wo 2015/061022 A1 |1 I} NN T OO0 RO O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization é 0 00 O 0 O

International Bureau

9 (10) International Publication Number
(43) International Publication Date ./ WO 2015 /061 02 2 Al
30 April 2015 (30.04.2015) WIPO I PCT
(51) International Patent Classification: (72) Inventors: BAGCHI, Saurabh; 1044 Edgerton St., West
GOG6F 11/36 (2006.01) Lafayette, IN 47906 (US). CRETI, Matthew, Edward

Tan; 3635 Orion Drive, Lafayette, IN 47905 (US).

(21) International Application Number: SUNDARAM, Vinaitheerthan; 2550 Yeager Road #10-

PCT/US2014/058999 11, West Lafayette, IN 47906 (US). EUGSTER, Patrick;

(22) International Filing Date: 1704 King Elder Dr., West Lafayette, IN 47906 (US).
3 October 2014 (03.10.2014) (74) Agents: WHITE, Christopher, J. et al.; Lec & Hayes,
(25) Filing Language: English PLLC, 601 W. Riverside Ave, Suite 1400, Spokane, WA

. . 99201 (US).
(26) Publication Language: English

. (81) Designated States (uniess otherwise indicated, for every
(30) Priority Data: kind of national protection available): AE, AG, AL, AM,
61/893,923 22 October 2013 (22.10.2013) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY.
(71) Applicant: PURDE RESEARCH FOUNDATION BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
[US/US]; 1281 Win Hentschel Blvd., West Lafayette, IN DO, DZ, EC, EFE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
47906 (US). HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: DEBUGGING NON-DETERMINISTIC EMBEDDED SYSTEMS

(57) Abstract: An embedded device includes a processor ex-
ecuting instructions from module(s) in a code memory. The
instructions specify: reading data from two non-deterministic
registers (NDRs) of different types, compressing the data us-
ing respective, different compression algorithms, and storing
the compressed data in a nonvolatile medium. A method of
enabling debug tracing in a computer program product (CPP)
includes locating instructions in the CPP that read NDRs, de-
termining types of the NDRs, and adding instruction(s) to the
CPP to compress the values read using compression al-
gorithms corresponding to the respective NDR types. An
emulator in a computer-readable medium receives emulation-
] target instructions (ETIs) and compressed NDR data, and

104 106 102

TARDIS

logging
code

Application 0s
code code

1302~] Source-to-source

emulates an execution sequence of the ETIs by determining

NDR-reading instructions, determining a type of the NDR

read by each, decompressing a portion of the NDR data using

a type-specific decompressor, and updating emulated-ma-
I chine state based on the decompressed portion.

1304~ Instrumented
source

110{ GCC

Binary Instrumentation
1320~} firmware mapping

13227/

FIG. 13

WO 2015/061022 A1 AT 00V VTR0 R0

(84) Designated States (unless otherwise indicated, for every SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
kind of regional protection available). ARIPO (BW, GH, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, .
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, Kz, RU, Tublished:
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, — with international search report (Art. 21(3))
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,

WO 2015/061022 PCT/US2014/058999
DEBUGGING NON-DETERMINISTIC EMBEDDED SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to and the benefit of U.S. Provisional Patent
Application Serial No. 61/893,923, filed October 22, 2013, and entitled “System-Level Record
and Replay in Wireless Sensor Networks,” the entirety of which is incorporated herein by

reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR

DEVELOPMENT

[0002] This invention was made with government support under CNS-0834529 and ECCS-
0925851 awarded by the National Science Foundation. The government has certain rights in the

invention.

TECHNICAL FIELD

[0003] The present disclosure generally relates to software-trace and software-replay
systems, and in particular to such systems used in debugging tools for embedded computing

devices.

BACKGROUND

[0004] Networks of computing devices are used in many applications. One such example is
a wireless sensor network (WSN) that includes a large number of nodes that are in remote
communication with a base station. These nodes communicate data with the base station, on a
regular or irregular basis. In either case, the data can be communicated with deterministic or
non-deterministic timing. In the event the network behaves in a manner that is unexpected, e.g.,
when a bug occurs, determining the source of the bug can be challenging due to, e.g., remoteness
of deployed sensor nodes (e.g., inaccessibility), the non-deterministic nature of data or of a
sequence of execution that can make it challenging to replicate the bug, or the limited hardware

resources available on a node.

[0005] A mechanism for debugging such networks is known as “record and replay,” which
logs a trace of predefined events while an application is executing such that the events can be
replayed later using associated debugging tools. However, these debugging tools have various

limitations. For example, existing recording methods for WSNs for several reasons cannot

WO 2015/061022 PCT/US2014/058999

capture complete code execution associated with the nodes, thus resulting in the inability to
effectively replay and thereby causing some bugs to go unnoticed. For example, prior
deterministic record and replay methods cannot adequately trace non-deterministic events such
as sensor values or message arrival times, and do not execute efficiently on limited-resource

computing nodes.

BRIEF DESCRIPTION

[0006] According to an aspect, there is provided an embedded device comprising: a
processor; a nonvolatile computer storage medium; a code memory; and one or more module(s)
stored in the code memory and configured for execution by the processor, the one or more
module(s) including instructions to: read data from a first non-deterministic register (NDR) of a
first type; read data from a second, different NDR of a second, different type; compress the data
from the first NDR using a first compression algorithm to provide first compressed data;
compress the data from the second NDR using a second, different compression algorithm to
provide second compressed data; and store the first and second compressed data in the

nonvolatile medium.

[0007] According to another aspect, there is provided a method of enabling debug tracing in
a computer program product, the computer program product comprising instructions for use
within an architecture of an embedded device, the method including: locating one(s) of the
instructions that read an NDR, the locating being performed using register data of the
architecture; determining a register type of the NDR using the register data; adding instruction(s)
to the computer program product following the located instruction(s), the added instruction(s)
including instruction(s) for use within the architecture to compress the value read by the located
instruction(s) using a compression algorithm corresponding to the determined register type; and
repeating the locating, determining, and adding steps for each of a plurality of located one(s) of
the instructions of the computer program product using compression algorithms corresponding to

the respective determined register types.

[0008] According to yet another aspect, there is provided a computer program product
comprising a computer readable medium and an emulator computer program mechanism
embedded therein, the emulator computer program mechanism comprising instructions for:
receiving emulation-target instructions and compressed data of NDR values, wherein the
emulation-target instructions include first instructions to read NDRs and second instructions;
emulating an execution sequence of the emulation-target instructions, the emulating including:

for each second instruction in the execution sequence, updating an emulated-machine state based

2

WO 2015/061022 PCT/US2014/058999

on that second instruction; and for each first instruction in the execution sequence: determining a
type of the NDR read by the first instruction; decompressing a portion of the compressed data
using a decompression algorithm corresponding to the determined register type; and updating the

emulated-machine state based on the decompressed portion.

[0009] Various aspects advantageously permit tracing of longer, broader traces than prior
schemes. Various aspects advantageously permit debugging a wider range of bugs than do prior

schemes.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The above and other objects, features, and advantages of the present application will
become more apparent when taken in conjunction with the following description and drawings
wherein identical reference numerals have been used, where possible, to designate identical

features that are common to the figures, and wherein:

[0011] FIG. 1A is a flow diagram of exemplary processes of preparing binary firmware and a

record instrumentation map;

[0012] FIG. 1B is a flow diagram of exemplary processes of tracing execution of a binary

firmware program;

[0013] FIG. 1C is a flow diagram of exemplary processes of replaying execution of a binary

firmware program;

[0014] FIGS. 2A-2D show computer program listings of successive steps of processing of

code to read an NDR according to various aspects;

[0015] FIG. 3A shows experimental data comparing Flash-memory consumption of various

comparative schemes and various inventive aspects;

[0016] FIG. 3B shows experimental data of size in Flash of various programs according to

various inventive aspects;

[0017] FIG. 4A shows experimental data comparing power consumption of various

comparative schemes and various inventive aspects;

[0018] FIG. 4B shows experimental data comparing duty cycle of various comparative

schemes and various inventive aspects;

WO 2015/061022 PCT/US2014/058999
[0019] FIG. 5A shows experimental data comparing read-only memory (ROM) consumption

of various comparative schemes and various inventive aspects;

[0020] FIG. 5B shows experimental data comparing random-access memory (RAM)

consumption of various comparative schemes and various inventive aspects;

[0021] FIG. 6 shows experimental data comparing Flash-memory consumption of various

tested configurations according to various inventive aspects;
[0022] FIG. 7 is a flow diagram of exemplary methods for generating classification tables;

[0023] FIG. 8 is a high-level diagram showing the components of a computing device

according to various aspects, and related components;

[0024] FIG. 9 is a flow diagram showing exemplary methods for enabling debug tracing in a

computer program product;

[0025] FIG. 10 is a flow diagram showing exemplary methods for enabling debug tracing in

a computer program product;

[0026] FIG. 11 is a flow diagram showing exemplary methods for enabling debug tracing in

a computer program product;

[0027] FIG. 12 is a structural and flow diagram of an exemplary computer program product

including an emulator control program mechanism; and

[0028] FIG. 13 is a flow diagram of exemplary processes of preparing binary firmware and a

record instrumentation map.
[0029] The attached drawings are for purposes of illustration and are not necessarily to scale.

DETAILED DESCRIPTION

[0030] For the purposes of promoting an understanding of the principles of the present
disclosure, reference will now be made to the embodiments illustrated in the drawings, and
specific language will be used to describe the same. It will nevertheless be understood that no

limitation of the scope of this disclosure is thereby intended.

[0031] In the description below, some aspects will be described in terms that would
ordinarily be implemented as software programs. Those skilled in the art will readily recognize

that the equivalent of such software can also be constructed in hardware, firmware, or micro-

4

WO 2015/061022 PCT/US2014/058999

code. Because data manipulation algorithms and systems are well known, the present description
will be directed in particular to algorithms and systems forming part of, or cooperating more
directly with, systems and methods described herein. Other aspects of such algorithms and
systems, and hardware or software for producing and otherwise processing the signals involved
therewith, not specifically shown or described herein, are selected from such systems,
algorithms, components, and elements known in the art. Given the systems and methods as
described herein, software not specifically shown, suggested, or described herein that is useful
for implementation of any aspect is conventional and within the ordinary skill in such arts.
Various aspects described herein may be embodied as systems or methods. Accordingly, various
aspects herein may take the form of an entirely hardware aspect, an entirely software aspect

(including firmware, resident software, micro-code, etc.), or an aspect combining software and

hardware aspects These aspects can all generally be referred to herein as a “service,” “circuit,”
“circuitry,” “module,” or “system.”
[0032] “Non-determinism’ and similar terms refer to influences on the behavior of a

computing device that are outside the control of that computing device or processor(s) therein.
For example, sensor values are non-deterministic (from the viewpoint of the software on a
computing device), since their values are not known or determinable from any characteristics of
the software. Values read on 1/O ports or addresses (in systems using memory-mapped 1/0) are
non-deterministic. Accordingly, the behavior of a computing device in response to non-

deterministic values is also non-deterministic.

[0033] There is a need for a novel real-time debugging system capable of recording and
replaying data associated with nodes in a network of plurality of nodes, where such nodes
execute software using non-deterministic data. There is a need for ways of replaying the chain of

events leading up to a software failure so bugs can be located and fixed.

[0034] Prior work used custom field-programmable gate arrays (FPGAs) to assist record and
reply. Various aspects herein advantageously use software running on stock processors and do
not require hardware changes to nodes under test. In various aspects, record and replay can be
performed without the support of a virtualization environment such as VMware. Various aspects
advantageously permit recreating the same memory state during debugging as existed at runtime,
enabling software testers or developers to use a much wider range of debugging tools than do

prior schemes.

[0035] In the present disclosure a trace and replay debugging system for, e.g., sensor nets or

other networks of embedded devices, or other computing devices (hereinafter referred to as
5

WO 2015/061022 PCT/US2014/058999
TARDIS) is presented. TARDIS is configured for record and re-play of data associated with

nodes in a network, ¢.g., wireless sensor network (WSN) nodes. The system described herein is
applicable to a broad area of resource constrained embedded systems. TARDIS may be
configured to record substantially all sources of non-determinism, and can compress data that is

to be recorded using domain-specific compression techniques.

