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DESCRIPTION

VENTILATOR MONITOR SYSTEM AND METHOD OF USING SAME

Background of the Invention

Field of the Invention:

The present invention relates to the respiratory care of a patient and, more particularly, to
a ventilator monitor system that receives a plurality of ventilator support signals indicative of the
sufficiency of ventilation support received by the patient, receives at least one ventilator signal
indicative of the level settings of the ventilator setting controls of the ventilator, and determines
the desired level settings of the ventilator setting controls of the ventilator to provide the

appropriate quality and quantity of ventilation support to the patient.

Background:

Mechanical ventilatory support is widely accepted as an effective form of therapy and
means for treating patients with respiratory failure. Ventilation is the process of delivering
oxygen to and washing carbon dioxide from the alveoli in the lungs. When receiving ventilatory
support, the patient becomes part of a complex interactive system which is expected to provide
adequate ventilation and promote gas exchange to aid in the stabilization and recovery of the
patient. Clinical treatment of a ventilated patient often calls for monitoring a patient’s breathing
to detect an interruption or an irregularity in the breathing pattern, for triggering a ventilator to
initiate assisted breathing, and for interrupting the assisted breathing periodically to wean the
patient off of the assisted breathing regime, thereby restoring the patient’s ability to breathe
independently.

In those instances in which a patient requires mechanical ventilation due to respiratory
failure, a wide variety of mechanical ventilators are available. Most modern ventilators allow the
clinician to select and use several modes of inhalation either individually or in combination via
the ventilator setting controls that are common to the'ventilators. These modes can be defined in
three broad categories: spontaneous, assisted or controlled. During spontaneous ventilation
without other modes of ventilation, the patient breathes at his own pace, but other interventions

may affect other parameters of ventilation including the tidal volume and the baseline pressure,
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above ambient, within the system. In assisted ventilation, the patient initiates the inhalation by
lowering the baseline pressure by varying degrees, and then the ventilator "assists" the patient by
completing the breath by the application of positive pressure. During controlled ventilation, the
patient is unable to breathe spontaneously or initiate a breath, and is therefore dependent on the
ventilator for every breath. During spontaneous or assisted ventilation, the patient is required to
"work" (to varying degrees) by using the respiratory muscles in order to breathe.

The work of breathing (the work to initiate and sustain a breath) performed by a patient to
inhale while intubated and attached to the ventilator may be divided into two major components:
physiologic work of breathing (the work of breathing of the patient) and breathing apparatus
imposed resistive work of breathing. The work of breathing can be measured and quantified in
Joules/L of ventilation. In the past, techniques have been devised to supply ventilatory therapy to
patients for the purpose of improving patient’s efforts to breathe by decreasing the work of
breathing to sustain the breath. Still other techniques have been developed that aid in the
reduction of the patient’s inspiratory work required to trigger a ventilator system “ON” to assist
the patient’s breathing. It is desirable to reduce the effort expended by the patient in each of these
phases, since a high work of breathing load can cause further damage to a weakened patient or be
beyond the capacity or capability of small or disabled patients. It is further desirable to deliver
the most appropriate mode, and, intra-mode, the most appropriate quality and quantity of
ventilation support required the patient’s current physiological needs.

The early generation of mechanical ventilators, prior to the mid-1960s, were designed to
support alveolar ventilation and to provide supplemental oxygen for those patients who were
unable to breathe due to neuromuscular impairment. Since that time, mechanical ventilators have
become more sophisticated and complicated in response to increasing understanding of lung
pathophysiology. Larger tidal volumes, an occasional "sigh breath," and a low level of positive
end-expiratory pressure (PEEP) were introduced to overcome the gradual decrease in functional
residual capacity (FRC) that occurs during positive-pressure ventilation (PPV) with lower tidal
volumes and no PEEP. Because a decreased functional residual capacity is the primary
pulmonary defect during acute lung injury, continuous positive pressure (CPAP) and PEEP
became the primary modes of ventilatory support during acute lung injury.

In an effort to improve a patient’s tolerance of mechanical ventilation, assisted or patient-

triggered ventilation modes were developed. Partial PPV support, in which mechanical support
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supplements spontaneous ventilation, became possible for adults outside the operating room
when intermittent mandatory ventilation (IMV) became available in the 1970s. Varieties of
"alternative” ventilation modes addressing the needs of severely impaired patients continue to be
developed.

The second generation of ventilators was characterized by better electronics but,
unfortunately, due to attempts to replace the continuous high gas flow IMV system with
imperfect demand flow valves, failed to deliver high flow rates of gas in response to the patient’s
inspiratory effort. This apparent advance forced patient to perform excessive imposed work and
thus, total work in order to overcome ventilator, circuit, and demand flow valve resistance and
inertia. In ' receﬁt years, microprocessors have been introduced into modern ventilators.
Microprocessor ventilators are typically equipped with sensors that monitor breath-by-breath
flow, pressure, volume, and derive mechanical respiratory parameters. Their ability to sense and
transduce "accurately," combined with computer technology, makes the interaction between
clinician, patient, and ventilator more sophisticated than ever. The prior art microprocessor
controlled ventilators suffered from compromised accuracy due to the placement of the sensors
required to transduce the data signals. Consequently, complicated algorithms were developed so
that the ventilators could "approximate" what was actually occurring within the patient’s lungs on
a breath by breath basis. In effect, the computer controlled prior art ventilators were limited to
the precise, and unyielding, nature of the mathematical algorithms which attempted to mimic
cause and effect in the ventilator support provided to the patient.

Unfortunately, as ventilators become more complicated and offer more options, the
number of potentially dangerous clinical decisions increases. The physicians, nurses, and
respiratory therapists that care for the critically ill are faced with expensive, complicated
machines with few clear guidelines for their effective use. The setting, monitoring, and
interpretation of some ventilatory parameters have become more speculative and empirical,
leading to potentially hazardous misuse of these new ventilator modalities. For example, the
physician taking care of the patient may decide to increase the pressure support ventilation (PSV)
level based on the displayed spontaneous breathing frequency. This may result in an increase in
the work of breathing of the patient which may not be appropriate. This “parameter-monitor”

approach, unfortunately, threatens the patient with the provision of inappropriate levels of

pressure support.
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Ideally, ventilatory support should be tailored to each patient’s existing pathophysiology,
rather than employing a single technique for all patients with ventilatory failure (i.e., in the
example above, of the fallacy of using spontaneous breathing frequency to accurately infer a
patient’s work of breathing). Thus, current ventilatory support ranges from controlled mechanical
ventilation to total spontaneous ventilation with CPAP for support of oxygenation and the elastic
work of breathing and restoration of lung volume. Partial ventilation support bridges the gap for
patients who are able to provide some ventilation effort but who cannot entirely support their
own alveolar ventilation. The decision-making process regarding the quality and quantity of
ventilatory support is further complicated by the increasing knowledge of the effect of
mechanical ventilation on other organ systems.

The overall performance of the assisted ventilatory system is determined by both
physiological and mechanical factors. The physiological determinants, which include the nature
of the pulmonary disease, the ventilatory efforts of the patient, and many other physiological
variables, changes with time and are difficult to diagnosis. Moreover, the physician historically
had relatively little control over these determinants. Mechanical input to the system, on the other
hand, is to a large extent controlled and can be reasonably well characterized by examining the
parameters of ventilator flow, volume, and/or pressure. Optimal ventilatory assistance requires
both appropriately minimizing physiologic workloads to a tolerable level and decreasing imposed
resistive workloads to zero. Doing both should insure that the patient is neither overstressed nor
oversupported. Insufficient ventilatory support places unnecessary demands upon the patient’s
already compromised respiratory system, thereby inducing or increasing respiratory muscle
fatigue. Excessive ventilatory support places the patient at risk for pulmonary-barotrauma,
respiratory muscle deconditioning, and other complications of mechanical ventilation.

Unfortunately, none of the techniques devised to supply ventilatory support for the
purpose of improving patient efforts to breathe, by automatically decreasing imposed work of
breathing to zero and appropriately decreasing physiologic work once a ventilator system has
been triggered by a patient’s inspiratory effort, provides the clinician with advice in the
increasingly complicated decision-making process regarding the quality and quantity of
ventilatory support. As noted above, it is desirable to reduce the effort expended by the patient to
avoid unnecessary medical complications of the required respiratory support and to deliver the

most appropriate mode, and, intra-mode, the most appropriate quality and quantity of ventilation
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support required the patient’s current physiological needs. Even using the advanced
microprocessor controlled modern ventilators, the prior art apparatus and methods tend to depend
upon mathematical models for determination of necessary actions. For example, a ventilator may
sense that the hemoglobin oxygen saturation level of the patient is inappropriately low and, from
the sensed data and based upon a determined mathematical relationship, the ventilator may
determine that the oxygen content of the breathing gas supplied to the patient should be
increased. This is similar to, and unfortunately as inaccurate as, a physician simply looking at a
patient turning “blue” and determining more oxygen is needed.

From the above, in the complicated decision-making environment engendered by the
modern ventilator, it is clear that it would be desirable to have a medical ventilator monitor

system that alerts the clinician of the ventilator’s failure to supply the appropriate quality and

. quantity of ventilatory support and provides advice to the clinician regarding the appropriate

quality and quantity of ventilatory support that is tailored to the patient’s pathophysiology. Such

a ventilatory monitor system is unavailable in current systems.

Summary ‘

In accordance with the purposes of this invention, as embodied and broadly described
herein, this invention, in one aspect, relates to a method of monitoring the respiratory support
provided by a ventilator that is supplying a breathing gas (such as air, oxygen mixed with air,
pure oxygen, etc.) to a patient via a breathing circuit that is in fluid communication with the lungs
of the patient. The ventilator has a plurality of selectable ventilator setting controls governing the
supply of ventilation support from the ventilator, each setting control selectable to a level setting.

