Title: IL-2 TRANSMEMBRANE CONSTRUCTS

(54)

(55) Abstract: Compounds, genetic constructs, and cancer treatment methods 035 provided. Expression vectors were designed to express fusion genes including hIL-2 with FcT, transmembrane anchor derived from 0 subunit of the FC epsilon receptor. mRN Nd the IL2tm fusion protein was expressed in transfected RD995 tumor cells. Expression of the IL2tm protein on the A511 surface membrane was confirmed by microscopy. RD995 ce1ls transfected with IL-2tm or pCMV2b (empty expression vector) were implanted subcutaneously into 13 HEN mice. Tumors in groups of mice implanted with 10^6 or 10^7 RD995 ce1ls transfected with IL-2tm grew slower than controls. Without being limited to any one theory, it is believed that selective expression >f cytokines such as IL-2 on the surface of tumors is likely to stimulate tumor-infiltrating lymphocytes that are primed and already recognize tumor antigens, enhancing tumor recognition and killing, potentially avoiding toxicity associated with known cytokine therapies.

(Continued on next page)
Published:
without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
IL-2 TRANSMEMBRANE CONSTRUCTS

BACKGROUND OF THE INVENTION

[0001] The present invention relates to methods and compositions for use in cancer therapeutic applications. More specifically, the present invention relates to fusion proteins, expression vectors, and cancer treatment methods using fusion proteins according to the invention.

[0002] Interleukin 2 ("IL-2") is a cytokine produced primarily by T cell lymphocytes. It is also a compound that has been shown to have anti-tumor effects. Mertelsmann & Welte, Human interleukin-2 molecular biology, physiology and clinical possibilities., Immunobiol. 172: 400-419 (1986). Human IL-2 is a 15-kD glycoprotein composed of 133 amino acids. Eckenburg et al., The First \alpha Helix of Interleukin (IL)-2 Folds as a Homotetrramer, Acts as an Agonist of the IL-2 Receptor \beta Chain, and Induces Lymphokine-activated Killer Cells. J. Exp. Med., 191:529-539 (2000); and Kurzrock, Cytokine: Interleukins and Their Receptors. Massachusetts: Kluwer Academic Publishers, 1995;83-97. Produced primarily by CD4+ helper T cells, the cytokine consists of four anti-parallel alpha helices that are connected by three loops. IL-2 was first described as a T cell growth factor for antigen-activated T cells. Id. IL-2 is necessary for induction of antigen-specific cytotoxic T cells. In addition, this cytokine is a differentiation-maturation factor for B cells and T cells. Herblot, et al. IL-2-Dependent Expression of Genes Involved in Cytoskeleton Organization, Oncogene Regulation, and Transcriptional Control. J. Immunol., 162:3280-3288. (1999). At high concentrations (>600 IU/ml), IL-2 is also the principle cytokine responsible for inducing NK cell-derived lymphokine-activated killer (LAK) cells. Cytotoxic T and NK lymphocytes are believed to be critical for recognition of aberrant or malignant cells and eradication of tumors. Mertelsmann & Welte, Human interleukin-2 molecular biology, physiology and clinical possibilities., Immunobiol. 172: 400-419 (1986); Kurzrock, Cytokine: Interleukins and Their Receptors. Massachusetts: Kluwer Academic Publishers, 1995;83-97; Grimm & Wilson, The human lymphokine-activated killer system. Purified recombinant interleukin 2 activates cytotoxic lymphocytes which lyse both natural killer-resistant autologous and allogeneic tumors and trinitrophenyl-modified autologous peripheral blood lymphocytes, Cell Immunol., 94: 568-578 (1985); Yao L, et al. Contribution of natural killer cells to inhibition of angiogenesis. Blood. 5:1612-1621. (1999); Luo et al., Comparison of the Effects of

Efforts to circumvent these side effects have led to IL-2-based gene therapy protocols. Gilboa & Lyerly, Biologic therapy of cancer updates, Vol. 4:6 (1994). In some of these protocols, tumor cells were engineered to secrete IL-2 into the microenvironment surrounding the tumor. Most tumors contain infiltrating CD8+ lymphocytes. Topalian et al., Tumor-specific cytolysis by lymphocytes infiltrating human melanomas, J. Immunol., 142:3714. (1989), Rosenberg et al., Use of tumor infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma, N. Engl. J. Med., 319:1676. When these cells are initially isolated from tumors, they can be activated and clonally expanded in the presence of IL-2 to generate tumor-specific cytotoxic lymphocytes. Thus, a goal of gene therapy is to cause intratumoral secretion of activating cytokines resulting in enhanced activation of cytotoxic tumor-infiltrating lymphocytes (TIL) within tumors. Emtage et al., A double recombinant adenovirus expressing the costimulatory molecule B7-1 (murine)

[0005] Examples of successful IL-2 based gene therapy have been published. Rochlitz et al., Gene Therapy Study of Cytokine-Transfected Xenogeneic Cells (Vero-interleukin-2) in Patients with Metastatic Solid Tumors, Cancer Gene Therapy, 6:271-281, (1999). Horton et al. evaluated IL-2 gene therapy of murine ovarian cancer. Horton et al., IL-2 plasmid therapy of murine ovarian carcinoma inhibits the growth of tumor ascites and alters its cytokine profile, J. Immunol., 163:6378-6385 (1999). Murine ovarian tumors (MOT) were treated with an IL-2 plasmid DNA complexed with the cationic lipid, N-(2-hydroxyethyl)-N,N-dimethyl-2-3-bis(tetradecyloxy)-1-propanaminium bromide/dioleoylphosphatidylethanolamine (DMRIE/DOPE). MOT tumor-bearing mice injected intraperitoneally with IL-2 plasmid:DMRIE/DOPE on days 5, 8, and 11 after tumor cell implantation demonstrated a significant inhibition of tumor ascites as well as a significant increase in survival. By day 26 after tumor cell injection, 10% of the mice treated with the control pCMV-neo DNA were still alive compared with 70% of the mice treated with IL-2tm:DMRIE/DOPE. Furthermore, the peritoneal fluid of mice treated with IL-2 containing vector: DMRIE/DOPE had an IL-2 specific increase in the levels of IFN-γ and GM-CSF.

[0006] Horton et al. also investigated the nature of the immune response to the MOT cells, using nude mice (immunodeficient mice without a thymus and without T cells). Only a modest inhibition of tumor growth occurred in nude mice. This helped to show that T cells are required for IL-2 gene-mediated anti-tumor effects. Horton et al., IL-2 plasmid therapy of murine ovarian carcinoma inhibits the growth of tumor ascites and alters its cytokine profile, J. Immunol., 163:6378-6385 (1999).

[0007] These added studies and methods further demonstrate the utility and potential safety of IL-2-based therapies. It would thus be a benefit in the art to provide an alternate method for concentrating cytokines in a tumor to initiate an immune response and attack on the tumor. It would be a further benefit in the art to provide methods for concentrating IL-2 in a tumor to initiate an immune response.
BRIEF SUMMARY OF THE INVENTION

[0008] The method of the present invention has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available gene therapy constructs and methods of their use. Thus, the present invention provides compounds and methods for conducting gene therapy in cancer applications using genetic constructs capable of producing a protein comprising a cytokine and the transmembrane domain of another protein. More specifically, the invention provides compounds and methods for conducting gene therapy in cancer applications using genetic constructs capable of producing a protein comprising a cytokine and the transmembrane domain of another protein.

[0009] Thus, the present invention provides an approach to gene therapy using a novel fusion gene consisting of a cytokine plus a transmembrane domain. When expressed, the fusion gene produces a membrane-bound cytokine such as an IL-2 protein which may be displayed on the surface of mammalian tumor cells. Thus, the invention further provides membrane-bound IL-2 proteins for use in cancer therapies. Such cell membrane-expressed cytokines may be able to activate immune cells in close proximity to tumor antigens that act to create a specific immune recognition. In other embodiments of the invention, cytokines such as interleukins, interferons, lymphokines, and tumor necrosis factors are substituted into the place of IL-2. Thus, the invention provides a family of proteins comprising a regulatory protein such as a cytokine or a hormone attached to the transmembrane domain of another protein. The invention further includes methods for the use of these compounds, including methods of activating tumor infiltrating lymphocytes in close proximity to cancer or tumor cells.

[0010] In methods of the invention incorporating the fusion gene into a plasmid which may be inserted into a cell, the low level of cytokine expression created by the expression of the plasmid encoding the membrane-bound cytokine, such as the IL-2 protein, remains localized to the tumor. As a result, use of the plasmid and the membrane-bound IL-2 protein is not associated with the toxicity previously observed in therapies involving high systemic doses of the cytokine. Marr et al., Tumour immunotherapy using an adenoviral vector expressing a membrane-bound mutant of murine TNFα, Gene Therapy, 4:1181-1188 (1997); El-Shami et al., Induction of antitumor immunity with modified autologous cells expressing membrane-bound murine cytokines, Interferon and Cytokine Res., 19:1391-1401 (1999).
According to the invention, a plasmid was engineered and evaluated which contains a transgene encoding membrane bound IL-2 (IL-2tm) insert. Without being limited to any one theory, it is believed that by inducing expression of IL-2 on the surface of tumor cells, IL-2 will activate tumor infiltrating lymphocytes in close proximity to tumor antigens. This activation is thought to increase activation of antigen-specific T cells, and thus to result in destruction of tumor cells expressing tumor-associated antigens. One such IL-2tm construct within the scope of the invention was created by joining the gene for human IL-2 with the transmembrane domain Fce-γ. Studies investigating the efficacy of a tumor vaccine including inactivated cells “transfected with two plasmid vectors encoding a mutant membrane-bound murine granulocyte-macrophage colony-stimulating factor (MuGM-CSF) and murine interferon γ (MuIFN-γ). El-Shami et al., Induction of antitumor immunity with modified autologous cells expressing membrane-bound murine cytokines, Interferon and Cytokine Res., 19:1391-1401 (1999).

The invention also provides another plasmid including a truncated transmembrane domain and other improvements to potentially improve expression of the vector once transfected into a host cell.

