer does systems , and distributed cloud computing environments that
not manage or control the underlying cloud infrastructure include any of the above systems or devices , and the like .
including network , servers , operating systems , storage , or 60 Computer system / server 12 may be described in the
even individual application capabilities , with the possible general context of computer system executable instructions ,
exception of limited user - specific application configuration such as program modules , being executed by a computer
settings . system . Generally , program modules may include routines ,

Platform as a Service (SaaS) : the capability provided to programs , objects , components , logic , data structures , and so
the consumer is to deploy onto the cloud infrastructure 65 on that perform particular tasks or implement particular
consumer - created or acquired applications created using abstract data types . Computer system / server 12 may be
programming languages and tools supported by the provider . practiced in distributed cloud computing environments

US 9 , 753 , 757 B2

where tasks are performed by remote processing devices that area network (WAN) , and / or a public network (e . g . , the
are linked through a communications network . In a distrib Internet) via network adapter 20 . As depicted , network
uted cloud computing environment , program modules may adapter 20 communicates with the other components of
be located in both local and remote computer system storage computer system / server 12 via bus 18 . It should be under
media including memory storage devices . 5 stood that although not shown , other hardware and / or soft
As shown in FIG . 1 , computer system / server 12 in cloud ware components could be used in conjunction with com

computing node 10 is shown in the form of a computing puter system / server 12 . Examples , include , but are not
device . The components of computer system / server 12 may limited to : microcode , device drivers , redundant processing
include , but are not limited to , one or more processors or units , external disk drive arrays , RAID systems , tape drives ,
processing units 16 , a system memory 28 , and a bus 18 that 10 and data archival storage systems , etc .
couples various system components including system Referring now to FIG . 2 , illustrative cloud computing
memory 28 to processor 16 . environment 50 is depicted . As shown , cloud computing

Bus 18 represents one or more of any of several types of environment 50 comprises one or more cloud computing
bus structures , including a memory bus or memory control nodes 10 with which local computing devices used by cloud
ler , a peripheral bus , an accelerated graphics port , and a 15 consumers , such as , for example , personal digital assistant
processor or local bus using any of a variety of bus archi - (PDA) or cellular telephone 54A , desktop computer 54B ,
tectures . By way of example , and not limitation , such laptop computer 54C , and / or automobile computer system
architectures include Industry Standard Architecture (ISA) 54N may communicate . Nodes 10 may communicate with
bus , Micro Channel Architecture (MCA) bus , Enhanced ISA one another . They may be grouped (not shown) physically or
(EISA) bus , Video Electronics Standards Association 20 virtually , in one or more networks , such as Private , Com
(VESA) local bus , and Peripheral Component Interconnects munity , Public , or Hybrid clouds as described hereinabove ,
(PCI) bus . or a combination thereof . This allows cloud computing

Computer system / server 12 typically includes a variety of environment 50 to offer infrastructure , platforms and / or
computer system readable media . Such media may be any software as services for which a cloud consumer does not
available media that is accessible by computer system / server 25 need to maintain resources on a local computing device . It
12 , and it includes both volatile and non - volatile media , is understood that the types of computing devices 54A - N
removable and non - removable media . shown in FIG . 2 are intended to be illustrative only and that

System memory 28 can include computer system readable computing nodes 10 and cloud computing environment 50
media in the form of volatile memory , such as random can communicate with any type of computerized device over
access memory (RAM) 30 and / or cache memory 32 . Com - 30 any type of network and / or network addressable connection
puter system / server 12 may further include other removable (e . g . , using a web browser) .
non - removable , volatile / non - volatile computer system stor Referring now to FIG . 3 , a set of functional abstraction
age media . By way of example only , storage system 34 can layers provided by cloud computing environment 50 (FIG .
be provided for reading from and writing to a non - remov - 2) is shown . It should be understood in advance that the
able , non - volatile magnetic media (not shown and typically 35 components , layers , and functions shown in FIG . 3 are
called a “ hard drive ”) . Although not shown , a magnetic disk intended to be illustrative only and embodiments of the
drive for reading from and writing to a removable , non invention are not limited thereto . As depicted , the following
volatile magnetic disk (e . g . , a “ floppy disk ”) , and an optical layers and corresponding functions are provided :
disk drive for reading from or writing to a removable , Hardware and software layer 60 includes hardware and
non - volatile optical disk such as a CD - ROM , DVD - ROM or 40 software components . Examples of hardware components
other optical media can be provided . In such instances , each include : mainframes 61 ; RISC (Reduced Instruction Set
can be connected to bus 18 by one or more data media Computer) architecture based servers 62 ; servers 63 ; blade
interfaces . As will be further depicted and described below , servers 64 ; storage devices 65 ; and networks and networking
memory 28 may include at least one program product having components 66 . In some embodiments , software compo
a set (e . g . , at least one) of program modules that are 45 nents include network application server software 67 and
configured to carry out the functions of embodiments of the database software 68 .
invention . Virtualization layer 70 provides an abstraction layer from

