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SYSTEMAND METHOD FOR USING 
FAILURE CASTING TO MANAGE FAILURES 

IN COMPUTER SYSTEMS 

COPYRIGHT NOTICE 

A portion of the disclosure of this patent document con 
tains material which is Subject to copyright protection. The 
copyright owner has no objection to the facsimile reproduc 
tion by anyone of the patent document or the patent disclo 
sure, as it appears in the Patent and Trademark Office patent 
file or records, but otherwise reserves all copyright rights 
whatsoever. 

FIELD OF THE INVENTION 

The invention relates generally to failure management in 
computer systems, and particularly to a system and method 
for managing failures in computer systems using failure cast 
ing. 

BACKGROUND 

Computer systems have become increasingly complex, 
and the applications to which computers are applied have 
become more varied and widespread. While once confined to 
commercial organizations, manufacturing companies, and 
financial institutions, computer systems are now found in 
most small businesses and households. Indeed in the United 
States it is not uncommon for a household to have many 
computer systems and other computational devices. Compa 
nies are now as likely to use their computers to communicate 
with other business entities as they are to use computers 
within their own organization. Business-to-Business (B2B) 
and Business-to-Consumer (B2C) applications are common 
place, and the latest enterprise-level systems are designed to 
serve any number from millions, to hundreds of millions, of 
potential users. 
The more complex a computer application is, the more 

likely it needs to generate, utilize, and share huge amounts of 
data. The net result is that computer hardware, Software, and 
data storage offerings have grown to keep pace with techno 
logical needs. Today, a Sophisticated enterprise-level com 
puter system may include hundreds of processors, operating 
upon a variety of operating systems and application servers, 
with many network links to the outside world, and a consid 
erable amount of fault-tolerant (for example, Redundant 
Array of Inexpensive Disk, or RAID-based) disk storage. 

However, while the increased use and complexity of com 
puter systems has provided great benefits, these are not 
immune to challenges. Foremost among these challenges is 
the fact that computer systems, even the most expensive and 
well-designed enterprise-class systems, can sometimes fail. 
These failures may be hardware-based, such as the failure of 
a disk drive or a computer memory chip. Failures can also be 
Software-based; for example a software application that 
exhibits bugs and ends up hanging due to running out of 
memory. Another example may be that of an entire computer 
crashing due to a buggy device driver that mismanaged its 
in-memory data structures. In many instances, failures arise 
from a combination of both hardware and software problems. 
A Gartner survey estimated that software failures cause 
approximately 40% of outages in large-scale, well-managed 
commercial systems for high-end transaction processing 
servers, and for systems in general. When Software-induced 
failures and outages do occur, their effects are compounded 
by the fact that a large percentage of the Software bugs that 
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2 
manifest themselves in production systems have no known 
available fix at their time of failure. According to one source 
(Wood: “Predicting Client/Server Availability”, IEEE Com 
puter, 28(4):41-48, 1995), this percentage of unknown-rem 
edy bugs may account for as much as 80% of all software 
failures. 

Given Sufficient time, a Software application can indeed 
mature and become more reliable, and less-failure-prone. 
This is how, for example, the U.S. public switched telephone 
network is able to provide its legendary high availability. It is 
estimated that only 14% of switched telephone network out 
ages between 1992-1994 were caused by software failures: 
the third most-common cause after both human error (49%) 
and hardware failures (19%). (Kuhn: Sources of failure in the 
public switched telephone network. IEEE Computer, 30(4): 
31-36, April 1997). These statistics might suggest that a thor 
ough design review and extensive testing could single-hand 
edly improve the dependability of software systems. 
However, this is rarely the case; and indeed there appears to 
be a significant limitation to how truly free a software pro 
gram can be of all bugs. Researchers and engineers have 
improved programming languages, built powerful develop 
ment and testing tools, designed metrics for estimating and 
predicting bug content, and assembled careful development 
and quality assurance processes. In spite of all these devel 
opments, many deployed software applications are still far 
from perfect. It is estimated that two-thirds of software bugs 
that manifestin deployed systems could not have been readily 
caught by better testing processes (according to a U.S. 
National Institute of Standards survey). 

SUMMARY 

Disclosed herein is a system and method for managing 
failures in a computer system using failure casting. In accor 
dance with an embodiment, the system comprises a system 
manager and a failure casting logic that uses a failure casting 
hierarchy to cast failures of one type into failures of another 
type. In doing this, the system allows a multitude of incidents, 
problems, or failures with potentially unknown resolutions to 
be cast into a small set of failures, which the system knows 
how to recover from. In accordance with a particular embodi 
ment, failures can be cast from a category of failure that is 
considered non-reboot-curable into a category of failure that 
is considered reboot-curable (or simply “curable). If a failure 
is reboot- or restart-curable then rebooting/restarting the sys 
tem or a part thereof will cure the problem; by casting the 
failure, a failure previously unrecoverable via reboot can now 
be resolved by rebooting. In some embodiments, the range of 
failures can be arranged in a hierarchy of parent and child 
failure scenarios. Failure casting then locates the failure in the 
hierarchy, and allows a system manager to determine the 
appropriate action to be taken. When the failure hierarchy and 
the failure logic is incorporated into a bootup Script or an 
initialization script, for example when used with a disk array, 
network cluster, or other component, then the system allows 
for the failure casting to take place at boot time, thus making 
a system reboot be an easy-to-use cure for many failures. 

It will also be apparent from the description provided 
herein that the system can even be used to handle failures that 
were hitherto unforeseen (indeed it is impossible in a complex 
system to foresee every possible type of failure or error). 
Using embodiments of the present invention, unforeseeable 
or unknown failures can be cast into foreseeable or known 
failures based on the failure symptoms, rather than any under 
lying cause. The failure can then be dealt with appropriately 
as a known type of failure. When this technique is applied to 



US 8,359,495 B2 
3 

the particular embodiment of reboot-curable failure casting, 
then the system can attempt to cure the failure by rebooting or 
some other action. Thus, failures can be handled for which no 
specialized recovery could have been written in the first place, 
since they were unforeseen. 

Traditional recovery code techniques deal with exceptional 
situations, and are designed to run flawlessly. Unfortunately, 
exceptional situations are difficult to handle and are difficult 
to simulate during development. This often leads to unreliable 
recovery code. However, in Systems that cast failures into 
reboots or restarts, the recovery code is exercised every time 
the system starts up, which ultimately improves the reliability 
of this code through implicit testing during every start-up. 

Other embodiments, improvements, and uses of the failure 
casting technique will be evident from the description pro 
vided herein. 

BRIEF DESCRIPTION OF THE FIGURES 

FIG. 1 shows an embodiment of a computer system that 
uses failure casting in accordance with an embodiment of the 
invention. 

FIG. 2 illustrates the timeline at which different failures 
may occur in computer systems in accordance with an 
embodiment of the invention. 

FIG. 3 illustrates the different layers at which failures can 
occur in computer systems in accordance with an embodi 
ment of the invention. 

FIG. 4 illustrates the difference between failures that are 
intentional or unintentional in accordance with an embodi 
ment of the invention. 

FIG.5 illustrates the persistency of some failures versus the 
transient nature of other failures in accordance with an 
embodiment of the invention. 

FIG. 6 shows an embodiment of a failure casting hierarchy 
in accordance with an embodiment of the invention. 

FIG. 7 illustrates an embodiment of a system using a failure 
casting hierarchy in accordance with an embodiment of the 
invention. 

FIG. 8 illustrates a flowchart of the failure casting process 
in accordance with an embodiment of the invention. 

FIG.9 shows an embodiment of a failure casting hierarchy 
that includes reboot-curable and non-reboot-curable 
branches in accordance with an embodiment of the invention. 

FIG. 10 illustrates an embodiment of a system using a 
failure casting hierarchy and reboot-curable actions in accor 
dance with an embodiment of the invention. 

FIG. 11 illustrates a flowchart of the failure casting process 
including reboot-curable actions in accordance with an 
embodiment of the invention. 

FIG. 12 illustrates an embodiment of the invention that 
applies failure casting techniques to a RAID array as used in 
a computer system. 

FIG. 13 illustrates an embodiment of the invention that 
applies failure casting techniques to a cluster. 

FIG. 14 illustrates a flowchart of a method for applying 
failure casting techniques to a cluster. 

DETAILED DESCRIPTION 

Two phenomena conspire to limit the effectiveness of tra 
ditional approaches to failure management in Software envi 
ronments: code evolution, and unforeseen usage scenarios. 
Both of these factors prevent software developers from being 
able to guarantee a program of reasonable size will run as 
expected once it is deployed at the customer's site. 
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With regard to code evolution, in the software industry 

change is the enemy of dependability, or said differently “if it 
aint broke, then don't fix it. Only in a software system that 
evolves very slowly is it possible to control the effects of 
change, and to maintain or improve Software quality. For 
example, the software running on NASA's space shuttle soft 
ware requires approximately half a million lines of Software 
code. However, as of 1997, its last three releases manifested 
only one bug each, with the last 11 versions totaling only 17 
bugs. (Fishman: “They Write the Right Stuff, FastCompany, 
1997). Such reliability comes at the expense of evolution: 
upgrading the shuttle software to use GPS-based, instead of 
land-based, navigation was a major undertaking; the change 
involved only 1.5% of the code, yet simply formalizing the 
required specifications took months, followed by an even 
longer development and test cycle. While this rigidity ensures 
a more reliable final set of code, it would threaten the exist 
ence of most software systems in use today and in the near 
future, mainly because of customer demands and time-to 
market pressures. This is true of the entire software stack in 
operating systems, applications, and Software services; and is 
also true for both commercial and open-source environments. 

