

(11) EP 2 275 561 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
19.01.2011 Bulletin 2011/03

(51) Int Cl.:
C12N 15/82 (2006.01) *C12Q 1/68 (2006.01)*
A01H 5/00 (2006.01)

(21) Application number: 10184219.3

(22) Date of filing: 26.05.2006

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI
SK TR
Designated Extension States:
AL BA HR MK YU

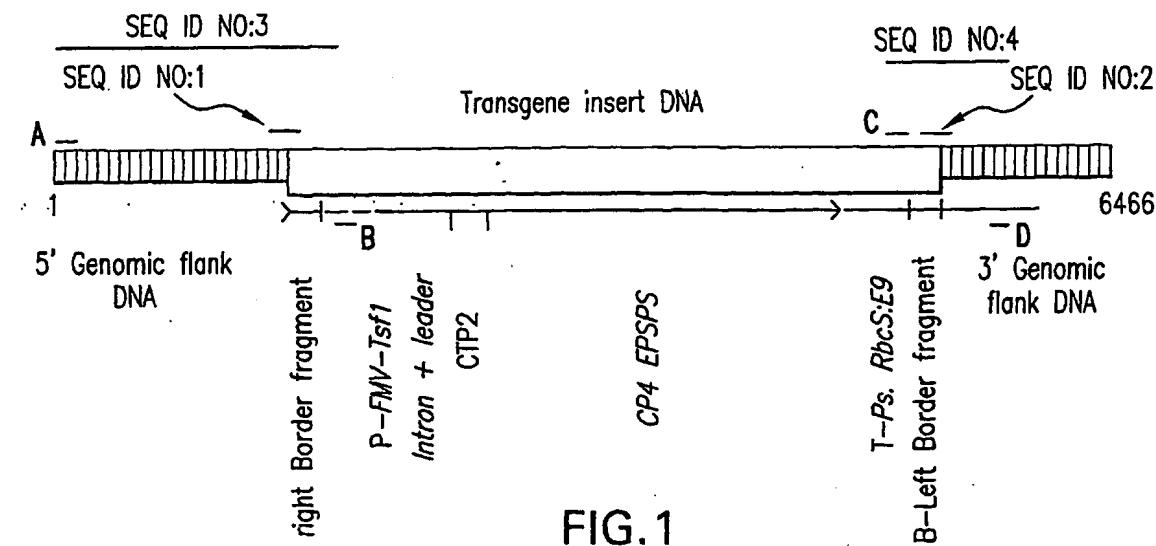
- Rinehart, Jennifer
St. Louis, MO 63167 (US)
- Taylor, Nancy
St. Louis, MO 63167 (US)
- Dickinson, Ellen
St. Louis, MO 63167 (US)

(30) Priority: 27.05.2005 US 685584 P

(74) Representative: von Kreisler Seling Werner
Deichmannhaus am Dom
Bahnhofsvorplatz 1
50667 Köln (DE)

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
06771226.5 / 1 885 176

Remarks:
This application was filed on 30-09-2010 as a divisional application to the application mentioned under INID code 62.


(71) Applicant: Monsanto Technology LLC
St. Louis, MO 63167 (US)

(72) Inventors:
• Malven, Marianne
St. Louis, MO 63167 (US)

(54) Soybean Event MON89788 and methods for detection thereof

(57) The present invention provides for soybean plant and seed comprising transformation event

MON89788 and DNA molecules unique to these events. The invention also provides methods for detecting the presence of these DNA molecules in a sample.

EP 2 275 561 A1

Description**BACKGROUND OF THE INVENTION**

5 [0001] This application claims priority from U.S. Provisional Application No. 60/685,584, filed May 27, 2005, the entire disclosure of which is herein incorporated by reference.

1. Field of the Invention

10 [0002] The present invention relates to a new and distinctive transgenic soybean transformation event, designated MON89788, a soybean cultivar derived therefrom, and plant parts, seed, and products thereof. The invention also relates to assays for detecting the presence of a DNA molecule specific to MON89788 in a plant part extract or seed extract.

2. Description of Related Art

15 [0003] Soybean (*Glycine max*) is an important crop in many areas of the world. The methods of biotechnology have been applied to soybean for improvement of the agronomic traits and the quality of the product. One such agronomic trait important in soybean production is herbicide tolerance, in particular, tolerance to glyphosate herbicide. A herbicide tolerant soybean event would be a useful trait for managing weeds.

20 [0004] N-phosphonomethylglycine, also known as glyphosate, is a well-known herbicide that has activity on a broad spectrum of plant species. Glyphosate is the active ingredient of Roundup® (Monsanto Co., St. Louis, MO), a safe herbicide having a desirably short half-life in the environment. When applied to a plant surface, glyphosate moves systemically through the plant. Glyphosate is phytotoxic due to its inhibition of the shikimic acid pathway, which provides a precursor for the synthesis of aromatic amino acids. Glyphosate inhibits the enzyme 5-enolpyruvyl-3-phosphoshikimate 25 synthase (EPSPS) found in plants.

[0005] Glyphosate tolerance can be achieved by the expression of EPSPS variants that have lower affinity for glyphosate and therefore retain their catalytic activity in the presence of glyphosate (U.S. Patent Nos. 5,633,435; 5,094,945; 4,535,060, and 6,040,497). Enzymes that degrade glyphosate in plant tissues (U.S. Patent No. 5,463,175) are also capable of conferring cellular tolerance to glyphosate. Such genes are used for the production of transgenic crops that are tolerant to glyphosate, thereby allowing glyphosate to be used for effective weed control with minimal concern of crop damage. For example, glyphosate tolerance has been genetically engineered into corn (U.S. Patent No. 5,554,798), wheat (U.S. Patent 6,689,880), cotton (U.S. Patent 6,740,488), soybean (WO 9200377) and canola (US Patent Appl. 20040018518). The transgenes for glyphosate tolerance and the transgenes for tolerance to other herbicides, e.g. the *bar* gene, (Toki *et al.*, 1992; Thompson *et al.*, 1987; phosphinothrin acetyltransferase (DeBlock *et al.*, 1987), for 30 tolerance to glufosinate herbicide) are also useful as selectable markers or scorable markers and can provide a useful phenotype for selection of plants linked with other agronomically useful traits.

[0006] The expression of foreign genes in plants is known to be influenced by their chromosomal position, perhaps due to chromatin structure (e.g., heterochromatin) or the proximity of transcriptional regulation elements (e.g., enhancers) close to the integration site (Weising *et al.*, 1988). For this reason, it is often necessary to screen a large number of 40 events in order to identify an event characterized by optimal expression of an introduced gene of interest. For example, it has been observed in plants and in other organisms that there may be a wide variation in levels of expression of an introduced gene among events. There may also be differences in spatial or temporal patterns of expression, for example, differences in the relative expression of a transgene in various plant tissues, that may not correspond to the patterns expected from transcriptional regulatory elements present in the introduced gene construct. For this reason, it is common 45 to produce hundreds to thousands of different events and screen those events for a single event that has desired transgene expression levels and patterns for commercial purposes. An event that has desired levels or patterns of transgene expression is useful for introgressing the transgene into other genetic backgrounds by sexual outcrossing using conventional breeding methods. Progeny of such crosses maintain the transgene expression characteristics of the original transformant. This strategy is used to ensure reliable gene expression in a number of varieties that are well 50 adapted to local growing conditions.

[0007] It would be advantageous to be able to detect the presence of a particular event in order to determine whether progeny of a sexual cross contain a transgene of interest. In addition, a method for detecting a particular event would be helpful for complying with regulations requiring the pre-market approval and labeling of foods derived from recombinant 55 crop plants, for example. It is possible to detect the presence of a transgene by any well known polynucleic acid detection method such as the polymerase chain reaction (PCR) or DNA hybridization using polynucleic acid probes. These detection methods generally focus on frequently used genetic elements, such as promoters, terminators, marker genes, etc. As a result, such methods may not be useful for discriminating between different events, particularly those produced using the same DNA construct unless the sequence of chromosomal DNA ("flanking DNA") adjacent to the inserted transgene

DNA is known. An event-specific PCR assay is discussed, for example, by Windels *et al.* (1999), who identified glyphosate tolerant soybean event 40-3-2 by PCR using a primer set spanning the junction between the insert transgene and flanking DNA, specifically one primer that included sequence from the insert and a second primer that included sequence from flanking DNA. Transgenic plant event specific DNA detection methods have also been described in US Patent Nos. 5 6,893,826; 6,825,400; 6,740,488; 6,733,974 and 6,689,880; 6,900,014 and 6,818,807, herein incorporated by reference in their entirety.

[0008] This invention relates to the glyphosate tolerant soybean event MON89788 (also referred to as MON19788 or GM_A19788) and to the DNA molecules contained in these soybean plants that are useful in detection methods for the plant and progeny thereof and plant tissues derived from MON89788.

10

SUMMARY OF THE INVENTION

[0009] The present invention provides a soybean transgenic event designated MON89788 (also referred to as MON19788) and progeny thereof having representative seed deposited with American Type Culture Collection (ATCC) 15 with accession No. PTA-6708. Another aspect of the invention is the plant cells or regenerable parts of the plant and seeds of the soybean event MON89788. The invention also includes plant parts of soybean event MON89788 that include, but are not limited to a cell, pollen, ovule, flowers, shoots, roots, leaves, and products derived from MON89788, for example soybean meal, flour and oil.

[0010] One aspect of the invention provides compositions and methods for detecting the presence of a DNA transgene/genomic junction region from a soybean event MON89788 plant or seed or products derived from plant parts or seed. 20 DNA molecules are provided that comprise at least one transgene/genomic junction DNA molecule selected from the group consisting of SEQ ID NO:1 and SEQ ID NO:2, and complements thereof, wherein the junction molecule spans the insertion site that comprises a heterologous DNA inserted into the genome of the soybean cell and the genomic DNA from the soybean cell flanking the insertion site soybean event MON89788. Such junction sequences may, in one 25 aspect of the invention, be defined as comprising nucleotides 1093-1113 or 5396-5416 of SEQ ID NO:9, respectively. In other aspects of the invention, the junctions may be defined as including additional portions of the flanking genome and transgene, for example, and may be defined as comprising one or more sequence as given by nucleotides 1073-1113, 1043-1113, 1093-1133, 1093-1163, 1043-1163, 5376-5416, 5346-5416, 5396-5436, 5396-5416, 5396-5466, or 30 5346-5466 of SEQ ID NO:9. Such sequences and plants and seeds comprising these sequences therefore form one aspect of the invention.

[0011] A novel DNA molecule is provided that is a DNA transgene/genomic region SEQ ID NO:3 or the complement thereof, from soybean event MON89788. A soybean plant and seed comprising SEQ ID NO:3 in its genome is an aspect of this invention. SEQ ID NO:3 further comprises SEQ ID NO:1 in its entirety.

[0012] According to another aspect of the invention, a DNA molecule is provided that is a DNA transgene/genomic region SEQ ID NO:4, or the complement thereof, wherein this DNA molecule is novel in soybean event MON89788. A 35 soybean plant and seed comprising SEQ ID NO:4 in its genome is an aspect of this invention. SEQ ID NO:4 further comprises SEQ ID NO:2 in its entirety.

[0013] According to another aspect of the invention, two nucleic acid molecules are provided for use in a DNA detection method, wherein the first nucleic acid molecule comprises at least 11 or more contiguous polynucleotides of any portion 40 of the transgene region of the DNA molecule of SEQ ID NO:3 and the second nucleic acid is a molecule of similar length of any portion of a 5' flanking soybean genomic DNA region of SEQ ID NO:3, wherein these nucleic acid molecules when used together are useful as primers in a DNA amplification method that produces an amplicon. The amplicon produced using these primers in the DNA amplification method is diagnostic for soybean event MON89788 DNA. The amplicon produced by the described primers that is homologous or complementary to a portion of SEQ ID NO:3 comprising SEQ ID NO: is an aspect of the invention.

[0014] According to another aspect of the invention, two nucleic acid molecules are provided for use in a DNA detection method, wherein the first nucleic acid molecule comprises at least 11 or more contiguous polynucleotides of any portion of the transgene region of the DNA molecule of SEQ ID NO:4 and a second nucleic acid molecule of similar length of any portion of a 3' flanking soybean genomic DNA of SEQ ID NO:4, wherein these nucleic acid molecules when used 50 together are useful as primers in a DNA amplification method that produces an amplicon. The amplicon produced using these primers in the DNA amplification method is diagnostic for soybean event MON89788 DNA. The amplicon produced by the described primers that is homologous or complementary to a portion of SEQ ID NO:4 comprising SEQ ID NO:2 is an aspect of the invention.

[0015] Any nucleic acid primer pair derived from SEQ ID NO:3 or SEQ ID NO:4, or SEQ ID NO:9 or the complements thereof, that when used in a DNA amplification reaction produces an amplicon diagnostic for soybean event MON89788-derived tissue, such as an amplicon that comprises SEQ ID NO:1 or SEQ ID NO:2 or any portion of SEQ ID NO:9 respectively, is another embodiment of the invention. In a particular embodiment, the primer pair may consist of primer A (SEQ ID NO:5) and primer D (SEQ ID NO:8).