Program / utility 40 , having a set (at least one) of program which the following examples of virtual entities may be
modules 42 , may be stored in memory 28 by way of provided : virtual servers 71 ; virtual storage 72 ; virtual
example , and not limitation , as well as an operating system , 50 networks 73 , including virtual private networks ; virtual
one or more application programs , other program modules , applications and operating systems 74 ; virtual clients 75 ;
and program data . Each of the operating system , one or more and a virtual machine allocation application 76 . In an
application programs , other program modules , and program exemplary embodiment , an application , such as virtual
data or some combination thereof , may include an imple machine allocation application 76 in the virtualization layer
mentation of a networking environment . Program modules 55 70 , may implement processes or methods for determining
42 generally carry out the functions and / or methodologies of and / or performing virtual machine plan generation and
embodiments of the invention as described herein . allocations as described herein ; however , it will be under

Computer system / server 12 may also communicate with stood that the application 76 may be implemented in any
one or more external devices 14 such as a keyboard , a layer .
pointing device , a display 24 , etc . ; one or more devices that 60 In another example , management layer 80 may provide
enable a user to interact with computer system / server 12 ; the functions described below . Resource provisioning 81
and / or any devices (e . g . , network card , modem , etc .) that provides dynamic procurement of computing resources and
enable computer system / server 12 to communicate with one other resources that are utilized to perform tasks within the
or more other computing devices . Such communication can cloud computing environment . Metering and Pricing 82
occur via Input / Output (1 / 0) interfaces 22 . Still yet , com - 65 provide cost tracking as resources are utilized within the
puter system / server 12 can communicate with one or more cloud computing environment , and billing or invoicing for
networks such as a local area network (LAN) , a general wide consumption of these resources . In one example , these

US 9 , 753 , 757 B2

resources may comprise application software licenses . Secu - Every time a VM 108 migrates , a new system state exists ,
rity provides identity verification for cloud consumers and where a system state can be defined as VM to host mappings .
tasks , as well as protection for data and other resources . User FIG . 5 depicts a block diagram of possible state transitions
portal 83 provides access to the cloud computing environ 200 analyzed during machine learning to generate a virtual
ment for consumers and system administrators . Service level 5 machine migration plan generation according to an embodi
management 84 provides cloud computing resource alloca ment . An initial mapping of VMs to hosts is defined as an
tion and management such that required service levels are origin state 202 . A final mapping of VMs to hosts is defined
met . Service Level Agreement (SLA) planning and fulfill as a goal state 204 . Candidate paths are formed from the
ment 85 provides pre - arrangement for , and procurement of , origin state 202 through a plurality of intermediate states
cloud computing resources for which a future requirement is 206 to the goal state 204 . A state may be referred to as a
anticipated in accordance with an SLA . parent state if it is a transition state that occurs after the

Workloads layer 90 provides examples of functionality origin state 202 . For example , intermediate state 206A is a
for which the cloud computing environment may be utilized . parent state of origin state 202 , and intermediate state 206B
Examples of workloads and functions which may be pro - 1 is a parent state of intermediate state 206A . A heuristic state
vided from this layer include : mapping and navigation 91 ; transition cost 208 can be defined for each state - to - state
software development and lifecycle management 92 ; virtual transition . For example , heuristic state transition cost 208A
classroom education delivery 93 ; data analytics processing can be defined as a cost to transition from origin state 202
94 ; transaction processing 95 ; and mobile desktop 96 . to intermediate state 206A , while heuristic state transition

The virtual machine allocation application 76 can imple - 20 cost 208B can be defined as a cost to transition from
ment machine learning to generate a virtual machine migra intermediate state 206A to intermediate state 206B . The
tion plan to efficiently migrate VMs between hosts based on analysis of state transitions and costs can be performed by
a migration goal . FIG . 4 depicts a block diagram of a virtual the virtual machine allocation application 76 of FIG . 3 or
machine to host mapping , where machine learning can be another application running directly on physical hardware or
applied for virtual machine migration plan generation 25 in a virtualized environment .
according to an embodiment . VM - to - host mapping 100 of The virtual machine allocation application 76 of FIG . 3
FIG . 4 is a simplified example to illustrate several issues may also identify a heuristic goal cost to reach the goal state
involved with performing VM migration . In the example of 204 from the intermediate states 206 based on a fewest
FIG . 4 , hosts 102A , 102B , 102C , 102D , and 102E each number of virtual machine movements . For example , the
include at least one respective hypervisor 104A , 104B , 30 migration of VM10 and VM11 from host 102D to host 102B
104C , 104D , and 104E and communicate over a network in FIG . 4 may be accomplished using six or more VM
106 . Movement of various virtual machines 108 between the movements depending on candidate path selecting for mov
hosts 102A - E can be constrained by a number of factors . In ing the VMs . It will be understood that this is a simplified
the example of FIG . 4 , movement of VMs 108 is constrained example , and more typical environment can include dozens
such that each host 102A - E can support up to four VMs 108 35 of VMs and hosts for consideration during VM migration .
and some hosts 102A - E are not directly reachable by all of In order to have an effective implementation of machine
the hosts 102A - E . For instance , host 102A can support VM learning , such as A * , that produces a substantially optimal
migration with hosts 102B and 102E ; host 102B can support path from an origin state to a goal state , each candidate path
VM migration with hosts 102A and 102C ; host 102C can can be evaluated according to a function F (x) = H (x) + G (x) .
support VM migration with hosts 102B and 102D ; and host 40 The definition of functions H (x) and G (x) is provided below .
102D can support VM migration with hosts 102C and 102E . The H (x) function is a critical component of machine

