(54) 发明名称
一种平均血糖波动幅度的计算方法

(57) 摘要
本发明涉及一种平均血糖波动幅度的计算方法，该方法由以下步骤组成：读入从动态血糖监测仪器中获取的动态血糖监测数据，计算所获取的数据的血糖标准差；找出所获数据中所有的极值点，得到一极值点序列的集合，然后找出集合中相邻两极值点对应的血糖值差的绝对值不小于血糖标准差和相邻两极值点分别为极大值和极小值的有效极值点，再根据平均血糖波动幅度的计算公式，计算得到平均血糖波动幅度。该方法能够快速准确地分析动态血糖监测数据，获取有效的参数，在保证平均血糖波动幅度计算的准确性的同时，大大缩短了计算时间，提高了临床和科研工作的效率。
1. 一种平均血糖波动幅度的计算方法，该方法包括以下步骤：

 1）读入从动态血糖监测仪器中获取的动态血糖监测数据，计算所获取的数据的血糖标准差；计算所获取数据中所有的极值点，得到一极值点序列的集合 A；

 2）利用差分进化算法求解下式（1）所示的目标函数，统计集合 A 中符合以下两个条件的极值点，得到集合 B：

 a. 相邻的两个极值点对应的血糖差的绝对值 ≥ 血糖标准差；

 b. 相邻的两个极值点一个是极大值，另一个是极小值；

\[
\arg \max_{K, n_1, n_2, \ldots, n_K} Z_K(n_1, n_2, \ldots, n_K) = \arg \max_{K, n_1, n_2, \ldots, n_K} \sum_{k=1}^{K-1} |f(t_{n_{k+1}}) - f(t_{n_k})| \tag{1}
\]

 式（1）中，元素 \(n_1, n_2, \ldots, n_K \) 为集合 A 中的元素，\(Z_K(n_1, n_2, \ldots, n_K) \) 为由元素 \(n_1, n_2, \ldots, n_K \) 组成的子集 \(\{n_1, n_2, \ldots, n_K\} \) 对应的有效血糖波动的波动幅度之和。常数 K 为满足上述条件的极值点的个数，\(f(t_{n_k}) \) 为子集 \(\{n_1, n_2, \ldots, n_K\} \) 中 \(n_k \) 对应的血糖值；

 3）先计算集合 B 中各相邻极值点对应的血糖差的绝对值，再计算所有绝对值的平均值，即得平均血糖波动幅度。

2. 根据权利要求 1 所述的一种平均血糖波动幅度的计算方法，其特征在于，其中步骤 1）还包括如下数据预处理步骤：

 读入从动态血糖监测仪器中获取的动态血糖监测数据后，先删除血糖值相等的相邻两点中的后一血糖值数据，再计算所述的血糖标准差和所有的极值点。
一种平均血糖波动幅度的计算方法

技术领域
[0001] 本发明涉及体内血液特性的测量，具体涉及人体内平均血糖波动幅度参数的处理方法。

背景技术
[0002] 平均血糖波动幅度（Mean Amplitude of Glycemic Excursions, MAGE）是一种基于动态血糖监测数据建立的反应血糖波动的参考数值。目前的实际临床应用中，医务人员者让患者一次性佩带监测仪器超过 72 小时来获取超过 864 个动态血糖监测数据，而 MAGE 数值往往不能直接从动态血糖监测系统中直接分析获得，仍需通过人工筛选方式筛选动态血糖监测数据以分析系统进行计算，工作量较大。若获取的动态血糖监测数据增加时，计算工作量将大大增加，大大降低了临床诊断和科研的效率和参数的实效性。此外，为保证 MAGE 数值的准确性，进行筛选分析的医务人员需要进行长时间的专业培训，若医务人员的经验不足导致计算结果与真实值之间存在较大误差，也会降低了 MAGE 数值的准确性和有效性。