With regard to unforeseen usage, the presence of increas 
ingly diverse execution environments and different scenarios 
constitute another factor that limits software quality. Return 
ing to the example of the space shuttle program mentioned 
above, the NASA software development organization has the 
advantage of Supporting only one platform and only one 
customer. In contrast, most of today’s commercial Software 
applications must interact with a variety of devices, Support a 
variety of configurations and uses, and be combinable with 
other third-party software. Even if a system's code base did 
not change, a new execution environment or scenario might 
unavoidably exercise a code path that had never been tested, 
manifesting heretofore latent or unknown bugs. Furthermore, 
even if the testing of all paths through a program was possible, 
the testing of all imaginable execution environments and their 
ensuing interactions would not. The more complex a software 
product, the more difficult it is to understand and predict its 
behavior in production. For example, a complex database 
server product may be subjected to an extensive battery of 
tests, yet still not pass all of those tests prior to release, 
because those bugs that are still present in the final product are 
dependent on the tester's environment, making them difficult 
to reproduce, or too expensive and/or risky to fix. This is 
largely true of all commercially-produced software. 
To address the above challenges, today's Software compa 

nies and organizations expend Substantial resources to help 
prevent, detect, and when necessary quickly resolve failures 
in their computer systems. Typically these resources require 
greater administrative overhead in terms of manpower and 
expenditure. Furthermore, notwithstanding the benefits of 
these tools, the managing of failures in computer systems is 
still a complex task, since many parts of the system or the 
Software can fail, and there are many interdependencies, 
which makes recovery complicated. For example, in a trans 
action processing system that includes a plurality of nodes, 
and wherein those nodes operate according to a two-phase 
commit protocol, the failure of one node can require a number 
of additional, otherwise operable, nodes to abort their trans 
actions. 

Notwithstanding the availability of these administrative 
tools, a commonly-used and longstanding approach to resolv 
ing a system failure is to reboot or restart the offending 
application, server, system, machine, or component. Reboo 
ting is a simple, practical and effective approach to managing 
failure in large, complex systems; it is an approach that 
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accepts bugs in applications as facts to be coped with, instead 
of viewing them as problems that must be eliminated at all 
costs. The results of several studies, (including, for example, 
Sullivan and Chillarege: “Software Defects and Their Impact 
on System Availability: A Study of Failures in Operating 
Systems”. In Proc. 21st International Symposium on Fault 
Tolerant Computing, Montréal, Canada, 1991: Gray: “Why 
Do Computers Stop and What Can Be Done About It?. In 
Proc. 5th Symp. On Reliability in Distributed Software and 
Database Systems, Los Angeles, Calif., 1986; Murphy and 
Gent: “Measuring System and Software Reliability. Using an 
Automated Data Collection Process', Quality and Reliability 
Engineering Intl., 11:341-353, 1995; and Chou: “Beyond 
Fault Tolerance", IEEE Computer, 30(4):47-49, 1997), com 
bined with experience in the field (for example, Brewer: 
“Lessons From Giant-Scale Services’, IEEE Internet Com 
puting, 5(4):46-55, 2001), Suggest that many failures can be 
Successfully recovered by rebooting. Not Surprisingly, 
today’s state-of-the-art Internet clusters provide facilities to 
circumvent a faulty node by failing-over, rebooting the failed 
node, and then Subsequently reintegrating the recovered node 
into the cluster. 

Rebooting provides a number of advantages. First, reboo 
ting scrubs any volatile state that has potentially become 
corrupt, for example a bad pointer, a deadlock involving a set 
of multiple exclusion objects (mutexes), or an accumulated 
computation error. Rebooting also reclaims leaked resources 
and does so decisively and quickly, because mechanisms used 
to effect the reboot are simple and low-level: for example 
virtual memory hardware, operating system processes, and 
language-enforced mechanisms. Should an application leak 
memory, this memory will be reclaimed upon restarting that 
application process. 

Second, rebooting returns an application program to its 
start state (or at least to a well-known state), which is the best 
understood and most thoroughly debugged state of the pro 
gram. Whenevera program starts up, it begins in its start state, 
so this is the most frequently visited State during develop 
ment, testing, and operation. 

Third, rebooting improves overall uptime by saving on 
actual diagnosis time. When failure strikes in a critical com 
puter system, operators cannot always afford to run real-time 
diagnosis; instead, they focus on bringing the system back up 
quickly, by any means possible, and then performany neces 
sary diagnosis later. Experienced operators realize that there 
is a large opportunity-cost in taking an hour or more to decide 
whethera reboot would or would not cure the failure, whereas 
a minute-long reboot would answer that question much 
Sooner. Rebooting is a simple task to undertake, regardless of 
whether it is performed by an administrator or a machine, so 
implementing and automating a recovery policy based on 
rebooting is one of the easiest and simplest of all recovery 
alternatives. Rebooting is also a universal form of recovery, 
since a failure's root cause does not need to be known in order 
to recover it by reboot. The fact that rebooting can be done 
“blindly' is indeed one of the very reasons some practitioners 
frown upon its liberal use. Nevertheless, as software becomes 
more complex and availability requirements more stringent, 
the willingness and ability to perform a thorough diagnosis 
prior to recovery may make reboots a more tempting option. 

However, as used in today's computer systems, the deci 
sion to reboot an application, server, component or system is 
at best a hopeful attempt at resolving the immediate symp 
toms of the failure. The traditional concept of rebooting does 
not attempt to rectify or isolate the underlying failure. In 
short, today's systems are not designed to be recovered by 
reboot. The net result is that the underlying failure often 
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6 
persists even after the reboot. Rebooting has two other prin 
cipal drawbacks: loss of data and unpredictable recovery 
times. While scrubbing corrupt data is beneficial, losing good 
data is obviously not. For example, in a traditional, buffered 
UNIX filesystem, updates are kept in a volatile buffer cache 
for up to 30 seconds. Should an unexpected crash occur 
during that period, any data that had been written to the buffer 
cache, but not to the disk, would be lost. This problem has 
been recognized in today’s Internet services, which is why 
most Internet-based systems now maintain all important data 
(including session state, such as a user's shopping cart) in 
databases. Another drawback of rebooting is that it can result 
in long and unpredictable recovery times. Data recovery pro 
cedures in Systems handling large amounts of data can last 
many hours (for example, when the system is forced to per 
form filesystem and transaction log checks after restarting). 
Modern systems recognize this problem by, for example, 
allowing administrators to tune the rate of checkpointing, 
Such that recovery time after a crash does not exceed a con 
figured upper limit, (an example of which is described in 
Lahiri, et al: “Fast-Start: Quick Fault Recovery in Oracle'. In 
Proc. ACM International Conference on Management of 
Data, Santa Barbara, Calif., 2001). In the worst case, if there 
is a persistent fault (for example, a failed disk or a miscon 
figuration), the system may never come back up and instead 
require some other form of recovery. 
An alternative, commonly-used approach to handling fail 

ures is to use customized recovery code to identify and correct 
problems in the system. Recovery code deals with excep 
tional situations, and must run flawlessly. Unfortunately, 
exceptional situations are difficult to handle and are difficult 
to simulate during development. This often leads to unreliable 
recovery code. The problem is particularly relevant given that 
the rate at which the number of bugs are reduced per thou 
sand-lines of code has fallen behind the rate at which the 
number of lines of code per system increases, with the net 
result being that the number of bugs in an evolving system 
generally increases over time. More bugs mean more failures, 
and systems that fail more often need to recover more often. 
Poorly tested recovery code makes these systems fragile. 
Furthermore, as a computer system evolves, failure modes 
change (for example, a temporary network outage may cause 
an older kernel to terminate all network connections, but an 
upgraded kernel may instead cause remote filesystems to be 
corrupted). Additionally, what constitutes the “right recov 
ery' to a certain type of failure may also change overtime (for 
example, a failure on a database server may expect a transac 
tion abort as sufficient recovery, but new interdependencies 
may also require a failure to be accompanied by the restart of 
any corresponding application servers). 

Within the field of data storage/retrieval environment, 
Some steps toward Software redundancy, failure management, 
and recovery code were made with the introduction of data 
base transactions in the 1980s, (as described, for example, in 
Gray and Reuter: “Transaction processing: concepts and 
techniques': Morgan Kaufmann, San Francisco, 1993). 
Transaction-related techniques, in conjunction with the 
ACID Semantics of databases (Atomicity, Consistency, Iso 
lation, and Durability), enabled applications to abstract the 
various reasons for which an operation may fail, and to use 
only three primitives to ensure proper updating of a database: 
begin transaction, commit transaction, and abort transac 
tion. Other systems, (for example, those disclosed in Naga 
raja, et al. “Using Fault Model Enforcement to Improve Avail 
ability”; In Proc. 2nd Workshop on Evaluating and 
Architecting System Dependability, San Jose, 2002), can be 
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used to force all unknown faults into hardware node crashes. 
This can then be used to improve the availability of a clustered 
web server. 
Many techniques have also been advocated for improving 

Software dependability, ranging from better Software engi 
neering (for example, as described in Brooks: “The Mythical 
Man-Month'. Addison-Wesley, Reading, Mass., 1995), and 
object oriented programming languages (for example, as 
described in Dahl and Nygaard: “Simula—an Algol-Based 
Simulation Language'. Communications of the ACM, 9(9): 
671-678, September 1966), to formal methods that predict/ 
Verify properties based on a mathematical model of the sys 
tem (for example, Schulmeyer and MacKenzie: “Verification 
and Validation of Modern Software-intensive Systems’. 
Prentice Hall, Englewood Cliffs, N.J., 2000). Language 
based methods, such as static analysis (described, for 
example, in Patrick Cousot, editor: “Static Analysis’, 
Springer Verlag, 2001), detect problems at the source-code 
level. Some programming languages prevent many program 
ming errors by imposing restrictions, such as type safety 
(Niklaus: “The Programming Language Oberon'. Soft 
ware Practice and Experience, 18(7):671-690, 1988), or a 
constrained flow of control (Mogul: et al: “The Packet Filter: 
An Efficient Mechanism for User-Level Network Code'. In 
Proc. 11th ACM Symposium on Operating Systems Prin 
ciples, Austin, Tex., 1987), or by providing facilities like 
garbage collection (McCarthy: “Recursive Functions of 
Symbolic Expressions and Their Computation by Machine'. 
In Artificial Intelligence. Quarterly Progress Report No. 53. 
MIT Research Lab of Electronics, Cambridge, Mass., 1959). 

Rapid detection is a critical ingredient of fast recovery. A 
large fraction of recovery time, and therefore availability, is 
the time required to detect failures and localize them well 
enough to determine a recovery action (described for example 
in Chen et al: “Path-Based Failure and Evolution Manage 
ment. In Proc. 1st Symposium on Networked Systems 
Design and Implementation, San Francisco, Calif., 2004). A 
recent study, (Oppenheimer et al: “Why do Internet Services 
Fail, and What Canbe Done About It?. In Proc. 4th USENIX 
Symposium on Internet Technologies and Systems, Seattle, 
Wash., 2003) found that earlier detection might have miti 
gated or avoided 65% of reported user-visible failures. 

