METHODS AND MATERIALS FOR TREATING CALCIFIC AORTIC VALVE STENOSIS

This document provides methods and materials involved in treating cardiovascular conditions such as calcific aortic valve stenosis. For example, methods and materials for using sGC agonists or a combination of sGC agonists and PDE5A inhibitors to reduce calcification of heart valves and/or vessels or to slow progression of aortic sclerosis to calcific aortic valve stenosis are provided.
METHODS AND MATERIALS FOR TREATING
CALCIFIC AORTIC VALVE STENOSIS

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application Serial No. 61/740,680, filed December 21, 2012. The disclosure of the prior application is considered part of (and is incorporated by reference in) the disclosure of this application.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH
This invention was made with government support under grant HL092235 awarded by the National Institutes of Health. The government has certain rights in the invention.

BACKGROUND
1. Technical Field
This document relates to methods and materials involved in treating cardiovascular conditions such as calcific aortic valve stenosis. For example, this document provides methods and materials for using soluble guanylate cyclase (sGC) agonists (e.g., oxidized or non-oxidized sGC agonists) or a combination of sGC agonists and cGMP-specific phosphodiesterase 5A (PDE5A) inhibitors to reduce calcification of heart valves and/or vessels or to slow progression of aortic sclerosis to calcific aortic valve stenosis.

2. Background Information
Calcific aortic valve stenosis is a disease where the opening of the aortic valve is narrowed. The symptoms of calcific aortic valve stenosis vary depending on the degree of valve stenosis. Patients with mild to moderate calcific aortic valve stenosis may lack symptoms as symptoms typically appear in those patients with severe calcific aortic valve stenosis. Symptoms can include progressive shortness of breath on exertion, syncope, chest pain, and sudden death.
SUMMARY

This document provides methods and materials involved in treating cardiovascular conditions such as calcific aortic valve stenosis. For example, this document provides methods and materials for using sGC agonists or a combination of sGC agonists and PDE5A inhibitors to reduce calcification of heart valves and/or vessels or to slow progression of aortic sclerosis to calcific aortic valve stenosis. As described herein, sGC agonists such as Ataciguat can be used to slow progression of aortic sclerosis to calcific aortic valve stenosis. Having the ability to slow progression of aortic sclerosis to calcific aortic valve stenosis can allow patients to live longer and happier lives.

In general, one aspect of this document features a method for slowing progression of calcification of a heart valve or vessel. The method comprises, or consists essentially of, (a) identifying a mammal as being at risk for heart valve calcification or vessel calcification, and (b) administering a sGC agonist to the mammal, thereby slowing progression of calcification of a heart valve or vessel within the mammal. The mammal can be a human. The sGC agonist can be selected from the group consisting of YC-I, BAY 58-2667, BAY 41-2272, BAY-41-8543, BAY 63-2521, and HMR1766. The method can comprise administering a PDE5A inhibitor to the mammal.

In another aspect, this document features a method for slowing progression of aortic sclerosis to calcific aortic valve stenosis. The method comprises, or consists essentially of, (a) identifying a mammal having aortic sclerosis, and (b) administering a sGC agonist to the mammal, thereby slowing progression of aortic sclerosis to calcific aortic valve stenosis within the mammal. The mammal can be a human. The sGC agonist can be selected from the group consisting of YC-I, BAY 58-2667, BAY 41-2272, BAY-41-8543, BAY 63-2521, and HMR1766. The method can comprise administering a PDE5A inhibitor to the mammal.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including
definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.

DESCRIPTION OF DRAWINGS

Figure 1 is a graph plotting the time course of development of calcific aortic valve stenosis in ldlr^{-/-}apoB^{100/100} mice.

Figures 2A-C contain results demonstrating the effects of sGC activation and NO signaling on osteogenic signaling and progression of aortic valve dysfunction in vitro and in vivo. Figure 2A demonstrates the effect of Ataciguat on pVASP239 levels in aortic valve interstitial cells in vitro, and Figure 2B demonstrates the effect of Ataciguat on BMP2-induced Sp7 expression in aortic valve interstitial cells in vitro. Figure 2C demonstrates the effects of DDAH1 overexpression on aortic valve function in ldlr-deficient, apoB100-only mice. Overexpression of DDAH1 reduces endogenous inhibitors of NOS, increases NO production, and increases sGC signaling, ultimately resulting in slower progression of CAVS.