The subject system for monitoring respiratory support preferably receives at least one ventilator
setting parameter signal, each ventilator setting parameter signal indicative of the level settings of
one ventilator setting control, monitors a plurality of sensors, each sensor producing an output
signal indicative of a measured ventilation support parameter, to determine the sufficiency of the
ventilation support received by the patient, and determines the desired level settings of the
ventilator setting controls in response to the received ventilator setting parameter signal and the
output signals. The ventilator support monitor system preferably utilizes a trainable neural

network to determine the desired level settings of the ventilator setting controls.
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In another aspect, the invention relates to a ventilator support monitor system that
supplies a breathing gas to a patient via a breathing circuit in fluid communication with the
ventilator and the lungs of a patient. The ventilator preferably has at least one selectable
ventilator setting control. The selectable ventilator setting control govemns the supply of
ventilation support from the ventilator to the patient via the breathing circuit. Each ventilator
setting control generates a ventilator setting parameter signal indicative of the current level
setting of the ventilator setting. .

The ventilator support monitor system has a plurality of sensors and a processing
subsystem. The sensors measure a plurality of ventilation support parameters and each sensor
generates an output signal based on the measured ventilation support parameter. The processing
subsystem is connected to receive the output signal from the sensor and the ventilator setting
signal(s) from the ventilator setting control(s). The processor of the processing subsystem runs
under control of a program stored in the memory of the processing subsystem and determines a
desired level setting of at least one ventilator setting control in response to the ventilator setting
parameter signal and the output signal. The processing subsystem of the ventilator preferably
utilizes a trainable neural network to determine the desired level settings of the ventilator setting

controls.

Detailed Description of the Figures

The accompanying drawings, which are incorporated in and constitute a part of this
specification, illustrate several embodiments of the invention and together with the description,
serve to explain the principals of the invention.

Fig. 1 is a block diagram of one configuration a ventilator monitor system for determining
the desired ventilator control settings of a ventilator.

Fig. 2A is a block diagram of one configuration of the ventilator monitor system showing
the ventilator providing ventilation support to a patient connected to the ventilator via a breathing
circuit.

Fig. 2B is a block diagram of an embodiment of a ventilator monitor system showing the
monitor system incorporated into the ventilator.

Fig. 3 is a block diagram of the ventilator monitor system showing a plurality of sensors

connected to the processing subsystem.
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Fig. 4 is a block diagram of a processing subsystem of the present invention.

Fig. 5 is a block diagram of a feature extraction subsystem of the present invention.

Fig. 6A is a block diagram of one embodiment of the intelligence subsystem of the
processing subsystem.

Fig. 6B is a block diagram of a second embodiment of the intelligence subsystem of the
processing subsystem.

Fig. 7 is a schematic block diagram of one realization of the system of the invention.

Fig. 8 is a diagram of the basic structure of an artificial neural network having a layered

structure.

Detailed Description of the Invention

.The present invention is more particularly described in the following examples that are
intended to be illustrative only since numerous modifications and variations therein will be
apparent to those skilled in the art. As used in the specification and in the claims, the singular
form "a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.

As depicted in Figs. 1 - 3, the respiratory support monitoring system 10 of the present
invention preferably comprises a conventional ventilator 20, a processing subsystem 40, a
measuring system, and a display 62. The ventilator 20 is defined as a device that supports the
patient’s effort to breathe or ventilates the patient directly. These devices include, but are not
limited to, critical care ventilators, transport ventilators, respiratory support devices for sleep
disorders, continuous positive airway pressure (CPAP) devices, respirators for hazardous
environments, and the like.

The ventilator 20 supplies a breathing gas to the lungs of the patient P via a breathing
circuit 22 that typically comprises an inspiratory line 23, an expiratory line 24, and a patient
airway access 25, all connected by a patient connector 26. The preferred ventilator 20 is a
microprocessor-controlled ventilator of a type that is exemplified by a Mallinckrodt, Nelcor,
Puritan-Bennett, 7200ae, or a Bird 6400 Ventilator. According to the present invention, the
patient airway access 25 includes, but is not limited to, an endotracheal tube, laryngeal mask
airway (LMA) or other supraglottic airway device such as a standard mask (oral, nasal, or full-

face), nasal cannula, tracheal tube, tracheostomy or cricothyrotomy tube, and the like. Breathing
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gas that is supplied by the ventilator of the invention includes, but is not limited to, air, oxygen
mixed with air, pure oxygen, and the like.

To control the delivery of the breathing gas, the preferred ventilator 20 typically has at
least one selectable ventilator setting control 30 operatively connected to the processing system
40 for governing the supply of ventilation support provided to the patient P. As one skilled in the
art will appreciate, each ventilator setting control 30 is selectable to a desired level setting. Such
a ventilator 20 is particularly useful in controlling the delivery of breathing support so that the
quantity and quality of ventilation support coincides with the physiological support needs of the
patient P.

In the preferred embodiment, the preferred ventilator 20 can operate selectively in one or
more conventional modes, as needed and selected by the operator and/or the processing
subsystem 40, including but not limited to: (i) assist control ventilation (ACMYV); (ii) sychronizéd
intermittent mandatory ventilation (SIMV); (iii) continuous positive airway pressure (CPAP); (iv)
pressure-control ventilation (PCV); (v) pressure support ventilation (PSV); (vi) proportional
assist ventilation (PAV); and (vii) volume assured pressure support (VAPS). Further, the level
setting of one or more conventional ventilator setting controls 30 of the ventilator 20 (i.e., the
intra-mode setting controls of the ventilator 20) may be adjusted, as needed and selected by the
operator and/or the processing system 40 in order to maintain the sufficiency of ventilation
support delivered to the patient P. The ventilator setting controls 30 of the ventilator 20 include
but are not limited to controls for setting: (i) a minute ventilation (Ve) level; (ii) a ventilator
breathing frequency (f) level; (iii) a tidal volume (V) level; (iv) a breathing gas flow rate (V)
level; (v) a pressure limit level; (vi) a work of breathing (WOB) level; (vii) a pressure support
ventilation (PSV)level; (viii) a positive end expiratory pressure (PEEP) level; (ix) a continuous
positive airway pressure (CPAP) level; (x) a fractional inhaled oxygen concentration (FI02)
level; and (xi) a patient effort to breathe level.

The conventional ventilator 20 contemplated typically has a gas delivery system and may
also have a gas composition control system. The gas delivery system may, for example, be a
pneumatic subsystem 32 in fluid/flow communication with a gas source 34 of one or more
breathing gases and the breathing circuit 22 and in operative connection with the ventilator
control settings 30 of the ventilator 20 and the processing subsystem 40. The breathing circuit 22

is in fluid communication with the lungs of the patient P. As one skilled in the art will



25

30

WO 2007/145948 PCT/US2007/013244

9

appreciate, the pneumatic subsystem 40 of the ventilator 20 and the operative connection of that
pneumatic subsystem 40 to the source of breathing gas 34 of the ventilator 20 may be any design
known in the art that has at least one actuator (not shown) that is capable of being operatively
coupled, preferably electrically coupled, to the ventilator setting controls 30 for control of, for
example, the flow rate, frequency, and/or pressure of the breathing gas delivered by the ventilator
20 to the patient P from the gas source 34. Such a pneumatic system 32 is disclosed in U.S.
Patents Nos. 4,838,259 to Gluck e al., 5,303,698 to Tobia et al., 5,400,777 to Olsson et al.,
5,429,123 to Shaffer et al., and 5,692,497 to Schnitzer et al., all of which are incorporated in their
entirety by reference herein and is exemplified by the Mallinckrodt, Nelcor, Punitan-Bennet,
7200ae, and the Bird 6400 Ventilator.

The gas composition control system may, for example, be an oxygen control subsystem
36 coupled to the source of breathing gas 34 and in operative connection to the ventilator setting
controls 30 of the ventilator 20 and the processing subsystem 40. The oxygen control subsystem
36 allows for the preferred control of the percentage composition of the gases supplied to the
patient P. As one skilled in the art will appreciate, the oxygen control subsystem 36 of the
ventilator 20 and the operative connection of that oxygen control subsystem 36 to the pneumatic
subsystem 32 and to the source of breathing gas 34 of the ventilator 20 may be any design known
in the art that has at least one actuator (not shown) that is capable of being operatively coupled,
preferably electrically coupled, to the ventilator setting controls 30 for control of, for example,
the percentage composition of the oxygen supplied to the patient P.

The processing subsystem 40 of the ventilator monitor system 10 preferably has an input
44 that is operatively coupled to the ventilator setting controls 30 of the ventilator 20 so that at
least one ventilator setting parameter signal 42 may be received by the processing subsystem 40.
Each ventilator setting parameter signal 42 is preferably indicative of a setting of a ventilator
setting control 30. Thus, the processing system 40 is in receipt of signals 42, preferably
continuously, indicative of the current level settings of the ventilator setting controls 30. Asone
skilled in the art will appreciate, the current level settings of the ventilator setting controls 30
may be stored in the memory of the processing subsystem 40. In this example, the ventilator
setting parameter signals 42 would be input from the memory of the processing subsystem 40 to

the processor for continued processing and assessment.
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For example, the input of the processing system 40 may receive one or more of the
following ventilator setting parameter signals 42: a minute ventilation (Vg) signal indicative of
the Vg level set on the ventilator 20; a ventilator breathing frequency (f) signal indicative of the f
level set on the ventilator 20; a tidal volume (V1) signal indicative of the V level set on the
ventilator 20; a breathing gas flow rate (V) signal indicative of the V level set on the ventilator
20; a pressure limit signal indicative of the pressure limit set on the ventilator 20; a work of
breathing (WOB) signal indicative of the WOB level set on the ventilator 20; a pressure support
ventilation (PSV) signal indicative of the PSV level set on the ventilator 20; a positive end
expiratory pressure (PEEP) signal indicative of the PEEP level set on the ventilator 20; a
continuous positive airway pressure (CPAP) signal indicative of the CPAP level set on the
ventilator 20; and a fractional inhaled oxygen concentration (FIO2) signal indicative of the FIO2
level set on the ventilator 20.