In the VM - to - host mapping 100 , host 102A includes learning that codifies a heuristic cost of a transition from one
VM1 , VM2 , VM3 and one open slot 110 ; host 102B includes state to another . This value is defines how the cost to reach
VM4 , VM5 , and two open slots 110 ; host 102C includes any given state from the origin state is determined . Ideally ,
VM6 , VM7 , VM8 , VM9 , and no open slots 110 ; host 102D 45 each state would be interrogated , asking for the sequence of
includes VM10 , VM11 , VM12 , VM13 , and no open slots moves used to obtain this state from the origin state , and
110 ; and , host 102E includes VM14 , VM15 , VM16 , and one assigning some cost to each transition along the way . To
open slot 110 . Thus , if a goal is to migrate VM10 and VM11 assign the individual cost to each transition , a number of
from host 102D to host 102B , there are several options . For enumerations of state transition types may be defined , such
instance , VM10 and VM11 can be migrated sequentially via 50 as :
open slots 110 of hosts 102E and 102A . Alternatively , one or PARTIAL TRANSITION TYPE — This is a move that
more of VM6 - VM9 can be displaced from host 102C to places one or more VM onto the host where it ultimately
create one or two open slots 110 on host 102C such that belongs . This state transition may also be referred to as an
VM10 and VM11 can transition through host 102C to host intuitive move because it is what human players of a pen and
102B . As a further alternative , either VM10 or VM11 can 55 paper simulation would be likely to try .
transition through open slots 110 of host 102E and 102A ENDGAME TRANSITION TYPE — This is a subtype of
while one of VM6 - VM9 is displaced from host 102C such intuitive which happens to fully satisfy a host completely . In
that the other of VM10 or VM11 can transition through host other words , it is an intuitive move whereby no migrations
102C to host 102B . It can be appreciated that when VM10 inbound or outbound from the recipient host are needed to
and VM11 take different paths to reach host 102B , at least 60 achieve the resulting state for that host . The individual
a portion of the migration can be performed in parallel . For recipient host has achieved its local goal state .
instance , after VM10 migrates to the open slot 110 of host COUNTERMOVEMENT TRANSITION TYPE — This is
102E , VM6 can migrate to a newly created open slot 110 of a move that takes a VM away from the host that it should
host 102D where VM10 used to reside . VM10 and VM11 ultimately reside on (when it is presently there) . This move
can both transition in parallel , where VM10 migrates to host 65 is the exact opposite of what human players on a pen and
102A while VM11 migrates to host 102C , and both can paper simulation would be likely to do , i . e . , a counterintui
migrate to host 102B at about the same time in parallel . tive movement .

US 9 , 753 , 757 B2
10

INVALID TRANSITION TYPE — This is a move that by iterating over each hardware element involved to com
results in an invalid state . This encapsulates any contractual pute the number of virtual machines that are present in one
obligation violations , identifies migrations , and resource state , but not the other . In essence , the “ distance ” is exam
restrictions . ined from the perspective of the present moving towards the

PING - PONG TRANSITION TYPE — This is a move that 5 goal state and symmetrically from the goal state seeking
results in a VM needlessly bounding back and forth across convergence with the initial state .
two hosts in immediate succession . For each host , a value can be computed representing the
CYCLE TRANSITION TYPE — This is a move where a count of those VMs which are in the current state , but not the

VM has cycled back to a host it was on previously that is not ideal . The count of VMs which are not in the goal state but
where it ultimately belongs . Note that a cycle is different 10 are present in the current state can also be computed . If
than a ping - pong transition type because the return by some either of the hosts involved is empty , the value of the total
VM to a host it previously resided on is not immediate , it VM count is assigned on the same host in the other state . For
may be some number of other valid moves later . This example , if the goal state has a non - empty VM allocation
scenario could happen if a VM needs to be moved tempo - with N virtual machines allocated , and the present state has
rarily (perhaps to make room for some other transient VM 15 an empty host with no virtual machines allocated , a value of
to pass through a host) . N is assigned as the distance . To complete the calculation ,
RANDOM TRANSITION TYPE — This is a move that is the minimum of the two distances calculated is returned

none of the above , it is a generally a form of shuffling of from each perspective .
virtual machines that may be helpful or may ultimately be a One challenge relating to the application of a machine
dead end move . 20 learning algorithm , such as A * , to migration plan generation