[0036] Debugging is often performed in a cyclic process of repeatedly executing a program
and tracking down bugs. In WSNs, cyclic debugging can be a time consuming and laborious
task. Programmers of WSNs often use tools such as simulators, safe code enforcement, and
formal testing prior to deployment of the application in the field. However, the reality is that
exhaustive testing of all or even substantially all conditions in a pre-deployment setting, e.g., in a
laboratory, may not be feasible because WSNs are typically deployed in throughput-challenged
environments whose behavior cannot be easily duplicated in a laboratory. When a bug manifests
itself in a deployed WSN, detecting and diagnosing the bug can thus be a daunting task. Nodes
are often not easily physically accessible, meaning that the programmer must rely on low-power
wireless links to collect any data of interest. There may not be sufficient information available to
immediately diagnose a bug, so the network must be wirelessly reprogrammed to collect
additional debugging data. This iterative process can be time consuming. Once a bug fix is
applied, the network is again wirelessly reprogrammed, and further monitoring is required to
determine that the bug has been successfully fixed. The cyclic debugging approach of fix and test

becomes particularly laborious in this environment.

[0037] Record and replay can make the process of cyclic debugging less tedious. Record
and replay is a debugging technique where program execution is recorded in real-time and then
reproduced off-line. Record and replay cuts down on the cyclic process of debugging by
capturing a program’s execution such that it can be deterministically reproduced and carefully
examined off-line, for identifying a bug. It is a particularly valuable technique for WSNs,
because the recording can happen on the nodes and the replay and debugging can happen on the
relatively resource rich desktop-class machines, e.g., at a base station. The typical workflow for
record and replay in WSNs is that during normal execution of a deployed WSN, the nodes
execute instrumented binaries that record a trace of all sources of non-determinism to Flash. The
trace can then be brought back to the lab for offline replay. This can be done either through
wireless data collection or by physically accessing a node. In the lab, the recorded data is fed into
an emulator, which replays the node’s execution. The replay allows a developer to examine the

program’s execution, including its interactions with the environment, at various arbitrary levels

WO 2015/061022 PCT/US2014/058999
of detail, such as through setting breakpoints or querying the state of memory. Such replay helps

the developer identify the root cause of bugs encountered in the field.

[0038] The main processor and non-volatile storage are often heavily constrained in WSNss,
in order to reduce cost, size, and energy consumption of individual nodes. The main processor is
typically a microcontroller (processor) which may be limited to a few MHz clock speed, and
random access memory (RAM) in the range of tens of kilobytes. Non-volatile storage is usually a
Flash chip which may contain anywhere from MB to a few GB of storage. In one exemplary
embodiment, a WSN sensor node has 1MB of Flash and 2GB SD card for storage. However,
trace data rates of 5.4MB per minute are typical in some WSN type applications. Additionally,
storing data to Flash is energy intensive, with frequent Flash usage reducing a node’s battery

lifetime by, e.g., a factor of 3.

[0039] Moreover, WSNs often have soft real-time constraints. Adding instrumentation to
record non-deterministic events can interfere with the timing of the main application and
associated tasks causing excessive delays in the allotted cycles. In an example, each sensing

cycle of a node in a WSN is only allotted 2 s.

[0040] WSNs often do not have a clear separation between application and system software.
Some WSN nodes operate without an operating system (in a “bare-metal” configuration). For
example, there is typically no hardware memory protection on most low-end processor, and
prominent WSN operating systems (OS), e.g., open-source OS designed for low-power wireless
devices, such sensor networks, personal area networks, smart buildings and smart meters. As a
result, logging only application events can be insufficient in some systems, since the application
can affect the behavior or functioning of the operating system. This contributes to a need in
some systems to also log operating-system events in a trace, which increases the memory
required for the trace. It can be desirable to record the complete execution of a sensor node’s
processor for replay, rather than only application components. This record and replay is referred

to as system-level, which is more resource intensive than application-level record and replay.

[0041] In WSN, it is sometimes impracticable to record every instruction (due to resource
and real-time constraints) one aspect of the present disclosure is directed to determining what are
relevant to be replayed. According to one exemplary embodiment, non-deterministic data is
recorded for replay. It should be noted that there are many sources of non-deterministic behavior.
In one exemplary embodiment, a processor 886, FIG. 8, configured to read a sensor 823, FIG. §,
has 16 interrupt vectors and 367 peripheral registers. Thus, non-deterministic events such as

which interrupt is triggered at which points in the application code, when the interrupts are
7

WO 2015/061022 PCT/US2014/058999

detected, and values of the registers are non-deterministic data that can be recorded to permit
tracing execution. As used herein, the term “register” is not restricted to on-CPU static-RAM
registers tied with the machine language of the CPU. The term “register” encompasses any
memory location or cell that can be read by a CPU or other processor(s) in a computing device
under control of computer program instructions executing on such processor(s). Examples of
registers include CPU registers, RAM locations, and 1/O ports, whether port-mapped or memory-
mapped.

[0042] According to various aspects, registers are classified by type of non-determinism and
compressed in a type-specific manner. For example, one type of NDR is a peripheral register.
Peripheral registers are registers present on the processor, but whose contents are controlled from
sources external to the processor. For example, the value read from a register containing the
value of an on-chip analog-to-digital (ADC) converter is non-deterministic. The number of bits
that are needed to be stored can be determined by observing certain relationships; for example, a

10-bit ADC has 10 bits of non-determinism, despite the register being 16 bits in size.

[0043] Various exemplary compression schemes herein are designed to be lightweight in

their use of compute resources. In various aspects, the compression is done in an opportunistic
manner, ¢.g., whenever there is idle time on the processor. This can reduce the probability of

violating an application’s timing requirements. By using different compression schemes in an

integrated manner in one system, an effective solution is presented for record and replay in a

WSN.

[0044] TARDIS, in various aspects herein, can be used in situ to record deployed sensor
nodes. An exemplary overall operational flow 100 is shown in FIGS. 1A-1C, which depicts
three phases: compile-time (FIG. 1A), run-time (FIG. 1B), and off-line replay (FIG. 1C).

FIGS. 1A-1C also provides internal details of each phase, which are explained in greater detail
below. Once an application program is available, the application program can be pre-compiled
(e.g., in a source-to-source transform) to add instrumentation. One or more (up to all) NDR
reads and interrupt handlers can be instrumented. The instrumented source can be compiled,
installed, or deployed as for the non-instrumented application program. When the instrumented
application program executes, the instrumentation code stores trace values. To replay, trace data
are loaded into an emulator. Conventional emulators use randomization techniques to provide
values for NDRs or interrupts. Various inventive emulators herein pull those values from the

trace.

WO 2015/061022 PCT/US2014/058999
[0045] FIG. 1A shows an exemplary first phase. A compiler 112, ¢.g., GCC with a

TARDIS plugin, is used to compile one or more of application code 104, operating-system
code 106, and TARDIS OS-specific code 105 into object files 116, which therefore include
TARDIS instrumentation. In various aspects, for a given embedded system, an architecture is
defined. The architecture identifies sources of non-determinism and which bits are non-
deterministic. Accordingly, the specific assignments of compression algorithms to NDRs or

interrupts can vary by processor or circuit board.

[0046] Non-application-specific code, e.g., data compression code and other TARDIS
recording code 102, are compiled by compiler 112 or compiler 110, ¢.g., vanilla GCC, into
object files 114. A linker 118, e.g., GCC or ld, combines object files 114, 116 to provide binary
firmware 120 which will execute on the sensor node, and which includes TARDIS
instrumentation for recording. An instrumentation map 122 is provided using instrumented
object files 116, e.g., by extracting read IDs 258 from the parameter lists of calls to TARDIS

routines, or other ways discussed herein.

[0047] FIG. 1B shows an exemplary second phase. The node executes binary firmware 120,
e.g., in situ in the normal operating environment of the node, and logs a checkpoint and a

trace 152 of its execution to Flash memory 150 or another nonvolatile memory. In at least one
example, when the Flash is full, a new checkpoint is taken and the oldest data is overwritten first.
To log trace 152, the firmware 120 can store data in RAM 144 in uncompressed buffers 146 or in
compressed buffers 148. The firmware 120 can also compress data in uncompressed buffers 146

to provide compressed buffers 148. Compressed buffers 148 can then be written to trace 152.

[0048] In various examples, binary firmware 120 includes program instructions to detect
when non-time-critical tasks are running and store data in Flash at such times. In an example,
the program instructions schedule Flash data storage when an OS event queue or runnable-task
queue is empty. In some examples, Flash data storage tasks can take priority over other tasks; in
other examples, Flash data storage tasks have the lowest priority (other than the idle task). In
some examples, the program instructions cause data to be stored in Flash when the processor
would otherwise be going to sleep. Before the processor sleeps, the trace data are compressed
and stored in Flash, in these examples. In some examples, Flash storage is handled by an OS
task. This permits Flash storage to be interrupted by higher-priority tasks that carry out the

normal operation of the system, and then resume once those higher-priority tasks complete.

[0049] Various aspects advantageously do not require support from a specific OS, so can be

readily ported. TARDIS OS-specific code 108 in various tested examples is small and easy to
9

WO 2015/061022 PCT/US2014/058999
port. Various aspects of TARDIS have been implemented on both TinyOS and Contiki

operating systems.

[0050] FIG. 1C shows an exemplary third phase that can be executed in an emulator 180.
The third phase can be a replay, e.g., on a laboratory computer or other computer running
emulator 180, e.g., a desktop-class machine with more resources than a node. During execution
of the application (binary firmware 120) on the emulator 180, the trace 152 of non-deterministic

data is used to deterministically reproduce the nodes execution, as discussed below.

[0051] Eight exemplary domains of non-determinism in a WSN are identified herein. These
eight domains relate to specific approaches of compressing various types of non-deterministic
events. The approaches discussed herein provide flexibility for a general-purpose software-only
record and replay implementation for WSNs resulting in an 85-96% smaller trace size compared
to the state-of-the-art control flow record and replay technique. The exemplary domains are in
two major categories: reads from NDRs, and interrupts. For each category or domain,
compression techniques are selected to record as few bits as possible for each such read or

interrupt.

[0052] In a hypothetical example of a typical WSN application, a node takes a series of

sensor readings every 20 seconds and forwards the associated data to a base station.

[0053] Examples of non-deterministic events that can be recorded to support deterministic
replay include reads from peripheral registers and interrupts. Regarding reads, the processor can
include peripheral registers that can be read by the processor, but whose values are set from
external sources. For example, a processor can have a peripheral register designated to contain a
data value of a most recent reading taken by an ADC. Regarding interrupts, the interrupt vector
and the timing of the interrupt (e.g., at which instruction in the instruction stream was the
interrupt signaled or did the interrupt service routine, ISR, begin execution) are both non-

deterministic.

[0054] As stated above, the rate of non-deterministic data can be large. In one exemplary
application, for one minute of real-time data acquisition, 5.4MB of trace data may need to be
recorded, which includes data recorded in every peripheral register and the timing of every
interrupt. One source of non-deterministic data is a timer interrupt that takes place 64 times per
second. This ISR for this interrupt starts by reading a register that indicates the purpose of the
interrupt, and then it reads the current time from a timer register to check if any tasks are

scheduled to be executed. In total, each call to the timer interrupt service handler requires

10

WO 2015/061022 PCT/US2014/058999

logging several reads from NDRs. Moreover, even though the timing of the timer interrupt is
known, different instructions can be interrupted each time the timer interrupt fires. Accordingly,
data regarding the occurrence of the timer interrupt itself is non-deterministic. Another example
is related to a radio. Even if a radio send rate is low, e.g., only every 20 seconds, the node can
perform frequent tasks such as checking for radio messages being broadcast. The radio is
normally off to save energy and is turned on several times a second to perform a clear channel

assessment. Data read from the radio to perform that assessment are non-deterministic.

[0055] A trace of the size of 5.4MB exceeds the RAM capacity of some embedded
computers. Accordingly, such a trace can be stored in Flash memory. Flash is a significant
consumer of energy, ¢.g., the Flash on an exemplary node draws a current of 15 mA during
write. As a point of comparison, a sleeping node draws on the order of a few pA. Moreover,
transmitting a large trace wirelessly to a base station can consume significant energy. Various
aspects herein enable record and replay for WSNs by compressing the trace data without

interfering with the real-time constraints of the system.

