WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau ## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 5: B05D 7/16, C09D 167/00, C08G 18/42, C09D 133/06, C08G 18/62 // (C09D 167/00, 161:32) (C09D 133/06, 161:32) (11) International Publication Number: WO 94/21387 (43) International Publication Date: 29 September 1994 (29.09.94) (21) International Application Number: PCT/IB94/00051 A1 (22) International Filing Date: 8 March 1994 (08.03.94) (30) Priority Data: 08/034,936 19 March 1993 (19.03.93) US (71) Applicant: PPG INDUSTRIES, INC. [US/US]; One PPG Place, Pittsburgh, PA 15272 (US). (72) Inventors: STURDEVANT, Shelley, D.; RD #3, 102 Locust Hill Road, Cheswick, PA 15024 (US). RYAN, Edward, T.; RD #1, Little Deer Road, P.O. Box 16, Cheswick, PA 15024 (US). CONNELLY, Bruce, A.; Box 303A, Road #4, Gibsonia, PA 15044 (US). (74) Agents: MILLMAN, D., G.; PPG Industries, Inc., One PPG Place, Pittsburgh, PA 15272 (US) et al. (81) Designated States: AU, BR, CA, CZ, FI, HU, JP, KP, NO, NZ, PL, RU, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). #### **Published** With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of (54) Title: ANODIZED ALUMINUM WITH PROTECTIVE COATING AND COATING COMPOSITION ## (57) Abstract 7 A coating composition and method for protecting anodized aluminum, and the coated product are disclosed, wherein the coating comprises a crosslinking agent; a film-forming resin selected from the group consisting of polyester polymers, thermosetting acrylic polymers, and mixtures thereof; and an epoxy silane. The combination provides exceptional adhesion of the coating to anodized surfaces as well as good hardness. # FOR THE PURPOSES OF INFORMATION ONLY Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT. | AT | Austria | GB | United Kingdom | MR | Mauritania | |----|--------------------------|-----|------------------------------|----|--------------------------| | AU | Australia | GE | Georgia | MW | Malawi | | BB | Barbados | GN | Guinea | NE | Niger | | BE | Belgium | GR | Greece | NL | Netherlands | | BF | Burkina Faso | HU | Hungary | NO | Norway | | BG | Bulgaria | Œ | Ireland | NZ | New Zealand | | BJ | Benin | IT | Italy | PL | Poland | | BR | Brazil | JP | Japan | PT | Portugal | | BY | Belarus | KE | Kenya | RO | Romania | | CA | Canada | KG | Kyrgystan | RU | Russian Federation | | CF | Central African Republic | KP | Democratic People's Republic | SD | Sudan | | CG | Congo | | of Korea | SE | Sweden | | CH | Switzerland | KR | Republic of Korea | SI | Slovenia | | CI | Côte d'Ivoire | KZ | Kazakhstan | SK | Slovakia | | CM | Cameroon | LI | Liechtenstein | SN | Senegal | | CN | China | LK | Sri Lanka | TD | Chad | | CS | Czechoslovakia | LU | Luxembourg | TG | Togo | | CZ | Czech Republic | LV | Latvia | TJ | Tajikistan | | DE | Germany | MC | Monaco | TT | Trinidad and Tobago | | DK | Denmark | MD | Republic of Moldova | UA | Ukraine | | ES | Spain | MG | Madagascar | US | United States of America | | FI | Finland | ML | Mali | UZ | Uzbekistan | | FR | France | MIN | Mongolia | VN | Viet Nam | | GA | Gabon | | - | | | PCT/IB94/00051 WO 94/21387 - 1 - ## ANODIZED ALUMINIUM WITH PROTECTIVE COATING AND COATING COMPOSITION ## Background of the Invention 5 20 This invention is directed to improving the appearance of anodized aluminum and protecting it from corrosion and stains. It had previously been proposed to protect anodized aluminum by means of a clear coating, but the performance of prior art coatings has not been as good as desired, particularly with regard to adhesion. It is 10 believed that anodizing tends to seal the surface irregularities of an aluminum surface, thereby making it more difficult for a subsequently applied coating to adhere. As a result, prior art clear coatings on anodized aluminum have typically failed in relatively short periods of time by chipping and peeling, which not only leaves 15 the anodized layer exposed to corrosion, but also produces an unattractive appearance. Furthermore, clear coatings in general present a more difficult problem with respect to adhesion because pigments in colored coatings tend to have a beneficial effect on adhesion. It has been proposed to apply clear protective coatings