Figures 3A-B contain results demonstrating the effects of catalase overexpression or deletion (which would increase or decrease sGC oxidation, respectively) on pro-osteogenic gene expression and aortic valve function in mice. Overexpression of catalase reduces expression of osteocalcin (a pro-osteogenic gene, Figure 3A) and slows progression of CAVS (open circles, Figure 3B). Deletion of catalase accelerates valve disease (open squares, Figure 3B).

Figure 4 is a graph plotting p-VASP^{239} levels detected in aortic valve interstitial cells treated with BMP2 (100 ng/mL), TGFβ1 (10 ng/mL), or neither (control; CTRL) in the presence or absence of Ataciguat (1 µM) for 18 hours at 37°C. Ataciguat (HMR1766) effectively activated sGC signaling in aortic valve interstitial cells.

Figure 5 is a graph plotting p-Smad1/5/8 levels detected in aortic valve interstitial cells treated with BMP2 (100 ng/mL), TGFβ1 (10 ng/mL), or neither (control; CTRL) in the presence or absence of Ataciguat (1 µM) for 18 hours at 37°C. Ataciguat (HMR1766) attenuated canonical BMP2 signaling in aortic valve interstitial cells.
Figure 6 is a graph plotting Sp7 levels detected in aortic valve interstitial cells treated with BMP2 (100 µg/mL), TGFβ1 (10 µg/mL), or neither (control; CTRL) in the presence or absence of Ataciguat (1 µmol) for 18 hours at 37°C. Ataciguat (HMR1766) attenuated BMP target induction in aortic valve interstitial cells.

Figure 7 is a graph plotting p-Smad2 levels detected in aortic valve interstitial cells treated with BMP2 (100 µg/mL), TGFβ1 (10 µg/mL), or neither (control; CTRL) in the presence or absence of Ataciguat (1 µmol) for 18 hours at 37°C. Ataciguat (HMR1766) partially attenuated fibrogenic signaling in aortic valve interstitial cells.

**DETAILED DESCRIPTION**

This document provides methods and materials involved in treating cardiovascular conditions such as calcific aortic valve stenosis. For example, this document provides methods and materials for using one or more sGC agonists or a combination of one or more sGC agonists and one or more PDE5A inhibitors to reduce calcification of heart valves and/or vessels or to slow progression of aortic sclerosis to calcific aortic valve stenosis.

Any type of mammal having a cardiovascular condition such as calcific aortic valve stenosis can be treated as described herein. For example, humans and other primates such as monkeys having a cardiovascular condition such as calcific aortic valve stenosis can be treated with one or more sGC agonists or a combination of one or more sGC agonists and one or more PDE5A inhibitors. In some cases, dogs, cats, horses, cows, pigs, sheep, mice, and rats can be treated with one or more sGC agonists or a combination of one or more sGC agonists and one or more PDE5A inhibitors as described herein.

Any appropriate method can be used to identify a mammal having a cardiovascular condition such as calcific aortic valve stenosis or aortic sclerosis. For example, echocardiography or computed tomography scanning can be used to identify a human having aortic sclerosis that is at risk of progressing into calcific aortic valve stenosis.