[0056] One exemplary type of NDR is a state register such as a peripheral register including
a plurality of bitfields in a single processor word. Accordingly, register masking is a common
programming pattern. Take for example the case of the interrupt flag register, where each bit
represents a different condition. It is common to test one specific condition, so a mask is bitwise
ANDed with the register. In the following exemplary line of C code, a mask (TXFLG) is applied
to test if the transmit flag is set in the interrupt flag register (IFG):

not done transmitting = IFG & TXFLG;

[0057] During replay of this line of code, an emulator will need to consult the recorded
trace, because IFG is a non-deterministic peripheral register. However, it may be observed that in
the case where a mask is applied, it is sufficient for deterministic replay to only know the value
of the unmasked bits and not the entire value of the register. This can lead to a significant saving
because a 16-bit register read can be potentially stored in a single bit (e.g., if TXFLG has only a
single ‘1’ bit). Various aspects check for the masked register pattern at compile time and
instrument recording of peripheral register reads, accordingly, ¢.g., as discussed below with
reference to FIGS. 2A-2D. This compression can be performed even when other non-
deterministic bits are present in the register, ¢.g., UART status since compression can be

performed per-read rather than per-register.

11

WO 2015/061022 PCT/US2014/058999

[0058] State registers can also be used in polling loops. An example of a polling loop is
where the processor transmits a byte to the serial peripheral interface (SPI) bus, then it stays in a
loop until the transmit complete flag is set, before transmitting the next byte. In the following
exemplary line of C code, IFG is the interrupt flag register and TXFLG=1 is a mask for the least

significant bit that is cleared when the byte has finished transmission:

while (IFG & TXFLG) /* do nothing */ ;

[0059] This loop will read from the register IFG multiple times before the byte has finished
being transmitted. A correct execution exits the polling loop. Infinite loops (e.g., due to
hardware failures) can be terminated, e.g., by a watchdog timer. Moreover, the exemplary loop
itself, like similar polling loops, does not modify global or local memory. Therefore, in various
aspects, replay skips beyond the loop without losing the property of deterministic replay. There
is however one consequence of skipping the loop, and that is losing the cycle accuracy of the
replay. In some examples, the time to transmit a byte is predictable, ¢.g., because the SPI bus
peripheral module typically uses a multiple of the same clock signal as the processor, and thus
can be accounted for by the replay emulator. In some examples, a loop count (discussed below)
is not incremented during polling loops that do not read or modify any data that is live after the

polling loop exits.

[0060] A peripheral module register may exhibit a strong temporal locality. For example, a
flag bit that indicates whether an overflow has occurred in a timer may usually be set to zero,
because the overflow case is less common. Another example is with interrupt vector registers
that indicate the purpose for an interrupt being signaled. A timer register may be signaled due to
the timer reaching one of six capture/compare values. In a typical application, one of the
capture/compare registers may be more frequently used than the others, resulting in the interrupt
vector register often repeating the same value. For many application programs, most reads to
registers reporting the status of a particular peripheral module have the same value on
consecutive reads. This can be taken advantage of by having the replayer predict that the next
read from a register is the same as the last read from that register, so only reads resulting in
wrong predictions need to be logged. Accordingly, 89% to 93% of peripheral register reads do

not need to be logged when applying this simple form of register prediction.

[0061] Timer registers are counters that are incremented on clock edges. When a timer
register either overflows or reaches the value of a capture/compare register, a timer interrupt is
fired. The timer register is typically read once following the timer interrupt. It may be read more

times before the processor goes to sleep. In some examples, the first read of a timer following a

12

WO 2015/061022 PCT/US2014/058999

timer interrupt is likely to result in a value which is close to the value of the capture/compare
register that caused the interrupt, or zero if the interrupt was caused by an overflow. Successive
reads to the timer register are likely to result in values that are small increments from one to the
next. This is because, in these examples, the processor does not spend much time in active mode.
All of the reads to the timer register following an interrupt happen within a small period of time.
Thus, the difference between successive timer reads can be logged rather than the value of the
timer register itself. For the first timer read following a timer interrupt the difference between the

timer register value and the capture/compare register value (or zero for overflow) can be logged.

[0062] Two common WSN features, sensors and radios, account for another source of non-
deterministic reads. Unlike the registers discussed above, these registers are not quite as simple
to predict. However, in practice, they are quite compressible due to repeated sequences. For
example, radio messages contain header information that is often similar from one message to
the next. Routes do not change often, so consecutive messages are likely to be addressed to the
same next hop neighbor. Sensor readings often have repeating values. In a tested example, the

sensor and radio data registers can be compressed by 82% for one exemplary application.

[0063] Some exemplary application programs, such as programs for WSNs, are designed to
last for a long time, e.g., months to years of unassisted execution. To achieve this, sensor
applications are designed to have a very low duty cycle, with the processor on a sensor node
spending most of its wall-clock time in a low-power sleep mode. The processor in these
examples can be woken from sleep by an interrupt. A typical application wakes the processor
dozens of times per second but for only very brief bursts (< 1 ms) of activity. Small tasks are
performed each time the node is woken up, such as checking if radio messages are being
transmitted, taking sensor readings, or updating software based clocks that are based on the
underlying hardware clocks. Because the processor is active for such a short amount of time the
probability of an interrupt occurring when the processor is active is small. Therefore, the vast
majority of interrupts in these examples (e.g., 95%-99%) occur when the node is in sleep mode.
In some examples, there is only a single location in the code where the node can enter sleep.
Accordingly, in various aspects, when recording interrupts that wake the node from sleep state,
the timing (e.g., where within the instruction execution stream the interrupt occurred) or address
for interrupts that happen during sleep are not recorded. Many interrupts are for timer ISRs that
update the clock and then quickly go back to sleep. In some examples, only the interrupt vector
is recorded, and the whole sleep period is considered to be atomic. In an example of the

MSP430 processor, the interrupt vector takes 4 bits, the interrupted address takes 16 bits, and the

13

WO 2015/061022 PCT/US2014/058999

loop count (discussed below) takes 16 bits. Saving only the vector can reduce the storage

requirement for tracing an interrupt from 36 bits to 4 bits.

[0064] In the architecture of one exemplary sensor node, there are 16 interrupt service
handlers. These handlers are for direct memory access (DMA), input/output (I/0), watchdog,
timers, universal asynchronous receiver transmitters (USARTS), comparators, ADCs, and digital
to analog converters (DACs). It is common in a typical application that most interrupts are to just
a few of the interrupt service handlers. For example, a main timer interrupt handler in a typical
application is called often (e.g., 64 times a second), while some other interrupt handlers may be
called rarely or not at all. For example, not all applications use the DAC, the ADC, both timers,
DMA, the watchdog timer, and both USART buses and therefore will not see interrupts from
such peripherals. Another consequence of this observation is that a simple prediction type
compression can be employed, in which it is predicted that the next interrupt service handler to
be invoked will be the same as the last one. In a tested example, this prediction technique is

correct about 85% of the time, so only about 15% of the interrupts will need to be logged.

[0065] In various application programs, all reads from peripheral registers are statically
addressed. A static access means that the register is addressed directly and not by a pointer that
can vary at runtime. In such programs, reads from peripheral registers can be readily identified
and instrumented at compile time. Each peripheral register has a permanently assigned function
defined in the architecture. Non-static reads can be traced by, e.g., manually instrumenting the

target system code.

[0066] Various aspects are designed for single processor record and replay. Various aspects
provide record and replay of multi-processor architectures, including recording the order of non-
deterministic operations between processors or in multi-threaded code. In various examples, the

thread scheduler is a part of the system being recorded and, therefore, is deterministic.

[0067] As noted above, sources of non-deterministic data to be recorded include reads from
peripheral registers and interrupts. The method of encoding or compression applied to peripheral
registers depends on their functionality. For example, registers with similar functions have
common behaviors that can be exploited to improve compression. Classes of register
functionality include: State, Data, and Timer. State registers include interrupt vectors, interrupt
flags, overflow flags, and ready flags. Data registers contain general purpose I/0 and bus data
such as from a radio or sensor. Timer registers are counters that are incremented on the edge of a

clock source. The clock may be asynchronous to the processor’s clock making its value non-

14

WO 2015/061022 PCT/US2014/058999

deterministic. Registers can be assigned to the three classes based on the architecture, e.g., based

on processor documentation and embedded-system configuration.

[0068] State registers can be encoded using run length encoding (RLE). In at least one
example, the recorder software maintains a last-read value and count since last change for each
State register. In various examples, register masking and polling loop optimizations are applied

to State registers as explained herein.

[0069] Data registers can be compressed using a generic compression algorithm, e.g.,
LZRW, which is a variant of the LZ77 family of compression algorithms, or other LZW
compression algorithm such as S-LZW. The advantage of LZRW is that it has a very small
memory footprint, which is useful in systems that have only kilobytes of memory. LZRW can be
configured to use a sliding window size of 128 bytes along with a table of size of 64 bytes for a
total implementation size of 192 bytes in RAM. In various aspects, a compression technique is
chosen that will be effective for the data of interest. In various aspects, different compressors are
used for specific data registers based on domain knowledge of what the registers will typically

hold.

[0070] In various aspects, for both data and state registers, only the relevant bits are stored.
The relevant bits can be determined by pattern-matching in source code (e.g., to detect masking
operations) or by liveness analysis (e.g., to locate dead bits, bits that do not affect execution after

an NDR read).

[0071] Timer registers are counters that are incremented on clock edges. As discussed
herein, the time between timer reads is often predictable. The difference (delta) between the
predicted value and the actual value can be encoded using, e.g., a Golomb prefix code. A
Golomb prefix code shortens the encoded length of small values, which is beneficial because the
delta is often zero, or very small. Moreover, in some examples, the delta is constant, even if its

magnitude is large. Near-constant values have low entropy and are thus highly compressible.

[0072] A second source of non-deterministic data that can be recorded is interrupts. To
deterministically reproduce an interrupt during replay, three pieces of information must be
known: the interrupt vector, the interrupt’s return address, and the loop count where the interrupt
happened. The interrupt’s return address tells at which instruction the interrupt occurred.
However, because instructions repeat, a count of the number of loop iterations for all loops is
also recorded. As described above, interrupts that wake the node from sleep do not need to have

their return address or loop count recorded in some examples. This is because, in these examples,

15

WO 2015/061022 PCT/US2014/058999

there is only one location in the system code that is responsible for putting the node to sleep
(e.g., the system idle task). In some aspects, the return address is compressed expecting that a
few addresses in the code tend to get interrupts far more often than others. These aspects use,
e.g., a 16-entry return address cache. When there is a cache hit, the 4-bit index to the cache is
recorded. Only when there is no cache hit and the interrupt did not happen during sleep does the
full (e.g., 16-bit return) address need to be recorded. Other sizes of cache can be used. Cache

eviction policies known in the microprocessor art can be used.

[0073] In various examples, a compiler component of TARDIS can be implemented as a
plugin to a compiler such as the GNU Compiler Collection (GCC). The plugin can perform a
pass over the target program, instrumenting it with loop counters and code to record peripheral
register reads and interrupts. A loop counter is a single counter incremented by every loop in the
program. The pass can occur after most of the compiler’s middle-end optimizations, but before
the target program is converted to the architecture dependent Register Transfer Logic (RTL)
representation. This advantageously permits inserting loop counters after completion of loop
optimizations, because some optimizations change the number or structure of loops in the final
binary. This also permits using architecture-independent tracing code. The representation on
which an exemplary plugin operates is called Gimple, which is a simple architecture independent

intermediate representation language. Other compilers or representation languages can be used.

[0074] An exemplary compilation process is shown in Figure 1. OSes are typically
monolithic in the sense that OS and application code are compiled together to generate a single
binary. TARDIS runtime code is split into TARDIS OS-specific code 108 and TARDIS record
code 102. The code 108 that is OS-specific is used to schedule tasks such as flushing buffers or
compressing traces. Task management is OS dependent (in code 108). The TARDIS record
code 102 contains functions that record events such as interrupts and peripheral or other NDR
reads. In the example shown, the record code 102 itself is not instrumented. Instrumentation of
application code 104 is implemented by inserting into application code 104 calls to routines in
the record code 102. These calls can be inlined to reduce execution time at the cost of code size

in a link-time-optimization pass.