The measuring system of the monitor system 10 is also operatively connected to the
processing subsystem 40. The measuring system senses and measures a plurality of ventilation
support parameters which are indicative of the ventilation support provided to the patient P and
the physiological condition of the patient P. It is contemplated that the measuring system may
comprise at least one sensor 52, and preferably comprises a plurality of sensors 52, for capturing
the desired ventilation support data. Each sensor 52 generates an output signal 51 based on the
particular measured ventilation support parameter.

In one preferred embodiment shown in Fig. 3, the processing subsystem 30 is shown
operatively connected to a flow rate sensor 53, a exhaled CO2 (Ex CO2) sensor 54, a pressure
sensor 55, a blood pressure sensor 56, and a SPO2 sensor 57. In this embodiment, it is preferred
that the monitor system 10 be responsive to the output signals 51 input into the processing
subsystem 40 from, for example: i) the flow rate sensor 53 which is indicative of the flow rate
ventilation support parameter of the gas expired/inspired by the patient P within the breathing
circuit 22, ii) the gas pressure sensor 55 which is indicative of the pressure ventilation support
parameter of the breathing gas within the breathing circuit 22, and iii) the Ex CO2 sensor 54
which is indicative of the exhaled carbon dioxide ventilation support parameter present in the
exhaled gas expired by the patient P within the breathing circuit 22 (i.e., the flow rate output
signal 51 generated by the flow rate sensor 53, the gas pressure output signal 51 generated by the
gas pressure sensor 55, and the Ex CO2 output signal 51 generated by the Ex CO2 sensor 54).
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Optionally, the monitor system 10 may be responsive to output signals 51 input into the
processing subsystem 40 from the output of the blood pressure sensor 56, which in indicative of
the blood pressure ventilation support parameter of the patient P, for example the arterial systolic,
diastolic, and mean blood pressure of the patient P, and the SPO2 sensor 57 which is indicative
of the hemoglobin oxygen saturation level ventilation support parameter of the patient P (i.e., the
blood pressure output signal 51 generated by the blood pressure sensor 56 and the SPO2 output
signal 51 generated by the SPO2 sensor 57). According to the invention, information regarding
the patient’s blood pressure can be provided directly by the blood pressure sensor 56 (such as a
blood pressure cuff) or from any one or combination of sources such as, but not limited to, an
arterial line, a photoplethysmographic signal (PPG) from the SPO2 sensor 57, pulse transit
time/pulse wave velocity, and pulse pressure.

The flow rate sensor 53, the pressure sensor 55, and the Ex CO2 sensor 54 are preferably
positioned between the patient connector 26 and the patient airway access 25 (such as when the
patient airway access is an endotracheal tube). Alternatively, it is preferred that the pressure
sensor 55 be located at the tracheal end of the patient airway access 25. The flow rate, pressure,
and Ex CO2 sensors 53, 55, 54 are exemplified by Novametrics, CO,SMO+ monitor (which has
a flow rate, pressure and Ex CO2 sensors). The blood pressure sensor 56 and the SPO2 sensor 57
are exemplified by Dynamap, Inc’s blood pressure sensor and Novametrics, CO,SMO+monitor’s
SPO2 sensor. The blood pressure sensor 56 and the SPO2 sensor 57 may be attached to a portion
of the patient’s body to render the requisite measurements. For example, an SPO2 sensor such as
a pulse oximeter sensor can be placed on any portion of the body, including any area around the
head (such as the ear, nose (e.g., septal, alar, or lateral nasal cartilages), cheek, tongue, forehead,
neck, and the like) to obtain information from the cardiac and/or respiratory systems (such asvia
direct sensing from the carotid artery). Likewise, the blood pressure sensor can be placed on any
portion of the body, including the arm, finger, wrist, leg, toes, and the like.

The blood pressure sensor 56, here for example shownasa blood pressure cuff, is shown
attached to the arm of the patient P and the SPO2 sensor 57, which may, for example, be a pulse
oximeter, is shown attached to a finger of the patient 12 . One skilled in the art appreciates that
the blood pressure data may be derived from the SPO2 sensor 57, which eliminates the need for

the blood pressure sensor 36.
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Additional standard equipment can include an operator interface 60, which in the
preferred embodiment is a membrane keypad, a keyboard, a mouse, or other suitable input
device, for providing user inputs of both data and control commands needed to execute the
software which implements the various functions of the invention. The operator of the
respiratory support monitoring system 10 of the present invention may provide the processing
subsystem 40, via an operator input signal generated by the operator interface 60, with any
number of applicable input parameters, such as patient identification information, patient
diagnostic information, type and size of patient airway access, patient age, patient height, patient
weight, or other desired patient statistics. ‘

Such input parameters, such as patient height and weight, are useful in establishing and
monitoring desired ventilator control settings and/or ventilation parameters. For example,
because the size of the patient’s lungs is generally a function of patient height, the optimal tidal
volume (breath volume) can be associated with the patient height parameter. The normal range
of tidal volumes is 6-10 mls/kg of patient weight. However, the patient’s weight is typically
calculated as ideal body weight which is a function of patient height (since overweight patients
have the same lung size as normal or underweight patients). In addition, patient diagnostic
information is also useful in establishing and monitoring desired ventilator control settings and/or
ventilation parameters. This would include information concerning patient cardiac health and
respiratory diseases such as chronic obstructive pulmonary disease (COPD), asthma, acute
respiratory distress syndrome (ARDS), etc.

Accordingly, in certain embodiments of the invention, the operator provides to the
processing subsystem a patient height and/or patient weight input parameter to assist in the
establishment and monitoring of desired level settings of either the ventilator setting controls or
ventilation parameters.

It is preferred that the operator input predetermined patient reference data, such as the
arterial blood gas pH, the arterial blood gas PaO2, and/or the arterial blood gas PaCO2 of the
patient’s blood, and/or patient’s temperature into the processing subsystem 40 as operator input
signals 61 via the operator interface 60. The monitor system 10 may also be responsive to the
core body temperature of the patient P which may be input into the processing subsystem 40 as
an output signal 51 from a temperature sensor 58 attached to the patient P or as an operator input

signal 61 via the operator interface 60.
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The processing subsystem 40 preferably comprises a processor 46, for example a
microprocessor, a hybrid hardware/software system, controller, or computer, and amemory. The
output signals 51 and the ventilation data 72 derived from the output signals 51 are stored in the
memory of the processing subsystem 40 at user-defined rates, which may be continuous, for as-
needed retrieval and analysis. The ventilator setting signal 42 may also be stored in the memory
at a user-defined rate. As one skilled with the art will appreciate, any generated signal may be
stored in the memory at user-defined rates. The memory may be, for example, a floppy disk
drive, a CD drive, internal RAM or hard drive of the associated processor 12.

The processing subsystem 40 is responsive to the output signals 51 of the measuring
means, the ventilator setting parameter signal(s) 42, and, if provided, the operator input signals
61. The processor 46 runs under the control of a program stored in the memory and has
intelligent programming for the determination of at least one desired level setting of the ventilator
setting controls 30 based on at least a portion of the output signal 51 from the measuring means,
at least a portion of the ventilator setting parameter signal(s) 42 received at the input 44 of the
processing subsystem 40, and, if provided, at least a portion of the operator input signals 61.

The desired level settings for the ventilator setting controls 30 of the ventilator 20 may
include at least one of the group of: 1) a minute ventilation (Vg) level indicative of the desired Vg
level to set on the ventilator 20; ii) a ventilator breathing frequency (f) level indicative of the
desired flevel to set on the ventilator 20; iii) a tidal volume (Vr) level indicative of the Vy level
to set on the ventilator 20; iv) a breathing gas flow rate (V) level indicative of the V level to set
on the ventilator 20; v) a pressure limit level indicative of the pressure limit level to set on the
ventilator 20; vi) a work of breathing (WOB) level indicative of the WOB level to set on the
ventilator 20; vii) a pressure support ventilation (PSV) level indicative of the PSV level to set on
the ventilator 20; viii) a positive end expiratory pressure (PEEP) level indicative of the PEEP
level to set on the ventilator 20; ix) a continuous positive airway pressure (CPAP) level indicative
of the CPAP level to set on the ventilator 20; and x) a fractional inhaled oxygen concentration
(FIO2) level indicative of the FIO2 level to set on the ventilator 20.

The desired level setting of the ventilator setting controls 30 determined by the processing
system 40 of the monitor system 10 may be displlayed to the operator via the display. The display

of the monitor system 10 preferably comprises a visual display 62 or CRT, electronically coupled
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to the processing subsystem 40 for outputting and displaying output display signals generated
from the processing subsystem 40.

Still further, the monitor system 10 may have an alarm 21 for alerting the operator of
either a failure of the monitor system 10, such as a power failure of loss of signal data input, or an
inappropriate setting of a ventilator control 30, such as a level setting of a ventilator setting
control 30 currently controlling the delivery of ventilator support to the patient P differing from a
recommended desired level setting of the ventilator setting control 30. Preferably, the alarm 21
comprises a visual and/or audio alarm, but any means for alerting the operating clinician know to
one skilled in the art may be used. Of course, it is desired to use a backup power supply, such as
a battery.