[0016] Another aspect of the invention is a soybean plant, or seed, or product derived from a plant or seed comprising event MON89788, in which the genomic DNA when isolated from the soybean plant, or seed, or product produces an amplicon in a DNA amplification method that comprises SEQ ID NO: or SEQ ID NO:2.

5 [0017] Still another aspect of the invention is a soybean plant, or seed, or product derived from a plant or seed comprising MON89788, in which the genomic DNA when isolated from the soybean plant, or seed, or product produces an amplicon in a DNA amplification method, wherein DNA primer molecules SEQ ID NO:5 and SEQ ID NO:6 are used in the DNA amplification method.

10 [0018] Yet another aspect of the invention is a soybean plant, seed, product, or commodity derived from the plant or seed, comprising MON89788, in which the genomic DNA when isolated from the soybean plant, or seed, or product produces an amplicon in a DNA amplification method, wherein DNA primer molecules SEQ ID NO:7 and SEQ ID NO: 8 are used in the DNA amplification method. The product or commodity may comprise, without limitation, a food or feed product comprising or derived from one or more of the following products of a soybean plant comprising event MON89788: lecithin, fatty acids, glycerol, sterol, edible oil, defatted soy flakes, soy meals including defatted and toasted soy meals, soy milk curd, tofu, soy flour, soy protein concentrate, isolated soy protein, hydrolyzed vegetable protein, textured soy protein, and soy protein fiber.

15 [0019] According to another aspect of the invention, a method of detecting the presence of DNA corresponding specifically to the soybean event MON89788 DNA in a sample is provided. Such method comprising: (a) contacting a sample comprising DNA with a DNA primer pair; (b) performing a nucleic acid amplification reaction, thereby producing the amplicon; and (c) detecting the amplicon, wherein said amplicon comprises SEQ ID NO:1 or SEQ ID NO:2. A kit comprising 20 DNA primer molecules that when used in a DNA amplification method produces an amplicon comprising SEQ ID NO:1 or SEQ ID NO:2 is a further aspect of the invention.

25 [0020] According to another aspect of the invention, a method of detecting the presence of DNA corresponding specifically to the soybean event MON89788 DNA in a sample is provided. Such method comprising: (a) contacting a sample comprising DNA with a probe that hybridizes under stringent hybridization conditions with genomic DNA from soybean event MON89788 and does not hybridize under the stringent hybridization conditions with a control soybean plant DNA; (b) subjecting the sample and probe to stringent hybridization conditions; and (c) detecting hybridization of the probe to the soybean event MON89788 DNA, wherein said probe comprises SEQ ID NO: or SEQ ID NO:2. The sample may comprise a progeny seed, plant, or plant part comprising soybean event MON89788, or any of the following products derived from a plant comprising MON89788: lecithin, fatty acids, glycerol, sterol, edible oil, defatted soy flakes, soy 30 meals including defatted and toasted soy meals, soy milk curd, tofu, soy flour, soy protein concentrate, isolated soy protein, hydrolyzed vegetable protein, textured soy protein, and soy protein fiber. A kit comprising a DNA probe comprising a DNA molecule that is homologous or complementary to SEQ ID NO:1 or SEQ ID NO:2 is an aspect of the invention. A kit comprising a DNA molecule comprising SEQ ID NO:18, SEQ ID NO: 19, or SEQ ID NO:20, or their complements, is also an aspect of the invention.

35 [0021] According to another aspect of the invention, a method of producing a soybean plant that tolerates an application of glyphosate is provided that comprise the steps of: (a) sexually crossing a first parental glyphosate tolerant soybean plant comprising event MON89788, and a second parental soybean plant that lacks the glyphosate tolerance, thereby producing a plurality of progeny plants; and (b) selecting a progeny plant that tolerates application of glyphosate. Breeding methods may additionally comprise the steps of crossing the parental plant comprising soybean event MON89788 to a 40 second parental soybean plant that is also tolerant to glyphosate and selecting for glyphosate tolerant progeny by molecular marker DNA genetically linked to the glyphosate tolerant phenotype found in each parent.

45 [0022] Another aspect of the invention is a method to control weeds in a field of soybean plants comprising MON89788, wherein said method comprises planting a field with soybean seed comprising event MON89788 said representative seed deposited as ATCC accession No. PTA-6708, allowing said seed to germinate and treating said plants with an effective dose of glyphosate to control weed growth in said field.

[0023] The foregoing and other aspects of the invention will become more apparent from the following detailed description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

50

[0024]

FIG 1. Organization of the transgene insertion in the genome of a soybean plant comprising event MON89788.

55

FIG. 2A- 2B. Processing of commodity products from soybean.

DETAILED DESCRIPTION

[0025] The present invention relates to a novel soybean transformation event designated MON89788 that provides glyphosate tolerance, and the plant parts and seed and products produced from plants, plant parts, seed, and products comprising the event. The invention provides DNA molecules that are novel in the genome of soybean cells comprising MON89788 and DNA molecules that can be used in various DNA detection methods to identify MON89788 DNA in a sample. The invention provides a method to control weeds in a field of plants containing MON89788 by treating the weeds in the field comprising plants comprising event MON89788 with a glyphosate herbicide.

[0026] The following definitions and methods are provided to better define the present invention and to guide those of ordinary skill in the art in the practice of the present invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. Definitions of common terms in molecular biology may also be found in Rieger *et al.* (1991) and Lewin (1994). The nomenclature for DNA bases as set forth at 37 CFR § 1.822 is used.

[0027] As used herein, the term "soybean" means *Glycine max* and includes all plant varieties that can be bred with soybean.

[0028] As used herein, the term "comprising" means "including but not limited to".

[0029] "Glyphosate" refers to N-phosphonomethylglycine and its salts. Glyphosate is the active ingredient of Roundup® herbicide (Monsanto Co.). Treatments with "glyphosate herbicide" refer to treatments with the Roundup®, Roundup Ultra®, Roundup Pro® herbicide or any other herbicide formulation containing glyphosate. Examples of commercial formulations of glyphosate include, without restriction, those sold by Monsanto Company as ROUNDUP®, ROUNDUP® ULTRA, ROUNDUP® ULTRAMAX, ROUNDUP® CT, ROUNDUP® EXTRA, ROUNDUP® BIACTIVE, ROUNDUP® BIOFORCE, RODEO®, POLARIS®, SPARK® and ACCORD® herbicides, all of which contain glyphosate as its isopropylammonium salt; ROUNDUP® WEATHERMAX (glyphosate potassium salt), those sold by Monsanto Company as ROUNDUP® DRY and RIVAL® herbicides, which contain glyphosate as its ammonium salt; that sold by Monsanto Company as ROUNDUP® GEOFORCE, which contains glyphosate as its sodium salt; and that sold by Syngenta Crop Protection as TOUCHDOWN® herbicide, which contains glyphosate as its trimethylsulfonium salt. Treatment of a field comprising glyphosate tolerant soybean plants comprising event MON89788 with any of these glyphosate herbicide formulations will control weed growth in the field and not affect the growth or yield of the soybean plants comprising MON89788.

[0030] A transgenic "event" is produced by transformation of plant cells with heterologous DNA, for example, a nucleic acid construct that includes a transgene of interest, regeneration of a population of plants resulting from the insertion of the transgene into the genome of the plant, and selection of a particular plant characterized by insertion into a particular genome location. The term "event" refers to the original transformant and progeny of the transfoannt that include the heterologous DNA. The term "event" also refers to progeny produced by a sexual outcross between the transformant and another variety that include the heterologous transgene DNA and the flanking genomic DNA. The term "event" also refers to DNA from the original transformant comprising the inserted DNA and flanking genomic sequence immediately adjacent to the inserted DNA that would be expected to be transferred to a progeny that receives inserted DNA including the transgene of interest as the result of a sexual cross of one parental line that includes the inserted DNA (for example, the original transformant and progeny resulting from the selfing) and a parental line that does not contain the inserted DNA.

[0031] A glyphosate tolerant soybean plant can be bred by first sexually crossing a first parental soybean plant consisting of a soybean plant grown from a transgenic glyphosate tolerant soybean plant comprising MON89788 or an soybean plant that is a progeny of the cross of such a plant that expresses the glyphosate tolerant phenotype, and a second parental soybean plant that lacks the tolerance to glyphosate, thereby producing a plurality of first progeny plants; and then selecting a progeny plant that is tolerant to application of glyphosate herbicide. These steps can further include the back-crossing of the glyphosate tolerant progeny plant to the second parental soybean plant or a third parental soybean plant, then selecting progeny by application with glyphosate or by identification with molecular markers associated with the trait thereby producing an soybean plant that tolerates the application of glyphosate herbicide. Molecular markers may be used that comprise the junction DNA molecules identified at the 5' and 3' sites of insertion of the transgene in event MON89788.

[0032] It is also to be understood that two different transgenic plants can also be mated to produce offspring that contain two independently segregating, exogenous transgenes. Back-crossing to a parental plant and out-crossing with a non-transgenic plant as previously described is also contemplated, as is vegetative propagation. Descriptions of other breeding methods that are commonly used for different traits and crops can be found in one of several references, e.g., Fehr, (1987).

[0033] A "probe" is an isolated nucleic acid to which is attached a conventional detectable label or reporter molecule, for example, a radioactive isotope, a ligand, a chemiluminescent agent, or an enzyme. Such a probe is complementary to a strand of a target nucleic acid, in the case of the present invention, to a strand of genomic DNA from a soybean plant comprising event MON89788 whether from a soybean plant or seed or from a sample or extract of the plant or

seed that includes DNA from the event. Probes according to the present invention include not only deoxyribonucleic or ribonucleic acids, but also polyamides and other probe materials that bind specifically to a target DNA sequence and can be used to detect the presence of that target DNA sequence.

5 [0034] "Primers" are isolated polynucleic acids that are annealed to a complementary target polynucleic acid strand by nucleic acid hybridization to form a hybrid between the primer and the target polynucleic acid strand, then extended along the target polynucleic acid strand by a polymerase, for example, a DNA polymerase. Primer pairs of the present invention refer to their use for amplification of a target polynucleic acid molecule, for example, by the polymerase chain reaction (PCR) or other conventional nucleic acid amplification methods.

10 [0035] Probes and primers are generally 11 polynucleotides or more in length, preferably 18 polynucleotides or more, more preferably 24 polynucleotides or 30 polynucleotides or more. Such probes and primers hybridize specifically to a target molecule under high stringency hybridization conditions. Preferably, probes and primers according to the present invention have complete sequence identity with the target molecule, although probes differing from the target sequence and that retain the ability to hybridize to target sequences under high stringency conditions may be designed by conventional methods.

15 [0036] Methods for preparing and using probes and primers are described, for example, in Sambrook *et al.* (1989); Ausubel *et al.* (1992); and Innis *et al.* (1990). PCR-primer pairs (a primer set) can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, © 1991, Whitehead Institute for Biomedical Research, Cambridge, MA).

20 [0037] Primers and probes based on the flanking genomic DNA and insert sequences disclosed herein (SEQ ID NOS: 1-4 and 9) can be used to confirm and, if necessary, to correct the disclosed sequences by conventional methods, for example, by isolating the corresponding DNA molecule from a deposit of seed comprising MON89788, and determining the nucleic acid sequence such molecules. Additional associated DNA molecules may be isolated from the genome of a cell comprising MON89788 that comprise the transgene insert and genomic flanking regions, and fragments of these molecules may be used as primers or probes.

25 [0038] The nucleic acid probes and primers of the present invention hybridize under stringent conditions to a target DNA sequence. Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of DNA from the MON89788 event in a sample. Nucleic acid molecules or fragments thereof are capable of specifically hybridizing to other nucleic acid molecules under certain circumstances. As used herein, two nucleic acid molecules are said to be capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, 30 double-stranded nucleic acid structure and are of sufficient length to maintain this structure under high stringency conditions. A nucleic acid molecule is said to be the "complement" of another nucleic acid molecule if they exhibit complete complementarity. As used herein, molecules are said to exhibit "complete complementarity" when every nucleotide of one of the molecules is complementary to a nucleotide of the other. Two molecules are said to be "minimally complementary" if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional "low-stringency" conditions. Similarly, the molecules are said to be "complementary" if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional 35 "high-stringency" conditions. Conventional stringency conditions are described by Sambrook *et al.*, 1989, and by Haymes *et al.* (1985). Departures from complete complementarity are therefore permissible, as long as such departures do not completely preclude the capacity of the molecules to form a double-stranded structure. In order for a nucleic acid molecule 40 to serve as a primer or probe it need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure under the particular solvent and salt concentrations employed.

