
US008359495 B2

(12) United States Patent (10) Patent No.: US 8,359.495 B2
Candea et al. (45) Date of Patent: Jan. 22, 2013

(54) SYSTEMAND METHOD FOR USING 6,708.291 B1* 3/2004 Kidder T14? 39
6,754,767 B2* 6/2004 Gold 711 114

FAILURE CASTING TO MANAGE FAILURES 6,952,794 B2 * 10/2005 Lu 714/7
IN COMPUTER SYSTEMS 7,389,396 B1* 6/2008 Goel et al. ... 711/167

7,506,200 B2 * 3/2009 Benhase et al. T14?6
(75) Inventors: George Candea, Los Altos, CA (US); 7,653,781 B2* 1/2010 Dawkins 711 114

2003/0037288 A1* 2/2003 Harper et al. 714,37
st y St. A. s 2004/0205377 A1* 10, 2004 Nakamura et al. 714.f4

nastasios Argyros, San Uarlos, 2005/0229039 A1 * 10/2005 Anderson et al. T14, 23
(US) 2006,0007905 A1 1/2006 Yach et al. 370,342

2007/0088.982 A1* 4/2007 Guralnik et al. T14, 26
(73) Assignee: Teradata US, Inc., Dayton, OH (US) 2007/0150.772 A1* 6/2007 Berenbach et al. 71.4/25

2008/0126855 A1* 5/2008 Higashijima et al. 714, 16
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS

patent is extended or adjusted under 35
U.S.C. 154(b) by 400 days. Wikipedia's Scripting Language version from Mar. 25, 2007 http://

en.wikipedia.org/w/index.php?title=Scripting language
(21) Appl. No.: 11/692,113 &oldid=117809901.

Continued (22) Filed: Mar 27, 2007 (Continued)
O O Primary Examiner — Joseph Schell

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Fliesler Meyer LLP. Ramin
US 2008/O244585 A1 Oct. 2, 2008 Mahboubian

(51) Int. Cl. (57) ABSTRACT
G06F II/00 (2006.01) A system and method for using failure casting to manage
G06F II/22 (2006.01) failures in a computer system. In accordance with an embodi

(52) U.S. Cl. 71.4/26: 714/6.21: 714/6.22 ment, the system uses a failure casting hierarchy to cast fail
(58) Field of Classification Search 714/23, ures of one type into failures of another type. In doing this, the

714/47, 48, 57,26, 7, 36, 42, 6.21, 6.22, system allows incidents, problems, or failures to be cast into
714/623, 37, 40 a (typically Smaller) set of failures, which the system knows

See application file for complete search history. how to handle. In accordance with a particular embodiment,
failures can be cast into a category that is considered reboot

(56) References Cited curable. If a failure is reboot-curable then rebooting the sys

U.S. PATENT DOCUMENTS

3.689,891. A * 9, 1972 Kril T11 112
5,729,552 A * 3/1998 Yorimitsu T14f718
6,092,169 A * 7/2000 Murthy et al. ... 711, 170
6,151,688 A * 1 1/2000 Wipfel et al. 714.f48
6,565,443 B1* 5/2003 Johnson et al. 463f43
6,583,947 B1 * 6/2003 Hakamata et al. 360/69
6,651,165 B1 * 1 1/2003 Johnson 713/2

Software Program 342

System Manager
344

Failure Casting logic 346
Startup Script 352

Failure Casting
Data 350

TM
387

Failure Casting
Hierarchy 358

Operating Syster
348

RAid Array360

iskAOisk Bisk AskA
3S2 364 35s 388

ComputeriMachine 347

Software Program 342

Systern Manager
34.

Failure Casting Logic 346
Startup Script 352

Failure Casting
data 350

Failure Casting
Hierarchy 356

Operating System f
348

RAIDAray360

Disk Abisk 3 isk Ali
362 364 366

ComputeriMachine 347

tem will likely cure the problem. Examples include hardware
failures, and reboot-specific methods that can be applied to
disk failures and to failures within clusters of databases. The
system can even be used to handle failures that were hitherto
unforeseen—failures can be cast into known failures based on
the failure symptoms, rather than any underlying cause.

7 Claims, 12 Drawing Sheets

Software Program 342

Systern Manager
344

Failure Casting Logic 346
Sartup Script 352

failurs Casting
Data 3S

Failure Casting
Hierarchy 356

Operating System
348 --

Remove
isk from

RADArray 360 Array382
Disk Aiske disk A y
3S2 364 388

REOC
380

-->

Serse

Failure 379

Y

ComputeriMachine 347

US 8,359.495 B2
Page 2

OTHER PUBLICATIONS

K. Nagaraja et al., “Using Fault Model Enforcement to Improve
Availability”. In Proc. 2"Workshop on Evaluating and Architecting
System Dependability, San Jose, CA 2002, 10 pages.
Candea et al., “Autonomous Recovery in Componentized Internet
Application'. Cluster Computing Journal, vol.9, No. 1, Feb. 2006, 15
pageS.
Candea, et al., “Microreboot—A Technique for Cheap Recovery'.
Proc. 6' Symposium on Operating Systems Design and Implemen
tation (OSDI), San Francisco, CA Dec. 2004, 14 pages.
Candea et al., Improving Availability with Recursive Microreboot: A
Soft-State System Case Study, Performance Evaluation Journal, vol.
56, Nos. 1-3, Mar. 2004, 26 pages.
Candea et al., “Crash-Only Software” Proc. 9' Workshop on Hot
Topics in Operating Systems (HotOS), Lihue, Hawaii, May 2003, 6
pageS.
Candea et al., “Reducing Recovery Time in a Small Recursively
Restartable System”, International Conference on Dependable Sys
tems and Networks (DSN), Washington, D.C., Jun. 2002, 10 pages.
Candea, et al. Recursive Restartability: Turning the Reboot Sledge
hammer into a Scalpel, 8' Workshop on Hot Topics in Operating
Systems (HotOS), Schloss Elmau, Germany, May 2001.6 pages.
Wood, “Predicting Client/Server Availability”, IEEE Computer,
28(4):41-48, 1995, 8 pages.
Kuhn, Sources of failure in the public Switched telephone network.
IEEE Computer, 30(4):31-36, Apr. 1997.9 pages.
Fishman, “They Write the RightStuff. FastCompany, 1997, 8 pages.
Sullivan and Chillarege, “Software Defects and Their Impact on
System Availability: A Study of Failures in Operating Systems'. In
Proc. 21st International Symposium on Fault-Tolerant Computing,
Montréal, Canada, 1991, 8 pages.
Gray, “Why Do Computers Stop and What Can Be Done About It?”,
In Proc. 5th Symp. on Reliability in Distributed Software and Data
base Systems, Los Angeles, CA, 1986, 46 pages.
Chou, “Beyond Fault Tolerance', IEEE Computer, 30(4): 1997, pp.
47-49.
Brewer, "Lessons From Giant-Scale Services', IEEE Internet Com
puting, 5(4): 2001, pp. 46-55.
Lahiri, et al: “Fast-Start: Quick Fault Recovery in Oracle”. In Proc.

ACM International Conference on Management of Data, Santa Bar
bara, CA, 2001, 6 pages.
Dahl and Nygaard, “Simula—an Algol-Based Simulation Lan
guage'. Communications of the ACM, 9(9):671-678, Sep. 1966, 8
pageS.
Mogul et al. “The Packet Filter: An Efficient Mechanism for User
Level Network Code'. In Proc. 11th ACM Symposium on Operating
Systems Principles, Austin, TX, 1987, 34 pages.
McCarthy, “Recursive Functions of Symbolic Expressions and Their
Computation by Machine'. In Artificial Intelligence. Quarterly
Progress Report No. 53. MIT Research Lab of Electronics, Cam
bridge, MA, 1959, 34 pages.
Chen et al., “Path-Based Failure and Evolution Management”. In
Proc. 1st Symposium on Networked Systems Design and Implemen
tation, San Francisco, CA, 2004, 14 pages.
Oppenheimer et al., “Why do Internet Services Fail, and What Canbe
Done About It?'. In Proc. 4th USENIX Symposium on Internet
Technologies and Systems, Seattle, WA, 2003, 15 pages.
Wang, et al. "Checkpointing and its Applications'. In Proc. 25th
International Symposium on Fault-Tolerant Computing, 1995,
10pages.
Whisnant, et al: "Experimental Evaluation of the REE SIFT Envi
ronment for Spaceborne Applications'. In Proc. International Con
ference on Dependable Systems and Networks, Washington, DC,
2002, 10 pages.
Lowell et al: “Exploring Failure Transparency and the Limits of
Generic Recovery'. In Proc. 4th Symposium on Operating Systems
Design and Implementation, San Diego, CA, 2000, 15 pages.
Fetzer, C., “Perfect Failure Detection in Timed Asynchronous Sys
tems', IEEE Transactions of Computers, Feb. 2003.
Murphy, B et al., “Measuring System and Software Reliability Using
an Automated Data Collection Process'. Quality and Reliability
Engineering Intl., 1995, pp. 341-353, vol. 11.
Wirth, N., "The Programming Language Oberon”, Software—Prac
tice and Experience, Jul. 1988, pp. 671-690, vol. 18, No. 7.
Wang, Y, et al. "Checkpointing and its Applications'. In Proc. 25th
International Symposium on Fault-Tolerant Computing (FTCS-25),
Jun. 1995, pp. 22-31.

* cited by examiner

US 8,359.495 B2 U.S. Patent

US 8,359.495 B2 Sheet 2 of 12 Jan. 22, 2013 U.S. Patent

€ eun61-I

z eun61-I

US 8,359.495 B2 Sheet 3 of 12 Jan. 22, 2013 U.S. Patent

G 3Jnfil

y 9.Infi!--

US 8,359.495 B2 Sheet 4 of 12 Jan. 22, 2013 U.S. Patent

9 eunfil

US 8,359.495 B2 Sheet 5 of 12 Jan. 22, 2013 U.S. Patent

/

Z eunfi!--

US 8,359.495 B2 Sheet 6 of 12 Jan. 22, 2013 U.S. Patent

9 aunfi!--

US 8,359.495 B2 U.S. Patent

6 eun61-I

US 8,359.495 B2 Sheet 8 of 12 Jan. 22, 2013 U.S. Patent

N.

US 8,359.495 B2 Sheet 9 of 12 Jan. 22, 2013 U.S. Patent

US 8,359.495 B2 Sheet 10 of 12 Jan. 22, 2013 U.S. Patent

Zºº uuelfiodd euexagos

f 298 EWL1

359.495 B2 9 Sheet 11 of 12 US 8 Jan. 22, 2013 U.S. Patent

807

90 #2

06€. LA eseqejeo

US 8,359.495 B2 Sheet 12 of 12 Jan. 22, 2013 U.S. Patent

US 8,359,495 B2
1.

SYSTEMAND METHOD FOR USING
FAILURE CASTING TO MANAGE FAILURES

IN COMPUTER SYSTEMS

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con
tains material which is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF THE INVENTION

The invention relates generally to failure management in
computer systems, and particularly to a system and method
for managing failures in computer systems using failure cast
ing.