Referring to Figs. 4 and 5, the processing subsystem of the preferred embodiment of the
present invention has a means for determining the desired ventilation control settings 30 of the
ventilator 20. The determining means preferably comprises a feature extraction subsystem 70

and an intelligence subsystem 80. The feature extraction subsystem 70 has a means for extracting

- and compiling pertinent ventilation data features from the input of the measuring means (i.e., the

. output signals 51). In effect, the feature extraction subsystem 70 acts as a preprocessor for the

intelligence subsystem 80. An example of the feature extraction subsystem 70 is shown in Fig. 5.
Here, a flow rate sensor 53, a gas pressure sensor 55, a SPO2 sensor 57, an Ex CO2 sensor 54, a
temperature (T) sensor 58, a blood pressure (BP) sensor 56, of a type described above, and any
other desired sensor are operatively connected to the feature extraction subsystem 70 of the
processing subsystem 40. Preferably, the flow rate sensor 53, the gas pressure sensor 55, and the
Ex CO2 sensor 54 provide the only inputs to the monitor system. The other sensor inputs, and
the user input, may be included to increase the reliability and confidence of the determined
desired level settings of the controls 30. The monitor system 10 preferably adjusts the extraction
of ventilator data 72 as a function of the presence or absence of these optional inputs. By making
the number of inputs optional, which also makes the required number of sensors 52 comprising
the measuring system optional, the number of environments in which the ventilator monitor
system 10 can be used is increased.

The purpose of the feature extraction subsystem 70 is to calculate and/or identify and
extract important variables or features from the output signals 51 produced by the measuring

means. For example, from the exemplified required inputs to the feature extraction subsystem
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70, i.e., the gas pressure output signal 51, the flow rate output signal 51, and the Ex CO2 output
signal 51, a plurality of ventilation data 72 may be derived. The derived ventilation data 72 may
comprise: the values of any output signals 51 used, such as, for example, the gas pressure output
signal 51, the flow rate output signal 51, and the Ex CO2 output signal 51 output signals 51; the
peak inflation pressure (PIP), which is the maximal pressure generated during mechanical
ventilation of the lungs; the mean airway pressure (PAW), which is the average positive pressure
measured at the airway opening in the patient airway access 25 (such as when the patient airway
access is an endotracheal tube) or in the breathing circuit 22 over one minute; the positive end
expiratory pressure (PEEP), which is the baseline or starting positive pressure prior to mechanical
inflation or the positive pressure applied continuously during inhalation and exhalation during
spontaneous ventilation; breathing frequency (f), which is the frequency or rate or breathing per

minute (the total breathing frequency fror is the sum of the mechanical fugch ventilator

preselected frequency and the spontaneous fspon patient breathing frequency); the tidal volume
- (V1) , which is the volume of the breathing gas moving in-and out of the lungs per breath (Vr

. mecu 18 the ventilator preselected Vr per breath and Vr spon is the.inhaled and exhaled volume

per breath of the patient); the minute exhaled ventilation (VE), which is the volume of breathing
gas moving in and out of the lungs of the patient per minute (Vg is the product of the breathing
frequency f and the tidal volume (Vg = fxV7), and the Vg tor is the sum of the ventilator
preselected Vg (Vi mecn) and the spontaneous patient Vg inhaled and exhaled per minute (Vg
spon)); the inhalation-to-exhalation time ratio (I:E ratio), which is the ratio of inhalation time to
exhalation time during mechanical ventilation; the physiologic dead space volume (Vppnys),
which is the volume of gas in the anatomic airway and in ventilated, unperfused alveoli that does
not participate in blood gas exchange; the lung carbon dioxide elimination rate (LCOZ2), which is
the volume of CO2 exhaled per breath or per minute (LCO2 is the area under the Ex CO2 and
volume curve); the partial pressure end-tidal carbon dioxide level (PetCO2), which is the partial
pressure of the exhated CO2 measured at the end of the exhalation; the cardiac output (CO) of the
patient, which is the amount of blood ejected from the heart per minute and which may, for
example be derived from the determined LCO2 rate; the respiratory system compliance and

resistance; the pressure-volume loops; and the respiratory muscle pressure or the patient effort to

breathe.
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The patient effort to breathe can be quantified in many ways, including but not limited to:
work of breathing, which quantifies the normalized effort required by the patient to take a single
breath, typically expressed in Joules per liter; power of breathing, which quantifies the effort
required by the patient to breath for 1 minute, typically expressed in Joules; and the pressure time
product, which quantifies the patient effort per minute by summing the area under/above the
pleural/esophageal pressure curve and typically expressed in cm H20 per minute. These
estimates of patient effort may be derived from, but not limited to, the determined respiratory
muscle pressure, esophageal pressure tracings, airway pressure, flow, and volume traces, CO2
traces, SPO2 traces, and parameters derived thereof. Such quantified or estimated values for the
patient effort to breathe can be provided as a patient effort to breathe signal for use in accordance
with the present invention.

_It.is often desirable to control a patient’s required effort to breathe to maintain the
patient’s comfort and respiratory strength. If the ventilator is providing toc much support, the

patient will not be required to use adequate muscle activity to breathe and the muscles may

atrophy. Likewise, if the ventilator is not providing enough support, the patient may become

fatigued and not be able to support his own breathing any longer. In addition, there may be times
when it is desirable to rest or exercise the patient for certain medical conditions or weaning.
Knowing the patient effort allows the system of the invention to better recommend changes in the
ventilator parameters. Further, the quantified patient effort to breathe (such as communicated via
the patient effort to breathe signal) can be used to establish and/or monitor desired level settings
for ventilator controls. For example, in one embodiment of the invention, the patient effort to
breathe signal is evaluated by a processing subsystem of the invention for use in determining the
desired setting of at least one parameter and/or ventilator setting control.

Ventilation data 72 may also be derived from the exemplified optional inputs to the
feature extraction subsystem 70. From the SPO2 output signal 51 (such as a pulse oximeter), the
arterial blood hemoglobin oxygen saturation level and the heart rate may be determined, and the
pulsatile blood pressure waveform of the SPO2 output signal 51, such as a plethysmographic
(PPG) signal), may be used to establish and monitor desired settings for ventilator control(s)
and/or ventilation parameters to optimize patient oxygenation without sacrificing cardiac output.

There are many known methods for assessing cardiac output. For example, Adolph Fick's

measurement of cardiac output, first proposed in 1870, has served as the standard by which all
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other means of determining cardiac output have been evaluated since that date. Fick's well-

known equation, written for COp, 1s:

Vcoz2

Q=
(Cvcoz — Cacoz)
where Q is cardiac output, Vo is the amount of CO; excreted by the lungs and Cacoz and Cvcoz
are the arterial and venous CO; concentrations, respectively.
Expired CO, levels can be monitored to estimate arterial CO: concentrations and a varied
form of the Fick Equation can be applied to evaluate observed changes in expired CO; to

estimate cardiac output. Use of the Fick Equation to determine cardiac output in non-invasive

procedures requires the comparison of a "standard" ventilation event to a sudden change in

ventilation which causes a change in expired CO, values and a change in excreted volume of

COa.. ther methods for assessing cardiac output that can be used in accordance with the subject
inventio.n. include those disclosed in U.S. Patent No. 6,648,831.

' The: PPG signal from the SPO2 output signal can be used to determiﬂe arterial blood
pressure a§ well as assist (with other output and/or input signals) in determining whether the
PEEP signal is at a desired setting for appropriate patient oxygenation. In certain embodiments
of the invention, the PPG signal is used by the processing subsystem in place of input from the
blood pressure sensor in optimizing the PEEP ventilation parameter and/or patient oxygenation
without sacrificing cardiac output.

Typically oxygenation is optimized by adjusting the fraction of inspired O2 (FIOZ)
delivered by the ventilator and by adjusting PEEP. Increasing FIO2 can increase patient
oxygenation, but FIO2 settings much above room air (21%) can eventually be toxic to the patient.
Increasing PEEP can also increase patient oxygenation, typically by holding open sick lungs to
prevent lung and alveolar collapse, thus allowing for better gas exchange between the lungs and
circulatory system. If PEEP is too high (and this value varies by patient), then the increased lung
pressure can reduce the amount of blood flowing back to the lungs and heart because of the
increased pressure gradient between the lungs and the rest of the body. This decreased venous
return can reduce cardiac output leading to decreased blood pressure and poor patient blood flow.

The PPG signal is known to contain: (1) a pulsatile signal created by blood pulsing
through the arteries and veins with each heart beat; and (2) a baseline (but varying) offset that this
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pulsatile signal modulates (or “rides on”). Both the baseline offset and pulsatile signals are
affected by breathing and/or intrathoracic pressure.

As described above, intrathoracic pressure (pressure in the chest, often driven by pressure
in the lungs) can change both venous impedance (impedance of the blood returning to the
lungs/heart via the veins) and cardiac output (the volume of blood ejected by the heart each beat).