45 [0039] As used herein, a substantially homologous sequence is a nucleic acid sequence that will specifically hybridize to the complement of the nucleic acid sequence to which it is being compared under high stringency conditions. Appropriate stringency conditions which promote DNA hybridization, for example, 6.0 x sodium chloride/sodium citrate (SSC) at about 45°C, followed by a wash of 2.0 x SSC at 50°C, are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0 x SSC at 50°C to a high stringency of about 0.2 x SSC at 50°C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22°C, to high stringency conditions at about 65°C. Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed. In a preferred embodiment, a nucleic acid of the present invention will specifically hybridize to one or more of the nucleic acid molecules set forth in SEQ ID NOS:1-4, and 9 complements thereof or fragments of either under moderately stringent conditions, for example at about 2.0 x SSC and about 65°C. In a particularly preferred embodiment, a nucleic acid of the present invention will specifically hybridize to one or more of the nucleic acid molecules set forth in SEQ ID NOS:1-4, and 9 complements 55 thereof or fragments of either under high stringency conditions. In one aspect of the present invention, a preferred marker nucleic acid molecule of the present invention comprises the nucleic acid sequence as set forth in SEQ ID NO:1 or SEQ ID NO:2 or complements thereof or fragments of either. In another aspect of the present invention, a preferred marker nucleic acid molecule of the present invention shares between 80% and 100% or 90% and 100% sequence identity with

the nucleic acid sequence set forth in SEQ ID NO:1 or SEQ ID NO:2 or complements thereof or fragments of either. Molecular marker DNA molecules that comprise SEQ ID NO:1, or SEQ ID NO:2, or complements thereof or fragments of either may be used as markers in plant breeding methods to identify the progeny of genetic crosses similar to the methods described for simple sequence repeat DNA marker analysis, in Cregan *et al.* (1997); all of which is herein 5 incorporated by reference in its' entirety. The hybridization of the probe to the target DNA molecule can be detected by any number of methods known to those skilled in the art, these can include, but are not limited to, fluorescent tags, radioactive tags, antibody based tags, and chemiluminescent tags.

[0040] Regarding the amplification of a target nucleic acid sequence (for example, by PCR) using a particular amplification primer pair, "stringent conditions" are conditions that permit the primer pair to hybridize only to the target nucleic acid sequence to which a primer having the corresponding wild-type sequence (or its complement) would bind and preferably to produce a unique amplification product, the amplicon, in a DNA thermal amplification reaction.

[0041] The term "specific for (a target sequence)" indicates that a probe or primer hybridizes under stringent hybridization conditions only to the target sequence in a sample comprising the target sequence.

[0042] As used herein, "amplified DNA" or "amplicon" refers to the product of nucleic acid amplification of a target nucleic acid sequence that is part of a nucleic acid template. For example, to determine whether the soybean plant resulting from a sexual cross contains transgenic event MON89788 or whether a soybean sample collected from a field comprises MON89788, or a soybean extract, such as a meal, flour or oil comprises MON89788. DNA extracted from a soybean plant tissue sample or extract may be subjected to a nucleic acid amplification method using a primer pair that includes a primer derived from the genomic region adjacent to the insertion site of inserted heterologous transgene DNA, 15 and a second primer derived from the inserted heterologous transgene DNA to produce an amplicon that is diagnostic for the presence of the event DNA. The amplicon is of a length and has a sequence that is also diagnostic for the event. The amplicon may range in length from the combined length of the primer pairs plus one nucleotide base pair, or plus about fifty nucleotide base pairs, or plus about two hundred-fifty nucleotide base pairs, or plus about three hundred-fifty nucleotide base pairs or more.

[0043] Alternatively, a primer pair can be derived from flanking genomic sequence on both sides of the inserted DNA so as to produce an amplicon that includes the entire insert nucleotide sequence. A member of a primer pair derived from the plant genomic sequence may be located a distance from the inserted transgene DNA molecule, this distance can range from one nucleotide base pair up to about twenty thousand nucleotide base pairs. The use of the term "amplicon" specifically excludes primer dimers that may be formed in the DNA thermal amplification reaction.

[0044] Nucleic acid amplification can be accomplished by any of the various nucleic acid amplification reaction methods known in the art, including the polymerase chain reaction (PCR). A variety of amplification methods are known in the art and are described, *inter alia*, in U.S. Patent Nos. 4,683,195 and 4,683,202 and in Innis *et al.* (1990). PCR amplification methods have been developed to amplify up to 22 kb of genomic DNA and up to 42 kb of bacteriophage DNA (Cheng *et al.*, 1994). These methods as well as other methods known in the art of DNA amplification may be used in the practice 35 of the present invention. The sequence of the heterologous DNA insert or flanking sequence from soybean event MON89788 and can be verified, and corrected if necessary by amplifying such molecules from the event genome using primers derived from the sequences provided herein followed by standard DNA sequencing methods applied to the PCR amplicon or to isolated cloned transgene/genomic DNA.

[0045] The amplicon produced by these methods may be detected by a plurality of techniques. One such method is 40 Genetic Bit Analysis (Nikiforov, *et al.*, 1994) where an DNA oligonucleotide is designed which overlaps both the adjacent flanking genomic DNA sequence and the inserted DNA transgene sequence. The oligonucleotide is immobilized in wells of a microwell plate. Following PCR of the region of interest (using one primer in the inserted sequence and one in the adjacent flanking genomic sequence), a single-stranded PCR product can be hybridized to the immobilized oligonucleotide and serve as a template for a single base extension reaction using a DNA polymerase and labelled ddNTPs specific 45 for the expected next base. Readout may be fluorescent or ELISA-based. A signal indicates presence of the insert/flanking genomic sequence due to successful amplification, hybridization, and single base extension.

[0046] Another method is the Pyrosequencing technique as described by Winge (2000). In this method an oligonucleotide is designed that overlaps the adjacent genomic DNA and insert DNA junction. The oligonucleotide is hybridized to single-stranded PCR product from the region of interest (one primer in the inserted sequence and one in the flanking 50 genomic sequence) and incubated in the presence of a DNA polymerase, ATP, sulfurylase, luciferase, apyrase, adenosine 5' phosphosulfate and luciferin. DNTPs are added individually and the incorporation results in a light signal which is measured. A light signal indicates the presence of the transgene insert/flanking sequence due to successful amplification, hybridization, and single or multi-base extension.

[0047] Fluorescence Polarization as described by Chen *et al.* (1999) is a method that can be used to detect the 55 amplicon of the present invention. Using this method an oligonucleotide is designed which overlaps the genomic flanking and inserted DNA junction. The oligonucleotide is hybridized to single-stranded PCR product from the region of interest (one primer in the inserted DNA and one in the flanking genomic DNA sequence) and incubated in the presence of a DNA polymerase and a fluorescent-labeled ddNTP. Single base extension results in incorporation of the ddNTP. Incor-

poration can be measured as a change in polarization using a fluorometer. A change in polarization indicates the presence of the transgene insert/flanking genomic sequence due to successful amplification, hybridization, and single base extension.

[0048] Taqman® (PE Applied Biosystems, Foster City, CA) is described as a method of detecting and quantifying the presence of a DNA sequence and is fully understood in the instructions provided by the manufacturer. Briefly, a FRET oligonucleotide probe is designed which overlaps the genomic flanking and insert DNA junction. The FRET probe and PCR primers (one primer in the insert DNA sequence and one in the flanking genomic sequence) are cycled in the presence of a thermostable polymerase and dNTPs. Hybridization of the FRET probe results in cleavage and release of the fluorescent moiety away from the quenching moiety on the FRET probe. A fluorescent signal indicates the presence of the flanking genomic /transgene insert sequence due to successful amplification and hybridization.

[0049] Molecular Beacons have been described for use in sequence detection as described in Tyangi *et al.* (1996) Briefly, a FRET oligonucleotide probe is designed that overlaps the flanking genomic and insert DNA junction. The unique structure of the FRET probe results in it containing secondary structure that keeps the fluorescent and quenching moieties in close proximity. The FRET probe and PCR primers (one primer in the insert DNA sequence and one in the flanking genomic sequence) are cycled in the presence of a thermostable polymerase and dNTPs. Following successful PCR amplification, hybridization of the FRET probe to the target sequence results in the removal of the probe secondary structure and spatial separation of the fluorescent and quenching moieties. A fluorescent signal results. A fluorescent signal indicates the presence of the flanking genomic/transgene insert sequence due to successful amplification and hybridization.

[0050] Other described methods, such as, microfluidics (US Patent Pub. 2006068398, US Patent No. 6,544,734) provide methods and devices to separate and amplify DNA samples. Optical dyes used to detect and quantitate specific DNA molecules (WO/05017181). Nanotube devices (WO/06024023) that comprise an electronic sensor for the detection of DNA molecules or nanobeads that bind specific DNA molecules and can then be detected are useful for detecting DNA molecules of the present invention.

[0051] DNA detection kits can be developed using the compositions disclosed herein and the methods described or known in the art of DNA detection. The kits are useful for the identification of soybean event DNA in a sample and can be applied to methods for breeding soybean plants containing DNA. The kits may contain DNA primers or probes that are homologous or complementary to SEQ ID NOs:1-4 and 9 or DNA primers or probes homologous or complementary to DNA contained in the transgene genetic elements of DNA, these DNA sequences can be used in DNA amplification reactions or as probes in a DNA hybridization method. The structure of the DNA of the transgene genetic elements contained in the soybean genome and illustrated in Figure 1 comprises a 5' genomic region of the soybean A3244 genome flanking the transgene insert, the insert comprising a portion of the right border region (RB) from *Agrobacterium tumefaciens*, the chimeric promoter FMV/Tsfl and related linked elements (US Patent 6,660,911; also referred to as FMV/E1F1 α) is operably connected to an *Arabidopsis* EPSPS chloroplast transit peptide coding sequence (herein referred to as CTP2 or TS-AtEPSPS CTP2, US Patent 5,633,435, operably connected to a glyphosate resistant EPSPS (herein referred to as CP4 EPSPS or aroA:CP4, isolated from *Agrobacterium tumefaciens* strain CP4 and coding sequence modified for enhanced expression in plant cells, U.S. Patent 5,633,435), operably connected to the 3' termination region from pea ribulose 1,5-bisphosphate carboxylase (herein referred to as E9 3' or T-Ps.RbcS:E9, Coruzzi *et al.*, (1984), a portion of the left border (LB) region from *Agrobacterium tumefaciens*, and the 3' genomic region of the soybean A3244 genome flanking the transgene insert. DNA molecules useful as primers in DNA amplification methods can be derived from the sequences of the genetic elements of the transgene insert contained in soybean event MON89788. These primer molecules can be used as part of a primer set that also includes a DNA primer molecule derived from the genome of soybean flanking the transgene insert. Soybean event MON89788 was produced by transformation of soybean line A3244 (US Patent 5,659,114) by an *Agrobacterium* mediated method, for example, methods described in US Patents 6,384,301 and 7,002,058 (herein incorporated by reference in their entirety).

[0052] The inventors of the present invention have discovered that a soybean line comprising the MON89788 T-type genomic region (T-type is combination of a transgene and the associated haplotype region of a plant genome) in its genome has an improved yield relative to a line comprising the previous 40-3-2 T-type genomic region. This was demonstrated in replicated field trials including yield data collected from multiple locations in the United States (US patent application 60/685584).

[0053] The following examples are included to demonstrate examples of certain preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent approaches the inventors have found function well in the practice of the invention, and thus can be considered to constitute examples of preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

EXAMPLES

EXAMPLE 1

5 Production of Amplicon Diagnostic for MON89788 Genomic DNA

[0054] DNA from transgenic soybean event MON89788 is extracted from tissue comprising soybean seeds, vegetative tissue, or meal. The DNA is isolated from the tissue using Qiagen's DNeasy Plant Miniprep Kit according to the manufacturer's instructions (Qiagen Corp. Valencia, CA).

10 [0055] A PCR product is produced that comprises a portion of the genomic DNA flanking the 5' end of the T-DNA (transfer DNA comprising the transgene) insertion in the genome of a plant comprising MON89788. This DNA product comprises SEQ ID NO:3. The PCR may be performed using one primer designed to hybridize to the genomic DNA sequences flanking the 5' end of the transgene insert (DNA primer A, SEQ ID NO:5; see FIG. 1) paired with a second primer (DNA primer B, SEQ ID NO:6) located in the transgene promoter region (US Patent 6,660,911, SEQ ID NO:28, 15 herein incorporated by reference and found within SEQ ID NO:9).

[0056] A PCR product is produced from the 3' end of the transgene insert that comprises a portion of the genomic DNA flanking the 3' end of the T-DNA insertion in the genome of a plant comprising MON89788. This DNA product comprises SEQ ID NO:4. PCR may be performed using one primer designed to hybridize to the genomic DNA sequences flanking the 3' end of the insert of each event (DNA primer D, SEQ ID NO:8) and paired with a second primer (DNA 20 primer C, SEQ ID NO:7) located in the T-Ps.RbcS:E9 3' transcription termination sequence at the 3' end of the insert.