BACKGROUND

Computer systems have become increasingly complex,
and the applications to which computers are applied have
become more varied and widespread. While once confined to
commercial organizations, manufacturing companies, and
financial institutions, computer systems are now found in
most small businesses and households. Indeed in the United
States it is not uncommon for a household to have many
computer systems and other computational devices. Compa
nies are now as likely to use their computers to communicate
with other business entities as they are to use computers
within their own organization. Business-to-Business (B2B)
and Business-to-Consumer (B2C) applications are common
place, and the latest enterprise-level systems are designed to
serve any number from millions, to hundreds of millions, of
potential users.
The more complex a computer application is, the more

likely it needs to generate, utilize, and share huge amounts of
data. The net result is that computer hardware, Software, and
data storage offerings have grown to keep pace with techno
logical needs. Today, a Sophisticated enterprise-level com
puter system may include hundreds of processors, operating
upon a variety of operating systems and application servers,
with many network links to the outside world, and a consid
erable amount of fault-tolerant (for example, Redundant
Array of Inexpensive Disk, or RAID-based) disk storage.

However, while the increased use and complexity of com
puter systems has provided great benefits, these are not
immune to challenges. Foremost among these challenges is
the fact that computer systems, even the most expensive and
well-designed enterprise-class systems, can sometimes fail.
These failures may be hardware-based, such as the failure of
a disk drive or a computer memory chip. Failures can also be
Software-based; for example a software application that
exhibits bugs and ends up hanging due to running out of
memory. Another example may be that of an entire computer
crashing due to a buggy device driver that mismanaged its
in-memory data structures. In many instances, failures arise
from a combination of both hardware and software problems.
A Gartner survey estimated that software failures cause
approximately 40% of outages in large-scale, well-managed
commercial systems for high-end transaction processing
servers, and for systems in general. When Software-induced
failures and outages do occur, their effects are compounded
by the fact that a large percentage of the Software bugs that

10

15

25

30

35

40

45

50

55

60

65

2
manifest themselves in production systems have no known
available fix at their time of failure. According to one source
(Wood: “Predicting Client/Server Availability”, IEEE Com
puter, 28(4):41-48, 1995), this percentage of unknown-rem
edy bugs may account for as much as 80% of all software
failures.

Given Sufficient time, a Software application can indeed
mature and become more reliable, and less-failure-prone.
This is how, for example, the U.S. public switched telephone
network is able to provide its legendary high availability. It is
estimated that only 14% of switched telephone network out
ages between 1992-1994 were caused by software failures:
the third most-common cause after both human error (49%)
and hardware failures (19%). (Kuhn: Sources of failure in the
public switched telephone network. IEEE Computer, 30(4):
31-36, April 1997). These statistics might suggest that a thor
ough design review and extensive testing could single-hand
edly improve the dependability of software systems.
However, this is rarely the case; and indeed there appears to
be a significant limitation to how truly free a software pro
gram can be of all bugs. Researchers and engineers have
improved programming languages, built powerful develop
ment and testing tools, designed metrics for estimating and
predicting bug content, and assembled careful development
and quality assurance processes. In spite of all these devel
opments, many deployed software applications are still far
from perfect. It is estimated that two-thirds of software bugs
that manifestin deployed systems could not have been readily
caught by better testing processes (according to a U.S.
National Institute of Standards survey).

SUMMARY

Disclosed herein is a system and method for managing
failures in a computer system using failure casting. In accor
dance with an embodiment, the system comprises a system
manager and a failure casting logic that uses a failure casting
hierarchy to cast failures of one type into failures of another
type. In doing this, the system allows a multitude of incidents,
problems, or failures with potentially unknown resolutions to
be cast into a small set of failures, which the system knows
how to recover from. In accordance with a particular embodi
ment, failures can be cast from a category of failure that is
considered non-reboot-curable into a category of failure that
is considered reboot-curable (or simply “curable). If a failure
is reboot- or restart-curable then rebooting/restarting the sys
tem or a part thereof will cure the problem; by casting the
failure, a failure previously unrecoverable via reboot can now
be resolved by rebooting. In some embodiments, the range of
failures can be arranged in a hierarchy of parent and child
failure scenarios. Failure casting then locates the failure in the
hierarchy, and allows a system manager to determine the
appropriate action to be taken. When the failure hierarchy and
the failure logic is incorporated into a bootup Script or an
initialization script, for example when used with a disk array,
network cluster, or other component, then the system allows
for the failure casting to take place at boot time, thus making
a system reboot be an easy-to-use cure for many failures.

It will also be apparent from the description provided
herein that the system can even be used to handle failures that
were hitherto unforeseen (indeed it is impossible in a complex
system to foresee every possible type of failure or error).
Using embodiments of the present invention, unforeseeable
or unknown failures can be cast into foreseeable or known
failures based on the failure symptoms, rather than any under
lying cause. The failure can then be dealt with appropriately
as a known type of failure. When this technique is applied to

US 8,359,495 B2
3

the particular embodiment of reboot-curable failure casting,
then the system can attempt to cure the failure by rebooting or
some other action. Thus, failures can be handled for which no
specialized recovery could have been written in the first place,
since they were unforeseen.

Traditional recovery code techniques deal with exceptional
situations, and are designed to run flawlessly. Unfortunately,
exceptional situations are difficult to handle and are difficult
to simulate during development. This often leads to unreliable
recovery code. However, in Systems that cast failures into
reboots or restarts, the recovery code is exercised every time
the system starts up, which ultimately improves the reliability
of this code through implicit testing during every start-up.

Other embodiments, improvements, and uses of the failure
casting technique will be evident from the description pro
vided herein.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows an embodiment of a computer system that
uses failure casting in accordance with an embodiment of the
invention.

FIG. 2 illustrates the timeline at which different failures
may occur in computer systems in accordance with an
embodiment of the invention.

FIG. 3 illustrates the different layers at which failures can
occur in computer systems in accordance with an embodi
ment of the invention.

FIG. 4 illustrates the difference between failures that are
intentional or unintentional in accordance with an embodi
ment of the invention.

FIG.5 illustrates the persistency of some failures versus the
transient nature of other failures in accordance with an
embodiment of the invention.

FIG. 6 shows an embodiment of a failure casting hierarchy
in accordance with an embodiment of the invention.

FIG. 7 illustrates an embodiment of a system using a failure
casting hierarchy in accordance with an embodiment of the
invention.

FIG. 8 illustrates a flowchart of the failure casting process
in accordance with an embodiment of the invention.

FIG.9 shows an embodiment of a failure casting hierarchy
that includes reboot-curable and non-reboot-curable
branches in accordance with an embodiment of the invention.

FIG. 10 illustrates an embodiment of a system using a
failure casting hierarchy and reboot-curable actions in accor
dance with an embodiment of the invention.

FIG. 11 illustrates a flowchart of the failure casting process
including reboot-curable actions in accordance with an
embodiment of the invention.

FIG. 12 illustrates an embodiment of the invention that
applies failure casting techniques to a RAID array as used in
a computer system.

FIG. 13 illustrates an embodiment of the invention that
applies failure casting techniques to a cluster.

FIG. 14 illustrates a flowchart of a method for applying
failure casting techniques to a cluster.

DETAILED DESCRIPTION

Two phenomena conspire to limit the effectiveness of tra
ditional approaches to failure management in Software envi
ronments: code evolution, and unforeseen usage scenarios.
Both of these factors prevent software developers from being
able to guarantee a program of reasonable size will run as
expected once it is deployed at the customer's site.

10

15

25

30

35

40

45

50

55

60

65

4
With regard to code evolution, in the software industry

change is the enemy of dependability, or said differently “if it
aint broke, then don't fix it. Only in a software system that
evolves very slowly is it possible to control the effects of
change, and to maintain or improve Software quality. For
example, the software running on NASA's space shuttle soft
ware requires approximately half a million lines of Software
code. However, as of 1997, its last three releases manifested
only one bug each, with the last 11 versions totaling only 17
bugs. (Fishman: “They Write the Right Stuff, FastCompany,
1997). Such reliability comes at the expense of evolution:
upgrading the shuttle software to use GPS-based, instead of
land-based, navigation was a major undertaking; the change
involved only 1.5% of the code, yet simply formalizing the
required specifications took months, followed by an even
longer development and test cycle. While this rigidity ensures
a more reliable final set of code, it would threaten the exist
ence of most software systems in use today and in the near
future, mainly because of customer demands and time-to
market pressures. This is true of the entire software stack in
operating systems, applications, and Software services; and is
also true for both commercial and open-source environments.

With regard to unforeseen usage, the presence of increas
ingly diverse execution environments and different scenarios
constitute another factor that limits software quality. Return
ing to the example of the space shuttle program mentioned
above, the NASA software development organization has the
advantage of Supporting only one platform and only one
customer. In contrast, most of today’s commercial Software
applications must interact with a variety of devices, Support a
variety of configurations and uses, and be combinable with
other third-party software. Even if a system's code base did
not change, a new execution environment or scenario might
unavoidably exercise a code path that had never been tested,
manifesting heretofore latent or unknown bugs. Furthermore,
even if the testing of all paths through a program was possible,
the testing of all imaginable execution environments and their
ensuing interactions would not. The more complex a software
product, the more difficult it is to understand and predict its
behavior in production. For example, a complex database
server product may be subjected to an extensive battery of
tests, yet still not pass all of those tests prior to release,
because those bugs that are still present in the final product are
dependent on the tester's environment, making them difficult
to reproduce, or too expensive and/or risky to fix. This is
largely true of all commercially-produced software.
To address the above challenges, today's Software compa

nies and organizations expend Substantial resources to help
prevent, detect, and when necessary quickly resolve failures
in their computer systems. Typically these resources require
greater administrative overhead in terms of manpower and
expenditure. Furthermore, notwithstanding the benefits of
these tools, the managing of failures in computer systems is
still a complex task, since many parts of the system or the
Software can fail, and there are many interdependencies,
which makes recovery complicated. For example, in a trans
action processing system that includes a plurality of nodes,
and wherein those nodes operate according to a two-phase
commit protocol, the failure of one node can require a number
of additional, otherwise operable, nodes to abort their trans
actions.

Notwithstanding the availability of these administrative
tools, a commonly-used and longstanding approach to resolv
ing a system failure is to reboot or restart the offending
application, server, system, machine, or component. Reboo
ting is a simple, practical and effective approach to managing
failure in large, complex systems; it is an approach that

US 8,359,495 B2
5

accepts bugs in applications as facts to be coped with, instead
of viewing them as problems that must be eliminated at all
costs. The results of several studies, (including, for example,
Sullivan and Chillarege: “Software Defects and Their Impact
on System Availability: A Study of Failures in Operating
Systems”. In Proc. 21st International Symposium on Fault
Tolerant Computing, Montréal, Canada, 1991: Gray: “Why
Do Computers Stop and What Can Be Done About It?. In
Proc. 5th Symp. On Reliability in Distributed Software and
Database Systems, Los Angeles, Calif., 1986; Murphy and
Gent: “Measuring System and Software Reliability. Using an
Automated Data Collection Process', Quality and Reliability
Engineering Intl., 11:341-353, 1995; and Chou: “Beyond
Fault Tolerance", IEEE Computer, 30(4):47-49, 1997), com
bined with experience in the field (for example, Brewer:
“Lessons From Giant-Scale Services’, IEEE Internet Com
puting, 5(4):46-55, 2001), Suggest that many failures can be
Successfully recovered by rebooting. Not Surprisingly,
today’s state-of-the-art Internet clusters provide facilities to
circumvent a faulty node by failing-over, rebooting the failed
node, and then Subsequently reintegrating the recovered node
into the cluster.