Thus, the invention provides methods for producing membrane-bound cytokines for use in the treatment of cancers and other conditions in which it is desirable to target a cell for destruction by the immune system. The invention further provides plasmids engineered to express membrane-bound regulatory hormones or cytokines on the surface of mammalian tumor cells. In some specific embodiments, the invention provides membrane-bound IL-2 proteins expressed on the surface of mammalian tumor cells resulting from the expression of plasmids of the invention.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0014] In order that the manner in which the above-recited and other features and advantages of the invention are obtained will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

[0015] Figure 1 is an image of a gel showing bands of cut hIL-2 and uncut VR 1103 plasmid observed after the plasmid VR1103 was exposed to the restriction enzymes PstI and BamHI used to excise the hIL-2 gene from the plasmid;

[0016] Figure 2 is an image of a gel showing the results of PCR used to verify DNA insertion of a pBluescript KS cloning vector comprising the hIL-2 gene into DH5α™ Competent cells;

[0017] Figure 3 shows a nucleotide sequence encoding hIL-2 (SEQ ID NO: 1); with bold, underlined text indicating the beginning and end of the hIL-2 gene, including the TAATTAA (SEQ ID NO: 4) stop codon which is later removed by PCR-directed mutagenesis;

[0018] Figure 4 is an image of a gel showing the PCR-amplified hIL-2 gene modified to lack a stop codon;

[0019] Figure 5 shows the sequence (SEQ ID NO: 2) of the hIL-2 + Fcε-γ fusion gene construct ("IL-2tm") comprising the hIL-2 gene ligated upstream and in frame with the transmembrane domain Fcε-γ derived from the plasmid HTAAA91;

[0020] Figure 6 shows the sequence of the IL-2tm construct ligated in the proper reading frame into the pCMV2b mammalian expression vector (SEQ ID NO: 3);

[0021] Figure 7 is an image of a gel showing the IL-2tm mRNA expressed by RD995 cells transfected with pCMV2b vectors containing the IL-2tm construct;

[0022] Figure 8 is a Western blot analysis of IL-2tm expression of RD995 cells transfected with IL-2tm;

[0023] Figure 9A is a laser confocal micrograph of RD995 cells transfected with pCMV2b vectors containing the IL-2tm construct showing red staining of transfected cells, demonstrating the surface membrane expression of IL-2tm;
Figure 9B is a laser confocal micrograph of RD995 cells transfected with empty pCMV2b vectors showing no staining, demonstrating no expression of hIL-2;

Figure 10A is a laser confocal micrograph of FLAG-stained RD995 cells transfected with pCMV2b vectors or IL-2tm with green staining indicating FLAG antigen expression;

Figure 10B is a laser confocal micrograph of FLAG-stained RD995 cells transfected with pCMV2b vectors or IL-2tm not showing green staining, and thus indicating no FLAG antigen expression;

Figure 11 is an image of a gel showing the results of assays for expression of hIL-2tm mRNA in RD995 tumor cells prior to their introduction into C2H/HEN mice;

Figure 12 is a chart comparing the growth of subcutaneous tumors in C3H/HEN mice injected with 106 RD995 cells transfected with IL-2tm, RD995 transfected with pCMV2b (empty vector), or with control RD995 cells;

Figure 13 is a chart noting the thymidine uptake of 105 RD995 cells transfected with IL-2tm, transfected with pCMV2b (empty vector), and with control RD995 cells;

Figure 14 is the sequence of the entire IL-2TM vector of the invention (SEQ ID NO: 11), including nucleotide sequences encoding human IL-2tm and a membrane-bound portion of the FC receptor;

Figure 15 is the sequence of the FC receptor alpha chain (transmembrane domain sequence) SEQ ID NO: 14, used in IL-2tm;

Figure 16 is the sequence of the IL-2tm protein encoded by the IL-2TM vector of the invention, SEQ ID NO: 13;

Figure 17 includes a diagram of the pCMV2b vector used to create the IL-2TM vector of the invention and its components;

Figure 18 includes a diagram of the pcDNA3.1 (+/-) vector used to create the IL-2TM2 vector of the invention and its components;

Figure 19 is a diagram of the IL-2TM2 vector of the invention;

Figure 20 is the sequence of the IL-2tm2 protein encoded by the IL-2TM2 vector of the invention;

Figure 21 illustrates the homology between the IL-2tm and IL-2tm2 proteins encoded by the expression vectors of the invention, with the full sequence of the IL-2tm protein shown and the homologous regions shown underlined; and
[0038] Figure 22 is the nucleotide sequence used in the IL-2TM2 vector (SEQ ID NO: 15) to encode the IL-2tm2 fusion protein.

DETAILED DESCRIPTION OF THE INVENTION

[0039] The presently preferred embodiments of the present invention will be understood by reference to the drawings and following description. It will be readily understood that the methods, proteins, fusion genes, and plasmids of the present invention, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the methods, proteins, fusion genes, and plasmids of the present invention, as represented in Figures 1 through 13, is not intended to limit the scope of the invention, as claimed, but is merely representative of presently preferred embodiments of the invention.

[0041] All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety. As used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural references unless the content clearly dictates otherwise.

[0042] According to the invention, fusion genes are provided which contain a protein such as a cytokine or a hormone and a transmembrane domain. Some of these fusion genes comprise a cytokine such as an interleukin attached to a transmembrane domain. The term "cytokine" is used herein to describe a family of small proteins involved in communication between cells of the immune system. Members of this family include interleukins, interferons, lymphokines, and tumor necrosis factors. Fusion genes according to the invention may be produced including cytokines such as IL-2, IL-12, IL-15, and γ-interferon.
The term "hormone" is used to include substances such as peptides, steroids, and artificial compounds used to affect physiological activity such as growth or metabolism. The invention provides a fusion gene encoding such a protein and the transmembrane domain of another protein.

In some embodiments of the invention, a fusion gene containing human interleukin 2 (hIL-2) and a transmembrane domain (IL-2tm) derived from Fcε-γ is provided which was created using molecular genetic approaches. The term "fusion gene" is used herein to denote a hybrid gene, comprised of parts of two other genes, in this case, selected for their individual properties. A "fusion protein" as used herein, is the product of such a fusion gene, here having separate domains with properties unique to its constituent genes.

Further, as used herein, the terms "IL-2" and "hIL-2" generally refer to human interleukin-2 or to a nucleic acid encoding human interleukin-2, unless noted otherwise. Similarly, the terms "IL-2tm", "hIL-2tm", "IL-2tm2", and "hIL-2tm2" refer to a transmembrane protein product of the genetic constructs of the invention, or to the transmembrane constructs themselves unless noted otherwise. The constructs of the invention provide a transmembrane anchor allowing hIL-2 to be expressed at the cell membrane of transfected cells in close proximity to tumor infiltrating lymphocytes (TIL cells) and tumor specific antigens. El-Shami et al., Induction of antitumor immunity with modified autologous cells expressing membrane-bound murine cytokines, Interferon and Cytokine Res., 19:1391-1401 (1999). According to the invention, the transgene constructs were also cloned into mammalian expression vectors including pCMV2b and pcDNA3.1(+/−). Other suitable expression vectors, including mammalian expression vectors are known to one of ordinary skill in the art, and may be suitable for use in the invention. Similarly, although FLAG tagging proteins are used in one exemplary embodiment of the invention, one of ordinary skill in the art would be aware of many other suitable tagging proteins usable with the vectors, fusion genes, fusion proteins, and methods of the invention.

IL-2tm was transfected into murine RD995 tumor cells. Cells were evaluated for IL-2tm mRNA and protein expression. RT-PCR was performed with DNA based primers that span the IL-2 gene and the Fcε-γ gene and were used to distinguish the transgene from any native IL-2 mRNA (if present). This sequence has no known mammalian homologues. DNase treatment was used to exclude carry over of the IL-2tm containing pCMV2b plasmid. Using this RT-PCR assay, it was found that IL-2tm mRNA was expressed in transfected
RD995 tumor cells but not in pCMV2b transfected or parental RD995 cells. Western blot analysis was performed to detect IL-2tm protein in transfected RD995 cells. IL-2tm was detectable in RD995 transfected with IL-2tm (a 27kD protein). Protein expression persisted for at least 5 days following transfection. Interestingly, two bands of IL-2 were seen on the Western blot. One band correlated with the expected 27 kDa IL-2tm protein. The other band correlated with IL-2 (18kD), which suggests cleavage of the IL-2tm from the transmembrane anchor. The parental RD995 tumor was shown not to produce any IL-2 protein. Further investigation will be necessary to determine the exact site of cleavage and the enzyme responsible.

[0046] IL-2tm protein expression on the surface of cells was confirmed by immunofluorescent staining of IL-2tm transfected RD995 cells. Anti-hIL-2 antiserum staining of RD995 cells transfected with IL-2tm showed that hIL-2 was expressed on the surface membrane by laser confocal microscopy. Anti-FLAG antibody was used to visualize the FLAG neoprotein that had been added to the N-terminus of IL-2tm. Immunofluorescent staining for FLAG also confirmed expression at the surface of IL-2tm transfected RD995. Parental RD995 or RD995 transfected with pCMV2b (empty expression vector) did not exhibit surface expression of FLAG or IL-2 protein.

[0047] To test the biologic activity of the transgene, groups of 10 syngeneic (C3H/HEN) mice were injected with 105, 5 x 105 or 106 tumor cells. Mice implanted with equivalent numbers of pCMV2b or parental tumors served as controls. Expression of the transgene in IL-2tm transfected RD995 cells was verified at the start of the experiment. Groups of mice implanted with 106 or 5 x 105 IL-2tm transfected tumor cells grew at a far slower rate than pCMV2b transfected tumor cells or parental RD995 cells. The experiment was terminated on day 40 due to the large size of tumors in control mice. To assess whether the transgene was still expressed, mice were sacrificed and excised tumors were assayed for mRNA expression of IL-2tm or pCMV2b. It was found that mRNA expression had been lost.

[0048] A trivial explanation for the decreased proliferation rate of RD995 cells transfected with IL-2tm (in C3H/HEN mice) might be due to nonspecific effects of the transgene. Tritiated thymidine incorporation into transfected and non-transfected tumor cells established that these cells proliferate at essentially at the same rate, thus excluding this possibility.

[0049] Biological activity of IL-2tm was analyzed by utilizing an IL-2 dependent cell line. Gillis & Smith, *Long term culture of tumour-specific cytotoxic T cells, Nature, 268*:154-156.
(1977); Belani & Weine, *Expression of both B7-1 and CD28 contributes to the IL-2 responsiveness of CTL-L2 cells, Immunology*, 87:271-274. (1994). This assay (with a sensitivity of 17 U IL-2/well) was unable to detect bioactive IL-2 in 105 tumor cells. Without being limited to any one theory, this finding may indicate low levels of IL-2tm expression. These results may alternately reflect the expression of inactive IL-2tm protein. If further experiments determine that the IL-2tm protein is indeed inactive, one potential cause could be conformational issues. Hydrophobicity plots (data not shown) suggest that the residual intracellular domain of Fcε-γ may be folded when expressed at the cell surface along with the IL-2 protein. Without being limited to any one theory, this could potentially sterically hinder IL-2 from interacting with the IL-2 receptor.

[0050] The mechanism that resulted in decreased growth of RD995 cells transfected with IL-2tm in C3H/HEN mice may be further investigated. Additional tumor cell lines may be transfected with modified IL-2tm plasmid (modifications described in the previous paragraph) to evaluate growth potential in vivo. Histological studies of tumor infiltrating lymphocytes and studies of tumor-specific T cell activation may be conducted to help evaluate the mechanism of the anti-tumor effect.

[0051] Further, investigation of therapies against non-tumor-forming cancers may be investigated by exploring the ability of systemic introduction of expression vectors encoding the therapeutic fusion proteins of the invention to activate immune response to cancer cells, including cancer cells spread throughout a patient's body in a diffuse manner.

[0052] The gene construct of the invention may potentially be used in gene therapy of cancer in humans. Activated TIL cells may be able to destroy tumors by recognizing tumor-associated antigens. Furthermore, activated TIL cells may have the ability to migrate throughout a patient's body and destroy tumor metastases. The IL-2tm vector may provide a practical gene therapy reagent for use against human cancer.

[0053] Construction of IL-2tm

[0054] To test the hypothesis that membrane expression of IL-2 would lead to activation of T-cells infiltrating into cancers, it was necessary to create a fusion gene containing IL-2 and a transmembrane domain. The gene for hIL-2 (plasmid VR1103) was acquired from Vical, Inc. hIL-2 was removed from pVR1103 because the flanking sequences of the hIL-2 gene in the VR1103 vector were unknown. Restriction enzymes PstI and BamHI were used to cut the hIL-2 gene from the plasmid. The gene was isolated on a low melting point 1%
agarose gel (Figure 1). The expected hIL-2 size was 339 bp plus 217 extra base pairs from pVR1103, yielding a total of 616 bp. Referring now to Figure 1, lane 2 (indicated by an arrow) shows a faint hIL-2 band of 616 base pairs. hIL-2 DNA was then isolated from the 1% agarose gel using the GeneCAPSULE™ method.