This is commonly seen in arterial pressure waveforms but is also known to exist in the PPG. For
instance, the PPG pulsatile waveform varies with cardiac output since less blood pumped by the
heart creates smaller PPG peaks and vice-versa. Also, increased baseline intrathoracic pressure
will increase venous impedance which will increase the amount of blood pooling in the veins.
This will cause a change (decreased signal strength) in the baseline signal of the PPG that varies
with the breathing and intrathoracic pressure. Therefore, from the PPG, signals indicative of
intrathoracic pressure and its affects on the respiratory and cardiac system may be determined.
Examples include, but are not limited to: patient effort (which includes parameters such as
power of breathing, work of breathing, efc.); the effect of intrathoracic pressure on cardiac output
(e.g. excessively high PEEP); and increasing changes in intrathoracic pressure during breathing
that niay be caused by deterioration of lung function. |

Additionally, from the blood pressure output signal 51, the arterial systolic, diastolic and
mean blood pressure of the patient P may be determined. Further, from the temperature output
signal 51, the core body temperature of the patient may 12 be derived. Still further, from the
arterial blood hemoglobin oxygen saturation level and the determined LCO?2, the dead space
volume may be determined.

In certain embodiments, the cardiac output can be derived from the Ex CO2 output signal
51 to the feature extraction subsystem. The cardiac output from the Ex CO2 output signal can be
used (in certain instances, in conjunction with other output and/or input signals) to determine
whether the PEEP signal is set appropriately to optimize patient oxygenation without sacrificing
cardiac output. Inrelated embodiments of the invention, the cardiac output derived from the Ex
CO2 output signal is used by the processing subsystem in place of input from the blood pressure
sensor in optimizing the PEEP ventilation parameter and/or patient oxygenation without
sacrificing cardiac output.

The feature extraction subsystem 70 may also receive user input via the operator interface

60 and may receive the ventilator setting parameter signal 42. The ventilation data 72 is
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preferably compiled in the feature extraction subsystem 70 and a feature vector 74 or matrix 1s
preferably generated which contains all of the ventilation data items used by the monitor
subsystem 10 to perform the ventilation support assessment process. The feature vector 74 may
be updated at user-defined intervals such as, for example, after each breath or each minute and is
output from the feature extraction subsystem 70 to the intelligence subsystem 80 as a ventilation
data output signal 75. Alternatively, as one skilled in the art will appreciate, the ventilation data
72 may be directly outputted to the intelligence subsystem 80 as the ventilation data output signal
75 without the intervening step of generating the feature vector 74 or matrix. The ventilation
data 72 may also be outputted to the display 62.

In certain embodiments, the processing subsystem 40 has the ability to evaluate the time
history (or trend) of input and/or output signals (such as evaluating the input and output signals
throughout a period of time where the period may be short-term or long-term). According to the
subject invention, the trend can also be used to determine when physiologically significant events

might be occurring, rather than normal patient variation. Noted changes in trend could be a

. reflection of triggered changes in parameters from a known baseline rather than absolute values

of the parameters. Also, the slope of the trend (how quickly the parameters change) could
determine how best to adjust the ventilator control(s) and/or parameter(s) to desired settings.
Thus, the trend of input and/or output signals can be used to determine a desired setting for
ventilation control(s) and/or ventilation parameter(s).

Referring to Figs. 4, 6A and 6B, the intelligence subsystem 80 of the processing
subsystem 40 preferably has a neural network 82. The primary function of the intelligence
subsystem 80 is to make an assessment of the ventilator support provided to the patient and,
based upon the assessment, recommend the desired level settings of the ventilator setting controls
30 which will adequately, and preferably optimally, support the physiological ventilation support
needs of the patient P. For example, as shown in Fig. 6A, the intelligence subsystem 80 of the
processing subsystem 40 may have a neural network 82 that receives the ventilation data output
signal 75 containing the compiled ventilation data 72. The neural network 82 also receives the
ventilator setting parameter signal 42 and may receive user input from the operator interface 60.

To fully appreciate the various aspects and benefits produced by the present invention, a

basic understanding of neural network technology is required. Following is a brief discussion of
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this technology, as applicable to the ventilator monitor system 10 and method of the present
invention.

Artificial neural networks loosely model the functioning of a biological neural network,
such as the human brain. Accordingly, neural networks are typically implemented as computer
simulations of a system of interconnected neurons. In particular, neural networks are hierarchical
collections of interconnected processing elements configured, for example, as shown in FIG. 8.
Specifically, FIG. 8 is a schematic diagram of a standard neural network 82 having an input layer
84 of processing elements, a hidden layer 86 of processing elements, and an output layer 88 of
processing elements. The example shown in FIG. 8 is merely an illustrative embodiment of a
neural network 82 that can be used in accordance with the present invention. Other embodiments
of a neural network 82 can also be used, as discussed next.

Turning next to the structure of a neural network 82., each of its processing elements
receives multiple input signals, or data values, that are processed to compute a single output. The
output value is calculated using a mathematical equation, known in the art as an activation
function or a transfer function that specifies the relationship between input data values. As
known in the art, the activation function may include a threshold, or a bias element. As shownin
FIG. 8, the outputs of elements at lower network levels are provided as inputs to elements at
higher levels. The highest level element, or elements, produces a final system output, or outputs.

In the context of the present invention, the neural network 82 is a computer simulation
that is used to produce a recommendation of the desired ventilator setting of the ventilator
controls 30 of the ventilator 20 which will adequately, and preferably optimally, support the
physiological ventilation support needs of the patient, based upon at least a portion of the
available ventilation setting parameters 42 and at least a portion of the ventilation data output
signal 75 (i.e., at least a portion of the derived ventilation data 72). .

The neural network 82 of the present invention may be constructed by specifying the
number, arrangement, and connection of the processing elements which make up the network 82.

A simple embodiment of a neural network 82 consists of a fully connected network of
processing elements. The processing elements of the neural network 82 are grouped into layers:
an input layer 84 where at least a portion of selected ventilation data 72, output signals 51, and
the selected ventilator setting parameter signals 42 are introduced; a hidden layer 86 of

processing elements; and an output layer 88 where the resulting determined level setting(s) for
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the control(s) 30 is produced. The number of connections, and consequently the number of
connection weights, is fixed by the number of elements in each layer.

In a preferred embodiment of the present invention, the data types provided at the input
layer may remain constant. In addition, the same mathematical equation, or transfer function, is
normally used by the elements at the middle and output layers. The number of elements in each
layer is generally dependent on the particular application. As known in the art, the number of
elements in each layer in turn determines the number of weights and the total storage needed to
construct and apply the neural network 82. Clearly, more complex neural networks 82 generally
require more configuration information and therefore more storage.

In addition to the structure illustrated in FIG. 6A, the present invention contemplates
other types of neural network configurations for the neural network module such as the example
shown in Fig. 6B, which is described in more detail below. All that is required by the present
invention is that a neural network 82 be able to be trained and retrained, if necessary, for use to

determine the desired level settings of the controls 30 of the ventilator 20. It is also preferred that

* the neural network 82 adapt (i.e., learn) while in operation to refine the neural network’s 82

determination of the appropriate level settings for the controls 30 of the ventilator 20.
Referring back to Figs. 6A and 8, the operation of a specific embodiment of a feedforward
neural network 82 is described in more detail. It should be noted that the following descriptionis
only illustrative of the way in which a neural network 82 used in the present invention can
function. Specifically, in operation, at least a portion of selected ventilation data 72 from the
ventilation data output signal 75 and the selected ventilator setting parameter signals 42 (i.e.,
collectively the input data) is provided to the input layer 84 of processing elements, referred to
hereafter as inputs. The hidden layer elements are connected by links 87 to the inputs, each link
87 having an associated connection weight. The output values of the input processing elements
propagate along these links 87 to the hidden layer 86 elements. Each element in the hidden layer
86 multiplies the input value along the link 87 by the associated weight and sums these products
over all of its links 87. The sum for an individual hidden layer element is then modified
according to the activation function of the element to produce the output value for that element.
In accordance with the different embodiments of the present invention the processing of the

hidden layer elements can occur serially or in parallel.
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If only one hidden layer 86 is present, the last step in the operation of the neural network
is to compute the output(s), or the determined level setting(s) of the control(s) 30 of the ventilator
by the output layer element(s). To this end, the output values from each of the hidden layer
processing elements are propagated along their links 87 to the output layer element. Here, they
are multiplied by the associated weight for the link 87 and the products are summed over all links
87. The computed sum for an individual output element is finally modified by the transfer
function equation of the output processing element. The result is the final output or outputs
which, in accordance with a preferred embodiment of the present invention, is the desired level
setting or settings of the ventilator setting controls 30.

In the example of the intelligence subsystem 80 shown in Fig. 6B, the intelligence
subsystem 80 is a hybrid intelligence subsystem that contains both rule-based modules 90 as well
as neural networks 82. In this alternative embodiment of the intelligence subsystem 90, the
determination of the desired level settings of the controls 30 of the ventilator 20 are broken down
into a number of tasks that follow classical clinical paradigms. Each task may be accomplished.
using a rule-based system 90 or a neural network 82. In the preferred configuration, the
determination of desired level settings of the ventilator setting controls 30 are performed by one
of a series of neural networks 82.

The purpose of the ventilation status module 92 is to make an initial assessment of the
adequacy of the ventilation support being provided to the patient P based on the level settings of
the ventilator setting controls 30 (as inputted to the intelligence subsystem by the ventilator
setting parameter signals 42) and the ventilation data output signal. The final determination of
the desired level settings of the ventilator setting controls 30 is accomplished by one of a series of
available neural networks 82 in the ventilator control setting predictor module 94. The purpose
of the rule-based front end 96 is to determine, based on inputs from the ventilation status module
92, data entered by the operator, and the ventilator setting parameter signal 42, which of the
available neural networks 82 will determine the desired level settings of the ventilator setting
controls 30. The rule-based front end 96 will also determine which inputs are extracted from the
ventilation data output signal 75 and presented to the selected neural network 82. Inputs to the
ventilator control setting predictor module 94 include ventilator data 72 from the ventilation data
output signal 75, user input, and input from the ventilator setting parameter signals 42. The

purpose of the rule-based back end module 98 is to organize information from previous modules,
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neural networks 82, user input, and ventilation data 72 in the ventilation data output signal and to
format the information for display on the visual display 62 as well as for storage to an external
storage 64 such as a disk file.