Rebooting provides a number of advantages. First, reboo
ting scrubs any volatile state that has potentially become
corrupt, for example a bad pointer, a deadlock involving a set
of multiple exclusion objects (mutexes), or an accumulated
computation error. Rebooting also reclaims leaked resources
and does so decisively and quickly, because mechanisms used
to effect the reboot are simple and low-level: for example
virtual memory hardware, operating system processes, and
language-enforced mechanisms. Should an application leak
memory, this memory will be reclaimed upon restarting that
application process.

Second, rebooting returns an application program to its
start state (or at least to a well-known state), which is the best
understood and most thoroughly debugged state of the pro
gram. Whenevera program starts up, it begins in its start state,
so this is the most frequently visited State during develop
ment, testing, and operation.

Third, rebooting improves overall uptime by saving on
actual diagnosis time. When failure strikes in a critical com
puter system, operators cannot always afford to run real-time
diagnosis; instead, they focus on bringing the system back up
quickly, by any means possible, and then performany neces
sary diagnosis later. Experienced operators realize that there
is a large opportunity-cost in taking an hour or more to decide
whethera reboot would or would not cure the failure, whereas
a minute-long reboot would answer that question much
Sooner. Rebooting is a simple task to undertake, regardless of
whether it is performed by an administrator or a machine, so
implementing and automating a recovery policy based on
rebooting is one of the easiest and simplest of all recovery
alternatives. Rebooting is also a universal form of recovery,
since a failure's root cause does not need to be known in order
to recover it by reboot. The fact that rebooting can be done
“blindly' is indeed one of the very reasons some practitioners
frown upon its liberal use. Nevertheless, as software becomes
more complex and availability requirements more stringent,
the willingness and ability to perform a thorough diagnosis
prior to recovery may make reboots a more tempting option.

However, as used in today's computer systems, the deci
sion to reboot an application, server, component or system is
at best a hopeful attempt at resolving the immediate symp
toms of the failure. The traditional concept of rebooting does
not attempt to rectify or isolate the underlying failure. In
short, today's systems are not designed to be recovered by
reboot. The net result is that the underlying failure often

10

15

25

30

35

40

45

50

55

60

65

6
persists even after the reboot. Rebooting has two other prin
cipal drawbacks: loss of data and unpredictable recovery
times. While scrubbing corrupt data is beneficial, losing good
data is obviously not. For example, in a traditional, buffered
UNIX filesystem, updates are kept in a volatile buffer cache
for up to 30 seconds. Should an unexpected crash occur
during that period, any data that had been written to the buffer
cache, but not to the disk, would be lost. This problem has
been recognized in today’s Internet services, which is why
most Internet-based systems now maintain all important data
(including session state, such as a user's shopping cart) in
databases. Another drawback of rebooting is that it can result
in long and unpredictable recovery times. Data recovery pro
cedures in Systems handling large amounts of data can last
many hours (for example, when the system is forced to per
form filesystem and transaction log checks after restarting).
Modern systems recognize this problem by, for example,
allowing administrators to tune the rate of checkpointing,
Such that recovery time after a crash does not exceed a con
figured upper limit, (an example of which is described in
Lahiri, et al: “Fast-Start: Quick Fault Recovery in Oracle'. In
Proc. ACM International Conference on Management of
Data, Santa Barbara, Calif., 2001). In the worst case, if there
is a persistent fault (for example, a failed disk or a miscon
figuration), the system may never come back up and instead
require some other form of recovery.
An alternative, commonly-used approach to handling fail

ures is to use customized recovery code to identify and correct
problems in the system. Recovery code deals with excep
tional situations, and must run flawlessly. Unfortunately,
exceptional situations are difficult to handle and are difficult
to simulate during development. This often leads to unreliable
recovery code. The problem is particularly relevant given that
the rate at which the number of bugs are reduced per thou
sand-lines of code has fallen behind the rate at which the
number of lines of code per system increases, with the net
result being that the number of bugs in an evolving system
generally increases over time. More bugs mean more failures,
and systems that fail more often need to recover more often.
Poorly tested recovery code makes these systems fragile.
Furthermore, as a computer system evolves, failure modes
change (for example, a temporary network outage may cause
an older kernel to terminate all network connections, but an
upgraded kernel may instead cause remote filesystems to be
corrupted). Additionally, what constitutes the “right recov
ery' to a certain type of failure may also change overtime (for
example, a failure on a database server may expect a transac
tion abort as sufficient recovery, but new interdependencies
may also require a failure to be accompanied by the restart of
any corresponding application servers).

Within the field of data storage/retrieval environment,
Some steps toward Software redundancy, failure management,
and recovery code were made with the introduction of data
base transactions in the 1980s, (as described, for example, in
Gray and Reuter: “Transaction processing: concepts and
techniques': Morgan Kaufmann, San Francisco, 1993).
Transaction-related techniques, in conjunction with the
ACID Semantics of databases (Atomicity, Consistency, Iso
lation, and Durability), enabled applications to abstract the
various reasons for which an operation may fail, and to use
only three primitives to ensure proper updating of a database:
begin transaction, commit transaction, and abort transac
tion. Other systems, (for example, those disclosed in Naga
raja, et al. “Using Fault Model Enforcement to Improve Avail
ability”; In Proc. 2nd Workshop on Evaluating and
Architecting System Dependability, San Jose, 2002), can be

US 8,359,495 B2
7

used to force all unknown faults into hardware node crashes.
This can then be used to improve the availability of a clustered
web server.
Many techniques have also been advocated for improving

Software dependability, ranging from better Software engi
neering (for example, as described in Brooks: “The Mythical
Man-Month'. Addison-Wesley, Reading, Mass., 1995), and
object oriented programming languages (for example, as
described in Dahl and Nygaard: “Simula—an Algol-Based
Simulation Language'. Communications of the ACM, 9(9):
671-678, September 1966), to formal methods that predict/
Verify properties based on a mathematical model of the sys
tem (for example, Schulmeyer and MacKenzie: “Verification
and Validation of Modern Software-intensive Systems’.
Prentice Hall, Englewood Cliffs, N.J., 2000). Language
based methods, such as static analysis (described, for
example, in Patrick Cousot, editor: “Static Analysis’,
Springer Verlag, 2001), detect problems at the source-code
level. Some programming languages prevent many program
ming errors by imposing restrictions, such as type safety
(Niklaus: “The Programming Language Oberon'. Soft
ware Practice and Experience, 18(7):671-690, 1988), or a
constrained flow of control (Mogul: et al: “The Packet Filter:
An Efficient Mechanism for User-Level Network Code'. In
Proc. 11th ACM Symposium on Operating Systems Prin
ciples, Austin, Tex., 1987), or by providing facilities like
garbage collection (McCarthy: “Recursive Functions of
Symbolic Expressions and Their Computation by Machine'.
In Artificial Intelligence. Quarterly Progress Report No. 53.
MIT Research Lab of Electronics, Cambridge, Mass., 1959).

Rapid detection is a critical ingredient of fast recovery. A
large fraction of recovery time, and therefore availability, is
the time required to detect failures and localize them well
enough to determine a recovery action (described for example
in Chen et al: “Path-Based Failure and Evolution Manage
ment. In Proc. 1st Symposium on Networked Systems
Design and Implementation, San Francisco, Calif., 2004). A
recent study, (Oppenheimer et al: “Why do Internet Services
Fail, and What Canbe Done About It?. In Proc. 4th USENIX
Symposium on Internet Technologies and Systems, Seattle,
Wash., 2003) found that earlier detection might have miti
gated or avoided 65% of reported user-visible failures.

Checkpointing, (described for example in Wang, et al:
“Checkpointing and its Applications'. In Proc. 25th Interna
tional Symposium on Fault-Tolerant Computing, 1995;
Chandy and Ramamoorthy: “Rollback and Recovery Strate
gies for Computer Programs, IEEE Transactions on Com
puters, 21(6):546-556, June 1972; and Tuthill et al: “IRIX
Checkpoint and Restart Operation Guide', Silicon Graphics,
Inc., Mountain View, Calif., 1999), employs dynamic data
redundancy to create a believed-good Snapshot of a pro
gram's state and, in case of failure, return the program to that
believed-good State. An important challenge in checkpoint
based recovery is ensuring that the checkpoint is taken before
the state has actually been corrupted (described for example
in Whisnant, et al: “Experimental Evaluation of the REE
SIFT Environment for Spaceborne Applications”. In Proc.
International Conference on Dependable Systems and Net
works, Washington, D.C., 2002). Another challenge is decid
ing whether to checkpoint transparently, in which case recov
ery rarely Succeeds for generic applications (described for
example in Lowelletal: “Exploring Failure Transparency and
the Limits of Generic Recovery'. In Proc. 4th Symposium on
Operating Systems Design and Implementation, San Diego,
Calif., 2000), or non-transparently, in which case source code
modifications are required. In spite of these problems, check
pointing is a useful technique for making applications restart

10

15

25

30

35

40

45

50

55

60

65

8
able, and is sometimes used with a watchdog daemon process
to provide fault tolerance for long-running UNIX programs.

Additional techniques to minimize, detect, and recover
from failures have been investigated. However, each of the
above systems, while beneficial to some extent, generally
assume unrealistic fault models (for example, they may
assume that failures occur according to well-behaved, trac
table probability distributions). If it is possible to state invari
ants about a system's failure behavior, and make Such behav
ior more predictable, then the larger range of failures can be
coerced into a smaller universe of failures which in turn is
governed by well-understood rules. This is the area that the
present invention is designed to address.
Introduction to Failure Casting

Disclosed herein is a system and method for managing
failures in a computer system using failure casting. In accor
dance with an embodiment, the system comprises a system
manager and a failure casting logic that uses a failure casting
hierarchy to cast failures of one type into failures of another
type. In doing this, the system allows a large set of incidents,
problems, or failures to be cast into a small set of failures,
which the system knows how to handle. In accordance with a
particular embodiment, failures can be cast from a category of
failure that is considered non-reboot-curable into a category
of failure that is considered reboot-curable (or simply “cur
able'). If a failure is reboot-curable then rebooting the system
will cure the problem. In some embodiments, the range of
failures can be arranged in a hierarchy of parent and child
failure scenarios. Failure casting then places the failure into
the hierarchy, and allows a system manager to determine the
appropriate action to be taken. When the failure hierarchy and
the failure logic is incorporated into a bootup Script or an
initialization script, for example when used with a disk array,
network cluster, or other component, then the system allows
for the failure casting to take place at boot time. As each
component in a system is made reboot-curable, then a wide
variety of system failures can be handled simply by rebooting
the system. Specific casting techniques are described herein
for use with different hardware or software components, for
example for disk failures, out-of-memory situations, and even
higher-level software bugs. Examples provided herein also
include hardware, and reboot-specific methods that can be
applied to disk failures and to failures within clusters of
databases.

