

(19) **DANMARK**

(10) **DK/EP 2785940 T3**

(12)

Oversættelse af
europæisk patent

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **E 05 D 11/06 (2006.01)** **E 05 F 1/12 (2006.01)** **E 05 F 3/12 (2006.01)**
E 05 F 3/20 (2006.01)

(45) Oversættelsen bekendtgjort den: **2016-04-18**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2016-02-17**

(86) Europæisk ansøgning nr.: **13792484.1**

(86) Europæisk indleveringsdag: **2013-10-04**

(87) Den europæiske ansøgnings publiceringsdag: **2014-10-08**

(86) International ansøgning nr.: **IB2013059121**

(87) Internationalt publikationsnr.: **WO2014054029**

(30) Prioritet: **2012-10-04 IT VI20120250** **2012-10-04 IT VI20120249**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **In & Tec S.r.l., Via Guglielmo Oberdan 1/A, 25128 Brescia, Italien**

(72) Opfinder: **BACCHETTI, Luciano, Via della fonte 9/C, I-25075 Nave (BS), Italien**

(74) Fuldmægtig i Danmark: **Plougmann Vingtoft A/S, Rued Langgaards Vej 8, 2300 København S, Danmark**

(54) Benævnelse: **HÆNGSELINDRETNING TIL DØRE, SKODDER OG LIGNENDE**

(56) Fremdragne publikationer:

WO-A1-01/66894

WO-A1-03/067011

WO-A1-2006/025663

WO-A2-2011/055106

KR-A- 20060 021 588

KR-A- 20070 043 283

US-A- 1 200 538

DK/EP 2785940 T3

DESCRIPTION

Field of invention

[0001] The present invention is generally applicable to the technical field of the closing and/or control hinges for doors, shutters or like closing elements, and particularly relates to a hinge device for rotatably moving and/or controlling during closing and/or opening a closing element, such as a door, a shutter or the like, anchored to a stationary support structure, such as a wall or a frame.

Background of the invention

[0002] As known, hinges generally include a movable member, usually fixed to a door, a shutter or the like, pivoted onto a fixed member, usually fixed to the support frame thereof, or to a wall and/or to the floor.

[0003] From documents US7305797, EP1997994 and US2004/206007 hinges are known wherein the action of the closing means that ensure the return of the door in the closed position is not damped. From document EP0407150 is known a door closer which includes hydraulic damping means for damping the action of the closing means.

[0004] All these known devices are more or less bulky, and consequently they have an unpleasant aesthetic appeal. Moreover, they do not allow for adjustment of the closing speed and/or of the latch action of the door, or in any case they do not allow a simple and quick adjustment.

[0005] Further, these known devices have a large number of construction parts, being both difficult to manufacture and relatively expensive, and requiring frequent maintenance.

[0006] Other hinges are known from documents GB19477, US1423784, GB401858, WO03/067011, US2009/241289, EP0255781, WO2008/50989, EP2241708, CN101705775, GB1516622, US20110041285, WO200713776, WO200636044, US20040250377 and WO2006025663.

[0007] US20040250377 discloses the features of the preamble of claim 1.

[0008] These known hinges can be improved in terms of size and/or reliability and/or performance.

Summary of the invention

[0009] An object of the present invention is to overcome at least partly the above mentioned drawbacks, by providing a hinge device having high functionality, simple construction and low cost.

[0010] Another object of the invention is to provide a hinge device that allows a simple and quick adjustment of the opening and/or closing angle of the closing element to which it is coupled.

[0011] Another object of the invention is to provide a hinge device of small bulkiness that allows to automatically close even very heavy doors.

[0012] Another object of the invention is to provide a hinge device which ensures the controlled movement of the door to which it is coupled, during opening and/or during closing.

[0013] Another object of the invention is to provide a hinge device which has a minimum number of constituent parts.

[0014] Another object of the invention is to provide a hinge device capable of maintaining time the exact closing position over time.

[0015] Another object of the invention is to provide a hinge device extremely safe.

[0016] Another object of the invention is to provide a hinge device extremely easy to install. These objects, as well as others that will appear more clearly hereinafter, are achieved by a hinge device having the features of claim 1.

[0017] Advantageous embodiments of the invention are defined in accordance with the dependent claims.

Brief description of the drawings

[0018] Further features and advantages of the invention will appear more evident upon reading the detailed description of some preferred, non-exclusive embodiments of a hinge device according to the invention, which are described as non-limiting examples with the help of the annexed drawings, wherein:

FIG. 1 is an exploded view of a first embodiment of the hinge device 1;

FIGs. 2a and **2b** are respectively axonometric and axially sectioned views of the first embodiment of the hinge device 1 of FIG. 1, wherein the second tubular half-shell 13 is in the closed position;

FIGs. 3a and **3b** are respectively axonometric and axially sectioned views of the first embodiment of the hinge device 1 of FIG. 1, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 is substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12 and wherein the stop screw 90 is in the rest position;

FIG. 3c is an axially sectioned exploded view of some details of the first embodiment of the hinge device 1 of FIG. 1;

FIGs. 4a and **4b** are respectively axonometric and axially sectioned views of the first embodiment of the hinge device 1 of FIG. 1, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12 and wherein the stop screw 90 is in working position to block the sliding of the elongated element 60;

FIG. 4c is an axially sectioned enlarged view of some details of the first embodiment of the hinge device 1 of FIG. 1;

FIGs. 5a, **5b** and **5c** are respectively axonometric, axially sectioned and side views of the first embodiment of the hinge device 1 of FIG. 1, wherein the second tubular half-shell 13 is in the fully open position with the connecting plate 15 substantially coplanar with the connecting plate 14 of the first fixed tubular half-shell 12;

FIGs. 6a, **6b** and **6c** are axonometric views of the hinge device 1 of FIG. 1 which show the position of the pin 73 relative to both the bushing 80 and the pivot 50 respectively in the closed positions of FIGS. 3a and 3b, in the partially open position of FIGS. 4a and 4b and in the of fully open position of FIGS. 5a, 5b and 5c;

FIG. 7 is a partially exploded, broken axonometric view of the hinge device 1 of FIG. 1, which shows the coupling between the second movable tubular half-shell 13 and the bushing 80;

FIGs. 8a and **8c** are enlarged sectioned views of some details of the first embodiment of the hinge device 1 of FIG. 1, with respectively in **FIGs. 8b** and **8d** an enlargement of a first embodiment of the regulating member 130 respectively in the of work and rest positions;

FIG. 8e is a sectioned, enlarged and broken view of some details of the first embodiment of the hinge device 1 of FIG. 1, which shows the seat 108 of the channel 100;

FIG. 8f is an axonometric view of the regulating member 130 of FIG. 8a and 8b;

FIGs. 9a to **15c** are side views of some embodiments of the bushing 80, wherein for each embodiment of the latter two axonometric views show the position of the pin 73, the plunger member 30 and the elastic counteracting means 40 in the closed and fully open positions of the second tubular half-shell 13;

FIGs. 16 and **17** are axonometric views of some embodiments of the pivot 50, wherein the actuating passing-trough element 72 consists of a single helical portion 71', 71" having a constant inclination or helical pitch, the helical portion 71', 71" being wound respectively for 180° and 90° around the axis X;

FIGs. 18a to **18c** are further side views of another embodiment of the bushing 80, which show two axonometric views of the position of the pin 73, the plunger member 30 and the elastic counteracting means 40 in the closed and fully open positions of the second tubular half-shell 13;

FIGs. 19a to 19d are further side views of another embodiment of the bushing 80, which show three axonometric views of the position of the pin 73, the plunger member 30 and the elastic counteracting means 40 in the closed, partially open and fully open positions of the second tubular half-shell 13;

FIG. 20 is an exploded axonometric view of a third embodiment of the hinge device 1, wherein the hydraulic circuit 100 is partially located within the end cap 27;

FIGs. 21a, 21b and 21c are axially sectioned views of the hinge device 1 of FIG. 20 respectively in the closed, partially open with the stop screw 90 in the working position and completely open positions;

FIG. 22 is an exploded view of an embodiment which does not form part of the invention;

FIGs. 23a and 23b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 22, wherein the second tubular half-shell 13 is in the closed position;

FIGs. 24a and 24b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 22, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12;

FIGs. 25a and 25b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 22, wherein the second tubular half-shell 13 is in the fully open position with the connecting plate 15 substantially coplanar with the connecting plate 14 of the first fixed tubular half-shell 12;

FIG. 26 is an exploded view of an embodiment which does not form part of the invention;

FIGs. 27a and 27b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 26, wherein the second tubular half-shell element 13 is in the closed position;

FIGs. 28a and 28b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 26, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12;

FIGs. 29a and 29b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 26, wherein the second tubular half-shell 13 is in the fully open position with the connecting plate 15 substantially coplanar with the connecting plate 14 of the first fixed tubular half-shell 12;

FIG. 30 is an exploded view of a sixth embodiment of the hinge device 1;

FIGs. 31a and 31b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 30, wherein the second tubular half-shell 13 is in the closed position;

FIGs. 32a and 32b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 30, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12 and wherein the stop screw 90 is in the rest position;

FIGs. 33a and 33b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 30, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12 and wherein the stop screw 90 is in the working position to block the sliding of the elongated element 60;

FIGs. 34a, 34b and 34c are respectively axonometric, axially sectioned and side views of the embodiment of the hinge device 1 of FIG. 30, wherein the second tubular half-shell 13 is in the fully open position with the connecting plate 15 substantially coplanar with the connecting plate 14 of the first fixed tubular half-shell 12;

FIG. 35 is an axonometric view of a seventh embodiment of the hinge device 1;

FIG. 36 is a partially exploded axonometric view of the seventh embodiment of the hinge device 1;

FIG. 37 is a top view of the embodiment of FIG. 35 wherein the hinge device 1 has the second tubular half-shell 13 is in the closed position;

FIGs. 38a and 38b are axonometric views of the hinge device 1 of FIG. 36, which respectively show the relative position of the connecting plates 14, 15 and the positions of the pin 73, the plunger member 30 and the elastic counteracting means 40 in the position shown in FIG. 37;

FIG. 39 is a top view of the embodiment of FIG. 35 wherein the hinge device **1** has the second tubular half-shell **13** in a partially open position;

FIGs. 40a and **40b** are axonometric views of the hinge device **1** of FIG. 36, which respectively show the relative position of the connecting plates **14, 15** and the positions of the pin **73**, the plunger member **30** and the elastic counteracting means **40** in the position shown in FIG. 39;

FIG. 41 is a top view of the embodiment of FIG. 35 wherein the hinge device **1** has the second tubular half-shell **13** in the fully open position;

FIGs. 42a and **42b** are axonometric views of the hinge device **1** of FIG. 36, which respectively show the relative position of the connecting plates **14, 15** and the positions of the pin **73**, the plunger member **30** and the elastic counteracting means **40** in the position shown in FIG. 41;

FIGs. 43a and **43b** are enlarged sectional views of some details of the embodiment of the hinge device **1** of FIG. 20;

FIGs. 44a, 44b and **44c** are side, sectioned along a plane **XL/V - XL/V** and axonometric sectioned as above views of the end cap **27**;

FIGs. 45a and **45b** are axonometric views of another embodiment of the bushing **80**;

FIGs. 46a and **46b** are axonometric views of a further embodiment of the bushing **80**;

FIGs. 47a to **47e** are axonometric views of a hinge device **1** which includes the embodiment of the bushing **80** of FIGs. 46a and 46b wherein the pin **73** is in several positions along the cam slots **81**;

FIGs. 48a and **48b** are enlarged sectioned views of some details of a hinge device **1** that includes a second embodiment of the regulating member **130** respectively in the work and rest positions;

FIG. 49 is an axonometric view of the second embodiment of the regulating member **130** of FIGs. 48a and 48b;

FIG. 50 is an axonometrically sectioned view taken along a plane **L - L** in FIG. 49.

Detailed description of some preferred embodiments

[0019] With reference to the above figures, the hinge device according to the invention, generally indicated with **1**, is particularly useful for rotatably moving and/or controlling a closing element **D**, such as a door, a shutter, a gate or the like, which can be anchored to a stationary support structure **S**, such as a wall and/or a door or window frame and/or a support pillar and/or the floor.

[0020] Depending on the configuration, the hinge device **1** according to the invention allows only the automatic closing of the closing element **D** to which it is coupled, as shown in FIGs. 30 to 34c, or also the control during opening and/or closing thereof, as shown for example in FIGs. 1 to 5c.

[0021] In general, the hinge device **1** includes a fixed element **10** anchored to the stationary support structure **S** and a movable element **11** which may be anchored to the closing element **D**.

[0022] In a preferred, not exclusive embodiment, the fixed element **10** may be positioned below the movable element **11**.

[0023] The fixed and movable elements **10, 11** include a respective first and second tubular half-shell **12, 13** mutually coupled each other to rotate about a longitudinal axis **X** between an open position, shown for example in FIGs. 3a to 5c, and a closed position, shown for example in FIGs. 2a and 2b.

[0024] Suitably, the fixed and movable elements **10, 11** may include a respective first and second connecting plates **14, 15** connected respectively to the first and second tubular half-shell **12, 13** for anchoring to the stationary support structure **S** and the closing element **D**.

[0025] Preferably, the hinge device **1** can be configured as an "anuba"-type hinge.

[0026] Advantageously, with the exception of connecting plates 14, 15, all other components of the hinge device 1 may be included within the first and second tubular half-shells 12, 13.

[0027] In particular, the first tubular half-shell 12 may be fixed and include a working chamber 20 defining the axis X and a plunger member 30 sliding therein. Appropriately, the working chamber 20 can be closed by a closing cap 27 inserted into the tubular half-shell 12.

[0028] As better explained later, the first fixed tubular half-shell 12 may further include a working fluid, usually oil, acting on the piston 30 to hydraulically counteract the action thereof. The first tubular shell 12 includes elastic counteracting means 40, for example a helical compression spring 41, acting on the same plunger member 30.

[0029] Suitably, externally to the working chamber 20 and coaxially therewith a pivot 50 is provided, which may advantageously act as an actuator, which includes an end portion 51 and a tubular body 52. Advantageously, the pivot 50 is supported by the end portion 16 of the first fixed tubular half-shell 12.

[0030] The end portion 51 of the pivot 50 will allow the coaxial coupling between the same and the second movable tubular half-shell 13, so that the latter and the pivot 50 unitary rotate between the open and the closed positions of the second movable tubular half-shell 13.

[0031] To this end, in a preferred, not exclusive embodiment, the end portion 51 of the pivot 50 may include an outer surface 53 having a predetermined shape which is coupled, preferably in a removable manner, with a countershaped surface 17 of the second movable tubular half-shell 13.

[0032] In a preferred, not exclusive embodiment, shown for example in FIG. 7, the shaped surface 53 may include a plurality of axial projections, susceptible to engage corresponding recesses of the countershaped surface 17.

[0033] Preferably, the shaped surface 53 of the pivot 50 and the countershaped surface 17 of the second tubular half-shell 13 may be configured so as to allow the selective variation of the mutual angular position thereof.

[0034] In this way, it will be possible to change the mutual angular position of the connecting plates 14, 15 according to needs in such a manner that, for example, they may be perpendicular to each other in the closed position of the closing element D, as shown e.g. in FIG. 38th.

[0035] Suitably, the plunger member 30 and the pivot 50 are operatively connected to each other through the elongated cylindrical element 60, so that the rotation of the latter about the axis X corresponds to the sliding of the former along the same axis X and vice-versa.

[0036] To this end, the elongate element 60 includes a first cylindrical end portion 61 inserted within the working chamber 20 and mutually connected with the plunger member 30 and a second end portion 62 external to the working chamber 20 and sliding within the tubular body 52 of the pivot 50.

[0037] The connection between the elongate cylindrical element 60 and the plunger member 30 may be susceptible to make unitary these elements, so that they may define a slider movable along the axis X.

[0038] Advantageously, the tubular portion 52 of the pivot 50 may have an internal diameter D_i' substantially coincident with the diameter D''' of the elongated cylindrical element 60.

[0039] The elongated cylindrical element 60 is slideable along the axis X unitary with the plunger member 30. In other words, the elongated cylindrical element 60 and the pivot 50 are coupled together in a telescopic manner.

[0040] Moreover, as better explained later, depending on the configuration of the guide cam slots 81 of the bushing 80 the cylindrical elongated element 60 with its plunger member 30 may or may not be rotatably locked in the working chamber 20 to prevent rotation around axis X during its sliding along the latter.

[0041] Therefore, the plunger member 30 slides along the axis X between an end-stroke position proximal to the pivot 50, corresponding to one of the open and closed position of the second movable tubular half-shell 13, and an end-stroke position distal from the pivot 50, corresponding to the other of the open and closed position of the second movable tubular half-shell 13.

[0042] To allow the mutual movement between the plunger member **30** and the pivot **50**, the tubular body **52** of the latter includes at least one pair of grooves **70', 70"** equal to each other angularly spaced by 180°, each comprising at least one helical portion **71', 71"** wound around the axis **X**. The grooves **70', 70"** are communicating with each other to define a single passing-through actuating member **72**.

[0043] In FIGs. 16 and 17 an embodiment of passing-through actuating member **72** is shown.

[0044] Suitably, the at least one helical portion **71', 71"** may have any inclination, and may be right-handed, respectively left-handed. Preferably, the at least one helical portion **71', 71"** may be wound for at least 90° around the axis **X**, and even more preferably for at least 180°.

[0045] Advantageously, the at least one helical portion **71', 71"** may have a helical pitch **P** of 20 mm to 100 mm, and preferably of 30 mm to 80 mm.