onto anodized aluminum surfaces by electrodeposition, which may improve adhesion. However, it would be desirable to avoid the expense and complication of electrodeposition. Therefore, this invention is directed toward providing clear coatings on anodized 25 aluminum that may be applied by spraying or other conventional application techniques other than by electrodeposition. Coatings based on a variety of film-forming resin systems are generally considered appropriate for coating aluminum surfaces, including alkyds, polyesters, silicone-polyesters, thermoplastic 30 acrylics, thermosetting acrylics, and fluoropolymers. When used on anodized aluminum surfaces, however, most of these conventional coating compositions do not exhibit the desired degree of adhesion to the anodized surface. - 2 - There are many additives commercially available that are claimed to improve the adhesion of coatings. However, these additives are not effective in all compositions and on all substrates. The difficulty in attaining adequate adhesion to anodized aluminum has not heretofore been adequately overcome merely by adding adhesion promoters to the conventional aluminum coating compositions. Products promoted as having adhesion promoting properties include a variety of chemical compounds, included among which are several broad categories of silane compounds such as vinyl silanes, acryloxy silanes, amino silanes, mercapto silanes, and epoxy silanes. Each of these categories has a number of commercially available species, and many more species are theoretically possible. Amino silanes in particular have been suggested in the prior art for coatings of this type, but have been found by the present inventors to be of limited effectiveness on anodized aluminum. U.S. Patent No. 4,879,345 (Connelly et al.) discloses coating compositions adapted for enhanced adherence to glass. Although unpigmented compositions are mentioned, the primary purpose of these coatings is to add colored coatings to glass, and therefore would be pigmented. The resin system is a blend of fluoropolymer and thermoplastic acrylic. A broad class of functional organosilanes are disclosed as adhesion promoting additives for the compositions of that patent. Fluoropolymer based coatings tend to be relatively soft and subject to marring. It would be desirable for the clear coatings for anodized aluminum of the present invention to achieve both adhesion and hardness. - 3 - ### Summary of the Invention It has now been discovered that a particular group of coating compositions, when combined with a particular class of silanes, yield exceptionally good adhesion to anodized aluminum. The silanes that have been found effective in this combination are epoxy silanes. The coating compositions in which the epoxy silanes have been found effective are those whose film-forming resin comprises either polyester polymers, thermosetting acrylic polymers, or mixtures thereof. This combination has also been found to exhibit good hardness in the cured coatings. Compositions containing thermosetting acrylic polymers have been found to be preferred for producing an excellent combination of both adhesion and hardness, particularly when the acrylic polymer is an acrylic/acrylamide copolymer. 15 #### Detailed Description of the Invention The silanes of interest as adhesion promoters are organofunctional silanes having the following structural formula: 20 25 30 where R represents a reactive group selected from vinyl, acryloxy, amino, mercapto, or epoxy, n is 1 to 10, and X represents a readily hydrolyzable group such as Cl, OCH3, OC2H5, or OC2H4OCH3. Of interest in the present invention are those organofunctional silanes in which R is an epoxy group. Commercially available examples of epoxy silanes are gamma-glycidoxypropyltrimethoxysilane and beta-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane, but it should be understood that the invention is not limited to these specific examples. As the film-former in the coating compositions of the present invention, there can be employed resins selected from the - 4 - group consisting of polyester polymers, thermosetting acrylic polymers, and mixtures thereof. In accordance with this invention, the