[0055] In order to identify the stop codon in hIL-2, hIL-2 was ligated into cloning vector pBluescript KS to facilitate sequencing. pBluescript KS was cut with restriction enzymes PstI and BamHI. The gel isolated hIL-2 band (from Figure 1) and the gel isolated cut pBluescript KS were ligated together. DNA based primers for hIL-2 were used to perform PCR on the ligated pBluescript KS+hIL-2. Figure 2 illustrates successful ligation of hIL-2 gene into pBluescript.

[0056] Referring now to Figure 2, hIL-2 was ligated into cloning vector pBluescript KS. DH5α™ Competent cells were transformed with hIL-2/pBluescript KS and screened for recombinant plasmids by lacZ color selection. hIL-2 DNA insertion was then verified by DNA based PCR using primers directed toward hIL-2. PCR was run for 32 cycles resulting in a 155 base pair product. Plasmid VR1103 was used as a positive control and uncut pBluescript KS was used as a negative control.

[0057] pBluescript KS was sequenced using T3 promoter-based primers, as shown in Figure 3 (SEQ ID NO: 1), to identify the stop codon. The bold underlined text present in Figure 3 indicates the beginning and the end of the hIL-2 gene. The stop codon was removed by PCR directed mutagenesis. DNA based primers were designed to amplify the hIL-2 gene without the stop codon. Restriction sites were also incorporated onto the ends of the primers to maintain proper orientation and reading frame of the hIL-2 gene during ligation. Specifically, primers were designed to incorporate restriction sites BamHI (5' GGA TCC 3') SEQ ID NO: 5, on the sense strand and EcoRI (5' GAA TTC 3') SEQ ID NO: 6, on the antisense strand in order to facilitate insertion of hIL-2 into plasmid HTAA91 that contains the transmembrane domain Fce-γ. Herculase™ Enhanced DNA Polymerase was then used to amplify hIL-2 for 30 cycles. The 423 base pair band representing the modified IL-2 gene was isolated from a 1% agarose gel (Figure 4).

[0058] The hIL-2 gene and Fce-γ transmembrane domain were each cut with BamHI and EcoRI. The hIL-2 (minus the stop codon) construct was ligated upstream and in frame with the transmembrane domain Fce-γ derived from the plasmid HTAA91. Fce-γ is an accessory signaling protein of the Fce-γ receptor that has a minimal extracellular domain. DNA
sequencing of the hIL-2 +Fcε-γ using T3 promoter-based primers was conducted to verify that the stop codon was removed, and that hIL-2 (minus the stop codon) was upstream and in frame with the Fcε-γ transmembrane domain (Figure 5, see SEQ ID NO: 2). In Figure 6, bold underlined text shows the beginning of hIL-2 and the beginning of the transmembrane domain Fcε-γ (SEQ ID NO: 3).

[0059] Lastly, in order to express hIL-2 on the surface of tumors, a mammalian expression vector was selected to deliver the hIL-2 + Fcε-γ fusion gene. pCMV2b contains a cytomegalovirus promoter along with neomycin and kanamycin resistance selection markers. Additionally, pCMV2b also includes an N-terminal FLAG® tagging protein. The FLAG protein was included for use in identifying hIL-2 expression on the surface of tumors.

[0060] Restriction enzymes ApaI and BamHI were used to cut HTAAA91 and pCMV2b. The IL-2tm (hIL-2+ Fcε-γ) construct was then ligated into pCMV2b as previously described. IL-2tm was sequenced to verify proper insertion into the expression vector. DNA sequencing (Figure 6) demonstrated that IL-2tm was ligated in the proper reading frame into expression vector pCMV2b (SEQ ID NO: 3). In Figure 6, the upper bold underlined text indicates the initiation start site and the second bold underlined sequence identifies the beginning of the transmembrane domain.

[0061] Screening for IL-2tm and pCMV2b mRNA and protein expression in RD995 tumor cells

[0062] Optimal conditions for transfection of RD995 tumor cells with IL-2tm contained within pCMV2b were next established experimentally. The ability of pCMV2b vector containing IL-2tm to induce mRNA and protein expression was subsequently evaluated. Total RNA was extracted from transfected RD995 tumor cells (2 μg IL-2tm and 10 μl Lipofectin). The RNA was treated with DNase to remove any residual plasmid derived DNA. DNA based primers, spanning the hIL-2 + Fcε-γ fusion gene were used to amplify the IL-2tm fusion gene by DNA based PCR. Figure 7 demonstrates that IL-2tm mRNA was easily detected in transfected RD995 cells. Specifically, in Figure 7, IL-2tm mRNA expression in RD995 cells transfected with IL-2tm or pCMV2b alone is shown. Total RNA was extracted using TRI-REAGENT and treated with DNase to remove any residual plasmid DNA prior to reverse transcription. Primers were designed to span the hIL-2 gene and the transmembrane domain with an expected 500 base pair PCR product. This gel demonstrates that mRNA
expression is present in cells transfected with IL-2tm, but not empty vector (pCMV2b). Control cells transfected with pCMV2b did not express this message.

[0063] Expression of IL-2tm protein in transfected RD995 cells was evaluated by Western blot analysis. First, 106 RD995 cells were transfected with IL2-tm. 106 cells were harvested days 1-5 after transfection and washed in PBS and lysed in RIPA buffer. The lysates were applied to a 12.5% PAGE electrophoresis gel. After electrophoretic transfer to a membrane, and blocking steps, membranes were stained with 1 μg/ml polyclonal rabbit anti-IL-2 antibody. Bands were visualized using Luminol on X-ray film. Recombinant hIL-2 from Chiron was used as a positive control. The positive control shows three expected bands of IL-2 (45 kDa, 30 kDa and 15 kDa) on the right side of blot. Non-transfected RD995 cells were used as a negative control. IL-2tm appears to generate both hIL-2 bound to transmembrane (27kD) and free hIL-2 (18kD) on left side of blot. Figure 9 showed that hIL-2 (18kD) and hIL-2 + transmembrane domain (27kD) were both present. The native IL-2 produces a band of 15 kDa, but multimeric bands are also seen at 30 kDa and 45 kDa.

[0064] Immunofluorescent antibody staining for surface-bound hIL-2 in RD995 tumor cells

[0065] Laser confocal microscopy was next utilized to demonstrate that IL-2 was being expressed on the surface of transfected RD995 cells. Cells were stained with anti-hIL-2 antiserum and TO-PRO3™ (1 μM/ml) in order to visualize the nucleus. Specifically, RD995 cells transfected with IL-2tm or pCMV2b (106 cells) were stained with anti-hIL-2 or anti-FLAG (Figures 9 and 10). TO-PRO3™ nuclear stain was applied to the cells after they were stained with anti-hIL-2 or anti-FLAG. In Figure 9A, red staining of cells transfected with IL-2tm demonstrated surface membrane expression of IL-2. In Figure 9B, RD995 transfected with empty pCMV2b vector indicates no hIL-2 expression. Untransfected RD995 or RD995 stained with secondary antibody alone were used as negative controls and also showed no staining (data not shown). Referring now to Figure 10, laser confocal microscopy of FLAG-stained RD995 transfected with IL-2tm or pCMV2b shows green staining in Figure 10A, demonstrating FLAG antigen expression in RD995 transfected with IL-2tm. In Figure 10B, however, RD995 transfected with pCMV2b demonstrated no staining.

[0066] Evaluation of growth of RD995 cells transfected with IL-2tm in C3H/HEH mice
[0067] It was next hypothesized that expression of IL-2tm protein on tumor cell surface membranes would alter immunologic recognition in mice. The growth of IL-2tm transfected RD995 tumor cells in syngeneic mice was evaluated to test this hypothesis. RD995 cells transfected with IL-2tm were implanted subcutaneously into groups of 10 C3H/HEN mice (106, 5 x 105 or 105 tumor cells per mouse). Mice implanted with equivalent numbers of non-transfected RD995 cells or empty vector (pCMV2b) transfected RD995 cells were used as controls. Prior to subcutaneous implantation of RD995 transfected with IL-2tm or pCMV2b, tumor cells were assayed for mRNA expression of IL-2tm. This was done using primers designed to span the hIL-2 gene and the transmembrane domain. The expected 500 base pair product was generated. The gel shown in Figure 11 demonstrates that mRNA expression is present, which was absent from parental tumor (neg) and empty vector transfected RD995 (pCMV2b).

[0068] The maximum cross sectional area of each subcutaneous tumor was measured with calipers every other day. The results are shown in Figure 12. Growth of IL-2tm transfected tumors was markedly reduced compared to parental or empty vector transfected RD995. The experiment was terminated on day 40 due to excessive size of tumors in control mice. On day 40, tumors in mice implanted with 106 IL-2tm RD995 cells showed reduced growth (52% smaller than in mice bearing pCMV2b RD995 and 59% smaller than parental RD995 tumor cells) (Figure 12). The group implanted with 5 x 105 IL-2tm RD995 tumor cells also showed reduced tumor growth (31% smaller tumors than the pCMV2b RD995 group and 30% smaller tumors than the parental RD995 group). No tumors grew in any groups of mice implanted with only 105 cells (data not shown).

[0069] On day 40, mice from each group were sacrificed, the tumors excised and assayed for persistence of IL-2tm transgene expression. No residual IL-2tm mRNA could be detected in any tumors harvested on day forty, suggesting IL-2tm was lost prior to this time (data not shown).

[0070] **Evaluation of the effect of IL-2tm and pCMV2b or RD995 proliferation**

[0071] The previous experiment demonstrated that RD995 cells transfected with IL-2tm grow at a slower rate than RD995 transfected with pCMV2b or parental RD995. A trivial explanation for this could be that tumor cells transfected with IL-2tm might have decreased proliferative potential due to some nonspecific cellular effect of the transgene. An in vitro thymidine incorporation assay was used to evaluate this possibility. This experiment showed
that RD995 transfected with IL-2tm or pCMV2b had similar thymidine incorporation as nontransfected RD995 (mean plus or minus SD of 24 wells). The results of this experiment measuring thymidine incorporation in 105 RD995, RD995 samples transfected with pCMV2b or IL-2tm after 48 hours in culture are shown in Figure 13.

Evaluation of biological activity of IL-2tm expressed in transfected RD995

The biological activity of IL-2tm was analyzed by utilizing a murine cytotoxic T cell line that is dependent on IL-2 for growth. Recombinant human IL-2 is known to result in increased proliferation of CTLL-20 (measured by incorporated [3H]-TdR). Gillis & Smith, Long term culture of tumour-specific cytotoxic T cells, Nature, 268:154-156. (1977); Belani & Weine, Expression of both B7-1 and CD28 contributes to the IL-2 responsiveness of CTLL-2 cells, Immunology, 87:271-274. (1994).

A standard curve was generated using recombinant hIL-2. It was found that 17 IU of IL-2 stimulated a measurable proliferation of CTLL-20. The relationship between thymidine incorporation and hIL-2 concentration was almost linear between 17 and 200 IU. This assay showed that RD995 cells transfected with IL-2tm or pCMV2b failed to induce detectable proliferation of CTLL-20. This implies less than 17 IU of biologically active IL-2 was expressed per 105 tumor cells. Figure 14 provides the sequence coding for the IL-2TM fusion protein with the sequence of the fusion of the Fce-γ gene in square brackets (SEQ ID NO: 11). The nucleotide sequence coding for the transmembrane domain of the protein is provided alone in Figure 15. (SEQ ID NO: 14). The sequence of the IL-2tm fusion protein produced by the IL-2TM expression vector is provided in Figure 16, SEQ ID NO: 13.