[0046] In a preferred, not exclusive embodiment, each of the grooves **70', 70"** may be formed by a single helical portion **71', 71"** which may have constant inclination or helical pitch.

[0047] Conveniently, the actuating member **72** may be closed at both ends so as to define a closed path having two end blocking points **74', 74"** for the pin **73** sliding therethrough, the closed path being defined by the grooves **71', 71"**.

[0048] Irrespective of its position or configuration, the rotation of the actuating member **72** around the axis **X** allows the mutual movement of the pivot **50** and the plunger member **30**.

[0049] To guide this rotation, a tubular guide bushing **80** external to the tubular body **52** of the pivot **50** and coaxial thereto is provided. The guide bushing **80** includes a pair of cam slots **81** angularly spaced by 180°.

[0050] To allow the mutual connection between the pivot **50**, the elongated element **60** and the guide bushing **80**, the second end portion **62** of the elongated element **60** includes a pin **73** inserted through the passing-through actuating member **72** and the cam slots **81** to move within them.

[0051] Therefore, the length of the pin **73** may be such as to allow this function. The pin **73** may also define a axis **Y** substantially perpendicular to the axis **X**.

[0052] As a consequence, upon rotation of the passing-through actuating member **72** the pin **73** is moved by the latter and guided by the cam slots **81**.

[0053] As already described above, the end portion **16** of the first tubular half-shell **12** is capable of supporting the pivot **50**. The bushing **80**, coaxially coupled with the latter, is unitary coupled with the first tubular half-shell **12**, preferably at the same end portion **16**, so as to allow the coupling of the first and second tubular half-shell **12, 13**.

[0054] Advantageously, the tubular portion **52** of the pivot **50** may have an external diameter **De'** less than or possibly substantially coincident with the internal diameter **Di"** of the bushing **80**.

[0055] Moreover, the end portion **16** of the first tubular half-shell **12** may further include a substantially annular appendix **18** having outer diameter **De** greater than or substantially coincident with the external diameter **De'** of the tubular portion **52** of the pivot **50**, and therefore less than or substantially coincident with the internal diameter **Di"** of the bushing **80**.

[0056] The substantially annular appendix **18** may further have an internal diameter **Di** substantially coincident with the inner diameter **Di'** of the tubular portion **52** of the pivot **50**, and therefore substantially coincident with the diameter **D"** of the elongated cylindrical element **60**.

[0057] More particularly, the substantially annular appendix **18** may further include a lower surface **21** defining the upper wall of the working chamber **20**, an upper surface **19'** facing the lower portion **54** of the tubular portion **52** of the pivot **50**, an inner side surface **19"** facing the side wall **63** of the elongated element **60** and a cylindrical outer side surface **19'''** facing the inner side wall **83** of the bushing **80** for the unitary coupling thereof with the first tubular half-shell **12**. To this end, for example, the wall **19'''** may be threaded, while the corresponding coupling portion **85** of the inner wall **83** may be counterthreaded.

[0058] Preferably, the second half-shell 13 may have a tubular inner side wall 13' facing the outer side wall 82 of the bushing 80 when the same second tubular half-shell 13 is coupled to the first tubular half-shell 12.

[0059] Thanks to one or more of the above features, the hinge device 1 has high performance while being extremely simple to manufacture and cost-effective.

[0060] In fact, the bushing 80 has the double function of guiding the pin 73 and of supporting as a column the second movable tubular half-shell 13 which is coupled to the closing element D.

[0061] In this way, the vertical component of the weight of the latter is loaded on the stationary support structure S while the horizontal component thereof is distributed over the entire length of the bushing 80, without minimally loading the moving parts of the hinge device 1 and in particular the pivot 50.

[0062] This provides higher performances with respect to the devices of the prior art.

[0063] Moreover, the first and/or the second tubular half-shell 12, 13 may be made of polymeric material, e.g. polyethylene, ABS or polypropylene, or of metallic material with relatively low mechanical strength, such as aluminum, since their function is predominantly a supporting one and have relatively low wear.

[0064] This allows to minimize costs and manufacturing times.

[0065] Further, this allows to minimize or to eliminate the thermal transmission which occurs in the hinges or the hydraulic door closer with metal structure, since the latter transmit to the working fluid the changes of the external temperature, which in turn change the viscosity of the same working fluid and, therefore, change the operational parameters set upon installation.

[0066] On the other hand, the pivot 50 and/or the bushing 80, which are more stressed during use, may be made of metallic material with a relatively high mechanical strength, for example hardened steel.

[0067] Moreover, the assembly of the hinge device is exceptionally simple, thus simplifying the manufacturing thereof.

[0068] As mentioned above, the bushing 80 and the second tubular half-shell 13 may be further coupled each other in a removable manner, for example by sliding the latter onto the former along the axis X and subsequent mutual engagement between the outer shaped surface 53 and the countershaped surface 17.

[0069] This greatly simplify the maintenance operations of the closing element D, as the same may be removed from the operative position by simple lifting it, without disassembling the hinge device 1.

[0070] In this case, the second tubular half-shell will remain in operative position on the bushing 80 simply thanks to the gravity force.

[0071] FIGs. 9a to 15c and 18a to 19c show, to merely illustrate the invention in a non-limitative manner, some embodiments of the bushing 80, which differ each other for the configuration of the guide cam slots 81.

[0072] In particular, FIG. 9a shows a bushing 80 having guide cam slots 81 that have a first portion 84' extending parallel to the axis X and a subsequent second portion 84" extending perpendicularly thereto.

[0073] Both portions 84', 84" may have a length sufficient to guide the rotation of the pivot 50, which is unitary with the second tubular half-shell 13, for 90° around the axis X. Possibly, a stop portion 145 may also be provided for blocking the pin 73 in the desired position, which in the exemplary embodiment shown is at the end of the second portion 84".

[0074] This configuration is particularly advantageous in the embodiments of the hinge device 1 that include the elastic means 40, and in particular the compression spring 41.

[0075] Thanks to the particular configuration of the guide cam slots 81, the spring 41 can be preload with its highest preloading force, so that with the same size the hinge device of the invention has a greater force than the devices of the prior art, or with the same force the hinge device of the invention has a smaller size.

[0076] In fact, when the pin 73 slides along the first portion 84' extending parallel to the axis X, the pivot 50 in rotation about the same axis X compresses the spring 41 for 90°. When the pin 73 slides along the second portion 84" extending perpendicularly to the axis X, the pivot 50 continues to rotate around the same axis X but does not compress the spring 41.

[0077] This allows to preload the spring 41 with its highest preloading force, with the above mentioned advantages. It is self-evident that in this case the spring 41 moves only when the pin 73 slides along the first portion 84'.

[0078] In this case, the bushing 80 may be for example operatively coupled with the pivot shown in FIG. 16, wherein the passing-through actuating member 72 consists of a single helical portion 71', 71" having constant inclination or helical pitch wound for 180° around the axis X.

[0079] FIG. 10a shows a bushing 80 having guide cam slots 81 which have a first portion 84' extending parallel to the axis X and a subsequent second portion 84" extending perpendicularly thereto, and differs from the bushing 80 shown in FIG. 9a for the presence of three stop portions 145 along the second portion 84" of the guide cam slots 81.

[0080] FIG. 11a shows a bushing 80 having guide cam slots 81 which have a first portion 84' extending parallel to the axis X and a subsequent second portion 84" extending perpendicularly thereto, and differs from the bushings 80 shown in FIGS. 9a and 10a for the orientation of the same second portion 84" and for the sliding direction of the pin 73 through the guide cam slots 81.

[0081] In fact, in this case the spring 41 is susceptible to push up the pin 73, unlike what occurs in the embodiments shown in FIGs. 9a to 10c, in which the spring 41 pulls the pin 73 down. The guide cam slots 81 are therefore configurated to guide the pin 73 in its path downwards, so as to load the spring 41.

[0082] FIGs. 12a, 13a and 14a show bushings 80 having guide cam slots 81 that have a single portion 84 inclined or helical shaped, with predetermined angle or pitch. In this way, there are not intermediate stop points the pin 73 between the closed and the fully open position of the second half-shell 13.

[0083] This configuration is extremely advantageous in the case in which the portion 84 has an angle or pitch opposite to the one of the helical portions 71', 71" of the passing-through actuating member 72. In fact, in this case the vertical component of the reaction force that the pin 73 exerts on the guide cam slots 81 upon the sliding therethrough is added to the one given by the passing-through actuating member 72.

[0084] This allow to obtain a hinge device that with the same size has a force greater than the devices of the prior art, or with the same force to obtain a hinge device of smaller size.

[0085] FIG. 15a shows a bushing 80 having guide cam slots 81 having a single portion 84' substantially parallel to the axis X.

[0086] FIG. 18a shows a bushing 80 having guide cam slots 81 that have a first portion 84 and a subsequent second portion 84" extending perpendicularly to the axis X. The first portion 84 may be inclined or helical with predetermined angle or pitch. The angle may be less than 30°, preferably less than 25° and even more preferably close to 20°, and may have angle or pitch opposite to that of the helical portion 71', 71" of the passing-through actuating member 72.

[0087] This allows to combine the advantages described above, for example for the bushings 80 of FIGs. 9a to 12a. In fact, the first portion 84, with its slight angle allows to preload with the highest preloading force the spring 41, while the second portion 84" allows to maximize this force upon closing or opening. In practice, a closing element D potentially without blocking points is obtained, except those in correspondence of a possible stop portions 145, which has high closing or opening force and double speed, at first slow and then fast or vice-versa. Moreover, by acting on the stop screw 90 it is possible to obtain practically any opening or closing angle between 0° and 180°.

[0088] It is understood that each of the embodiments of the hinge device 1 shown in the FIGs. 1 to 8d and 18 to 42b may include any one of the bushings 80 shown in FIGS. 9a to 15c and 18a to 19c, as well as pivots 50 having the at least one helical portion 71', 71" either right-handed or left-handed, without departing from the scope of the invention defined by the appended claims.

[0089] Regardless of the shape of the cam slots 81, the latter may be closed at both ends so as to define a closed path having two end blocking points 87', 87" for the pin 73 sliding therethrough.

[0090] FIGs. 45a to 46b show further embodiments of the bushing 80, in which the cam slots 81 may include a first portion 84'

and a second portion **84"**.

[0091] The first portion **84'** may extend substantially parallel to the axis **X**, as shown in FIGs. 45a and 45b, or may be slightly inclined with respect to the same axis **X** with opposite inclination with respect to that of the grooves **70', 70"** of the pivot **50**, as shown in FIGs. 46a and 46b.

[0092] On the other hand, the second portion **84"** may extend substantially perpendicularly to the axis **X**.

[0093] Suitably, the first and the second portion **84', 84"** may each have a length sufficient to guide the rotation of the movable tubular half-shell **13** for 90° around the axis **X**.

[0094] FIGs. 47a to 47e show a hinge device **1** that includes the bushing **80** in accordance with FIGs. 45a and 45b.

[0095] FIG. 47a shows the position completely closed of the closing element **D**. The pin **73** is in correspondence of the first end blocking point **87'**.

[0096] FIG. 47b shows the position of the closing element **D** at 90° with respect to the closed door position. The pin **73** is in correspondence of an intermediate blocking point **87"**.

[0097] In correspondence of the latter a first shock-absorbing portion **287'** may be provided that extends substantially parallel to the axis **X** in a direction concordant to the sliding direction of the pin **73** within the first portion **84'** to allow a further minimum compression of the spring **41**, for example of 1-2 mm, which may correspond to a further slight rotation of the movable tubular half-shell **13**. In the embodiment shown, the first shock-absorbing portion **287'** guides the pin **73** so as to rotate the closing element **D** from 90°, which position is shown in FIG. 47b, to 120° with respect to the closed door position, as shown in FIG. 47c.

[0098] FIG. 47d shows the position of closing element **D** at 180° with respect to the closed door position. The pin **73** is in correspondence of the second blocking point **87"**.

[0099] In correspondence of the latter a second shock-absorbing portion **287"** may be provided to guide the pin **73** so as to rotate the closing element **D** from 180°, which position is shown in FIG. 47d, to 190° with respect to the door closed position, as shown in FIG. 47e.

[0100] Advantageously, the blocking points **87', 87", 87'''** may include zones of the cam slots **81** against which the pin **73** abuts during its sliding through the same cam slots **81** to block the closing element **D** during opening and/or closing.

[0101] It is pointed out that the blocking points **87', 87", 87'''** are different from the stop portions **145**, and have also different functions.

[0102] The shock-absorbing portions **287', 287"** allow to absorb the shock imparted to the closing element **D** by the abutment of the pin **73** against the blocking points **87', 87"**.

[0103] In fact, this abutment is rigidly transferred to the closing element **D**, with the consequent unhinging danger thereof. Therefore, the shock-absorbing portions **287', 287"** allow a further compression of the spring **41** which absorbs the shock of the abutment of the pin **73** against the blocking points **87'', 87'''**, thus avoiding the above danger.

[0104] This configuration is particularly advantageous in case of aluminum frames, so as to avoid the reciprocal torsion of the closing element **D** and the stationary support structure **S**.

[0105] Suitably, the shock-absorbing portions **287', 287"** may have a length sufficient to allow a further minimum rotation of the movable element **11** of 5° to 15° around the axis **X**.

[0106] A further advantage of the above configuration is that even if the closing element **D** rotates beyond the open position determined by the blocking points **87'', 87'''**, the spring **41** returns the same closing element **D** in the predetermined open position. Therefore, the action of the shock-absorbing portions **287', 287"** does not affect the predetermined open position of the closing element **D**, which therefore is maintained over time even in the case of several shock-absorbing actions.

[0107] It is understood that both the blocking points that the shock-absorbing portions of the cam slots **81** may be in any number without departing from the scope of the appended claims.

[0108] In order to allow a user to adjust the opening and/or closing angle of the second tubular half-shell **13**, at least one stop screw **90** may be provided having a first end **91** susceptible to selectively interact with the second end portion **62** of the elongated element **60** and a second end **92** to be operated from the outside by a user to adjust the stroke of the same elongated element **60** along the axis **X**.

[0109] Preferably, the at least one stop screw **90** can be inserted within the pivot **50** in correspondence of the end portion **51** thereof, so as to slide along the axis **X** between a rest position spaced from the second end portion **62** of the elongated element **60** and a working position in contact therewith.

[0110] In this way, it is possible to adjust the hinge device **1** in any manner.

[0111] For example, FIGs. 4b and 33b show embodiments of the hinge device **1** in which the stop screw **90** is in working position to prevent the pin **73** to slide through the second portion **84'** of the guide cam slot **81** of the bushing **80**. Thanks to this configuration, in such embodiments the pin **73** slides between the closed and fully open position of the second half-shell **13** without any intermediate blocking point, which fully open position in this embodiments shows an angle of approximately 90° between the connecting plates **14, 15**.

[0112] In some embodiments, such as the ones shown in FIGs. 30 to 34c, a pair of stop screws **90, 90'** may be provided, which are placed in correspondence of the respective upper and lower ends **2, 3** of the hinge device **1**.

[0113] The top stop screw **90** may have the above described features.

[0114] The lower stop screw **90'** may have a first end **91'** susceptible to interact selectively with the plunger member **30** and a second end **92'** to be operated from the outside by a user.

[0115] As mentioned above, some embodiments of the hinge device **1** may include a working fluid, such as those shown in FIGs. 1 to 8d and 20 to 29b.

[0116] The embodiments according to the invention include the elastic means **40**, such as those shown in FIGs. 1 to 8d, 20 to 21c and 26 to 29c. The embodiments which do not include elastic means, such as the one shown in FIGs. 22 to 25c, do not form part of the invention.

[0117] In the embodiments that include the elastic means **40**, the latter will ensure automatic closing or the opening of the closing element **D**, such as in those shown in FIGs. 1 to 8d, 20 to 21c and 26 to 29c, or simply allow the plunger member **30** to return from one of the distal or proximal positions towards the other of the distal or proximal positions without ensuring the automatic closing or opening of the closing element **D**.

[0118] In the first case the elastic means **40** may include a thrust spring **41** of relatively high force, in the second case they may include a reset spring having a relatively low force.

[0119] In the first case, the hinge device **1** acts as a hydraulic hinge or door closer with automatic closure, while in the second case the same hinge device **1** acts as a hydraulic damping hinge.

[0120] Advantageously, in embodiments that include the working fluid, the working chamber **20** may include one or more sealing elements **22** to prevent the leakage thereof, for example one or more o-rings.

[0121] The plunger member **30** may separate the working chamber **20** in at least one first and at least one second variable volume compartment **23, 24** fluidly communicating each other and preferably adjacent. Suitably, the elastic counteracting means is inserted in the first compartment **23**.

[0122] To allow the passage of the working fluid between the first and the second compartments **23, 24**, the plunger member **30** may comprise a passing-through opening **31** and valve means, which may include a non-return valve **32**.

[0123] Advantageously, the non-return valve **32** may include a disc **33** inserted with minimum clearance in a suitable housing **34** to move axially along the axis **X**.

[0124] Depending on the direction in which the non-return valve **32** is mounted, it opens upon the opening or closing of the closing element **D**, so as to allow the passage of the working fluid between the first compartment **23** and second compartment **24** during one of the opening or closing of the closing element **D** and to prevent backflow thereof during the other of the opening or the closing of the same closing element **D**.

[0125] For the controlled backflow of the working fluid between the first compartment **23** and the second compartment **24** during the other of the opening or closing of the closing element **D**, a suitable hydraulic circuit **100** may be provided.