Checkpointing, (described for example in Wang, et al: 
“Checkpointing and its Applications'. In Proc. 25th Interna 
tional Symposium on Fault-Tolerant Computing, 1995; 
Chandy and Ramamoorthy: “Rollback and Recovery Strate 
gies for Computer Programs, IEEE Transactions on Com 
puters, 21(6):546-556, June 1972; and Tuthill et al: “IRIX 
Checkpoint and Restart Operation Guide', Silicon Graphics, 
Inc., Mountain View, Calif., 1999), employs dynamic data 
redundancy to create a believed-good Snapshot of a pro 
gram's state and, in case of failure, return the program to that 
believed-good State. An important challenge in checkpoint 
based recovery is ensuring that the checkpoint is taken before 
the state has actually been corrupted (described for example 
in Whisnant, et al: “Experimental Evaluation of the REE 
SIFT Environment for Spaceborne Applications”. In Proc. 
International Conference on Dependable Systems and Net 
works, Washington, D.C., 2002). Another challenge is decid 
ing whether to checkpoint transparently, in which case recov 
ery rarely Succeeds for generic applications (described for 
example in Lowelletal: “Exploring Failure Transparency and 
the Limits of Generic Recovery'. In Proc. 4th Symposium on 
Operating Systems Design and Implementation, San Diego, 
Calif., 2000), or non-transparently, in which case source code 
modifications are required. In spite of these problems, check 
pointing is a useful technique for making applications restart 
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8 
able, and is sometimes used with a watchdog daemon process 
to provide fault tolerance for long-running UNIX programs. 

Additional techniques to minimize, detect, and recover 
from failures have been investigated. However, each of the 
above systems, while beneficial to some extent, generally 
assume unrealistic fault models (for example, they may 
assume that failures occur according to well-behaved, trac 
table probability distributions). If it is possible to state invari 
ants about a system's failure behavior, and make Such behav 
ior more predictable, then the larger range of failures can be 
coerced into a smaller universe of failures which in turn is 
governed by well-understood rules. This is the area that the 
present invention is designed to address. 
Introduction to Failure Casting 

Disclosed herein is a system and method for managing 
failures in a computer system using failure casting. In accor 
dance with an embodiment, the system comprises a system 
manager and a failure casting logic that uses a failure casting 
hierarchy to cast failures of one type into failures of another 
type. In doing this, the system allows a large set of incidents, 
problems, or failures to be cast into a small set of failures, 
which the system knows how to handle. In accordance with a 
particular embodiment, failures can be cast from a category of 
failure that is considered non-reboot-curable into a category 
of failure that is considered reboot-curable (or simply “cur 
able'). If a failure is reboot-curable then rebooting the system 
will cure the problem. In some embodiments, the range of 
failures can be arranged in a hierarchy of parent and child 
failure scenarios. Failure casting then places the failure into 
the hierarchy, and allows a system manager to determine the 
appropriate action to be taken. When the failure hierarchy and 
the failure logic is incorporated into a bootup Script or an 
initialization script, for example when used with a disk array, 
network cluster, or other component, then the system allows 
for the failure casting to take place at boot time. As each 
component in a system is made reboot-curable, then a wide 
variety of system failures can be handled simply by rebooting 
the system. Specific casting techniques are described herein 
for use with different hardware or software components, for 
example for disk failures, out-of-memory situations, and even 
higher-level software bugs. Examples provided herein also 
include hardware, and reboot-specific methods that can be 
applied to disk failures and to failures within clusters of 
databases. 

It will also be apparent from the description provided 
herein that the system can even be used to handle failures that 
were hitherto unforeseen (indeed it is impossible in a complex 
system to foresee every possible type of failure or error). 
Using embodiments of the present invention, unforeseeable 
or unknown failures can be cast into foreseeable or known 
failures based on the failure symptoms, rather than any under 
lying cause. The failure can then be dealt with appropriately 
as a known type of failure. When this technique is applied to 
the particular embodiment of reboot-curable failure casting, 
then the system can attempt to cure the failure by rebooting or 
Some other action. 

Traditional recovery code techniques deal with exceptional 
situations, and are expected to run flawlessly. Unfortunately, 
exceptional situations are difficult to handle, occur seldom, 
and are difficult to simulate during development. This often 
leads to unreliable recovery code. However, in accordance 
with an embodiment, failure casting can be performed at start 
time or boot up; thus, when a system employs failure casting 
to cast failures into reboots or restarts, then the recovery code 
is exercised every time the system starts up, which ultimately 
improves system reliability. 
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In accordance with various embodiments, the system can 
use an analogy to type conversion (or type casting) to treat the 
symptoms of one failure as if they were the symptoms of a 
more general class of failure; or to change the characteristics 
of a first failure to the characteristics of a second failure. 
Failure casting can then connect failure symptoms to the way 
the recovery code is written, rather than connecting pre-pro 
grammed recovery code to what might go wrong. This is one 
of the distinguishing aspects of failure casting over traditional 
recovery techniques. 
The concept of type conversion or type casting is familiar 

to computer programmers, and is often used to take advantage 
of certain types of hierarchy. In some computer programming 
languages it is common to convert values of one type into 
values of another type in order to manipulate the correspond 
ing variable alternately as a variable of the first type or the 
second type. For example, converting an integer from a little 
endian to a big-endian representation in the C language can 
use typecasting to treat that integer as an array of bytes that 
can be individually manipulated (instead of as an integer, 
which cannot be modified at the byte level), as shown in 
listing 1: 

Listing 1 

unsigned char aux; 
unsigned chara war; if war is an array 

?t of bytes 
if cast var into an integer, 
if and then assign a 
fi little-endian integer to it 

(int) var = 123456 

// swap 1 and 4 byte 
aux = varO: if war is now used as an 

if array, not an integer 
varO = var3); 
var3 = aux; 
// swap 2" and 
aux = var1; 

3 byte 
if war is now used as an 
if array, not an integer 

var1 = var2: 
var2 = aux; 
if print out the big-endian version of the integer 
printf("%u', (int) var); // 'var' is now used as an 

if integer, not an array 

In accordance with an embodiment, the system applies 
analogous casting techniques to failures (instead of vari 
ables). As described herein, in failure casting a multitude of 
failures can be viewed as being instantiations of a higher-level 
type of failure. The combination of all of the various failure 
types thus comprise a failure hierarchy. Using the different 
levels of the failure hierarchy, a child failure type can be cast 
into a parent failure type. The developer need then only write 
recovery code for the parent failure type. In the same manner 
as the above example in which var” (initially declared as an 
array of bytes) could be treated as an integer, by virtue of 
typecasting, failure casting allows failures of one (potentially 
unknown) type to be treated (for the purpose of recovery) as 
failures of a different type. 
One of the benefits of failure casting is its ability to handle 

unknown problems. For example, in a particular systema first 
failure type A may be well understood by the systems design 
ers, and may have well-tested recovery code in place, whereas 
a second failure type B may be completely unforeseen or 
unanticipated by the system designers, and thus there is no 
known way for the system to handle it. When failure casting 
is used, the latter (and hitherto unknown) failure type B can be 
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10 
cast into the former failure type A and can be handled appro 
priately using A's recovery code, as long as B is in some 
manner compatible with A. 

Failure casting also minimizes runtime overhead. For 
example, even if the latter failure type B could have been 
foreseen by the system designers, due to systemic interactions 
it may be much more efficient at runtime to resolve the A type 
of failure than to try to resolve a B type failure in isolation. In 
a high availability system it is of paramount importance that 
the system be kept running, that recovery be as fast as pos 
sible, and that data losses be minimized. This can occasion 
ally mean applying a larger-scope recovery when a finer-grain 
recovery might actually be the better choice in Some sense; 
but have a lower chance of success. For example, when failure 
casting is applied to reboot-curable failures, then this might 
mean choosing to reboot the system to cure aparticular failure 
type, even though that failure type could possibly have been 
cured by means other than a reboot. Although the reboot 
seems quite drastic, it can have a greater chance of overall 
SCCCSS, 

An additional benefit of failure casting is reduction of 
system or software development time. It may be quicker to 
design and write a recovery procedure for type A failures, and 
then cast as many failures (including failure type B) into that 
failure type where they can be handled using A-type routines, 
rather than design and write recovery procedures for each of 
the individual failure types. For the software developer this 
improves their products time-to-market, because it reduces 
overall development time and testing time. 

Failure casting also enables a form of runtime diagnosis, 
which has heretofore not been possible using traditional tech 
niques. By casting failure type B into type A, the system can 
“explore' the possibility that a failure type B might be cured 
by A's recovery procedure. If it does resolve the problems, 
then the error has been handled very efficiently. If it does not 
resolve the problems, then at least the system now knows 
more about failure type B than it did before, namely that it 
cannot be cured by A's recovery routines (i.e., that type B is 
incompatible with type A). The system now has the option of 
trying other types of recovery (for example, casting failure 
type B into another type C), or can resort to a recursive 
expansion of recovery scope, as described in further detail 
below. The net effect of this exploration is that over time the 
system can learn more about different failure types, and dif 
ferent ways to handle those failure types. The system can also 
record this information for future use and for better runtime 
diagnosis. 

Since the recovery procedure for a failure type A may be 
more predictable than that for failure type B (for example, 
because the system knows exactly how long an A recovery 
will take, or because the system knows that an A-type failure 
recovery will not affect some other process that is running at 
the same time that could lead to race conditions), failure 
casting can make the whole recovery process more predict 
able. 
Casting Failures into Reboot-Curable Failures 

Depending on the particular embodiment used, failure 
casting can be performed in reaction to observed symptoms 
(i.e., the system notices symptoms of a failure of type B, and 
explicitly decides to treat or cast that failure as being of type 
A). Alternatively, the failure casting can be performed at 
recovery time (i.e., applying type A's recovery routines at 
recovery time to treat failure type B which implies a casting of 
one failure type into another). These two scenarios would be 
one-and-the-same if there werent really two separate steps in 
a typical recovery process: (a) the action performed by the 
system administrator, for example the making of an affirma 
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tive decision to reboot a node; and (b) the action performed by 
the system or component to reinstate itself into an operational 
state, for example, by allowing the system to scan the SCSI 
bus and to de-configure any disks it determines are bad. 