[0057] The PCR template includes ~50 ng of genomic DNA. As a negative control ~50 ng of genomic DNA from the non-transgenic soybean cultivar is utilized. Each PCR reaction contains 5 μ l 10 X Buffer for REDAccuTaqTM LA DNA Polymerase Mix (Sigma-Aldrich, St Louis, MO), 200 μ M each dNTP (Sigma-Aldrich), 0.4 μ M each primer, and 2.5 Units 25 JumpStartTM REDTaqTM DNA Polymerase (Sigma-Aldrich) in a 50 μ l total volume reaction. The PCR reactions are performed under the following cycling conditions: 1 cycle at 94°C for 3 minutes (min); 32 or 35 cycles at 94°C for 30 seconds (s), 58°C for 30 s, 72°C for 30 s or 1 min; 1 cycle at 72°C for 10 min.

[0058] DNA event primer pairs are used to produce an amplicon diagnostic for MON89788 genomic DNA. These event primer pairs include, but are not limited to primers A and B (SEQ ID NO:5 and 6) and event primer pairs C and D (SEQ ID NO: 7 and 8), that are used in the described DNA amplification method. In addition to these primer pairs, any 30 primer pair derived from SEQ ID NO:3 or SEQ ID NO:4, or the complements thereof, that when used in a DNA amplification reaction produces an amplicon that comprises SEQ ID NO:1 or SEQ NO:2 diagnostic for soybean MON89788 event-derived tissue, respectively, may be utilized. DNA amplification conditions illustrated in Table 1 and Table 2 can be used to produce a diagnostic amplicon for MON89788 using the appropriate event primer pairs. Any modification of these methods used to produce an amplicon diagnostic for MON89788 is within the ordinary skill of the art. An extract putatively 35 containing DNA of a soybean plant or seed comprising MON89788, or a product derived from a plant comprising MON89788 that when tested in a DNA amplification method produces an amplicon diagnostic for soybean event MON89788 may be utilized as a template for amplification to determine whether MON89788 is present.

[0059] The amplicon is produced by the use of at least one primer sequence derived from SEQ ID NO:3 or SEQ ID 40 NO:4 that when used in a PCR method produces a diagnostic amplicon for event MON89788. For example, the production of the MON89788 amplicons can be performed using a Stratagene Robocycler, MJ Engine, Perkin-Elmer 9700, or Eppendorf Mastercycler Gradient thermocycler as shown in Table 2, or by methods and apparatus known to those skilled in the art.

Table 1. PCR procedure and reaction mixture conditions for the identification of soybean MON89788 5' transgene 45 insert/genomic junction region.

Step	Reagent	Amount	Comments
1	Nuclease-free water	add to final volume of 20 μ l	-
2	10X reaction buffer (with MgCl ₂)	2.0 μ l	1X final concentration of buffer, 1.5 mM final concentration of MgCl ₂
3	10 mM solution of dATP, dCTP, dGTP, and dTTP	0.4 μ l	200 μ M final concentration of each dNTP

(continued)

	Step	Reagent	Amount	Comments
5	4	Event primer A (SEQ ID NO:5 resuspended in 1X TE buffer or nuclease-free water to a concentration of 10 μ M)	0.2 μ l	0.1 μ M final concentration
10	5	Event primer B (SEQ ID NO:6 resuspended in 1X TE buffer or nuclease-free water to a concentration of 10 μ M)	0.2 μ l	0.1 μ M final concentration
15	6	RNase, DNase free (500 μ g/ml)	0.1 μ l	50 ng/reaction
20	7	REDTaq DNA polymerase (1unit/ μ l)	1.0 μ l (recommended to switch pipets prior to next step)	1 unit/reaction
25	8	Extracted DNA (template): <ul style="list-style-type: none"> Samples to be analyzed: <ul style="list-style-type: none"> individual leaves pooled leaves (maximum of 10 leaves/pool) Negative control Negative control Positive control 	<ul style="list-style-type: none"> 10-200 ng of genomic DNA 200 ng of genomic DNA 50 ng of non-transgenic soybean genomic DNA no template DNA (solution in which DNA was resuspended) 50 ng of soybean genomic DNA comprising MON89788 	-
30				
35				

[0060] Gently mix and, if needed (no hot top on thermocycler), add 1-2 drops of mineral oil on top of each reaction. Proceed with the PCR in a Stratagene Robocycler (Stratagene, La Jolla, CA), MJ Engine (MJR-Biorad, Hercules, CA), Perkin-Elmer 9700 (Perkin Elmer, Boston, MA), or Eppendorf Mastercycler Gradient (Eppendorf, Hamburg, Germany) thermocycler using the following cycling parameters (Table 2). The MJ Engine or Eppendorf Mastercycler Gradient thermocycler should be run in the calculated mode. Run the Perkin-Elmer 9700 thermocycler with the ramp speed set at maximum.

	Table 2. Thermocycler conditions		
	Cycle No.	Settings:	Stragene Robocycler
45	1	94°C	3 minutes
	34	94°C	1 minute
		64°C	1 minute
50		72°C	1 minutes and 30 seconds
	1	72°C	10 minutes

Cycle No.	Settings: MJ Engine or Perkin-Elmer 9700
1	94°C 3 minutes

(continued)

Cycle No.	Settings: MJ Engine or Perkin-Elmer 9700
34	94°C 30 seconds 64°C 30 seconds 72°C 1 minute
1	72°C 10 minutes

5

10

15

20

EXAMPLE 2**Sequence Determination of Transgene/Genomic Region and Southern Analysis**

[0061] DNA sequencing of the PCR products provides for DNA that can be used to design additional DNA molecules as primers and probes for the identification of soybean plants or seed comprising MON89788. PCR products of the expected sizes representing the 5' and 3' transgene/genomic sequences were isolated by separation of the PCR products on a 2.0% agarose gel by electrophoresis. PCR products are isolated that include the 5' and 3' DNA regions that span the insert junction between the transgene insertion into the soybean genome. The 5' and 3' PCR products for MON89788 are purified by agarose gel electrophoresis followed by isolation from the agarose matrix using the QIAquick Gel Extraction Kit (catalog # 28704, Qiagen Inc., Valencia, CA). The purified PCR products are then sequenced (e.g. ABI Prism™ 377, PE Biosystems, Foster City, CA) and analyzed (e.g. DNASTAR sequence analysis software, DNASTAR Inc., Madison, WI).

[0062] A DNA sequence was determined for the nucleotide base pair segment representing the transgene/genomic region of event MON89788 as illustrated in FIG 1 and identified as SEQ ID NO:9. The genomic and transgene elements that are contained in SEQ ID NO:9 are described in Table 3. The 5' and 3' flanking regions are included in SEQ ID NO: 9 and given in SEQ ID NOs:21 and 22.

[0063] The junction sequences are relatively short polynucleotide molecules that are novel DNA sequences and are diagnostic for MON89788 DNA when detected in a polynucleic acid detection assay. The junction sequences in SEQ ID NO: and SEQ ID NO:2 represent 10 polynucleotides on each side of an insertion site of the transgene fragment and soybean genomic DNA in MON89788. Longer or shorter polynucleotide junction sequences can be selected from SEQ ID NO:3 or SEQ ID NO:4. The junction molecules (5'junction region SEQ ID NO:1, and 3' junction region SEQ ID NO: 2) are useful as DNA probes or as DNA primer molecules in methods for DNA detection.

[0064] Primers and probes used in a Taqman® method (Roche Molecular Systems, Inc., Pleasanton, CA) for detection of an event specific DNA molecule were developed for event MON89788. The primer molecules are referred to as SQ2824 (SEQ ID NO:10), SQ2826 (SEQ ID NO:11), SQ1141 (SEQ ID NO:12), SQ1142 (SEQ ID NO:13), SQ5543 (SEQ ID NO:14) and the probe molecules are referred to as PB871-6FAM (SEQ ID NO:15), PB2191-VIC (SEQ ID NO:16), and PB57-VIC (SEQ ID NO:17). The primers and probes were used in the Taqman® method according to manufacturers instructions to provide a diagnostic amplicon for DNA comprising MON89788. Soybean tissues including processed products, for example meal, are useful sources of DNA for this method. Additional primers used to produce an amplicon from soymeal include SEQ ID NOs:18-20.

Table 3. Genome and genetic element annotation of the transgene/genomic DNA fragment (SEQ ID NO:9) contained in the genome of soybean comprising MON89788,

Genetic Element ¹	Location in Sequence ²	Function (Reference)
Sequence flanking 5' end of the insert	1-1103	SOYBEAN GENOMIC DNA

(continued)

	Genetic Element ¹	Location in Sequence ²	Function (Reference)
5	5' Junction region	1093-1113	DNA region spanning the transgene insertion
10	B³-Right Border	1104-1145	DNA region from <i>Agrobacterium tumefaciens</i> containing the right border sequence used for transfer of the T-DNA (Depicker <i>et al.</i> , 1982)
15	Intervening Sequence	1146-1215	Sequences used in DNA cloning
20	P⁴-FMV/Tsf1	1216-2255	Chimeric promoter consisting of enhancer sequences from the 35S promoter of the Figwort Mosaic virus (Richins <i>et al.</i> , 1987) and the promoter from the <i>Tsf1</i> gene of <i>Arabidopsis thaliana</i> (encoding elongation factor EF-1alpha (Axelos, <i>et al.</i> , 1989)
25	L⁵-Tsf1	2256-2301	5' nontranslated leader (exon 1) from the <i>Tsf1</i> gene of <i>Arabidopsis thaliana</i> encoding elongation factor EF-1 alpha (Axelos <i>et al.</i> , 1989)
30	I⁶-Tsf1	2302-2923	Intron from the <i>Tsf1</i> gene of <i>Arabidopsis thaliana</i> encoding elongation factor EF-1 alpha (Axelos <i>et al.</i> , 1989)
35	Intervening Sequence	2924-2932	SEQUENCES USED IN DNA CLONING
40	TS⁷-CTP2	2933-3160	Sequences encoding the chloroplast transit peptide from the <i>ShkG</i> gene of <i>Arabidopsis thaliana</i> encoding EPSPS (Klee <i>et al.</i> , 1987)
45	CS⁸-cp4 epsps	3161-4528	Codon optimized coding sequence of the <i>aroA</i> gene from the <i>Agrobacterium sp.</i> strain CP4 encoding the CP4 EPSPS protein (Padgett <i>et al.</i> , 1996; Barry <i>et al.</i> , 1997)
50	Intervening Sequence	4529-4570	Sequences used in DNA cloning
55	T⁹-E9	4571-5213	3' nontranslated sequence from the <i>RbcS2</i> gene of <i>Pisum sativum</i> encoding the Rubisco small subunit (Coruzzi <i>et al.</i> , 1984)
	Intervening Sequence	5214-5256	Sequences used in DNA cloning
	B-Left Border	5257-5406	DNA region from <i>Agrobacterium tumefaciens</i> containing the left border sequence used for transfer of the T-DNA (Barker <i>et al.</i> , 1983)
	3' junction region	5396-5416	DNA region spanning the transgene insertion

(continued)

Genetic Element ¹	Location in Sequence ²	Function (Reference)
Sequence flanking 3' end of the insert	5407-6466	Soybean genomic DNA

Southern Blot Analysis

[0065] Genomic DNA from a plant comprising MON89788 and control soybean genomic DNA (~15 μ g of each) is digested with various restriction enzymes (140U) in a total volume of 150 μ l including 15 μ l of the corresponding manufacturer's buffer (NEB, Beverly, MA). Restriction endonucleases, e.g., BglI1, BamH1, Nco1, Hind11, and Bcl1, are used in the Southern analysis of MON89788. Endonuclease digests are performed at the appropriate temperature for at least 6 hours. After incubating, the DNA is precipitated with 3M sodium acetate and 2.5 volumes of ethanol. Subsequently, the DNA is washed with 70% ethanol, dried, and resuspended in 40 μ l of TBE. Loading buffer (0.2X) is added to the samples and then subjected to electrophoresis on agarose gels (0.8%) for 16-18 hours at 30 volts. The gels are stained with ethidium-bromide, then treated with a depurination solution (0.125N HCL) for 10 minutes, with a denaturing solution (0.5M sodium hydroxide, 1.5M sodium chloride) for 30 minutes, and finally with a neutralizing solution (0.5M Trizma base, 1.5M sodium chloride) for 30 minutes. The DNA is transferred to Hybond-N membrane (Amersham Pharmacia Biotech, Buckinghamshire, England) using a Turbo blotter (Schleicher and Schuell, Dassel, Germany) for 4-6 hours and then fixed to the membrane using a UV light.