film-forming resin is conducive to the formation of a clear coating. By the term "clear" is meant that the coating is free of noticeable haze and yellowing following thermal curing. An illustrative example of the thermosetting acrylic resin can be an acrylic polymer which can be prepared by free radical addition polymerization of ethylenically unsaturated acrylic monomers. Examples of acrylic monomers include methyl acrylate, 10 methyl methacrylate, butyl acrylate, butyl methacrylate, styrene, Nethoxymethyl acrylamide, and Nethoxymethyl acrylamide. Other monomers known for use in acrylic polymerization may be used instead of or in addition to these examples. Small amounts of acid group containing monomers may also be included in the polymerization of the acrylic polymer, such as acrylic acid or methacrylic acid. Inclusion of N-ethoxymethyl acrylamide or N-butoxymethyl acrylamide or the like in the polymerized of the acrylic polymer described above may serve as an internal crosslinking agent for curing the polymer. It is preferred to additionally include in the 20 acrylic polymer based compositions an external crosslinking agent such as substituted or unsubstituted melamine, benzoguanamine, urea, isocyanate, or amides. Particularly suitable are partially or wholly methoxy or butoxy substituted melamines, e.g., hexamethoxymethyl melamine. Other examples of crosslinking agents include partially 25 methylated melamine formaldehyde resin , methylated ureas, isocyanates, isocyanurates, and biurets. The crosslinking agent is employed in an amount sufficient to provide an effectively cured coating. By "effectively cured coating" is meant that the coating is hard (greater than "H" pencil hardness), and does not blush or haze 30 upon exposure to water. Typically, the crosslinking agent is employed in an amount of about 5 to 50 weight percent and preferably about 10 to 35 weight percent based on resin solids. - 5 - The polyester resins of interest as the film-forming resins of the present invention may be characterized as the reaction product of one or more polyacid and one or more polyol. A wide range of polyacids and polyols as are known in the art for producing 5 polyester resins for coatings may be used. The most commonly used polyacids are adipic acid and phthalic acid (as well as phthalic anhydride). Unsaturated acids such as fumaric and maleic (and its anhydride) may be used, although the polyesters used in the present invention are preferably saturated polyesters. Other polyacids 10 include malonic acid, succinic acid, glutaric acid, pimelic acid, and sorbic acid. Polyols most commonly used are ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,3-butylene glycol, neopentyl glycol, trimethylpentandiol, and pentaerythritol. The polyester may also be modified with naturally occurring or 15 synthetic fatty acids such as cocnut fatty acid, linseed fatty acid and castor oil fatty acids. A curing agent such as a melamine or one or more of the other external curing agents previously disclosed is typically included in the polyester based resins. In addition to the primary film-forming acrylic or polyester resins, the compositions of the present inventions may include other modifying or diluent resins. These may be reactive or non-reactive. If reactive, curing agents may be included to crosslink the additive resins, whereby they participate in film forming. Other additives such as flow control agents, rheology modifiers, and anti-foaming agents may be included in the compositions of the present invention. - 6 - #### Resin A The following is an example of an acrylic polymer that is useful as a film former in the preparation of the coating composition of this invention. The acrylic polymer was prepared by free radical initiated addition polymerization using the following: | | Ingredients | <u>Parts</u> | by V | Veight | |----|-------------------------------|--------------|-------|--------| | | Xylene | | 8998 | 3 | | | N-butoxymethylacrylamide | | 3712 | 2 | | 10 | Ethyl acrylate | | 8230 |) | | | Styrene | | 8140 |) | | | Methacrylic acid | | 495 | 5 | | | Tertiary dodecyl mercaptan (T | DM) | 251 | L | | | "VAZO 64" Catalyst | | 205 | 5 | | 15 | N-butanol | | 2589 | • | | | "AROMATIC 150" solvent from E | xxon : | 13490 |) | | | T-butyl perbenzoate | | 65 | 5 | The resultant polymer having 52 percent solids was 20 employed in the coating compositions of this invention as described herein. ### Resin B The following is an example of a polyester modifying resin that may be blended with acrylic Resin A in some embodiments of the invention. The polyester polymer was prepared by condensation polymerization using the following: | | <u>Ingredients</u> | Parts by Weight | |----|------------------------------------|-----------------| | | Synthetic fatty acids ¹ | 2800 | | 30 | Pentaerythritol | 1350 | | | Propylene glycol | 1250 | | | Phthalic anhydride | 2925 | | | Xylene | 3104 | | | | | (1) "EMFAC 1207" from Emery Chemical Co. - 7 - #### Resin C This example illustrates the condensation polymerization of a polyester polymer that was used in the preparation of a coating in this invention. 5 | | <u>Ingredients</u> I | Parts by Weight | |----|---------------------------------|-----------------| | | Trimethyl pentanediol | 2454 | | | Adipic acid | 667 | | 10 | Isophthalic acid | 929 | | | Dibutyl tin oxide | 4 | | | "AROMATIC 100" solvent from Exx | on 409 | This resin was polymerized to an acid value of 8.3 and 15 a hydroxyl value of 179. In the following series of examples, several types of coating compositions, with and without epoxy silane, were tested for adhesion on anodized aluminum. The test substrate in each example was unsealed gold anodized aluminum produced by Columbia Pacific Aluminum Co. The results of the comparative tests are shown in Table 1. Throughout the following examples, parts by weight are based on resin solids content of the ingredients. #### Example 1 A silicone modified polyester clear coating being marketed by a competitor as a coating for anodized aluminum was spray applied onto an anodized aluminum substrate and baked for 10 minutes at 350°F (177°C). No epoxy silane was added to this product. - 8 - ## Example 2 A silicone modified polyester sold by PPG Industries, Inc., under the name POLY-SI $^{\odot}$ was prepared from the following ingredients: 5 | Ingredients | Parts by Weight | |----------------------------------|-----------------| | Silicon polyester ¹ | 66 | | Methylated melamine ² | 34 | | Catalyst ³ | 1 | 10 - (1) 50% silicone and 50% polyester derived from neopentyl glycol, 1,6-hexanediol, and hexahydrophthalic anhydride. - (2) "CYMEL 303" from American Cyanamid. - (3) "NACURE 2501" blocked para-toluene sulfonic acid. 15 After being spray applied onto anodized aluminum, the coating was baked for 13 minutes at 350OF (177°C). to yield a clear film. 20 Example 2A In accordance with the present invention 5.6 parts by weight of gamma-glycidoxypropyltrimethoxysilane available from Union Carbide under the name "A-187" was added to the composition of Example 2. The coating was spray applied and cured in the same manner as described in Example 2. - 9 - #### Example 3 A coating composition sold by PPG Industries, Inc., under the name "Durabrite C" for coating metal coil, based on reactive fluoropolymer resin was prepared as follows in xylene solvent: | | Ingredients | <u>Parts</u> | by Weight | |----|------------------------------------|--------------|-----------| | | Polychlorotrifluoroethylene | | | | | vinyl ether copolymer ¹ | | 61.3 | | 10 | Isophorone diisocyanate adduct | = | 31.2 | | | Aliphatic epoxy | | 2.8 | | | "IONOL" antioxidant | | 2.0 | | | U. V. absorber ² | | 2.58 | - 15 (1) "LUMIFLON 502" from Asahi Glass Co. - (2) "TINUVIN 1130" from Ciba-Geigy. After being spray applied onto anodized aluminum, the coating was baked for 7 minutes at 350OF (177OC). to yield a clear film. #### Example 4 "Lumiflon 400" polychlorotrifluoroethylene vinyl ether copolymer reactive fluoropolymer resin from Asahi Glass Co. After being spray applied onto anodized aluminum, the coating was baked for 10 minutes at 350OF (177OC). to yield a clear film. ## Example 4A To 95 parts of the composition of Example 4 was added 5 parts "A-187" gamma glycidoxypropyltrimethoxysilane from Union Carbide. The coating was spray applied and cured in the same manner as Example 4. - 10 - ## Example 5 A fluoropolymer based coating composition commonly used for application onto aluminum architectural components was prepared as follows. 