The heuristic cost function for any given state S (the state relates to memory consumption of the algorithm . A list of
being a mapping or allocation of VMs to hosts) can be potential novel states that are still to be considered can be
denoted as H (S) . To calculate H (S) for each state , a list of retained , along with states known to be encountered previ
transitions that a parent state underwent is recursively o usly along with a measure of their fitness , which is com
obtained all the way back to the origin state . For each 25 posed of optimal computed the cost of entering that state in
encountered transition , a fixed cost is assigned according to addition to the heuristic estimation of distance from that
individual values associated with each enumerated transition state to the goal state . Since each iteration of the A *
type . Each of these individual costs is summed to determine algorithm expands valid states into subsequent valid states ,
H (S) . Endgame transitions are assigned a cost of zero , and there is a branch out effect that is governed by the number
intuitive moves are assigned a lower cost than counter 30 of valid states that can be generated from any given state .
intuitive moves . Similarly , VM relocation cycles are given a For example , when A * is applied to simple two - dimensional
moderate penalty by assigning a cost that is larger than the chessboard style environments where valid moves are one
cost of random , yet valid , moves . Although “ ping - pong " and position in any direction implies that given state (some
“ invalid ” moves could be assigned large and infinite costs position on the board) has a maximum of 8 possible reach
respectively , it should be appreciated by those skilled in the 35 able states (North , South , East , West and the four diagonal
art that it is far better to never generate these states in the first positions assuming diagonal moves are valid state transi
place . This can be accomplished by early pruning when tions) . A branching factor of 8 , or 4 in the case where
performing state expansion of an OPEN list . States that are non - diagonal moves are barred , is a low branch out factor .
" ping - pong " or " invalid ” can be omitted without impacting Combined with relatively small board sizes this approach is
correctness or optimality of the solution . 40 proven to be effective in path finding , and has found success

A second component to the implementation of machine in a variety of grid environments .
learning based path finding is to identify a heuristic cost to However , the application of A * to VM placement is
reach the goal state from any arbitrary state , referred to as a different in a number of ways . A state can be considered as
heuristic goal cost . To establish optimality in the generated some mapping of virtual machines to hosts . A valid state
solution , the cost function must be less than or equal to the 45 transition is the application of any valid VM migration to
actual cost to reach the solution . In other words , if the some other host . Parallel moves may also be considered as
heuristic goal cost function G (x) is admissible (meaning that valid transitions . The upper bound on the branching factor
it never overestimates the actual minimal cost of reaching for sequential migration can be expressed as (M * (N - 1)) ,
the goal) , then the machine learning algorithm is considered where M is the number of virtual machines , and N is the
optimal . Thus , any attempts to estimate this heuristic value 50 number of hosts (note that N - 1 is the upper bound because
should be conservative . migration of a VM to the host it is already present on is not

In one embodiment , the heuristic is the fewest number of permitted) . Since memory allocation of A * is typically
VM movements , in an ideal case with no co - location or governed by the branching factor and the depth of the
resource restrictions , that would need to be moved to reach search , memory consumption can be an issue if branching is
the goal state . The first step is to make a mapping data 55 unbounded . Using memory consumption bounding paired
structure , such as a hash table , for each of the current and with decisions for single movement state transitions , the
ideal VM to hardware mappings . Other examples of the selection of heuristics that preemptively prune paths from
mapping data structure include a set , a hash set , a map , a the search space enables reduced memory overhead . This
hash tree , an associative queue , or other associative data approach was thereby made suitable for execution on a class
structure . In the example of a hash table , the hash keys are 60 of hardware that is generally available in data centers which
the host identifier , and values are a list of assigned virtual manage large numbers of virtual servers and hosts .
machine identifiers that reside on that host . This can be used FIG . 6 depicts a flow diagram of a process 300 for
to obtain efficient access to pairs of hosts from each of the generating a virtual machine migration plan according to an
ideal and present VM allocations . Once the mapping data embodiment . The process 300 can be implemented by the
structures are complete , a heuristic value can be computed 65 virtual machine allocation application 76 of FIG . 3 . At block
through the assignment of a “ distance ” between the current 302 , an initial mapping of a plurality of virtual machines to
and goal states on a per host basis . This can be accomplished a plurality of hosts is determined as an origin state , e . g . ,

US 9 , 753 , 757 B2

origin state 202 of FIG . 5 . The origin state may simply be the RDMA based network interface adapters , and RDMA sup
current state of mappings between VMs and hosts in the port is needed on interconnecting switches between source
system . and destination hypervisors .
At block 304 , a final mapping of the virtual machines to In one embodiment , a migration plan can be parallelized

the hosts is determined as a goal state , e . g . , goal state 204 of 5 by generating a sequential path as output by a memory
FIG . 5 . Any known method of generating a goal state may bounded A * machine learning implementation with the
be used to determine the goal state , such as load balancing , aforementioned heuristics . The sequential migration plan is
resource consolidation , and the like . then post processed to seek opportunities for parallelization .