[0075] FIGS. 2A-2D are listings of example pseudo code representing an NDR register
read. FIGS. 2A-2D represent successive steps of TARDIS processing as described herein. In
various examples, the illustrated computations or processing steps can differ according to device
type and/or input type, for example, processor, programming language, or embedded hardware

and associated board support package. Various aspects detect reads to peripheral module

16

WO 2015/061022 PCT/US2014/058999

registers that are addressed statically in the code. This allows the compiler to know the address
of these reads. FIGS. 2A-2D show an example of the compilation processes from one exemplary

OS to instrumented Gimple code.

[0076] FIG. 2A shows exemplary code, e.g., nesC code. “SFD” is a peripheral connected to
the processor. The processor will run the code after compilation of the code, and can retrieve

data from the peripheral using the “SFD.get () ” call.

[0077] FIG. 2B shows corresponding C code prepared from the code in FIG. 2A using the
nesC compiler. The SFD is now expressed as an access to address reference 222. In this
example, the SFD is located at address 28 in the memory map of the processor. The example
shows a test to see if the second bit of an 10 peripheral register is set. The test uses mask 224, in

this example having a value of 2.

[0078] FIG. 2C shows Gimple code provided from the C code in FIG. 2B by the GCC
compiler’s middle-end. Address reference 222 and mask 224 are still present, and the “if”
statement from FIG. 2B has become a test 232 of temporary “D.104”. Optimizations can be

performed on the Gimple code.

[0079] FIG. 2D shows the output of an exemplary TARDIS pass over the code of FIG. 2C.
TARDIS, in this example, uses pattern matching on the Gimple code to detect a read from a
peripheral register. Pattern matching also reveals that a mask is being applied to the register.
TARDIS inserts a call to the correct record function 242 based on the type of the register being
read. For this particular register (register 28, indicated by address reference 222), the type is
determined to be a state register, since one bit (indicating state) is tested. So RLE encoding is
selected as the record function 242. TARDIS inserts code to pass record function the value 252
read from the register, the index 254 of the register (e.g., address reference 222), the mask 224,
and a unique read ID 258. The read ID 258 is unique to cach read in the application code 104.
TARDIS also places the value 252, index 254, mask 224, and read ID 258 into an
instrumentation map 122, which is used by the replay in emulator 180 (FIG. 1C) to know how

cach peripheral register read is encoded.

[0080] In various aspects, the trace 152 includes three streams: one stream of state and timer
data, one stream of LZRW data, and one stream of interrupt data. The streams can be stored
separately in trace 152. During replay, the replayer emulates execution of source, €.g., as

described below with reference to FIG. 12. The machine state over the course of emulation

17

WO 2015/061022 PCT/US2014/058999

determines which stream to pull the next data from. In various examples, every architectural

feature that is deterministic on the processor is deterministic on the emulator.

[0081] A single binary firmware 120 containing the application 104, OS 106, and TARDIS
code 108 is programmed into a node. The runtime code for TARDIS is mostly OS agnostic. This
code consists of encoding, buffering, and Flash logging. There is a small amount of code specific
to the OS being instrumented, it includes calling the TARDIS initialization and update functions.
The update function performs the check for buffers that are ready to be compressed or written to
Flash. The scheduling of calling the update function is OS specific. Also, the part of the code that

writes to Flash depends on the specific Flash and the interface it exposes to the software stack.

[0082] An emulator 180 is instrumented to perform the replay. The emulator 180 starts from
a memory checkpoint or known starting state (e.g., boot-up). Whenever a read from a peripheral
module register is encountered, an instrumentation map 122 generated at compile time (FIG. 1A)
is consulted to determine how the register has been encoded. Based on this information the
register is decoded from the trace 152. The emulator 180 also knows the next interrupt in the
trace 152. Logged interrupts include the vector of the interrupt, the program counter value for,
or other address of, the interrupted instruction, and the loop counter. When the return address
and loop count matches the next interrupt in the trace, the interrupt is emulated. For replay the
binary firmware 120 is executed until a register read or the next interrupt in the trace 152 is
encountered. Since all sources of non-determinism recorded during runtime are fed into the

emulator 180, this faithfully reproduces the execution.

[0083] The effort of porting TARDIS to various architectures would involve creating a new
register definition file. This file describes which registers are non-deterministic, and maps
registers to their type: State, Data, and Timer. Porting TARDIS to different OSes involves
modifying the OS-specific code 108 shown in FIG. 1A. This code interacts directly with the

operating system's task scheduler.

[0084] FIGS. 3A—6 show experimental data. To evaluate TARDIS, both runtime and static
overheads of TARDIS were measured for typical WSN applications from two exemplary OSes
running on real hardware. The runtime overhead was measured by increase in energy
consumption, CPU usage, and Flash storage, whereas the static overhead is measured by

program binary size and RAM usage.

[0085] Domain specific compression techniques used by TARDIS can significantly reduce

trace size — 2.3% to 88x less Flash usage than baseline record and replay — and operate with

18

WO 2015/061022 PCT/US2014/058999
tolerable overheads for energy (1-57%), a noteworthy metric for WSNs, as well as CPU, RAM

and program memory usage. Furthermore, when compared to prior control flow record and
replay technique, it has been determined that TARDIS only uses 4% to 15% of the trace size of
one exemplary prior art tracing application while being able to replay an execution more

effectively.

[0086] Experiments were conducted with 9 nodes arranged in a grid with a 1 m separation
between two adjacent nodes and the base station at a corner of the grid. The experiments
involving a single node represented an inactive network (i.c., no radio traffic). The experiments
were run for three exemplary benchmarks. Two of the exemplary benchmarks were
representative of applications in exemplary OSes. A third benchmark was also chosen to test
more extreme WSN scenarios. In the first exemplary benchmark, each node sampled a light
sensor at a rate of 1 Hz, and forwarded the measurements to a base station every 5 readings. Each
node’s radio was turned on all of the time. Each node’s CPU was configured to sleep until woken
up because either it has some task to do (e.g., read the light sensor) or it was interrupted by the
radio. Low Power Listening (LPL), a Media Access Control (MAC) level protocol where the
radio is turned on at a fixed interval to perform a Clear Channel Assessment (CCA), and
immediately turned back off if there is no activity, was used in some tests. In an inactive

network, LPL provides the most significant energy savings.

[0087] The second benchmark was an exemplary application, where every 20 seconds each

node sent a message containing readings for 5 different sensor sources.

[0088] According to the third benchmark, each node sampled a sensor, ¢.g., an
accelerometer, at a rate of 100 Hz for 1 second. At the end of the sampling period the node
performed a Fast Fourier Transform (FFT) on the sampled data, sent a message over the radio
including FFT output data, and then began the next sampling period. The sample rate of 100 Hz
1S representative of operations in, ¢.g., earthquake monitoring WSNs. The third benchmark was

run in a single hop mode with each node sending directly to a base node.

[0089] The runtime overhead includes the amount of Flash used to store trace, and the
additional energy and CPU time expended for tracing. The runtime overhead of a network of 9
nodes for all three of the benchmark applications was determined. To understand the effect of
network as well as LPL, single node (inactive network) and LPL results for one benchmark

application were determined. The size of the Flash in a tested node was 1MB.

19

WO 2015/061022 PCT/US2014/058999
[0090] In FIGS. 3A-5B, data labeled “BM #1” corresponds to the first benchmark, “BM

#2” to the second benchmark, and “BM #3” to the third benchmark. “Network™ indicates the
experiment was performed in a network of 9 nodes. Data labeled with a time in milliseconds

(c.g., 64 ms or 512 ms) indicates LPL was employed with the given wakeup interval.

[0091] FIG. 3A shows the measured size of the trace in Flash after 30 seconds of logging for
various benchmarks (left bars). For comparison, the size of the uncompressed data is also shown
(right, hatched bars). For the first benchmark single node, the trace sizes in baseline compared to
those with TARDIS were 3.33x, 6.72%, and 25.70x larger respectively for the various cases of
CPU wakeup intervals. For the network mode of the first benchmark, these ratios were 2.37x,
3.39x%, and 2.62x% respectively. This indicates that with a lightly loaded network there can be
fewer sources of non-determinism and the non-deterministic data can be more compressible,
e.g., similar kinds of interrupts recur frequently. For one exemplary benchmark, TARDIS trace
size was 6.38% smaller than uncompressed. For the second benchmark (far right), the Flash
utilization with TARDIS, at 1.28 KB, is too small to be visible in the figure. This gives a
compression factor of 88x. Compression of the polling loops and recording the differences
between subsequent timer firings contributed to this compression. The greatest rate of trace data
generation with TARDIS in the experiments performed was the first benchmark in the network
mode with a wakeup interval of 64 ms in which 184 KB of data is generated every 30 seconds.
50% of the Flash (i.c., 50% of 1 MB = 500 KB) was filled in one tested embodiment in 1 minute
21 seconds; to be compared with the baseline case where 50% of the Flash will be utilized for
logging in 35 seconds. When the Flash is 50% full, a new checkpoint is taken. By comparison,
the first benchmark when the network is not active fills 50% of the Flash in 162 minutes. In
various examples of a lightly loaded network, far less non-deterministic data is generated and

consequently, TARDIS is more lightweight in its operation.

[0092] FIG. 3B shows experimental data of Flash utilization by type of data stored in a
tested inventive example. NDR data include (i) State/Timer, which refers to the status of
peripheral modules (INIT, READY, etc.) and the hardware timers, and (ii) Data, which refers to
data that is read over the peripheral buses, such as, data read from sensors and radio. The most
costly cases are the first benchmark with the network. In these cases logging interrupts
contribute the most to the trace size. In prior art tracing cases logging interrupts contribute the
most to the trace size. In the case of the first benchmark with the network there are many radio
messages being received that contribute to the high number of interrupts. Furthermore, these
interrupts are not very compressible because due to variability of the network effects, the
messages are not received with an absolutely regular timing. For the third benchmark on the

20

WO 2015/061022 PCT/US2014/058999

other hand, the State/Timer component dominates. In this benchmark, each node reads its ADC
at 100 Hz. Thus, there are a large number of handshaking and state changes of the ADC. This is

compressible in a general sense because the state changes largely follow a pattern.

[0093] FIG. 4A shows the average measured power consumption of a TARDIS
instrumented application and the respective unmodified application under various benchmarks.
When the application is not using LPL, there is less than 1% increase in average power
consumption between an unmodified application and a TARDIS instrumented application.
However, when LPL is enabled, the increase in power consumption is between 13% and 57%.
Programming a page (256 Bytes) into Flash consumes 45 mW but it only takes 1.5 ms. The
results show that the Flash itself is not what is consuming significant power. Instead it is the time
taken to record interrupts and reads, along with the time to write to the Flash, that keeps the radio
active longer, and reduces the energy savings of LPL. This can be deduced from the fact that
there is very little additional power consumption when the application operates with 100% duty
cycle. Various aspects defer encoding and Flash write operations until the radio returns to sleep.
These aspects can include buffers that can accommodate data until it is time to write the buffer

contents to Flash.

[0094] FIG. 4B shows duty cycle, the fraction of time the CPU is active. The most
significant increases in duty cycle due to TARDIS over the unmodified application are for the
first benchmark in the network mode and for the third benchmark. In both cases, this is due to the
increase in compression and logging of traces, which is caused by the large number of interrupts
and radio or sensor data. In this first benchmark in the network mode, the large number of
interrupts is due to heavy radio usage, whereas in the case of the third benchmark, the interrupts
are due to the high sensor sample rate. In the experiments performed, the duty cycle remained

below full usage of the CPU. This indicates that TARDIS can be added to existing applications.

[0095] TARDIS incurs CPU overhead only to record non-deterministic events and the first
benchmark in the network mode case represents a worst case scenario where there are large
numbers of non-deterministic events. In the experiments performed, the increase in energy due

to the CPU is negligible hen compared to energy due to other sources such as the radio.