As with most empirical modeling technologies, neural network development requires a
collection of data properly formatted for use. Specifically, as known in the art, input data and/or
the outputs of intermediate network processing layers may have to be normalized prior to use. It
is known to convert the data to be introduced into the neural network 82 into a numerical
expression, to transform each of the numerical expressions into a number in a predetermined
range, for example by numbers between 0 and 1. Thus, the intelligent subsystem of the present
invention preferably has means for: i) selecting at least a portion of the ventilation data 72 from
the ventilation data output signal 75 and at least a portion of the ventilator setting parameter
signals 42, ii) converting the selected portion.of the ventilation data 72 and the selected portion of
the ventilator setting parameter signals 42 into numerical expressions, and iii) transforming the
numerical expressions into a number in a predetermined range.

- In one conventional approach which can also be used in the present invention, the neural
network 82 of the present invention may include a preprocessor 83. The preprocessor 83 extracts
the correct data from the processing subsystem memory 48 and normalizes each variable to
ensure that each input to the neural network 82 has a value in a predetermined numerical range.
Once the data has been extracted and normalized, the neural network 82 is invoked. Data
normalization and other formatting procedures used in accordance with the present invention are
known to those skilled in the art and will not be discussed in any further detail.

In accordance with a preferred embodiment of the present invention the neural network 82
is trained by being provided with the ventilator control setting assessment made by a physician
and with input data, such as ventilation data 72, the ventilation control setting parameter signals
42, and the output signals 51 that were available to the physician. In the sequel, the assessment
along with the corresponding input measurement and input data is referred to as a data record.
All available data records, possibly taken for a number of different patients, comprise a data set.
In accordance with the present invention, a data set corresponding is stored in memory and is

made available for use by the processing subsystem 40 for training and diagnostic determinations.
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A typical training mechanism used in a preferred embodiment of the present invention is
briefly described next. Generally, the specifics of the training process are largely irrelevant for
the operation of the ventilation monitor system. In fact, all that is required is that the neural
network 82 be able to be trained and retrained, if necessary, such that it can be used to determine
acceptably accurate determinations of desired level settings of the controls 30 of the ventilator 20.
Neural networks 82 are normally trained ahead of time using data extracted from patients 12 by
other means. Using what it has learned from the training data, the neural network 82 may apply it
to other/new patients P.

As known in the art, a myriad of techniques has been proposed in the past for training
feedforward neural networks. Most currently used techniques are variations of the well-known
error back-propagation method. The specifics of the method need not be considered in detail
here. For further reference and more detail the reader is directed to the excellent discussion
provided by Rumelhardt et al. in "Parallel Distributed Processing: Explorations in the
Microstructure of Cognition," vols. 1 and 2, Cambridge: MIT Press (1986), and "Explorations in
Parallel Distributed Processing, A Handbook of Models, Programs, and Exercises,"” which are

incorporated herein in their entirety by reference.

Briefly, in its most common form back-propagation learning is performed in three steps:
1. Forward pass;
2. Error back-propagation; and

3. Weight adjustment.

As to the forward pass step, in accordance with the present invention a single data record,
which may be extracted from the ventilation data output signal 75 and the ventilator setting
parameter signal(s) 42, is provided to the input layer 84 of the network 82. This input data
propagates forward along the links 87 to the hidden layer elements which compute the weighted
sums and transfer functions, as described above. Likewise, the outputs from the hidden layer
elements are propagated along the links to the output layer elements. The output layer elements

computes the weighted sums and transfer function equations to produce the desired ventilator

control settings 30.
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In the following step of the training process, the physician assessment associated with the
data record is made available. At that step, the determination of the desired level settings of the
ventilator controls 30 produced by the neural network 82 is compared with the physician's
assessment. Next, an error signal is computed as the difference between the physician's
assessment and the neural network’s 82 determination. This error is propagated from the output
element back to the processing elements at the hidden layer 86 through a series of mathematical
equations, as known in the art. Thus, any error in the neural network output is partially assigned
to the processing elements that combined to produce it. '

As described earlier, the outputs produced by the processing elements at the hidden layer
86 and the output layer 88 are mathematical functions of their connection weights. Errors in the
outputs of these processing elements are attributable to errors in the current values of the
connection weights. Using the errors assigned at the previous step, weight adjustments are made
in the last step of the back-propagation learning method according to mathematical equations to
reduce or eliminate the error in the neural network determination of the desired level setting of
the ventilator setting controls 30.

The steps of the forward pass, error back-propagation, and weight adjustment are
performed repeatedly over the records in the data set. Through such repetition, the training of the
neural network 82 is completed when the connection weights stabilize to certain valués that
minimize, at least locally, the determination errors over the entire data set. As one skilled in the
art will appreciate however, the neural network 82 may, and preferably will, continue to train
itself (i.e., adapt itself) when placed into operational use by using the data sets received and
stored in the memory of the processing subsystem 40 during operational use. This allows fora
continual refinement of the monitor 10 as it is continually learning, i.e., training, while in
operational use. Further, it allows for the continual refinement of the determination of the
appropriate ventilator level settings in regard to the particular patient P to which the ventilator 20
is operatively attached.

In addition to back-propagation training, weight adjustments can be made in alternate
embodiments of the present inventipn using different training mechanisms. For example, as
known in the art, the weight adjustments may be accumulated and applied after all training
records have been presented to the neural network 82. It should be emphasized, however, that the

present invention does not rely on a particular training mechanism. Rather, the preferred
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requirement is that the resulting neural network 82 produce acceptable error rates in its
determination of the desired level settings of the ventilator setting controls 30.

Upon completion of the determination of the desired level settings of the ventilator setting
controls 30 by the intelligent subsystem 80 of the processing system 40, the desired level settings
of the ventilator setting controls 30 may be displayed on the visual display 62 for use by the
physician. The stored ventilation data output signal 75, and particularly the subset of the
ventilation data output signal 75 containing the ventilation data 72 that was used by the
intelligent subsystem 80 in the determination of the desired level setting of the controls 30, may
be provided to the visual display 62. Also, the stored ventilator setting parameter signals 42 and
the stored output signals 51 may be displayed on the visual display 62 in an appropriate format.
At this point, the physician can review the results to aid in her or his assessment of the
desireablity of the recommended desired level settings of the ventilator setting controls 30. The
displayed results can be printed on printer [not shown] to create a record of the patient's
condition. In addition, with a specific preferred embodiment of the present invention, the results
can be communicated to other physicians or system users of computers connected to the
ventilator monitor system 10 via an interface (not shown), such as for example a modem or other
method of electronic communication.

Additionally, a preferred embodiment the present invention provides a real-time ventilator
monitor system 10 and method. Real-time operation demands, in general, that input data be
entered, processed, and displayed fast enough to provide immediate feedback to the physician in
the clinical setting. In alternate embodiments, off-line data processing methods can be used as
well. In a typical off-line operation, no attempt is made to respond immediately to the physician.

The measurement and interview data in such case is generated some time in the past and stored
for retrieval and processing by the physician at an appropriate time. It should be understood that
while the preferred embodiment of the present invention uses a real-time approach, alternative
embodiments can substitute off-line approaches in various steps.

The preferred method of operation of the present invention comprises the steps of
receiving at least one ventilator setting parameter signal 42 indicative of the current level settings
of the controls 30 of the ventilator 20, monitoring a plurality of output signals 51 to determine the

sufficiency of ventilation support supplied to the patient P, determining the desired level settings
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of the ventilator setting controls 30, and disp_laying the desired level settings of the controls 30 to
the operating clinician.

The output signals 51 received may comprise a plurality of signals selected from a group
of: an exhaled carbon dioxide signal indicative of the exhaled carbon dioxide (ExCO2) level of
the exhaled gas expired by the patient P within the breathing circuit 22; a flow rate signal
indicative of the flow rate (V) of the inhaled/exhaled gas expired by patient P within the
breathing circuit 22; a pulse oximeter hemoglobin oxygen saturation (SpO2) signal indicative of
the oxygen saturation level of the patient P; a pressure (P) signal indicative of the pressure of the
breathing gas within the breathing circuit 22; a blood pressure (BP) signal indicative of the blood
pressure of the patient 12 . The output signals 51 may also comprise a temperature (T) signal
indicative of the core body temperature of the patient P, an arterial blood gas PaO2 signal, an
arterial blood gas PaCO2 signal, and/or an arterial blood gas pH signal..

The ventilator setting parameter signal 42 may comprise at least one of: a minute
ventilation (V) signal indicative of the Vg level set on the ventilator 20; a ventilator breathing
frequency (f) signal indicative of the f level set on the ventilator 20; a tidal volume (V) signal
indicative of the Vt level set on the ventilator 20; a breatﬁing gas flow rate (V) signal indicative
of the V level set on the ventilator 20; a pressure limit signal indicative of the pressure limit set
on the ventilator 20; a work of breathing (WOB) signal indicative of the WOB level set on the
ventilator 20; a pressure support ventilation (PSV) signal indicative of the PSV level set on the
ventilator 20; a positive end expiratory pressure (PEEP) signal indicative of the PEEP level seton
the ventilator 20; a continuous positive airway pressure (CPAP) signal indicative of the CPAP
level set on the ventilator 20; and a fractional inhaled oxygen concentration (FIO2) signal
indicative of the FIO2 level set on the ventilator 20.