At block 306 , a plurality of candidate paths is generated This architectural approach cleanly separates the original
to transition from the initial mapping to the final mapping . 10 path computation and the parallel approach . Separation

between serial generation and parallelization enables appli The candidate paths include possible intermediate states that cation of alternate parallelization algorithms , if desired . sequentially lead between the origin state and goal state . FIG . 7 depicts a flow diagram of a process 400 for
At block 308 , the candidate paths are evaluated based on including parallelism when generating a virtual machine

a heuristic state transition cost to transition from state - to 15 migration plan according to an embodiment . Looping can be
state from the origin state through a plurality of intermediate performed over each serial migration from the list of migra
states to the goal state by recursively obtaining a list of tions comprising the serial migration plan . At block 402 ,
transitions that a parent state underwent to reach the parent sequential scanning is performed for VMs which have been
state from the origin state . The heuristic state transition cost encountered already in the VM migration plan . If a VM is
can be based on a fixed cost assigned to each one of a 20 encountered which is moved twice in the same plan , the
plurality of enumerated transition types . As previously sequential plan can be split just before the second move of
described , the enumerated transition types may include : a the twice - moved VM . This effort is to account for VM - gated
partial transition type that places at least one but not all of parallelism , where VMs that move at least twice define
the virtual machines onto at least one of the hosts according parallelism gates . The machine learning algorithm indicates
the goal state ; an endgame transition type that fully satisfies 25 that if a VM was moved twice , it must have been moved
the goal state ; a countermovement transition type that takes twice serially ; otherwise , the algorithm would have skipped
away at least one of the virtual machines from a targeted host the intermediate step and migrated the VM directly to the
of the goal state ; a cycle transition type that moves at least ultimate destination . This is accounted for by the fact that
one of the virtual machines back onto a previous host ; and during the generation of candidate moves , both the inter
a random transition type that shuffles locations of one or 30 mediate and ultimate destination would have been consid
more of the virtual machines . ered . The serial moves processed in a current iteration are

At block 310 , a heuristic goal cost to reach the goal state added into a candidate parallel plan to be executed concur
from the intermediate states is identified based on a fewest rently . Processing of the original serial list continues in the
number of virtual machine movements . In one embodiment , same fashion until the serial migrations are split into can
a mapping data structure is formed for each of the initial 35 didate parallel migration plans which , by construction , are
mapping and the final mapping , and the heuristic goal cost not gated on repeated VM moves . Thus , the virtual machine
is computed based on assignment of a distance between the allocation application 76 of FIG . 3 may perform sequentially
origin state and the goal state on a per host basis using the scanning of the virtual machine migration plan for one or
mapping data structures . Iterating over each of the hosts may more virtual machines that move at least twice to define
be performed to compute a number of virtual machines 40 parallelism gates .
present in one state but absent in another state moving from At block 404 , one or more candidate parallel migration
the origin state towards the goal state and from the goal state plans are generated based on the parallelism gates in com
towards the origin state . bination with serial migrations from the virtual machine

At block 312 , a virtual machine migration plan is gener - migration plan . The one or more candidate parallel migra
ated based on the heuristic state transition cost of the 45 tion plans each including at least two VM to host movements
candidate paths in combination with the heuristic goal cost performed in parallel . At block 406 , the one or more
of a sequence of transitions from the origin state to the goal candidate parallel migration plans are compared to deter
state having a lowest total cost . mine a combination of the serial migrations and at least one
At data center scale , it is typically impractical to perform of the one or more candidate parallel migration plans that

migrations in a purely serial fashion , as the time to conver - 50 meets migration criteria with a lowest total migration cost .
gence can potentially take too long to be viable . Here , the A tentative list of candidate parallel migrations is pro
term “ convergence ” refers to the time required to go from an cessed to handle host - based gates to parallelism . The pro
initial VM - to - host allocation to a targeted allocation (e . g . , cessing can include an optional cap on the maximum num
consolidated , load balanced , etc) . Potentially long ber of outbound migrations allowed from any individual
convergence times may arise when dynamic placement 55 hypervisor instance , as well as a maximum outbound migra
actions happen frequently , when there are frequent changes tion threshold . Within each candidate parallel plan , scanning
in the number of actively managed VMs in the cloud is performed for repeated hosts to ensure that capacities are
infrastructure , or even when the hardware underlying the not over - subscribed beyond per - resource , configurable ,
cloud infrastructure is highly variable . over - commit ratios .