[0096] FIG. 5A shows the size of binary firmware 120, FIG. 1, relative to a binary firmware
without TARDIS. The program binary size is higher with TARDIS due to the TARDIS runtime

system code and the instrumentation of the reads and interrupts. Note that in the exemplary WSN
prior art OSes, there is a single image on the node that executes. This single image includes both

the system code and the application code and thus the program binary size in the experiments
21

WO 2015/061022 PCT/US2014/058999

performed refers to the size of this single image. However, TARDIS can also execute on OSes
that separate OS and application code. Read and interrupt instrumentation includes code that
performs simple encoding of the data and inserting it into a buffer. This code was inlined in the
experiments to reduce execution time. All of the tested applications fit in each tested node’s

48 KB of program memory.

[0097] FIG. 5B shows the statically allocated RAM both with and without TARDIS
instrumentation. Only statically allocated RAM is shown because TARDIS in the experimental
configuration tested did not use dynamically allocated RAM, and did not cause an increase of
stack size during runtime. However, TARDIS can use dynamic RAM allocation or stack buffers.
The increase in statically allocated RAM is due to buffers, and the internal data structures used in
compression. TARDIS consumed about 2.6 KB of RAM, as tested. A tested MSP430
microprocessor had a total RAM size of 10 KB, which was able to hold TARDIS. Greater Flash
usage can be traded for lesser RAM usage. If the RAM allocated to the buffers is smaller, then it

will fill up quicker and more frequent logging to Flash will occur.

[0098] FIG. 6 shows Flash size of TARDIS compared to other approaches for the first and
fourth benchmarks that were tested. The fourth benchmark took no external inputs and

repeatedly blinked three LEDs on the node at 1 Hz, 2 Hz, and 4 Hz.

[0099] Various aspects herein record the execution control flow without the external input
data. One exemplary prior art tracer application (‘“TinyTracer”) uses a static program analysis to
encode inter- and intra-procedural control flow paths of concurrent events in a WSN application.
. Each benchmark application was run for 30 seconds and the results were recorded to Flash.
Furthermore, for comparison reasons, uncompressed data for both TARDIS and TinyTracer was

also recorded.

[0100] As shown in FIG. 6, the size of trace generated by TARDIS is between 4.1% (fourth
benchmark) and 15.1% (the first benchmark) of the trace size of TinyTracer. The reason for the
trace size reduction in TARDIS is that TARDIS records only the non-deterministic inputs
whereas TinyTracer records the effect of non-deterministic inputs, which is the cascading set of
function calls triggered by non-deterministic inputs. The granularity of the exemplary prior art
tracing program is the basic block and this result shows that the control flow trace when applied
to the entire application is not very compressible. TARDIS not only reduces the trace size but
also aids in diagnosis of many faults by reproducing the entire execution including both control
and data flow. In contrast, the lack of data flow information in TinyTracer limits the number of

faults that can be diagnosed.
22

WO 2015/061022 PCT/US2014/058999

[0101] There may be a gap of time between when a bug occurs to when it is detected by a
developer. TARDIS is configured to store a long trace in time to increase the probability of being

able to replay the bug.

[0102] A likely debugging scenario would be for a developer to observe increased

congestion in the network, and then use TARDIS to replay execution of a node.

[0103] An exemplary application containing a known bug was executed and traced using
TARDIS. The bug was in the radio module and resulted in a receiving node sending
acknowledgment packets at the highest signal strength even when a lower signal strength had
been specified in a parameter setting. The consequence of signaling at the highest signal strength
was that it increased contention and collisions in the network thereby potentially reducing
throughput. In an experiment, TARDIS traced 10.9 minutes of trace into 500 KB of Flash. In this
time the tested node sent 5048 acknowledgments. In the experiment, the developer set a
breakpoint during replay and examined the transmit signal strength for the acknowledgements.

During replay it was observed that the signal strength value was not being correctly set.

[0104] Various aspects permit tracking causality across nodes through message sends and
receives. Various aspects are useful in multi-threaded, simultaneous multi-threaded, or multi-
process environments, in which additional non-determinism is introduced by different processes
running concurrently in different threads or on different processors on the same computing

device. For example, the order of shared memory accesses can be logged.

[0105] According to one aspect of the present disclosure, identification of registers to which
non-deterministic data is written and thus used for record and replay can be automated. The
peripheral registers for a type of processor are typically classified into one of three types:
STATE, DATA and TIMER. The classification can be used to determine which method of
compression is best suited for each of the peripheral registers on that type of processor. A table
of classifications of the registers on the target processor type can be uploaded at compile time, so

that reads from peripheral registers can be instrumented with a preferred compression method.

[0106] FIG. 7 shows one exemplary method for automatically generating the classification
table. This method is based on recording a trace of a test application and then testing different
methods of compression for each peripheral register. The method of compression that performs
the best on the test application can also perform well on a target application. In the method
depicted in Figure 7, first, an application is executed on an instance of the target processor type,

as depicted in step 701. The execution may be performed on an in-circuit emulator or a computer

23

WO 2015/061022 PCT/US2014/058999

emulation of the target processor. During execution of the application the value of all reads from
peripheral registers are stored. Then, all of the stored reads for a single peripheral register are
retrieved, as depicted in step 702. The peripheral register reads are compressed, e.g., in three
different ways as depicted in step 703, first, assuming the register is of type STATE, then of type
DATA and finally of type TIMER. Of the three compressed versions of the register reads, the
smallest one is chosen, as depicted in decision step 704. The register is then marked with the
corresponding type in a table, as depicted in steps 705, 706, 707. This procedure continues until

all of the registers have been classified, as depicted in decision step 708.

[0107] According to various aspects, a method for tracing program execution on a
processor, ¢.g., an embedded processor, of a class of processors in an embedded device includes
automatically performing the following steps using a processor, ¢.g., on a personal computer
running a compiler: identifying a plurality of non-deterministic locations in the program where
associated non-deterministic data are read from associated NDRs; identifying a plurality of
interrupt locations in the program where interrupts occur; instrumenting the program to record
register values in the associated NDRs at each of the identified plurality of non-deterministic
locations into an uncompressed dataset; instrumenting the program to record interrupt occurrence
of each interrupt and parameters associated with the interrupt into the uncompressed dataset; and
compressing the uncompressed dataset into a compressed dataset. Various embodiments include

communicating the compressed dataset to a base station.

[0108] An exemplary method for replaying program execution on a processor of a class of
processors in an embedded device comprises automatically performing the following steps using
a processor, ¢.g., in a base station or personal computer: receiving a compressed dataset at a base
station; and replaying the compressed dataset at the base station, e.g., as described herein. The
identifying a plurality of non-deterministic locations can include isolating instructions associated
with retrieval of register values in the associated NDRs. The isolated instructions can include
one or more of read, load, add, xor, and move instructions. The instrumenting the program to
record register values can include replacing an associated instruction in the program to include
loading the register values in the associated NDRs into one or more temporary registers;
recording the values of the one or more temporary registers into the uncompressed dataset; and
inserting a substitute instruction for the replaced associated instruction using data from the one or

more temporary registers.

[0109] The identifying a plurality of non-deterministic locations can include ignoring

(i.e., not identifying for tracing) non-deterministic locations inside of polling loops, ¢.g., polling

24

WO 2015/061022 PCT/US2014/058999

loops on NDRs. Data of the recorded register values in the associated NDRs can be compressed

by ignoring masked bits.

[0110] Compressing of the uncompressed dataset can include: classifying the plurality of
NDRs into three types: STATE, DATA, and TIMER, and compressing data from each type into
a corresponding sub-dataset using an associated compression algorithm. The classifying the
plurality of NDRs can include: executing a predefined application program on a representative
processor of the class of processors; recording values from each of the plurality of NDRs of the
representative processor; compressing the recorded data for each of the plurality of NDRs based
on register types of STATE, DATA, and TIMER, resulting in three compressed sub-datasets;
comparing the size of the three compressed sub-datasets; selecting the register type associated
with the smallest size of compressed sub-dataset; and associating each of the plurality of the
NDRs with the selected register type in a table, e.g., stored in a computer-readable medium. The
STATE peripheral register type can be compressed using a Run Length Encoding (RLE)
algorithm. The DATA peripheral registers can be compressed using a Lempel-Ziv—Welch
(LZW) algorithm, e.g., a Lempel-Ziv Ross Williams (LZRW) algorithm. The TIMER
peripheral registers can be compressed by delta encoding. Parameters associated with an

interrupt can include interrupt vectors, which can be compressed using an RLE algorithm.

[0111] Various aspects herein advantageously provide type-specific processing of non-
deterministic data, e.g., compression. There are described herein a processor and computer-
readable-medium carrying program instructions to cause the processor to carry out the run-time
type-specific compression of non-deterministic data. There are described herein methods for,
and computer-readable media carrying program instructions for, instrumenting source code to
carry out type-specific compression in the context of tracing. There are also described herein
methods for, and computer-readable media carrying program instructions for, carrying out type-
specific decompression in the context of tracing, permitting improved debugging of, e.g.,
embedded systems such as WSNs. Also described herein are systems including multiple nodes,
cach having one or more processors, that intercommunicate and that each trace events and
compress data in a type-specific way. Various aspects compress NDR reads only, compress

interrupts only, or compress both NDR reads and interrupts.

[0112] A technical effect of various aspects described herein is to improve the functioning
of computers by providing debugging trace data not previously available due to power and Flash-
size constraints. A technical effect of various aspects described herein is to improve the

technology of wireless sensor networks, e.g., for earthquake monitoring or bridge inspection, by

25

WO 2015/061022 PCT/US2014/058999

providing increased robustness of software running on such networks and therefore increased
uptime and effectiveness of such networks to carry out the measurements for which such
networks are designed and deployed. A further technical effect is to present a visual
representation of internal state of an embedded device, ¢.g., a trace screen of a node, on an

electronic display.

[0113] FIG. 8 is a high-level diagram showing the components of an exemplary computing
device 801 and related components. The computing device 801 can be, for example, an
embedded device. The computing device 801 includes a processor 886 and a data storage system
840, and can include a peripheral system 820 or a user interface system 830. The peripheral
system 820, the user interface system 830 and the data storage system 840 are communicatively
connected to the processor 886. Processor 886 can be communicatively connected to

network 850 (shown in phantom), ¢.g., the Internet or a wireless sensor network, as discussed
below. Devices shown in, or running code or modules shown in, FIGS. 1A-1C can each include
one or more of processor 886 or systems 820, 830, 840, and can each connect to one or more
network(s) 850. Processor 886, and other processing devices described herein, can each include
one or more central processing units (CPU), microcontrollers (MCU), other microprocessors,
field-programmable gate arrays (FPGAS), application-specific integrated circuits (ASICs),
programmable logic devices (PLDs), programmable logic arrays (PLAs), programmable array
logic devices (PALs), or digital signal processors (DSPs). Processor 886 can be or include one
or more device(s) for automatically operating on data, whether implemented with electrical,

magnetic, or optical components.

[0114] Data storage system 840 can include or be communicatively connected with one or
more processor-accessible memories configured or otherwise adapted to store information. The
memories can be, e.g., within a chassis or as parts of a distributed system. The phrase
“processor-accessible memory” is intended to include any data storage device to or from which
processor 886 can transfer data (e.g., using appropriate components of data storage system 840
or peripheral system 820), whether volatile or nonvolatile; removable or fixed; electronic,
magnetic, optical, chemical, mechanical, or otherwise. Exemplary processor-accessible
memories include but are not limited to: registers, floppy disks, hard disks, tapes, bar codes,
Compact Discs, DVDs, read-only memories (ROM), erasable programmable read-only memories

(EPROM, EEPROM, or Flash), and random-access memories (RAMs).

[0115] The phrase “communicatively connected” includes any type of connection, wired or

wireless, for communicating data between devices or processors. These devices or processors

26

WO 2015/061022 PCT/US2014/058999

can be located in physical proximity or not. For example, subsystems such as peripheral system
820, user interface system 830, and data storage system 840 are shown separately from the

processor 886 but can be stored completely or partially within the processor 886.

[0116] Various aspects herein may be embodied as computer program products including
computer readable program code (“program code”) stored on a computer readable medium,

¢.g., a tangible non-transitory computer storage medium or a communication medium. A
computer storage medium can include tangible storage units such as volatile memory,
nonvolatile memory, or other persistent or auxiliary computer storage media, removable and
non-removable computer storage media implemented in any method or technology for storage of
information such as computer-readable instructions, data structures, program modules, or other
data. A computer storage medium can be manufactured as is conventional for such articles,

e.g., by pressing a CD-ROM or electronically writing data into a Flash memory. In contrast to
computer storage media, communication media may embody computer-readable instructions,
data structures, program modules, or other data in a modulated data signal, such as a carrier wave
or other transmission mechanism. As defined herein, computer storage media do not include
communication media. That is, computer storage media do not include communications media

consisting solely of a modulated data signal, a carrier wave, or a propagated signal, per se.