For example, the step of determining the desired level settings of the ventilator setting
controls 30 of the ventilator 20 may comprise the steps of generating ventilation data 72 from the
received output signals 51 in the processing subsystem 40 and applying at least a portion of the
generated ventilation data 72 and the ventilator setting parameter signal 42 to the neural network
82 of the processing subsystem 40. If desired, at least a portion of the output signals 51 may also
be applied to the neural network 82 as ventilation data 72.

In an alternative example, the step of determining the desired level settings of the controls

30 of the ventilator 20 may comprise the steps of generating ventilation data 72 from the received
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output signals 51 in the processing subsystem 40, applying a set of decision rules in the rule
based front-end 96 to at least a portion of the ventilation data 72 and the ventilator setting
parameter signal 42 to classify the applied portions of the ventilation data 72 and the ventilator
setting parameter signal 42, selecting an appropriate neural network 82 to use, and applying a
portion of the ventilation data 72 and the ventilator setting parameter signal 42 to the selected
neural network 82 which will be used to determine the desired level settings of the ventilator
setting controls 30.

The ventilator monitor system 10 of the present invention may be implemented in one of
many different configurations. For example, the ventilator monitor system 10 may be
incorporated within a ventilator 20. In an alternative example, the ventilator monitor system 10
may be a stand alone monitor that is operatively connected to the ventilator 20.

A realization of an embodiment of the processing subsystem 40 of the present invention is
illustrated in Fig. 7. Here, the processing subsystem 40 includes the processor 46, which is

preferably a microprocessor, memory 48, storage devices 64, controllers 45 to drive the display

' 62, storage 64, and ventilator 20, and an analog-to-digital converter (ADC) 47 if required. The

processing subsystem 40 also includes a neural network 82, which may, for example, be
embodied in a neural network board 49. The ADC and neural network boards 47, 49 are
commercially available products. There is also an optional output board (not shown) for
commection to a computer network and/or central monitoring station.

The ADC board 47 converts the analog signal received from the output of any of the
sensors 52 of the measuring means to a digital output that can be manipulated by the processor
46. Tn an alternative implementation, the output of any of the sensors 52 could be connected to
the processor 46 via digital outputs, e.g., a serial RS232 port. The particular implementation is
determined by the output features of the particular sensor 52. The processor 46 should contain
circuits to be programmed for performing mathematical functions, such as, for example,
waveform averaging, amplification, linearization, signal rejection, differentiation, integration,
addition, subtraction, division and multiplication, where desired. The processor 46 may also
contain circuits to be programmed for performing neural/intelligent control software, neural
network learning software, and ventilator control software, as required. Circuits or programs
performing these functions are well known to one skilled in the art, and they form no part of the

present invention. The processor 46 executes the software which makes the computations,
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controls the ADC and neural network boards 47, 49, and controls output to the display and
storage devices 62, 64, network communication, and the ventilator apparatus 20.

From a respiratory care standpoint, an example of the processing subsystems would
include recommending new ventilator settings based on a mixture of rule-based respiratory
therapy and derived parameters from the sensor inputs. For instance, to optimize patient effort,
the system could use patient tidal volume and breathing frequency and also estimate patient effort
using a mathematical model or neural network using wide variety of possible data from the
sensors (potentially including the flow and pressure sensors, the pulse-oximeter/PPG, the CO2
sensor, and blood pressure signal). Additionally, a patient’s tolerance for the breathing effort they
are making may also be tracked using these same sensors. For example (but not limited to), tidal
volume, peak inspiratory flow rate, breathing frequency, pulse rate and pulse rate changes.

In one embodiment, optimization of ventilation could be performed in accordance with

_the present invention by tracking changes in the CO2 sensor, patient deadspace and cardiac

output (derived from the CO2 sensor and blood gases), and pulse-oximeter/PPG. Optimization
of oxygenation can occur by tracking changes in oxygenation and the effect of PEEP on the
cardiac system using any one or combination of the following: the pulse-oximeter sensor/PPG, -
the CO2 sensor, airway pressure and flow sensors, and blood gases.

The purpose of the neural network board 49 is to implement the neural/intelligent control
software. As one skilled in the art will appreciate, the need for a separate neural network board
49 is determined by the computational power of the main processor 46. With recent increases in
microprocessor speeds, it may not be necessary to have a separate board 49, since some or all of
these functions could be handled by the processor 46. The need for the separate board 49 is also
determined by the precise platform on which the invention is implemented.

In addition, while the processor 46 of the processing subsystem 40 has been described as
a single microprocessor, it should be understood that two or more microprocessors could be used
dedicated to the individual functions. For example, the ventilator 20 may have a microprocessor
that is operatively coupled to the processing subsystem 40 of the monitor system 10 . In this
manner the monitor system 20 could be incorporated into a modular system 10 that may be
coupled to any conventional microprocessor-controlled ventilator 20 for monitoring of the
ventilation support provided by the ventilator 20. Alternatively, as one skilled in the art will

appreciate, and as shown in Fig. 2B, the monitor system 10 of the present invention may be
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incorporated into the design of a microprocessor-controlled ventilator 10 with the processing
subsystem 40 of the ventilator monitor system using the microprocessor of the ventilator 20. In
addition, the functions of the processor 46 could be achieved by other circuits, such as
application specific integrated circuits (ASIC), digital logic circuits, a microcontroller, or a digital
signal processor.

The invention has been described herein in considerable detail, in order to comply with
the Patent Statutes and to provide those skilled in the art with information needed to apply the
novel principles, and to construct and use such specialized components as are required.
However, it is to be understood that the invention can be carried out by specifically different
equipment and devices, and that various modification, both as to equipment details and operating
procedures can be effected without departing from the scope of the invention itself. Further, it
should be understood that, although the present invention has been described with reference to
specific details of certain embodiments thereof, it is not intended that such details should be
regarded as limitations upon the scope of the invention except as and to the extent that they are

included in the accompanying claims.
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Claims

We claim:

1. A respiratory support monitoring system comprising:

at least one sensor adapted to monitor a patient, or to monitor a breathing circuit coupled
to an airway of a patient, wherein each sensor generates an output signal;

an operator interface that generates at least one operator input signal;

a processing subsystem adapted to receive at least one of the output signals and/or at least
one operator input signal, wherein the processing subsystem has a processor and a memory, the
processor adapted to run under the control of a program stored in the memory, wherein the
processing subsystem evaluates at least one output signal and/or at Jeast one operator input signal

to determine the desired setting for at least one ventilation parameter.

2. The system of claim 1, further comprising a ventilator operatively coupled to the
processing subsystem, wherein the ventilator includes at least one ventilator setting control, and
wherein each ventilator setting control controls said at least one ventilation parameter relating to

the supply of gas from the ventilator to the patient.

3. The system of any claims 1 through 2, further comprising a pulse oximeter for

providing an SpO?2 signal and a PPG signal.
4. The system of claim 3, wherein the pulse oximeter is placed on any part of the patient.

5. The system of any claims 2 through 4, wherein the ventilator is adapted to generate a
ventilator setting signal indicative of a current setting of said at least one ventilator setting
control, and wherein the processing subsystem evaluates the ventilator setting signal in addition

to the at least one output signal and/or at least one operator input signal to determine the desired

setting(s).
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6. The system of claim 5, wherein the processing subsystem is adapted to determine
whether the current setting of said at least one ventilator setting control is different from the

desired setting.

7. The system of claim 6, further comprising an alarm for notifying an operator of the
ventilator that the setting of at least one of the ventilator setting controls differs from the desired

setting(s).

8. The system of any claims 5 through 6, wherein said at least one ventilator setting
signal comprises at least one of the group consisting of: a minute ventilation (Vg) signal; a
ventilator breathing frequency (f) signal; a tidal volume (V) signal; a breathing gas flow rate (V)
signal; a pressure limit signal; a patient effort to breathe signal; a pressure support ventilation
(PSV) signal; a positive end expiratory pressure (PEEP) signal; a continuous positive airway -

pressure (CPAP) signal; and a fractional inhaled oxygen concentration (F 102) signal.

9. The system of claim 8, wherein the patient effort to breathe signal is selected from the
group consisting of: work of breathing signal; power of breathing signal; and pressure time

product.

10. The system of any claims 1 through 8, wherein the processing subsystem derives a
patient effort of breathing from the evaluation of the output signals and/or operator input signals;
and wherein the processing subsystem evaluates the patient effort of breathing and at least one

parameter to determine the desired setting.

11. The system of any claims 2 through 10, wherein the ventilator is adapted to supply a

gas to a patient via a breathing circuit in fluid communication with at least one lung of the

patient.

12. The system of any claims 2 through 11, wherein the ventilator is selected from the

group consisting of: critical care ventilators; transport ventilators; respiratory support devices for



WO 2007/145948 PCT/US2007/013244

33

sleep disorders; continuous positive airway pressure (CPAP) devices, and respirators for

hazardous environments..

13. The system of any claims 2 through 12, wherein said ventilator comprises a patient
airway access, wherein said patient airway access is selected from the group consisting of: an
endotracheal tube, a laryngeal mask airway (LMA), a standard mask, a nasal cannula, a tracheal

tube, a tracheostomy tube, a cricothyrotomy tube, and a supraglottic airway device.

14. The system of any claims 2 through 13, wherein the processing subsystem can select
and adjust the setting of said ventilator setting control without input from an operator of the
ventilator; and wherein the level setting of said ventilator setting control is adjusted based on a

result of the evaluation of the at least one output signal and/or at least one operator input signal.