Once identified as having a cardiovascular condition such as calcific aortic valve stenosis or aortic sclerosis with the potential to progress into calcific aortic valve stenosis, the mammal can be administered or instructed to self-administer one or more sGC agonists or a combination of one or more sGC agonists and one or more PDE5A inhibitors. Examples of sGC agonists include, without limitation, Ataciguat,
YC-I, BAY 58-2667, BAY 41-2272, and BAY-41-8543. Examples of PDE5A inhibitors include, without limitation, sildenafil, vardenafil, tadalafil, EMD 360527, DA 8159, UK-343-664 (Walker et al., Xenobiotica, 31:651-664 (2001)), UK-427-387, UK-357903 ([1-ethyl-4-{3-ethy1-6,7-dihydro-7-oxo-2-(2-pyridylmethyl)-2H-
pyrazolo[4,3-d]pyrimidin-5-yl}-2-(2-methoxyethoxy)-5-
pyridylsulphonylpiperazine]) (Gardiner et al., J. Pharmacol. Exp. Ther., 312:265-
271 (2005)), UK-371800 (Pfizer), UK-313794 (Pfizer), UK-343664 (Abel et al, Xenobiotica, 31:665-76 (2001)), TA-1790 (Tanabe Seiyaku), CP-248 (Osi Pharmaceuticals), CP-461 (Osi Pharmaceuticals), exisulind (Deguchi et al., Molecular Cancer Therapeutics, 803-809 (2002); (Osi Pharmaceuticals)), pyrazolone, EMD82639 (Merck KgaA, Darmstadt, DE; (4-(4-[2-ethyl-phenylamino]-methylene]-3-methyl-5-oxo-4,5-di-hydro-pyrazol-1-yl)-benzoic acid; Senzaki et al., FASEB J., 15:1718-1726 (2001), and Scutt et al, BMC Pharmacol, 4:10 (2004)), EMD360527 (Merck KgaA, Darmstadt, DE; [7-(3-Chloro-4-methoxy-benzylaminol)-1-methyl-3-
propyl-1H-pyrazolo[4,3-d]pyrimidin-5-ylmethoxy-acetic acid; Scutt et al, BMC Pharmacol, 4:10 (2004)), EMD221829 (Merck KgaA, Darmstadt, DE; 4-[4-(3-Chloro-4-methoxy-benzylamino)-benzo[4,5]thieno[2,3-d]-pyrimidin-2-yl]-cycohexanecarboxylic acid, ethanolamin salt; Scutt et al, BMC Pharmacol, 4:10 (2004)), EMD1 71827 (Merck KgaA, Darmstadt, DE; 5-[4-(3-Chloro-4-methoxy-
benzylamino)-5,6,7,8-tetrahydro-benzo[4,5]thieno[2,3-d]pyrimidin-2-yl]-pentanoic acid; Scutt et al, BMC Pharmacol, 4:10 (2004)), DA-8259 (3-(1-Methyl-7-oxo-3-
propyl-6,7-dihydro-1H-pyrazolo-[4,3-d]pyrimidin-5-yl)-N-[2-(1-methylpyrrolidin-2-

Additional examples of PDE5A inhibitors can be set forth in U.S. Patent Nos: 6,916,927, 6,911,532, 6,903,099, 6,878,711, 6,872,721, 6,858,620, 6,825,197, 6,774,128, 6,723,719, 6,699,870, 6,670,366, 5,859,006, and 5,250,534 and International Patent Application Publication No. WO 03/063875, WO 03/1012761, WO 2004/037183, and WO 98/38168. In some cases, a sGC agonist used as described herein can be an activator of an oxidized or non-oxidized form of sGC.

In some cases, one or more sGC agonists (e.g., one, two, three, four, five, or more sGC agonists) or a combination of one or more sGC agonists (e.g., one, two, three, four, five, or more sGC agonists) and one or more PDE5A inhibitors (e.g., one, two, three, four, five, or more PDE5A inhibitors) can be administered to a mammal to
reduce calcification of heart valves and/or vessels or to slow progression of aortic sclerosis to calcific aortic valve stenosis. In some cases, one or more sGC agonists or a combination of one or more sGC agonists and one or more PDE5A inhibitors can be formulated into a pharmaceutically acceptable composition. For example, a therapeutically effective amount of Ataciguat can be formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents. A pharmaceutical composition can be formulated for administration in solid or liquid form including, without limitation, sterile solutions, suspensions, sustained-release formulations, tablets, capsules, pills, powders, and granules.

Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions described herein include, without limitation, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. If required, the solubility and bioavailability of a sGC agonist and/or a PDE5A inhibitor in a pharmaceutical composition can be enhanced using lipid excipients and/or block copolymers of ethylene oxide and propylene oxide. See, e.g., U.S. Patent No. 7,014,866 and U.S. Patent Publication Nos. 20060094744 and 20060079502.

A pharmaceutical composition described herein can be designed for oral or parenteral (including subcutaneous, intramuscular, intravenous, and intradermal) administration. Compositions suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions that can contain anti-oxidants, buffers, bacteriostats, and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations can be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules, and tablets.

Such injection solutions can be in the form, for example, of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation can be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1, 3-butaneediol. Among the acceptable vehicles and solvents that can be used are mannitol, water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be used including synthetic mono- or di-glycerides. Fatty acids, such as oleic acid and its glyceride derivatives can be used in the preparation of injectables, as can natural pharmaceutically-acceptable oils, such as olive oil or castor oil, including those in their polyoxyethylated versions. These oil solutions or suspensions can contain a long-chain alcohol diluent or dispersant.