[0066] Membranes are prehybridized with 20mls of DIG Easy Hyb solution (Roche Molecular Biochemicals, Indianapolis, IN; cat. #1603558) for 2-4 hours at 45°C. Radioactive DNA probes (32 P dCTP) homologous or complementary to SEQ ID NO:1, or SEQ ID NO:2, or SEQ ID NO:3, or SEQ ID NO:4, or a portion thereof are made using a Radprime DNA Labeling kit (Invitrogen, Carlsbad, CA; cat. #18428-011). Unincorporated nucleotides are removed using SEPHADEX G-50 columns (Invitrogen). The prehybridization solution is replaced with 10mls of pre-warmed DIG Easy Hyb solution containing the denatured probe to a final concentration of 1 million counts per ml. The blots are hybridized at 45°C for 16-18 hours.

[0067] Blots are washed with a low stringency solution (5X SSC, 0.1X SDS) at 45°C and then repeatedly washed with a higher stringency solution (0.1X SSC, 0.1% SDS) at 65°C. The blots are exposed to a phosphor screen (Amersham Biosciences, Piscataway, NJ) for >2 hours and the exposure read using a Data Storm 860 machine (Amersham Biosciences). These methods and conditions exemplified may be modified by those skilled in the art of detecting DNA in a sample.

EXAMPLE 3**Weed Control**

[0068] Controlling the growth of weeds in a field of soybeans comprising MON89788. A field is planted with soybean seeds comprising MON89788, the seeds are allowed to germinate into plants and the field of plants is treated with a herbicide formulation containing glyphosate. An effective dose of a glyphosate formulation at treatment rates of from about 0.25 lb ae/A (pounds of glyphosate acid equivalent/acre) to 3 or more lb ae/A is applied to the field. Rates often applied range from about 0.75 lb ae/A to 1.5 lb ae/A at a frequency of one or more treatments during the growing season as necessary to control growth of weeds in a field. Seeds from the plants comprising MON89788 are harvested from the treated plants.

[0069] A deposit of the Monsanto Technology LLC, soybean seed representative of event MON89788 disclosed above and recited in the claims has been made under the Budapest Treaty with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110. The ATCC accession number for the deposit comprising event MON89788 (also known as MON19788 or GM_A19788) is PTA-6708, deposited May 11, 2005. The deposit will be maintained in the depository for a period of 30 years, or 5 years after the last request, or for the effective life of the patent, whichever is longer, and will be replaced as necessary during that period.

[0070] Having illustrated and described the principles of the present invention, it should be apparent to persons skilled in the art that the invention can be modified in arrangement and detail without departing from such principles. We claim all modifications that are within the spirit and scope of the appended claims.

[0071] All publications and published patent documents cited in this specification are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

REFERENCES

[0072] The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

5 U.S. Patents 4,535,060; 4,683,195; 4,683,202; 5,094,945; 5,463,175; 5,554,798; 5,633,435; 5,633,435; 5,659,114; 6,040,497; 6,384,301; 6,544,734; 6,660,911; 6,660,911; 6,689,880; 6,689,880; 6,733,974; 6,740,488; 6,740,488; 6,818,807; 6,825,400; 6,893,826; 6,900,014; and 7,002,058.

10 U.S. Appln. 60/685584

U.S. PublIns. 20040018518 and 2006068398

Ausubel et al., In: *Current Protocols in Molecular Biology*, John, Wiley & Sons, Inc, New York, 1992.

Chen et al., *Genome Res.*, 9:492-498, 1999.

Cheng et al., *Proc. Natl. Acad. Sci. USA*, 91:5695-5699, 1994.

Coruzzi et al., *EMBO J.*, 3:1671-1679, 1984.

15 Cregan et al., In: *DNA markers: Protocols, applications, and overviews*, Wiley-Liss NY, 173-185, 1997.

DeBlock et al., *EMBO J.*, 6:2513-2522, 1987.

Fehr, In: *Breeding Methods for Cultivar Development*, Wilcox (Ed.), Amer. Soc. of Agronomy, Madison WI, 1987.

Haymes et al., In: *Nucleic acid hybridization, a practical approach*, IRL Press, Washington, DC, 1985.

Innis, et al., In: *PCR Protocols. A guide to Methods and Application*, Academic Press, Inc. San Diego, 1990.

20 Lewin, In: *Genes V*, Oxford University Press, NY, 1994.

Nikiforov, et al. *Nucleic Acid Res.*, 22:4167-4175, 1994.

PCT Applns. WO 9200377 and WO/05017181

Rieger et al., In: *Glossary of Genetics: Classical and Molecular*, 5th Ed., Springer-Verlag: NY, 1991.

25 Sambrook et al., In: *Molecular cloning: a laboratory manual*, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

Thompson et al., *EMBO J.* 6:2519-2523, 1987.

Toki et al., *Plant Physiol.*, 100:1503-1507, 1992.

Tyangi et al., *Nature Biotech.*, 14:303-308, 1996.

Weising et al., *Ann. Rev. Genet.*, 22:421-477, 1988.

30 Windels et al., *Med. Fac. Landbouww*, 64/5b:459-462, 1999.

Wingem, *Innov. Pharma. Tech.*, 00:18-24, 2000.

[0073] A nucleic acid sequence comprising the sequence of SEQ ID NO:1 or SEQ ID NO:2.

[0074] A soybean plant or part thereof comprising event MON89788, wherein representative soybean seed comprising event MON89788 have been deposited under ATCC accession number PTA-6708.

[0075] A seed of the plant as defined above, wherein the seed comprises event MON89788.

[0076] A soybean commodity product produced from the seed as defined above.

[0077] The soybean commodity product as defined above, further defined as meal, flour, flakes, or oil. The soybean plant part as defined above, defined as a cell, pollen, ovule, flower, shoot, root, or leaf.

40 [0078] The soybean plant as defined above, further defined as a progeny plant of any generation of a soybean plant comprising said event MON89788.

[0079] The soybean plant as defined above, wherein the genome of said plant comprises at least one DNA molecule selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:21 and SEQ ID NO:22.

45 [0080] The soybean plant as defined above, wherein the genome of said plant produces an amplicon diagnostic for event MON89788 when tested in a DNA amplification method, said amplicon comprising SEQ ID NO: or SEQ ID NO:2.

[0081] The seed as defined above, wherein the DNA of the seed produces an amplicon diagnostic for event MON89788 when tested in a DNA amplification method, said amplicon comprising SEQ ID NO:1 or SEQ ID NO:2.

50 [0082] The meal, flour, flakes, or oil as defined above, further defined as comprising a nucleic acid that produces an amplicon diagnostic for event MON89788 when tested in a DNA amplification method, said amplicon comprising SEQ ID NO:1 or SEQ ID NO:2.

[0083] A DNA polynucleotide primer molecule comprising at least 11 contiguous nucleotides of SEQ ID NO:3, or its complement that is useful in a DNA amplification method to produce an amplicon diagnostic for event MON89788.

[0084] An isolated DNA polynucleotide primer molecule comprising at least 11 contiguous nucleotides of SEQ ID NO: 4, or its complement that is useful in a DNA amplification method to produce an amplicon diagnostic for event MON89788.

55 [0085] A DNA detection kit specific for event MON89788 comprising at least nucleic acid comprising 11 or more contiguous nucleotides homologous or complementary to SEQ ID NO:3 or SEQ ID NO:4.

[0086] A method of producing a soybean plant tolerant to glyphosate herbicide comprising introducing into the genome of said plant event MON89788.

[0087] The method as defined above, defined as comprising the steps of:

- (a) crossing a first soybean plant comprising event MON89788 with a second soybean plant lacking event MON89788 to produce progeny plants; and
- 5 (b) selecting at least a first progeny plant that comprises said event MON89788 and is tolerant to glyphosate.

[0088] The method as defined above, further comprising selfing said first progeny plant to produce second generation progeny plants and selecting at least a first plant homozygous for said event MON89788.

[0089] A method of detecting the presence of DNA corresponding to the soybean event MON89788 in a sample, the 10 method comprising:

- (a) contacting a sample comprising soybean DNA with a primer set, which when used in a nucleic acid amplification reaction with genomic DNA from soybean event MON89788, produces a diagnostic amplicon for soybean event MON89788; and
- 15 (b) performing a nucleic acid amplification reaction, thereby producing the diagnostic amplicon; and
- (c) detecting the diagnostic amplicon.

[0090] A method of detecting the presence of a nucleic acid corresponding to event MON89788 in a sample, the method comprising:

- 20 (a) obtaining a sample of soybean DNA; and
- (b) assaying the sample for the presence of a DNA sequence from event MON89788.

[0091] The method as defined above, wherein assaying the DNA sample comprises detecting the presence of the 25 nucleic acid sequence of at least one of SEQ ID NO:1, SEQ ID NO:2, or complements thereof.

[0092] A soybean plant comprising a glyphosate tolerant trait that is genetically linked to a nucleic acid molecule comprising SEQ ID NO:1 or SEQ ID NO:2.

[0093] A method of producing a soybean commodity product comprising,

- 30 (a) obtaining the soybean plant or part thereof of claim 2; and
- (b) producing a soybean commodity product from the soybean plant or part thereof.

[0094] The method as defined above, wherein the commodity product is defined as meal, flour, flakes, protein isolate, or oil.

35 [0095] A method for controlling the growth of weeds in a field comprising soybean plants comprising event MON89788, the method comprising treating the field with an amount of glyphosate effective to control the growth of weeds, wherein the soybean plants exhibit tolerance to the glyphosate.

[0096] The method as defined above, wherein treating the field is carried out from V1 to R4 stage of growth.

40

45

50

55

SEQUENCE LISTING

5 <110> Monsanto Technology LLC
<120> SOYBEAN EVENT MON89788 AND METHODS FOR DETECTION THEREOF

10 <130> 102059ep

<150> EP 06771226.5
<151> 2006-05-26

<150> US 60/685,584
<150> 2005-05-27

15 <160> 22

<170> 3.3

<210> 1
<211> 20
<212> DNA
20 <213> Artificial Sequence

<220>
<221> misc_feature
<222> (1)..(20)
<223> chimeric molecule of soybean genome and transgene

25 <400> 1

tatcaagctc caaacactga 20

30 <210> 2
<211> 20
<212> DNA
<213> Artificial Sequence

35 <220>
<221> misc_feature
<222> (1)..(20)
<223> chimeric molecule of soybean genomic sequence and transgene

40 <400> 2

taataacgct cagactctag 20

45 <210> 3
<211> 1222
<212> DNA
<213> Artificial Sequence

50 <220>
<221> misc_feature
<222> (1)..(1222)
<223> chimeric molecule of soybean genomic DNA and transgene insert

<400> 3

cctgtacttc ccaaaaacttc gttccctgat cccatcatat ccaggactgg acgattggct 60
55 tggatgtatac caqatgggtg agtcgagtc acctcggtag cggcatttat ggcaacgatt 120

gcagccacgt tgacctccat catttttct catgctcatc atggcctcca tcatggtggt 180
 catttggct ttcatggcct ccatgtcggc cttcatctgc tcttgaactt catctatctc 240
 5 actcatgatt ctacgccttgg cacgttttg gtaagggtac cgtaaagcgc gttcggttctt 300
 ttttattact atgattacat tttgacgatg atgatgattt taggaagaa tgaaatgagt 360
 aatgaaacaa ctaaataaac gtgaatgcat gacaatgata agttgctgaa gtattataaa 420
 10 tttacatagg acattcagtg gaacgttaggg tcgaatcaaa tcctattca ttaaaaacaa 480
 tattgttcat cttgacagag ccaaagcata actagaaata caacatggac acatcagcga 540
 15 ttccctaatta tgtgggtcat tagttcgacc atgtgttggc agtaacttga aagactatga 600
 acttcatcg gaggcagatg tgtgtcagtc accgccttgg ctctggctaa caaccttggg 660
 atctcttggc tctcatttag agtaagagca aatttgcata tccatttcat ggcttcttta 720
 20 tgcataact ctatcacccc ttctttgtc tcccttcaa cctgcaaggt cgacactttt 780
 gcctgttcgt cttctagcct tcgcccata ctagcagtc gggtcacctt ctcttcata 840
 tggtcaatga ttatcaacat attttctttt gtttgctca actgttctct caaacttctc 900
 25 ttgcatctct gacaacttta taacttatcc tctaacaatca ggttttccat acttgatttg 960
 tccctcttgg cttttctaag tttgagctcg ttactgctgc cccacaaaagc ccctcgaaac 1020
 ttgttcctgc tccactcttc cttttggct tttttgttcc cgcgtctagc gctcaatcg 1080
 30 tggttatcaa gctccaaaca ctgatagttt aaactgaagg cgggaaacga caatctgatc 1140
 cccatcaagc tctagctaga gcggccgcgt tatcaagctt ctgcagggtcc tgctcgagtg 1200
 35 gaagctaatt ctcagtc当地 ag 1222
 <210> 4
 <211> 675
 <212> DNA
 40 <213> Artificial Sequence
 <220>
 <221> misc_feature
 <222> (1)..(675)
 <223> chimeric DNA molecule of soybean genomic DNA and transgene
 45 insert
 <400> 4
 gccaattgtat tgacaacatg catcaatcga cctgcagcca ctcgaagcgg ccgcattcgat 60
 50 cgtgaagttt ctcataatgg ccccatgg gacgtgaatg tagacacgtc gaaataaaaga 120
 tttccgaatt agaataattt gtttattgct ttcgcctata aatacgtacgg atcgtaattt 180
 gtcgtttat caaaatgtac tttcattttta taataacgtc cagactctag tgactaccac 240
 55 cttcactctc ctcaaggatt tcagccttcc cccgcgtca actccttagc tttggagcc 300

aaattatccc ttacgttctc gacttcaacc atatgtgata gctgcctatg ataccatggc 360
 tacttccct tagttctta tctttcctt cogctttatt ccatgcctta ccgatcctct 420
 5 gaagtgtctt tgcatttagct tcattgaaac ctcacgcgat gaaaggtgtg atggtctcct 480
 ccgatggcgc acttctcata gggtaaccta attgtcttac gaccaacata ggattataat 540
 taataacaacc cctcgtccct ataaaaggga catttggaaa tccttcacat aagcataaca 600
 10 ctcctacccc tctttcttcc cactgtggga accaactaat ggacgctcct atcatgcctg 660
 ccaagagttc ttccc 675