发明内容
[0004] 鉴于现有技术存在上述不足，本发明所要解决的技术问题是提供一种平均血糖波动幅度的计算方法，该方法可自动识别动态血糖监测数据中的有效血糖波动，快捷、准确地计算出平均血糖波动幅度。
[0005] 本发明解决上述问题的技术方案如下：
[0006] 1. 一种平均血糖波动幅度的计算方法，该方法包括以下步骤：
[0007] 1）读入从动态血糖监测仪器中获取的动态血糖监测数据，计算所获取的数据的血
糖标准差计算所获数据中所有的极值点，得到一极值点序列的集合 A；

【0008】2) 利用分异化算法求解下式 (1) 所示的目标函数，统计集合 A 中符合以下两个条件的极值点，得到集合 B:

【0009】a. 相邻的两个极值点对应的血糖值差的绝对值 ≥ 血糖标准差；

【0010】b. 相邻的两个极值点一个是极大值点，另一个是极小值点；

\[
\arg \max_{K \in \mathbb{K}} Z_K(n_1, n_2, \ldots, n_K) = \arg \max_{K \in \mathbb{K}} \sum_{k=1}^{K} |f(t_{n_k}) - f(t_{n_{k+1}})|
\]

【0011】式 (1) 中，元素 \(n_1, n_2, \ldots, n_K \) 均为集合 A 中的元素，\(Z_K(n_1, n_2, \ldots, n_K) \) 为由元素 \(n_1, n_2, \ldots, n_K \) 组成的子集 \(\{ n_1, n_2, \ldots, n_K \} \) 对应的有效血糖波动的波动幅度之和，常数 K 为满足上述条件的极值点的个数，\(f(t_{n_k}) \) 为子集 \(\{ n_1, n_2, \ldots, n_K \} \) 中 \(n_k \) 对应的血糖值；

【0012】3）先计算集合 B 中各相邻极值点对应的血糖值差的绝对值，再计算所有绝对值的平均值，即得平均血糖波动幅度。

【0014】为进一步保证最后计算的准确性，本发明在步骤 1) 中还包括数据预处理操作，具体过程为:

【0015】读入从动态血糖监测仪器中获取的动态血糖监测数据后，先删除血糖值相等的相邻两点中的后一血糖值数据，再计算所述的血糖标准差和所有的极值点。

【0016】由于本发明采用分异化算法求解无约束条件非线性规划问题目标函数，保证了有效血糖波动幅度的准确性，避免了在计算过程中引入主观性因素影响。在保证计算准确性和一致性的同时，采用计算机辅助计算，大大提高了计算效率，具有较高的实效性。

附图说明

【0017】图 1 为本发明所述一种平均血糖波动幅度的计算方法的一个具体实施例的流程图。

【0018】图 2 为一例就医者 24 小时动态血糖变化曲线图。

【0019】图 3 为本发明所述一种平均血糖波动幅度的计算方法中滤除动态血糖监测数据曲线中的血糖值连续相等的数据段的示意图。

【0020】图 4 为本发明所述一种平均血糖波动幅度的计算方法中求得所有有效极值点后的数据曲线。

【0021】图 5 为本发明所述一种平均血糖波动幅度的计算方法中所述的计算方法与传统人工计算方法对于不同数据分组的相关性分析结果。

【0022】图 6 为本发明所述一种平均血糖波动幅度的计算方法中所述的计算方法与传统人工计算方法对于不同组别数据的 Bland-Altman 评估图。

具体实施方式

【0023】下面结合附图和实施例对本发明做进一步的详细描述。

【0024】例 1

【0025】参见图 1，以下以一例就医者 24 小时动态血糖变化曲线图为例详细描述本发明所述平均血糖波动幅度的计算方法；

【0026】1）从就医者所用的从动态血糖监测仪器中导出与图 2 相对应监测数据进行分
析可知，血糖值为时间变量 t 的函数，可表示为 $f(t)$，且其中变量 t 为等时间隔，集合 \{t_1, t_2, \ldots, t_n\}。如图2可见，曲线中存在许多如图中箭头所指的血糖值连续相等的数据段，即 $f(t_{k1}) = f(t_{k2})$，其中 x 表示记录血糖值的序号。因此，为确保平均血糖波动幅度计算的准确性，需先去除血糖值相等的相邻两点中的后一血糖值数据，去除过程如图3所示。然后在计算处理后的数据的血糖标准差，利用离散序列极值点算法处理后的数据进行求离散序列极值点操作，从而可以得到该数据的极值点序列的集合 $[1, 2, \ldots, N]$。