It will also be apparent from the description provided
herein that the system can even be used to handle failures that
were hitherto unforeseen (indeed it is impossible in a complex
system to foresee every possible type of failure or error).
Using embodiments of the present invention, unforeseeable
or unknown failures can be cast into foreseeable or known
failures based on the failure symptoms, rather than any under
lying cause. The failure can then be dealt with appropriately
as a known type of failure. When this technique is applied to
the particular embodiment of reboot-curable failure casting,
then the system can attempt to cure the failure by rebooting or
Some other action.

Traditional recovery code techniques deal with exceptional
situations, and are expected to run flawlessly. Unfortunately,
exceptional situations are difficult to handle, occur seldom,
and are difficult to simulate during development. This often
leads to unreliable recovery code. However, in accordance
with an embodiment, failure casting can be performed at start
time or boot up; thus, when a system employs failure casting
to cast failures into reboots or restarts, then the recovery code
is exercised every time the system starts up, which ultimately
improves system reliability.

US 8,359,495 B2
9

In accordance with various embodiments, the system can
use an analogy to type conversion (or type casting) to treat the
symptoms of one failure as if they were the symptoms of a
more general class of failure; or to change the characteristics
of a first failure to the characteristics of a second failure.
Failure casting can then connect failure symptoms to the way
the recovery code is written, rather than connecting pre-pro
grammed recovery code to what might go wrong. This is one
of the distinguishing aspects of failure casting over traditional
recovery techniques.
The concept of type conversion or type casting is familiar

to computer programmers, and is often used to take advantage
of certain types of hierarchy. In some computer programming
languages it is common to convert values of one type into
values of another type in order to manipulate the correspond
ing variable alternately as a variable of the first type or the
second type. For example, converting an integer from a little
endian to a big-endian representation in the C language can
use typecasting to treat that integer as an array of bytes that
can be individually manipulated (instead of as an integer,
which cannot be modified at the byte level), as shown in
listing 1:

Listing 1

unsigned char aux;
unsigned chara war; if war is an array

?t of bytes
if cast var into an integer,
if and then assign a
fi little-endian integer to it

(int) var = 123456

// swap 1 and 4 byte
aux = varO: if war is now used as an

if array, not an integer
varO = var3);
var3 = aux;
// swap 2" and
aux = var1;

3 byte
if war is now used as an
if array, not an integer

var1 = var2:
var2 = aux;
if print out the big-endian version of the integer
printf("%u', (int) var); // 'var' is now used as an

if integer, not an array

In accordance with an embodiment, the system applies
analogous casting techniques to failures (instead of vari
ables). As described herein, in failure casting a multitude of
failures can be viewed as being instantiations of a higher-level
type of failure. The combination of all of the various failure
types thus comprise a failure hierarchy. Using the different
levels of the failure hierarchy, a child failure type can be cast
into a parent failure type. The developer need then only write
recovery code for the parent failure type. In the same manner
as the above example in which var” (initially declared as an
array of bytes) could be treated as an integer, by virtue of
typecasting, failure casting allows failures of one (potentially
unknown) type to be treated (for the purpose of recovery) as
failures of a different type.
One of the benefits of failure casting is its ability to handle

unknown problems. For example, in a particular systema first
failure type A may be well understood by the systems design
ers, and may have well-tested recovery code in place, whereas
a second failure type B may be completely unforeseen or
unanticipated by the system designers, and thus there is no
known way for the system to handle it. When failure casting
is used, the latter (and hitherto unknown) failure type B can be

10

15

25

30

35

40

45

50

55

60

65

10
cast into the former failure type A and can be handled appro
priately using A's recovery code, as long as B is in some
manner compatible with A.

Failure casting also minimizes runtime overhead. For
example, even if the latter failure type B could have been
foreseen by the system designers, due to systemic interactions
it may be much more efficient at runtime to resolve the A type
of failure than to try to resolve a B type failure in isolation. In
a high availability system it is of paramount importance that
the system be kept running, that recovery be as fast as pos
sible, and that data losses be minimized. This can occasion
ally mean applying a larger-scope recovery when a finer-grain
recovery might actually be the better choice in Some sense;
but have a lower chance of success. For example, when failure
casting is applied to reboot-curable failures, then this might
mean choosing to reboot the system to cure aparticular failure
type, even though that failure type could possibly have been
cured by means other than a reboot. Although the reboot
seems quite drastic, it can have a greater chance of overall
SCCCSS,

An additional benefit of failure casting is reduction of
system or software development time. It may be quicker to
design and write a recovery procedure for type A failures, and
then cast as many failures (including failure type B) into that
failure type where they can be handled using A-type routines,
rather than design and write recovery procedures for each of
the individual failure types. For the software developer this
improves their products time-to-market, because it reduces
overall development time and testing time.

Failure casting also enables a form of runtime diagnosis,
which has heretofore not been possible using traditional tech
niques. By casting failure type B into type A, the system can
“explore' the possibility that a failure type B might be cured
by A's recovery procedure. If it does resolve the problems,
then the error has been handled very efficiently. If it does not
resolve the problems, then at least the system now knows
more about failure type B than it did before, namely that it
cannot be cured by A's recovery routines (i.e., that type B is
incompatible with type A). The system now has the option of
trying other types of recovery (for example, casting failure
type B into another type C), or can resort to a recursive
expansion of recovery scope, as described in further detail
below. The net effect of this exploration is that over time the
system can learn more about different failure types, and dif
ferent ways to handle those failure types. The system can also
record this information for future use and for better runtime
diagnosis.

Since the recovery procedure for a failure type A may be
more predictable than that for failure type B (for example,
because the system knows exactly how long an A recovery
will take, or because the system knows that an A-type failure
recovery will not affect some other process that is running at
the same time that could lead to race conditions), failure
casting can make the whole recovery process more predict
able.
Casting Failures into Reboot-Curable Failures

Depending on the particular embodiment used, failure
casting can be performed in reaction to observed symptoms
(i.e., the system notices symptoms of a failure of type B, and
explicitly decides to treat or cast that failure as being of type
A). Alternatively, the failure casting can be performed at
recovery time (i.e., applying type A's recovery routines at
recovery time to treat failure type B which implies a casting of
one failure type into another). These two scenarios would be
one-and-the-same if there werent really two separate steps in
a typical recovery process: (a) the action performed by the
system administrator, for example the making of an affirma

US 8,359,495 B2
11

tive decision to reboot a node; and (b) the action performed by
the system or component to reinstate itself into an operational
state, for example, by allowing the system to scan the SCSI
bus and to de-configure any disks it determines are bad.

Both of these actions are part of the typical system recovery
process. However, in accordance with a particular embodi
ment, failure casting can be used to cast a failure type that
would typically requirefine-grained investigation and correc
tion, into a failure type that can be cured by rebooting the
system. In these embodiments failure casting can be incorpo
rated into the first step, wherein the failure is treated as one
that can be cured by rebooting. Of course, the mere rebooting
of the system does not cure the failure, but rather it is the
expected recovery procedure that will be run during the sub
sequent (re)startup that should cure the failure. In other
words, the reboot is a cure for the failure only if done in
anticipation of apost-reboot recovery process that will handle
the observed failure. Thus, there is a tight connection between
the failure hierarchy and the recovery procedures that are
already in place. With this connection in mind, the system
administrator can say “I will treat this failure type B as one of
type A, because I expect A's recovery procedure to make B go
away”.

In a traditional system there is a mapping between Symp
toms and recovery procedures (sometimes the mapping is
explicit, and other times implicit). When using failure casting,
this mapping is made simpler, because the recovery proce
dures are primarily designed to “reboot something” (which in
turn can be a component, a node, or an entire system, etc.).
Since there is only one mechanism, this technique allows the
recovery “logic' to be much simplified; and also enables a
different approach to recovery code development. For
example, consider the example of a computer system that
uses a functional striped-RAID array of disks (RAID-0); if
one of the disks fails, the computer cannot continue operating.
However, if the computer's startup script checks each disk
upon startup and automatically assembles a RAID-0 array
using all available non-faulty disks, then rebooting the com
puter should always bring it up in a configuration that has a
RAID-0 available (albeit with potentially fewer disks in the
array than had existed prior to the reboot). In this type of
embodiment, the failure-casting version of the startup script
does not assume it is starting fresh, but rather assumes it is
assembling a system from the currently available disks. This
allows the script to correctly handle the regular startup sce
nario, in addition to handling scenarios that include multiple
disk-failures.
As described above, the possible failure types (both known

and unknown) can be represented in a failure hierarchy. In
accordance with some embodiments the failure hierarchy can
have many possible parents and children. In accordance with
those embodiments wherein the recovery code is designed to
act on reboot and restart, then the failure hierarchy defines the
ultimate parents as being one of only two types: (a) reboot
curable (restart-curable) failures, and (b) non-reboot-curable
(non-restart curable) failures.

Failures that fall into the first category of being reboot
curable are those failures that can probably be resolved by
simply rebooting or restarting a system, component, or a
Subset of the system component. These system components
may include, for example, database processes, disk drives, or
system nodes in a cluster. When a failure type is reboot
curable, then the system can have some prior knowledge that
these failure types can be addressed in this manner. In some
embodiments, unknown failure types can also be explicitly or
implicitly grouped into the reboot curable category.

10

15

25

30

35

40

45

50

55

60

65

12
Failures that fall into the category of being non-reboot

curable (i.e. failure types that are not reboot curable) are those
failures that require some other or additional form of inter
vention, and can probably not be resolved by simply reboot
ing or restarting. For example, the additional form of inter
vention may be the need for a system administrator to fix
Some portion of the system hardware, or to otherwise inter
Vene to fix the problem, or simply marking the computer as
failed, etc. When a failure type is non-reboot-curable, then the
system can again have some prior knowledge that these fail
ure types can be addressed in this manner. In some embodi
ments, unknown failure types can also be explicitly or implic
itly grouped into the non-reboot-curable category.
By applying the techniques described herein, failure cast

ing enables systems to coerce the universe of failures into
essentially a single type of failure, that of the reboot-curable
type, which can be addressed easily by restarting or rebooting
the system, or a component of the system. Systems can also be
designed so that what would normally be regarded as non
reboot-curable failures (e.g., a disk failure) can be treated as
reboot-curable. In accordance with some embodiments, the
system can then include additional automated procedures that
invoke various forms of restarting to perform recovery on the
failed components.
As also described herein, with any system or Software, no

matter how well designed, some failure types will be
unknown throughout the development and deployment pro
cess, and may only appear much later during daily use. Since
the failure hierarchy can include many subtrees or branches
beneath the parent nodes, these Subtrees can comprise many
failures, some of which have not been anticipated; yet each of
the failures in the subtree manifest in the same way to the
outside world (i.e., their symptoms are similar). One example
of this might be users not being able to connect to a data
base—the symptoms of being unable to connect to the data
base can have many underlying causes. The grouping of fail
ures allows the system to cast a failure “up the tree' into the
root of that subtree, and say “this is a failure that exhibits
symptom X, so I will treat the failure in the manner I treat all
Such failures, namely by rebooting. It may not be known
exactly which of the possible failures in the subtree has
occurred; since from the system's perspective only the over
riding symptom is observed. Traditionally, one would have to
perform diagnosis at this point, (i.e., work down the Subtree
and try to identify which failure exactly has occurred, so that
the proper recovery procedure is then put in place). Instead, in
accordance with an embodiment, the failure casting approach
connects recovery procedures to symptoms (e.g., “the disk is
unavailable'), rather than to actual details within the system
(e.g., “the disk controller channel has failed, or “the disk unit
is burnt out', or some other reason why that disk might be
unavailable).
As further described in the sections that follow, failure

casting can also be applied to specific failure scenarios, for
example hardware component failures, or failures within
clusters of databases. Failure casting provides significant
advantages over traditional methods, including simplifying
the recovery management process, and improving the
chances that the recovery will be correct. Simplifying the
universe of possible recovery procedures restricts the differ
ent failure choices, which allows the system administrator to
selectively focus on the more important failures. The net
result of using a failure casting approach is better system
reliability and higher system availability. In complex sys
tems, software application fault models can be simplified,
encouraging simpler recovery routines which have better
chances of providing the correct outcome. In particular, when

US 8,359,495 B2
13

the remedy is reduced to that of either (a) rebooting or (b) not
rebooting the system, the ability to fix failures quickly in
complex system is reduced to one of restarting the machine or
the system component.