[0117] In an example, data storage system 840 includes RAM 841, ¢.g., a static RAM or
dynamic RAM, and computer storage medium 843, ¢.g., a hard drive, Flash memory, or other
nonvolatile computer storage medium. Computer program instructions are read into RAM 841
from computer storage medium 843 or a code memory therein. The code memory can include a
portion of RAM 841 or computer storage medium 843 holding the computer program
instructions, ¢.g., as binary firmware 120. Stored in the code memory are one or more
module(s) 845 configured for execution by processor 886, the one or more modules including
instructions to perform functions described herein. Processor 886 executes one or more
sequences of the computer program instructions loaded into RAM 841, as a result performing
process steps described herein. In this way, processor 886 carries out a computer implemented
process. For example, steps of methods described herein with respect to FIGS. 7 and 9-11,
blocks of the flowchart illustrations or block diagrams herein such as FIGS. 1A, 1B, 1C, 8, and
12, and combinations of those, can be implemented by computer program instructions.

RAM 841 can also store data, or can store only code.

[0118] The peripheral system 820 can include or be communicatively connected with one or

more devices configured or otherwise adapted to provide digital content records to the processor

27

WO 2015/061022 PCT/US2014/058999

886 or to take action in response to processor 186. For example, the peripheral system 820 can
include or be communicatively connected with digital still cameras, digital video cameras, radios
or other wireless communication devices, environmental sensors, or other data-providing
devices. The processor 886, upon receipt of digital content records from a device in the

peripheral system 820, can store such digital content records in the data storage system 840.

[0119] In the illustrated example, peripheral system 820 includes or is communicatively
connected with a sensor 823. Sensor 823 is configured to monitor a target 888, graphically
represented as a sun. Target 888 can be, ¢.g., the Earth, space, the environment around

sensor 823, a machine, a bridge or other structure, a volume through which electromagnetic
radiation may pass, or any other space, object, or field that can be sensed by sensor 823. In an
example, sensor 823 includes a seismic sensor configured to periodically measure vibration. In
the illustrated example, peripheral system 820 receives commands from, and communicates
sensor 823 data to, processor 886 via data bus 825. Peripheral system 820 interrupts

processor 886 using signals provided by interrupt request (IRQ) line 826. In an example, when
sensor 823 has new data available, peripheral system 820 transmits a signal (e.g., a high logic
level) on IRQ line 826. Processor 886 responds to that signal by executing program instructions
of a corresponding interrupt service routine (ISR). The ISR or other code executed by

processor 886 in response to the interrupt can read the new data via data bus 825.

[0120] In various aspects, module(s) 845 include computer program instructions to read data
from a first NDR of a first type. Module(s) 845 can also include instructions to read data from a
second, different NDR of a second, different type. Each of the first type and the second type can
be, ¢.g., a state-register type, a data-register type, a timer-register type, or any other type of NDR
described herein. Module(s) 845 can also include instructions to compress the data from the first
NDR using a first compression algorithm to provide first compressed data, and instructions to
compress the data from the second NDR using a second, different compression algorithm to
provide second compressed data. Module(s) 845 can also include instructions to store the first
and second compressed data in the nonvolatile medium, e.g., computer storage medium 843.
Examples of these operations are discussed herein, e.g., with reference to FIGS. 1B, 2D, 7,

and 9-12.

[0121] In various examples in which data storage system 840 includes a volatile computer
storage medium such as RAM 841, the one or more module(s) 845 can include instructions to
store the first and second compressed data in the volatile medium, e.g., before storing the first

and second compressed data in the nonvolatile medium. Module(s) 845 can also include

28

WO 2015/061022 PCT/US2014/058999

instructions to, subsequently, await an idle condition of the processor 886. An idle condition can
be detected, ¢.g. when a task switcher in an OS running on the processor 886 transitions to the
system idle process or is about to put the processor 886 to sleep. Module(s) 845 can also include
instructions to, subsequently, execute the instructions to store the first and second compressed
data in the nonvolatile medium, said instructions including instructions to retrieve the first and
second compressed data from the volatile medium. In this way, comparatively time- and power-
consuming Flash writes can take place when the processor 886 is idle and time and power are
relatively less scarce than at high-load times. Examples of this are discussed above with

reference to RAM 144, FIG. 1B.

[0122] In various examples using IRQ line 826 or otherwise supporting interrupts of
processor 886, module(s) 845 can also include instructions to detect occurrence of a processor
interrupt. Examples of such instructions include instructions to put the processor to sleep until
an interrupt wakes up the processor, and instructions to busy-wait on an interrupt-pending flag of
the processor. Module(s) 845 can also include instructions to determine a vector and a return
address of the processor interrupt. Module(s) 845 can also include instructions to compress the
determined vector and return address using a third compression algorithm different from the first
and second compression algorithms to provide third compressed data. Module(s) 845 can also
include instructions to store the third compressed data in the nonvolatile medium, or to store the
third compressed data in the volatile medium, await an idle condition of processor 886, and then

store the third compressed data in the nonvolatile medium.

[0123] The user interface system 830 can convey information in either direction, or in both
directions, between a user 838 and the processor 886 or other components of computing

device 801 or computing device 802. The user interface system 830 can include a mouse, a
keyboard, another computer (connected, e.g., via a network or a null-modem cable), or any
device or combination of devices from which data is input to the processor 886. The user
interface system 830 also can include a display device, a processor-accessible memory, or any
device or combination of devices to which data is output by the processor 886. The user
interface system 830 and the data storage system 840 can share a processor-accessible memory.
In an example, computing device 801 is a wireless sensor node lacking a user interface

system 830, and computing device 802 is a desktop computer configured to retrieve data from
computing device 801 and present the retrieved data to user 838 via a user interface system 830

of computing device 802.

29

WO 2015/061022 PCT/US2014/058999

[0124] In various aspects, processor 886 includes or is connected to communication
interface 815 that is coupled via network link 816 (shown in phantom) to network 850. For
example, communication interface 815 can include an integrated services digital network (ISDN)
terminal adapter or a modem to communicate data via a telephone line; a network interface to
communicate data via a local-area network (LAN), e.g., an Ethernet LAN, or wide-area network
(WAN); or a radio to communicate data via a wireless link, e.g., WIFI or GSM. Communication
interface 815 sends and receives electrical, electromagnetic or optical signals that carry digital or
analog data streams representing various types of information across network link 816 to
network 850. Network link 816 can be connected to network 850 via a switch, gateway, hub,

router, or other networking device.

[0125] In various aspects, computing device 801 can communicate, ¢.g., via network 850,
with a computing device 802, which can include the same types of components as computing
device 801 but is not required to be identical thereto. Computing devices 801, 802 are
communicatively connected via the network 850. Each computing device 801, 802 can execute
computer program instructions to, ¢.g., read sensors 823 or otherwise participate in a network of

computing devices such as nodes in a wireless sensor network.

[0126] Processor 886 can send messages and receive data, including program code, through
network 850, network link 816 and communication interface 815. For example, a server can
store requested code for an application program (e.g., a JAVA applet) on a tangible non-volatile
computer storage medium to which it is connected. The server can retrieve the code from the
medium and transmit it through network 850 to communication interface 815. The received
code can be executed by processor 886 as it is received, or stored in data storage system 840 for
later execution. Program code may execute, ¢.g., entirely on processor 886, partly on

processor 886 and partly on a remote computer connected to network 850, or entirely on the

remote computer.

[0127] In an example, a system includes a plurality of embedded computing devices 801,
802. Each computing device 801, 802 further includes a communication interface 815 and the
one or more module(s) 845 of each embedded device include instructions to transmit the
respective compressed data via the respective communication interface 815. Examples of such
systems include wireless sensor networks, personal area networks, mobile ad hoc networks

(MANETS), mesh networks, and other examples given above.

[0128] FIG. 9 shows a flowchart illustrating an exemplary method 900 for enabling debug

tracing in a computer program product. The computer program product, ¢.g., application
30

WO 2015/061022 PCT/US2014/058999

code 104, FIG. 1, includes instructions, ¢.g., source, intermediate, or object code, for use within
an architecture of an embedded device. The steps can be performed in any order except when
otherwise specified, or when data from an earlier step is used in a later step. In at least one
example, processing begins with step 902. For clarity of explanation, reference is herein made to
various components shown in FIGS. 1 and 8 that can carry out or participate in the steps of the
exemplary method. It should be noted, however, that other components can be used; that is,
exemplary method(s) shown in FIG. 9 are not limited to being carried out by the identified

components. Method 900 can be carried out, e.g., by processor 886.

[0129] An “architecture” of an embedded device defines at least some registers or storage
locations of that device or devices of the same type. An architecture can also define at least
some instructions that operate on those registers or storage locations. Exemplary architectures

include the TT MSP430, ARM ARM7 and ARM9, INTEL x86, and AMD AMD64 (“x64”).

[0130] In step 902, one(s) of the instructions are located that read an NDR. The locating is
performed using register data of the architecture. This can be, e.g., as described above with
reference to compiler 112 and FIGS. 2C and 2D. In the example of FIG. 2D, the “D.103”

assignment is an instruction that reads an NDR and that is located.

[0131] In step 904, a register type of the NDR is determined using the register data. In the
example of FIG. 2D, address reference 222 corresponds to the memory-mapped /O port at
address 28. The register data of the architecture can include a table indicating that address 28,

bit 2 (mask 224) is a state register.

[0132] In step 906, instruction(s) are added to the computer program product following the
located instruction(s). The added instruction(s) including instruction(s) for use within the
architecture to compress the value read by the located instruction(s) using a compression
algorithm corresponding to the determined register type. In the example of FIG. 2D, the call to

record function 242 (or contents thereof, if inlining) are added instruction(s).

[0133] In decision step 908, it is determined whether there are any more NDR reads in the
computer program product, e.g., application code 104. If so, the next step is step 902. In this
way, the locating step 902, the determining step 904, and the adding step 906 are repeated for
cach of a plurality of located one(s) of the instructions of the computer program product using

compression algorithms corresponding to the respective determined register types.

[0134] FIG. 10 shows a flowchart illustrating an exemplary method 1000 for enabling debug

tracing in a computer program product. Method 1000 can be carried out, e.g., by processor 886.
31

WO 2015/061022 PCT/US2014/058999
[0135] In step 1002, instructions of the computer program product corresponding to loops

are located. This can be, e.g., as discussed above with respect to the IFG polling loop.

[0136] In step 1004, instructions(s) are added to the computer program product within the
located loop. The added instructions(s) include instructions to increment a loop counter on each

iteration of the loop. In an example expressed (without limitation) in the C programming

language:
while (condition) {
/* some code */ ;
}
[0137] can be rewritten as
while (condition) {
/* some code */ ;
++loop counter ;
}
[0138] where “++” is an increment operator in the C programming language.
[0139] In step 1006, at least some of the instructions of the computer program product

corresponding to an interrupt handler are located. For example, the contents of an interrupt
vector table in application code 104 can be inspected and routines indicated therein selected for

processing.

[0140] In step 1008, instruction(s) are added to the computer program product within the
located interrupt handler. The added instruction(s) including instructions for use within the
architecture to compress a vector of the interrupt, a return address of the interrupt, and a current
value of the loop counter using an interrupt-data compression algorithm to provide compressed

interrupt data. Exemplary compression techniques are described above.

[0141] In step 1010, instruction(s) are added to the computer program product outside the
located interrupt handler. The added instruction(s) including instructions for use within the
architecture to store the compressed interrupt data on a non-volatile computer-readable medium.
For example, the added instruction(s) can periodically execute and can check a buffer for new

interrupt data, then compress such data if present.

32

WO 2015/061022 PCT/US2014/058999
[0142] In decision step 1012, it is determined whether additional interrupt handler(s) are

present in the computer program product. If so, steps 1006, 1008, and 1010 can be repeated for

one or more of the additional interrupt handler(s).

[0143] In various examples, the added instruction(s) for a data register type include
instructions to compress at least part of the value read by the located instruction using a
dictionary-based compression technique. In at least one aspect, no bit’s value is stored unless
that bit’s value is required to accurately replay the execution or otherwise influences the
execution of application program 104. In various examples, the added instruction(s) for a state
register type include instructions to compress at least part of the value read by the located
instruction using a run-length-encoding compression technique. In various examples, the added
instruction(s) for a timer register type include instructions to compress at least part of the value

read by the located instruction using a delta-encoding compression technique.