15 <210> 5
 <211> 21
 <212> DNA
 <213> Glycine max

20 <400> 5
 cctgtacttc caaaaacttc g 21

25 <210> 6
 <211> 22
 <212> DNA
 <213> Figwort mosaic virus

30 <400> 6
 cttccactg agaatttagct cc 22

35 <210> 7
 <211> 24
 <212> DNA
 <213> Petunia hybrida

40 <400> 7
 gccaattgat tgacaacatg catc 24

45 <210> 8
 <211> 20
 <212> DNA
 <213> Glycine max

50 <400> 8
 gggagaact cttggcaggc 20

55 <210> 9
 <211> 6466
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> misc_feature
 <222> (1)...(6466)

<223> Chimeric DNA molecule of soybean genomic DNA and transgene
insert

<400> 9

5 tgggggctgc ctgtacttcc caaaaacttcg cttccctgac ccatcatatc caggactgga 60
cgattggctt gattgatacc agatgggtga gtcgagtcg cctcggtagc ggcatttatg 120
10 gcaacgattg cagccacggtt gacctccatc atttttctc atgctcatca tggcctccat 180
catggtggtc atttggtctt tcatggcctc catgtcggcc ttcatctgct cttgaacttc 240
atctatctca ctcatgattc tagccttggc acgtgttgg taagggtacc gtaaaagcgcg 300
15 ttcgttcttt tttattacta tgattacatt ttgacagatga ttagtattgt aggaaagaat 360
gaaatgagta atgaaacaac taaataaaacg tgaatgcattt acaatgataa gttgctgaag 420
tattataaaat ttacatagga cattcagttgg aacgttagggt cgaatcaaattt cctatttcat 480
20 taaaaacaat attgttcattt ttgacagagc caaageataa ctagaaataac aacatggaca 540
catcagcgat tcctaattt gtgggtcattt agttcgacca tgggttggca gtaacttggaa 600
agactatgaa cttcatcggtt agcagagttt gtgtcagtca ccgccttggc tctggcttaac 660
25 aacccggaa tctcttggc tctcatattt gtaagagcaatttgcattt ccatttcat 720
gcttctttat gcaataactc tatcaccctt tctcttgcattt cccttcaac ctgcaagggtc 780
gacacttttgcattt cctgttcgtc ttcttagcattt cgcccatgac tagcagcttag gttcaccc 840
30 tcttcattt ggtcaatgtt tatcaacata ttttcttttgcattt ttttgcattt ctgttcttc 900
aaacttctctt tcgatctctt gcaactctttt aacttacccctt ctaacatcag gtttccata 960
cttgattttgtt cccttggc ttttctaagt ttgagtcgtt tactgctgcc ccacaaaggcc 1020
35 cctcggaaact tgggttgcattt ccacttccattt ttttggcattt ttttgcattt ccctcttagcg 1080
cttcaatcggtt ggttatcaag ctccaaacac tggatgttta aactgaaggc gggaaacgac 1140
aatctgatcc ccatcaagctt ctagcttagag cggccgcgtt atcaagctt tgcaggttcc 1200
40 gctcgagtgg aagcttatttgcattt tcaatgcgtt ccctcaacaa ggtcagggtt cagagtctcc 1260
aaaccatttttgcattt cccaaagctt caggagatca atgaaatcattt ttcatttttttgcattt 1320
gttccaggcac atgcatcatgcattt gtcagtaatttgcattt ttcaggaaatccatccacc gaaatctt 1380
agtttagtggg catctttgaa agtaatcttgcattt tcaatgcgtt ccctcaacaa ggtcagggtt 1440
agacaaaaaaa ggaatgggtgc agaattgttgcattt ggcgcacccatccattt cccaaagcat 1500
50 attgcaaaaga taaagcagat tccatcttagtgcattt caagttgggatccattt acaaaaataac gttggaaaaga 1560
gctgttcctgaa cagcccaacttccattt actaatgcgtt atgacgaacg cagtgacgac cacaatccacc 1620
tttagcttgcattt ctcaggattt agcagcatccattt cagatgggtt ccaatcaacaa aggtacgac 1680
cataatccaccatccattt tatttcaaaatccattt ggtatcgcattt aaacccaaagaa ggaatccaccatccattt 1740

EP 2 275 561 A1

cagggtacct atggcttccg ctcaagtcaa gtccgctgtt ctgcttgctg gtctcaacac 3720
 cccaggtatc accactgtta tcgagccaat catgactcgt gaccacactg aaaagatgct 3780
 5 tcaagggtttt ggtgctaacc ttaccgttiga gactgatgct gacgggtgtc gtaccatccg 3840
 tcttgaaggt cgtggtaagc tcaccggta agtgattgtat gttccaggtt atccatcctc 3900
 tactgctttc ccattggttt ctgccttgct tttccaggtt tccgacgtca ccattctaa 3960
 10 cggtttgatg aacccaaccc gtactggtct catcttgact ctgcaggaaa tgggtgccga 4020
 catcgaagtg atcaacccac gtcttgctgg tggagaagac gtggctgact tgcgtgttcg 4080
 15 ttcttctact ttgaagggtt ttactgttcc agaagaccgt gtccttcta tgatcgacga 4140
 gtatccaatt ctcgctgtt cagctgcatt cgctgaaggt gtcaccgtt tgaacggttt 4200
 ggaagaactc cgtgttaagg aaagcgaccg tctttctgct gtcgcaaacg gtctcaagct 4260
 20 caacggtgtt gattgcgtatg aagggtgagac ttctctcgtc gtgcgtggtc gtccgtacgg 4320
 taagggtctc ggtaacgcctt ctggagcagc tgcgttacc cacctcgatc accgtatcgc 4380
 tatgagcttc ctcgttatgg gtctcggtt taaaaccctt gttactgttg atgatgctac 4440
 25 tatgatcgct actagcttcc cagagttcat ggatttgatg gtcggctttg gagctaagat 4500
 cgaactctcc gacactaagg ctgcttgatg agctcaagaa ttcgagctcg gtaccggatc 4560
 ctctagctag agctttcggtt cgtatcatcg gtttcgacaa cggtcgtaa gttcaatgca 4620
 30 tcagtttcat tgcgcacaca ccagaatcct actgagttt gttttatgg cattggaaa 4680
 actgtttttc ttgttaccatt tgggtgtt gtaatttact gtttttttta ttccgttttc 4740
 gctatcgaac tggaaatgg aaatggatgg agaagagtta atgaatgata tggccctttt 4800
 35 gttcattctc aaattaatattttttt ttctcttatt tgggtgtgt tgaatttggaa 4860
 attataagag atatgcaaac atttttttt gttttttt gttttttt gttttttt gttttttt 4920
 atgaccgaag ttaatatgag gttttttt gttttttt gttttttt gttttttt gttttttt 4980
 40 aggcaacaaa tatattttca gacccatggaa agctgcaaat gttactgaat acaagtatgt 5040
 cctcttgcgtt tttagacatt tatgaactttt cttttatgtt atttccaga atccgttca 5100
 45 gattctaatc attgctttat aattatagtt atactcatgg atttgtatgg gttttttt gttttttt 5160
 atattttttt atgcattttt tgggtgtt gttttttt gttttttt gttttttt gttttttt 5220
 cagccactcg aagccggccgc atcgatcgatg aagtttctca tcttccggcc cattggacg 5280
 50 tgaatgtt gttttttt gttttttt gttttttt gttttttt gttttttt gttttttt gttttttt 5340
 cttataaataa cttttttt tgggtgtt gttttttt gttttttt gttttttt gttttttt gttttttt 5400
 aacgctcaga ctcttagtgc taccacccatc actctccatc agcatttcag cttttttttt 5460
 55 gttttttt gttttttt gttttttt gttttttt gttttttt gttttttt gttttttt gttttttt 5520

EP 2 275 561 A1

gtgatagctg cctatgatac catggctact tccccttagt tctttatctt tccttccgc 5580
tttattccat gccttaccga tcctctgaag tgtcttgca ttagcttcat tgaaacctca 5640
5 cgcgatgaaa ggtgtatgg tctcctccga tggcgcactt ctcataagggt aacctaattg 5700
tcttacgacc aacataggat tataattaat acaacccctc gtccctataa aaggacatt 5760
tgaaaatcct tcacataagc ataacactcc tacccttctt tcttccact gtggaaacca 5820
10 actaatggac gtccttatca tgcctgccaa gagttcttcc caatttgct cgtccttcc 5880
tgagcacatg cgatgaccctt gtatgggta gacagatcta ctttcatgtat tgaagacgtg 5940
ggataccaac cacacataaa gaggcgcgc acaacagaaa atcctcgat tgctttctt 6000
15 gcatcttaag tcaaatttat catacaactt tgctaaaaca acaatgtcg ggcttcctt 6060
gctatggta taagcaagaa aagcatcgat tgctactaga tccaccaact cgtetacatt 6120
cgaaaatagt actatccaa acactagcag tgctaatacg tcgatgaatg atgcccactc 6180
20 tcctggctg gccagagttt ccgccttctc ctccaaatcac ttccctggta ttccccctac 6240
cctattccta ctttgctca ctcagtctaa ttctcatttc gagatcttga caactcctgc 6300
tattctcgcc atagaaggat agtacccaga aaaaaggat ggcttccttc ctccatcg 6360
25 gcatcctaag atcccttcga actcccttat ggttggtgct aactgaaagt ccccaaaagt 6420
gaagcatctg agtgatttgtt catagtattt ggtgagagat gcgatg 6466

30 <210> 10
<211> 22
<212> DNA
<213> Artificial Sequence

35 <220>
<221> misc_feature
<222> (1)..(22)
<223> synthetic primer molecule

40 <400> 10
ccttttgggc ttttttgtt cc 22

45 <210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

50 <220>
<221> misc_feature
<222> (1)..(20)
<223> synthetic primer molecule

55 <400> 11
cgtttccgc cttcagttt 20
cgtttccgc cttcagttt

```

<210>      12
<211>      20
<212>      DNA
<213>      Artificial Sequence
5
<220>
<221>      misc_feature
<222>      (1)..(20)
<223>      synthetic primer molecule

10      <400>      12

tggtgttgtt gaccattgg          20

15      <210>      13
<211>      25
<212>      DNA
<213>      Artificial Sequence

20      <220>
<221>      misc_feature
<222>      (1)..(25)
<223>      synthetic primer molecule

<400>      13

25      cctcaattgg gagatactgc actta          25

<210>      14
<211>      29
<212>      DNA
30      <213>      Artificial Sequence

<220>
<221>      misc_feature
<222>      (1)..(29)
35      <223>      synthetic primer molecule

<400>      14

gtagtcacta gggtcagtaa agaatgtga          29

40
<210>      15
<211>      18
<212>      DNA
<213>      Artificial Sequence

45
<220>
<221>      misc_feature
<222>      (1)..(18)
<223>      synthetic primer molecule

50      <400>      15

ttatcaagct ccaaacac          18

55      <210>      16
<211>      22
<212>      DNA

```

```

<213>      Artificial Sequence
<220>
<221>      misc_feature
5      <222>      (1)..(22)
<223>      synthetic primer molecule

<400>      16

tgagctcaaa gatatcaaca tg          22
10

<210>      17
<211>      22
<212>      DNA
15      <213>      Artificial Sequence

<220>
<221>      misc_feature
<222>      (1)..(22)
<223>      synthetic primer molecule
20      <400>      17

agttaaatca tagttaataa tc          22

25      <210>      18
<211>      20
<212>      DNA
<213>      Artificial Sequence

30      <220>
<221>      misc_feature
<222>      (1)..(20)
<223>      synthetic primer molecule

<400>      18
35      tcccgctcta gcgcttcaat          20

<210>      19
<211>      19
40      <212>      DNA
<213>      Artificial Sequence

<220>
<221>      misc_feature
45      <222>      (1)..(19)
<223>      synthetic primer molecule

<400>      19

tcgagcagga cctgcagaa          19
50

<210>      20
<211>      24
<212>      DNA
55      <213>      Artificial Sequence

<220>