The IL-2TM2 Vector

The IL-2tm vector was next modified to optimize its function and that of the expressed IL-2tm protein. The product of these efforts is the IL-2TM2 vector. In the original vector, IL-2tm was designed to include the FLAG tagging protein to facilitate identification and tracking of the IL-2tm protein. Without being limited to any one theory, it was believed that in some situations, the inclusion of the FLAG sequence in the fusion protein may have altered the tertiary protein structure of the IL-2tm fusion protein. It was also believed that the inclusion of FLAG could also potentially initiate immunological recognition of the IL-2tm protein in future multi-injection experiments. The FLAG sequence was therefore removed from the fusion gene in order to prevent such potential difficulties.
[0077] It was also noted that the IL-2TM expression vector contained extraneous amino acids that were part of the multiple cloning site in the expression vector. These were removed in order optimize potential function of the expression vector. In addition, it was noted that the mammalian expression vector pCMV2b, used to create IL-2TM, does not contain an enhancer. See, e.g., Figure 17 and Vile et al., Cancer therapy: hard lessons and new courses, Gene Therapy, 7: 2-8. (2000); Li & Haung, Nonviral gene therapy: promises and challenges, Gene Therapy, 7:31-34. (2000). It is known in the art that mRNA expression levels may be greatly increased by using an expression vector that includes an enhancer in addition to a promoter. As a result, the IL-2TM2 vector was designed using the pcDNA3.1(+/-) expression vector. See, e.g., Figures 18-19. The effects of these design changes was evaluated using the methods used above to assess the effectiveness of the IL-2TM2 vector and the IL-2tm2 fusion protein.

[0078] Construction of IL-2TM2

[0079] As above, a fusion gene containing IL-2 and a transmembrane domain was created. As before, the gene for hIL-2 (plasmid VR1103) was acquired from Vical, Inc. hIL-2 was removed from pVR1103 because the flanking sequences of the hIL-2 gene in the VR1103 vector were unknown. Restriction enzymes PstI and BamHI were used to cut the hIL-2 gene from the plasmid. The gene was isolated on a low melting point 1% agarose gel (Figure 1). The expected hIL-2 size was 339 bp plus 217 extra base pairs from pVR1103, yielding a total of 616 bp. Referring now to Figure 1, lane 2 (indicated by an arrow) shows a faint hIL-2 band of 616 base pairs. hIL-2 DNA was then isolated from the 1% agarose gel using the GeneCAPSULE™ method.

[0080] In order to identify the stop codon in hIL-2, hIL-2 was ligated into cloning vector pBluescript KS to facilitate sequencing. pBluescript KS was cut with restriction enzymes PstI and BamHI. The gel isolated hIL-2 band (from Figure 1) and the gel isolated cut pBluescript KS were ligated together. DNA based primers for hIL-2 were used to perform PCR on the ligated pBluescript KS+hIL-2. Figure 2 illustrates successful ligation of hIL-2 gene into pBluescript.

[0081] Referring now to Figure 2, hIL-2 was ligated into cloning vector pBluescript KS. DH5α™ Competent cells were transformed with hIL-2/pBluescript KS and screened for recombinant phagemids by lacZ color selection. hIL-2 DNA insertion was then verified by DNA based PCR using primers directed toward hIL-2. PCR was run for 32 cycles resulting
in a 155 base pair product. Plasmid VR1103 was used as a positive control and uncut pBluescript KS was used as a negative control.

[0082] pBluescript KS was sequenced using T3 promoter-based primers, as shown in Figure 3 (SEQ ID NO: 1), to identify the stop codon. The bold underlined text in Figure 3 indicates the beginning and the end of the hIL-2 gene. The stop codon was removed by PCR directed mutagenesis. DNA based primers were designed to amplify the hIL-2 gene without the stop codon. Restriction sites were also incorporated onto the ends of the primers to maintain proper orientation and reading frame of the hIL-2 gene during ligation. Specifically, primers were designed to incorporate restriction sites BamHI (5’ GGA TCC 3’) SEQ ID NO: 5, on the sense strand and EcoRI (5’ GAA TTC 3’) SEQ ID NO: 6, on the antisense strand in order to facilitate insertion of hIL-2 into plasmid HTAA91 that contains the transmembrane domain Fce-γ. Herculase™ Enhanced DNA Polymerase was then used to amplify hIL-2 for 30 cycles. The 423 base pair band representing the modified IL-2 gene was isolated from a 1% agarose gel (Figure 4).

[0083] The hIL-2 gene and Fce-γ transmembrane domain were each cut with BamHI and EcoRI. The hIL-2 (minus the stop codon) construct was ligated upstream and in frame with the transmembrane domain Fce-γ derived from the plasmid HTAA91. Fce-γ is an accessory signaling protein of the Fce-γ receptor that has a minimal extracellular domain. DNA sequencing of the hIL-2 +Fce-γ using T3 promoter-based primers was conducted to verify that the stop codon was removed, and that hIL-2 (minus the stop codon) was upstream and in frame with the Fce-γ transmembrane domain (see Figure 5, SEQ ID NO: 2). In Figure 6, bold underlined text indicates the start of hIL-2 and the beginning of the transmembrane domain Fce-γ (SEQ ID NO: 3).

[0084] Lastly, in order to express hIL-2 on the surface of tumors, a mammalian expression vector was selected to deliver the hIL-2 + Fce-γ fusion gene. pcDNA3.1(+/−) includes a cytomegalovirus promoter along with an enhancer and neomycin and ampicillin resistance selection markers. See Figures 18-19.

[0085] The N-terminal FLAG® tagging protein was removed by PCR-driven mutagenesis. In addition, the Fce-γ portion of the construct was truncated to include only one transmembrane domain. Without being limited to any one theory, it is believed that these modifications aid the expression efficiency of the construct. Finally, the pcDNA3.1(+/−)
vector was itself modified to remove extraneous nucleotides from the multiple cloning site of the vector. Figure 19.

[0086] The IL-2tm2 (hIL-2+ Fce-γ) construct was then ligated into the modified pcDNA3.1(+/-) expression vector as described above. The resulting IL-2TM2 expression vector was sequenced to verify proper insertion into the expression vector. DNA sequencing demonstrated that the sequence encoding IL-2tm2 was ligated into the vector in the proper reading frame. The sequence of the IL-2tm2 protein sequence encoded by the IL-2TM2 vector is provided in Figure 20 (SEQ ID NO: 12). The homology of the IL-2tm and IL-2tm2 proteins is illustrated in Figure 21, with the homologous sequences shown underlined. Finally, Figure 22 is the nucleotide sequence used to encode the IL-2tm2 fusion protein (SEQ ID NO: 15) in the IL-2TM2 construct.

[0087] MATERIALS AND METHODS

[0088] Insertion of human interleukin 2 into cloning vector pBluescript KS and sequence verification

[0089] Plasmid VR1103 containing the human Interleukin 2 (hIL-2) gene was obtained from Vical, Inc. Restriction enzymes PstI and BamHI (Life Technologies, Gaithersburg, MD) were used to excise the hIL-2 gene from the plasmid. The cut VR1103 plasmid was run on a low melting point 1% agarose gel (Sigma Chemical Company, St. Louis, MO) and the band containing the IL-2 gene was identified and isolated from the gel using GeneCAPSULE™ (Geno Technology, Inc., St. Louis, MO). The expected DNA size was 616 base pairs. The identity of the gene was confirmed by direct DNA sequencing (Huntsman Cancer Institute Core Facility, University of Utah, Salt Lake City, UT).

[0090] Cloning vector pBluescript II KS (+/-) (Stratagene, La Jolla, CA) was cut with PstI and BamHI (Life Technologies, Gaithersburg, MD) and run on a low melting point 1% agarose gel (Sigma Chemical Company, St. Louis, MO). pBluescript KS was isolated from the gel to remove the segment of DNA between PstI and BamHI (the stuffer portion). hIL-2 was then ligated into pBluescript KS, by combining 0.5 units of T4 DNA Ligase (Boehringer Mannheim, GmbH, Germany), 5 µl hIL-2 gene (23 ng/µl) insert with 2 µl of cut pBluescript KS (150 ng/µl). DH5α™ Competent Cells (Life Technologies, Gaithersburg, MD) were transformed with the ligated cloning vector following the protocol in the package insert. Transformed DH5α™ E. coli was plated on ampicillin agar plates (100 µg/ml) for isolation. Selection of bacterial colonies expressing hIL-2 was performed using lacZ color selection of
recombinant phagemids. Sterile toothpicks were used to select individual white colonies. The colonies were then grown in LB media with ampicillin (100 μg/ml) for 16 h. A Qiagen™ Plasmid Midi kit (Valencia, CA) was used to isolate hIL-2/pBluescript KS. The insertion of intact hIL-2 gene was verified by DNA based PCR, using the primers (5′ TGC TGG ATT TAC AGA TGA TTT 3′) SEQ ID NO: 7, and (5′ CAC TTC CTC CAG AGG TTT G 3′), SEQ ID NO: 8. PCR was run for 32 cycles at 55° C annealing for 15 sec, 72° C extension for 30 sec resulting in a 155 base pair product, which was verified by direct sequencing.

[0091] **Removal of stop codon using PCR directed mutagenesis**

[0092] The stop codon in the IL-2 gene was identified. Primers were designed to remove this stop codon and add restriction sites BamHI (5′ GGA TCC 3′) SEQ ID NO: 5, on the sense strand and EcoRI (5′ GAA TTC 3′) SEQ ID NO: 6, on the antisense strand in order to facilitate insertion into a mammalian expression vector. The following primers were used (sense 5′ AGA ACT AGT GGA TCC GCA CCT ACT TCA AGT TCT 3′) SEQ ID NO: 9, and (antisense 5′ GTC AGG GAA TTC AGT CAG TGT TGA GAT GCT TTG 3′) SEQ ID NO: 10. PCR of hIL-2/pBluescript KS was performed using the following parameters: 30 cycles at 60° C annealing for 30 sec, 72° C extension for 120 sec, using Herculase™ Enhanced DNA Polymerase (Stratagene, La Jolla, CA). The resulting 423 bp PCR product was isolated from a 1% agarose gel as described above. Restriction enzymes BamHI and EcoRI were then used to digest the isolated hIL-2 gene. The digested hIL-2 PCR product was separated on a 1% agarose gel and isolated as previously described.

[0093] **Construction of a hIL-2 fusion gene containing a transmembrane domain of Fce-γ**

[0094] Fce-γ was chosen to donate a transmembrane domain based on a previously published study by El-Shami.11 HTAAA91 plasmid encoding Fce-γ was purchased from ATCC (Manassas, VA). The Fce-γ gene was excised from the plasmid using restriction enzymes BamHI and EcoRI. Ligation of Fce-γ and modified hIL-2 was performed under the following conditions: 0.5 units of T4 DNA Ligase (Boehringer Mannheim, GmbH, Germany), 5 μl of gel extracted Fce-γ, 2 μl of hIL-2 gene and 8 μl of DEPC treated water. DH5α™ Competent Cells were transformed with the ligation product and grown on ampicillin agar selection plates. The colonies were screened by PCR using primers spanning the fusion product of the IL-2 gene and the transmembrane region of Fce-γ (5′ TGC TGG ATT TAC AGA TGA TTT 3′) SEQ ID NO: 7, and (5′ CAC TTC CTC CAG AGG TTT G 3′) SEQ ID
NO: 8. PCR conditions were 32 cycles at 55°C annealing for 15 sec, 72°C C extension for 30 sec. The PCR products were run on a 1% agarose gel and colonies containing hIL-2/Fcε-γ (IL-2tm) fusion product were chosen for expansion and grown overnight in LB ampicillin broth and isolated with the Qiagen™ Plasmid Midi kit (Valencia, CA). The plasmids were sequenced using PCR based sequencing to verify proper insertion of hIL-2 and to ensure removal of the stop codon.