[0126] Suitably, the plunger member **30** may include, or respectively may constis of, a cylindrical body tightly inserted in the working chamber **20** and facing the inner side wall **25** thereof. The hydraulic circuit **100** may at least partially lye within the first tubular half-shell **12**, and may preferably include a channel **107** external to the working chamber **20** which defines an axis **X'** substantially parallel to the axis **X**.

[0127] Advantageously, the hydraulic circuit **100** may include at least one first opening **101** in the first compartment **23** and at least one further opening **102** in the second compartment **24**. Depending on the direction in which is mounted the valve **32**, the openings **101**, **102** may act respectively as inlet and outlet of the circuit **100** or as outlet and inlet thereof.

[0128] The first tubular half-shell **12** may have at least one first adjusting screw **103** having a first end **104** which interacts with the opening **102** of the hydraulic circuit **100** and a second end **105** which can be operated from outside by a user to adjust the flow section of the working fluid through the same opening **102**.

[0129] In the embodiments shown in FIGs. 1 to 8d, the valve **32** opens upon opening of the closing element and closes upon closing thereof, thus forcing the working fluid to flow back through the hydraulic circuit **100**. In these conditions, the opening **101** acts as inlet of the hydraulic circuit **100** while the opening **102** acts as outlet thereof.

[0130] Suitably, the outlet **102** may be fluidly decoupled from the plunger member **30** during the whole stroke thereof. The screw **103** may have the first end **104** which interacts with the opening **102** to adjust the closing speed of the closing element.

[0131] In some preferred but not exclusive embodiments, for example those shown in FIGs. 1 to 8d , the hydraulic circuit **100** may include a further opening **106** in the second compartment **24**, which in the above mentioned example may act as a second outlet in the second compartment **24** for the circuit **100**.

[0132] Therefore, the plunger member **30** may be in a spatial relationship with the openings **102**, **106** such as to remain fluidly decoupled from the opening **102** for the entire stroke of the plunger member **30**, as mentioned above, and such as to remain fluidically coupled with the opening **106** for a first part of the stroke thereof and to remain fluidly decoupled from the same opening **106** for a second part of the stroke of the plunger member **30**.

[0133] In this way, in the above embodiment the closing element **D** latches towards the closed position when the second tubular half-shell **13** is in close to the first tubular half-shell **12**, or in any event when the closing element **D** is in the proximity of the closed position.

[0134] In the case of valve **32** mounted on the contrary, i.e. that opens upon the closing of the closing element and closes upon the opening thereof, the circuit **100** configured as described above allows to have two resistences during opening, a first resistance for a first angular portion of the opening of the closing element **D** and a second resistance for a second angular portion of the opening thereof.

[0135] In this case, upon opening of the closing element **D** the working fluid flows from the second compartment **24** to the first compartment **23** through the channel **107**, by entering through the openings **102**, **106** and exiting through the opening **101**. Upon the time of closing of the closing element **D** the working fluid flows from the first compartment **23** to second compartment **24** through the valve **32**. The first resistance during opening is obtained when the plunger member **30** is fluidly coupled with the opening **106** during the first part of the stroke thereof, while the second resistance during opening is obtained when the plunger member **30** is fluidly decoupled from the same opening **106** for the second part of the stroke thereof.

[0136] In some preferred but not exclusive embodiments, for example those shown in FIGs. 1 to 5d, the channel **107** may include a substantially cylindrical seat **108** in which a regulating member **130** can be inserted, the regulating member **130** comprising an operative end **131** and a rod **132** coupled thereto. The rod **132** may define a longitudinal axis **X''** mutually parallel or coincident with the axis **X'** of the channel **107**.

[0137] As particularly shown in FIG. 8e, the seat **108** may have a first cylindrical portion **109'** in correspondence of the opening **102** and a second cylindrical portion **109''** in correspondence of the opening **106**.

[0138] To allow the mutual coupling between the regulating member **130** and the seat **108**, the rod **132** of the regulating member **130** may include a first and a second threaded portion **133', 133''**, while the seat **108** may be counterthreaded in correspondence of the first cylindrical portion **109'**. Alternatively, instead of the first threaded portion **133'** the regulating member **130** may include a ring of the Seeger type inserted through a first countershaped cylindrical portion **109'**.

[0139] However, the second cylindrical portion **109''** may advantageously be smooth, that is free of counterthread. Therefore, the first cylindrical portion **109'** of the seat **108** may have a maximum diameter **Dp1** greater than the one **Dp2** of the second cylindrical portion **109''**.

[0140] The rod **132** may have an outer surface **134** faced to both the openings **101** and **106**, which in a first embodiment shown for example in FIGs. 8a to 8f may essentially have a substantially cylindrical area **135'** and a flat area **135''** opposite thereto.

[0141] More particularly, the outer surface **134** may include a third and a fourth cylindrical portion **136', 136''** and a first and a second flat portion **137', 137''** opposed thereto which are respectively faced to the first and the second cylindrical portion **109', 109''** of the seat **108**.

[0142] Suitably, the maximum diameter **Dp4** of the fourth cylindrical portion **136''** is greater than the maximum diameter **Dp3** of the third cylindrical portion **136'** and may substantially coincide with the maximum diameter **Dp2** of the second cylindrical portion **109''** of the seat **108**. Therefore, the maximum diameter **Dp3** of the third cylindrical portion **136'** is less than the maximum diameter **Dp1** of the first cylindrical portion **109'**.

[0143] The shape of the rod **132** may be such that the substantially cylindrical area **135'** extends beyond the plane of symmetry of the regulating member **130**. Therefore, the first and the second flat portions **137', 137''** may have respective maximum widths **h', h''** lower than the respective maximum diameters **Dp3, Dp4** of the third and fourth cylindrical portions **136', 136''**.

[0144] Advantageously, the first threaded portion **133'**, which may be interposed between the third and fourth cylindrical portions **136', 136''**, may in turn include a first cylindrical zone **138'** in correspondence of the third and fourth cylindrical portions **136', 136''** and a first planar zone **138''** in correspondence of the first and second flat portions **137', 137''**.

[0145] On the other hand, the second threaded portion **133''**, which may be interposed between the operative end **131** and the third cylindrical portion **136'** of the rod **132**, may in turn include a second cylindrical zone **139'** in correspondence of the third cylindrical portion **136'** and a second planar zone **139''** in correspondence of the first flat portion **137'**.

[0146] Thanks to one or more of the above features, the regulating member **130** easily allows to adjust the flow section of the opening **106** when, as in this case, the limited bulkiness of the hinge device **1** does not allow the use a "classical" radial screw. The regulating member **130** allows for example to adjust the force by which the closing element **D** latches towards the closed position, as well as to avoid the latch action, as well as to adjust or to avoid one of the resistencies during opening.

[0147] By acting on the operative end **131**, for example by using a screwdriver, a user can promote the rotation of the rod **132** around the axis **X''** between a working position, shown for example in FIGs. 8b and 8d, and a rest position, shown for example in FIGs. 8a and 8c.

[0148] As shown in these figures, in the working position the third and fourth cylindrical portions **136', 136''** are respectively faced to the first and second openings **101, 106**, so that the outer surface **134** of the rod **132** selectively obstruct the opening **106** while the other opening **101** will remain in fluid communication with the channel **107** and the opening **102** regardless of the rest or working position of the rod **132**.

[0149] On the other hand, in the rest position the first and the second flat portions **137', 137''** remain respectively faced to the openings **101, 106**, so that the working fluid is free to pass between the first and the second volume variable compartments **23, 24** through the channel **107**.

[0150] It is therefore apparent that regardless the rest or working position of the regulating member **130** the opening **101** is always in fluid communication with the opening **102**, while depending from the rest or the working position of the regulating member **130** the opening **106** remains respectively in fluid communication or not with the same opening **102**.

[0151] Consequently, when the adjustment member 130 is in the rest position the opening 101 remains in fluid communication with both openings 102 and 106, so as to allow for example the above mentioned latch action or double resistance during opening, while in the working position, the opening 101 remains in fluid communication exclusively with the opening 102, so as to exclude for example the above mentioned latch action or double resistance during opening.

[0152] In an alternative embodiment, shown in FIGs. 48a to 50, the regulating member 130 may include an axial blind hole 240, while the third and fourth cylindrical portion 136', 136'' may include a respective first and second passing-through hole 250', 250'' in mutual fluidic communication with the axial blind hole 240, as particularly shown in FIG. 50.

[0153] The operation of this embodiment is similar to that of the above described embodiment shown in FIGs. 8a to 8f.

[0154] As shown in FIGs. 48a and 48b, when the rod 132 is in the rest position, as shown in FIG. 48b, the second passing-through hole 250'' remains fluidly coupled with the opening 106 and when the rod 132 is in working position, as shown in FIG. 48a, the second passing-through hole 250'' remains fluidly decoupled from the opening 106, so as to selectively obstruct it.

[0155] Suitably, the first passing-through hole 250' may be susceptible to put in mutual fluid communication the opening 101 and the opening 102 through the channel 107 regardless of the rest or working position of the rod 132. In fact, when the latter is in the working position, the working fluid flows in correspondence of the cylindrical portion 136' and passes through the passing-through hole 250'.

[0156] In some preferred but not exclusive embodiments, for example those shown in FIGS. 1 to 8, the channel 107 may pass through the connecting plate 14.

[0157] Advantageously, in such embodiments the regulating member 130 can be inserted at one end of the channel 107, for example the bottom one, to selectively obstruct the opening 106, while the adjustment screw 103 can be inserted at the other end of the same channel 107, for example the upper one, to selectively obstruct the opening 102.

[0158] More particularly, the regulating member 130 and the adjustment screw 103 can be inserted into the channel 107 so that the axis X' of the latter coincides with the fourth axis X'' of the regulating member 130 and with the fifth axis X''' of the adjusting screw 103. It is understood that the axes X', X'' and X''' are substantially parallel to the axis X.

[0159] In this way, the operative end 131 of the regulating member 130 and the operative end 105 of the adjusting screw 103 can be accessible by the user at opposite sides with respect to a median plane nM, shown for example in FIG. 3a, passing through the connecting plate 14 and substantially perpendicular to the axes X', X'' and X''', and consequently perpendicular to the axis X.

[0160] Thanks to this configuration, it is possible to obtain both the adjustment of the closing and/or opening speed of the closing element D (by acting on the adjustment screw 103) and the force of the latch action and/or of the resistances during opening (by acting on the regulating member 130) with minimum bulkiness and round shapes, typical of the "Anuba"-type hinges.

[0161] In some preferred but not exclusive embodiments, for example those shown in FIGs. 20 to 21c and 43a to 44c, the closing cap 27 of the working chamber 20 may include a passing-through duct 100' and a substantially annular peripheral groove 29 around the substantially cylindrical side wall 28 of the same cap 27. Once the cap 27 is inserted in the working chamber 20, its substantially cylindrical side wall 28, and therefore the peripheral groove 29, remains faced the inner side wall 25 of the same working chamber 20.

[0162] Conveniently, the peripheral groove 29, which may have facing side walls 29', 29'' and a bottom wall 29'', may be open at the top so that the bottom wall 29'' and the inner side wall 25 of the working chamber 20 remain directly faced each other.

[0163] The passing-through duct 100' may include a pair of first branches 140', 140'' having respective openings 100 fluidly communicating with the channel 107 through the peripheral groove 29 and the opening 101 passing through the second half-shell 12 and a second branch 141 with an opening 100''' fluidly communicating with the first compartment 23.

[0164] A central manifold 100''' may lie in a substantially central position along the X axis between the first branches 140', 140'' and the second branch 141, which central manifold 100''' is therefore in fluid communication with both the channel 107 that the first compartment 23.

[0165] Advantageously, the cap **27** may include the adjustment screw **103** preferably in axial position along the axis **X**. The screw **103** may have the end **104** interacting with the central manifold **100** and the operative end **105** to be operated from the outside by a user to adjust the flow section of the working fluid therethrough.

[0166] In the embodiment shown in FIGs. 20 to 21c and 43a to 44c, in which the valve means **32** are configured to allow the passage of the working fluid between the first compartment **23** and second compartment **24** during the opening of the closing element **D** and to prevent the backflow thereof during the closing of the same closing element **D**, the single screw **103** is susceptible to adjust the closing speed of the closing element **D**.

[0167] Thanks to one or more of the above features, it is possible to obtain a simple and quick adjustment even in hinge devices **1** having minimum dimensions or completely round shaped, where it is not possible to insert screws neither axially nor radially.

[0168] Moreover, the peripheral annular channel **29** allows to simplify the mounting of the hinge device **1**, while improving the reliability thereof.

[0169] As mentioned above, the hinge device includes the elastic counteracting means **40**, as shown in FIGs. 1 to 8d, 20 to 21c and 30 to 34c.

[0170] Such embodiments may include the working fluid, such as those shown in FIGs. 1 to 8d, 20 to 21c and 26 to 29c, or not, such as that shown in FIGs. 30 to 34c.

[0171] In the latter case, the hinge device **1** acts as a purely mechanical opening/closing hinge.

[0172] In some preferred but not exclusive embodiments, for example those shown in FIGs. 1 to 8d, 20 to 21c and 30 to 34c, the spring **41** and the plunger member **30** are coupled to each other so that the former **41** is in the position of maximum elongation in correspondence of the end-stroke distal position of the latter. In this case, the spring **41** is interposed between the cylindrical portion **52** of the pivot **50** and the plunger member **30**.

[0173] In order to minimize friction between the moving parts, at least one antifriction member is provided, such as an annular bearing **110**, interposed between the pivot **50** and the end portion **16** of the first tubular half-shell **12** for the supporting thereof.

[0174] In fact, in the above mentioned embodiment the pin **73** will be pulled downwards, thus urging downwards also the pivot **50** which therefore rotate about the axis **X** on the bearing **110**. Suitably, the pin loads the stresses due to the action of the spring **41** on the latter bearing **110**.

[0175] In the embodiments which do not form part of the invention, such as the one shown in FIGs. 26 to 29c, the spring **41** and the plunger member **30** may be coupled to each other so that the first is in the position of maximum elongation in correspondence of the proximal end-stroke position of the plunger member **30**. In this case, the spring **41** may be interposed between the bottom wall **26** of the working chamber **20** and the plunger member **30**.

[0176] In this case, to minimize friction between the moving parts at least one antifriction member may be provided, for example a further annular bearing **111**, interposed between the pivot **50** and the upper wall **121** of a sleeve **120** susceptible to retain the pivot **50**, which sleeve **120** being unitary coupled externally to the bushing **80** coaxially therewith.

[0177] In fact, with the above configuration the pin **73** is urged upwards, by urging in turn upwards the pivot **50** which therefore rotate about the axis **X** on the bearing **111**. The retaining sleeve **120** may for example be screwed into the lower portion of the bushing **80**, so as to retain the pivot **50** in the operative position.

[0178] In any case, the hinge device **1** is configured to minimize friction between the moving parts.

[0179] For this purpose, at least one antifriction member is provided, for example a further annular bearing **112**, interposed between the bushing **80** and the second tubular half-shell **13**, in such a manner that the latter rotates around the axis **X** on the bearing **112**.

[0180] Therefore, the bushing **80** has a central opening **86** in the proximity of the upper portion **87** for insertion of the end portion **51** of the pivot **50**. More particularly, the bushing **80** and the pivot **50** are mutually configured so that once the pivot **50** is inserted within the bushing **80** the end portion **51** of the former passes through the central opening **86** of the latter.

[0181] To this end, the bushing **80** may have a height **h** substantially equal to the sum of the height of the bearing **110**, the tubular body **52** of the pivot **50** and its coupling portion **85** with the outer side wall **19'''** of the annular appendix **18**.

[0182] Therefore, the bearing **112** rests on the upper portion **87**, so that the closing element does not load at all the pivot **50** during its rotation about the axis **X**. In fact, the weight of the closing element **D** is loaded on the bearing **112**.

[0183] Moreover, the position of the pivot **50** within the bushing **80** prevents misalignment and/or slipping out of the same pivot **50** due to forces pushing the same upwards, for example in the case of a user that force in closing the closing element **D**. In fact, in this case the pivot **50** impacts against the upper portion **87** of the bushing **80**, such as clearly visible in FIGs. 32b and 33b, thus remaining in its original position.

[0184] Moreover, the bushing **80** and the second tubular half-shell **13** are preferably in a spatial relationship to each other such that the second tubular half-shell **13** once coupled with the bushing **80** remains spaced from the first tubular half-shell **12**, for example by a distance **d** of few tenths of a millimeter.

[0185] From the above description, it is apparent that the invention fulfils the intended objects.