5 | <u>Ingredients</u> | Parts by Weight | |--------------------------------------|-----------------| | Polyvinylidene fluoride ¹ | 70 | | Acrylic resin ² | 25 | - 10 (1) HYLAR 5000 from Atochem. - (2) ACRYLOID B-44 acrylic resin containing ethyl acrylate and methyl methacrylate from Rohm & Haas. The above ingredients were blended in the above-listed order, diluted with solvent to 35 percent solids, and spray 15 applied. The applied coating was cured thermally for 13 minutes at 475OF (246°C) to give a hard, glossy film, clear in color. ## Example 5A In accordance with the present invention 5 parts by weight of gamma-glycidoxypropyltrimethoxysilane available from Union Carbide under the name "A-187" was added to the composition of Example 5. The coating was spray applied and cured in the same manner as described in Example 5. 25 ### Example 6 A polyester based coating composition commonly used for application onto metals was prepared as follows: | | <u>Ingredients</u> | Parts by Weight | |----|-----------------------------|-----------------| | | Polyester Resin C | 51 | | 30 | Melamine resin ¹ | 41 | | | Epoxy resin ² | . 3 | - (1) $\mathtt{CYMEL}^{\scriptsize{\textcircled{\$}}}$ 303 from American Cyanamid. - (2) EPON 1001 from Shell Chemical Co. The above ingredients were blended in the above-listed order, diluted with solvent to 73 percent solids (V.O.C. = 2.3 pounds per gallon) and spray applied. The applied coating was cured thermally for 13 minutes at 350°F (177°C) to give a hard, 5 glossy film. #### Example 6A In accordance with the present invention 5 parts by weight of gamma-glycidoxypropyltrimethoxysilane available from Union 10 Carbide under the name "A-187" was added to the composition of Example 6. The coating was spray applied and cured in the same manner as described in Example 6. ## Example 7 An acrylic-based coating composition commonly used for application onto metals was prepared as follows: | | <u>Ingredients</u> | Parts by Weight | |----|-------------------------------------------|-----------------| | | Acrylic Resin A | 32 | | 20 | Polyester Resin B | 35 | | | Melamine resin ¹ | 21 | | | EPON [®] 1001 Epoxy ² | 6 | | | Para-toluene sulfonic a | cid catalyst 1 | - 25 (1) "CYMEL $^{\odot}$ 303" hexamethoxymethyl melamine available from American Cyanamid. - (2) Available from Shell Chemical. - 30 The above ingredients were blended in the above-listed order, diluted with solvent to 35 percent solids. The applied coating was cured thermally for 13 minutes at 350OF (177OC) to give a clear, hard and glossy film. - 12 - #### Example 7A In accordance with the present invention 5 parts by weight of gamma-glycidoxypropyltrimethoxysilane available from Union Carbide under the name "A-187" was added to the composition of Example 7. The coating was spray applied and cured in the same manner as described in Example 7. Each of the foregoing examples was tested for hardness and adhesion in accordance with the following procedures, and the results are reported in Table 1. 10 20 The pencil hardness tests were conducted in accordance with ASTM D 3363. Wood was stripped from pencil of varying hardness, leaving the full diameter of lead exposed to a length of 1/4 inch to 3/8 inch. The end of the lead was flattened at 90 degrees to the pencil axis, and holding the pencil at 45 degrees to the film surface, the pencil is pushed forward about 1/4 inch using as much downward pressure as can be applied without breaking the lead. The result is reported as the highest pencil hardness that produced no rupture of the film. Gloss is measured in accordance with ASTM D 523 using a 60 degree gloss meter. Gloss is reported in terms of percent reflected light. Gloss values of 80 or higher are considered high gloss. For the dry adhesion, boiling water adhesion, and 24 hour soak adhesion tests, the coating is scribed with eleven parallel cuts through the film 1/16 inch apart. Eleven similar cuts are made at 90 degrees to and crossing the first eleven cuts. Permacel 99 tape is applied over the area of cuts by pressing down firmly against the coating to eliminate voids and