[0144] FIG. 11 shows a flowchart illustrating an exemplary method 1100 for enabling debug

tracing in a computer program product. Method 1100 can be carried out, e.g., by processor 886.

[0145] In step 1102, at least some of the instructions corresponding to a polling loop on an
NDR are located. Polling loops on an NDR include an NDR in their loop condition (e.g., IFG in
the example below). Polling loops for the purpose of step 1102 in at least one example do not
modify any variables that will affect the execution sequence. For example, a polling loop can
modify any number of variables as long as those variables are not used after termination of the

loop.

[0146] In step 1104, instruction(s) are added to the computer program product following the
located polling loop, the added instruction(s) including instructions for use within the
architecture to compress information regarding exit of the polling loop and to store the

compressed information on a non-volatile computer-readable medium. For example,

while (IFG & TXFLG) /* do nothing */ ;

[0147] can be rewritten as
while (IFG & TXFLG) /* do nothing */ ;
tardis record loop exit();

[0148] with suitable parameters to the tardis record loop exit () function call.

Given the conditions above in step 1102, instruction(s) to record NDR reads (e.g.,

33

WO 2015/061022 PCT/US2014/058999

tardis rle record) are not added within the polling loop. This can be because the
eventual result of the polling loop is deterministic, even if the time the loop takes to complete is
not deterministic. In the example above, the value of IFG & TXFLG will not change until the
loop exits, so leaving NDR reads in the polling loop unrecorded reduces the amount of data to be
compressed. Instructions can be added within the polling loop to increment a loop counter,

e.g., as described above with reference to step 1004. In at least one example, step 906 is not
performed for any NDR read within a polling loop located by step 1102. In at least one example,
step 902 does not locate NDR-read instructions within polling loops located by step 1102.

[0149] In step 1106, it is determined whether any NDR polling loops remain to be
processed. If so, the next step is step 1102. In this way, steps 1102, 1104 can be repeated for
cach of a plurality of NDR polling loops in the computer program product.

[0150] Methods described in FIGS. 9, 10, and 11 can be used in any combination or
arrangement. For example, compiler 112 can implement steps in FIG. 9 only, FIG. 10 only,
FIG. 11 only, FIGS. 9 and 10, FIGS. 9 and 11, FIGS. 10 and 11, or FIGS. 9, 10, and 11. In
examples using FIGS. 9 and 11, step 902 does not include locating NDR read instructions in

polling loops (step 1102), or step 906 does not include adding tracing instructions to such reads.

[0151] FIG. 12 illustrates an exemplary computer program product 1200 comprising a
computer readable medium, e.g., in data storage system 840, such as a non-transitory, tangible
computer readable storage medium 843. Product 1200 also includes an emulator computer
program mechanism, ¢.g., the illustrated emulation module 1202 embedded therein. The
emulator computer program mechanism comprises instructions for performing various functions
described herein. Emulation module 1202 can include, e.g., instructions to perform functions
described above with respect to FIG. 1C. Throughout the following discussion, references to
functions performed by blocks of emulation module 1202 also refer to computer program

instructions executable by a processor to cause those functions to be performed.

[0152] At block 1204, emulation-target instructions and compressed data of NDR values are
received, e.g., by processor 886 or another processor. The emulation-target instructions include
first instructions to read NDRs and second instructions, ¢.g., instructions that do not read NDRs
or that do not read NDRs of interest. In an example, the emulated-target instructions are
instructions of application code 104 or a compiled version thereof. In some aspects, block 1204
of the emulator computer program mechanism includes instructions for receiving the compressed
data of NDR values via a communications link, e¢.g., from WSN node(s). This can permit near-

real-time inspection and debugging of system performance.
34

WO 2015/061022 PCT/US2014/058999

[0153] At block 1206, an execution sequence of the emulation-target instructions is
emulated. The execution sequence is determined at least partly by the emulated-target
instructions and at least partly by the data of the NDR values. Block 1206 can include
blocks 1208-1226.

[0154] At block 1208, a next instruction in the execution sequence is retrieved. This can be
done by, e.g., fetching the instruction in emulated memory corresponding to an emulated

program counter (PC) or instruction pointer (IP).

[0155] At decision block 1210, it is determined whether the retrieved next instruction is a
first instruction that reads an NDR or a second instruction. For first instructions, the next block

is block 1216. For second instructions, the next block is block 1212.

[0156] At block 1212, an emulated-machine state is updated based on the retrieved next
instruction. This can include updating emulated registers or emulated memory, taking input,
providing output, or otherwise performing actions the emulation target would perform as a result
of executing the next instruction. Block 1212 can include changing the instruction pointer so

that the execution sequence changes.

[0157] At decision block 1214, it is determined whether there are more instructions to be
emulated. If so, the next block is block 1208. Using block 1208, decision block 1210,
block 1212, and decision block 1214, the emulated-machine state can be updated for each second

instruction in the execution sequence.

[0158] At block 1216, the next instruction retrieved by block 1208 is a first instruction. A
type of the NDR read by the next instruction is determined. This can be done using register data
of the architecture of the emulation target, e.g., as discussed above with reference to step 904. In
some aspects, the respective type of cach NDR is a state-register type, a data-register type, or a

timer-register type.

[0159] At block 1218, a portion of the compressed data is decompressed using a
decompression algorithm corresponding to the determined register type. In the example above
using IFG, the appropriate portion of the compressed data corresponding to the traced value of
IFG can be decompressed. Other examples of decompression useful in block 1218 are discussed

above.

[0160] At block 1220, the emulated-machine state is updated based on the decompressed

portion or based on the decompressed portion and the next instruction, as necessary depending

35

WO 2015/061022 PCT/US2014/058999

on the next instruction. Any of the state changes discussed above with reference to block 1212

can be used.

[0161] Block 1220 is followed by decision block 1214. Using block 1208, decision

block 1210, block 1216, block 1218, block 1220, and decision block 1214, the emulated-machine
state can be updated for each first instruction in the execution sequence. Using blocks 1212

and 1220 and other blocks noted above in conjunction, the full execution sequence of the

emulation-target instructions can be emulated.

[0162] In various aspects, the emulator computer program mechanism (e.g., emulation
module 1202) further comprises instructions to process interrupt data. These instructions can be
used in conjunction with or instead of the above-described blocks 1208—-1214 or any subset

thereof.

[0163] At block 1222, compressed data of interrupts are decompressed, in part or wholly,
using an interrupt-data decompression algorithm to provide interrupt data. The interrupt-data
decompression algorithm can be different from data decompression algorithm(s) used in

block 1218.

[0164] At decision block 1224, it is determined whether the execution sequence has reached
a point at which an interrupt occurred. This can be done by, e.g., comparing a loop counter in
the emulated-machine state or in the emulation module 1202 to a loop counter in the
decompressed interrupt data. If not, emulation can continue with block 1208 or block 1222. If

so, emulation can continue with block 1226.

[0165] At block 1226, the emulated-machine state is updated according to the interrupt data.
Using block 1222, decision block 1224, and block 1226, the emulated-machine state can be
updated at point(s) in the execution sequence indicated by the interrupt data. In this way, the
emulator control program mechanism can effectively emulate non-deterministic interrupts, e.g.,

corresponding to receipt of messages from other nodes in a WSN. Block 1226 can be followed

by block 1208 or block 1222.

[0166] FIG. 13 is a flow diagram of exemplary processes of preparing binary firmware and
a record instrumentation map. Processes described herein with reference to FIG. 13 can be used
in any context in which processes described herein with reference to FIG. 1A can be used.
Application code 104, OS code 106, and TARDIS recording or logging code 102 are as shown in
FIG. 1A. Code 102, 104, 106 are provided to a source-to-source transformer 1302 (“TARDIS

CIL”). (CIL) [25]. Transformer 1302 identifies instructions that read from NDRs and
36

WO 2015/061022 PCT/US2014/058999

instruments them, producing instrumented source code 1304 as one of its outputs, ¢.g., in the
form of a C-language source code file. The instrumented source code 1304 can include only
constructs valid in a particular programming language, ¢.g., ISO C11 as documented in ISO/IEC
9899:2011. Transformer 1302 also produces instrumentation map 1322 that includes the
location of each instrumented instruction and the type of encoding or compression applied to the
logged value. Instrumentation map 1322 is similar to instrumentation map 122, FIG. 1, but in at
least one example includes source-level locations rather than intermediate- or machine-level
locations. A compiler 110, e.g., GCC, then compiles the instrumented source code 1304 into
binary firmware 1320 to be installed as firmware on the sensor node, ¢.g., as discussed above

with reference to binary firmware 120 (FIG. 1A).

[0167] At runtime, the record code in binary firmware 1320 logs events, ¢.g., values read
from NDRs such as peripheral registers, polling loops, or interrupts. At replay time, the emulator
uses the instrumentation map 1322 to decide which instructions access peripheral registers and

thus need to be fed from the log, and to determine how to decode the items in that log.

[0168] In various examples, transformer 1302 can include computer program instructions or
other structures to instrument interrupt handlers to record the interrupt handler's vector along
with the return address and loop count at the point when an interrupt is executed.

Transformer 1302 can also or alternatively instrument the application code 104 to record the
timing of interrupts using a hardware based performance counter to count the number of
branches. Transformer 1302 can instrument one or more (up to all) loop bodies in the code to

include an increment instruction on a global loop counter.

[0169] This application is inclusive of combinations of the aspects described herein.
References to “a particular aspect” (or “embodiment” or “version”) and the like refer to features
that are present in at least one aspect. Separate references to “an aspect” (or “embodiment”) or
“particular aspects” or the like do not necessarily refer to the same aspect or aspects; however,
such aspects are not mutually exclusive, unless so indicated or as are readily apparent to one of
skill in the art. The use of singular or plural in referring to “method” or “methods” and the like is
not limiting. The word “or” is used in this disclosure in a non-exclusive sense, unless otherwise

explicitly noted.

[0170] The invention has been described in detail with particular reference to certain
preferred aspects thereof, but it will be understood that variations, combinations, and
modifications can be effected by a person of ordinary skill in the art within the spirit and scope

of the invention.
37

WO 2015/061022 PCT/US2014/058999
CLAIMS:

1. An embedded device comprising:
a processor;
a nonvolatile computer storage medium;
a code memory; and
one or more module(s) stored in the code memory and configured for execution
by the processor, the one or more module(s) including instructions to:
read data from a first non-deterministic register (NDR) of a first type;
read data from a second, different NDR of a second, different type;
compress the data from the first NDR using a first compression algorithm
to provide first compressed data;
compress the data from the second NDR using a second, different
compression algorithm to provide second compressed data; and

store the first and second compressed data in the nonvolatile medium.

2. The embedded device according to claim 1, wherein:
the device further includes a volatile computer storage medium; and
the one or more module(s) include instructions to:
store the first and second compressed data in the volatile medium;
subsequently, await an idle condition of the processor; and
subsequently, execute the instructions to store the first and second
compressed data in the nonvolatile medium, said instructions including instructions to retrieve

the first and second compressed data from the volatile medium.

3. The embedded device according to any one of claims 1-2, wherein each of
the first type and the second type is selected from the group consisting of a state-register type, a

data-register type, and a timer-register type.

4. The embedded device according to any one of claims 1-3, the one or more
module(s) further including instructions to:

detect occurrence of a processor interrupt;

determine a vector and a return address of the processor interrupt;

compress the determined vector and return address using a third compression
algorithm different from the first and second compression algorithms to provide third

compressed data; and

38

WO 2015/061022 PCT/US2014/058999

store the third compressed data in the nonvolatile medium.

5. A system comprising a plurality of embedded devices according to any
one of claims 1-4, wherein each embedded device further includes a communication interface
and the one or more module(s) of each embedded device include instructions to transmit the

respective compressed data via the respective communication interface.

6. A method of enabling debug tracing in a computer program product, the
computer program product comprising instructions for use within an architecture of an embedded
device, the method including:

locating one(s) of the instructions that read a non-deterministic register (NDR),
the locating being performed using register data of the architecture;

determining a register type of the NDR using the register data;

adding instruction(s) to the computer program product following the located
instruction(s), the added instruction(s) including instruction(s) for use within the architecture to
compress the value read by the located instruction(s) using a compression algorithm
corresponding to the determined register type; and

repeating the locating, determining, and adding steps for each of a plurality of
located one(s) of the instructions of the computer program product using compression algorithms

corresponding to the respective determined register types.