[0095] **Ligation of hIL-2/Fcε-γ fusion gene into the mammalian expression vector** pCMV2b

[0096] The pCMV2b (Stratagene, La Jolla, CA) expression vector was selected to maintain in frame transcription of the hIL-2/Fcε-γ gene. This vector contains a cytomegalovirus promoter along with neomycin and kanamycin resistance selection markers. pCMV2b is an N-terminal FLAG® tagging vector. The FLAG® protein was included to facilitate tracking of the fusion protein, using a FLAG specific antibody.

[0097] pCMV2b vector and hIL-2/Fcε-γ were cut with ApaI and BamHI (Life Technologies, Gaithersburg, MD) and gel isolated as previously described. Ligation of the vector and gene was performed under the following conditions: 1 unit of T4 DNA Ligase (Boehringer Mannheim, GmbH, Germany), 2 μl of ligation buffer (provided in kit), 14 μl of ApaI and BamHI cut pCMV2b, 2 μl of ApaI and BamHI cut hIL-2/Fcε-γ and 3 μl of DEPC treated water. DH5α™ Competent Cells (Life Technologies, Gaithersburg, MD) were transformed with the resulting plasmid and grown on agar plates containing 50 μg/ml kanamycin. The colonies were screened using the same screening procedure described previously. Lane 2 was isolated from the gel and sequenced using T3 and T7 based primers to verify proper insertion of hIL-2/Fcε-γ into the expression vector pCMV2b. pCMV2b + hIL-2/Fcε-γ is designated the IL-2tm vector.

[0098] **Transfection of IL-2tm and pCMV2b into murine tumor cells RD995**

[0099] RD995 was cultured in six-well plates at a concentration of 105 cells per well and allowed to adhere overnight. In order to determine the optimum Lipofectin and DNA concentrations, Lipofectin (1 mg/ml) (Life Technologies, Gaithersburg, MD) was used to transfect RD995 at the following volumes: 2 μl, 10 μl, and 20 μl along with either 1.0 μg or 2.0 μg of IL-2tm using the procedure described in the Lipofectin package insert. Cells transfected with pCMV2b empty vector served as a control. Optimum Lipofectin/DNA
concentration was determined based on the number of RD995 surviving selection with 800 µg/ml G418 (Sigma Chemical Company, ST. Louis, MO).

[00100] Screening for IL2tm and pCMV2b mRNA expression

[00101] Using predetermined optimal conditions, RD995 cells were transfected with IL-2tm (2 µg) or pCMV2b empty vector (Lipofectin 10 µl) and allowed to grow for one week. They were then transferred to 200 ml culture flasks (Corning Costar Corporation, Cambridge, MA) containing 30 ml of RPMI-1640 (BioWhittaker, Walkersville, MD) culture media supplemented with 5% fetal calf serum.

[00102] After expanding RD995 cultures for one week, 800 µg/ml G418 (Sigma Chemical Company, ST. Louis, MO) was added to cultures to select for tumor cells expressing the IL-2tm plasmid or the pCMV2b plasmid. Untransfected control cells were universally killed by this concentration of G418. Transfected cells were allowed to grow for an additional two to three weeks. Total RNA from 106 cultured cells was subsequently isolated using TRI reagent (Molecular Research Center, INC., Cincinnati, OH). In order to remove residual plasmid DNA, the isolated RNA was treated with 0.6 µl of DNAs (Life Technologies, Gaithersburg, MD) followed by phenol/chloroform extraction. Reverse transcription of mRNA was performed under the following conditions: 200 ng total RNA, 1.0 µl M-MLV-reverse transcriptase (200 units/µl), 1 hr incubation at 37°C. PCR was performed on the IL-2tm and pCMV2b cDNA using primers spanning the IL-2 gene and the transmembrane fusion domain as previously described.

[00103] Western blot analysis of IL-2tm protein expression in RD995 tumor cells

[00104] One million RD995 cells transfected with IL-2tm using (2.0 µg of IL-2tm and 10µl of Lipofectin) were grown in a six well plate containing 5 ml of RPMI-1640 culture media without G418. Tumor cells were harvested at days 1-5. One million harvested cells were washed twice in PBS and lysed in RIPA buffer containing protease inhibitors (phenylmethyl sulfonyl fluoride, 200 mM; aprotinin, 1 mg/ml; trypsin/chymotrypsin inhibitor, 1 mg/ml; leupeptin, 1 mg/ml; pepstatin A, 1 mg/ml) (Sigma Chemical Company, St. Louis, MO). The lysate was sonicated for 10 sec (on ice) and stored at −20°C until Western blot analysis was performed. Prior to blotting, samples were thawed and 50 µl of lysate was added to 50 µl of 2% SDS and boiled for 5 minutes. Twenty microliters of each sample was then applied to a 12.5% PAGE electrophoresis gel (run for 35 min at 200V) and transferred to Immobilon™-P membrane (Millipore, Bedford, MA). The membrane was blocked with 5% nonfat dry milk.
for 2 h. Subsequently, the membrane was washed with Tris-buffered saline-tween (TTBS) and incubated overnight with 1 µg/ml rabbit anti-IL-2 anti-serum (Santa Cruz Biotechnology, Santa Cruz, California) at 4 °C. The membrane was again washed with TTBS and incubated with 0.16 µg/ml peroxidase-conjugated anti-rabbit IgG antibody (Santa Cruz Biotechnology, Santa Cruz, California). Excess peroxidase was removed by washing the membrane with TTBS and with one final wash with TRIS-buffered saline (TBS). Finally, the membrane was soaked in Luminol Reagent (Santa Cruz Biotechnology, Santa Cruz, California) for one minute and exposed to X-ray film.

[00105] **Immunofluorescent antibody staining for membrane associated IL-2**

[00106] One million RD995 cells transfected with IL-2tm were washed twice in PBS and incubated one ice for 30 min with rabbit anti-IL-2 antiserum (10 µg/ml) (Santa Cruz Biotechnology, Santa Cruz, California) or with monoclonal mouse anti-flag antibody (10 µg/ml) (Stratagene, La Jolla, CA). Cells were then washed with cold PBS+1% sodium azide and incubated for 30 min with anti-rabbit Alexa 568 (10 µg/ml) (Molecular Probes, Eugene, OR) or with anti-mouse Alexa 488 (10 µg/ml), respectfully. Parental RD995 cells and RD995 transfected with empty vector were similarly stained as negative controls. The cells were permeablized with 0.1% Triton X-100 (Bio-Rad, Richmond, CA) and 0.1% sodium citrate buffer incubated on ice for two minutes. After permeablizing the cell membrane, TO-PRO3™ (1 µM) (Molecular Probes, Eugene, OR) was added to stain the nucleus. Cells were then fixed in 1% paraformaldehyde for 30 min at room temperature. An Olympus Fluoview 200 laser scanning confocal microscope was used to visualize the subcellular localization of IL-2 in cells.

[00107] **Evaluation of growth of RD995 cells transfected with IL-2tm in C3H/HEN mice**

[00108] RD995 is a murine spindle cell skin cancer derived from an UV-irradiated C3H/HEN mouse. Groups of ten C3H/HEN mice (Charles River Laboratories, Wilmington, MA) were implanted subcutaneously with 106, 5 x 105 or 105 IL-2tm transfected RD995. Equivalent numbers of pCMV2b transfected tumor cells or parental tumor cells were implanted to serve as a control. The maximum cross sectional dimensions of each tumor were measured every other day with calipers and the area of the tumor was calculated.

[00109] **PCR analysis of IL-2tm gene expression in excised RD995 tumors**
[00110] On day 40 of tumor growth, mice were sacrificed and tumors excised to evaluate for IL-2tm gene persistence. Total RNA was extracted using TRI reagent and RT-PCR was performed using IL-2tm primers that spanning the fusion gene product as previously described.

[00111] Tritiated thymidine ([3H]-Tdr) uptake by transfected RD995 tumors in vitro

[00112] In order to measure whether IL-2tm transfection altered tumor proliferation, 105 RD995 tumor cells (transfected either with IL-2tm, pCMV2b or 105 non-transfected RD995) were placed into each well of a 96-well tissue culture plate (24 replicates). Cells were incubated with 10 μl of [3H]-Tdr (50 μCi/ml) per well (NEN™ Life Science Products, Boston, MA) at 37° C for 48 hours. A PHD™ Cell harvester (Cambridge Technology Inc., Cambridge, MA) was used to harvest cellular DNA onto glass fiber filters (Gelman Sciences Inc., Ann Arbor, MI) and to wash away unincorporated [3H]-Tdr. The filter paper was allowed to air dry at room temperature for 4 hrs, placed in 2 ml of scintillation fluid (Perkin Elmer Life Sciences, Boston, MA) and counted for one minute/sample on a 2500 TRI-CARB liquid scintillation analyzer (Perkin Elmer Life Sciences, Boston, MA).

[00113] Evaluation of biologic activity of IL-2tm using the IL-2 dependent cell line CTLL-20

[00114] In order to test whether the tumor cell expressed IL-2tm protein was biologically active, IL-2tm transfected tumor cells were lysed and added to the IL-2 dependent T cell line CTLL-20. Lysis of 5 X 10^6 RD995 cells transfected with IL-2tm or pCMV2b was accomplished by snap freezing in liquid nitrogen. The membrane portion of the lysate was separated from the cytosol by centrifugation for 15 min at 12,000 x g. The cytosol portion was placed into another tube and the membrane portion was reconstituted in an equivalent volume (0.5 ml) of RPMI media. One hundred microliters of membrane lysate or cytosol lysate (serial two-fold dilutions) were placed into a 96 well plate (in triplicate). One hundred thousand CTLL-20 cells were added to each well. CTLL-20 is an IL-2 dependent cell line derived from a C57BL/6 mouse (gift from D. Keith Bishop, University of Michigan Medical School). Prior to starting this experiment, IL-2tm expression in transfected RD995 cells was verified using RT-PCR and primers that span the IL-2 gene and transmembrane domain as previously described. A positive control consisted of serial dilutions of 200 IU recombinant hIL-2 (Chiron, Emeryville, CA). The plates were allowed to incubate at 37° C for 48 hours,
and then each well was pulsed with 10 µl of [3H]-TdR (50 µCi/ml) for 24h. After harvesting, samples were evaluated by scintillation counting.

[00115] The present invention may be embodied in other specific forms without departing from its structures, methods, or other essential characteristics as broadly described herein and claimed hereinafter. The described embodiments are to be considered in all respects only as illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
CLAIMS

1. A fusion protein comprising human interleukin-2 and a transmembrane domain of a protein, wherein the fusion protein enhances the activation of cytotoxic tumor-infiltrating lymphocytes within tumors.

2. The fusion protein of claim 1, wherein the transmembrane domain of the fusion protein is derived from a subunit of the FC epsilon receptor.

3. The fusion protein of claim 2, wherein the transmembrane domain of the fusion protein is a transmembrane domain of the FC epsilon-gamma receptor subunit.

4. The fusion protein of claim 2, further comprising a tagging protein.

5. The fusion protein of claim 4, wherein the tagging protein is FLAG.

6. A nucleic acid molecule encoding the fusion protein of claim 1.

7. The nucleic acid molecule of claim 6, wherein the nucleic acid molecule comprises the nucleotide sequence of SEQ ID NO: 2.