In some cases, a pharmaceutically acceptable composition including one or more sGC agonists and/or one or more PDE5A inhibitors can be administered locally or systemically. For example, a composition containing a sGC agonist can be administered systemically by injection to a mammal (e.g., a human). In some cases, each sGC agonist to be administered when two or more sGC agonists are to be administered can be administered by the same or different routes. For example, Ataciguat can be administered orally, and YC-I can be administered by injection. In some cases, one or more sGC agonists can be administered via one route, and one or more PDE5A inhibitors can be administered via the same or a different route.

A composition containing one or more sGC agonists or a combination of one or more sGC agonists and one or more PDE5A inhibitors can be administered to a mammal in any amount, at any frequency, and for any duration effective to achieve a desired outcome (e.g., to reduce calcification of heart valves and/or vessels or to slow progression of aortic sclerosis to calcific aortic valve stenosis).

Effective doses can vary, as recognized by those skilled in the art, depending on the severity of the condition (e.g., calcific aortic valve stenosis), the route of administration, the sex, age and general health condition of the subject, excipient
usage, the possibility of co-usage with other therapeutic treatments such as use of other agents and the judgment of the treating physician.

An effective amount of a composition containing one or more sGC agonists or a combination of one or more sGC agonists and one or more PDE5A inhibitors can be any amount that reduces the severity of a symptom of a condition being treated (e.g., calcific aortic valve stenosis) without producing significant toxicity to the mammal. For example, an effective amount of a sGC agonist such as YC-I can be from about 0.5 mg/kg to about 80 mg/kg (e.g., from about 0.5 mg/kg to about 70 mg/kg, from about 0.5 mg/kg to about 60 mg/kg, from about 0.5 mg/kg to about 50 mg/kg, from about 0.5 mg/kg to about 40 mg/kg, from about 0.5 mg/kg to about 30 mg/kg, from about 0.5 mg/kg to about 20 mg/kg, from about 0.5 mg/kg to about 10 mg/kg, from about 0.5 mg/kg to about 5 mg/kg, from about 0.5 mg/kg to about 1 mg/kg, from about 0.75 mg/kg to about 10 mg/kg, from about 1 mg/kg to about 10 mg/kg, or from about 2 mg/kg to about 10 mg/kg). In some cases, between about 50 mg and 200 mg (e.g., between about 50 mg and 180 mg, between about 50 mg and 150 mg, between about 50 mg and 125 mg, between about 60 mg and 200 mg, between about 75 mg and 200 mg, between about 100 mg and 200 mg, between about 75 mg and 150 mg, or between about 100 mg and 150 mg) of a sGC agonist such as Ataciguat can be administered to an average sized human (e.g., about 70 kg human) daily for about 20 weeks. If a particular mammal fails to respond to a particular amount, then the amount of sGC agonist or PDE5A inhibitor can be increased by, for example, two fold. After receiving this higher amount, the mammal can be monitored for both responsiveness to the treatment and toxicity symptoms, and adjustments made accordingly. The effective amount can remain constant or can be adjusted as a sliding scale or variable dose depending on the mammal’s response to treatment. Various factors can influence the actual effective amount used for a particular application. For example, the frequency of administration, duration of treatment, use of multiple treatment agents, route of administration, and severity of the condition (e.g., calcific aortic valve stenosis) may require an increase or decrease in the actual effective amount administered.

The frequency of administration can be any frequency that reduces the severity of a symptom of a condition to be treated (e.g., calcific aortic valve stenosis) without producing significant toxicity to the mammal. For example, the frequency of administration can be from about once a week to about three times a day, or from...
about twice a month to about six times a day, or from about twice a week to about once a day. The frequency of administration can remain constant or can be variable during the duration of treatment. A course of treatment with a composition containing one or more sGC agonists or a combination of one or more sGC agonists and one or more PDE5A inhibitors can include rest periods. For example, a composition containing one or more sGC agonists or a combination of one or more sGC agonists and one or more PDE5A inhibitors can be administered daily over a two week period followed by a two week rest period, and such a regimen can be repeated multiple times. As with the effective amount, various factors can influence the actual frequency of administration used for a particular application. For example, the effective amount, duration of treatment, use of multiple treatment agents, route of administration, and severity of the condition (e.g., calcific aortic valve stenosis) may require an increase or decrease in administration frequency. An effective duration for administering a composition containing one or more sGC agonists or a combination of one or more sGC agonists and one or more PDE5A inhibitors can be any duration that reduces the severity of a symptom of the condition to be treated (e.g., calcific aortic valve stenosis) without producing significant toxicity to the mammal. Thus, the effective duration can vary from several days to several weeks, months, or years. In general, the effective duration for the treatment of calcific aortic valve stenosis can range in duration from several months to several years. In some cases, an effective duration can be for as long as an individual mammal is alive. Multiple factors can influence the actual effective duration used for a particular treatment. For example, an effective duration can vary with the frequency of administration, effective amount, use of multiple treatment agents, route of administration, and severity of the condition being treated.