The use of failure casting provides even greater benefits in
high-availability systems, which may have many thousands
of processor nodes, and for which the failure of a single node
is acceptable if that failure is quickly handled and compen
sated for. In these systems, because reboot-curable failure
casting can be used to cast what might be an otherwise
unknown failure into a node-level reboot, which is a failure
mode well-understood by the other nodes in the system. This
allows a single node among the thousands of nodes to be
quickly fixed by rebooting that failed node, without affecting
all of the other nodes in the system.
Failure Casting Applied to Computer Systems

FIG. 1 shows an embodiment of a computer system that
uses failure casting in accordance with an embodiment of the
invention. As shown in FIG. 1, the computer system 100
includes a system manager 102 and a failure casting logic
108. The failure casting logic can also include a failure cast
ing data 104, and a failure casting hierarchy 106. The failure
casting hierarchy is used to cast failures of one type into
failures of a parent type (with respect to the hierarchy). The
failure casting data can in Some embodiments specify addi
tional information and options that can be used during the
casting process. Applications 118, 120, 122, which can be
system components, Software applications, or in some
instances other entire computer systems or nodes, exhibit a
series of failures of different types. For example, as shown in
FIG. 1, the failures indicated as failure type A 124, failure
type B 126, and failure type C 128, represent some of the
different failures which may or may not occur within the
computer system at different points in time. In accordance
with an embodiment, as the applications or system compo
nents exhibit failures the failure casting logic uses the failure
casting hierarchy (or simply, the failure hierarchy) to cast
each of the failures into a different failure type X 130. The
system manager then determines, based on this new type of
failure, what the appropriate system action 140 should be.
As further described below, in some embodiments the fail

ure casting system can be used to cast failures of one type into
failures of another type, or more generally to cast a plurality
of failure types into a plurality of other failure types. In a
particular embodiment the failure casting is performed to cast
failures into one of only two types: those failures that are
reboot-curable, and those failures that are non-reboot-cur
able. When the plurality of failure types are reduced to the
concept of reboot-curable or non-reboot-curable, then the
system action is likewise reduced to one of either rebooting or
not rebooting the computer system, (although in the latter
case can also include additional or alternative actions, includ
ing actions that might normally have been taken by a system
administrator in the absence of any failure casting Solution).

Failure casting can be used to address failures that occurat
different times and at different locations in the computer
system or process, and can also address failures that range
from accidental to deliberate, permanent or transient, previ
ously known and understood or completely novel in origina
tion. FIG. 2 illustrates the typical timeline for failures that
may occur in computer systems 160. For example, develop
ment failures may occur when bugs are introduced into the
original software code 162. Similarly, failures may occur
during deployment-time, for example when deploying a soft
ware application to the targeted environment, or when a mis
match occurs between the software and the hardware on the
deployed system 164. Operational failures 166 can occur

10

15

25

30

35

40

45

50

55

60

65

14
whenever the system administrator fails to upgrade the
machine properly or follow an appropriate maintenance pro
cedure. Even if the testing of all paths through a program was
possible, the testing of all theoretically possible execution
environments and their ensuing interactions would not.
Although many potential failures exist in the Software appli
cation from the moment that application was coded, failures
can also crop up for the first time long after the program has
been developed, deployed, and in operation for many years,
due to changes and advances in the operating environment
within which the application runs.
Classes of Failures in Computer Systems

While failures can occur at different times in the system
development process, they can also occur at different loca
tions in the system. FIG. 3 illustrates the different layers at
which failures can occur in computer systems 170. For
example, failures may occur in the underlying environment
(e.g., a network failure or a power outage) 172. Failures may
also occur in the system hardware, for example when a com
puter disk fails, or if the processor fails 174. Operating system
failures may include kernel panics, or a lack of available
system processes 176. Libraries and third party software are
also a common cause of computer failures, including, for
example, failures in the library or within external modules
178. Sometimes application failures 180 can cause the entire
system to fail, for example if a deadlock occurs in a Software
application. Operator failures such as data entry errors are
another common cause of system failures 182.

FIG. 4 illustrates that computer system failures may be due
to intentional or unintentional causes. For example, failures
that are accidental or unintentional may be due to the negli
gence of the system administrator or operator 192, or simply
an oversight by a software developer. Failures may also be
intentional or malicious in nature, for example through the
use of a virus, Trojan horse, or other software that is intended
to damage the system or cause a component of the system to
fail 194.

FIG. 5 illustrates that some failures in computer systems
can and should be deliberately addressed by affirmative
actions, while some failures disappear of their own accord.
For example, permanent failures 202 which cannot be
removed without direct human assistance include failed hard
ware. Some failures can be removed automatically by the
software through special intervention 204, for example by
scanning and fixing corrupt data files, or by defragmenting
fragmented storage space. Transient failures 206 can be
removed by normal operation of the system, for example
when leaked memory caused by unreleased process locks is
returned to the heap following a process restart. Some tran
sient faults can also disappear by themselves with no inter
vention by a user or the system, for example the case of a disk
overheating and then cooling, or flash crowds of users which
eventually dissipate 208.
Failure Casting Approach to Handling Failures
The previous sections generally described how failures of

different types can be cast along different axes, for example a
failure type B can be cast into a failure type A, or a RAID disk
failure can be cast into a reboot-curable failure. The following
sections describe how the system performs the actual failure
casting.

In accordance with an embodiment, and as shown in FIG.
1, the computer system 100 includes a system manager 102
and a failure casting logic 108, which in turn comprises a
failure casting hierarchy 106, and an optional failure casting
data 104. The failure casting hierarchy is used to cast “child'
failures into failures of a “parent type. (The terms “child'
and “parent are used here with respect to the hierarchy, in

US 8,359,495 B2
15

that one failure type in the hierarchy can be related to another
failure type in the hierarchy through some form of parent
child relationship; however, in real-life systems, it is possible
for the failure types to not have any direct relationship at all).
The failure casting data is optional and can in Some embodi
ments specify additional information and options to be used
during the casting process. As the applications or system
components exhibit failures, the failure casting logic uses the
failure casting hierarchy to cast each of the failures into a
different failure type. The system manager then determines,
based on this new type of failure, what the appropriate system
action should be. In accordance with an embodiment the
system recognizes potential failures by their symptoms. Their
symptoms are then used to determine a place within the
hierarchy. Thus, the system can recognize a (child) failure
having certain symptoms, but can use the failure hierarchy to
determine that the failure should be handled using the method
approved for its (parent) failure.

In some embodiments the failure casting system can be
used to cast failures of a first type into failures of a second
type. In a particular embodiment the failure casting is per
formed to cast failures into one of two possible types (i.e., one
of two possible parents): those that are reboot-curable, and
those that are not reboot-curable. Each of the failure catego
ries described above with respect to FIG. 2 through FIG. 5, in
addition to hitherto unknown categories, can be addressed to
Some extent using failure casting.

FIG. 6 shows an embodiment of a failure casting hierarchy
in accordance with an embodiment of the invention. The
failures casting hierarchy is used by the system (and in par
ticular, the failure casting logic) to cast “child' failures into
failures of a “parent type. As described above, in this context
the terms “child' and “parent are used with respect to the
hierarchy, in that one failure type in the hierarchy can be
related to another failure type in the hierarchy, and are not
used to reflect the relationship of the underlying failures in the
real-life system itself. As shown in FIG. 6, all of the failures
that may exist in the computer system, and which have been
classified in the failure hierarchy 221, proceed or branch off
from a global parent failure 222. Beneath this global parent
there can be different failure branches. For example, FIG. 6
shows two failure branches, including failure A 224, and
failure B 226. (In a particular embodiment that allows for
reboot-curable failure casting, type A can be “reboot-curable'
and type B can be “non-reboot-curable'). Each of the
branches can themselves have further branches (or sub
branches), which correspond to additional types of failure.
For example as shown in FIG. 6, failure A includes further
branches 236, 230. Similarly failure B 226 includes sub
branches 232 and 234. The failures within a branch are typi
cally related to one another, perhaps being related to a com
mon system component but having a different severity,
although failures within a branch can also be completely
different from one another other than the fact that they ulti
mately share the same parent.

It will be evident that while displayed pictorially in FIG. 6
for ease of understanding, the hierarchy need not be stored or
used in Such a manner. The hierarchy can actually be implicit,
or alternatively can be stored in the system in any number of
ways, including for example as a linked list or as a tree
structure, as a set of objects, or as a database table, or as some
otherform of data storage. In particular, as described herein in
one embodiment the failure hierarchy can be stored as part of
a startup script, initialization file or initialization Script, which
identifies failures at start up or boot time and allows the
failures to be cast to a higher type of failure in the hierarchy
during the boot or start-up process. The ability to cast failures

10

15

25

30

35

40

45

50

55

60

65

16
at start-up is particularly important in scenarios in which the
failure type includes reboot-curable type failures and non
reboot-curable type failures, since the reboot-curable type of
failure casting benefits most from performing the failure cast
ing during the actual restart process.

FIG. 7 illustrates an embodiment of the failure casting
process that divides failures into two types of action. As
shown in FIG. 7, the system includes a system manager 246
and a failure casting logic 240. As before, the failure casting
logic includes a failure casting hierarchy 244 and a failure
casting data 242. In accordance with this particular embodi
ment, as failures are observed by the failure casting logic,
including in this example observing failure type A 124, type
B 126 and type C128, the failure casting logic uses the failure
casting hierarchy to divide the failures into one of two types:
a type X 260 and a type Y 262. In accordance with this
embodiment, the system manager knows to handle failures of
type Xby formulating 261, and performing a first action 268,
and also knows that failures of type Y should be handled by
formulating 263, and performing a second, different action
269. This allows the system manager to take appropriate
action on the system component that has failed.