In general , migration time is affected by the memory 60 The number of inbound and outbound migrations can be
allocation of the virtual machine , the disk size of the virtual tracked for any given host from a candidate parallel migra
machine if persistent disk storage is to be migrated , and the tion to ensure over - saturation is avoided on the network or
rate of page dirtying which occurs in the VM under migra - an individual host with bulk parallel migrations . Migration
tion . Migration performance speed - up may be achieved criteria with a lowest total migration cost can be defined
when remote direct memory access (RDMA) is leveraged as 65 according to one or more thresholds . For example , a thresh
the transport mechanism for VM memory . In order to use old may be used for maximum parallel inbound migrations ,
RDMA for VM migration , hypervisors need access to outbound migrations , and cumulative migrations on a per

14
US 9 , 753 , 757 B2

13
host level for maximum control in addition to a network of the foregoing . A non - exhaustive list of more specific
wide limit on the maximum size of a parallel migration . The examples of the computer readable storage medium includes
values selected for these parameters can be obtained through the following : a portable computer diskette , a hard disk , a
some experimentation on various networks (e . g . , ranging random access memory (RAM) , a read - only memory
from 1 GB / sec to 10 GB / sec) . The appropriate values are 5 (ROM) , an erasable programmable read - only memory
highly dependent on the network topology and throughput (EPROM or Flash memory) , a static random access memory
and may not be useful in all instances . For instance , RDMA (SRAM) , a portable compact disc read - only memory (CD based transfers may enable massively concurrent migration ROM) , a digital versatile disk (DVD) , a memory stick , a plans , allowing much faster convergence . In another floppy disk , a mechanically encoded device such as punch example , consider that infrastructures with dedicated migra - 10 cards or raised structures in a groove having instructions tion NICs and isolated migration networks with reserved recorded thereon , and any suitable combination of the fore bandwidth can perform more than comparable environment going . A computer readable storage medium , as used herein , sharing business traffic over the migration network . Like
wise , 10 GB migration networks will saturate after 1 GB is not to be construed as being transitory signals per se , such
networks will . Other schemes involving quality of service 15 as ving quality of service 15 as radio waves or other freely propagating electromagnetic
(POS) priority of VM migration traffic can also impact ideal waves , electromagnetic waves propagating through a wave
values . guide or other transmission media (e . g . , light pulses passing

Technical effects include determining an efficient VM through a fiber - optic cable) , or electrical signals transmitted
migration plan on a plurality of host systems . Reaching a through a wire .
goal state of VM to host mapping efficiently reduces net - 20 Computer readable program instructions described herein
work resource consumption and processing time dedicated can be downloaded to respective computing / processing
to overhead tasks associated with VM migration . Rapid devices from a computer readable storage medium or to an
convergence on a sequence of transition states to change the external computer or external storage device via a network ,
VM - to - host mapping of system can also reduce the latency for example , the Internet , a local area network , a wide area
between determining a migration plan and completing the 25 network and / or a wireless network . The network may com
migration plan such that a goal state is readily achieved with prise copper transmission cables , optical transmission fibers ,
less delay . wireless transmission , routers , firewalls , switches , gateway

The terminology used herein is for the purpose of describ - computers and / or edge servers . A network adapter card or
ing particular embodiments only and is not intended to be network interface in each computing processing device
limiting of the invention . As used herein , the singular forms 30 receives computer readable program instructions from the
" a " , " an ” and “ the ” are intended to include the plural forms network and forwards the computer readable program
as well , unless the context clearly indicates otherwise . It will instructions for storage in a computer readable storage
be further understood that the terms " comprises ” and / or medium within the respective computing / processing device .
" comprising , ” when used in this specification , specify the Computer readable program instructions for carrying out
presence of stated features , integers , steps , operations , ele - 35 operations of the present invention may be assembler
ments , and / or components , but do not preclude the presence instructions , instruction - set - architecture (ISA) instructions ,
or addition of one or more other features , integers , steps , machine instructions , machine dependent instructions ,
operations , elements , components , and / or groups thereof . microcode , firmware instructions , state - setting data , or

The corresponding structures , materials , acts , and equiva - either source code or object code written in any combination
lents of all means or step plus function elements in the 40 of one or more programming languages , including an object
claims below are intended to include any structure , material , oriented programming language such as Java , Smalltalk ,
or act for performing the function in combination with other C + + or the like , and conventional procedural programming
claimed elements as specifically claimed . The description of languages , such as the “ C ” programming language or similar
the present invention has been presented for purposes of programming languages . The computer readable program
illustration and description , but is not intended to be exhaus - 45 instructions may execute entirely on the user ' s computer ,
tive or limited to the invention in the form disclosed . Many partly on the user ' s computer , as a stand - alone software
modifications and variations will be apparent to those of package , partly on the user ' s computer and partly on a
ordinary skill in the art without departing from the scope and remote computer or entirely on the remote computer or
spirit of the invention . The embodiments were chosen and server . In the latter scenario , the remote computer may be
described in order to best explain the principles of the 50 connected to the user ' s computer through any type of
invention and the practical application , and to enable others network , including a local area network (LAN) or a wide
of ordinary skill in the art to understand the invention for area network (WAN) , or the connection may be made to an
various embodiments with various modifications as are external computer (for example , through the Internet using
suited to the particular use contemplated . an Internet Service Provider) . In some embodiments , elec