Both of these actions are part of the typical system recovery 
process. However, in accordance with a particular embodi 
ment, failure casting can be used to cast a failure type that 
would typically requirefine-grained investigation and correc 
tion, into a failure type that can be cured by rebooting the 
system. In these embodiments failure casting can be incorpo 
rated into the first step, wherein the failure is treated as one 
that can be cured by rebooting. Of course, the mere rebooting 
of the system does not cure the failure, but rather it is the 
expected recovery procedure that will be run during the sub 
sequent (re)startup that should cure the failure. In other 
words, the reboot is a cure for the failure only if done in 
anticipation of apost-reboot recovery process that will handle 
the observed failure. Thus, there is a tight connection between 
the failure hierarchy and the recovery procedures that are 
already in place. With this connection in mind, the system 
administrator can say “I will treat this failure type B as one of 
type A, because I expect A's recovery procedure to make B go 
away”. 

In a traditional system there is a mapping between Symp 
toms and recovery procedures (sometimes the mapping is 
explicit, and other times implicit). When using failure casting, 
this mapping is made simpler, because the recovery proce 
dures are primarily designed to “reboot something” (which in 
turn can be a component, a node, or an entire system, etc.). 
Since there is only one mechanism, this technique allows the 
recovery “logic' to be much simplified; and also enables a 
different approach to recovery code development. For 
example, consider the example of a computer system that 
uses a functional striped-RAID array of disks (RAID-0); if 
one of the disks fails, the computer cannot continue operating. 
However, if the computer's startup script checks each disk 
upon startup and automatically assembles a RAID-0 array 
using all available non-faulty disks, then rebooting the com 
puter should always bring it up in a configuration that has a 
RAID-0 available (albeit with potentially fewer disks in the 
array than had existed prior to the reboot). In this type of 
embodiment, the failure-casting version of the startup script 
does not assume it is starting fresh, but rather assumes it is 
assembling a system from the currently available disks. This 
allows the script to correctly handle the regular startup sce 
nario, in addition to handling scenarios that include multiple 
disk-failures. 
As described above, the possible failure types (both known 

and unknown) can be represented in a failure hierarchy. In 
accordance with some embodiments the failure hierarchy can 
have many possible parents and children. In accordance with 
those embodiments wherein the recovery code is designed to 
act on reboot and restart, then the failure hierarchy defines the 
ultimate parents as being one of only two types: (a) reboot 
curable (restart-curable) failures, and (b) non-reboot-curable 
(non-restart curable) failures. 

Failures that fall into the first category of being reboot 
curable are those failures that can probably be resolved by 
simply rebooting or restarting a system, component, or a 
Subset of the system component. These system components 
may include, for example, database processes, disk drives, or 
system nodes in a cluster. When a failure type is reboot 
curable, then the system can have some prior knowledge that 
these failure types can be addressed in this manner. In some 
embodiments, unknown failure types can also be explicitly or 
implicitly grouped into the reboot curable category. 
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Failures that fall into the category of being non-reboot 

curable (i.e. failure types that are not reboot curable) are those 
failures that require some other or additional form of inter 
vention, and can probably not be resolved by simply reboot 
ing or restarting. For example, the additional form of inter 
vention may be the need for a system administrator to fix 
Some portion of the system hardware, or to otherwise inter 
Vene to fix the problem, or simply marking the computer as 
failed, etc. When a failure type is non-reboot-curable, then the 
system can again have some prior knowledge that these fail 
ure types can be addressed in this manner. In some embodi 
ments, unknown failure types can also be explicitly or implic 
itly grouped into the non-reboot-curable category. 
By applying the techniques described herein, failure cast 

ing enables systems to coerce the universe of failures into 
essentially a single type of failure, that of the reboot-curable 
type, which can be addressed easily by restarting or rebooting 
the system, or a component of the system. Systems can also be 
designed so that what would normally be regarded as non 
reboot-curable failures (e.g., a disk failure) can be treated as 
reboot-curable. In accordance with some embodiments, the 
system can then include additional automated procedures that 
invoke various forms of restarting to perform recovery on the 
failed components. 
As also described herein, with any system or Software, no 

matter how well designed, some failure types will be 
unknown throughout the development and deployment pro 
cess, and may only appear much later during daily use. Since 
the failure hierarchy can include many subtrees or branches 
beneath the parent nodes, these Subtrees can comprise many 
failures, some of which have not been anticipated; yet each of 
the failures in the subtree manifest in the same way to the 
outside world (i.e., their symptoms are similar). One example 
of this might be users not being able to connect to a data 
base—the symptoms of being unable to connect to the data 
base can have many underlying causes. The grouping of fail 
ures allows the system to cast a failure “up the tree' into the 
root of that subtree, and say “this is a failure that exhibits 
symptom X, so I will treat the failure in the manner I treat all 
Such failures, namely by rebooting. It may not be known 
exactly which of the possible failures in the subtree has 
occurred; since from the system's perspective only the over 
riding symptom is observed. Traditionally, one would have to 
perform diagnosis at this point, (i.e., work down the Subtree 
and try to identify which failure exactly has occurred, so that 
the proper recovery procedure is then put in place). Instead, in 
accordance with an embodiment, the failure casting approach 
connects recovery procedures to symptoms (e.g., “the disk is 
unavailable'), rather than to actual details within the system 
(e.g., “the disk controller channel has failed, or “the disk unit 
is burnt out', or some other reason why that disk might be 
unavailable). 
As further described in the sections that follow, failure 

casting can also be applied to specific failure scenarios, for 
example hardware component failures, or failures within 
clusters of databases. Failure casting provides significant 
advantages over traditional methods, including simplifying 
the recovery management process, and improving the 
chances that the recovery will be correct. Simplifying the 
universe of possible recovery procedures restricts the differ 
ent failure choices, which allows the system administrator to 
selectively focus on the more important failures. The net 
result of using a failure casting approach is better system 
reliability and higher system availability. In complex sys 
tems, software application fault models can be simplified, 
encouraging simpler recovery routines which have better 
chances of providing the correct outcome. In particular, when 
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the remedy is reduced to that of either (a) rebooting or (b) not 
rebooting the system, the ability to fix failures quickly in 
complex system is reduced to one of restarting the machine or 
the system component. 

The use of failure casting provides even greater benefits in 
high-availability systems, which may have many thousands 
of processor nodes, and for which the failure of a single node 
is acceptable if that failure is quickly handled and compen 
sated for. In these systems, because reboot-curable failure 
casting can be used to cast what might be an otherwise 
unknown failure into a node-level reboot, which is a failure 
mode well-understood by the other nodes in the system. This 
allows a single node among the thousands of nodes to be 
quickly fixed by rebooting that failed node, without affecting 
all of the other nodes in the system. 
Failure Casting Applied to Computer Systems 

FIG. 1 shows an embodiment of a computer system that 
uses failure casting in accordance with an embodiment of the 
invention. As shown in FIG. 1, the computer system 100 
includes a system manager 102 and a failure casting logic 
108. The failure casting logic can also include a failure cast 
ing data 104, and a failure casting hierarchy 106. The failure 
casting hierarchy is used to cast failures of one type into 
failures of a parent type (with respect to the hierarchy). The 
failure casting data can in Some embodiments specify addi 
tional information and options that can be used during the 
casting process. Applications 118, 120, 122, which can be 
system components, Software applications, or in some 
instances other entire computer systems or nodes, exhibit a 
series of failures of different types. For example, as shown in 
FIG. 1, the failures indicated as failure type A 124, failure 
type B 126, and failure type C 128, represent some of the 
different failures which may or may not occur within the 
computer system at different points in time. In accordance 
with an embodiment, as the applications or system compo 
nents exhibit failures the failure casting logic uses the failure 
casting hierarchy (or simply, the failure hierarchy) to cast 
each of the failures into a different failure type X 130. The 
system manager then determines, based on this new type of 
failure, what the appropriate system action 140 should be. 
As further described below, in some embodiments the fail 

ure casting system can be used to cast failures of one type into 
failures of another type, or more generally to cast a plurality 
of failure types into a plurality of other failure types. In a 
particular embodiment the failure casting is performed to cast 
failures into one of only two types: those failures that are 
reboot-curable, and those failures that are non-reboot-cur 
able. When the plurality of failure types are reduced to the 
concept of reboot-curable or non-reboot-curable, then the 
system action is likewise reduced to one of either rebooting or 
not rebooting the computer system, (although in the latter 
case can also include additional or alternative actions, includ 
ing actions that might normally have been taken by a system 
administrator in the absence of any failure casting Solution). 

Failure casting can be used to address failures that occurat 
different times and at different locations in the computer 
system or process, and can also address failures that range 
from accidental to deliberate, permanent or transient, previ 
ously known and understood or completely novel in origina 
tion. FIG. 2 illustrates the typical timeline for failures that 
may occur in computer systems 160. For example, develop 
ment failures may occur when bugs are introduced into the 
original software code 162. Similarly, failures may occur 
during deployment-time, for example when deploying a soft 
ware application to the targeted environment, or when a mis 
match occurs between the software and the hardware on the 
deployed system 164. Operational failures 166 can occur 
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whenever the system administrator fails to upgrade the 
machine properly or follow an appropriate maintenance pro 
cedure. Even if the testing of all paths through a program was 
possible, the testing of all theoretically possible execution 
environments and their ensuing interactions would not. 
Although many potential failures exist in the Software appli 
cation from the moment that application was coded, failures 
can also crop up for the first time long after the program has 
been developed, deployed, and in operation for many years, 
due to changes and advances in the operating environment 
within which the application runs. 
Classes of Failures in Computer Systems 

While failures can occur at different times in the system 
development process, they can also occur at different loca 
tions in the system. FIG. 3 illustrates the different layers at 
which failures can occur in computer systems 170. For 
example, failures may occur in the underlying environment 
(e.g., a network failure or a power outage) 172. Failures may 
also occur in the system hardware, for example when a com 
puter disk fails, or if the processor fails 174. Operating system 
failures may include kernel panics, or a lack of available 
system processes 176. Libraries and third party software are 
also a common cause of computer failures, including, for 
example, failures in the library or within external modules 
178. Sometimes application failures 180 can cause the entire 
system to fail, for example if a deadlock occurs in a Software 
application. Operator failures such as data entry errors are 
another common cause of system failures 182. 

FIG. 4 illustrates that computer system failures may be due 
to intentional or unintentional causes. For example, failures 
that are accidental or unintentional may be due to the negli 
gence of the system administrator or operator 192, or simply 
an oversight by a software developer. Failures may also be 
intentional or malicious in nature, for example through the 
use of a virus, Trojan horse, or other software that is intended 
to damage the system or cause a component of the system to 
fail 194. 