It will be evident that while FIG. 7 illustrates failures being
observed by the failure casting logic, in other embodiments
the failure casting logic can be any logic designed to monitor
the state of the system and detect when failures occur. This
detection can be active and run continuously during operation
of the computer system, detecting failures in real-time. The
detection can also be somewhat passive, initiated only at
startup through the use of a startup or initialization Script, and
determining failures that are present at that particular moment
in time.
General Failure Casting Technique

FIG. 8 illustrates a flow chart of a general failure casting
method in accordance with an embodiment of the invention.
As shown in FIG. 8, in a first step 280, the computer system
application or component experiences a failure of a first type.
In step 282, the failure is received or detected by the failure
casting logic, or by a logical component or feature of the
system which has been designed or coded to detect and cast
failures. In accordance with Some embodiments, the failure is
received or detected at start-up using a bootup or initialization
script. In accordance with other embodiments, the failures
can be detected during run time by an appropriate detection
logic that recognizes any change in the system state when a
failure occurs. Whether detected at startup or during opera
tion the failures once detected can be handled in the same
manner. In step 284, the failure casting logic uses the failure
hierarchy to cast the failures into a second or another type of
failure. In step 286, the system manager, or a logical compo
nent or feature of the system which has been designed to
manage the system then acts on the failure by addressing the
failure as if it was a failure of the second type, and formulating
an appropriate action. Although the system can be designed to
map any size set of possible failure types to any size set of
other failure types, in most instances the goal is to map a
larger set of possible failure types to a smaller set of failure
types that the system knows how to handle. Since the system
is only required to maintain and understand recovery proce
dures for a small set of failure types, this allows the system to
operate more efficiently in the case of a failure. In step 290,
the action is performed by the system manager on the failed
computer system or component.
Reboot-Curable Failure Casting Approach
As described above, failure casting can be used to cast

failures of one type into failures of another type. In a particu
lar embodiment the failure casting is performed to cast fail

US 8,359,495 B2
17

ures into one of only two types: those failures that are reboot
curable, and those failures that are non-reboot-curable. When
the plurality of failure types are reduced to the concept of
reboot-curable or non-reboot-curable, then the system action
is likewise reduced to one of either rebooting or not rebooting
the computer system. FIG. 9 shows an embodiment of a
failure casting hierarchy 298 that includes reboot-curable and
non-reboot-curable branches in accordance with an embodi
ment of the invention. As shown in FIG. 9, the hierarchy
includes a parent of all failures recognized by the system 300.
The difference between the hierarchy shown in FIG.9 and the
generic hierarchy described earlier is that this hierarchy com
prises only two primary branches, including a reboot-curable
branch 302, and a non-reboot-curable branch 304. Beneath
the non-reboot curable branch, the system can list failures that
it recognizes, but which are considered to be not reboot cur
able, or non-reboot-curable. Examples of these types of fail
ures include power Supply failures, and corrupt boot sectors,
and any other type of failure that would prevent a computer or
a node from Successfully restarting even if that computer or
node was rebooted. Reboot-curable failures are listed beneath
the reboot curable branch. Specific examples of reboot cur
able failures include when the system has run out of pro
cesses, or a program has run out of memory, or has corrupt
in-memory data structures, or when a single disk has failed in
a striped-RAID array 306 or any other failure that the com
puter system recognizes as reboot-curable. Reboot-curable
failures are those failures for which rebooting the system (and
in Some instances performing an additional action, such as
removing the disk drive from a list of healthy drives) should
cure the failure.
As described above, although the failure casting hierarchy

is shown hereinas an actual hierarchy, the hierarchy itself can
be stored in any form data storage. As further described
above, the failure casting hierarchy can be included within a
start-up Script, boot Script, or initialization Script, so that the
recovery of the failure is performed at start-up (of the node,
process, or thread, etc.), which in turn allows the failure to be
cast into a reboot-curable failure. In these embodiments,
whenever the system is caused to reboot, the script is run, and
the particular arrangement of failure type settings within the
Script allows failure casting to take place at that point in time.
When the system comes back up again, and barring any other
combination of errors, then any reboot-curable failures that
provoked the need to reboot in the first place, should now be
fixed.

FIG. 10 illustrates an embodiment of the failure casting
process that divides failures into reboot curable and non
reboot curable failures, in accordance with an embodiment of
the invention. As shown in FIG. 10, the system includes a
system manager 246 and a failure casting logic 240. Again,
the system manager and failure casting logic can be logical
components or features of the system which have been
designed or coded to perform those tasks. Similarly to the
embodiment described above, the failure casting logic
includes a failure casting hierarchy 244 and an optional fail
ure casting data 242. As failures are observed or detected by
the failure casting logic, including failure type A, type B and
type C, the failure casting logic uses the failure casting hier
archy to divide the failures into one of two types: a type X260
and a type Y 262. In accordance with this particular embodi
ment, the system manager further knows that failures of type
X are reboot curable failures 264, while failures of type Y are
non-reboot-curable failures 266. This allows the system man
ager to take appropriate action on the system component that
has failed. For example in FIG. 7, the system manager can
address the reboot curable failure by rebooting the system

10

15

25

30

35

40

45

50

55

60

65

18
component 268. For those failures that are not reboot-curable,
the system manager can take an alternative system action 270.
The alternative system action in some embodiments can
include notifying a human operator, rebooting the computer
system, or marking the computer system as failed, or some
alternate procedure or combination of procedures.
As similarly discussed above with respect to FIG. 7, it will

be evident that while FIG. 10 also illustrates failures being
observed by the failure casting logic, in other embodiments
the failure casting logic can be any logic designed to monitor
the state of the system and detect when failures occur. The
failure casting logic or detection logic can be active and run
continuously during operation of the computer system, or it
can be initiated only at Startup through the use of a startup or
initialization script, and determine failures that are present at
that particular moment in time. The failure casting logic can
also be embedded as additional functionality into the operat
ing system itself, or in the parsing of the initialization Script.
This latter embodiment is particularly useful when the system
is designed to perform failure casting at boot time, checking
the health of system components, and acting accordingly,
since it allows the system to Substantially self-check and
self-correct itself each time it is booted. The combination of
both health-checking and failure casting at start-up time also
allows for “reboot-curing, in that the system can be reboo
ted, and the administrator can be assured that failures which
are understood by the system will be handled in an appropri
ate way, without need for further investigation or input from
the administrator.
Reboot-Curable Failure Casting Technique

FIG. 11 illustrates a flow chart of a failure casting method
in accordance with an embodiment of the invention. As
shown in FIG. 11, in step 320, the computer system applica
tion or component experiences a failure. In step 324, the
failures are observed or detected by the failure detection
logic. As similarly described above the failures can actually
be detected at start-up through the use of a start-up or initial
ization Script (for example, if a disk has failed, the startup
script will not see it as present). In step 326, the failure
detection logic uses failure casting to cast the failure into one
of reboot curable or non-reboot curable failure type. In step
328 if the failure is considered reboot-curable, then the sys
tem manager, or a logical component or feature of the system
which has been designed to manage the system, instructs the
application component or system component to reboot. If in
step 330, the failure is considered non-reboot-curable, then
the system manager must determine an alternative action to
take. This alternative action can include rebooting the system,
marking the component as failed, or another procedure or
combination of procedures.

Since in this embodiment, the system is only required to
maintain and understand a single type of recovery procedure
(i.e. reboot the system) for a particular set of failure types (i.e.
reboot curable failures), this allows the system to operate
quickly, and without further operator input, when a reboot
curable failure occurs.
Failure Logging and Detection

In accordance with one embodiment, failure detection is
performed by recording and/or logging events that occur
within the system, and by monitoring the progress of those
events. In this way the systems behavior can be implicitly
monitored. This information is then provided to the system
manager, so that the system manager can decide when a
failure has occurred and how best to handle it and/or cast it.
For example, in accordance with an embodiment, the system
uses five basic levels of logging:

US 8,359,495 B2
19

INFO for normal actions, whose presence indicates live
ness of a component. This can be considered a heartbeat type
ofevent; components record a message at this level when they
are about to commence input/output (I/O), or start up a pro
cess, or perform any task that constitutes making forward
progress from an application point of view;
WARN this is considered a suspicious event, or some

thing that might not have been intentional (for example, a
conversion exception during string construction);
ERROR this can be any clear error, but one that allows

the program to continue operating (for example, a query was
Submitted to a database process, but the response was mal
formed);
FATAL this type of error indicates that the system or

component cannot continue operating for whatever reason;
and
DEBUG this type of logging allows the system to pro

vide any additional contextual information about more-or
less exceptional events for offline debugging.

It will be evident that alternate levels of logging can be
used, or additional levels of logging, depending on the par
ticular embodiment and needs of the system. In accordance
with an embodiment, the system logs information during
runtime and at the following points: when starting/stopping a
program and/or a child program; before and after all network
and disk input/output; before and after any computer-inten
sive operation; whenever an error occurs (in which case the
system can also provide Sufficient context to debug the error
offline); and whenever an exception is about to be thrown,
which is then also logged at the WARN level.

Heartbeats and progress counters can be employed to help
with the detection of failures. For example, the system man
ager can count the number of events logged by each activity
(i.e., by each process and/or node) in the system; one that
hasn’t made progress for a long period of time becomes
Suspect, and may be deemed failed. In those embodiments
that understand reboot-curable failures, this failure can be
cast into a reboot-curable failure and result in rebooting the
failed component, or the entire system. For example, in accor
dance with an embodiment, if a node in a cluster does not log
any INFO events for a long time, then that node is deemed
failed, and is thus subject to reboot. If the node ultimately
recovers from the reboot, then the unknown failure in the
node was successfully cast into a reboot-curable failure.

Another type of progress counter that can be used is a
watchdog timer. A watchdog timer is a process by which the
system manager counts the number of events logged by each
activity in the system; one that hasn’t made progress for a
long time similarly becomes Suspect and Subject to failure
casting. Again, in those embodiments that understand reboot
curable failures, the failure casting and failure handling may
include rebooting the process or node responsible for that
activity.
Failure Casting Applied to RAID Arrays
The above-described failure casting techniques can also be

used to manage failures in a complex computer system,
including, for example, a system that includes a RAID or
similar array with multiple disk drives and multiple potential
points of failure. In some embodiments reboot-curable failure
casting can also be used each time the system is initiated,
switched on, or is forced to reboot.
The distribution of data across multiple disks using a tech

nique such as Redundant Array of Inexpensive Disks (RAID)
can be managed by either a dedicated hardware component,
or by software programming. Additionally, hybrid RAID
environments exist that are partially Software-based and par
tially hardware-based. A typical hardware implementation of

10

15

25

30

35

40

45

50

55

60

65

20
RAID requires a special-purpose RAID controller. The con
troller links to the host computer, handles the management of
the disks, or the drives and performs parity calculations.
Hardware implementations also typically Support hot Swap
ping, allowing failed drives to be replaced while the system is
running. With a software RAID implementation, the operat
ing system manages the disks of the array through the normal
system disk-drive controller. With the increase in today's
computer processing speeds, software RAID can sometimes
operate faster than hardware RAID. Unlike hardware-based
implementations, in a software RAID environment there is no
additional layer between the disks and the operating system,
such as a hardware RAID controller. As such, in a software
RAID environment the operating system must talk directly to
the disks. RAID can be deployed in varying degrees of redun
dancy and performance settings, depending on the particular
needs of the system. A RAID-0 array (sometimes referred to
as a “striped volume’) splits data evenly across two or more
disks, with no parity information for redundancy. As such,
RAID-0 is typically used to increase performance, rather than
to improve data safety, and its performance benefits are a
primary reason that RAID-0 is commonly used in large enter
prise-scale systems. However, since data is shared between
disks without redundancy, the loss of one disk results in data
loss, and disks cannot be swapped out as they might for
example in a RAID-5 setup. This can cause particular prob
lems in software RAID-0 arrays, and in the enterprise systems
that use RAID-0, because when a disk fails it can cause the
system to freeze or to hang.