air pockets. Then the tape is sharply pulled off at a right angle to the plane of the coated surface. Adhesion is reported as the percentage of squares remaining on the substrate in the scribed area. For the boiling water test, the scribed sample is immersed in boiling water for 30 minutes, removed, wiped dry, and then the tape is applied immediately and pulled off as described above. In the water soak test, the sample is immersed in distilled or deionized water at $100^{\circ}F$ (38°C) for 24 hours, removed and wiped dry, and the tape is applied and pulled off as described above. Detergent resistance is tested by immersing the samples in a 2% detergent solution at 100°F (38°C) for 72 hours. The samples are removed and wiped dry. Permacel 99 tape 3/4 inch wide is immediately applied along the entire length of the sample by pressing down firmly against the coating to eliminate voids and air pockets. The tape is sharply pulled off at a right angle to the coated surface. Passing the test entails no loss of adhesion of the coating to the metal, no blistering, and no significant visual change in appearance. Resistance to mar is tested by rubbing a wooden tongue depressor at 45 degree angle back and forth five times on the 15 coated surface. If no marking of the coated surface results, the performance is rated "good." If deep grooves are produced, the performance is rated "poor." | | 4 4A Fluoropolymer Fluoropolymer | ou | HB | 75 | 100 | 0 | 0 | Fail | Very
Poor | |---------|--|--------------|-----------------|-----------|--------------------|-------------------------------|-----------------------------|-----------------------|-----------------------| | | 3
Fluoropolymer
IPDI | ou | н | +86 | 100 | 50 | o | Fail | Average
to
poor | | TABLE 1 | 2A
"Poly-Si"
Silicone
Polyester | yes | 2Н | +86 | 100 | o | 0 | Fail | Good | | | 2
"Poly-Si"
Silicone
Polvester | ou | 2Н | +86 | 100 | o | 0 | Fail | poog | | | 1
Competitor
Silicone
Polvester | оп | ޱ, | 95+ | slight
peel-off | 0 | 95 | Fail | Poor | | | Example | Epoxy Silane | Pencil Hardness | Gloss (%) | Dry Adhesion | Boiling Water
Adhesion (%) | 24 hr. Soak
Adhesion (%) | Detergent
Adhesion | Маг | SUBSTITUTE SHEET (RULE 26) | u | |----| | Ē | | Ö | | Ũ | | _ | | | | Н | | | | ΕŪ | | _ | | AB | | Α, | | H | | Example | so ' | 5A | v | 6А | 7 | AL | |-------------------------------|--------------------------|--------------------------|-----------|-----------|---------|--------------| | | Fluoropolymer
Acrylic | Fluoropolymer
Acrylic | Polyester | Polyester | Acrylic | Acrylic | | Epoxy Silane | ou | yes | оп | yes | ou | yes | | Pencil Hardness | <u>įr</u> | Ĺta | 2н | żн | 2Н | 2Н | | Gloss (%) | 15 | 15 | +86 | +86 | +86 | +86 | | Dry Adhesion | 100 | 100 | 100 | 100 | 100 | 100 | | Boiling Water
Adhesion (%) | 0 | 100 | 0 | 100 | 0 | 100 | | 24 hr. Soak
Adhesion (%) | 0 | 0 | 0 | 08 | 0 | 100 | | Detergent
Adhesion | Fail | Fail | Pass | Pass | Pass | Pass | | Mar | Poor | Poor | Good | Good | Very | Very
Good | SUBSTITUTE SHEET (RULE 26) - 16 - The following tests compare epoxy silane with other silanes in the same coating composition. The results are set forth in Table 2. | 5 | Example 8 | | |----|-------------------------------------|-----------------| | | Ingredients | Parts by Weight | | | Acrylic Resin A | 252.56 | | | EPON 1001 epoxy | 34.15 | | | CYMEL 303 melamine | 86.06 | | 10 | Polyester Resin B | 201.79 | | | Para-toluene sulfonic acid catalyst | 10.17 | | | Dow-Corning "Silicone 200" | 0.50 | | | flow additive | • | | | Silane | 19.46 | 15 $\label{eq:theorem} \mbox{The particular silanes used in the above composition}$ were as follows: Example 8A: Gamma-aminopropyl triethoxysilane available as "A-1100" from Union Carbide. 