```

5 <221> misc_feature
<222> (1)..(24)
<223> synthetic primer molecule

10 <400> 20
ctgaaggcgg gaaacgacaa tctg 24

15 <210> 21
<211> 1103
<212> DNA
<213> Glycine max

20 <400> 21
tggggctgc ctgtacttcc caaaaacttcg cttccctgac ccatcatatc caggactgga 60
cgattggctt gattgatacc agatgggtga gtcgagtcac cctcggtagc ggcatttatg 120
gcaacgattt cagccacgtt gacccatc atttttctc atgctatca tggcctccat 180
catggggcattt atttggctt tcatggcctc catgtcggcc ttcatctgt cttgaacttc 240
atctatctca ctcatgattt tagccttgc acgtgtttgg taagggtacc gtaaaagcgcg 300
ttcggttttttttattacta tgattacatt ttgacgatga ttagtattgtt agggaaagaat 360
gaaatgagta atgaaacaac taaataaaacg tgaatgcattt acaatgataa gttgctgaag 420
tattataat ttacatagga cattcagtgg aacgttaggtt cgaatcaaattt cctatttcat 480
taaaaacaat attgttcatc ttgacagagc caaagcataa ctagaaatac aacatggaca 540
catcagcgat tcctaatttattt gtgggtcattt agttcgcattt tgggtggca gtaacttqaa 600
agactatgaa cttcatcggtt agcagagttt gtgtcagtca ccgccttggc tctggctaac 660
aaccttggga tctcttggctt ctcattttaga gtaagagcaa atttgtccat ccatttcatg 720
gcttctttat gcaataactc tatcaccctt tctcttgctt cccttcaac ctgcaggc 780
gacacttttgcctt cctgttgcgtt ttcttagcattt cggccatgac tagcagctag gttcaccttc 840
tcttcattt ggtcaatgtatcaacata ttttcttttgcgtt ttttgcgttcaatccat 900
aaacttctctt tcgtatctctg acaactctttt aacttacccctt ctaacatcag gttttccata 960
cttgattttgtt ccctcttggc ttttctttagt ttgagctgtt tactgctgcc ccacaaaagcc 1020
cctcgaaact tggccctgtt ccactcttcc ttttgggttttgcgtt ttttgcgttcaag 1080
cttcaatcggtt gtttatcaag ctc 1103

45 <210> 22
<211> 1060
<212> DNA
<213> Glycine max

50 <400> 22
cagactcttagt tgactaccac cttcaactctc ctcaaggcattt tcagccctttt ccccgctc 60
actcccttagt ttggggagcc aaattatccc ttacgttctc gacttcaacc atatgtgata 120
gctgcctatgtt ataccatggc tacttccctt tagtgcgttta tctttccctt ccgccttattt 180

5 ccatgcctta ccgatcctct gaagtgtctt tgcatttagct tcattgaaac ctcacgcgat 240
 gaaagggtgtg atggtctcct ccgatggcgc acttctcata gggtaaccta attgtcttac 300
 gaccaacata ggattataat taatacaacc cctcgtccct ataaaaggga catttgaaa 360
 tccttcacat aagcataaca ctccctaccc tctttcttcc cactgtggga accaactaat 420
 ggacgctcct atcatgcctg ccaagagttc ttcccaattt gcctcgctt ttcctgagca 480
 catgcgatga ccttgtatgg ggttagacaga tctactttca tgattgaaga cgtgggatac 540
 10 caaccacaca taaagagcag gcgcacaaca gaaaatcctc gtagtgcctc tcttgcattct 600
 taagtcaaat gtatcataca cttatgctaa aacaacaatg atcgggctt ccttgctatg 660
 gtgataagca agaaaagcat cgattgctac tagatccacc aactcgctca cattcgaaaa 720
 15 tagtactatc ccaaacacta gcagtgctaa tacgtcgatg aatgatgccc actctcctt 780
 gctggccaga gttccgcct tctccctcaa tcacttcctt ggtattcccc ctaccctatt 840
 cctactttgc ttcaactcagt ctaattctca tttcgagatc ttgacaactc ctgctattct 900
 cggccatagaa ggatagtagtacc cagaaaaaaag gtatggcttc cttccctcta tcgggcatcc 960
 20 taagatccct tcgaactcct ctatggttgg tgctaactga aagtccccaa aagtgaagca 1020
 tctgagtgat tggtcataatg attgggtgag agatgcgatg 1060

25

Claims

1. A DNA construct comprising

30 (a) the chimeric promoter FMV/Tsfl and related linked elements, operably connected to an *Arabidopsis* EPSPS chloroplast transit peptide coding sequence, operably connected to a glyphosate resistant EPSPS, operably connected to the 3' termination region from pea ribulose 1,5-bisphosphate carboxylase; and/or
 (b) one or more of SEQ ID NOs:1, 2, 3 and 4.

35 2. The DNA construct of claim 1 which is the construct (a).

3. The DNA construct of claim 1, which is the construct as present within event MON89788 deposited under ATCC accession number PTA-6708.

40 4. The DNA construct of claim 1 which is a construct (b) comprising one or more of SEQ ID NOs:1, 2, 3 and 4.

5. The DNA construct of claim 4, which further comprises a sequence encoding an EPSPS enzyme.

45 6. A glyphosate tolerant soybean plant, or a part thereof, or a seed thereof or a progeny thereof, which has integrated in its genome the DNA construct of any one of claim 1 to 3 and 5.

7. The glyphosate tolerant soybean plant, or a part thereof, or a seed thereof or a progeny thereof of claim 6, which further comprises in its genome at least one DNA molecule selected from SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3 and SEQ ID NO:4.

50 8. The soybean plant part of claim 6, defined as a cell, pollen, ovule, flower, shoot, root, or leaf.

9. A method of producing the glyphosate tolerant soybean plant tolerant of claim 6 comprising introducing into the genome of said plant the DNA construct of any one of claims 1 to 3 or 5.

55 10. A method for controlling the growth of weeds in a field comprising soybean plants comprising the DNA construct of any one claim 1 to 3 and 5, the method comprising treating the field with an amount of glyphosate effective to control the growth of weeds.

11. A method of growing a glyphosate tolerant plant comprising:

(a) planting a glyphosate tolerant soybean/corn seed comprising a nucleic acid molecule selected from the group consisting of SEQ ID NOs:1, 2, 3, or 4;
5 (b) allowing a plant to grow from said seed; and (c) treating the plant with a glyphosate herbicide such that the plant has a reduced vegetative injury and yield as compared to plants that do not comprise at least one of SEQ ID NOs:1, 2, 3, or 4.