In many instances, the system will determine a failure
during runtime when a disk-accessing application is running,
tries to perform an operation on the disk, and fails. The
operating system's event log daemon will additionally recog
nize the I/O error on that particular disk, and the system
manager will be notified. The system manager corroborates
these two events and decides that a disk is malfunctioning.
The system manager then reboots the entire hardware node.
Normally, disks are checked using a combination of BIOS
start-up and Power-On Self Test (POST) routines, together
with specialized boot-up protocols (such as BOOTP) to
obtaina bootloader, which in turn loads and executes a kernel,
which then uses its own configuration files to re-establish the
RAID array. The problem is, ifa disk has failed, the operating
system will become stuck attempting to reconstruct the RAID
array. In accordance with an embodiment, if failure casting is
used, then once the node is back up and running, the failed
disk is automatically deconfigured, and the node uses only the
remaining disks to construct a RAID-0 array and to (re)
populate the array with data.

FIG. 12 illustrates a system in accordance with an embodi
ment that applies failure casting techniques to a Software
RAID-0 array as may be used in a computer system or an
enterprise system. As shown in FIG. 12, the computer system
includes a Software program 342 that is responsible for man
aging access to the RAID array360. The system also includes
a system manager 344, a failure casting logic 346, and an
operating system348. The failure casting logic itself includes
a failure casting hierarchy 356 and an optional failure casting
data 350. In accordance with an embodiment, the failure
casting data and the failure casting hierarchy can be included
in a start-up or initialization script 352. Together each of these
components are used at start-up or during the run-time of the
system to determine the health of the RAID array and to cast
failures that may occur into reboot curable or non-reboot
failures.
As shown by way of example in FIG. 12, the RAID array

can include four disks 362,364, 366,368. (It will be evident

US 8,359,495 B2
21

that other numbers and types of disks can be used depending
on the particular embodiment or implementation). If after a
period of time T367, one of the disks fails, here indicated by
the “X” symbol over the failed drive, then the system informs
370 the failure casting logic of the failure, or alternatively the
failure casting logic observes the failure. As described above,
the system manager and failure casting logic can be logical
components or features of the system which have been
designed or coded to perform these tasks. Once the failure has
been detected, the system can perform a reboot 380. In those
embodiments that embed the failure casting hierarchy in a
start-up script, the system can cast the failure into one that is
repaired on reboot and the system can then perform normally
and repopulate the data on the RAID-0 array (e.g., from a
backup node), but excluding 382 the failed disk. In this way,
the computer system can have maximum up-time, and fail
ures can be handled quickly and simply by rebooting the
computer.
The above technique can be further applied to RAID-based

system that use data replication. With replication, the content
of a particular set of data can be found on more than one node,
and any one of those nodes can be used to answer a query. In
accordance with an embodiment, the standard startup or ini
tialization script used in the system can be augmented with a
new initialization script that, upon every startup (regardless of
whether a failure has occurred or not), performs the following
steps:

1. Scan the disk controller for all available disks. (For
example, in a SCSI system, the system can scan the SCSI
bus for all available disk devices).

2. For each disk, examine its partition table, and verify that
the partition table conforms to the one required by the
system. (Typically, there will be a set of partitions that
belong to one array (e.g., A1), a set of partitions that
belong to another array (e.g., A2), and so on).

3. For each partition that is expected to belong to a RAID
array, perform a health-check. (For example, on Linux
systems, a tool like mdadm can be used to check the
health of the disks and a tool like filisk to check the
partitions thereon).

4. Use the healthy partitions to construct arrays A1, A2, etc.
(If the healthy partitions do not include all original par
titions, then the newly-constructed arrays will have
inconsistent data).

5. Perform a filesystem check on each newly-constructed
array. Whichever array fails this check is most likely a
partially-reconstructed array (i.e., one or more partitions
are missing).

6. For each array whose filesystem check succeeds, verify
that the expected datafiles (i.e., the database files) are
correct. In accordance with an embodiment this includes
the substeps of:
6.1. Compute a checksum across each datafile.
6.2. Send the checksum to a checksum directory server
and Verify its correctness.

6.3. For any datafiles that fail the checksum test, delete
them and copy over a fresh version from one of the
replicas.

7. For each array whose filesystem check fails, reformat
that entire array, and then copy over fresh versions of the
required database files from their replicas.

When the above script is integrated into a system, it allows
the system to cure hard drive failures at boot time by restarting
the hardware node, since upon startup the bad disk will not
contribute healthy partitions because it will either: (a) fail the
BIOS check; or (b) the kernel will not list it as present on the

10

15

25

30

35

40

45

50

55

60

65

22
disk controller (SCSIbus); or (c) the partition table will not be
readable; or (d) the partition health check will fail.

In this manner the initialization script embodies the failure
casting hierarchy within the script itself, and when the script
is executed the system performs the role of failure casting
logic. Since the disk does not contribute healthy partitions, it
is implicitly deconfigured by the script. The node then recon
structs the datafiles it needs by receiving them from other
nodes in the cluster, where they have been replicated. Thus,
the effect of the restart-based cure is that the node may now
run slower (since the RAID-0 array now has one less disks,
which reduces its I/O throughput proportionally), but other
than that, from the end user's perspective there will be no
apparent change in the node's functionality.

There are cases in which the disk may pass all the checks
and still be configured into an array, despite it being faulty.
Failures can include lack of service, also known as a stopping
failure, for example, when the disk does not respond to que
ries; degraded service, for example, when operations take
much longer time than normal to complete; and deceptive
service, also known as Byzantine failure, in which a read
request returns a wrong answer. The initialization script
described above only handles the lack of service failure type.
To add support for the latter two, whenever such failure mode
is noticed by the application (through the use of timing
mechanisms, or checksums, or because it is experiencing the
same kind of problems over and over again from the same
disk), the failure detection logic or the system itself can
instruct the operating system to mark that particular disk as
faulty. As a result, on the next reboot, the disk will no longer
be part of the standard configuration. In this instance the
Script handles degraded service and deceptive service just as
it would handle a stopping failure. Various other disk failures
can be cast into reboot-curable failures by simply introducing
an additional step in the startup script of a cluster node.
Failure Casting Applied to Clusters
The above-described techniques can also be used to man

age failures within clusters of computers. As before, the
above sequence of steps can be applied during start-up to use
failure casting each time the system, or a node in the system,
is initiated or switched on.

Cluster failovers are particularly important since they often
exhibit Byzantine failures. Unlike “stopping failures', where
the system stops responding, a Byzantine failure is one in
which the system provides the wrong response to a query.
Byzantine failures are particularly pernicious, because they
are hard to detect, and thus propagate through a computer
system for a long time.

For example, if the output of one function is used as the
input to another, then small round-off errors in the first func
tion can produce much larger errors in the second. If the
output of the second function is then used as input into a third,
the problem can grow larger, until the output values are essen
tially worthless.

Byzantine failure-tolerant algorithms must cope with Such
failures and still satisfy the specifications of the problems
they are designed to solve. However, Byzantine failures are
particularly difficult to handle. In accordance with an
embodiment, failure casting can be used to cast Byzantine
failures into stopping failures, which can then be addressed
appropriately. Byzantine failures often occur after an initial
period of something appearing 'Suspect', for example the
node slowing down because it runs out of memory. If nothing
is done to address the Suspicious behavior, then after a period
of time the node may start inadvertently corrupting its data
structures. However, if in accordance with an embodiment,

US 8,359,495 B2
23

the system acts promptly with a reboot, it may prevent (which
is better than recovering from) a Byzantine failure.

It will be evident that using failure casting to tackle Byz
antine failures essentially makes the components in the sys
tem “fail-fast’, i.e., ones that are designed to immediately
report any growing failure or condition that is likely to lead to
a stopping failure. Distributed algorithms that run inclusters
can be greatly simplified when stopping failures and failure
casting is used. This approach is markedly different, for
example, from the Nagaraja approach described earlier,
which chooses to enforce an expected fault model by crashing
hardware nodes whenever something goes wrong. However,
in accordance with the present embodiment, the recovery
process is designed so that this type of "fault model enforce
ment” becomes possible.

FIG. 13 illustrates an embodiment of the invention that
applies failure casting techniques to a distributed database
running on a cluster. In accordance with an embodiment, a
global database can be structured as a collection of segments
or “child databases' running on a plurality of cluster nodes.
The entire set of data is partitioned into Smaller data seg
ments, and each child database manages one such segment.
Such a setup can be used for extremely large data storage
systems, of the order of many Terabytes. Large capacity data
storage systems are commonly used in enterprise systems,
and particularly in engineering, telecommunications, scien
tific, statistical, ecommerce, and other systems. As shown in
FIG. 13, the entire global database 388 can be distributed
across a set of nodes 390-418, arranged into child databases
390, 392, which can in turn have their own child databases
(394,396) and (404, 406,408) respectively, and so on. When
viewed together the child databases of a particular parent
collectively contain the same data as their parent, i.e. the
resulting segments represent a (recursive) partition of the
original data segment. A query across the entire database is
transformed into queries across the various segments or vari
ous child databases. Through replication, the content of a
particular segment of the database can be found on more than
one node, and any one of those nodes can be used to answer
a query over that particular segment. The system also main
tains a replica tree which is used to is used to decide how to
distribute the query across the various cluster nodes. When a
particular node fails, it is removed from the replica tree, so
that Subsequent queries will not see any of the failed nodes.

FIG. 14 illustrates a flowchart of a method for applying
failure casting techniques to a cluster. As shown in FIG. 14, in
step 420, the system receives a query request, or begins a
transaction, that is to be applied to the global database. In step
422, the system uses the replica tree to determine a list of
database nodes that provide a complete view of the global
database. In step 424, the system then prepares to apply the
query over the list of database nodes. In step 426, the system
determines whether all nodes are available. If there are no
failures in the nodes (step 428), then in step 430 the system
applies the query to the database nodes and return a result. If,
however in step 426, the system determines that any of the
nodes are unavailable (step 432), then in step 434 the system
removes the failed node from the list, and determines a new
set of nodes from the replica tree (i.e., it asks the system
manager for a new set of nodes with data segments. In the
example of processing a transaction, then for every node that
is in the new set, but was not in the old set, i.e., for every node
that has replaced a failed node the system (a) opens connec
tions to the node, (b) issues a begin transaction (with a trans
action identifier, Tid), (c) runs the query on that node, and (d)
issues end transaction (with the transaction identifier Tid) on
that node.

10

15

25

30

35

40

45

50

55

60

65

24
While the query is being answered, in step 436, the system

initiates failure casting. In step 438, the system reboots the
Failed Node, treating any failures in the node using failure
casting. In step 440, if the failed node comes back up, then it
can eventually be cycled back into the system and the repli
cation tree. If not, the node is eventually marked as dead.