20 Example 8B: Gamma-aminopropyl trimethoxysilane available as "A-1110" from Union Carbide. Example 8C: Methyl trimethoxysilane available as "A-163" from Union Carbide. Example 8D: Gamma-glycidoxypropyltrimethoxysilane 25 available as "A-187" from Union Carbide. Example 8E: No silane. - 17 - | | | _ | _ | | | |---|----|---|----|---|---| | n | ┖っ | h | ٦. | _ | 7 | | | | | | | | | | | Dry Adhesion | Boiling Water | |---|---------|--------------|---------------| | | Example | (%) | Adhesion (%) | | | 8A | 100 | 25 | | 5 | 8B | 100 | 25 | | | 8C | 100 | 0 | | | 8D | 100 | 100 | | | 8E | 100 | 0 | While illustrative embodiments of the invention have been described hereinabove, it will be understood that various modifications will be apparent to and can be made by those skilled in the art without departing from the scope or spirit of the invention as defined by the claims. Accordingly, it is intended that the claims be construed as encompassing all aspects of the invention which would be treated as equivalents by those skilled in the art to which the invention pertains. The Claims: 1. Anodized aluminum having a clear coating in which the coating comprises: the thermosetting reaction product of a crosslinking agent and a film-forming resin selected from the group consisting of polyester polymers, thermosetting acrylic polymers, and mixtures thereof; and silane having the structure: 10 $\begin{array}{c} x \\ | \\ \text{R(CH}_2)_{n}\text{-si-x} \\ | \\ x \end{array}$ 15 where R represents an epoxy terminated group, n is 1 to 10, and X represents a readily hydrolyzable group such as C1, OCH_3 , OC_2H_5 , or $OC_2H_4OCH_3$. - 2. The coated product of claim 1 wherein the film-forming resin includes a thermosetting acrylic polymer which is an acrylic/acrylamide copolymer. - 3. The coated product of claim 2 wherein the acrylic/acrylamide copolymer is further characterized as a copolymer of ethyl acrylate, styrene, N-butoxymethyl acrylamide, and methacrylic acid. - 30 4. The coated product of claim 3 further including polyester polymer as a modifying resin. - 19 - - 5. The coated product of claim 1 wherein the film-forming resin includes polyester further characterized as being the reaction product of trimethylpentanediol, adipic acid, and isophthalic acid. - 5 6. The coated product of claim 1 wherein the crosslinking agent is melamine. - 7. The coated product of claim 6 wherein the melamine is methoxylated melamine. 10 8. The coated product of claim 1 wherein the silane is selected from the group consisting of gamma-glycidoxypropyltrimethoxysilane and beta-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane. 15 - 9. A method for protecting anodized aluminum comprising applying to the anodized surface a clear coating comprising: - a crosslinking agent; - a film-forming resin selected from the group consisting of polyester polymers, thermosetting acrylic polymers, and mixtures thereof; and silane having the structure: 25 - where R represents an epoxy terminated group, n is 1 to 10, and X represents a readily hydrolyzable group such as Cl, OCH3, OC2H5, or OC2H4OCH3. - 35 10. The coated product of claim 9 wherein the film-forming resin includes a thermosetting acrylic polymer which is an acrylic/acrylamide copolymer. - 20 - 11. The coated product of claim 10 wherein the acrylic/acrylamide copolymer is further characterized as a copolymer of ethyl acrylate, styrene, N-butoxymethyl acrylamide, and methacrylic acid. 5 - 12. The method of claim 11 further including polyester polymer as a modifying resin. - 13. The method of claim 9 wherein the film-forming resin includes polyester further characterized as being the reaction product of trimethylpentanediol, adipic acid, and isophthalic acid. - 14. The method claim 9 wherein the crosslinking agent is melamine. 15 - 15. The method of claim 14 wherein the melamine is methoxylated melamine. - 16. The method of claim 9 wherein the silane is selected 20 from the group consisting of gamma-glycidoxypropyltrimethoxysilane and beta-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane. - 17. A coating composition for protecting anodized aluminum comprising: - a crosslinking agent; - a film-forming resin selected from the group consisting of polyester polymers, thermosetting acrylic polymers, and mixtures thereof; and silane having the structure: 30 25 - 21 - where R represents an epoxy terminated group, n is 1 to 10, and X represents a readily hydrolyzable group such as Cl, OCH3, OC2H5, or OC2H4OCH3. - 18. The coated product of claim 17 wherein the filmforming resin includes a thermosetting acrylic polymer which is an acrylic/acrylamide copolymer. - 19. The coated product of claim 18 wherein the 10 