15. The system of any claims 1 through 14, further comprising a display to present to an

operator information provided by the processing subsystem.

16. The system of claim 15, wherein the processing subsystem provides to the display
information regarding whether said at least one desired setting is different from the ventilator

setting control(s).

17. The system of claim 15, wherein the processing subsystem provides to the display

information regarding the desired setting(s).

18. The system of any claims 1 through 17, wherein said output signals comprise at least
one of the group consisting of: an exhaled carbon dioxide signal indicative of the exhaled carbon
dioxide (ExCO2) level of the exhaled gas expired by the patient within the breathing circuit; a
flow rate signal indicative of the flow rate (V) of the inhaled/exhaled gas expired by the patient
within the breathing circuit; a pulse oximeter that provides both a hemoglobin oxygen saturation
(SpO2) signal indicative of the oxygen saturation level of the pétient and a plethysmography
(PPG) signal; a pressure (P) signal indicative of the pressure of the breathing gas within the
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breathing circuit; a blood pressure (BP) signal indicative of the blood pressure of the patient; and

a temperature (T) signal indicative of the core body temperature of the patient.

19. The system of claim 18, where the plethysmography signal is evaluated by the
processing subsystem to recommend a desired setting for a positive end expiratory pressure

(PEEP) signal to optimize oxygenation without sacrificing cardiac output.

20. The system of claim 18, where the exhaled carbon dioxide (ExCO2) signal is
evaluated by the processing subsystem to recommend a desired setting for a positive end

expiratory pressure (PEEP) signal to optimize oxygenation without sacrificing cardiac output.

21. The system of claim 18, wherein the blood pressure (BP) signal is derived from.at
least one of the group consisting of: exhaled carbon dioxide (ExCO?2) signal; SpO2 signal;

arterial line, PPG signal; pulse transit time/pulse wave velocity; and pulse pressure.

22. The system of any claims 1 through 21, wherein said at least one ventilation
parameter also includes at least one of the group consisting of: an arterial blood gas PaO2 level
of the patient; an arterial blood gas PaCO2 level of the patient; and an arterial blood gas pH level
of the patient.

23. The system of any claims 1 through 22, wherein the operator input signals comprise
at least one of the group consisting of: patient identification information; patient diagnostic
information; patient age; type and size of patient airway access; patient height; and patient

weight.

24. The system of claim 23, wherein the patient height operator input signal is evaluated

by the processing subsystem to recommend a desired setting.

25. The system of any claims 1 through 24, wherein the processing subsystem further

comprises an intelligence subsystem.



WO 2007/145948 PCT/US2007/013244

35

26. The system of claim 25, wherein the intelligence subsystem comprises at least one

neural network.

27. The system of any claims 25 through 26, wherein the intelligence subsystem

comprises at least one rule-based module.

" 28. The system of any claims 25 through 27, wherein the intelligence subsystem has

means. for training the neural network.

29. The system of any claims 1 through 28, wherein the processing subsystem further

comprises a feature extraction subsystem.

30. The system of any.claims 1 through 29, wherein said at least one desired setting
optimizes one of the following selected from the group consisting of: patient ventilation,

oxygenation, and breathing effort.

31. The system of claim claims 1 through 30, wherein the processing subsystem is able to
evaluate time history of output signals and/or operator input signals for determining the desired

setting.

30. A method for monitoring respiratory support for a patient having an airway, wherein

said method comprises:
(1) providing a monitoring system comprising:
(a) at least one sensor adapted to monitor the patient, or to monitor a patient
airway access, each sensor generating an output signal,
(b) an operator interface that generates at least one operator input signal, and
(c) a processing subsystem adapted to receive the at least one of the output signals
and/or at least one operator input signal, wherein the processing subsystem has a
processor and a memory and is adapted to run under control of a program stored in the

memory, wherein the processing subsystem evaluates at least one output signal and/or at
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least one operator input signal to determine a desired setting for at least one ventilation

parameter;

(2) receiving into the processing subsystem at least one of the output signals;

(3) implementing the processing subsystem to evaluate the at least one output signal
and/or at least one operator input signal to assess respiratory support provided to the patient; and

(4) providing a recommendation by the monitoring system for the desired setting for at
least one ventilation parameter based on the evaluation of the at least one output signal and/or at

least one operator input signal by the processing subsystem.

31. The method of claim 30, further comprising providing a ventilator to a patient viaa
patient airway access, wherein the ventilator is operatively comnected to the processing
subsystem, and wherein the ventilator includes a plurality of ventilator setting controls, wherein
each ventilator setting control controls a parameter relating to the supply of gas from the

ventilator to the patient.

32. The method of claim 31, further comprising:

causing the ventilator to generate at least one ventilator setting signal indicative of the
current level setting of at least one ventilator setting control for a ventilation parameter related to
the respiratory support of the patient; and

providing the ventilator setting signal to the processing subsystem, wherein the processing
subsystem evaluates the ventilator setting signal in addition to the at least one output signal

and/or at least one operator input signal to determine the desired setting.

33. The method of claim 32, wherein the at least one ventilator setting signal includes at
least one of the group consisting of: a minute ventilation (Vg) signal; a ventilator breathing
frequency (f) signal; a tidal volume (V) signal; a breathing gas flow rate (V) signal; a pressure
limit signal; a patient effort to breathe signal; a pressure support ventilation (PSV) signal; a
positive end expiratory pressure (PEEP) signal; a continuous positive airway pressure (CPAP)

signal; and a fractional inhaled oxygen concentration (FIO2) signal.
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34. The method of claim 33, wherein the patient effort to breathe signal is selected from
the group consisting of: work of breathing signal; power of breathing signal; and pressure time

product.

35. The method of any claims 32 through 34, wherein the processing subsystem is

adapted to determine whether the desired setting is different from the ventilator setting control(s).

36. The method of any claims 32 through 35, further comprising displaying whether said

at least one desired setting is different from the ventilator setting control(s).

37. The method of any claims 32 through 36, wherein the ventilator is selected from the
group consisting of: critical care ventilators; transport ventilators; respiratory support devices for
sleep disorders; continuous positive airway pressure (CPAP) devices, and respirators for

hazardous environments.

38. The method of any claims 30 through 37, wherein said output signals are selected
from the group consisting of: an exhaled carbon dioxide signal indicative of the exhaled carbon
dioxide (ExCO2) level of the exhaled gas expired by the patient within the breathing circuit; a
flow rate signal indicative of the flow rate (V) of the inhaled/exhaled gas expired by the patient
within the breathing circuit; a pulse oximeter that provides both a hemoglobin oxygen saturation
(SpO2) signal indicative of the oxygen saturation level of the patient and a plethysmography
(PPG) signal; a pressure (P) signal indicative of the pressure of the breathing gas within the
breathing circuit; a blood pressure (BP) signal indicative of the blood pressure of the patient; and

a temperature (T) signal indicative of the core body temperature of the patient.

39. The method of claim 38, where the plethysmography signal is evaluated by the
processing subsystem to recommend a desired setting for a positive end expiratory pressure

(PEEP) signal to optimize oxygenation without sacrificing cardiac output.
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40. The method of claim 38, where the exhaled carbon dioxide (ExCOZ2) signal is
evaluated by the processing subsystem to recommend a desired setting for a positive end

expiratory pressure (PEEP) signal to optimize oxygenation without sacrificing cardiac output.

41. The method of claim 38, wherein the blood pressure (BP) signal is derived from at
least one of the group consisting of: exhaled carbon dioxide (ExCO2) signal; SpO2 signal;

arterial line, PPG signal; pulse transit time/pulse wave velocity; and pulse pressure.

42. The method of any claims 30 through 38, wherein the output signals also include at
least one of the group consisting of: an arterial blood gas PaO2 signal; an arterial blood gas

PaCO?2 signal; and an arterial blood gas pH signal.

43. The method of any claims 30 through 42, wherein the operator input signals comprise .
at least one of the group consisting of: patient identification information; patient diagnostic
information; type and size of patient airway access; patient age; patient height; and patient .
weight.

44. The method of claim 43, wherein the patient height operator input signal is evaluated

by the processing subsystem to recommend a desired setting.

45. The method of any claims 30 through 44, further comprising displaying the desired
setting(s).

46. The method of any claims 30 through 45, wherein the processing subsystem
comprises a neural network, and wherein recommending the settings of the ventilator setting
controls of the ventilator comprises applying at least a portion of the output signals and the
ventilator setting signal(s) to the neural network of the processing subsystem to determine the

desired setting(s) of the ventilator setting controls.



WO 2007/145948 PCT/US2007/013244

39

47. The method of any claims 30 through 46, further comprising;:
selecting output signals for display; and
displaying the selected output signals in real time.

48. The method of any claims 30 through 47, wherein the processing subsystem further

comprises a feature extraction subsystem.

49. The method of any claims 30 through 48, wherein the processing subsystem further

comprises an intelligence subsystem.

50. The method of claim 49, wherein the processing subsystem comprises at least one-

rule-based module.

51. The method of any claims 30 through 50, further comprising deriving patient effort of
breathing from the evaluation of the output signals and/or operator input signals; wherein the
processing subsystem evaluates the patient effort of breathing and at least one parameter for use

in recommending the desired setting.

52. The method of any claims 30 through 51, wherein said at least one desired setting
optimizes one of the following selected from the group consisting of: patient ventilation,

oxygenation, and breathing effort.

53. The method of any claims 30 through 52, further comprising evaluating time history
of the output signals and/or operator input signals by the processing subsystem for use in

recommending the desired setting.

54. The method of any claims 31 through 53, further comprising adjusting at least one of
the plurality of ventilator setting controls based on the setting determined in the recommending

step.
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