The present invention may be a system , a method , and / or 55 tronic circuitry including , for example , programmable logic
a computer program product . The computer program prod circuitry , field - programmable gate arrays (FPGA) , or pro
uct may include a computer readable storage medium (or grammable logic arrays (PLA) may execute the computer
media) having computer readable program instructions readable program instructions by utilizing state information
thereon for causing a processor to carry out aspects of the of the computer readable program instructions to personalize
present invention . 60 the electronic circuitry , in order to perform aspects of the

The computer readable storage medium can be a tangible present invention .
device that can retain and store instructions for use by an Aspects of the present invention are described herein with
instruction execution device . The computer readable storage reference to flowchart illustrations and / or block diagrams of
medium may be , for example , but is not limited to , an methods , apparatus (systems) , and computer program prod
electronic storage device , a magnetic storage device , an 65 ucts according to embodiments of the invention . It will be
optical storage device , an electromagnetic storage device , a understood that each block of the flowchart illustrations
semiconductor storage device , or any suitable combination and / or block diagrams , and combinations of blocks in the

US 9 , 753 , 757 B2
16

flowchart illustrations and / or block diagrams , can be imple generating a plurality of candidate paths to transition from
mented by computer readable program instructions . the initial mapping to the final mapping ;

These computer readable program instructions may be evaluating the candidate paths based on a heuristic state
provided to a processor of a general purpose computer , transition cost to transition from state - to - state from the
special purpose computer , or other programmable data pro - 5 origin state through a plurality of intermediate states to
cessing apparatus to produce a machine , such that the the goal state by recursively obtaining a list of transi
instructions , which execute via the processor of the com tions that a parent state underwent to reach the parent
puter or other programmable data processing apparatus , state from the origin state , wherein the heuristic state
create means for implementing the functions / acts specified transition cost is based on a fixed cost assigned to each
in the flowchart and / or block diagram block or blocks . These 10 one of a plurality of enumerated transition types com
computer readable program instructions may also be stored prising : a partial transition type that places at least one
in a computer readable storage medium that can direct a but not all of the virtual machines onto at least one of
computer , a programmable data processing apparatus , and / the hosts according to the goal state , an endgame
or other devices to function in a particular manner , such that transition type that fully satisfies the goal state , a
the computer readable storage medium having instructions 15 counter movement transition type that takes away at
stored therein comprises an article of manufacture including least one of the virtual machines from a targeted host of
instructions which implement aspects of the function / act the goal state , a cycle transition type that moves at least
specified in the flowchart and / or block diagram block or one of the virtual machines back onto a previous host ,
blocks . and a random transition type that shuffles locations of

The computer readable program instructions may also be 20 one or more of the virtual machines ;
loaded onto a computer , other programmable data process identifying a heuristic goal cost to reach the goal state
ing apparatus , or other device to cause a series of operational from the intermediate states based on a fewest number
steps to be performed on the computer , other programmable of virtual machine movements ; and
apparatus or other device to produce a computer imple generating the virtual machine migration plan based on
mented process , such that the instructions which execute on 25 the heuristic state transition cost of the candidate paths
the computer , other programmable apparatus , or other in combination with the heuristic goal cost of a
device implement the functions / acts specified in the flow sequence of transitions from the origin state to the goal
chart and / or block diagram block or blocks . state having a lowest total cost .

The flowchart and block diagrams in the Figures illustrate 2 . The method of claim 1 , further comprising :
the architecture , functionality , and operation of possible 30 forming a mapping data structure for each of the initial
implementations of systems , methods , and computer pro mapping and the final mapping ; and
gram products according to various embodiments of the computing the heuristic goal cost based on assignment of
present invention . In this regard , each block in the flowchart a distance between the origin state and the goal state on
or block diagrams may represent a module , segment , or a per host basis using the mapping data structures .
portion of instructions , which comprises one or more 35 3 . The method of claim 2 , further comprising iterating
executable instructions for implementing the specified logi - over each of the hosts to compute a number of virtual
cal function (s) . In some alternative implementations , the machines present in one state but absent in another state
functions noted in the block may occur out of the order noted moving from the origin state towards the goal state and from
in the figures . For example , two blocks shown in succession the goal state towards the origin state .
may , in fact , be executed substantially concurrently , or the 40 4 . The method of claim 1 , wherein the virtual machine
blocks may sometimes be executed in the reverse order , movements are performed using remote direct memory
depending upon the functionality involved . It will also be access .
noted that each block of the block diagrams and / or flowchart 5 . The method of claim 1 , further comprising :
illustration , and combinations of blocks in the block dia analyzing a sequential migration plan in the virtual
grams and / or flowchart illustration , can be implemented by 45 machine migration plan to redefine one or more por
special purpose hardware - based systems that perform the tions of the virtual machine migration plan as parallel
specified functions or acts or carry out combinations of migrations .
special purpose hardware and computer instructions . 6 . The method of claim 5 , further comprising :