acrylic/acrylamide copolymer is further characterized as a copolymer of ethyl acrylate, styrene, N-butoxymethyl acrylamide, and methacrylic acid. - 20. The composition of claim 17 wherein the film-forming resin includes polyester further characterized as being the reaction product of trimethylpentanediol, adipic acid, and isophthalic acid. - 21. The composition claim 17 wherein the curing agent is melamine. - 22. The composition of claim 21 wherein the melamine is methoxylated melamine. - 23. The composition of claim 17 wherein the curing agent is selected from the group consisting of isocyanates, isocyanurates, and biurets. - 24. The composition of claim 17 wherein the silane is selected from the group consisting of gamma- - 30 glycidoxypropyltrimethoxysilane and beta-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane. - 22 - 25. The composition of claim 17 comprising (on a resin solids weight basis): 5-30 percent curing agent; 25-75 percent film-forming resin; and 1-10 percent epoxy silane. - 26. The composition of claim 25 further including (on a resin solids weight basis): - 5-50 percent modifying resin; and - 10 1-10 percent of a second epoxy different from the epoxy silane. - 27. The composition of claim 26 wherein the modifying resin comprises polyester polymer. # INTERNATIONAL SEARCH REPORT Intu Aonal Application No PCT/IB 94/00051 | A. CLASS
IPC 5 | ification of subject matter
B05D7/16 | | | |-------------------|---|---|--------| | According t | o International Patent Classification (IPC) or to both national classif | ication and IPC | | | | SEARCHED | | | | Minimum d | locumentation searched (classification system followed by classification BOSD CO9D CO8G | on symbols) | | | | | | | | | tion searched other than minimum documentation to the extent that s | | | | Escuosiacu | aza oase consuleu ummg nie nicenauonai search (name or cara cas | t and, where proceeding sources are a series | | | C. DOCUM | IENTS CONSIDERED TO BE RELEVANT | | | | Category * | Citation of document, with indication, where appropriate, of the re | levant passages Relevant to cla | im No. | | X | JP,A,3 006 274 (SUNSTAR GIKEN KK)
January 1991
see examples | 11 17,23 | | | X | EP,A,O 461 537 (PPG IND. INC.) 18 December 1991 | | | | | see examples 1,2,4 | | | | X | PATENT ABSTRACTS OF JAPAN vol. 17, no. 79 (C-1027)(5708) 17 1993 & JP,A,04 279 675 (SUMITOMO CEMEN see abstract | | | | | | | | | Furt | her documents are listed in the continuation of box C. | X Patent family members are listed in annex. | | | * Special ca | tegories of cited documents: | T" later document published after the international filing date | | | | ent defining the general state of the art which is not | or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the | | | "E" earlier | ered to be of particular relevance document but published on or after the international | invention 'X' document of particular relevance; the claimed invention | | | which | ent which may throw doubts on priority claim(s) or | cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the | | | "O" docum | ent referring to an oral disclosure, use, exhibition or | document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled | | | "P" docum | means
ent published prior to the international filing date but
han the priority date claimed | in the art. & document member of the same patent family | | | Date of the | actual completion of the international search | Date of mailing of the international search report | | | 1 | 3 June 1994 | 1 5. 07. 94 | | | Name and | mailing address of the ISA | Authorized officer | | | | European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk | | | | | Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 | Schueler, D | | # INTERNATIONAL SEARCH REPORT Information on patent family members Int .tional Application No PCT/IB 94/00051 | Patent document cited in search report | Publication date | Patent family
member(s) | | Publication date | |--|------------------|----------------------------|--------------------|----------------------| | JP-A-3006274 | 11-01-91 | NONE | | | | EP-A-0461537 | 18-12-91 | US-A-
US-A- | 5085903
5182148 | 04-02-92
26-01-93 | Form PCT/ISA/210 (patent family annex) (July 1992)