10

15

20

25

30

35

40

45

50

55

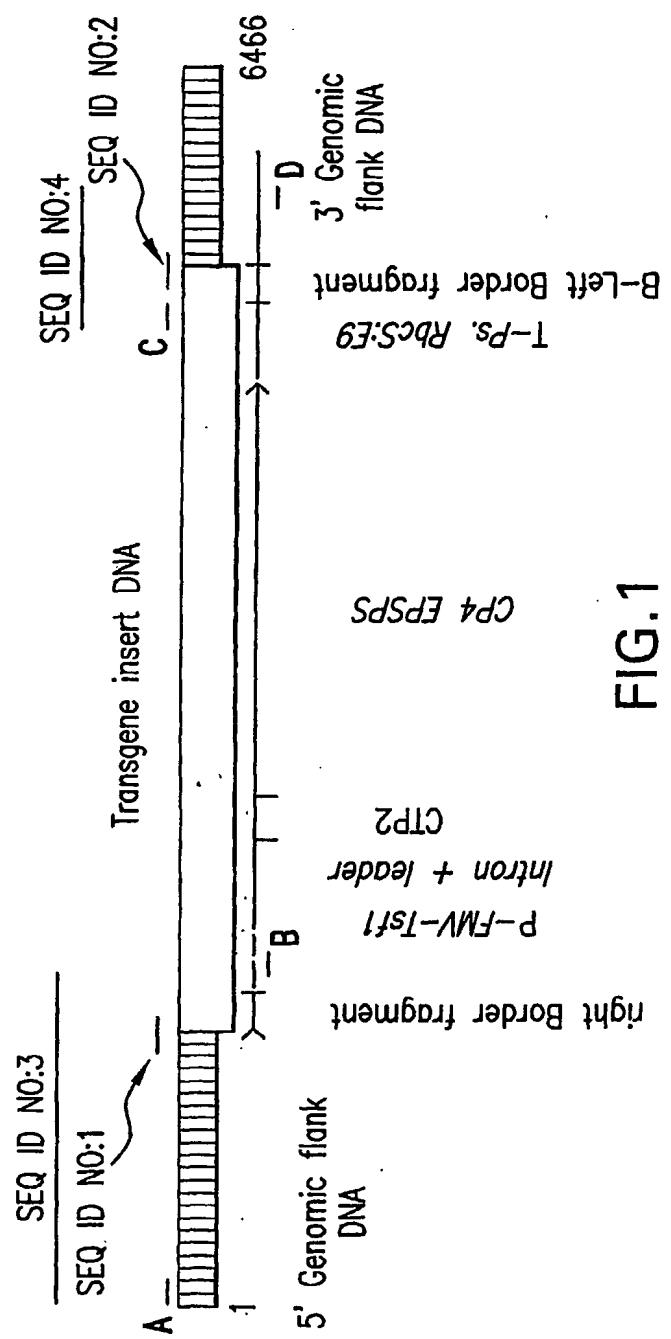


FIG. 1

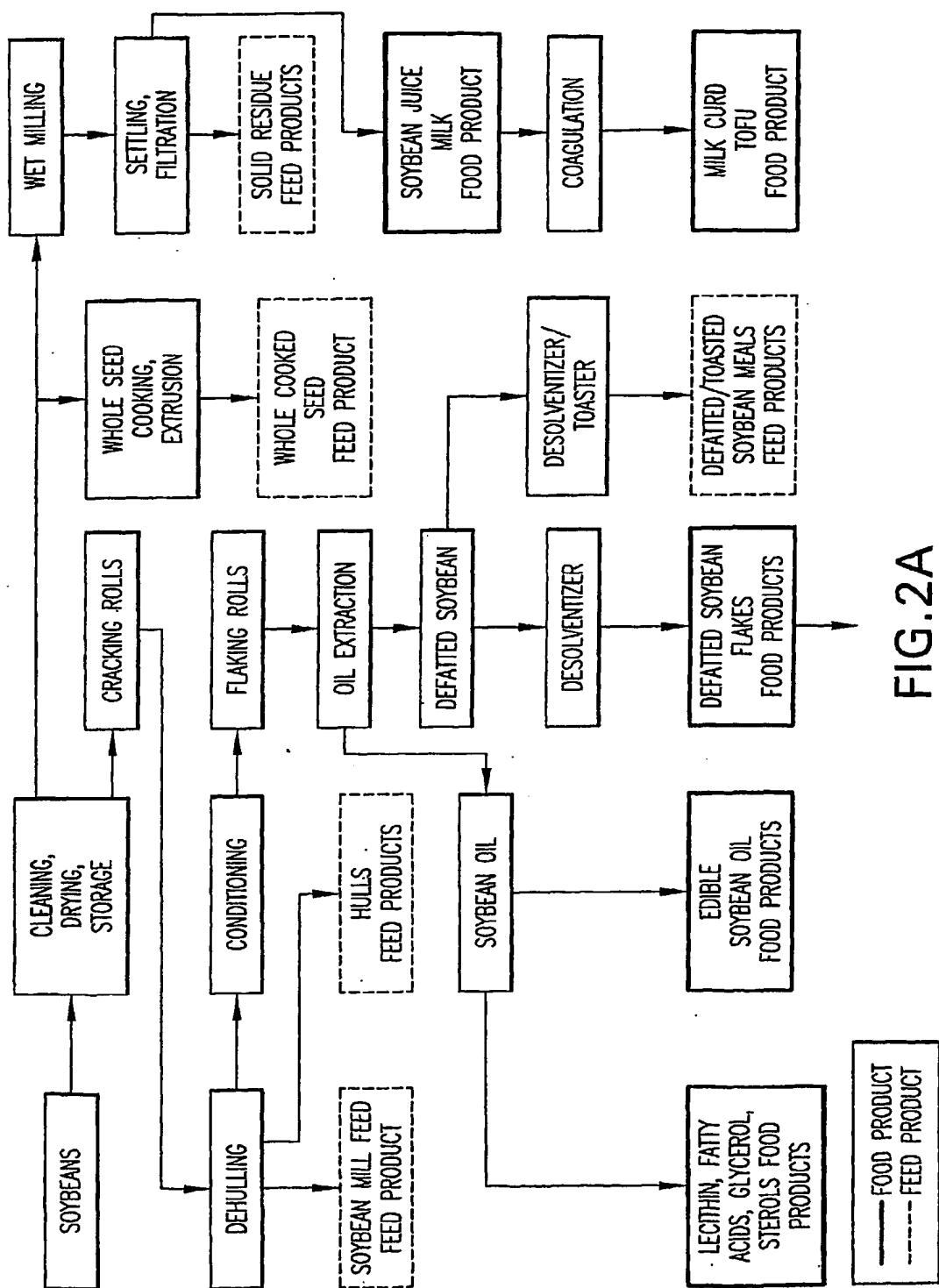


FIG. 2A

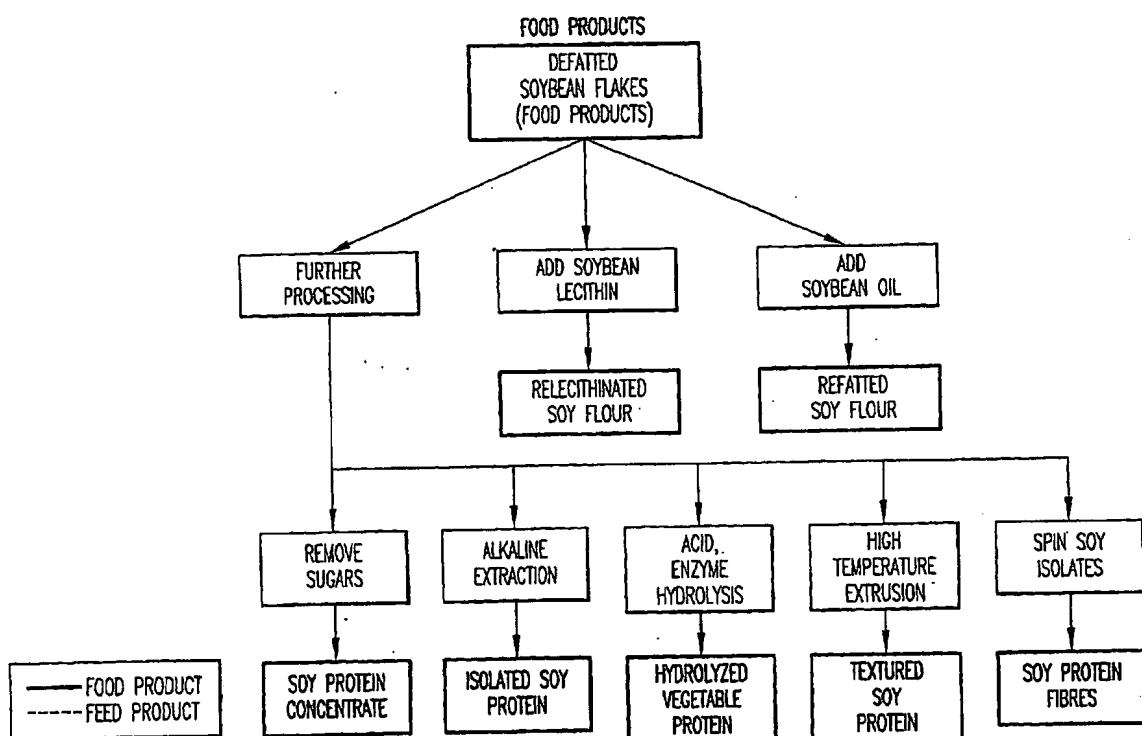


FIG.2B

EUROPEAN SEARCH REPORT

Application Number
EP 10 18 4219

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
X	WO 2004/072235 A2 (MONSANTO TECHNOLOGY LLC [US]; CERNY R ERIC [US]; DUONG CAN [US]; HART) 26 August 2004 (2004-08-26) * paragraph [0048]; figure 2 *	1-3, 5, 6, 8-10	INV. C12N15/82 C12Q1/68 A01H5/00
Y	TERRY C F ET AL: "EVENT-SPECIFIC DETECTION AND ROUNDUP READY SOYA USING TWO DIFFERENT REAL TIME PCR DETECTION CHEMISTRIES", ZEITSCHRIFT FUER LEBENSMITTEL-UNTERSUCHUNG UND -FORSCHUNG. A, EUROPEAN FOOD RESEARCH AND TECHNOLOGY, SPRINGER, HEIDELBERG, DE, vol. 213, no. 6, 1 November 2001 (2001-11-01), pages 425-431, XP001097295, ISSN: 1431-4630 * the whole document *	1-11	
A	ROTT M E ET AL: "Detection and quantification of roundup ready soy in foods by conventional and real-time polymerase chain reaction", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 52, no. 16, 20 July 2004 (2004-07-20), pages 5223-5232, XP002405802, ISSN: 0021-8561, DOI: DOI:10.1021/JF030803G * the whole document *	1	TECHNICAL FIELDS SEARCHED (IPC)
A	WINDELS P ET AL: "CHARACTERISATION OF THE ROUNDUP READY SOYBEAN INSERT", EUROPEAN FOOD RESEARCH AND TECHNOLOGY, SPRINGER VERLAG, HEIDELBERG, DE, vol. 213, no. 2, August 2001 (2001-08), pages 107-112, XP008072737, ISSN: 1438-2377 * the whole document *	1	C12N A01H C12Q
		-/-	
The present search report has been drawn up for all claims			
2	Place of search The Hague	Date of completion of the search 13 December 2010	Examiner Holtof, Sönke
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

EUROPEAN SEARCH REPORT

Application Number
EP 10 18 4219

DOCUMENTS CONSIDERED TO BE RELEVANT															
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)												
A	<p>MONSANTO COMPANY: "Application for authorization to place on the market MON 89788 soybean in the European Union, according to Regulation (EC) No 1829/2003 on genetically modified food and feed", INTERNET CITATION, [Online] XP002411357, Retrieved from the Internet: URL:http://www.efsa.europa.eu/etc/medialib/efsa/science/gmo/gm_ffapplications/more_info/gmo_nt_06_36.Par.0001.File.dat/summary_efsa_gmo_nt_200_6_36.pdf [retrieved on 2006-12-13] * the whole document *</p> <p>-----</p> <p>US 6 462 258 B1 (FINCHER KAREN L [US] ET AL) 8 October 2002 (2002-10-08) * the whole document *</p> <p>-----</p> <p>WINDEL P ET AL: "DEVELOPMENT OF A LINE SPECIFIC GMO DETECTION METHOD A CASE STUDY", MEDEDELINGEN VAN DE FACULTEIT LANDBOUWWETENSCHAPPEN UNIVERSITEIT GENT, GENT, BE, vol. 64, no. 5B, 22 September 1999 (1999-09-22), pages 459-462, XP001032975, ISSN: 0368-9697 * the whole document *</p> <p>-----</p>	1													
			TECHNICAL FIELDS SEARCHED (IPC)												
2	<p>The present search report has been drawn up for all claims</p> <table border="1"> <tr> <td>Place of search</td> <td>Date of completion of the search</td> <td>Examiner</td> </tr> <tr> <td>The Hague</td> <td>13 December 2010</td> <td>Holtorf, Sönke</td> </tr> <tr> <td colspan="2">CATEGORY OF CITED DOCUMENTS</td> <td> <p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p> </td> </tr> <tr> <td colspan="3"> <p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p> </td> </tr> </table>			Place of search	Date of completion of the search	Examiner	The Hague	13 December 2010	Holtorf, Sönke	CATEGORY OF CITED DOCUMENTS		<p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>	<p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p>		
Place of search	Date of completion of the search	Examiner													
The Hague	13 December 2010	Holtorf, Sönke													
CATEGORY OF CITED DOCUMENTS		<p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>													
<p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p>															

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 10 18 4219

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

13-12-2010

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 2004072235	A2	26-08-2004		AR 043162 A1		20-07-2005
				AR 072743 A2		15-09-2010
				AU 2004211592 A1		26-08-2004
				AU 2008202623 A1		03-07-2008
				BR PI0407397 A		07-02-2006
				CN 1753998 A		29-03-2006
				CO 5601048 A2		31-01-2006
				EP 1592798 A2		09-11-2005
				MX PA05008519 A		20-10-2005
				ZA 200505226 A		27-09-2006
<hr/>						
US 6462258	B1	08-10-2002		NONE		
<hr/>						

EPO FORM P0459

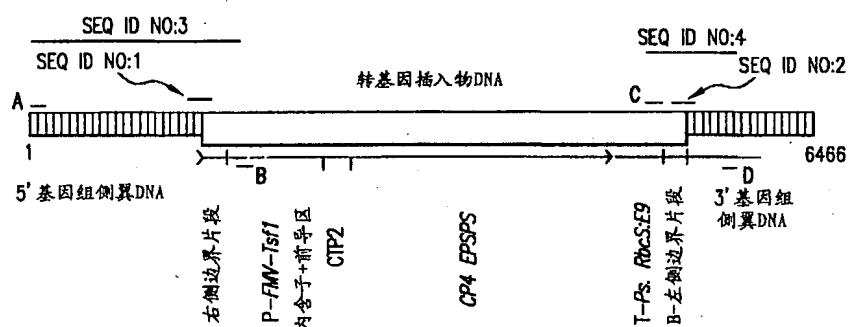
For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 68558405 P [0001]
- US 5633435 A [0005] [0051] [0072]
- US 5094945 A [0005] [0072]
- US 4535060 A [0005] [0072]
- US 6040497 A [0005] [0072]
- US 5463175 A [0005] [0072]
- US 5554798 A [0005] [0072]
- US 6689880 B [0005] [0007]
- US 6740488 B [0005] [0007]
- WO 9200377 A [0005]
- US 20040018518 A [0005] [0072]
- US 6893826 B [0007]
- US 6825400 B [0007]
- US 6733974 B [0007]
- US 6900014 B [0007]
- US 6818807 B [0007]
- US 4683195 A [0044] [0072]
- US 4683202 A [0044] [0072]
- US 2006068398 A [0050] [0072]
- US 6544734 B [0050]
- WO 05017181 A [0050] [0072]
- WO 06024023 A [0050]
- US 6660911 B [0051] [0055]
- US 5659114 A [0051] [0072]
- US 6384301 B [0051]
- US 7002058 B [0051]
- US 60685584 B [0052]
- US 6384301 A [0072]
- US 6544734 A [0072]
- US 6660911 A [0072]
- US 6689880 A [0072]
- US 6733974 A [0072]
- US 6740488 A [0072]
- US 6818807 A [0072]
- US 6825400 A [0072]
- US 6893826 A [0072]
- US 6900014 A [0072]
- US 7002058 A [0072]
- US 685584 P [0072]
- WO 9200377 PCT [0072]


Non-patent literature cited in the description

- Current Protocols in Molecular Biology. John Wiley & Sons, 1989, 6.3.1-6.3.6 [0039]
- Ausubel et al. Current Protocols in Molecular Biology. John, Wiley & Sons, Inc, 1992 [0072]
- Chen et al. *Genome Res.*, 1999, vol. 9, 492-498 [0072]
- Cheng et al. *Proc. Natl. Acad. Sci. USA*, 1994, vol. 91, 5695-5699 [0072]
- Coruzzi et al. *EMBO J.*, 1984, vol. 3, 1671-1679 [0072]
- Cregan et al. DNA markers: Protocols, applications, and overviews. Wiley-Liss, 1997, 173-185 [0072]
- DeBlock et al. *EMBO J.*, 1987, vol. 6, 2513-2522 [0072]
- Fehr. Breeding Methods for Cultivar Development. Amer. Soc. of Agronomy, 1987 [0072]
- Haymes et al. Nucleic acid hybridization, a practical approach. IRL Press, 1985 [0072]
- Innis et al. PCR Protocols. A guide to Methods and Application. Academic Press, Inc, 1990 [0072]
- Lewin. Genes V,. Oxford University Press, 1994 [0072]
- Nikiforov et al. *Nucleic Acid Res.*, 1994, vol. 22, 4167-4175 [0072]
- Rieger et al. Glossary of Genetics: Classical and Molecular. Springer-Verlag, 1991 [0072]
- Sambrook et al. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, 1989 [0072]
- Thompson et al. *EMBO J.*, 1987, vol. 6, 2519-2523 [0072]
- Toki et al. *Plant Physiol.*, 1992, vol. 100, 1503-1507 [0072]
- Tyangi et al. *Nature Biotech.*, 1996, vol. 14, 303-308 [0072]
- Weising et al. *Ann. Rev. Genet.*, 1988, vol. 22, 421-477 [0072]
- Windels et al. *Med. Fac. Landbouww*, 1999, vol. 64/5b, 459-462 [0072]
- Wingem. *Innov. Pharma. Tech.*, 2000, vol. 00, 18-24 [0072]

HKP1121122

大豆事件 MON89788 及其检测方法

发明涉及包含转化事件 MON89788 的大豆植物和种子，对所述事件独特的 DNA 分子。本发明还涉及用于在样品中检测所述 DNA 分子存在的方法。