Failures can keep occurring, but as long as the segment sets
provided by the system manager are correct, then the master
will eventually receive a complete reply to the database query.
End users have no knowledge that failures may have occurred
underneath. This designallows the system to cast a large class
of failures into node-level crashes/reboots, and still success
fully respond to a request for data from the database.
Failure Casting Applied Recursively
A difficult problem in managing failures is actually speci

fying a policy for automatic handling of recovery (for
example, what to do, when to do it, and in reaction to what
situation to do it). Using extensive implementation of failure
casting, a very simple failure management policy can be
provided: when something seems suspect, or operating
Strangely for a certain amount of time, then restart it. If that
doesn’t work, then restart a larger Subsystem that contains the
initial one. As described above, subtrees of the failure casting
hierarchy can consist of many failures, Some of which are not
even anticipated; yet, all these failures manifest in the same
way to the outside world (i.e., their symptoms are similar,
Such as users not being able to connect to the database). This
grouping of failures allows the system to cast “up the tree'
into the root of that subtree, and say “this is a failure that
exhibits symptom X, so I will treat it the way I treat all such
failures, namely by rebooting within the perimeter in which
that failure manifested’. Thus, recursive casting is the process
of repeatedly performing failure casting as one moves up
through the failure hierarchy, in response to the fact that the
previous failure cast and associated treatment did not cure the
observed problem.

For example, in a RAID-0 embodiment, the system may be
observing input/output errors on a disk, so it can cast this set
of symptoms to a “disk is unavailable' set of symptoms. If the
reconstruction of the RAID-0 is not successful, because none
of the disks are available (which may be the case if the
controller has failed), then the system can cast higher up to the
“no disk available' set of symptoms which is equivalated to
the “node is not available' set of symptoms. This now takes
the system into a node-level shutdown recovery scheme,
where the rest of the cluster is able to continue functioning
even in the absence of this node. In other embodiments it may
be desirable to cast from “a disk is unavailable' to “SCSI bus
is not available' or to “controller malfunction', in which case
it is still casting up the failure hierarchy (because the failure
hierarchy is defined by how we recover given a set of symp
toms), but it is not expanding the boundaries of the failure.
The important thing to note about recursive casting is that,
when a set of symptoms are cast to a failure type, it may
initially be wrong, and the actual failure is underneath a
different node in the failure hierarchy (i.e., in a different
Subtree). As the system progressively casts to nodes higher up
in the tree, it accounts for increasingly more subtrees, and
encompasses increasingly more possible failures. The net
effect is that larger numbers of failures, of all different levels
within the system, can be captured within the set of reboot
curable failures, and with Successive rebooting it is possible
to heal the system, without having to discern which failure
was the underlying cause of the symptoms.
The present invention can be conveniently implemented

using a conventional general purpose or a specialized digital
computer or microprocessor programmed according to the

US 8,359,495 B2
25

teachings of the present disclosure. Appropriate Software
coding can readily be prepared by skilled programmers based
on the teachings of the present disclosure, as will be apparent
to those skilled in the software art.

In some embodiments, the present invention includes a
computer program product which is a storage medium (me
dia) having instructions stored thereon/in which can be used
to program a computer to performany of the processes of the
present invention. The storage medium can include, but is not
limited to, any type of disk including floppy disks, optical
discs, DVDs, CD-ROMs, microdrive, and magneto-optical
disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs,
VRAMs, flash memory devices, magnetic or optical cards,
nanosystems (including molecular memory ICs), or any type
of media or device Suitable for storing instructions and/or
data.
The foregoing description of the present invention has been

provided for the purposes of illustration and description. It is
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
will be apparent to the practitioner skilled in the art. Particu
larly, while failure casting has been described above with
regard to the particular example of casting failures into
reboot-curable, or non-reboot-curable failures, it will be evi
dent that failure casting can generally be applied to casting
any type of failure into any other type of failure. For example,
failure casting can be used to cast certain types of failures into
reboot-curable failures, and to ignore all other failure types.
Failure casting can also be used to cast a group of many failure
types into a single failure type. Additional embodiments and
implementations will be evident to one skilled in the art. It
will also be evident that, while the embodiments of the sys
tems and methods described above are described in the con
text of disk arrays and clusters it will be evident that the
system and methods can be used with any type of computer
system components, hardware, or software. The embodi
ments were chosen and described in order to best explain the
principles of the invention and its practical application,
thereby enabling others skilled in the art to understand the
invention for various embodiments and with various modifi
cations that are Suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the
following claims and their equivalence.

What is claimed is:
1. A system for managing failures in a computer system

using failure casting, the computer system including an array
of disks, comprising:

one or more processors operable to provide a system man
ager that performs actions on the computer system to
address failures that occur within the computer system;

a failure casting logic that detects failures as they occur in
the computer system;

a failure casting hierarchy that defines a plurality of failures
that can occur within the computer system, and which is
used by the failure casting logic upon detecting the
occurrence of a failure to cast the failure from a first
failure type to a second failure type, wherein the second
failure type is then communicated to the system man
ager to allow the system manager to treat the failure as if
it were the second failure type:

wherein the failure casting hierarchy defines at least two
sets of failures, including a set of reboot-curable failures
and a set of non-reboot-curable failures, wherein the
reboot-curable failures are addressed by the system
manager by rebooting the computer system or compo
nent thereof that includes the failure;

10

15

25

30

35

40

45

50

55

60

65

26
wherein the failure casting logic and the failure casting

hierarchy are part of a script that detects the occurrence
of failures in the computer system and then casts the
failure into one of either a reboot-curable failure or
non-reboot-curable failure, wherein the script is
executed by the computer system when powered on:
wherein the script is used to address failures within the
array of disks at boot time by verifying the health of each
disk prior to adding a disk to the array; and

wherein the failure casting hierarchy in the Script includes
the set of non-reboot curable failures that are checked at
boot time, and if a disk, when added to the array, exhibits
a failure upon bootup within the set of non-reboot-cur
able failures, then the disk is not added to the array.

2. A method for managing failures in a computer system
using failure casting, the computer system including an array
of disks, comprising:

detecting the occurrence of failures in the computer sys
tem;

referring to a failure casting hierarchy that defines a plu
rality of failures that can occur within the computer
system;

using the failure casting hierarchy to cast the failure from a
first failure type to a second failure type:

communicating the second failure type to a system man
ager,

performing an action by the system manager on the com
puter system to address the failure including treating the
failure as if it were the second failure type, wherein the
failure casting hierarchy defines at least two sets of
failures, including a set of reboot-curable failures, and a
set of non-reboot-curable failures, and addressing the
reboot curable failures by the system manager by restart
ing the computer system or component thereof that
includes the failure, and wherein the failure casting logic
and the failure casting hierarchy are part of a script, and
detecting the occurrence of failures in the computer
system using the script and then casting the failure into
one of either a reboot-curable failure or non-reboot
curable failure, and executing the script by the computer
system when first powered on:

using the Script to address failures within the array of disks
at boot time by verifying the health of each disk prior to
adding a disk to the array; and

checking at boot time the failure casting hierarchy in the
script includes the set of non-reboot curable failures, and
not adding a disk to the array if the disk, when added to
the array, exhibits a failure upon bootup within the set of
nonreboot-curable failures.

3. The method of claim 2 wherein the computer system
comprises a cluster of nodes; a global database distributed
over the cluster of nodes; a script at each node that detects the
occurrence of failures in the node and casts some of the
failures into reboot-curable failures; and the method further
comprises: receiving a request by the system manager to
access the global database, and in response, upon Subse
quently detecting a failure of a node, causing the failed node
to reboot, and then applying the request to the remaining
nodes in the cluster.

4. A non-transient system readable medium, including
executable instructions stored thereon, which when executed
by a system having an array of disks, causes the system to
perform the following:

executing a script that detects the occurrence of a failure in
the computer system;

using a failure casting hierarchy within the Script to cast the
failure from a first failure type to a second failure type,

US 8,359,495 B2
27

different that the first failure type, and communicating
the second failure type to a system manager to allow the
system manager to treat the failure as if it was the second
failure type:

using the Script to address failures within the array of disks
at boot time by verifying the health of each disk prior to
adding a disk to the array; and

not including a disk in the array if the disk, when added to
the array, exhibits a failure upon bootup within a set of
non-reboot-curable failures; and

wherein the script defines at least two sets of failures,
including a set of reboot-curable failures and a set of
non-reboot-curable failures, and including addressing
the reboot-curable failures by restarting the system or
component thereof that includes the failure.

5. The non-transient system readable medium of claim 4
wherein the system further comprises:

a cluster of nodes;
a global database distributed over the cluster of nodes:
a script at each node that detects the occurrence of failures

in the node and casts some of the failures into reboot
curable failures; and
wherein the executable instructions when executed fur

ther cause:
receiving by the system a request to access the global

database,
upon Subsequently detecting a failure of a node, causing

the failed node to reboot, and
then applying the request to the remaining nodes in the

cluster.
6. A system for managing failures in a computer system

using failure
casting, the computer system including an array of disks,

comprising:
(i) one or more processors operable to provide a system
manager that performs actions on the computer sys
tem to address failures that occur within the computer
system;

(ii) a failure casting logic that detects failures as they
occur in the computer system;

(iii) a failure casting hierarchy that defines a plurality of
failures that can occur within the computer system,
and which is used by the failure casting logic upon
detecting the occurrence of a failure to cast the failure
from a first failure type to a second failure type,
wherein the second failure type is then communicated
to the system manager to allow the system manager to
treat the failure as if it were the second failure type:

10

15

25

30

35

40

28
(iv) wherein the failure casting hierarchy defines at least
two sets of failures, including a set of reboot-curable
failures and a set of non-reboot-curable failures,
wherein the reboot-curable failures are addressed by
the system manager by rebooting the computer sys
tem or component thereof that includes the failure;

(v) wherein the failure casting logic and the failure cast
inghierarchy are part of a script that detects the occur
rence of failures in the computer system and then casts
the failure into one of eithera reboot-curable failure or
non-reboot-curable failure, wherein the script is
executed by the computer system when powered on:
and

(vi) wherein the script is used to address failures within
the array of disks at boot time by verifying the health
of each disk prior to adding a disk to the array.

7. A method for managing failures in a computer system
using failure casting, the computer system including an array
of disks, comprising the steps of

(i) detecting the occurrence of failures in the computer
system;

(ii) referring to a failure casting hierarchy that defines a
plurality of failures that can occur within the computer
system;

(iii) using the failure casting hierarchy to cast the failure
from a first failure type to a second failure type:

(iv) communicating the second failure type to a system
manager,

(v) performing an action by the system manager on the
computer system to address the failure including treat
ing the failure as if it were the second failure type:

(vi) wherein the failure casting hierarchy defines at least
two sets of failures, including a set of reboot-curable
failures, and a set of non-reboot-curable failures, and
addressing the reboot curable failures by the system
manager by restarting the computer system or compo
nent thereof that includes the failure;

(vii) wherein the failure casting logic and the failure cast
inghierarchy are part of a script, and detecting the occur
rence of failures in the computer system using the script
and then casting the failure into one of either a reboot
curable failure or non-reboot-curable failure, and
executing the Script by the computer system when first
powered on; and

(viii) using the script to address failures within the array of
disks at boot time by verifying the health of each disk
prior to adding a disk to the array.

k k k k k