FIG. 5 illustrates that some failures in computer systems 
can and should be deliberately addressed by affirmative 
actions, while some failures disappear of their own accord. 
For example, permanent failures 202 which cannot be 
removed without direct human assistance include failed hard 
ware. Some failures can be removed automatically by the 
software through special intervention 204, for example by 
scanning and fixing corrupt data files, or by defragmenting 
fragmented storage space. Transient failures 206 can be 
removed by normal operation of the system, for example 
when leaked memory caused by unreleased process locks is 
returned to the heap following a process restart. Some tran 
sient faults can also disappear by themselves with no inter 
vention by a user or the system, for example the case of a disk 
overheating and then cooling, or flash crowds of users which 
eventually dissipate 208. 
Failure Casting Approach to Handling Failures 
The previous sections generally described how failures of 

different types can be cast along different axes, for example a 
failure type B can be cast into a failure type A, or a RAID disk 
failure can be cast into a reboot-curable failure. The following 
sections describe how the system performs the actual failure 
casting. 

In accordance with an embodiment, and as shown in FIG. 
1, the computer system 100 includes a system manager 102 
and a failure casting logic 108, which in turn comprises a 
failure casting hierarchy 106, and an optional failure casting 
data 104. The failure casting hierarchy is used to cast “child' 
failures into failures of a “parent type. (The terms “child' 
and “parent are used here with respect to the hierarchy, in 
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that one failure type in the hierarchy can be related to another 
failure type in the hierarchy through some form of parent 
child relationship; however, in real-life systems, it is possible 
for the failure types to not have any direct relationship at all). 
The failure casting data is optional and can in Some embodi 
ments specify additional information and options to be used 
during the casting process. As the applications or system 
components exhibit failures, the failure casting logic uses the 
failure casting hierarchy to cast each of the failures into a 
different failure type. The system manager then determines, 
based on this new type of failure, what the appropriate system 
action should be. In accordance with an embodiment the 
system recognizes potential failures by their symptoms. Their 
symptoms are then used to determine a place within the 
hierarchy. Thus, the system can recognize a (child) failure 
having certain symptoms, but can use the failure hierarchy to 
determine that the failure should be handled using the method 
approved for its (parent) failure. 

In some embodiments the failure casting system can be 
used to cast failures of a first type into failures of a second 
type. In a particular embodiment the failure casting is per 
formed to cast failures into one of two possible types (i.e., one 
of two possible parents): those that are reboot-curable, and 
those that are not reboot-curable. Each of the failure catego 
ries described above with respect to FIG. 2 through FIG. 5, in 
addition to hitherto unknown categories, can be addressed to 
Some extent using failure casting. 

FIG. 6 shows an embodiment of a failure casting hierarchy 
in accordance with an embodiment of the invention. The 
failures casting hierarchy is used by the system (and in par 
ticular, the failure casting logic) to cast “child' failures into 
failures of a “parent type. As described above, in this context 
the terms “child' and “parent are used with respect to the 
hierarchy, in that one failure type in the hierarchy can be 
related to another failure type in the hierarchy, and are not 
used to reflect the relationship of the underlying failures in the 
real-life system itself. As shown in FIG. 6, all of the failures 
that may exist in the computer system, and which have been 
classified in the failure hierarchy 221, proceed or branch off 
from a global parent failure 222. Beneath this global parent 
there can be different failure branches. For example, FIG. 6 
shows two failure branches, including failure A 224, and 
failure B 226. (In a particular embodiment that allows for 
reboot-curable failure casting, type A can be “reboot-curable' 
and type B can be “non-reboot-curable'). Each of the 
branches can themselves have further branches (or sub 
branches), which correspond to additional types of failure. 
For example as shown in FIG. 6, failure A includes further 
branches 236, 230. Similarly failure B 226 includes sub 
branches 232 and 234. The failures within a branch are typi 
cally related to one another, perhaps being related to a com 
mon system component but having a different severity, 
although failures within a branch can also be completely 
different from one another other than the fact that they ulti 
mately share the same parent. 

It will be evident that while displayed pictorially in FIG. 6 
for ease of understanding, the hierarchy need not be stored or 
used in Such a manner. The hierarchy can actually be implicit, 
or alternatively can be stored in the system in any number of 
ways, including for example as a linked list or as a tree 
structure, as a set of objects, or as a database table, or as some 
otherform of data storage. In particular, as described herein in 
one embodiment the failure hierarchy can be stored as part of 
a startup script, initialization file or initialization Script, which 
identifies failures at start up or boot time and allows the 
failures to be cast to a higher type of failure in the hierarchy 
during the boot or start-up process. The ability to cast failures 
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at start-up is particularly important in scenarios in which the 
failure type includes reboot-curable type failures and non 
reboot-curable type failures, since the reboot-curable type of 
failure casting benefits most from performing the failure cast 
ing during the actual restart process. 

FIG. 7 illustrates an embodiment of the failure casting 
process that divides failures into two types of action. As 
shown in FIG. 7, the system includes a system manager 246 
and a failure casting logic 240. As before, the failure casting 
logic includes a failure casting hierarchy 244 and a failure 
casting data 242. In accordance with this particular embodi 
ment, as failures are observed by the failure casting logic, 
including in this example observing failure type A 124, type 
B 126 and type C128, the failure casting logic uses the failure 
casting hierarchy to divide the failures into one of two types: 
a type X 260 and a type Y 262. In accordance with this 
embodiment, the system manager knows to handle failures of 
type Xby formulating 261, and performing a first action 268, 
and also knows that failures of type Y should be handled by 
formulating 263, and performing a second, different action 
269. This allows the system manager to take appropriate 
action on the system component that has failed. 

It will be evident that while FIG. 7 illustrates failures being 
observed by the failure casting logic, in other embodiments 
the failure casting logic can be any logic designed to monitor 
the state of the system and detect when failures occur. This 
detection can be active and run continuously during operation 
of the computer system, detecting failures in real-time. The 
detection can also be somewhat passive, initiated only at 
startup through the use of a startup or initialization Script, and 
determining failures that are present at that particular moment 
in time. 
General Failure Casting Technique 

FIG. 8 illustrates a flow chart of a general failure casting 
method in accordance with an embodiment of the invention. 
As shown in FIG. 8, in a first step 280, the computer system 
application or component experiences a failure of a first type. 
In step 282, the failure is received or detected by the failure 
casting logic, or by a logical component or feature of the 
system which has been designed or coded to detect and cast 
failures. In accordance with Some embodiments, the failure is 
received or detected at start-up using a bootup or initialization 
script. In accordance with other embodiments, the failures 
can be detected during run time by an appropriate detection 
logic that recognizes any change in the system state when a 
failure occurs. Whether detected at startup or during opera 
tion the failures once detected can be handled in the same 
manner. In step 284, the failure casting logic uses the failure 
hierarchy to cast the failures into a second or another type of 
failure. In step 286, the system manager, or a logical compo 
nent or feature of the system which has been designed to 
manage the system then acts on the failure by addressing the 
failure as if it was a failure of the second type, and formulating 
an appropriate action. Although the system can be designed to 
map any size set of possible failure types to any size set of 
other failure types, in most instances the goal is to map a 
larger set of possible failure types to a smaller set of failure 
types that the system knows how to handle. Since the system 
is only required to maintain and understand recovery proce 
dures for a small set of failure types, this allows the system to 
operate more efficiently in the case of a failure. In step 290, 
the action is performed by the system manager on the failed 
computer system or component. 
Reboot-Curable Failure Casting Approach 
As described above, failure casting can be used to cast 

failures of one type into failures of another type. In a particu 
lar embodiment the failure casting is performed to cast fail 
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ures into one of only two types: those failures that are reboot 
curable, and those failures that are non-reboot-curable. When 
the plurality of failure types are reduced to the concept of 
reboot-curable or non-reboot-curable, then the system action 
is likewise reduced to one of either rebooting or not rebooting 
the computer system. FIG. 9 shows an embodiment of a 
failure casting hierarchy 298 that includes reboot-curable and 
non-reboot-curable branches in accordance with an embodi 
ment of the invention. As shown in FIG. 9, the hierarchy 
includes a parent of all failures recognized by the system 300. 
The difference between the hierarchy shown in FIG.9 and the 
generic hierarchy described earlier is that this hierarchy com 
prises only two primary branches, including a reboot-curable 
branch 302, and a non-reboot-curable branch 304. Beneath 
the non-reboot curable branch, the system can list failures that 
it recognizes, but which are considered to be not reboot cur 
able, or non-reboot-curable. Examples of these types of fail 
ures include power Supply failures, and corrupt boot sectors, 
and any other type of failure that would prevent a computer or 
a node from Successfully restarting even if that computer or 
node was rebooted. Reboot-curable failures are listed beneath 
the reboot curable branch. Specific examples of reboot cur 
able failures include when the system has run out of pro 
cesses, or a program has run out of memory, or has corrupt 
in-memory data structures, or when a single disk has failed in 
a striped-RAID array 306 or any other failure that the com 
puter system recognizes as reboot-curable. Reboot-curable 
failures are those failures for which rebooting the system (and 
in Some instances performing an additional action, such as 
removing the disk drive from a list of healthy drives) should 
cure the failure. 
As described above, although the failure casting hierarchy 

is shown hereinas an actual hierarchy, the hierarchy itself can 
be stored in any form data storage. As further described 
above, the failure casting hierarchy can be included within a 
start-up Script, boot Script, or initialization Script, so that the 
recovery of the failure is performed at start-up (of the node, 
process, or thread, etc.), which in turn allows the failure to be 
cast into a reboot-curable failure. In these embodiments, 
whenever the system is caused to reboot, the script is run, and 
the particular arrangement of failure type settings within the 
Script allows failure casting to take place at that point in time. 
When the system comes back up again, and barring any other 
combination of errors, then any reboot-curable failures that 
provoked the need to reboot in the first place, should now be 
fixed. 