[0186] The invention is susceptible to many changes and variants. All particulars may be replaced by other technically equivalent elements, and the materials may be different according to the needs, without exceeding the scope of the invention defined by the appended claims.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- [US7305797B \[0003\]](#)
- [EP1997994A \[0003\]](#)
- [US2004206007A \[0003\]](#)
- [EP0407150A \[0003\]](#)
- [GB19477A \[0006\]](#)
- [US1423784A \[0006\]](#)
- [GB491858A \[0006\]](#)
- [WO03067011A \[0006\]](#)
- [US2009241289A \[0006\]](#)
- [EP0265781A \[0006\]](#)
- [WO200850989A \[0006\]](#)
- [EP2241706A \[0006\]](#)
- [CN101705775 \[0006\]](#)
- [GB1516622A \[0006\]](#)
- [US20110041285A \[0006\]](#)
- [WO200713776A \[0006\]](#)
- [WO200636044A \[0006\]](#)
- [US20040250377A \[0006\] \[0007\]](#)
- [WO2006025663A \[0006\]](#)

Patentkrav

1. Hængselindretning til roterbart at bevæge og/eller styre under lukning og/eller åbning af et lukkeelement (D), såsom en dør, en skodde eller lignende, forankret 5 til en stationær bærestuktur (S), såsom en væg eller en ramme, indretningen inkluderer:

- et fast element (10) som kan forankres til den stationære bærestuktur (S);
- et bevægeligt element (11) som kan forankres til lukkeelementet (D), et 10 af det faste element (10) og bevægelige element (11) inkluderer en første rørformet halvskal (12) som inkluderer et arbejdsrum (20) som definerer en langsgående akse (X), den anden af det faste element (10) og bevægelige element (11) inkluderer en anden rørformet halvskal (13), hvor sidstnævnte og den første rørformede halvskal (12) er gensidigt overlagt til 15 at rotere omkring den langsgående akse (X) mellem en åben position og en lukket position;
- en drejetap (50) positioneret langs aksen (X) udvendigt af arbejdsrummet (20), hvor drejetappen (50) og den anden øvre rørformede halvskal (13) er stift forbundet, drejetappen (50) omfattende et 20 rørformet legeme (52);
- et trykstangselement (30) operativt forbundet til drejetappen (50) og indsats i arbejdsrummet (20) til at glide langs aksen (X) mellem en endeslagsposition nær drejetappen (50), tilsvarende en af den åbne og den lukkede position af det bevægelige element (11), og en endeslagsposition 25 distal derfra, tilsvarende den anden af den åbne og den lukkede position af det bevægelige element (11);
- et langstrakt cylindrisk element (60) som strækker sig langs aksen (X) med en første endedel (61) indsats i arbejdsrummet (20) gensidigt forbundet med trykstangselementet (30) og en anden endedel (62) 30 udvendigt af arbejdsrummet (20) som glider inden i det rørformede legeme (52) af drejetappen (50);
- en rørformet bøsning (80) med et par føringskamslidser (81) angulært anbragt med mellemrum med 180°, hvor den rørformede bøsning (80) er co-aksoalt liggende udvendigt for det rørformede legeme (52) af 35 drejetappen (50);

- arbejdskammeret inkluderer elastisk modvirkende organ (40) som virker på trykstangselementet (30) til returnering deraf fra en af den nære og distale endeslagsposition til den anden af den nære og distale endeslagsposition, hvor det elastiske modvirkende organ (40) er
 - 5 bevægelige langs aksen (X) mellem en position af maksimal og minimal forlængelse;
 - hvor drejetappen (50) inkluderer mindst et par riller (70', 70'') lig med hinanden angulært anbragt med mellemrum med 180° hver omfattende mindst en spiral del (71', 71'') viklet omkring aksen (X), hvor rillerne (70', 70'') er i forbindelse med
 - 10 hinanden for at definere et enkelt gennemgangs-aktueringselement (72);
 - hvor den anden endedel (62) af det langstrakte element (60) inkluderer en stift (73) indsat i gennemgangs-aktueringselementet (72) og i føringskamslidserne (81) til at glide derigennem, for gensidigt at indgribe med drejetappen (50), det langstrakte cylindriske element (60) og bøsningen (80);
 - 15 hvor bøsningen (80) og den første rørformede halvskal (12) er som en enhed koblet til hinanden for at tillade føringskamslidserne (81) at føre den glidende bevægelse af stiften (73) aktueret af gennemgangs-aktueringselementet (72), hvor bøsningen (80) og den anden rørformede halvskal (13) er co-aksialt koblet således at den ene definerer rotationsaksen af den anden;
 - 20 **kendetegnet ved at** det elastiske modvirkende organ (40) og trykstangselementet (30) er gensidigt koblet således at det første (40) er i en position af maksimal forlængelse i overensstemmelse med den distale endeslagsposition af det sidstnævnte (30), hvor det elastiske modvirkende organ (40) er indskudt mellem den cylindriske del (52) af drejetappen (50) og
 - 25 trykstangselementet (30), og **ved at** den første rørformede halvskal (12) inkluderer en endedel (16) operativt koblet til drejetappen (50), hvor mindst et første antifriktionselement (110) indskudt mellem drejetappen (50) og endedelen (16) af den første rørformede halvskal (12) er yderligere tilvejebragt til at minimere friktion på grund af virkningen af det elastiske modvirkende organ (40)
 - 30 på drejetappen (50).

- 2.** Indretning ifølge krav 1, hvor bøsningen (80) og den anden rørformede halvskal (13) er co-aksialt koblet på en aftagelig måde ved gensidig glidning langs aksen (X) for at tillade en bruger at afkoble lukkeelementet (D) fra den stationære
 - 35 bærestuktur (S) ved løft.

- 3.** Indretning ifølge krav 1 eller 2, hvor den rørformede del (52) af drejetappen (50) har en indvendig diameter (D_i') i alt væsentligt sammenfaldende med diameteren (D''') af det langstrakte cylindriske element (60) og en udvendig diameter (D_e') mindre end eller i alt væsentligt sammenfaldende med den 5 indvendige diameter (D_i'') af bøsningen (80), den anden rørformede halvskal (13) har en indersidevæg (13') som vender mod ydersidevæggen (82) af bøsningen (80) når den samme er koblet til den første rørformede halvskal (12), endedelen (16) af den første rørformede halvskal (12) inkluderer en i alt væsentligt ringformet appendiks (18) med en udvendig diameter (D_e) større end eller i alt 10 væsentligt sammenfaldende med den udvendige diameter (D_e') af den rørformede del (52) af drejetappen (50) og en indvendig diameter (D_i) i alt væsentligt sammenfaldende med den indvendige diameter (D_i') af den rørformede del (52) af drejetappen (50), det i alt væsentligt ringformede appendiks (18) omfattende en første endeflade (21) som definerer en endevæg af arbejdskammeret (20), en 15 anden endeflade (19') modstående den første endeflade (21) som vender mod den nedre del (54) af den rørformede del (52) af drejetappen (50) til støtte deraf, en indersideflade (19'') som vender mod sidevæggen (63) af det langstrakte cylindriske element (60) og en ydersideflade (19''') som vender mod indersidevæggen (83) af bøsningen (80).
- 20
- 4.** Indretning ifølge krav 1, 2 eller 3, yderligere omfattende mindst en låseskrue (90) i nærheden af en af den øverste eller nederste ende (2, 3) af indretningen, hvor den mindst ene låseskrue (90) inkluderer en første ende (91) påvirkelig til selektivt at samvirke med den anden endedel (62) af det langstrakte cylindriske 25 element (60) og en anden ende (92) som skal drives udvendigt fra af en bruger til at justere slaget deraf langs aksen (X), hvor den mindst ene låseskrue (90) er indsat i drejetappen (50) ved endedelen (51) til at glide langs aksen (X) mellem en hvileposition væk fra den anden endedelsende (62) af det langstrakte cylindriske element (60) og en arbejdsposition i forbindelse dermed.
- 30
- 5.** Indretning ifølge et eller flere af de foregående krav, hvor den første og/eller den anden rørformede halvskal (12, 13) er lavet af polymermateriale, hvor drejetappen (50) og/eller bøsningen (80) er lavet af metalmateriale.

- 6.** Indretning ifølge et eller flere af de foregående krav, hvor bøsningen (80) har en central åbning (86) ved den øvre del (87), hvor bøsningen (80) og drejetappen (50) er gensidigt konfigureret således at endedelen (51) af sidstnævnte (50) passerer igennem den centrale åbning (86) af den første (80), hvor drejetappen (50) liggende i bøsningen (80) er indskudt mellem det mindst ene første antifriktionselement (110) og den øvre del (87) af den samme bøsning (80), hvor mindst et andet antifriktionselement (112) er anbragt udvendigt af bøsningen (80) mellem den øvre del (87) deraf (80) og den anden rørformede halvskal (13) således at lukkeelementet (D) ikke belaster drejetappen (50).

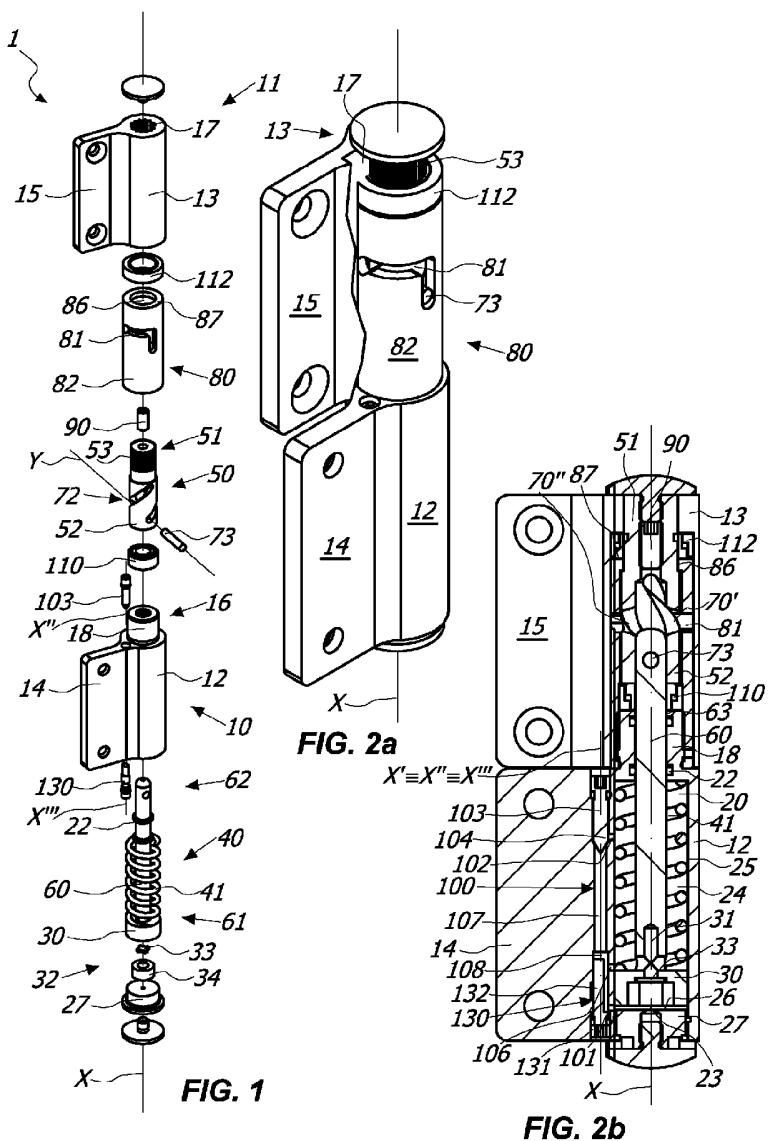
10

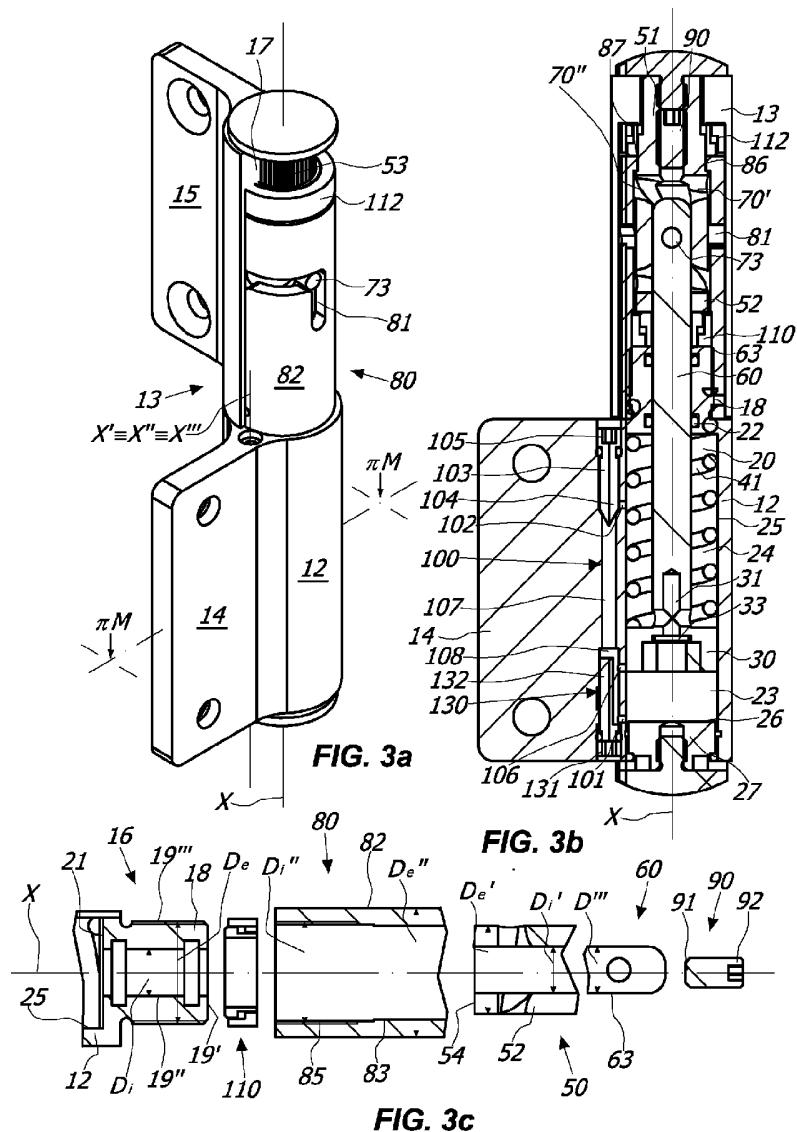
- 7.** Indretning ifølge et eller flere af de foregående krav, hvor bøsningen (80) og den anden rørformede halvskal (13) er i et gensidigt rumforhold, således at den sidstnævnte (13) forbliver anbragt med mellemrum fra den første rørformede halvskal (12).

15

- 8.** Indretning ifølge et eller flere af de foregående krav, hvor det faste element (10) inkluderer den første rørformede halvskal (12), det bevægelige element (11) inkluderer den anden rørformede halvskal (13), hvor den sidstnævnte er overlagt den første rørformede halvskal (12), endedelen (16) af den første rørformede halvskal (12) roterbart støtter drejetappen (50), bøsningen (80) definerer rotationsaksen af den anden rørformede halvskal (13).

- 9.** Indretning ifølge et eller flere af de foregående krav, hvor arbejds kammeret (20) inkluderer arbejdsfluiden, hvor mindst et tætningselement (22) er tilvejebragt til at forhindre lækage af arbejdsfluiden fra arbejds kammeret (20), hvor trykstangselementet (30) er påvirkeligt til at adskille arbejds kammeret (20) i mindst et første og et andet rum af variabel volumen (23, 24) i fluidforbindelse med hinanden og fortrinsvis tilstødende, trykstangselementet (30) omfattende en gennemgangsåbning (31) at bringe i fluidforbindelse det første og et andet rum af variabel volumen (23, 24) og ventilorgan (32) som samvirker med åbningen (31) for at tillade gennemgangen af arbejdsfluiden mellem det første rum (23) og det andet rum (24) ved en af åbningen eller lukningen af lukkeelementet (D) og til at forhindre tilbagestrømningen deraf ved den anden af åbningen eller lukningen af det samme lukkeelement (D), hvor et hydraulisk kredsløb (100) yderligere tilvejebringes til at tillade gennemgangen af arbejdsfluiden mellem det første rum


(23) og det andet rum (24) under den anden af åbningen eller lukningen af lukkeelementet (D).


- 10.** Indretning ifølge det foregående krav, hvor trykstangselementet (30) er stramt indsat i arbejdskammeret (20), den første rørformede halvskal (12) inkluderer mindst delvist det hydrauliske kredsløb (100), den sidstnævnte med mindst en første åbning (101) i det første rum (23) og mindst en anden åbning (106) i det andet rum (24).
- 10 **11.** Indretning ifølge det foregående krav, hvor det hydrauliske kredsløb (100) inkluderer en tredje åbning (102) i det andet rum (24), hvor trykstangselementet (30) er i et rumforhold med den anden og tredje åbning (102, 106) af kredsløbet (100) for at forblive fluidt afkoblet fra den tredje åbning (102) under hele slaget af trykstangselementet (30) og for at forblive fluidt koblet med den anden åbning (106) under en første del af slaget og for at forblive fluidt afkoblet derfra under en anden del af slaget.
- 12.** Indretning ifølge et hvilket som helst af de foregående krav, hvor de spiralformede dele (71', 71'') af rillerne (70', 70'') er henholdsvis højrehåndet og venstrehåndet, kamslidserne (81) inkluderer mindst en første del (84') som strækker sig i alt væsentligt parallelt med aksen (X) eller en smule skrående i forhold dertil (X) med en hældning modsat den af rillerne (70', 70'') af drejetappen (50), kamslidserne (81) yderligere inkluderer mindst en anden del (84'') som strækker sig i alt væsentligt vinkelret derpå, hvor når stiften (73) glider langs den mindst ene første del (84') af kamslidserne (81) bevæger de elastiske modvirkende organer (40) sig mellem positionerne af maksimal og minimal forlængelse, og hvor når stiften (73) glider langs den mindst ene anden del (84'') af kamslidserne (81) forbliver de elastiske modvirkende organer (40) i positionen af minimal forlængelse.
- 30 **13.** Indretning ifølge det foregående krav, hvor de elastiske modvirkende organer (40) er forbelastede for at maksimere luknings- eller åbningskraften af indretningen og/eller til minimere volumen deraf.

14. Indretning ifølge krav 12 eller 13, hvor den mindst ene første og mindst ene anden del (84', 84'') af kamslidserne (81) er gensidigt sammenhængende.