In certain instances, a course of treatment and the severity of one or more symptoms related to the condition being treated can be monitored. Any appropriate method can be used to determine whether or not the severity of a symptom is reduced. For example, the severity of a symptom of calcific aortic valve stenosis can be assessed using imaging techniques at different time points.

The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.
EXAMPLES

Example 1 - LDLR apoB^100/100^ mice emulate human calcific aortic valve stenosis

LDLR apoB^100/100^ mice are low density lipoprotein receptor-deficient, apolipoprotein B100-only mice. They were found to develop severe, hemodynamically significant calcific aortic valve stenosis consistently. The peak velocity was about 4 m/sec (Figure 1). These results indicate that these mice develop stenosis in a manner suitable for studying the effects of pharmacological interventions on initiation and progression of calcific aortic valve stenosis.

Example 2 - Soluble guanylate cyclase activators increase NO signaling which can slow progression of calcific aortic valve stenosis

To determine whether induction of sGC signaling reduced osteogenic signaling in vitro, aortic valve interstitial cells were treated with BMP2 in the presence or absence of Ataciguat (HMR1766, 5-Chloro-2-[(5-chloro-2-thienyl)sulfonyl]aminol-N-[4-(4-morpholinylsulfonyl)phenyl]benzamide) for 24 hours. Ataciguat activated sGC signaling (indicated by pVASP239 levels) and profoundly suppressed osteogenic signaling in aortic valve interstitial cells in vitro (Figures 2A and 2B).

To determine whether increasing NO production and sGC signaling can slow progression of calcific aortic valve stenosis in vivo, the effects of overexpressing human DDAH1 (DDAH1TG, an enzyme that degrades endogenous inhibitors of NOS) on aortic valve function in ldlr-deficient, apoB100-only mice were examined. Increasing NO production and sGC signaling in DDAHTG mice slowed progression of calcific aortic valve stenosis (Figure 2C).

These results demonstrate that soluble guanylate cyclase activators such as Ataciguat activate soluble guanylate cyclase in aortic valve interstitial cells and that increasing NO signaling slows progression of calcific aortic valve stenosis in mammals.

Additional experiments were performed to confirm that Ataciguat activates sGC signaling, attenuates BMP2 signaling, attenuates BMP2 target induction, and attenuates fibrogenic signaling in valve interstitial cells. In brief, cells were maintained in Dulbecco's Modified Eagle's Medium (DMEM) with 20% fetal bovine serum (FBS) and expanded to confluence in 6 well plates in a standard 5% CO₂.
incubator at 37°C. Cells were then treated with BMP2 (100 ng/mL), TGFβi (10 ng/mL), or vehicle (phosphate buffered saline) in the absence or presence of Ataciguat (1 μM) for 18 hours. Cells were lysed using standard protein lysis buffer containing protease and phosphatase inhibitors, and Western blotting was performed to evaluate changes in protein levels of BMP, TGFβ, and sGC signaling.

Ataciguat activated sGC signaling (p-VASP levels, Figure 4), attenuated BMP2 signaling (p-Smad1/5/8, Figure 5), attenuated BMP2 target induction (Sp7, Figure 6), and partially attenuated fibrogenic signaling (p-Smad2, Figure 7) in valve interstitial cells. These results were replicated in human cells lines (HAV-001, HAV-002, HAV-003) and mouse cell lines (MAV1, MAV2, and MAV4).