FIG. 10 illustrates an embodiment of the failure casting 
process that divides failures into reboot curable and non 
reboot curable failures, in accordance with an embodiment of 
the invention. As shown in FIG. 10, the system includes a 
system manager 246 and a failure casting logic 240. Again, 
the system manager and failure casting logic can be logical 
components or features of the system which have been 
designed or coded to perform those tasks. Similarly to the 
embodiment described above, the failure casting logic 
includes a failure casting hierarchy 244 and an optional fail 
ure casting data 242. As failures are observed or detected by 
the failure casting logic, including failure type A, type B and 
type C, the failure casting logic uses the failure casting hier 
archy to divide the failures into one of two types: a type X260 
and a type Y 262. In accordance with this particular embodi 
ment, the system manager further knows that failures of type 
X are reboot curable failures 264, while failures of type Y are 
non-reboot-curable failures 266. This allows the system man 
ager to take appropriate action on the system component that 
has failed. For example in FIG. 7, the system manager can 
address the reboot curable failure by rebooting the system 
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component 268. For those failures that are not reboot-curable, 
the system manager can take an alternative system action 270. 
The alternative system action in some embodiments can 
include notifying a human operator, rebooting the computer 
system, or marking the computer system as failed, or some 
alternate procedure or combination of procedures. 
As similarly discussed above with respect to FIG. 7, it will 

be evident that while FIG. 10 also illustrates failures being 
observed by the failure casting logic, in other embodiments 
the failure casting logic can be any logic designed to monitor 
the state of the system and detect when failures occur. The 
failure casting logic or detection logic can be active and run 
continuously during operation of the computer system, or it 
can be initiated only at Startup through the use of a startup or 
initialization script, and determine failures that are present at 
that particular moment in time. The failure casting logic can 
also be embedded as additional functionality into the operat 
ing system itself, or in the parsing of the initialization Script. 
This latter embodiment is particularly useful when the system 
is designed to perform failure casting at boot time, checking 
the health of system components, and acting accordingly, 
since it allows the system to Substantially self-check and 
self-correct itself each time it is booted. The combination of 
both health-checking and failure casting at start-up time also 
allows for “reboot-curing, in that the system can be reboo 
ted, and the administrator can be assured that failures which 
are understood by the system will be handled in an appropri 
ate way, without need for further investigation or input from 
the administrator. 
Reboot-Curable Failure Casting Technique 

FIG. 11 illustrates a flow chart of a failure casting method 
in accordance with an embodiment of the invention. As 
shown in FIG. 11, in step 320, the computer system applica 
tion or component experiences a failure. In step 324, the 
failures are observed or detected by the failure detection 
logic. As similarly described above the failures can actually 
be detected at start-up through the use of a start-up or initial 
ization Script (for example, if a disk has failed, the startup 
script will not see it as present). In step 326, the failure 
detection logic uses failure casting to cast the failure into one 
of reboot curable or non-reboot curable failure type. In step 
328 if the failure is considered reboot-curable, then the sys 
tem manager, or a logical component or feature of the system 
which has been designed to manage the system, instructs the 
application component or system component to reboot. If in 
step 330, the failure is considered non-reboot-curable, then 
the system manager must determine an alternative action to 
take. This alternative action can include rebooting the system, 
marking the component as failed, or another procedure or 
combination of procedures. 

Since in this embodiment, the system is only required to 
maintain and understand a single type of recovery procedure 
(i.e. reboot the system) for a particular set of failure types (i.e. 
reboot curable failures), this allows the system to operate 
quickly, and without further operator input, when a reboot 
curable failure occurs. 
Failure Logging and Detection 

In accordance with one embodiment, failure detection is 
performed by recording and/or logging events that occur 
within the system, and by monitoring the progress of those 
events. In this way the systems behavior can be implicitly 
monitored. This information is then provided to the system 
manager, so that the system manager can decide when a 
failure has occurred and how best to handle it and/or cast it. 
For example, in accordance with an embodiment, the system 
uses five basic levels of logging: 
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INFO for normal actions, whose presence indicates live 
ness of a component. This can be considered a heartbeat type 
ofevent; components record a message at this level when they 
are about to commence input/output (I/O), or start up a pro 
cess, or perform any task that constitutes making forward 
progress from an application point of view; 
WARN this is considered a suspicious event, or some 

thing that might not have been intentional (for example, a 
conversion exception during string construction); 
ERROR this can be any clear error, but one that allows 

the program to continue operating (for example, a query was 
Submitted to a database process, but the response was mal 
formed); 
FATAL this type of error indicates that the system or 

component cannot continue operating for whatever reason; 
and 
DEBUG this type of logging allows the system to pro 

vide any additional contextual information about more-or 
less exceptional events for offline debugging. 

It will be evident that alternate levels of logging can be 
used, or additional levels of logging, depending on the par 
ticular embodiment and needs of the system. In accordance 
with an embodiment, the system logs information during 
runtime and at the following points: when starting/stopping a 
program and/or a child program; before and after all network 
and disk input/output; before and after any computer-inten 
sive operation; whenever an error occurs (in which case the 
system can also provide Sufficient context to debug the error 
offline); and whenever an exception is about to be thrown, 
which is then also logged at the WARN level. 

Heartbeats and progress counters can be employed to help 
with the detection of failures. For example, the system man 
ager can count the number of events logged by each activity 
(i.e., by each process and/or node) in the system; one that 
hasn’t made progress for a long period of time becomes 
Suspect, and may be deemed failed. In those embodiments 
that understand reboot-curable failures, this failure can be 
cast into a reboot-curable failure and result in rebooting the 
failed component, or the entire system. For example, in accor 
dance with an embodiment, if a node in a cluster does not log 
any INFO events for a long time, then that node is deemed 
failed, and is thus subject to reboot. If the node ultimately 
recovers from the reboot, then the unknown failure in the 
node was successfully cast into a reboot-curable failure. 

Another type of progress counter that can be used is a 
watchdog timer. A watchdog timer is a process by which the 
system manager counts the number of events logged by each 
activity in the system; one that hasn’t made progress for a 
long time similarly becomes Suspect and Subject to failure 
casting. Again, in those embodiments that understand reboot 
curable failures, the failure casting and failure handling may 
include rebooting the process or node responsible for that 
activity. 
Failure Casting Applied to RAID Arrays 
The above-described failure casting techniques can also be 

used to manage failures in a complex computer system, 
including, for example, a system that includes a RAID or 
similar array with multiple disk drives and multiple potential 
points of failure. In some embodiments reboot-curable failure 
casting can also be used each time the system is initiated, 
switched on, or is forced to reboot. 
The distribution of data across multiple disks using a tech 

nique such as Redundant Array of Inexpensive Disks (RAID) 
can be managed by either a dedicated hardware component, 
or by software programming. Additionally, hybrid RAID 
environments exist that are partially Software-based and par 
tially hardware-based. A typical hardware implementation of 
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RAID requires a special-purpose RAID controller. The con 
troller links to the host computer, handles the management of 
the disks, or the drives and performs parity calculations. 
Hardware implementations also typically Support hot Swap 
ping, allowing failed drives to be replaced while the system is 
running. With a software RAID implementation, the operat 
ing system manages the disks of the array through the normal 
system disk-drive controller. With the increase in today's 
computer processing speeds, software RAID can sometimes 
operate faster than hardware RAID. Unlike hardware-based 
implementations, in a software RAID environment there is no 
additional layer between the disks and the operating system, 
such as a hardware RAID controller. As such, in a software 
RAID environment the operating system must talk directly to 
the disks. RAID can be deployed in varying degrees of redun 
dancy and performance settings, depending on the particular 
needs of the system. A RAID-0 array (sometimes referred to 
as a “striped volume’) splits data evenly across two or more 
disks, with no parity information for redundancy. As such, 
RAID-0 is typically used to increase performance, rather than 
to improve data safety, and its performance benefits are a 
primary reason that RAID-0 is commonly used in large enter 
prise-scale systems. However, since data is shared between 
disks without redundancy, the loss of one disk results in data 
loss, and disks cannot be swapped out as they might for 
example in a RAID-5 setup. This can cause particular prob 
lems in software RAID-0 arrays, and in the enterprise systems 
that use RAID-0, because when a disk fails it can cause the 
system to freeze or to hang. 

In many instances, the system will determine a failure 
during runtime when a disk-accessing application is running, 
tries to perform an operation on the disk, and fails. The 
operating system's event log daemon will additionally recog 
nize the I/O error on that particular disk, and the system 
manager will be notified. The system manager corroborates 
these two events and decides that a disk is malfunctioning. 
The system manager then reboots the entire hardware node. 
Normally, disks are checked using a combination of BIOS 
start-up and Power-On Self Test (POST) routines, together 
with specialized boot-up protocols (such as BOOTP) to 
obtaina bootloader, which in turn loads and executes a kernel, 
which then uses its own configuration files to re-establish the 
RAID array. The problem is, ifa disk has failed, the operating 
system will become stuck attempting to reconstruct the RAID 
array. In accordance with an embodiment, if failure casting is 
used, then once the node is back up and running, the failed 
disk is automatically deconfigured, and the node uses only the 
remaining disks to construct a RAID-0 array and to (re) 
populate the array with data. 

FIG. 12 illustrates a system in accordance with an embodi 
ment that applies failure casting techniques to a Software 
RAID-0 array as may be used in a computer system or an 
enterprise system. As shown in FIG. 12, the computer system 
includes a Software program 342 that is responsible for man 
aging access to the RAID array360. The system also includes 
a system manager 344, a failure casting logic 346, and an 
operating system348. The failure casting logic itself includes 
a failure casting hierarchy 356 and an optional failure casting 
data 350. In accordance with an embodiment, the failure 
casting data and the failure casting hierarchy can be included 
in a start-up or initialization script 352. Together each of these 
components are used at start-up or during the run-time of the 
system to determine the health of the RAID array and to cast 
failures that may occur into reboot curable or non-reboot 
failures. 
As shown by way of example in FIG. 12, the RAID array 

can include four disks 362,364, 366,368. (It will be evident 
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that other numbers and types of disks can be used depending 
on the particular embodiment or implementation). If after a 
period of time T367, one of the disks fails, here indicated by 
the “X” symbol over the failed drive, then the system informs 
370 the failure casting logic of the failure, or alternatively the 
failure casting logic observes the failure. As described above, 
the system manager and failure casting logic can be logical 
components or features of the system which have been 
designed or coded to perform these tasks. Once the failure has 
been detected, the system can perform a reboot 380. In those 
embodiments that embed the failure casting hierarchy in a 
start-up script, the system can cast the failure into one that is 
repaired on reboot and the system can then perform normally 
and repopulate the data on the RAID-0 array (e.g., from a 
backup node), but excluding 382 the failed disk. In this way, 
the computer system can have maximum up-time, and fail 
ures can be handled quickly and simply by rebooting the 
computer. 
The above technique can be further applied to RAID-based 

system that use data replication. With replication, the content 
of a particular set of data can be found on more than one node, 
and any one of those nodes can be used to answer a query. In 
accordance with an embodiment, the standard startup or ini 
tialization script used in the system can be augmented with a 
new initialization script that, upon every startup (regardless of 
whether a failure has occurred or not), performs the following 
steps: 

1. Scan the disk controller for all available disks. (For 
example, in a SCSI system, the system can scan the SCSI 
bus for all available disk devices). 