15. Indretning ifølge krav 12, 13 eller 14, hvor den mindst ene første del (84') strækker sig i alt væsentligt平行t med aksen (X), hvor når stiften (73) glider langs den mindst ene første del (84') af kamslidserne (81) glider trykstangselementet (30) mellem den første og anden endeslagsposition ved at forblive roterende blokeret, og hvor når stiften (73) glider langs den mindst ene anden del (84'') af kamslidserne (81), roterer trykstangselementet (30) som en 10 enhed med drejetappen (50) omkring aksen (X) ved at forblive i en af den første og anden endeslagsposition.

DRAWINGS

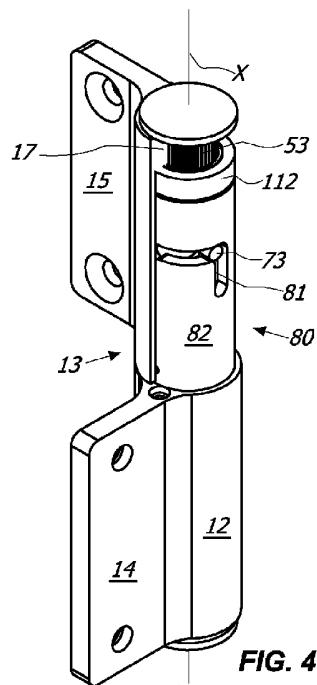


FIG. 4a

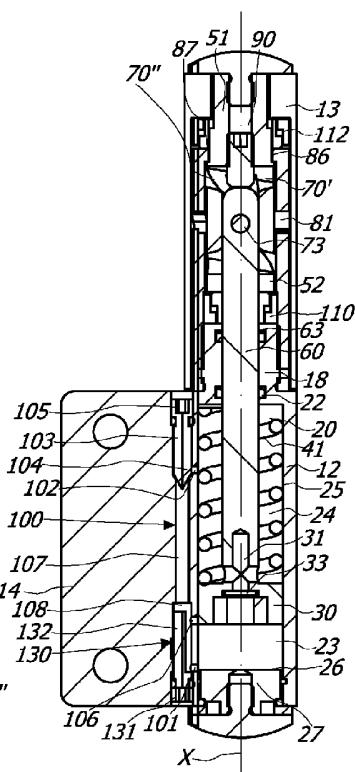


FIG. 4b

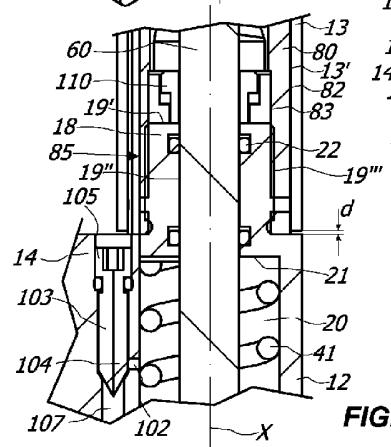
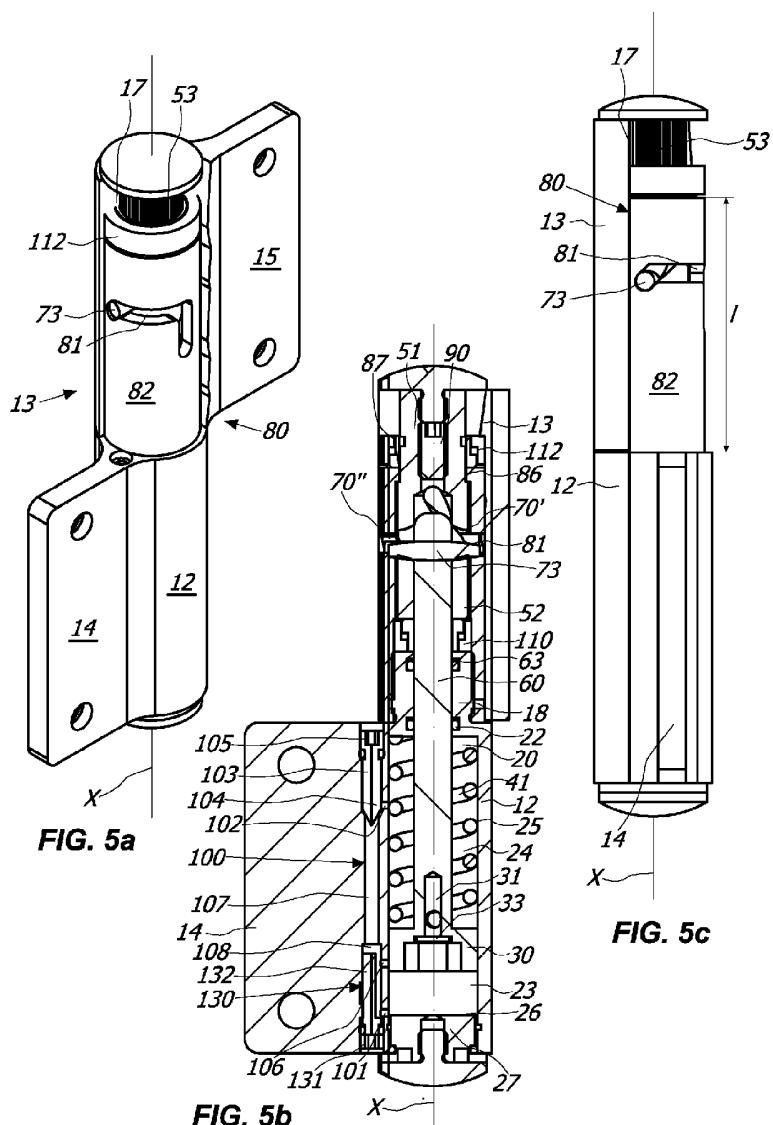
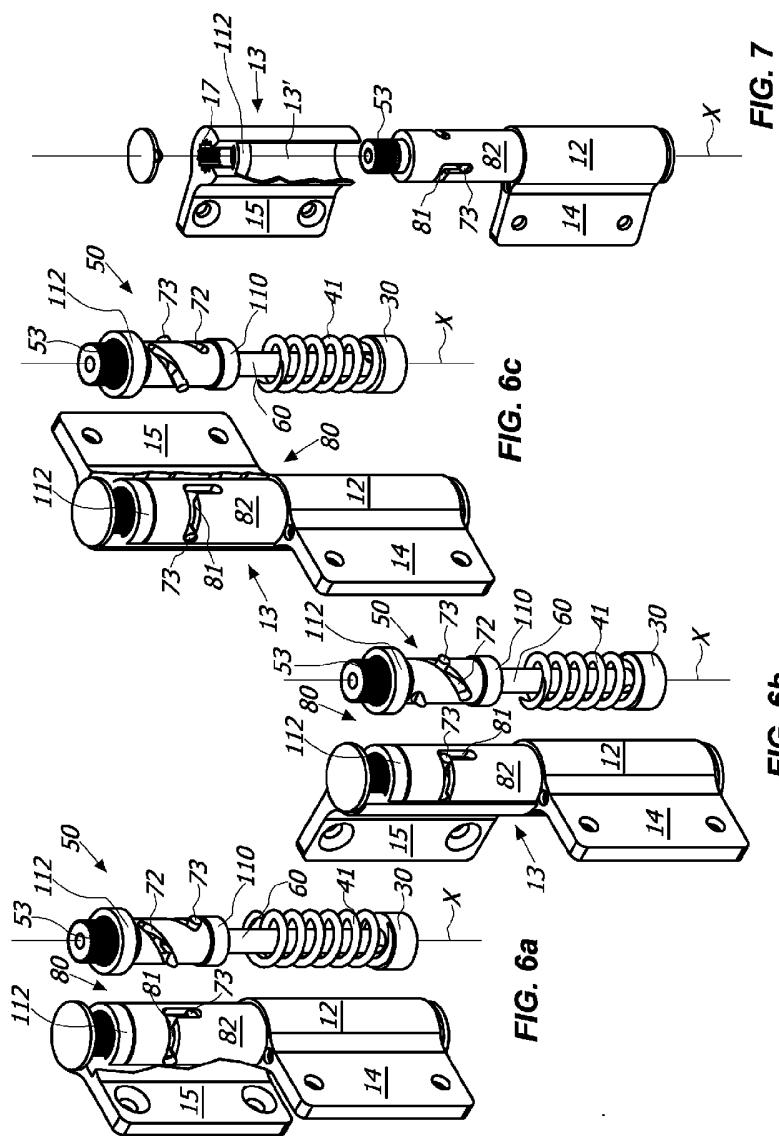