The descriptions of the various embodiments of the sequentially scanning the virtual machine migration plan
present invention have been presented for purposes of 50 for one or more virtual machines that move at least
illustration , but are not intended to be exhaustive or limited twice to define parallelism gates ;
to the embodiments disclosed . Many modifications and generating one or more candidate parallel migration plans
variations will be apparent to those of ordinary skill in the based on the parallelism gates in combination with
art without departing from the scope and spirit of the serial migrations from the virtual machine migration
described embodiments . The terminology used herein was 55 plan , the one or more candidate parallel migration plans
chosen to best explain the principles of the embodiments , the each including at least two virtual machine to host
practical application or technical improvement over tech movements performed in parallel ; and
nologies found in the marketplace , or to enable others of comparing the one or more candidate parallel migration
ordinary skill in the art to understand the embodiments plans to determine a combination of the serial migra
disclosed herein . tions and at least one of the one or more candidate
What is claimed : parallel migration plans that meets migration criteria
1 . A method for generating a virtual machine migration with a lowest total migration cost .

plan , the method comprising : 7 . The method of claim 6 , wherein generating the one or
determining an initial mapping of a plurality of virtual more candidate parallel migration plans further comprises
machines to a plurality of hosts as an origin state ; 65 capping one or more of : a maximum number of parallel

determining a final mapping of the virtual machines to the inbound migrations , a maximum number of outbound
hosts as a goal state ; migrations , and a number of cumulative migrations .

17

15

US 9 , 753 , 757 B2
18

8 . The method of claim 7 , wherein the capping one or plan , the one or more candidate parallel migration plans
more of : the maximum number of parallel inbound migra each including at least two virtual machine to host
tions , the maximum number of outbound migrations , and the movements performed in parallel ; and
number of cumulative migrations is performed on a per - host comparing the one or more candidate parallel migration
level . plans to determine a combination of the serial migra

9 . The method of claim 8 , wherein generating the one or tions and at least one of the one or more candidate more candidate parallel migration plans further comprises parallel migration plans that meets migration criteria
applying a network - wide limit on a maximum size of with a lowest total migration cost . parallel migration across the hosts . 11 . The method of claim 10 , wherein the heuristic state

10 . A method for generating a virtual machine migration 10 transition cost is based on a fixed cost assigned to each one
plan , the method comprising : of a plurality of enumerated transition types . determining an initial mapping of a plurality of virtual 12 . The method of claim 10 , further comprising : machines to a plurality of hosts as an origin state ;

determining a final mapping of the virtual machines to the forming a mapping data structure for each of the initial
hosts as a goal state ; 15 mapping and the final mapping ; and

generating a plurality of candidate paths to transition from computing the heuristic goal cost based on assignment of
the initial mapping to the final mapping ; a distance between the origin state and the goal state on

a per host basis using the mapping data structures . evaluating the candidate paths based on a heuristic state 13 . The method of claim 12 , further comprising iterating transition cost to transition from state - to - state from the
origin state through a plurality of intermediate states to 20 over each of the hosts to compute a number of virtual
the goal state by recursively obtaining a list of transi machines present in one state but absent in another state

moving from the origin state towards the goal state and from tions that a parent state underwent to reach the parent
state from the origin state ; the goal state towards the origin state .

identifying a heuristic goal cost to reach the goal state 14 . The method of claim 10 , wherein the virtual machine
from the intermediate states based on a fewest number 25 os movements are performed using remote direct memory
of virtual machine movements ; access .

15 . The method of claim 10 , wherein generating the one generating the virtual machine migration plan based on
the heuristic state transition cost of the candidate paths or more candidate parallel migration plans further comprises
in combination with the heuristic goal cost of a capping one or more of : a maximum number of parallel
sequence of transitions from the origin state to the goal 30 inbound migrations , a maximum number of outbound

migrations , and a number of cumulative migrations . state having a lowest total cost ; 16 . The method of claim 15 , wherein the capping one or analyzing a sequential migration plan in the virtual more of : the maximum number of parallel inbound migra machine migration plan to redefine one or more por
tions of the virtual machine migration plan as parallel tions , the maximum number of outbound migrations , and the

number of cumulative migrations is performed on a per - host migrations ;
level . sequentially scanning the virtual machine migration plan 17 . The method of claim 16 , wherein generating the one for one or more virtual machines that move at least

twice to define parallelism gates ; or more candidate parallel migration plans further comprises
generating one or more candidate parallel migration plans applying a network - wide limit on a maximum size of appay
based on the parallelism gates in combination with 40 parallel migration across the hosts .
serial migrations from the virtual machine migration * * * * *