2. For each disk, examine its partition table, and verify that 
the partition table conforms to the one required by the 
system. (Typically, there will be a set of partitions that 
belong to one array (e.g., A1), a set of partitions that 
belong to another array (e.g., A2), and so on). 

3. For each partition that is expected to belong to a RAID 
array, perform a health-check. (For example, on Linux 
systems, a tool like mdadm can be used to check the 
health of the disks and a tool like filisk to check the 
partitions thereon). 

4. Use the healthy partitions to construct arrays A1, A2, etc. 
(If the healthy partitions do not include all original par 
titions, then the newly-constructed arrays will have 
inconsistent data). 

5. Perform a filesystem check on each newly-constructed 
array. Whichever array fails this check is most likely a 
partially-reconstructed array (i.e., one or more partitions 
are missing). 

6. For each array whose filesystem check succeeds, verify 
that the expected datafiles (i.e., the database files) are 
correct. In accordance with an embodiment this includes 
the substeps of: 
6.1. Compute a checksum across each datafile. 
6.2. Send the checksum to a checksum directory server 
and Verify its correctness. 

6.3. For any datafiles that fail the checksum test, delete 
them and copy over a fresh version from one of the 
replicas. 

7. For each array whose filesystem check fails, reformat 
that entire array, and then copy over fresh versions of the 
required database files from their replicas. 

When the above script is integrated into a system, it allows 
the system to cure hard drive failures at boot time by restarting 
the hardware node, since upon startup the bad disk will not 
contribute healthy partitions because it will either: (a) fail the 
BIOS check; or (b) the kernel will not list it as present on the 
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disk controller (SCSIbus); or (c) the partition table will not be 
readable; or (d) the partition health check will fail. 

In this manner the initialization script embodies the failure 
casting hierarchy within the script itself, and when the script 
is executed the system performs the role of failure casting 
logic. Since the disk does not contribute healthy partitions, it 
is implicitly deconfigured by the script. The node then recon 
structs the datafiles it needs by receiving them from other 
nodes in the cluster, where they have been replicated. Thus, 
the effect of the restart-based cure is that the node may now 
run slower (since the RAID-0 array now has one less disks, 
which reduces its I/O throughput proportionally), but other 
than that, from the end user's perspective there will be no 
apparent change in the node's functionality. 

There are cases in which the disk may pass all the checks 
and still be configured into an array, despite it being faulty. 
Failures can include lack of service, also known as a stopping 
failure, for example, when the disk does not respond to que 
ries; degraded service, for example, when operations take 
much longer time than normal to complete; and deceptive 
service, also known as Byzantine failure, in which a read 
request returns a wrong answer. The initialization script 
described above only handles the lack of service failure type. 
To add support for the latter two, whenever such failure mode 
is noticed by the application (through the use of timing 
mechanisms, or checksums, or because it is experiencing the 
same kind of problems over and over again from the same 
disk), the failure detection logic or the system itself can 
instruct the operating system to mark that particular disk as 
faulty. As a result, on the next reboot, the disk will no longer 
be part of the standard configuration. In this instance the 
Script handles degraded service and deceptive service just as 
it would handle a stopping failure. Various other disk failures 
can be cast into reboot-curable failures by simply introducing 
an additional step in the startup script of a cluster node. 
Failure Casting Applied to Clusters 
The above-described techniques can also be used to man 

age failures within clusters of computers. As before, the 
above sequence of steps can be applied during start-up to use 
failure casting each time the system, or a node in the system, 
is initiated or switched on. 

Cluster failovers are particularly important since they often 
exhibit Byzantine failures. Unlike “stopping failures', where 
the system stops responding, a Byzantine failure is one in 
which the system provides the wrong response to a query. 
Byzantine failures are particularly pernicious, because they 
are hard to detect, and thus propagate through a computer 
system for a long time. 

For example, if the output of one function is used as the 
input to another, then small round-off errors in the first func 
tion can produce much larger errors in the second. If the 
output of the second function is then used as input into a third, 
the problem can grow larger, until the output values are essen 
tially worthless. 

Byzantine failure-tolerant algorithms must cope with Such 
failures and still satisfy the specifications of the problems 
they are designed to solve. However, Byzantine failures are 
particularly difficult to handle. In accordance with an 
embodiment, failure casting can be used to cast Byzantine 
failures into stopping failures, which can then be addressed 
appropriately. Byzantine failures often occur after an initial 
period of something appearing 'Suspect', for example the 
node slowing down because it runs out of memory. If nothing 
is done to address the Suspicious behavior, then after a period 
of time the node may start inadvertently corrupting its data 
structures. However, if in accordance with an embodiment, 
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the system acts promptly with a reboot, it may prevent (which 
is better than recovering from) a Byzantine failure. 

It will be evident that using failure casting to tackle Byz 
antine failures essentially makes the components in the sys 
tem “fail-fast’, i.e., ones that are designed to immediately 
report any growing failure or condition that is likely to lead to 
a stopping failure. Distributed algorithms that run inclusters 
can be greatly simplified when stopping failures and failure 
casting is used. This approach is markedly different, for 
example, from the Nagaraja approach described earlier, 
which chooses to enforce an expected fault model by crashing 
hardware nodes whenever something goes wrong. However, 
in accordance with the present embodiment, the recovery 
process is designed so that this type of "fault model enforce 
ment” becomes possible. 

FIG. 13 illustrates an embodiment of the invention that 
applies failure casting techniques to a distributed database 
running on a cluster. In accordance with an embodiment, a 
global database can be structured as a collection of segments 
or “child databases' running on a plurality of cluster nodes. 
The entire set of data is partitioned into Smaller data seg 
ments, and each child database manages one such segment. 
Such a setup can be used for extremely large data storage 
systems, of the order of many Terabytes. Large capacity data 
storage systems are commonly used in enterprise systems, 
and particularly in engineering, telecommunications, scien 
tific, statistical, ecommerce, and other systems. As shown in 
FIG. 13, the entire global database 388 can be distributed 
across a set of nodes 390-418, arranged into child databases 
390, 392, which can in turn have their own child databases 
(394,396) and (404, 406,408) respectively, and so on. When 
viewed together the child databases of a particular parent 
collectively contain the same data as their parent, i.e. the 
resulting segments represent a (recursive) partition of the 
original data segment. A query across the entire database is 
transformed into queries across the various segments or vari 
ous child databases. Through replication, the content of a 
particular segment of the database can be found on more than 
one node, and any one of those nodes can be used to answer 
a query over that particular segment. The system also main 
tains a replica tree which is used to is used to decide how to 
distribute the query across the various cluster nodes. When a 
particular node fails, it is removed from the replica tree, so 
that Subsequent queries will not see any of the failed nodes. 

FIG. 14 illustrates a flowchart of a method for applying 
failure casting techniques to a cluster. As shown in FIG. 14, in 
step 420, the system receives a query request, or begins a 
transaction, that is to be applied to the global database. In step 
422, the system uses the replica tree to determine a list of 
database nodes that provide a complete view of the global 
database. In step 424, the system then prepares to apply the 
query over the list of database nodes. In step 426, the system 
determines whether all nodes are available. If there are no 
failures in the nodes (step 428), then in step 430 the system 
applies the query to the database nodes and return a result. If, 
however in step 426, the system determines that any of the 
nodes are unavailable (step 432), then in step 434 the system 
removes the failed node from the list, and determines a new 
set of nodes from the replica tree (i.e., it asks the system 
manager for a new set of nodes with data segments. In the 
example of processing a transaction, then for every node that 
is in the new set, but was not in the old set, i.e., for every node 
that has replaced a failed node the system (a) opens connec 
tions to the node, (b) issues a begin transaction (with a trans 
action identifier, Tid), (c) runs the query on that node, and (d) 
issues end transaction (with the transaction identifier Tid) on 
that node. 
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While the query is being answered, in step 436, the system 

initiates failure casting. In step 438, the system reboots the 
Failed Node, treating any failures in the node using failure 
casting. In step 440, if the failed node comes back up, then it 
can eventually be cycled back into the system and the repli 
cation tree. If not, the node is eventually marked as dead. 

Failures can keep occurring, but as long as the segment sets 
provided by the system manager are correct, then the master 
will eventually receive a complete reply to the database query. 
End users have no knowledge that failures may have occurred 
underneath. This designallows the system to cast a large class 
of failures into node-level crashes/reboots, and still success 
fully respond to a request for data from the database. 
Failure Casting Applied Recursively 
A difficult problem in managing failures is actually speci 

fying a policy for automatic handling of recovery (for 
example, what to do, when to do it, and in reaction to what 
situation to do it). Using extensive implementation of failure 
casting, a very simple failure management policy can be 
provided: when something seems suspect, or operating 
Strangely for a certain amount of time, then restart it. If that 
doesn’t work, then restart a larger Subsystem that contains the 
initial one. As described above, subtrees of the failure casting 
hierarchy can consist of many failures, Some of which are not 
even anticipated; yet, all these failures manifest in the same 
way to the outside world (i.e., their symptoms are similar, 
Such as users not being able to connect to the database). This 
grouping of failures allows the system to cast “up the tree' 
into the root of that subtree, and say “this is a failure that 
exhibits symptom X, so I will treat it the way I treat all such 
failures, namely by rebooting within the perimeter in which 
that failure manifested’. Thus, recursive casting is the process 
of repeatedly performing failure casting as one moves up 
through the failure hierarchy, in response to the fact that the 
previous failure cast and associated treatment did not cure the 
observed problem. 