FIG. 4c

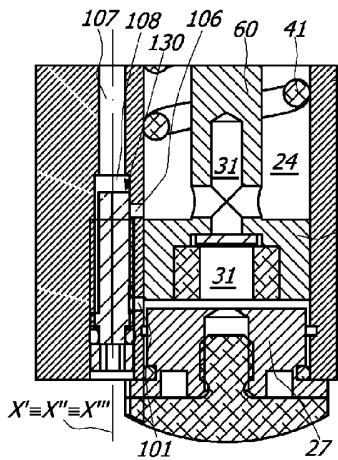


FIG. 8a

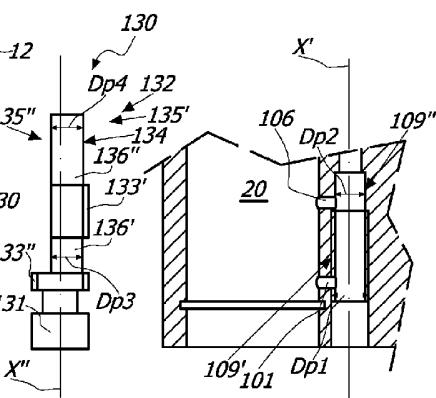


FIG. 8b

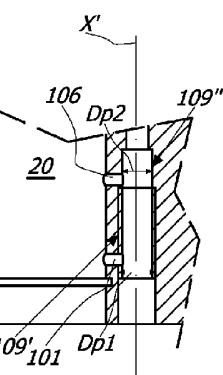


FIG. 8e

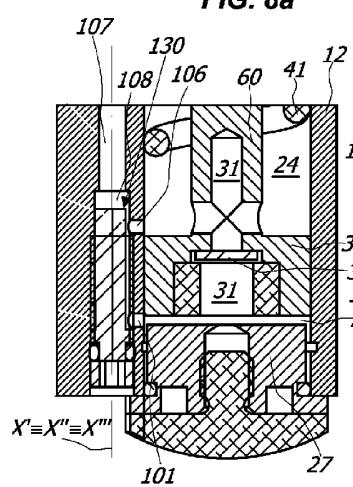


FIG. 8c

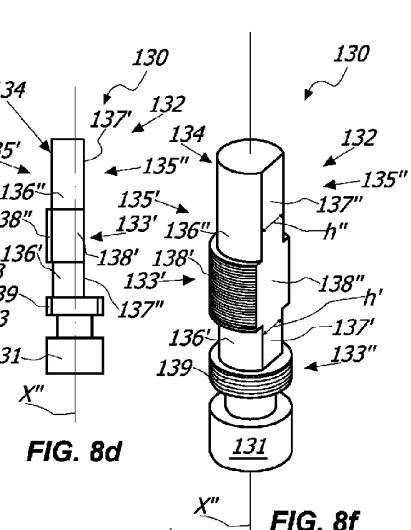


FIG. 8d

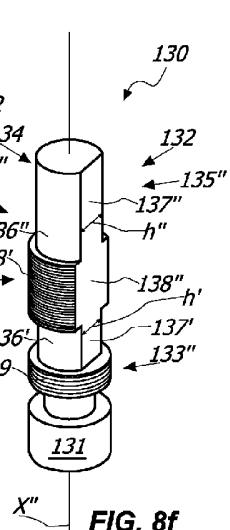


FIG. 8f

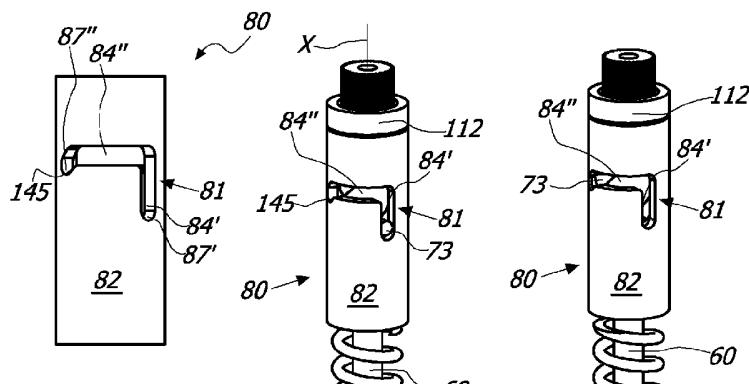


FIG. 9a

FIG. 9b

FIG. 9c

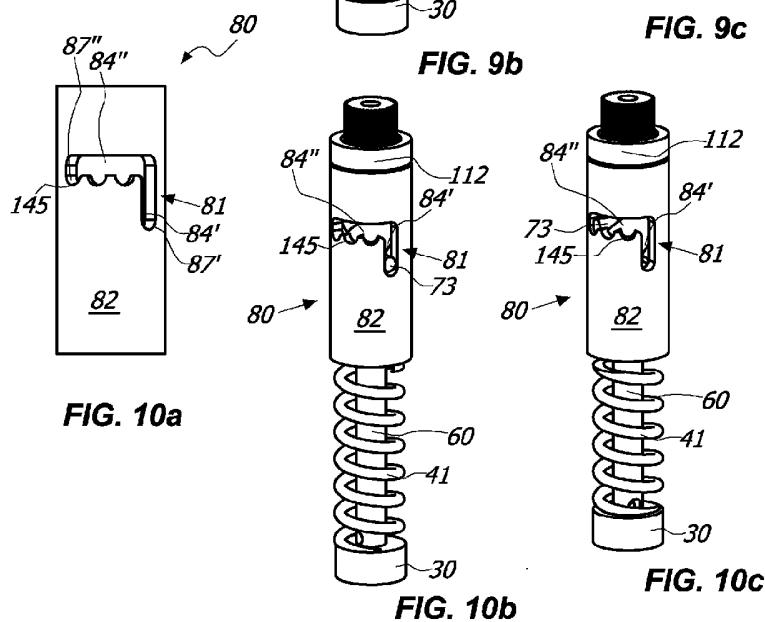


FIG. 10a

FIG. 10b

FIG. 10c

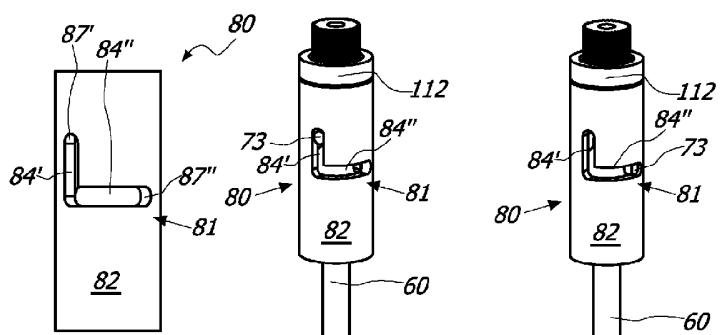


FIG. 11a

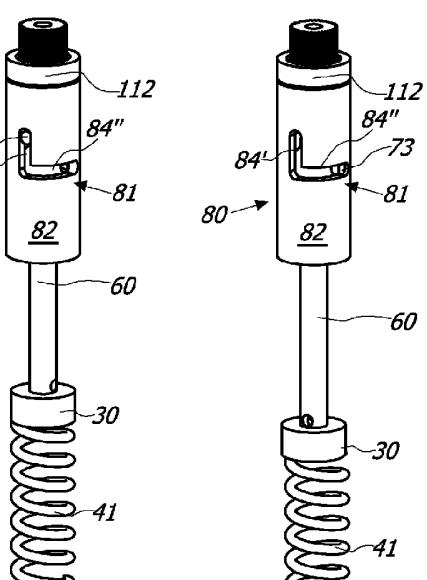


FIG. 11b

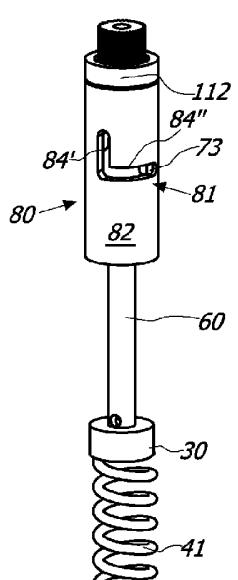


FIG. 11c

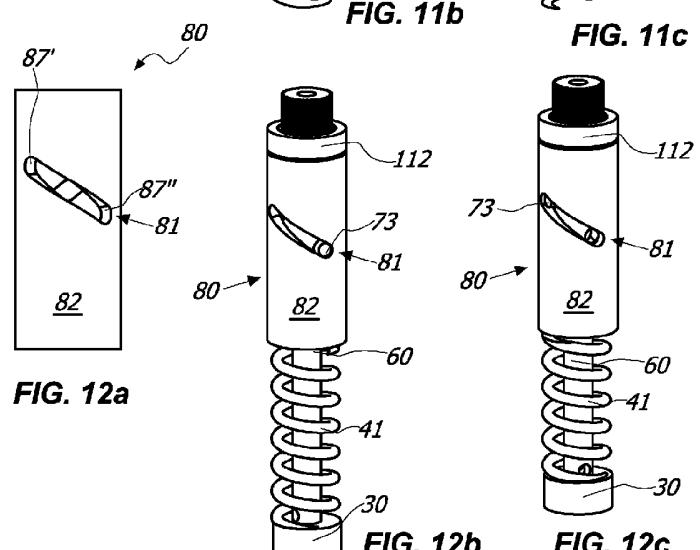


FIG. 12a

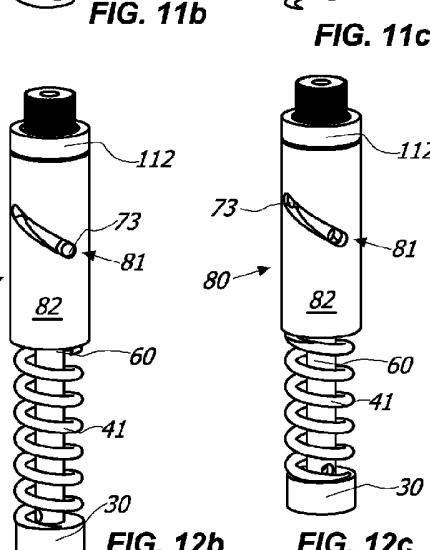


FIG. 12b

FIG. 12c

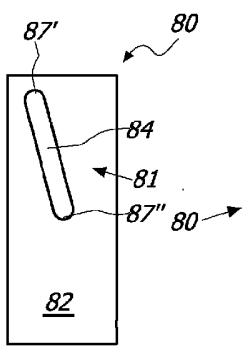


FIG. 13a

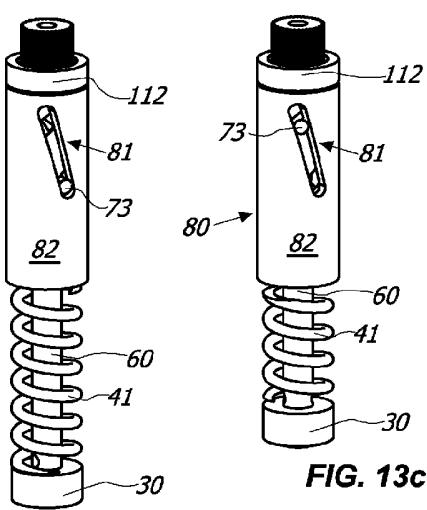


FIG. 13b

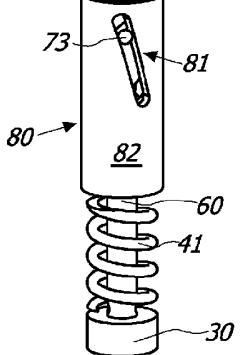


FIG. 13c

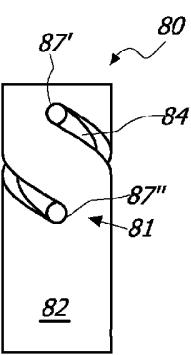


FIG. 14a

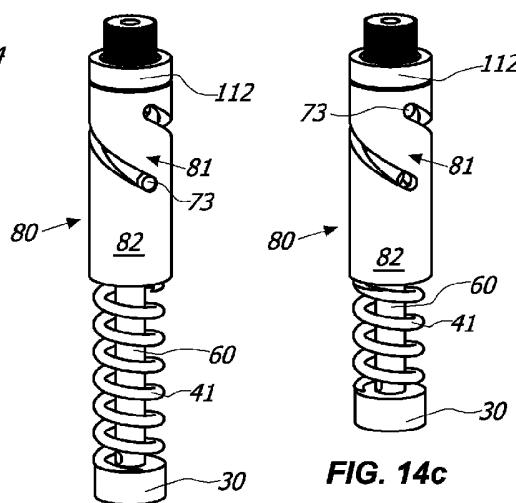


FIG. 14b



FIG. 14c

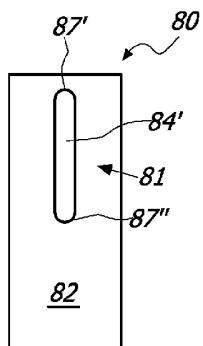


FIG. 15a

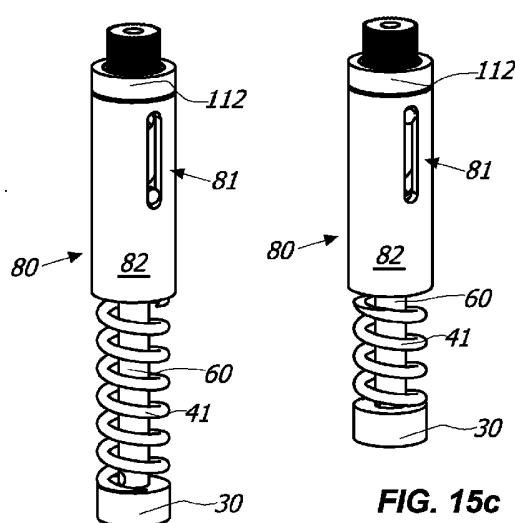


FIG. 15c

FIG. 15b



FIG. 16

FIG. 17

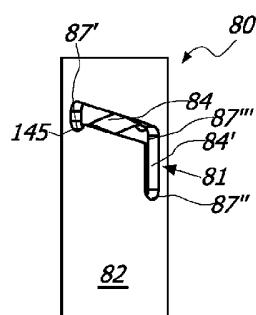


FIG. 18a

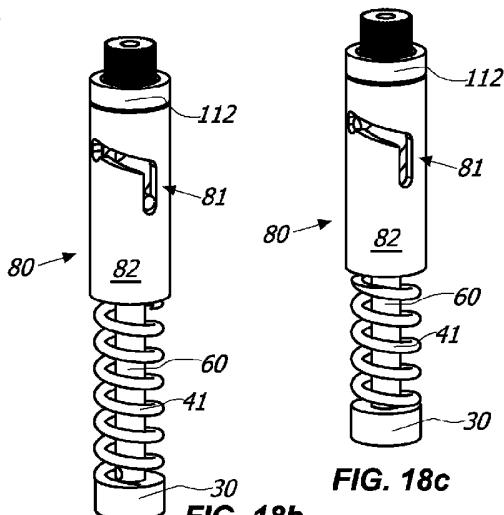


FIG. 18b

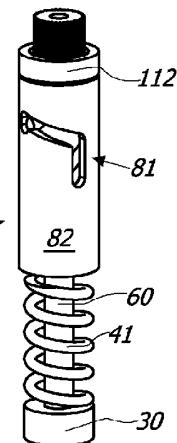


FIG. 18c

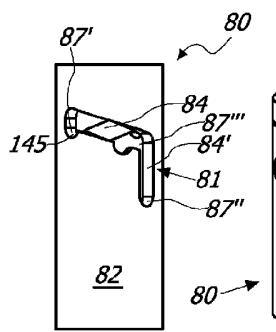


FIG. 19a

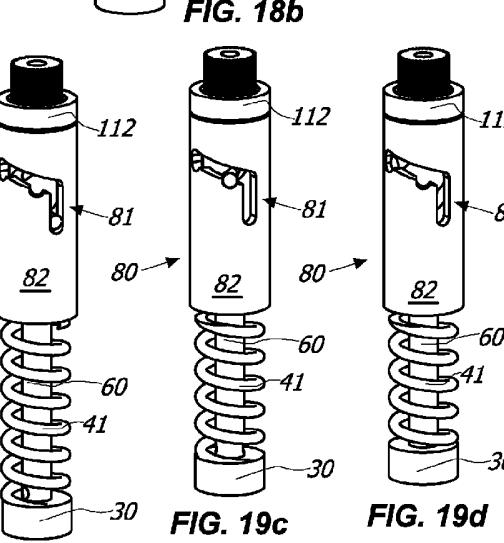


FIG. 19b

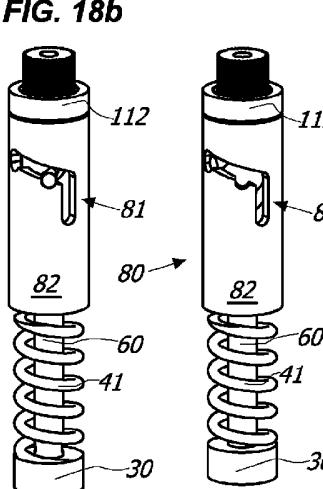


FIG. 19c

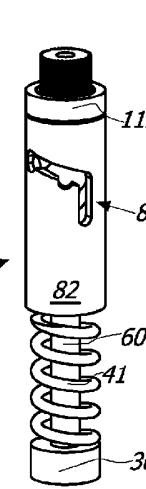
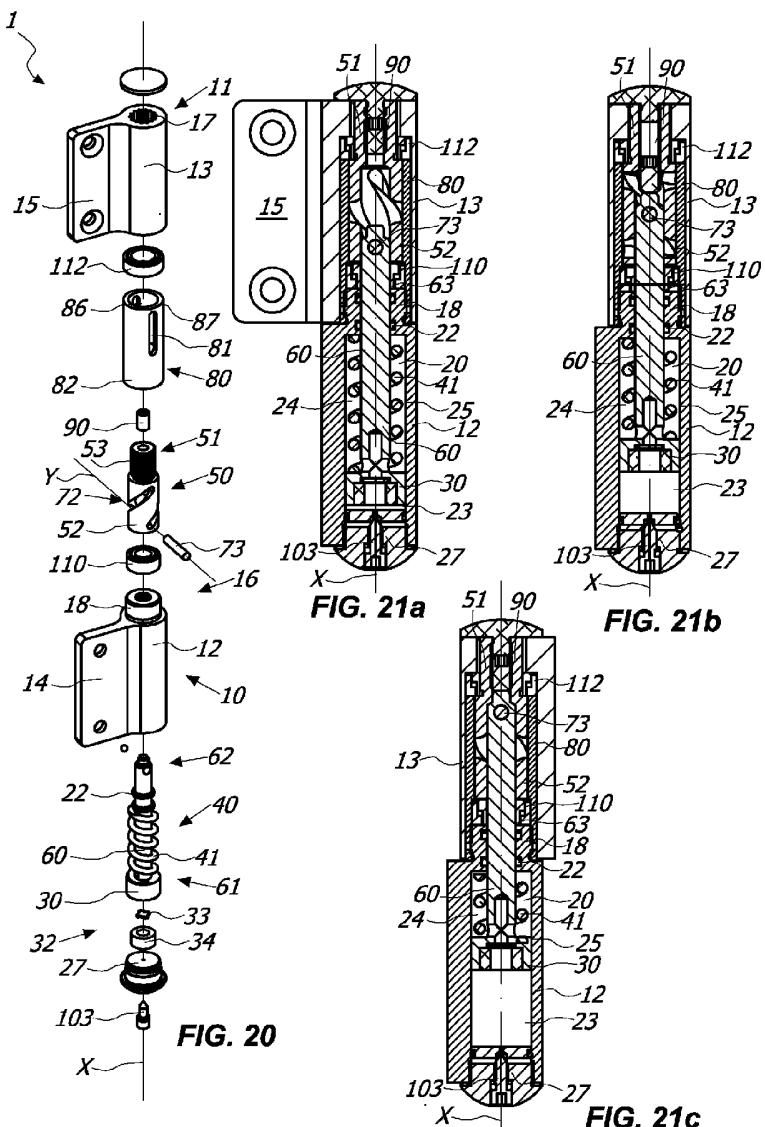



FIG. 19d

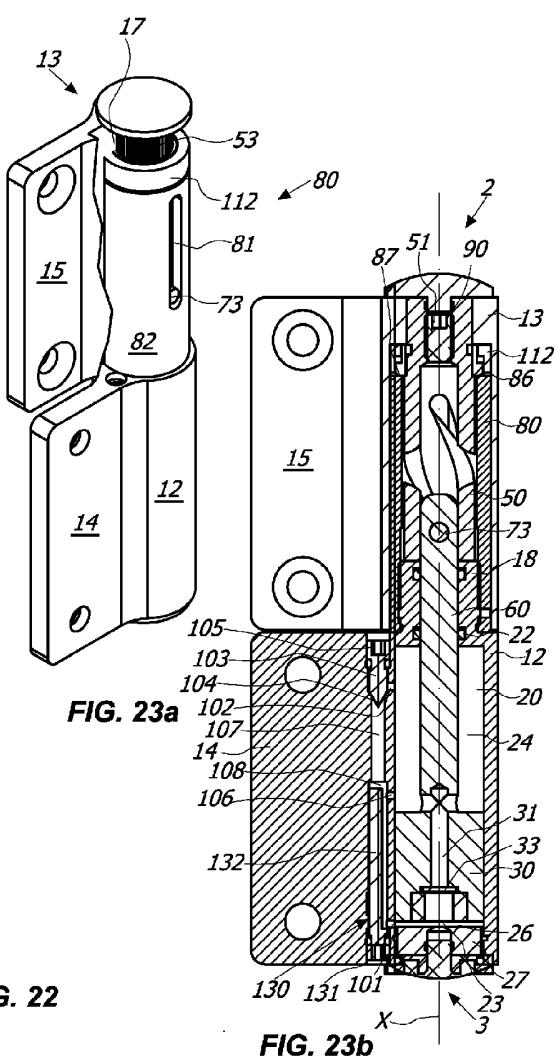
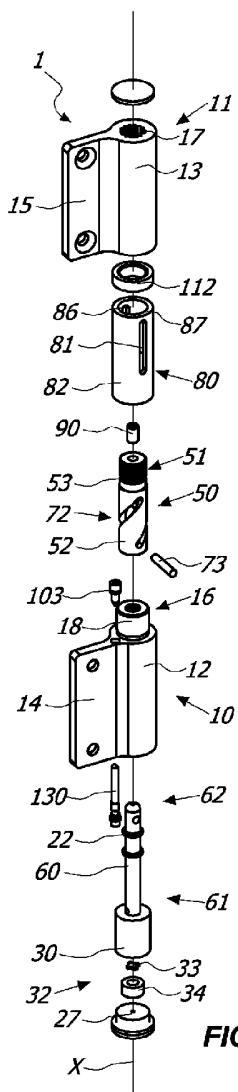