Example 3 - Reducing oxidative stress slows progression of calcific aortic valve stenosis

To determine whether hydrogen peroxide levels are associated with altered osteogenic gene expression and aortic valve dysfunction, ldlr-deficient, apoBl00-only mice that either overexpress human catalase or are deficient in catalase were generated. Overexpression of catalase, which reduces oxidative stress, reduced soluble guanylate cyclase oxidation, increased NO signaling, reduced expression of pro-osteogenic genes, and slowed progression of calcific aortic valve stenosis (Figures 3A and 3B). Deletion of catalase, which increases oxidative stress, increased sGC oxidation, reduced NO signaling, and accelerated progression of calcific aortic valve stenosis in hypercholesterolemic mice (Figure 3B).

These results indicate that increases in oxidative stress contribute to soluble guanylate cyclase oxidation, pro-osteogenic gene expression, and progression of calcific aortic valve stenosis in hypercholesterolemic mice.

Example 4 - Reducing pro-osteogenic signaling and slowing progression of calcific aortic valve stenosis

To confirm that administration of soluble guanylate cyclase activators (e.g., Ataciguat) reduces pro-osteogenic signaling and slows progression of calcific aortic valve stenosis in mammals, ldlr−/−apoB1007100 mice are maintained on a Western diet for 6 months, and then are placed into one of four groups: 1) Vehicle, 2) 5 mg/kg
Ataciguat/day, or 3) 10 mg/kg Ataciguat/day, or 4) 15 mg/kg Ataciguat/day for an additional 3 months. Vehicle or Ataciguat is administered daily by oral gavage. Changes in cardiac and aortic valve function are evaluated at 3, 6, and 9 months in all four groups of mice. 20 mice of each treatment group are sacrificed at the 9 month time point, which typically represents a stage of moderate to severe calcific aortic valve stenosis in otherwise untreated mice. One group of 10 mice is used for semi-quantitative histological/immunohistochemical evaluation of aortic valve (calcium, osteogenic signaling molecules; n = 10). The second group is used for measurement of pro-osteogenic and pro-fibrotic gene expression using qRT-PCR (n = 10).

To confirm that soluble guanylate cyclase activators (e.g., Ataciguat) effectively attenuates responses to specific signals that induce osteogenesis in aortic valve interstitial cells, transcriptional responses to various pro-osteogenic molecules in the presence and absence of exogenous oxidative stress (which induce soluble guanylate cyclase oxidation) are examined. In brief, responses to bone morphogenetic protein 2, bone morphogenetic protein 4, and transforming growth factor β-1 (all with or without 100 µM ¾(¾) are examined for the ability to be altered by Ataciguat (1 µM). These stimuli are known to be increased in human calcific aortic valve stenosis.

To confirm tolerance of Ataciguat in humans with calcific aortic valve stenosis, patients receiving Ataciguat are monitored. In brief, subjects with asymptomatic, mild-to-moderate calcific aortic valve stenosis are administered placebo, 2.5 mg/kg, 5 mg/kg, or 10 mg/kg Ataciguat (orally) on separate visits and are monitored for 12 hours. Blood pressure is monitored non-invasively and continuously using Dinamap™ and Finapres™ equipment. Every 2 hours, subjects are asked to stand up from sitting or lying down to determine orthostatic tolerance. 40 patients are recruited for this study.

To confirm that Ataciguat can be used to treat calcific aortic valve stenosis, humans with severe calcific aortic valve stenosis are administered placebo or the highest tolerated dose of Ataciguat 24 hours prior to aortic valve replacement surgery. Patients are admitted to the hospital the preceding day to ensure continuous monitoring following this dose. When valve tissue is excised during surgery, a study coordinator takes two small portions of a calcified valve cusp. One is embedded in OCT for cryosectioning, and the second is snap frozen in liquid nitrogen. OCT-embedded tissue is used to determine spatial changes in soluble guanylate cyclase, p-
VASP239, and osteogenic protein levels. The second piece is pulverized and is used for quantitative examination of gene expression (qRT-PCR) and protein levels for pro-osteogenic molecules and molecules related to NO-soluble guanylate cyclase signaling.

A randomized, double-blinded study is designed with patients diagnosed with mild to moderate calcific aortic valve stenosis. Patients receive either placebo or Ataciguat. Prior to enrollment in the trial, patients undergo routine, clinically-indicated evaluations of aortic valve and ventricular function using echocardiography and aortic valve calcium using CT imaging. Patients also have blood drawn for evaluation of changes in inflammatory cytokines and circulating p-VASP239 levels. Following 1 month of run-in treatment, patients return for evaluation of tolerance and humoral efficacy (i.e., increases in circulating p-VASP239 levels in treated groups). Aortic valve function and aortic valve calcium burden are evaluated every 6 months by echocardiography and CT imaging, respectively.