7. The method according to claim 6, further including:

locating instructions of the computer program product corresponding to loops;

adding instructions(s) to the computer program product within the located loop,
the added instructions(s) including instructions to increment a loop counter on each iteration of
the loop;

locating at least some of the instructions of the computer program product
corresponding to an interrupt handler;

adding instruction(s) to the computer program product within the located interrupt
handler, the added instruction(s) including instructions for use within the architecture to
compress a vector of the interrupt, a return address of the interrupt, and a current value of the
loop counter using an interrupt-data compression algorithm to provide compressed interrupt data;
and

adding instruction(s) to the computer program product outside the located
interrupt handler, the added instruction(s) including instructions for use within the architecture to

store the compressed interrupt data on a non-volatile computer-readable medium.

39

WO 2015/061022 PCT/US2014/058999

8. The method according to any one of claims 67, wherein the added
instruction(s) for a data register type include instructions to compress at least part of the value

read by the located instruction using a dictionary-based compression technique.

9. The method according to any one of claims 6—8, wherein the added
instruction(s) for a state register type include instructions to compress at least part of the value

read by the located instruction using a run-length-encoding compression technique.

10. The method according to any one of claims 6-9, wherein the added
instruction(s) for a timer register type include instructions to compress at least part of the value

read by the located instruction using a delta-encoding compression technique.

11. The method according to any one of claims 6-10, further including:

locating at least some of the instructions corresponding to a polling loop on an
NDR; and

adding instruction(s) to the computer program product following the located
polling loop, the added instruction(s) including instructions for use within the architecture to
compress information regarding exit of the polling loop and to store the compressed information

on a non-volatile computer-readable medium.

12. A computer program product comprising a computer readable medium
and an emulator computer program mechanism embedded therein, the emulator computer
program mechanism comprising instructions for:

receiving emulation-target instructions and compressed data of non-deterministic
register (NDR) values, wherein the emulation-target instructions include first instructions to read
NDRs and second instructions;

emulating an execution sequence of the emulation-target instructions, the
emulating including:

for each second instruction in the execution sequence, updating an
emulated-machine state based on that second instruction; and
for each first instruction in the execution sequence:
determining a type of the NDR read by the first instruction;
decompressing a portion of the compressed data using a
decompression algorithm corresponding to the determined register type; and
updating the emulated-machine state based on the decompressed

portion.

40

WO 2015/061022 PCT/US2014/058999

13. The computer program product according to claim 12, wherein:

the emulator computer program mechanism further comprises instructions for
decompressing compressed data of interrupts using an interrupt-data decompression algorithm to
provide interrupt data; and

the instructions for emulating include updating the emulated-machine state
according to the interrupt data at point(s) in the execution sequence indicated by the interrupt

data.

14. The computer program product according to any one of claims 1213,
wherein the respective type of each NDR is selected from the group consisting of a state-register

type, a data-register type, and a timer-register type.

15. The computer program product according to any one of claims 12-14,
the emulator computer program mechanism further comprising instructions for receiving the

compressed data of NDR values via a communications link.

41

WO 2015/061022 PCT/US2014/058999

1/10

102\ 104\ 106\ 108\

| TARDIS 1| AppI
irecord }| code
GQ{} T S e

;ﬁkp;}iiaatmnﬂ = %ARSES
_Heete P OS- s;}ec:f“ ¢ L

mﬁa -

GG with
TARDIS
plugin

110~d GCC | 112

114~] Object files | [instrumented
E— —— Qojell hes

K

GCC with
118~J link-timea-
oplimization

v

120~] Binary Record =
fsrmware instrumentation
- map

k, E

1227

FIG. 1A

20~ Binary |
| firmware

144~ RAM

140

5 il

146~ Ungompressed

| buffers
i 152~

748\3 Compressed
| buffers “““““““““““‘9‘

150~ Flash

FIG. 1B

WO 2015/061022

FIG. 1C

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 2D

PCT/US2014/058999

2/10

0w 120 ginary |,
(firmware &\) .
|)

. [Record
...... g instru memai:@n

map

if (call SFD.get ())

222
l

(

1if (*(volatile ulnt8 t *)28 &
(0x01<<1))

\ }

224Y

D.103 = MEM[(volatile uint8 t *)28];
D.104 = D.103 & 2; w_,,
if (D.104 = O)<\232

D.441 = MEM[(volatile uint8 t *)28];
D.103 = tardis rle record(

2@/} 28441 *\\%2
<\254
2 TT~—

D.104 = D.103 & 2; w_,,

WO 2015/061022

N
o

SIZE IN FLASH (KB)

SIZE IN FLASH (KB)

O =~ N W A~ O OO0 N

—_
O B~ 00 N OO

3/10

PCT/US2014/058999

BM#1 BM#1

BM#1 BM#1 | BM #3 BM#Z‘

6dms 512ms Network Network Network

INVENTIVE

6dms 512ms
COMPARATIVE F IG- 3A

INVENTIVE

—

i m i

BM#1 BM#1 BM#1 BM#1 | BM #1 | BM #1 | BM#3 BM#2
6dms 512ms Network Network Network

INTERRUPT

DATA

6dms 512ms FIG. 3B

STATE/TIMER

WO 2015/061022 PCT/US2014/058999

4/10

BM#1 BM
6dms 512ms Network Network Network
6dms 512ms

COMPARATIVE FIG. 4A

INVENTIVE

BM#1 BM#1 BM#{ BM# BM#1 BM#
6dms 512ms Network Network Network
6dms 512ms

COMPARATIVE

INVENTIVE

FIG. 4B

WO 2015/061022 PCT/US2014/058999

5/10

(&)
o

FIG. 5A

INVENTIVE

o

COMPARATIVE

N WO B
o O

Program ROM (KB)
=

o

BM #1 BM #3 BM #2

—
(@

FIG. 5B

INVENTIVE

COMPARATIVE

Static RAM (KB)
(@ N Ees (@) (@]

BM #1 BM #3 BM #2

TARDIS Uncompressed TinyTracer Uncompressed
Non-determinism Control Flow

BM #4 FIG. 6

WO 2015/061022

PCT/US2014/058999

6/10
[START]
N\

EXECUTE APPLICATION AND 701

STORE REGISTER READS
, 702

RETRIEVE READS FOR A

REGISTER

y

COMPRESS READS BASED ON /-703
ASSUMING REGISTER IS STATE,

705~

DATA OR TIMER
4
SMALLEST >/ 704
COMPRESSED SIZE
STATE DATA TIMER
y A4 \ 4
MARK MARK MARK
REGISTER AS REGISTER AS REGISTER AS
STATE TYPE DATATYPE TIMER TYPE
) \
706 107
N4 708

ALL
REGISTERS

NO

CLASSIFIED?

WO 2015/061022

801~

830
-

USER INTERFACE
SYSTEM

886
,J

COMPUTING
DEVICE

PCT/US2014/058999

815 825

P A

820

DATA
IRQ

PROCESSOR

PERIPHERAL
SYSTEM

826

RAM |

841

84371 845~

N —

~
COMPUTER STORAGE MEDIUM

MODULE(S) I

_—

DATA STORAGE SYSTEM

FIG. 8

WO 2015/061022 PCT/US2014/058999

8/10
900 N 1000 N
902 \ 1002 \
LOCATE NDR-READ LOCATE LOOP
INSTRUCTIONS INSTRUCTIONS
904~ 1004~
DETERMINE NDR ADD LOOP-
TYPE COUNTING
INSTRUCTIONS
906 v A 4 1006 N v
ADD TYPE-SPECIFIC LOCATE INTERRUPT
COMPRESSION HANDLER
INSTRUCTIONS
1008~
ADD INTERRUPT-
HANDLER
COMPRESSION
INSTRUCTIONS
1010 v v
ADD INTERRUPT-
DATA COMPRESSION
INSTRUCTIONS
LOCATE NDR
POLLING LOOP 1012
INTERRUPT
2 YES
04, I HDLRS?
ADD LOOP-EXIT-
DATA COMPRESSION
INSTRUCTIONS F I G' 10
1106
NDR POLLING

LOOPS? YES

FIG. 11

WO 2015/061022 PCT/US2014/058999

9/10
1200, (1204 ~_
RECEIVE EMULATION-TARGET
COMPUTER-READABLE MEDIUM cdﬂﬁﬁigggﬁgé\%im
1202~
EMULATION | \
MODULE | 1206~_ !
EMULATE EXECUTION SEQUENCE
7 OF EMULATION-TARGET
o4 INSTRUCTIONS USING
COMPRESSED NDR DATA
[1208~ v \
(A ; » GETINSTRUCTION
1222~
UPDATE EMULATED-
DECOMPRESS MACHINE STATE
INTERRUPT DATA
1224
DETERMINE TYPE
OF NDR TO BE READ
NO
1226 Y&
A 4
\ UPDATE EMULATED- 1218\ DECOMPRESS
MACHINE STATE PORTION OF DATA
USING INTR DATA USING TYPE-
DECOMPRESSED SPECIFIC ALGO
1220~
UPDATE EMULATED- y
MACHINE STATE
USING DATA MORE
DECOMPRESSED INSTRS?

FIG. 12

WO 2015/061022 PCT/US2014/058999

10/10
104 106 . 102y
Application OS TARDIS
code code logging
__~ | code

Source-to-source |

1304~] Instrumented
source

110~ G\CC |

y

Binary Instrumentation
1320~} firmware mapping

13227

FIG. 13

International application No.

PCT/US2014/058999

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
GOO6F 11/36(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 11/36; GO6F 9/30; GO6F 12/02; GO6F 9/445; GO6F 11/34; GO6F 15/00; GOGF 9/44; GOGF 9/45

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: non-deterministic, register, nonvolatile, compress, embedded

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2012-0011491 Al (ADI ELDAR) 12 January 2012 1-3
See paragraphs [0002], [0008], [0099], [0107], [0111]; and figure 3.
A 6-8,12-14
Y US 7770156 B2 (RADHIKA THEKKATH) 03 August 2010 1-3
See column 5, lines 27-40; column 8, line 43; column 9, lines 5556,
column 10, lines 64-65; and figure 4.
Y US 2009-0313460 A1 (CHIH TSUN HUANG et al.) 17 December 2009 2
See paragraphs [0007], [0023], [0025]; and figure 1.
A US 2010-0251031 A1 (JASON NIEH et al.) 30 September 2010 1-3,6-8,12-14
See paragraph [0050]; and figure 1.
A WO 2010-002489 A1 (VMWARE, INC.) 07 January 2010 1-3,6-8,12-14
See paragraph [0006]; and figure 1.

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search

09 January 2015 (09.01.2015)

Date of mailing of the international search report

09 January 2015 (09.01.2015)

Name and mailing address of the [ISA/KR
International Application Division
¢ Korean Intellectual Property Office
189 Cheongsa-to, Seo-gu, Dagjeon Metropolitan City, 302-701,
Republic of Korea

Facsimile No. +82-42-472-7140

Authorized officer

YU, Jae Chon

Telephone No. +82-42-481-8647

QNN
5 :
3 e N

Form PCT/ISA/210 (second sheet) (July 2009

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2014/058999

Box No. Il Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:;

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 4-5,9-11, 15

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. |:| As all required addtional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. |:| As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment
of any additional fees.

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4, |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest |:| The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.
|:| No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2014/058999
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2012-0011491 Al 12/01/2012 WO 2012-004707 Al 12/01/2012
WO 2012-004707 A4 22/03/2012
US 7770156 B2 03/08/2010 US 2006-0225050 Al 05/10/2006
US 7069544 Bl 27/06/2006
US 2009-0313460 Al 17/12/2009 TW 200951810 A 16/12/2009
TW 1406173 B 21/08/2013
US 7861070 B2 28/12/2010
US 2010-0251031 Al 30/09/2010 US 8402318 B2 19/03/2013
WO 2010-002489 Al 07/01/2010 AU 2009-0266333 Al 07/01/2010
AU 2009-0266333 B2 17/01/2013
EP 2294512 Al 16/03/2011
EP 2294512 A4 02/05/2012
EP 2682873 A2 08/01/2014
EP 2682873 A3 05/11/2014
US 2010-0005464 Al 07/01/2010
US 2013-0290689 Al 31/10/2013
US 8473946 B2 25/06/2013

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - wo-search-report
	Page 55 - wo-search-report
	Page 56 - wo-search-report