FIG. 23b

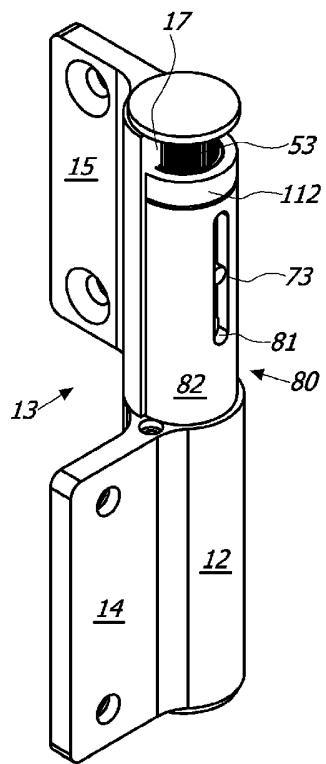


FIG. 24a

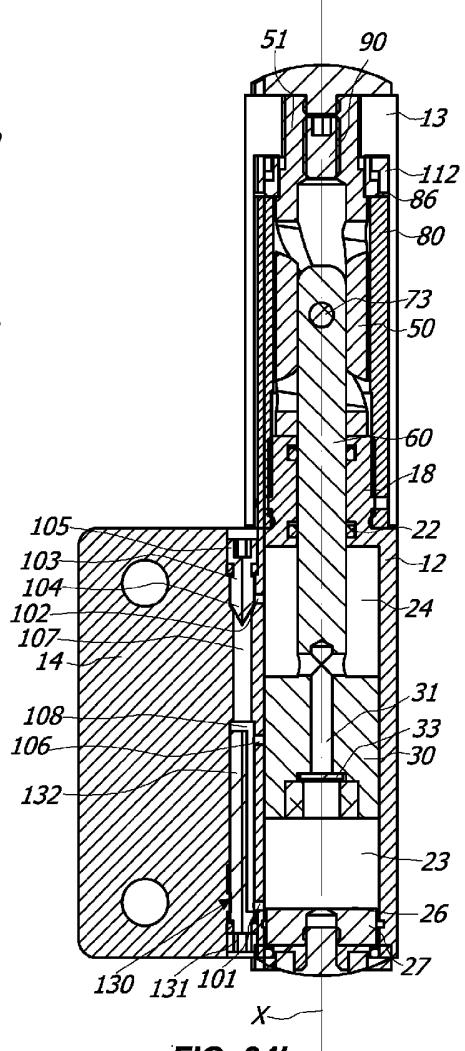
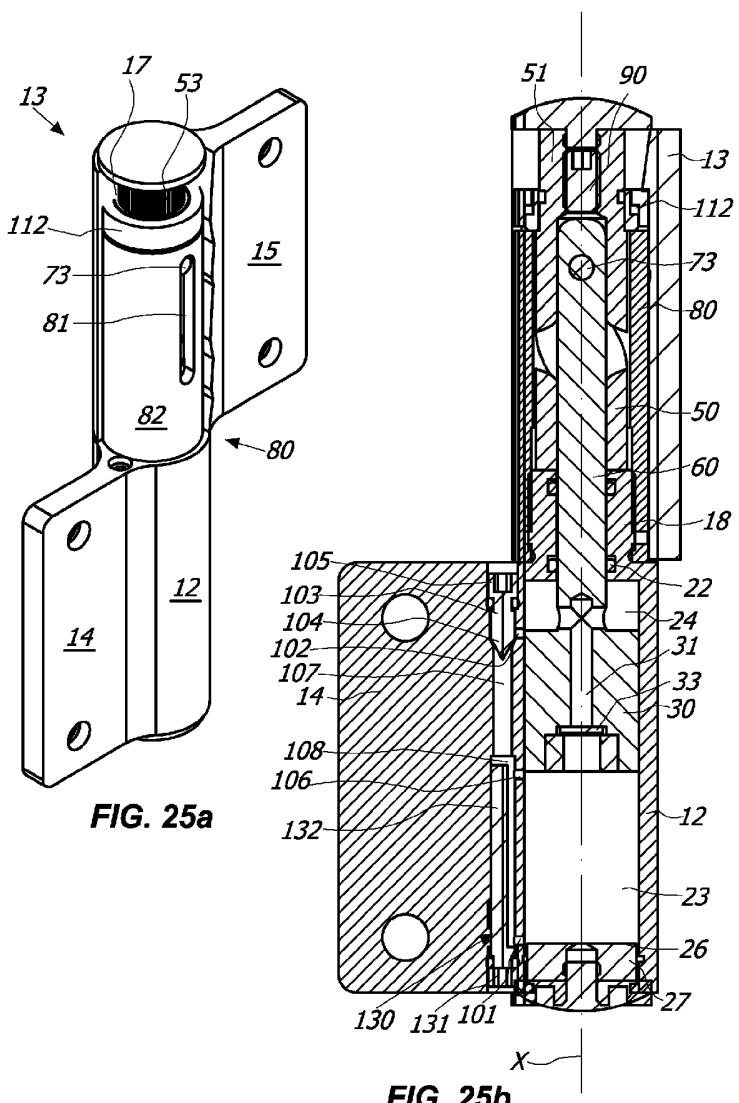
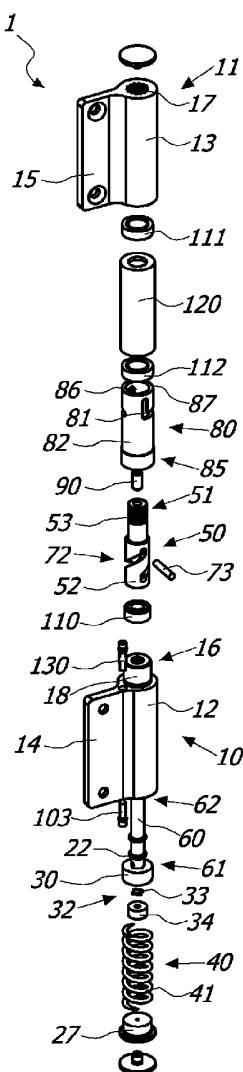
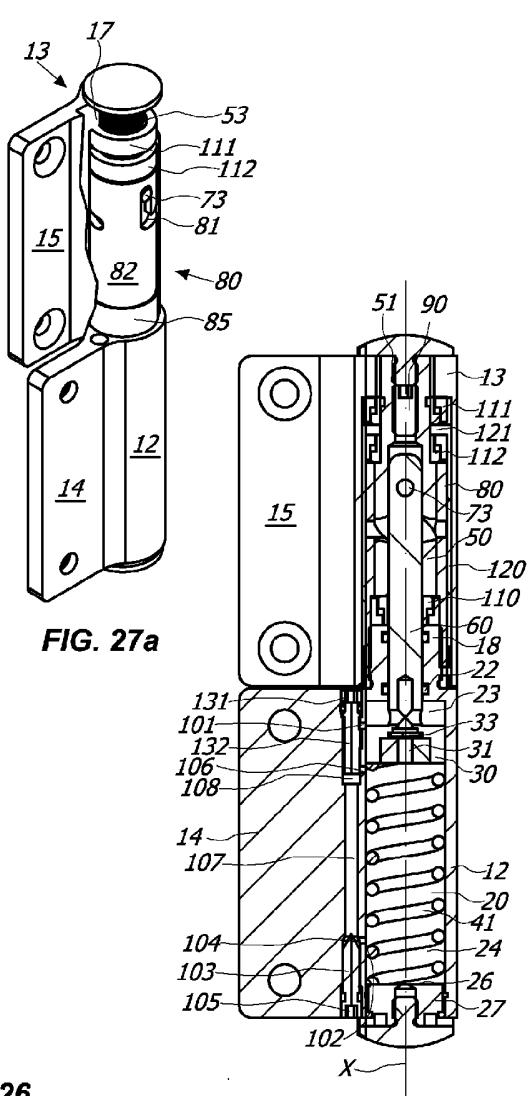





FIG. 24b

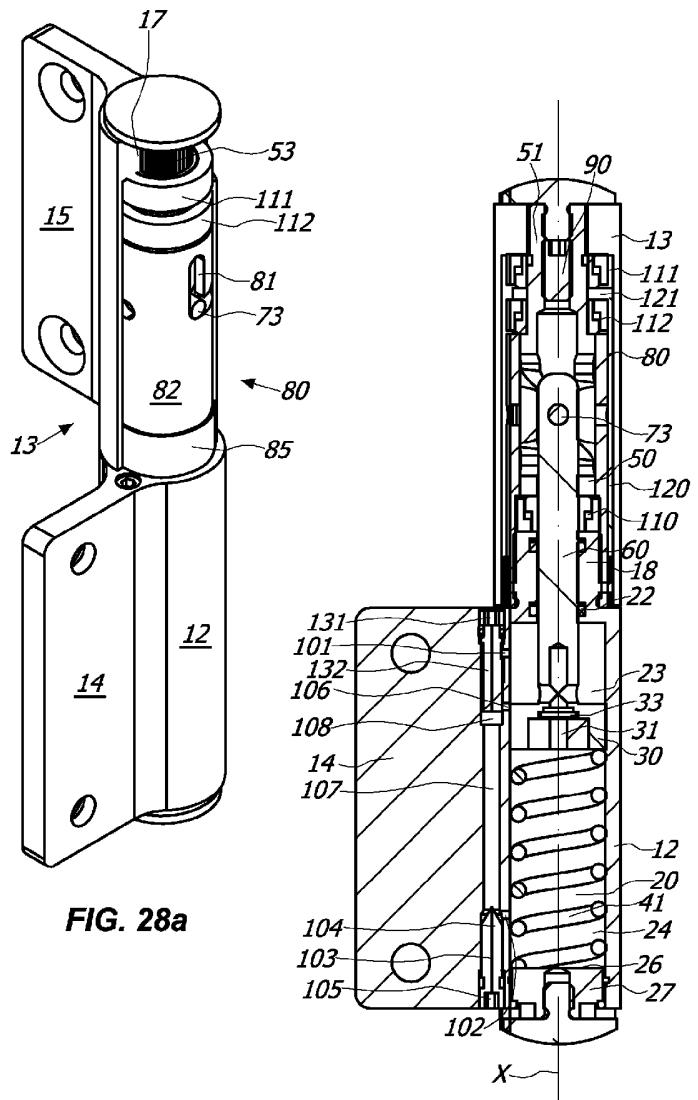


FIG. 26

FIG. 27b

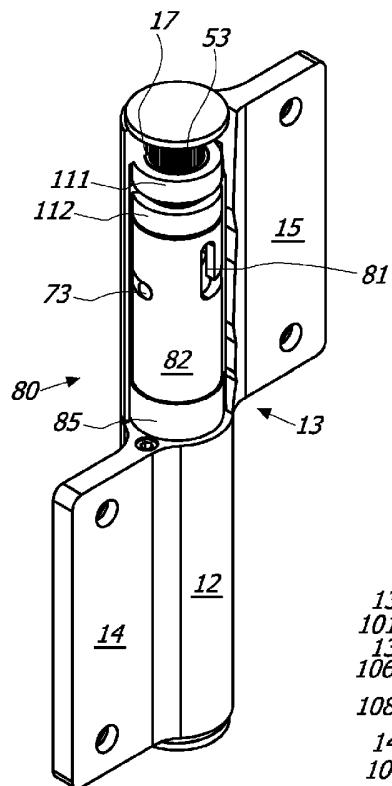


FIG. 29a

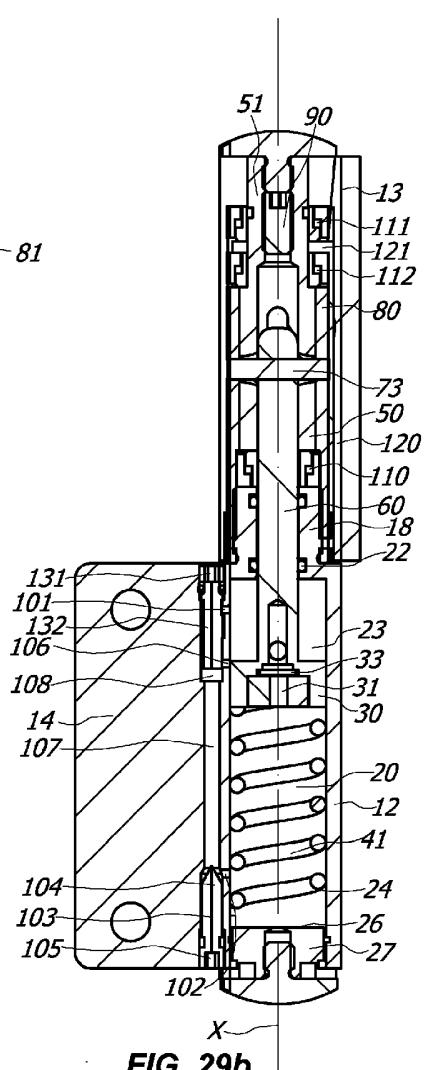
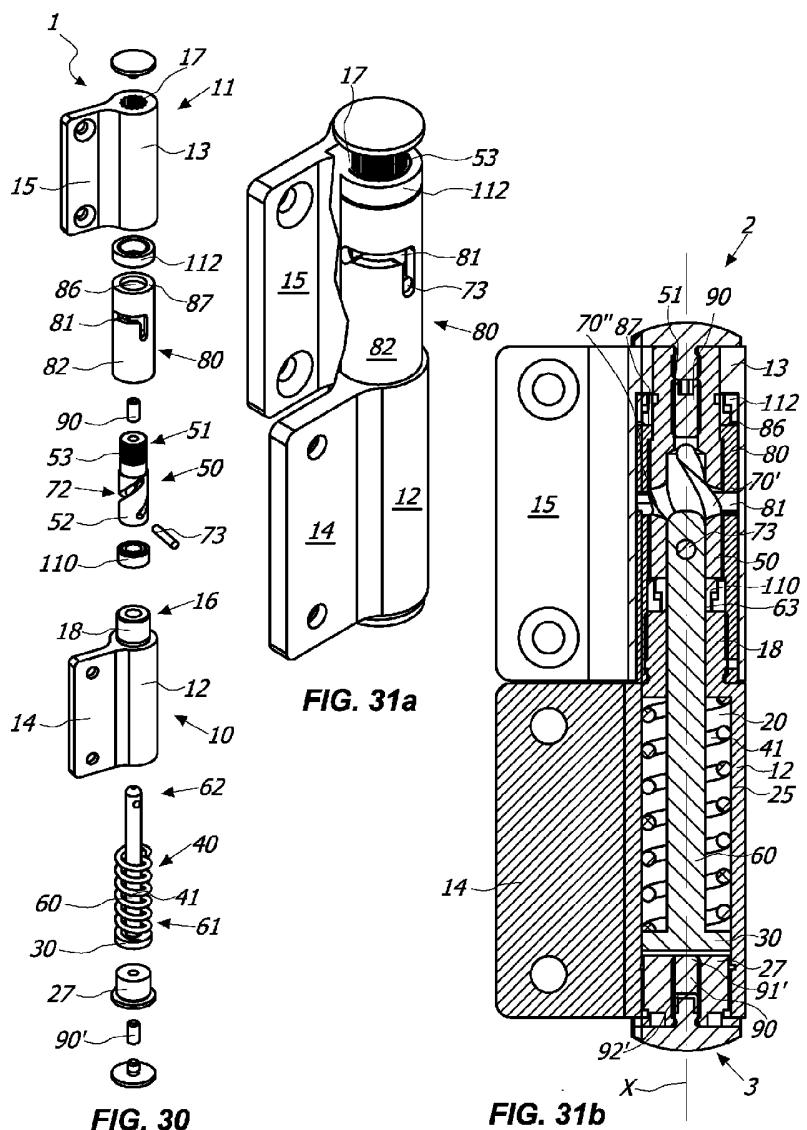
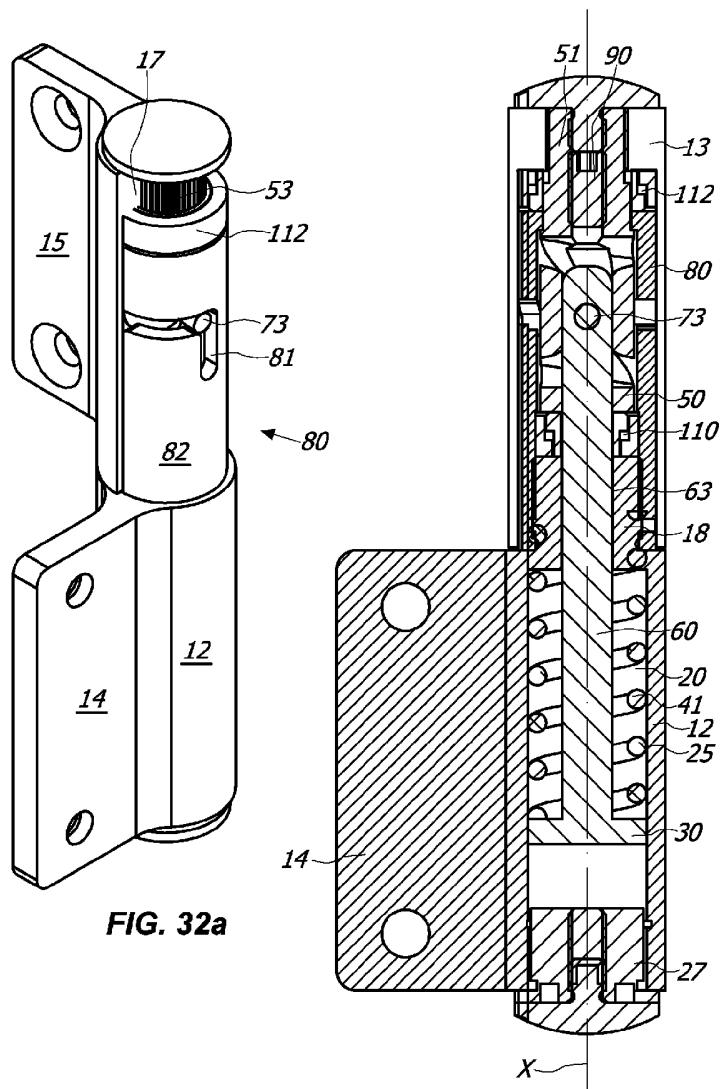
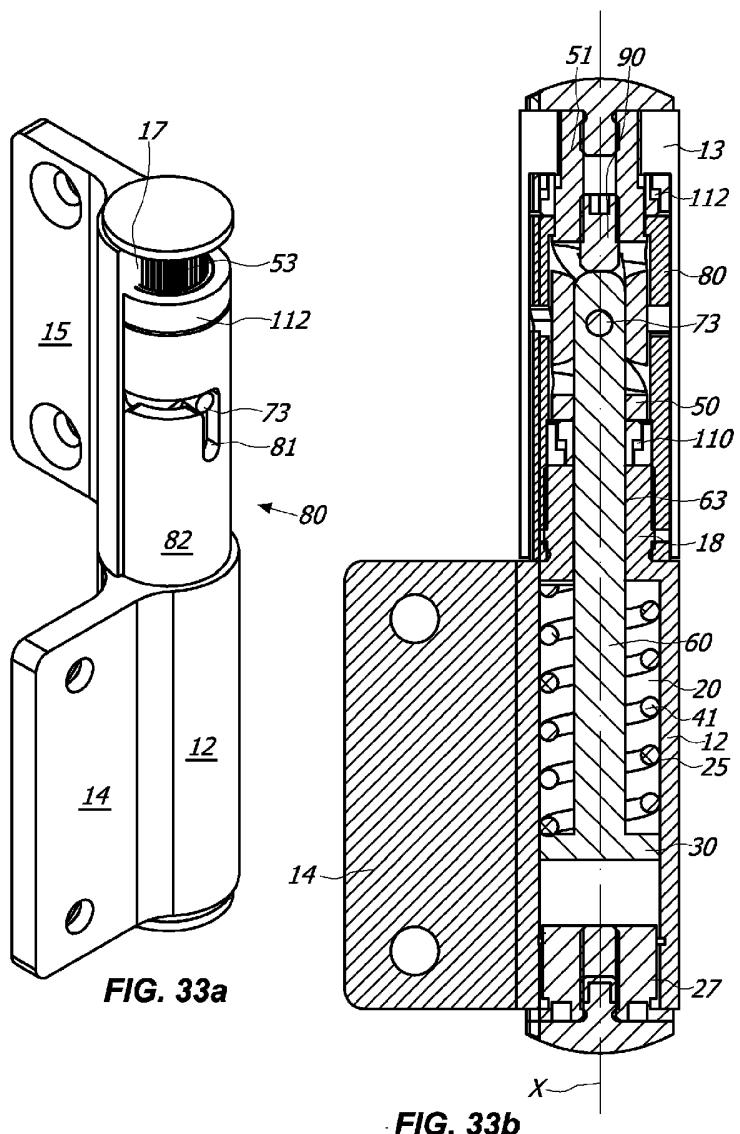