For example, in a RAID-0 embodiment, the system may be 
observing input/output errors on a disk, so it can cast this set 
of symptoms to a “disk is unavailable' set of symptoms. If the 
reconstruction of the RAID-0 is not successful, because none 
of the disks are available (which may be the case if the 
controller has failed), then the system can cast higher up to the 
“no disk available' set of symptoms which is equivalated to 
the “node is not available' set of symptoms. This now takes 
the system into a node-level shutdown recovery scheme, 
where the rest of the cluster is able to continue functioning 
even in the absence of this node. In other embodiments it may 
be desirable to cast from “a disk is unavailable' to “SCSI bus 
is not available' or to “controller malfunction', in which case 
it is still casting up the failure hierarchy (because the failure 
hierarchy is defined by how we recover given a set of symp 
toms), but it is not expanding the boundaries of the failure. 
The important thing to note about recursive casting is that, 
when a set of symptoms are cast to a failure type, it may 
initially be wrong, and the actual failure is underneath a 
different node in the failure hierarchy (i.e., in a different 
Subtree). As the system progressively casts to nodes higher up 
in the tree, it accounts for increasingly more subtrees, and 
encompasses increasingly more possible failures. The net 
effect is that larger numbers of failures, of all different levels 
within the system, can be captured within the set of reboot 
curable failures, and with Successive rebooting it is possible 
to heal the system, without having to discern which failure 
was the underlying cause of the symptoms. 
The present invention can be conveniently implemented 

using a conventional general purpose or a specialized digital 
computer or microprocessor programmed according to the 
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teachings of the present disclosure. Appropriate Software 
coding can readily be prepared by skilled programmers based 
on the teachings of the present disclosure, as will be apparent 
to those skilled in the software art. 

In some embodiments, the present invention includes a 
computer program product which is a storage medium (me 
dia) having instructions stored thereon/in which can be used 
to program a computer to performany of the processes of the 
present invention. The storage medium can include, but is not 
limited to, any type of disk including floppy disks, optical 
discs, DVDs, CD-ROMs, microdrive, and magneto-optical 
disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, 
VRAMs, flash memory devices, magnetic or optical cards, 
nanosystems (including molecular memory ICs), or any type 
of media or device Suitable for storing instructions and/or 
data. 
The foregoing description of the present invention has been 

provided for the purposes of illustration and description. It is 
not intended to be exhaustive or to limit the invention to the 
precise forms disclosed. Many modifications and variations 
will be apparent to the practitioner skilled in the art. Particu 
larly, while failure casting has been described above with 
regard to the particular example of casting failures into 
reboot-curable, or non-reboot-curable failures, it will be evi 
dent that failure casting can generally be applied to casting 
any type of failure into any other type of failure. For example, 
failure casting can be used to cast certain types of failures into 
reboot-curable failures, and to ignore all other failure types. 
Failure casting can also be used to cast a group of many failure 
types into a single failure type. Additional embodiments and 
implementations will be evident to one skilled in the art. It 
will also be evident that, while the embodiments of the sys 
tems and methods described above are described in the con 
text of disk arrays and clusters it will be evident that the 
system and methods can be used with any type of computer 
system components, hardware, or software. The embodi 
ments were chosen and described in order to best explain the 
principles of the invention and its practical application, 
thereby enabling others skilled in the art to understand the 
invention for various embodiments and with various modifi 
cations that are Suited to the particular use contemplated. It is 
intended that the scope of the invention be defined by the 
following claims and their equivalence. 

What is claimed is: 
1. A system for managing failures in a computer system 

using failure casting, the computer system including an array 
of disks, comprising: 

one or more processors operable to provide a system man 
ager that performs actions on the computer system to 
address failures that occur within the computer system; 

a failure casting logic that detects failures as they occur in 
the computer system; 

a failure casting hierarchy that defines a plurality of failures 
that can occur within the computer system, and which is 
used by the failure casting logic upon detecting the 
occurrence of a failure to cast the failure from a first 
failure type to a second failure type, wherein the second 
failure type is then communicated to the system man 
ager to allow the system manager to treat the failure as if 
it were the second failure type: 

wherein the failure casting hierarchy defines at least two 
sets of failures, including a set of reboot-curable failures 
and a set of non-reboot-curable failures, wherein the 
reboot-curable failures are addressed by the system 
manager by rebooting the computer system or compo 
nent thereof that includes the failure; 
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wherein the failure casting logic and the failure casting 

hierarchy are part of a script that detects the occurrence 
of failures in the computer system and then casts the 
failure into one of either a reboot-curable failure or 
non-reboot-curable failure, wherein the script is 
executed by the computer system when powered on: 
wherein the script is used to address failures within the 
array of disks at boot time by verifying the health of each 
disk prior to adding a disk to the array; and 

wherein the failure casting hierarchy in the Script includes 
the set of non-reboot curable failures that are checked at 
boot time, and if a disk, when added to the array, exhibits 
a failure upon bootup within the set of non-reboot-cur 
able failures, then the disk is not added to the array. 

2. A method for managing failures in a computer system 
using failure casting, the computer system including an array 
of disks, comprising: 

detecting the occurrence of failures in the computer sys 
tem; 

referring to a failure casting hierarchy that defines a plu 
rality of failures that can occur within the computer 
system; 

using the failure casting hierarchy to cast the failure from a 
first failure type to a second failure type: 

communicating the second failure type to a system man 
ager, 

performing an action by the system manager on the com 
puter system to address the failure including treating the 
failure as if it were the second failure type, wherein the 
failure casting hierarchy defines at least two sets of 
failures, including a set of reboot-curable failures, and a 
set of non-reboot-curable failures, and addressing the 
reboot curable failures by the system manager by restart 
ing the computer system or component thereof that 
includes the failure, and wherein the failure casting logic 
and the failure casting hierarchy are part of a script, and 
detecting the occurrence of failures in the computer 
system using the script and then casting the failure into 
one of either a reboot-curable failure or non-reboot 
curable failure, and executing the script by the computer 
system when first powered on: 

using the Script to address failures within the array of disks 
at boot time by verifying the health of each disk prior to 
adding a disk to the array; and 

checking at boot time the failure casting hierarchy in the 
script includes the set of non-reboot curable failures, and 
not adding a disk to the array if the disk, when added to 
the array, exhibits a failure upon bootup within the set of 
nonreboot-curable failures. 

3. The method of claim 2 wherein the computer system 
comprises a cluster of nodes; a global database distributed 
over the cluster of nodes; a script at each node that detects the 
occurrence of failures in the node and casts some of the 
failures into reboot-curable failures; and the method further 
comprises: receiving a request by the system manager to 
access the global database, and in response, upon Subse 
quently detecting a failure of a node, causing the failed node 
to reboot, and then applying the request to the remaining 
nodes in the cluster. 

4. A non-transient system readable medium, including 
executable instructions stored thereon, which when executed 
by a system having an array of disks, causes the system to 
perform the following: 

executing a script that detects the occurrence of a failure in 
the computer system; 

using a failure casting hierarchy within the Script to cast the 
failure from a first failure type to a second failure type, 
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different that the first failure type, and communicating 
the second failure type to a system manager to allow the 
system manager to treat the failure as if it was the second 
failure type: 

using the Script to address failures within the array of disks 
at boot time by verifying the health of each disk prior to 
adding a disk to the array; and 

not including a disk in the array if the disk, when added to 
the array, exhibits a failure upon bootup within a set of 
non-reboot-curable failures; and 

wherein the script defines at least two sets of failures, 
including a set of reboot-curable failures and a set of 
non-reboot-curable failures, and including addressing 
the reboot-curable failures by restarting the system or 
component thereof that includes the failure. 

5. The non-transient system readable medium of claim 4 
wherein the system further comprises: 

a cluster of nodes; 
a global database distributed over the cluster of nodes: 
a script at each node that detects the occurrence of failures 

in the node and casts some of the failures into reboot 
curable failures; and 
wherein the executable instructions when executed fur 

ther cause: 
receiving by the system a request to access the global 

database, 
upon Subsequently detecting a failure of a node, causing 

the failed node to reboot, and 
then applying the request to the remaining nodes in the 

cluster. 
6. A system for managing failures in a computer system 

using failure 
casting, the computer system including an array of disks, 

comprising: 
(i) one or more processors operable to provide a system 
manager that performs actions on the computer sys 
tem to address failures that occur within the computer 
system; 

(ii) a failure casting logic that detects failures as they 
occur in the computer system; 

(iii) a failure casting hierarchy that defines a plurality of 
failures that can occur within the computer system, 
and which is used by the failure casting logic upon 
detecting the occurrence of a failure to cast the failure 
from a first failure type to a second failure type, 
wherein the second failure type is then communicated 
to the system manager to allow the system manager to 
treat the failure as if it were the second failure type: 
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(iv) wherein the failure casting hierarchy defines at least 
two sets of failures, including a set of reboot-curable 
failures and a set of non-reboot-curable failures, 
wherein the reboot-curable failures are addressed by 
the system manager by rebooting the computer sys 
tem or component thereof that includes the failure; 

(v) wherein the failure casting logic and the failure cast 
inghierarchy are part of a script that detects the occur 
rence of failures in the computer system and then casts 
the failure into one of eithera reboot-curable failure or 
non-reboot-curable failure, wherein the script is 
executed by the computer system when powered on: 
and 

(vi) wherein the script is used to address failures within 
the array of disks at boot time by verifying the health 
of each disk prior to adding a disk to the array. 

7. A method for managing failures in a computer system 
using failure casting, the computer system including an array 
of disks, comprising the steps of 

(i) detecting the occurrence of failures in the computer 
system; 

(ii) referring to a failure casting hierarchy that defines a 
plurality of failures that can occur within the computer 
system; 

(iii) using the failure casting hierarchy to cast the failure 
from a first failure type to a second failure type: 

(iv) communicating the second failure type to a system 
manager, 

(v) performing an action by the system manager on the 
computer system to address the failure including treat 
ing the failure as if it were the second failure type: 

(vi) wherein the failure casting hierarchy defines at least 
two sets of failures, including a set of reboot-curable 
failures, and a set of non-reboot-curable failures, and 
addressing the reboot curable failures by the system 
manager by restarting the computer system or compo 
nent thereof that includes the failure; 

(vii) wherein the failure casting logic and the failure cast 
inghierarchy are part of a script, and detecting the occur 
rence of failures in the computer system using the script 
and then casting the failure into one of either a reboot 
curable failure or non-reboot-curable failure, and 
executing the Script by the computer system when first 
powered on; and 

(viii) using the script to address failures within the array of 
disks at boot time by verifying the health of each disk 
prior to adding a disk to the array. 
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