8. The fusion protein of claim 1, having the sequence of SEQ ID NO: 11.

9. The fusion protein of claim 1, having the sequence of SEQ ID NO: 12.

10. An expression vector comprising a nucleotide sequence encoding the fusion protein of claim 1.

11. The expression vector of claim 10, wherein the transmembrane domain of the fusion gene encoded by the expression vector is derived from a subunit of the FC epsilon receptor

12. The expression vector of claim 11, wherein the transmembrane domain of the fusion gene is a transmembrane domain of FC epsilon-gamma.
13. The expression vector of claim 10, wherein the nucleotide sequence further encodes a tagging protein.

14. The expression vector of claim 13, wherein the tagging protein is FLAG.

15. The expression vector of claim 14, including the sequence of SEQ ID NO: 13.

16. The expression vector of claim 10, further comprising an enhancer.

17. The expression vector of claim 16, including the sequence of SEQ ID NO: 15.

18. A method of producing a polypeptide having the sequence of SEQ ID NO: 11 in a cell comprising:
 providing an expression vector encoding SEQ ID NO: 11;
 introducing the expression vector into a cell; and
 maintaining the cell under conditions permitting expression of SEQ ID NO: 11 in the cell.

19. The method of claim 18, wherein the expression vector includes the nucleotide sequence of SEQ ID NO: 1.

20. The method of claim 18, wherein a transmembrane domain of SEQ ID NO: 11 encoded by the expression vector is derived from a subunit of the FC epsilon receptor.

21. The method of claim 20, wherein the transmembrane domain of SEQ ID NO: 11 encoded by the expression vector is a transmembrane domain of FC epsilon-gamma.

22. The method of claim 18, wherein the expression vector includes the nucleotide sequence of SEQ ID NO: 13.

23. The method of claim 18, wherein the expression vector is a mammalian expression vector.

24. The method of claim 23, wherein the expression vector is pCMV2b.
25. The method of claim 18, wherein the expression vector further encodes an indicator protein.

26. The method of claim 25, wherein the indicator protein is FLAG.

27. A method of producing a polypeptide having the sequence of SEQ ID NO: 12 in a cell comprising:
 providing an expression vector encoding SEQ ID NO: 12;
 introducing the expression vector into a cell; and
 maintaining the cell under conditions permitting expression of SEQ ID NO: 12 in the cell.

28. The method of claim 27, wherein the expression vector includes the nucleotide sequence of SEQ ID NO: 1.

29. The method of claim 27, wherein a transmembrane domain of SEQ ID NO: 12 encoded by the expression vector is derived from a subunit of the FC epsilon receptor.

30. The method of claim 29, wherein the transmembrane domain of SEQ ID NO: 12 encoded by the expression vector is a transmembrane domain of FC epsilon-gamma.

31. The method of claim 18, wherein the expression vector includes the nucleotide sequence of SEQ ID NO: 15.

32. The method of claim 27, wherein the expression vector is a mammalian expression vector.

33. The method of claim 32, wherein the expression vector is pcDNA3.1(+/-).

34. The method of claim 27, wherein the expression vector further encodes an enhancer.

35. A method of treating cancer comprising the steps of introducing into a cancer cell an expression vector encoding a polypeptide selected from the group consisting of SEQ ID NO: 11 and SEQ ID NO: 12 and maintaining the cell under conditions permitting...
the expression of the polypeptide in the cell, wherein expression of the polypeptide in the cell and its subsequent presentation on the cells surface activates tumor infiltrating lymphocytes.

36. A method of treating cancer in a patient comprising the step of introducing into the vicinity of a cancer cell in the patient an expression vector encoding a polypeptide selected from the group consisting of SEQ ID NO: 11 and SEQ ID NO: 12, wherein expression of the polypeptide in the cell and its subsequent presentation on the cells surface activates tumor infiltrating lymphocytes.
Figure 1
Figure 2
Figure 3

CACAAACAGTGCACCTACTTCAAGTTCTACAAAAGGAAACACAGCTACAACCTGGAG
CATTACTGCTGGATTACAGATGATTGGATTTGAATGGAATTATAATTACAAGAAATCC
CAAACCTACACCAGTGCTCACATTTAAGTTTACATGCCAAGAGGACACAGAATGC
TAGCTCAAAGCAAAAACCTTCTAGAATAACAGGGACTTAATACAGCAATATCAA
CGTAATAGTTCTGGAACCTAAAGGGATCTGAACAAACATTCTGTTGGAATATGCTG
ATGAGACAGCAACATTTGAGAATTTCTGAAACAGATGGATTACCTTTTGCTCAAGC
ATCATCTCAAACACTGACTTAAGTAATTTAGCTTTCCCACCTAAAACATATCAGGGA
TCTCGACTCTAGAGGATCAAC
Figure 4
TCCGCAACTCTTTCAAGTTCTACAAAGAAAAACACAGCTACAACCTGGAGGAGCTTTA
CTGCTGGATTTACAGATGATTTAGATAATTAATTACAAGAtATCCCAAAC
CACCAGGATGCTCACATTTAAAGTTTACATGGCCACAGAGAGCCACAGAAC
ATCTTCAATGTCTAAGAGAGACTCACAACCTCTGGAGAGAATGCTAAAATTAGCT
CAAGCAAAAACCTTTCACTTAAAGACCCAGGACTTAAATCAGCAATATCAACGTAAT
AGTTCTGGAACCTAAAGGGATCTGAAACACATTCATGTGTGAAATATGCTGATGAGA
CAGCAAACCATTGTAAGATTCTGAAACAGATGGAATACCTTTTGCTAAAGCATCTCA
ACACTGACTGAATTGCAGGACAGGCGGATCTCCAGCCAGATGATGCCACCA
GTGGTCTTGCTCCTACTCCCTTGTGGTGAACAGACAGCGGCCCCTGGGAGAGCCTCA

Figure 5
TGGAGCTCCCGCCTGGGCTGGCCTCCCCATGGATACAAAGGATGACCGCATACGAAAG
CCCGGCCGAGCTCGACTTACTTAACTAAGTAAAGAAAACACAGCTCAACTGAGC
ATTATTAGCTTGAGTTAACAGATGATTTTGAATGGAATTAATAATTACAAAGAATCCCCAAC
TCAACAGGATGCTCTTAAATTTACTACATGCTGCTAACGAGACAGCTTAAAGTTCTAGATG
CTTCAGTGTCTAGAACAGAGAACACTCACCACCCCTCGAGAGAGTGTCTAAATGCTAACA
GGAAATAAGGATGACGATATGTTGAGATATGCTGAGTAGACGACACACATT
GTGAATTTGCTGAAACAGACCTGGAGTAACCCTAGCTGACATACCTGCAACTGAGAATTT
GGCAAGCGGCACTTTAACCAGCTATAGAGAAATCAAGATGTTGTTTACACGGGCGTACGAC
CGAAGAACACGAGGATAGCTGAGTGAACAGGAGAACACAGCTGGAACACAGTCAACTTGAA
AATAGAGTCTGGGTACATATTTCTTCTTTGGGTCTCTTGCTTCTTCTTCTCCCTTCAAGGATC
ACATATGGCTGCATGCCATTTAAACACAGCTGGGCTACTACCCCTATGATGTGACTCTC
TAAATTATATACACCCAGNGGTGCTGAGCTCCGCACGGTCCGGCGCCGCCACCTGATT
ACAAGGATGACGACGATAAAGGCGCGGTGGGAATACCCCTCCACCTCTCTCTCTCTCTCT
CAGTTCTACAAGAAGAAAACACAGCATTACACTGAGACATTTACTGCTGAGATTTACCAGAT
ATTGTGATGGAAATTTAAAT
TACAAAGAACATCCCAAATCCACCAGGATGTCACATTTAAGTTTTACATGCTAAGCAGAC
CACAGAATTGAAATTTAAAT
GTGCTCTAGAAAGAAGAACACTCAAACCTCTGGAGGAAGTGCTGAATTTATGCTAAGCAGAC
ACCTATACGGAATATCGTAATAGTTCTGGAACATAAAGGATCTGGAACACACATT
CTCGTGAATATGCTTGAAG
ACAGCAACCATTGTGAATTTCTGAAACAGATGAGTATACCTTTTGTCAAAGCATCTCAACA
CTGACTGTAATTCCGGAGCAG
GGCGATCTCCACGCCCAGATGGATTCCAGCAGTGGCTTGCTCTTACTCTCTCTTGGTTGA
ACAAAGCAGGGCAGCCAAAT
AGGCCTCAGCTGCTATATCCGTGATGCCCCACCTCTCCTTTCTGATGGAATTTGCTCTACCCCT
CCTCTACTGTCGACTGAAG
ATCCAAAGTGAGAAGGCGCTAATACAGCTATGAAGAAATCAGATGTTGTTTACACGGG
CCTGAGACAGGAAACAG
GACTTACAAAGACTGTGAGAGCATGAGAAACACACACAGTGGCTTTGGAATAGGATGGCGGC
ATATTTCCTTTGGCTTCTTG
GTCNTNCAGCGCCTATGGGGTGGCAGTACATATGCTGCTGCTGCATATACCCACAGCTGGGC
CTACCCTATATGCGATCCT
GNGTCCAAATTATATACACCCAGNCGTGC

Figure 6
Figure 7
<table>
<thead>
<tr>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 kD</td>
<td>18 kD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 kD</td>
<td>27 kD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45 kD</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8
Figure 9
Title: IL-2 Transmembrane Constructs
Inventors: Wolfram Samlowski, Nathan Bradley Adams, John McGregor
Docket No.: 1321.2.84

Figure 10
Figure 11
Figure 12
Figure 13
Title: IL-2 Transmembrane Constructs
Inventors: Wolfram Samlowski, Nathan Bradley Adams, John McGregor
Docket No.: 1321.2.84