FIG. 29b

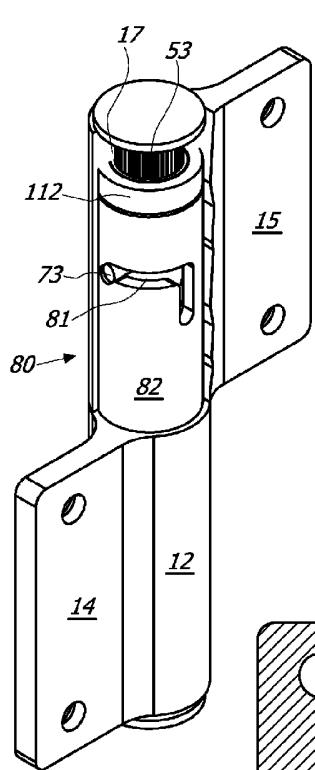


FIG. 34a

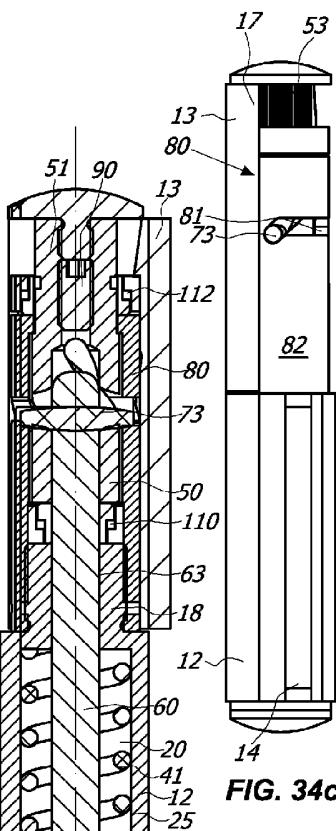


FIG. 34c

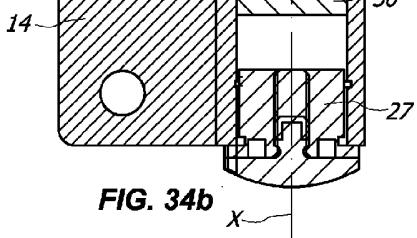


FIG. 34b

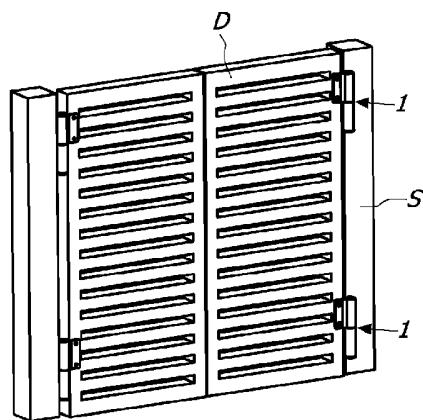


FIG. 35

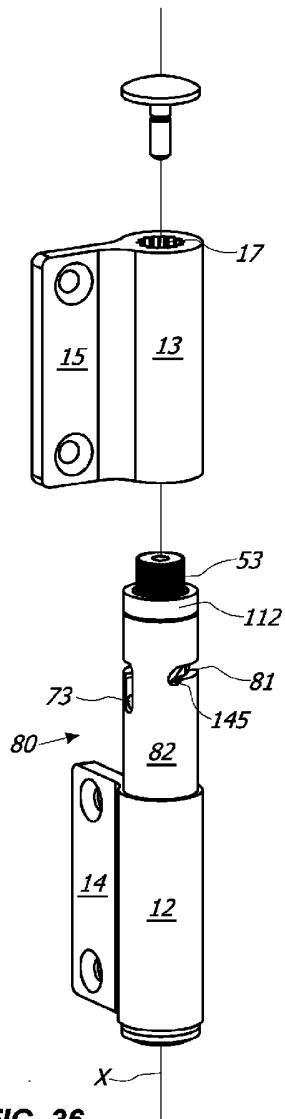


FIG. 36

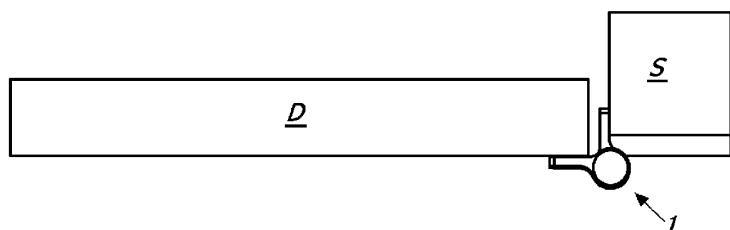
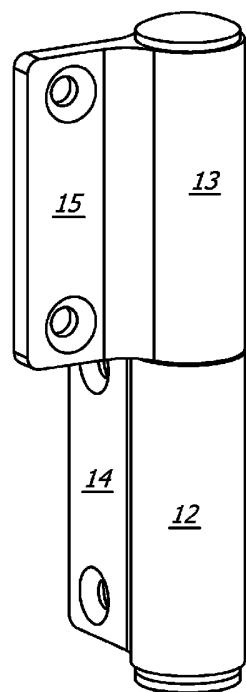
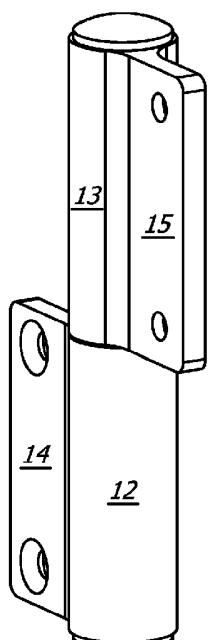
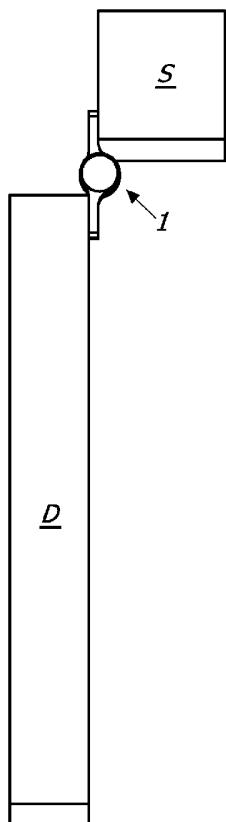
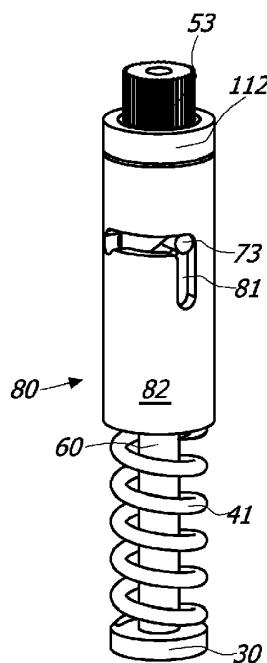
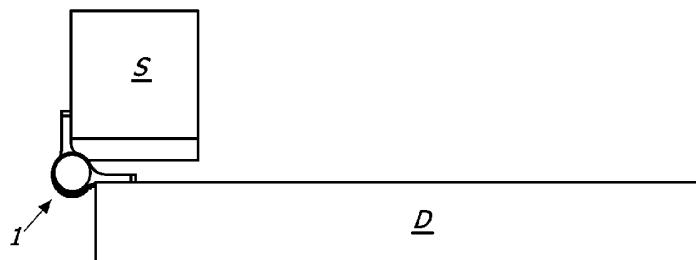
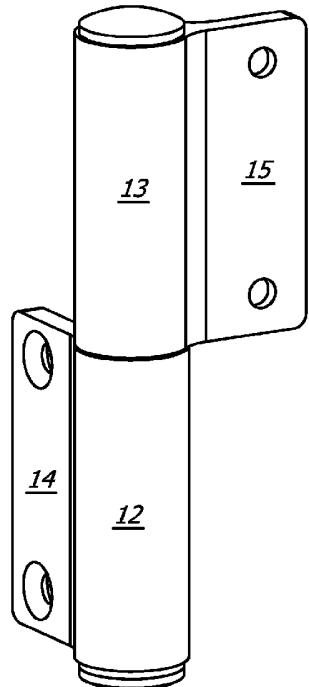


FIG. 37


FIG. 38a


FIG. 38b


FIG. 40a

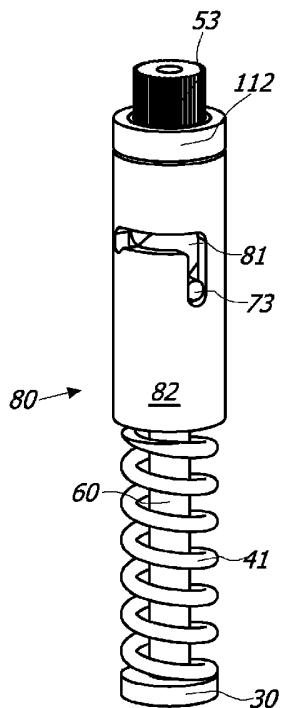

FIG. 40b

FIG. 41

FIG. 42a

FIG. 42b

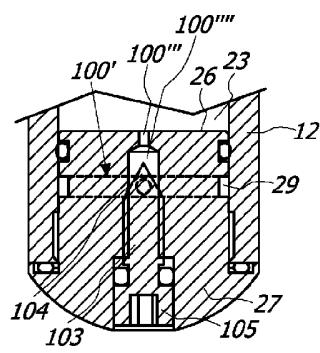


FIG. 43a

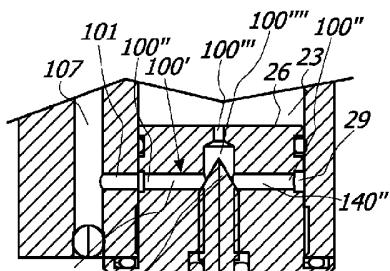


FIG. 43b

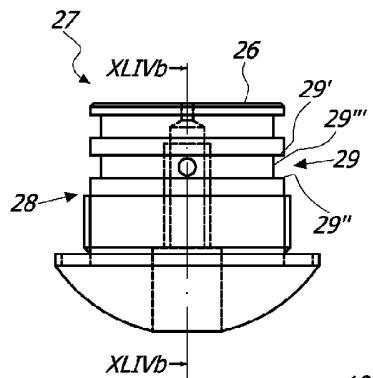


FIG. 44a

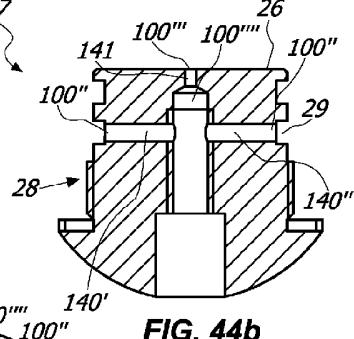


FIG. 44b

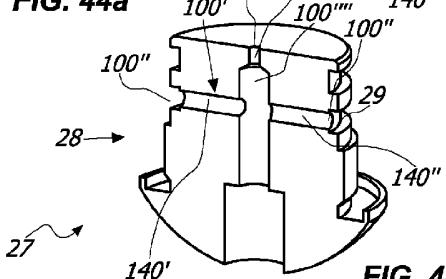
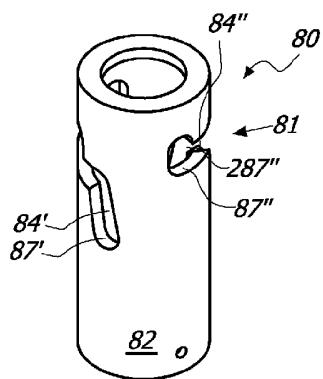
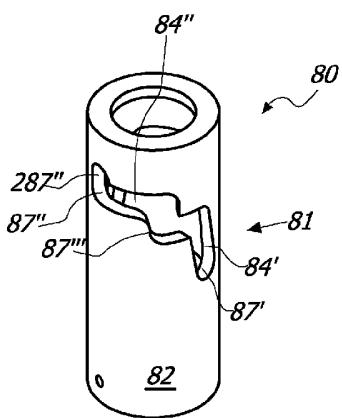
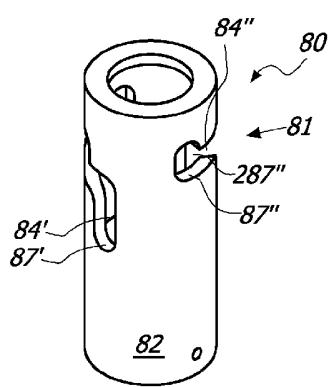
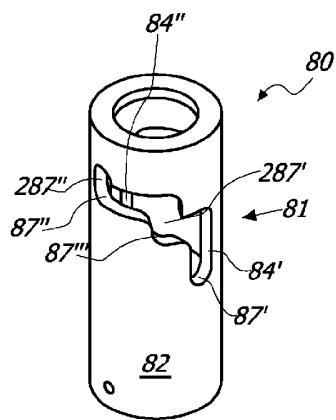
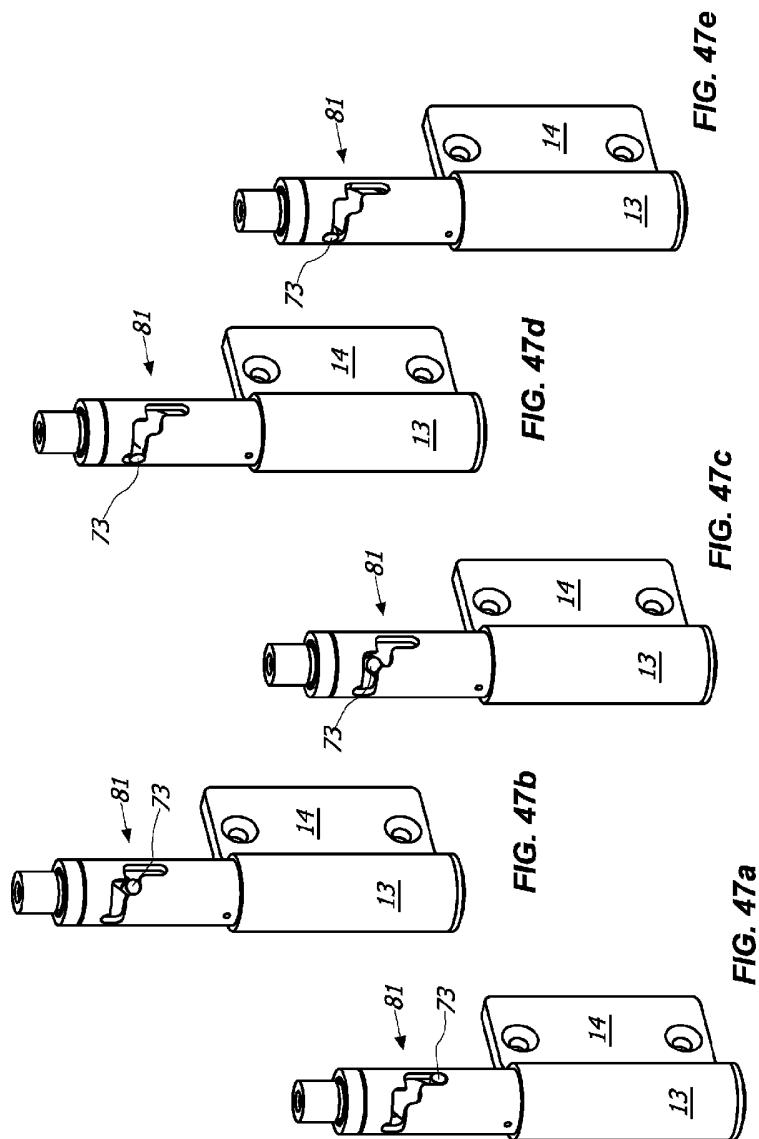







FIG. 44c

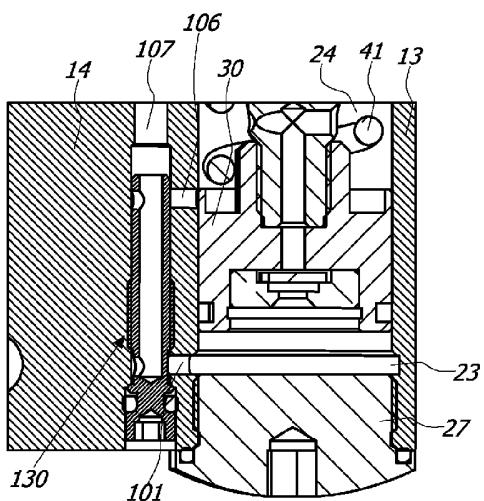


FIG. 48a

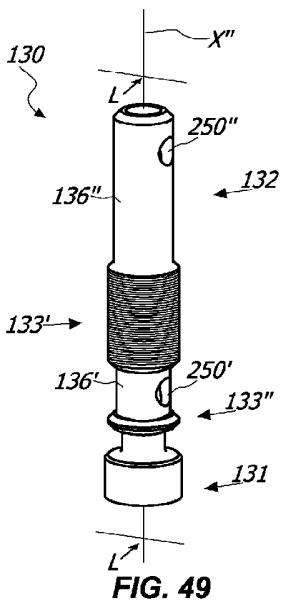


FIG. 49

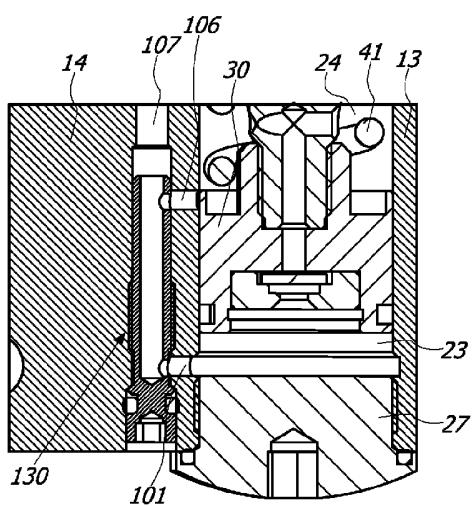


FIG. 48b

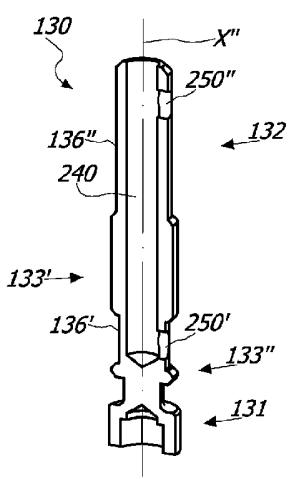


FIG. 50