Example 5 - Using soluble guanylate cyclase agonists to slow progression of calcification of heart valves and vessels

A patient is identified as having aortic valve or vascular calcification through regular echocardiographic screening (typical for a physical exam at age 65 or greater) or following computed tomography scanning of the chest. The patient with evidence of cardiovascular calcification (usually bright, echogenic areas on the valve/vessels) is treated with oral Ataciguat on a daily basis (50 mg/day, 100 mg/day, or 200 mg/day) to slow progression of cardiovascular calcification. P-VASP239 phosphorylation levels in peripheral blood are used to monitor drug bioavailability following 1-2 weeks of treatment. The patient undergoes follow-up testing at 1 year with computed tomography scanning to evaluate quantitatively progression of heart valve or vessel calcification. Oral Ataciguat treatment proceeds for the remainder of a subject's lifetime, so long as it is well-tolerated.

Example 6 - Using a combination of soluble guanylate cyclase agonists and cGMP-specific phosphodiesterase 5A inhibitors to slow progression of calcification of heart valves and vessels

A patient is identified as having aortic valve or vascular calcification through regular echocardiographic screening (typical for a physical exam at age 65 or greater)
or following computed tomography scanning of the chest. The patient with evidence of cardiovascular calcification (usually bright, echogenic areas on the valve/vessels) is treated with a combination of oral Ataciguat (50 mg/day, 100 mg/day, or 200 mg/day) and a low dose of a PDE5A inhibitor (e.g., Sildenafil or Tadalafil, 2.5 mg/day, 5 mg/day, or 10 mg/day) to slow progression of cardiovascular calcification. P-VASP239 phosphorylation levels in peripheral blood are used to monitor drug bioavailability following 1-2 weeks of treatment. The subject undergoes follow-up testing at 1 year with computed tomography scanning to evaluate quantitatively progression of heart valve or vessel calcification. Treatment with an oral sGC agonist/PDE5A inhibitor combination proceeds for the remainder of a subject's lifetime, as long as it is well-tolerated.

Example 7 - Using soluble guanylate cyclase agonists to slow progression of aortic sclerosis to calcific aortic valve stenosis

A patient is identified as having aortic valve sclerosis (or mild aortic valve stenosis) through regular echocardiographic screening (typical for a physical exam at age 65 or greater). The patient with evidence of cardiovascular calcification (usually bright, echogenic areas on the valve) is treated with oral sGC activators/stimulators (50 mg/day, 100 mg/day, or 200 mg/day) to slow progression of aortic valve calcification and fibrosis, which can also slow progression of aortic valve dysfunction and progression to aortic valve stenosis. P-VASP239 phosphorylation levels in peripheral blood are used to monitor drug bioavailability following 1-2 weeks of treatment. The subject undergoes follow-up testing at 1 year with echocardiographic imaging to evaluate quantitatively progression of heart valve dysfunction (i.e., reductions in aortic valve area or increases in transvalvular velocity). Treatment with an oral sGC agonist proceeds for the remainder of a subject's lifetime, as long as it is well-tolerated.

Example 8 - Using a combination of soluble guanylate cyclase agonists and cGMP-specific phosphodiesterase 5A inhibitors to slow progression of aortic sclerosis to calcific aortic valve stenosis

A patient is identified as having aortic valve sclerosis (or mild aortic valve stenosis) through regular echocardiographic screening (typical for a physical exam at age 65 or greater). The patient with evidence of cardiovascular calcification (usually
bright, echogenic areas on the valve/vessels) is treated with a combination of oral Ataciguat (50 mg/day, 100 mg/day, or 200 mg/day) and a low dose of a PDE5A inhibitor (e.g., Sildenafil or Tadalafil, 2.5 mg/day, 5 mg/day, or 10 mg/day) to slow progression of aortic valve calcification and fibrosis, which can also slow progression of aortic valve dysfunction and progression to aortic valve stenosis. P-VASP239 phosphorylation levels in peripheral blood are used to monitor drug bioavailability following 1-2 weeks of treatment. The subject undergoes follow-up testing at 1 year with echocardiographic imaging to evaluate quantitatively progression of heart valve dysfunction (i.e., reductions in aortic valve area or increases in transvalvular velocity). Treatment with an oral sGC agonist/PDE5A inhibitor combination proceeds for the remainder of a subject's lifetime, as long as it is well-tolerated.

OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
WHAT IS CLAIMED IS:

1. A method for slowing progression of calcification of a heart valve or vessel, wherein said method comprises:
   (a) identifying a mammal as being at risk for heart valve calcification or vessel calcification, and
   (b) administering a sGC agonist to said mammal, thereby slowing progression of calcification of a heart valve or vessel within said mammal.

2. The method of claim 1, wherein said mammal is a human.

3. The method of claim 1, wherein said sGC agonist is selected from the group consisting of YC-I, BAY 58-2667, BAY 41-2272, BAY-41-8543, BAY 63-2521, and HMR1766.

4. The method of claim 1, wherein said method comprises administering a PDE5A inhibitor to said mammal.

5. A method for slowing progression of aortic sclerosis to calcific aortic valve stenosis, wherein said method comprises:
   (a) identifying a mammal having aortic sclerosis, and
   (b) administering a sGC agonist to said mammal, thereby slowing progression of aortic sclerosis to calcific aortic valve stenosis within said mammal.

6. The method of claim 5, wherein said mammal is a human.

7. The method of claim 5, wherein said sGC agonist is selected from the group consisting of YC-I, BAY 58-2667, BAY 41-2272, BAY-41-8543, BAY 63-2521, and HMR1766.

8. The method of claim 5, wherein said method comprises administering a PDE5A inhibitor to said mammal.
Figure 1

Aortic Valve Function

Ildr\(^{+/+}\)/apoB\(^{100/100}\) mice

Peak Transvalvular Velocity (m/sec)

Age (months)

3 6 9 12
Ataciguat Robustly Activates sGC Signaling in Aortic Valve Interstitial Cells

Figure 4
Figure 5
Atacigual Attenuates Bone Morphogenetic Protein Signaling in Aortic Valve Intestinal Cells

Protein/HPF
p-Smad1/5/8
Figure 6

Atacigual Attenuates Levels of Bone Morphogenetic Protein Target/Effect Molecules

CTRL BMP2 TGFb1

3.0 2.5 2.0 1.5 1.0 0.5 0.0
(protein/HPF)

SP7

*
**Figure 7**

Ataciguan Tends to Attenuate Fibrogenic Signaling in Aortic Valve Interstitial Cells

\[ p = 0.07 \]

![Graph showing p-Smad2 levels with bar plots for CTRL, BMP2, and TGFb1 under Ataciguan conditions.](image)
A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC (see extra sheet)

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)


Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EAPO, RUPAT, DWPI, PubMed, SpringerLink, RUPTO

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP 2264017 A1 (TAKEDA PHARMACEUTICAL COMPANY LIMITED) 22.12.2010, abstract, paragraphs [0004] - [0007], [0012], [0017], [0064], claims</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

<table>
<thead>
<tr>
<th>* Special categories of cited documents:</th>
<th>“T”</th>
<th>“X”</th>
<th>“Y”</th>
<th>“&amp;”</th>
</tr>
</thead>
<tbody>
<tr>
<td>“A” document defining the general state of the art which is not considered to be of particular relevance</td>
<td>later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</td>
<td>document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</td>
<td>document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</td>
<td>document member of the same patent family</td>
</tr>
<tr>
<td>“E” earlier document but published on or after the international filing date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“O” document referring to an oral disclosure, use, exhibition or other means</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“P” document published prior to the international filing date but later than the priority date claimed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

27 March 2014 (27.03.2014)

Date of mailing of the international search report

24 April 2014 (24.04.2014)

Name and mailing address of the ISA/ FIPS

Russia, 123995, Moscow, G-59, GSP-5, Berezhkovskaya nab., 30-1

Facsimile No. +7 (499) 243-33-37

Authorized officer

N.Chudina

Telephone No. 495 531 65 15

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A61K 31/4985 (2006.01)</td>
</tr>
<tr>
<td>A61K 31/197 (2006.01)</td>
</tr>
<tr>
<td>A61K 31/416 (2006.01)</td>
</tr>
<tr>
<td>A61K 31/506 (2006.01)</td>
</tr>
<tr>
<td>A61K 31/5375 (2006.01)</td>
</tr>
<tr>
<td>A61P 9/00 (2006.01)</td>
</tr>
</tbody>
</table>