14/22

<table>
<thead>
<tr>
<th>1</th>
<th>GCTGGAGCTC</th>
<th>CCCGCCGGTGG</th>
<th>CCCGCCGCC</th>
<th>TGGAATTACA</th>
<th>AGGATGAGGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>CGATAAGAGC</td>
<td>CCGGCCGGAT</td>
<td>CCGACCTAC</td>
<td>TTTCTGCTCT</td>
<td>ACAAGAAAAA</td>
</tr>
<tr>
<td>101</td>
<td>CACAGCTACA</td>
<td>ACTGGAGCAG</td>
<td>TTACTGCTGG</td>
<td>ATTTACAGAT</td>
<td>GATTTGGAAT</td>
</tr>
<tr>
<td>151</td>
<td>GAAATTAATA</td>
<td>ATTTAGAAGA</td>
<td>TCCCCAATCC</td>
<td>ACCAGGTGCC</td>
<td>TCACATTTTA</td>
</tr>
<tr>
<td>201</td>
<td>GTTTTTACATG</td>
<td>CCCCAGAAGG</td>
<td>CCACAGAAGT</td>
<td>GAACAGCTTT</td>
<td>CAGTGCCTAG</td>
</tr>
<tr>
<td>251</td>
<td>AAGAGAAGACT</td>
<td>CCACAACCCTG</td>
<td>GAGGAGAGTC</td>
<td>TTTAATTAAC</td>
<td>TCAAAGCAAA</td>
</tr>
<tr>
<td>301</td>
<td>AACTTTCACCT</td>
<td>TAGAGCCCAT</td>
<td>GAGCTTAAATC</td>
<td>AGCAATATCA</td>
<td>ACCAATAGT</td>
</tr>
<tr>
<td>351</td>
<td>TCTGGAACTA</td>
<td>AAGGGATCTG</td>
<td>AAACACATT</td>
<td>CATGTTGAAA</td>
<td>TATGCTGATG</td>
</tr>
<tr>
<td>401</td>
<td>AGACAGCACAC</td>
<td>CATTGTAGAA</td>
<td>TTCTGGAACA</td>
<td>GATGGATTAC</td>
<td>CTTTTGTCAA</td>
</tr>
<tr>
<td>451</td>
<td>AGCATCTCAA</td>
<td>CACTGAACGA</td>
<td>ATTCGGCAGG</td>
<td>AGGCGGATTG</td>
<td>TCCAGGCCAA</td>
</tr>
<tr>
<td>501</td>
<td>GATGATTCGA</td>
<td>GCAGGTGGCT</td>
<td>TGCTCTTACT</td>
<td>CTTTGGAAAA</td>
<td>GAAACAGCAC</td>
</tr>
<tr>
<td>551</td>
<td>CGGCCCTGGG</td>
<td>AGAGCCCTAG</td>
<td>CTCGCTATA</td>
<td>TTCTGGATGC</td>
<td>CATCCTGTGT</td>
</tr>
<tr>
<td>601</td>
<td>CTCTTAGGAA</td>
<td>TTGGCTCTAC</td>
<td>CCTCTCTACT</td>
<td>TGCTGACGTA</td>
<td>AGATCCAGTT</td>
</tr>
<tr>
<td>651</td>
<td>CGCAAAGCGA</td>
<td>GCTATACCCA</td>
<td>GCTATGGAAG</td>
<td>ATACAGATGT</td>
<td>GTTTACCCGG</td>
</tr>
<tr>
<td>701</td>
<td>GCCCTGACAC</td>
<td>CGAGAACCGG</td>
<td>GAGCTTACGA</td>
<td>AGACTGTGAA</td>
<td>GCATGGAGAA</td>
</tr>
<tr>
<td>751</td>
<td>CCACCCATCG</td>
<td>AGCCTTACGA</td>
<td>TAGATCCNGG</td>
<td>CATATCTCTC</td>
<td>TTTGGCTCTC</td>
</tr>
<tr>
<td>801</td>
<td>GGGCTCTTCCA</td>
<td>GCCCTCATGG</td>
<td>GNGGCGATCA</td>
<td>CATATGCCTG</td>
<td>CATGCCATTN</td>
</tr>
<tr>
<td>851</td>
<td>ACACCGGCTG</td>
<td>GNCCCATCCC</td>
<td>TATAANGATC</td>
<td>CTGGTCCTTA</td>
<td>AATTAATATA</td>
</tr>
<tr>
<td>901</td>
<td>CACAGGGGGG</td>
<td>TTCTCTCTCTC</td>
<td>CTGTTTARANA</td>
<td>CTAC</td>
<td></td>
</tr>
</tbody>
</table>

Figure 14
Figure 15
<table>
<thead>
<tr>
<th></th>
<th>AGAPRGGGRP</th>
<th>WXYKDDDDKS</th>
<th>PGGSAFTSSS</th>
<th>TKKTQLQLEH</th>
<th>LLLLQMIILN</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>GINNYKNPKL</td>
<td>TRMLTFKFYM</td>
<td>PKKATELKHL</td>
<td>QCLEELKPL</td>
<td>EEVNLDAQSK</td>
</tr>
<tr>
<td>301</td>
<td>NFHLRPRLTI</td>
<td>SINIVVLELE</td>
<td>KGSETTFMCE</td>
<td>YADETATIVE</td>
<td>FNRWITFCQ</td>
</tr>
<tr>
<td>451</td>
<td>SISTLTETFGT</td>
<td>RADLPQKNIP</td>
<td>AVVLLLLLV</td>
<td>EQAALGEPQ</td>
<td>LCYLLDAILF</td>
</tr>
<tr>
<td>601</td>
<td>LYGIQTVTLLY</td>
<td>CRLKIQVRKAA</td>
<td>AIITSYKSDG</td>
<td>VYTGILSTRNQ</td>
<td>ETYKTLKREK</td>
</tr>
<tr>
<td>751</td>
<td>PPQ-L-NRCLX</td>
<td>HILLWLGLS</td>
<td>ALMGXHICL</td>
<td>HAIXTSWXYP</td>
<td>YKDPSX-INI</td>
</tr>
<tr>
<td>901</td>
<td>HQGVFPXXC-X</td>
<td>LX</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 16
CMV promoter 1–602
FLAG tag 682–705
multiple cloning site 707–780
SV40 polyA 857–1240
f1 origin 1378–1684
bla promoter 1709–1833
SV40 promoter 1853–2191
neomycin/kanamycin resistance ORF 2226–3017
HSV-TK polyA 3018–3476
pUC origin 3605–4272

pCMV-Tag 2B Multiple Cloning Site Region
(sequence shown 620–844)

T3 promoter
AA TTA ACG CTC ACT AAA GGG AAC AAA AGC TGG AGC TCC ACC GCG GTG GCG GCC GCC ACC ATG...

FLAG tag
D Y K D D D D D K

Srf I
Bam HI
Pst I
Eco RI

... GAT TAC AAG GAT GAC GAC GAT AAG AGC CCG GGA TCC CCC GGG CTG CAG GAA TTC...

Eco RV
Hind III
Acc I/Sac I
Xho I
Apa I

... GAT ATC AAG CTT ATC GAT ACC GTC GAC CTC GAG GGG CCC GGT ACC T...

T7 promoter
... TAA TAA TAA TAA GGT ACC AAG GTA CAC ACC CTA TAC TAG GAT GTC GGT TATTA

MULTIPLE STOP CODONS
Figure 13
IL-2 Transmembrane Constructs

Inventors: Wolfram Samlowski, Nathan Bradley Adams, John McGregor
Docket No.: 1321.2.84

Notes:
Modifications from IL-2TM include the following:

1. FC-gamma-epsilon has been truncated to include only one transmembrane domain

2. FLAG has been removed

3. Extra nucleotides in the multiple cloning site have been removed

4. IL-2+FC-gamma-epsilon has been inserted into a high expression vector that includes an enhancer for the CMV promoter

Figure 19
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>QLA SV-T-AW YRARI PATMA PTSSSTKKTQ LQLEHLLL DL QMILNGINNY</td>
</tr>
<tr>
<td>152</td>
<td>KNP KLTRHL TL FKYMPKKAT ELKHLQCLEE ELKPLEEV LN LAQSKNFHLR</td>
</tr>
<tr>
<td>302</td>
<td>PRLIS NINV IVLELKGS ET TMCEYAD ET ATIVEF LNWR ITFCQSI STL</td>
</tr>
<tr>
<td>452</td>
<td>TEGT RALQ PKMIPAVVL LLLLVEQ AAA LGE PQLCY TL DAILFLY GIV</td>
</tr>
<tr>
<td>602</td>
<td>LTLY CRDP LESRGPV-TR -SAST VPSSC QFSVCPF SV PSLTLEGXT P</td>
</tr>
<tr>
<td>752</td>
<td>TVLS--N EEI ASHCLSX CHS ILMGGVGAGQ QXGRIGK TIA GMX</td>
</tr>
</tbody>
</table>

Figure 20
AGAPRGGGRF WYKDDDDKS PGGSAPTSSS TKKTOLOLEH LLLDLQHILN
151 CINNYKNPKL TMLTPKFM PKKATELKL OCLEEELKPL BEVLALASQK
301 NFHLRPRDLI SNINIVLLEL KGSETTFMCE YADETATIVE FLNRWITFCQ
451 SISTLTFEGT RADLQPQMIP AVVLQLLQLV EQAAALGEPQ LCYILDAILF
601 LGIVLTLLY CRILIQVRKA AITSYEKSDG VYTGLSTRNQ EYKTTLKHEK
751 PPQ-L-NRCX HILLWLLGLS ALMGXHHICL BAIKTSWXYP YkDPXS-INI
901 BOGVPXXC-X LX

Figure 21
Figure 22
SEQUENCE LISTING

SAMLOWSKI, WOLFRAM
ADAMS, NATHAN B
MCGREGOR, JOHN R

IL-2 TRANSMEMBRANE CONSTRUCTS

U-3445/1321.2.84

60/452989
2003-03-07
60/452989
2003-03-07
15

PatentIn version 3.2

1

468
DNA
Homo sapiens

1
cacaaacagt gcacctacct caagtttctac aaagaaaca cagctacaac tggagcattt 60
actgtctggat ttacagatga tttgtaatgg aattaataat tacaagaatc ccaactcac 120
caggatgctc acatattaat tttcatgcct caagaagggc acagaactga aacatcttca 180
gttcttagaa gaagaactca aacctcttga ggaagtgcta aatttagctc aaagcaaaaa 240
ccttcactta agaccagggt acttaatcag caatatcaac gtaatagtgc tggactaaa 300
gggatctgaa aacaacttca tgtttagata tgttctgatg acagcaacca tgtttagaat 360
tctgaacaga tggattacct ttttgcaag ctcacatctca aacactgactt gataattaag 420
tgcttcccac tttaaacata tcaggtatctcgactctagaggaatcc 468

2

500
DNA
Artificial

Sequence of the hIL-2 + Fc EPSILON-GAMMA fusion gene construct.

2
tccgcaacctttatc tccaaagaaac acacagctac acatggagca tttactgctg 60
gatttacaga tggatttggaa tggatattaat aattacaaga atcacaacct caccaggggt 120
ctcacttta agttttctat gccaagaaggg aacccagaac gccacatctctcgactct 180
gagaagaacct tcaacatcctc gcagggaggt ctaaatattgc ctcacatccga aacattttt cac 240
ttaagaccca gcgtcttaaat cagcaatattc aacgcattag ttctggaact taaagggattct 300
gaacaacaatctc atatgtgtgatgacagcaca cattctgatg cttcttgactcact 360
gaattgattc gccttttctca aagcatctcc acactgactg aattcgccgac gaggccagct 420
tctccagccag aagctgtcagc ttctgatcctac tctttttggt gtaacaagcacagcatggcagt 480
gcggcctgg gagagcctca 500
Sequence of the hIL-2tm construct ligated in the proper reading frame into a pCMV2b mammalian expression vector.

3
1820
DNA
Artificial oligonucleotide

misc_feature
(778)..(778)
n is a, c, g, or t

misc_feature
(806)..(806)
n is a, c, g, or t

misc_feature
(871)..(871)
n is a, c, g, or t

misc_feature
(882)..(882)
n is a, c, g, or t

misc_feature
(905)..(905)
n is a, c, g, or t

misc_feature
(1688)..(1688)
n is a, c, g, or t

misc_feature
(1716)..(1716)
n is a, c, g, or t

misc_feature
(1781)..(1781)
n is a, c, g, or t

misc_feature
(1792)..(1792)
n is a, c, g, or t

misc_feature
(1815)..(1815)
n is a, c, g, or t

3
tggagctccc cgcggtgccc gcccgccccat ggattacaag gatgacgagc ataagagccc 60
ggcggatcc gcacctacct caagtctcag aaagaaaaa cagctacaac tggagcattt 120
actgctggat ttacagatga ttttgaatgg aattataaat tacaagaatc ccaaatctcag 180
caggatgcctc acatottaagt tt tacagct ccaagaagggc acagaaactgta aacatccttc

gtgcttagaa gaagaaactca aacctctgga ggaaggtgcta aatttagctc aaagcaaaaa

ccttcatcta agacccaggg acttaatcag caaatataac gtaatagttc tggaaactaaa

gggactgtaa acaacatctca tgtgtaata taegtgatgag acagcaccac ttggtagaat

tctgaacaca tagatcctct ttttaagaag cattacaaca ctgtgttagct ctggcagcag

gccgcatcctc agcagctgcc aatttttactg gattctagc ttttggctga

acaacactgc ccagctgggtg ccatttcctt gatgagccac cagaagcagc tgaaggggtc

tataaccgc tatgagaata cagagttgtc ttccacgggc ctgtacacca ggaagcaacg

gacatcaac accttgagcct atgagaaacc accacagtga cttttagata gatgagcggca

tatctctcatt gccctctgag gtcgagcttt cagcagttat ggcataatcag atgccccatc

gccatcacta cccgctggtgc ctactctcatt cagagttactg gntctctaaa ttcatacatc

cagcgggttc cattctctcc cagcagctttc cattctctcc cagcagctttc cattctctcc
tagagctgcc acaacagttcc ttagtgaata ttaggtgaag aacagcagtc

ttagagatt ctctgatttc atatggtaat ttaggtaat ttatagttcc ttaggtagatc

ccaaactcac caggatgcctc acatattaagtt tttaagagcc ccaagaagggc acagaaactgta aacatccttc

<210> 4
<211> 7
<212> DNA
<213> Homo sapiens

<400> 4
tataatt

<210> 5
<211> 6
<212> DNA

Page 3
Artificial sequence

PCR primer for incorporation of BamHI restriction site.

ggatcc

PCR primer for adding EcoRI restriction site.

gaattc

PCR primer used to confirm insertion of intact hIL-2.

tgctgatatt acagatgatt

PCR primer used to confirm insertion of intact hIL-2.

cacttcttcc agagttttg

PCR primer used to remove stop codon of the hIL-2 gene and add a BamHI restriction site.

agaactagtg gatccgacc tacttcaagt tct

PCR primer used to remove stop codon of the hIL-2 gene and add a EcoRI restriction site.

gtcaggggaat tcagtcagtg ttgagatagc ttgg
Artificial sequence

IL-2tm fusion protein sequence.

Xaa can be any naturally occurring amino acid

Xaa can be any naturally occurring amino acid
Xaa can be any naturally occurring amino acid

Ala Gly Ala Pro Arg Gly Gly Gly Arg Gly Pro Trp Xaa Tyr Lys Asp Asp
1 5 10 15

Asp Asp Lys Ser Pro Gly Gly Ser Ala Pro Thr Ser Ser Ser Thr Lys
20 25 30

Lys Thr Gln Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile
35 40 45

Leu Asn Gly Ile Asn Asn Tyr Lys Asn Pro Leu Thr Arg Met Leu
50 55 60

Thr Phe Lys Phe Tyr Met Pro Lys Ala Thr Glu Leu Lys His Leu
65 70 75 80

Gln Cys Leu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu
85 90 95

Ala Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn
100 105 110

Ile Asn Val Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met
115 120 125

Cys Glu Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg
130 135 140

Trp Ile Thr Phe Cys Gln Ser Ile Ser Thr Leu Thr Glu Phe Gly Thr
145 150 155 160

Arg Ala Asp Leu Gln Pro Lys Met Ile Pro Ala Val Val Leu Leu Leu
165 170 175

Leu Leu Leu Val Glu Gln Ala Ala Ala Leu Gly Glu Pro Gln Leu Cys
180 185 190

Tyr Ile Leu Asp Ala Ile Leu Phe Leu Tyr Gly Ile Val Leu Thr Leu
195 200 205

Leu Tyr Cys Arg Leu Lys Ile Gln Val Arg Lys Ala Ala Ile Thr Ser
210 215 220

Tyr Glu Lys Ser Asp Gly Val Tyr Thr Gly Leu Ser Thr Arg Asp Gln
225 230 235 240

Glu Thr Tyr Lys Thr Leu Lys His Glu Lys Pro Pro Gln Xaa Leu Xaa
245 250 255

Asn Arg Cys Xaa His Ile Leu Leu Trp Leu Leu Gly Leu Ser Ala Leu
Met Gly Xaa His His Ile Cys Leu His Ala Ile Xaa Thr Ser Trp Xaa
275
280
285

Tyr Pro Tyr Lys Asp Pro Xaa Ser Xaa Ile Asn Ile His Gln Gly Val
290
295
300

Pro Xaa Xaa Cys Xaa Xaa Leu Xaa
305
310

12
293
PRT
ARTIFICIAL SEQUENCE

IL-2tm2 protein sequence.

misc_feature
(6)...
Xaa can be any naturally occurring amino acid

misc_feature
(8)...
Xaa can be any naturally occurring amino acid

misc_feature
(218)...
Xaa can be any naturally occurring amino acid

misc_feature
(221)...
Xaa can be any naturally occurring amino acid

misc_feature
(248)...
Xaa can be any naturally occurring amino acid

misc_feature
(256)...
Xaa can be any naturally occurring amino acid

misc_feature
(267)...
Xaa can be any naturally occurring amino acid

misc_feature
(282)...
Xaa can be any naturally occurring amino acid

misc_feature
(293)...
Xaa can be any naturally occurring amino acid
<400> 12
GLn Leu Ala Ser Val Xaa Thr Xaa Ala Trp Tyr Arg Ala Arg Ile Pro
1 5 10 15

Ala Thr Met Ala Pro Thr Ser Ser Ser Thr Lys Thr GLn Leu GLn
20 25 30

Leu GLn His Leu Leu Leu Asp Leu GLn Met Ile Leu Asn Gly Ile Asn
35 40 45

Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr
50 55 60

Met Pro Lys Ala Thr GLu Leu Lys His Leu GLn Cys Leu GLu
65 70 75 80

GLu Leu Lys Pro Leu GLu GLu Val Leu Asn Leu Ala GLn Ser Lys Asn
85 90 95

Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val
100 105 110

Leu GLu Leu Lys Gly Ser GLu Thr Thr Phe Met Cys GLu Tyr Ala Asp
115 120 125

GLu Thr Ala Thr Ile Val GLu Phe Leu Asn Arg Trp Ile Thr Phe Cys
130 135

GLn Ser Ile Ser Thr Leu Thr GLu Phe Gly Thr Arg Ala Asp Leu GLn
145 150 155 160

Pro Lys Met Ile Pro Ala Val Val Leu Leu Leu Leu Leu Val GLu
165 170 175

GLn Ala Ala Ala Leu Gly GLu Pro GLn Leu Cys Tyr Ile Leu Asp Ala
180 185 190

Ile Leu Phe Leu Tyr Gly Ile Val Leu Thr Leu Leu Tyr Cys Arg Asp
195 200 205

Asp Pro Leu GLu Ser Arg Gly Pro Val Xaa Thr Arg Xaa Ser Ala Ser
210 215 220

Thr Val Pro Ser Ser Cys GLn Pro Ser Val Val Cys Pro Ser Pro Val
225 230 235 240

Pro Ser Leu Thr Leu GLu Gly Xaa Thr Pro Thr Val Leu Ser Xaa Xaa
245 250

Asn GLu GLu Ile Ala Ser His Cys Leu Ser Xaa Cys His Ser Ile Leu
260 265 270
Ile Ala Gly Met Xaa

290

<210> 13
<211> 934
<212> DNA
<213> Artificial Sequence

<220> Entire IL-2TM sequence.

<220>
<221> misc_feature
<222> (34)..(34)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (778)..(778)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (823)..(823)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (850)..(850)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (862)..(862)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (876)..(876)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (884)..(884)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (916)..(916)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (919)..(919)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (929)..(929)
<223> n is a, c, g, or t

<400> 13
gctggagcttc cccgcgggtgg cggccgcccc tggnattaca aggatgacga cgataagagc 60
cgggccgatc cgcacactac ttcaagttctt acaaaagaaaa caacagctaca acttggagcat 120
ttactgctgg atttacagat gatttttaaat ggaatttaa attacaagaa tcccaaactc 180
accagagatgc tcaacattttaa gttttacatg ccacaagaggg ccacagaactc gaaactatcct 240
cagtgcttag aagaagaact ccaacctcttg gaggaagtgac taaaatgtgct tcaagacaa 300
aacctttcact taagaccctag ggacttaatc acaataaatc acaataaatc tcttgaacta 360
aagggagtctg aaacacacatt catgttgtgaa tatgtgtgatg agacagcaac cattgtaga 420
tttctgaaca gatggattac cttttgtcaa agcatcctaa cactgaactga attggtggagc 480
agggccgatc tccagcccaa gatgattcga gcagtggttct tgctctttact cttttttgttt 540
gaacaagcag cggccctgaggg agagccctcag ttttggtctata tcttgattgctc catcctgtttt 600
cagggatgaa ttgtcctctac cccctctctac tgcagctgctga gatgcaagcgat ccgaagagcc 660
gctataacca gctatgagaa atcagatgtg gtattacaggg gccttagacag caggaaccag 720
gagaagctta aagactctgaa gccaggaaga gcacccactg agcctttagaa tagatgcnngg 780
catatgtcttc tttggtcctct ggtttctctca gcctctcatgg gtnggcatca catatgtgcctg 840
catgcccattn acacagcagc gnncctcccc tataangatc ctngttccta aattaataa 900
caccagggg ttcttntntnc ctgtttaanan ctac 934

<210> 14
<211> 309
<212> DNA
<213> Artificial Sequence

<220> FC receptor alpha transmembrane domain sequence from IL-2tm.

<400> 14
tgaatttggc acgaggcccg atctccagcc caaagatgatt ccagcagttg tcttgctcttt 60
actccttttt ggtaaacaag cagcggccctt ggaggacctt cgccctctgt atatccttgga 120
tgcaccctcgg tttctgtctag gatgagtctt caccctctct tcttgcacac gaaagatcca 180
agtgccgaaag gcagcttataa ccaagcttga gaaatcatgag ggtgttttaca cgggccctttag 240
caccaggaac cagggagcttt acaagactct ctgcagctgag aaccaccac ccagtgcttta 300
gaaaaag 309

<210> 15
<211> 880
<212> DNA
<213> Artificial Sequence

<220> IL-2TM2 nucleotide sequence.

<220> misc_feature
<222> (744).I(744)
<223> n is a, c, g, or t
misc_feature
(801)..(801)
\(n\) is a, c, g, or t

misc_feature
(845)..(845)
\(n\) is a, c, g, or t

misc_feature
(878)..(878)
\(n\) is a, c, g, or t

ccagctggct agcgtaataa ctttaagcttg gttcggagct cggatccccg ccacccatggc 60
acactctcaa agttctacaag aaaaaacca gctacaacctg gacgatttac tgctggattt 120
acagatgatt ttgaatggaa ttaataatta caagaatccc aaactcaacca ggtggtctcac 180
atattaagtttt tacatgcacca aagaagccac aagaactgaa catcttcgatg tctcagaaga 240
agaactcaca cctctgagag aagtgtcataa tttgctcaaa agaaaaaact ttcacttaag 300
acccaggagct ttaatcagca atatacaagct aatagttctg aacaaaaag gatctgaacac 360
aacatctcgttgatgaatgctgagagac agcaaccatt gtagaatattc tgaacagagatg 420
gattaccccttg tgcgaagaacct tcctacactgt gctgaatcct gccacagagg ccgatctcca 480
gcccaagatagttccagctt gttgcattcct gttctctcttt tttgttgaacc aagcagcgcc 540
ccctgccagag ctctcgactctgctgatccatcct ctgtctctgtg atgaaattgt 600
cctccaccctc ctctactgcac gtactgtgct gctctcgacttggtggttcgtcagcctcc 660
tgttgatgctctctgtgccttgatgtaa gtccttcgcc cctctccctgcctgctggttgagct 720
gccctctcctg aacctcagag ttgtctcctcc cactgctcctt tcttaataaa atgaggaatat 780
tgcctcgaggtcagtgagta ngttgctattcttatctggg ggtgggtggt ggcaggacaca 840
gcaangggg aggatttgaga agacaatagc aggcagctnct 880