[0027] 2) 以序列集合 $[1, 2, \ldots, N]$ 作为搜索空间，利用差分进化算法求解目标函数的解，即求得所有有效极值点，具体步骤如下：

[0028] 2.1) 通常函数的极大值和极小值应交错出现，因此，当找出所有有效极值点时，血糖数据中有有效血糖波动的波动幅度之和最大，用公式表示为：

$$
\arg \max_{K, n_1, n_2, \ldots, n_k} Z_k(n_1, n_2, \ldots, n_k) = \arg \max_{K, n_1, n_2, \ldots, n_k} \sum_{k=1}^{K} |f(t_{n_{k1}}) - f(t_{n_{k2}})|
$$ \hspace{1cm} (1)

[0030] 式(1)中，元素 n_1, n_2, \ldots, n_k 均为集合 $[1, 2, \ldots, N]$ 中的元素，$Z_k(n_1, n_2, \ldots, n_k)$ 为由元素 n_1, n_2, \ldots, n_k 所组成的子集 $\{n_1, n_2, \ldots, n_k\}$ 对应的有效血糖波动的波动幅度之和，常数 K 为有效极值点的个数，$f(t_{n_{k1}})$ 为子集 $\{n_1, n_2, \ldots, n_k\}$ 中 n_k 对应的血糖值。子集 $\{n_1, n_2, \ldots, n_k\}$ 满足条件：

$$
\begin{align*}
1 \leq n_1 < n_2 < \cdots < n_k \leq N \\
(-1)^{n_{k+1}-n_k} = -1, k = 1, 2, \cdots, K-1 \\
|f(t_{n_{k1}}) - f(t_{n_{k2}})| \geq SD, k = 1, 2, \cdots, K-1
\end{align*}
$$ \hspace{1cm} (2)

[0031] 式(2)中，SD 为步骤 1) 中所述的血糖标准差，常数 K 为有效极值点的个数，$2 \leq K \leq N$。

[0033] 结合式(1)和式(2)可知，平均血糖波动幅度的计算即为式(2)为约束条件，对式(1)为目标函数的非线性规划问题的求解，若该问题对于常数 K 存在一个可行解 $\{n_{1}^{*}, n_{2}^{*}, \cdots, n_{K}^{*}\}$ 和一个最大值 Z_{k}^{*}，那么，也一定存在一个对应于常数 $K-1$ 的最大值 Z_{K-1}^{*}，且 $Z_{K-1}^{*} \leq Z_{k}^{*}$，若 K 为该问题的可行常数 K 的最大值，则可行解 $\{n_{1}^{*}, n_{2}^{*}, \cdots, n_{K}^{*}\}$ 即为平均血糖波动幅度计算所需的所有有效极值点序列集合。

[0034] 2.2) 利用差分进化算法求解通过对求解步骤 2.1) 所得有约束条件的非线性规划问题目标函数，从而得到可行解 $\{n_{1}^{*}, n_{2}^{*}, \cdots, n_{K}^{*}\}$，具体步骤为：

[0035] 2.2.1) 利用惩罚函数算法，令式(3)为惩罚函数并初始化惩罚系数，结合式(2)将式(1)转化为无约束条件的非线性规划问题目标函数：

$$
g_k(n_1, n_2, \cdots, n_k) = SD - |f_{n_{k1}} - f_{n_{k2}}| \\
h_k(n_1, n_2, \cdots, n_k) = (-1)^{n_{k+1}-n_k} + 1, k = 1, 2, \cdots, K-1
$$

[0036] \hspace{1cm} (3)

$$
\arg \min_{n_1, n_2, \cdots, n_k} Y_k(n_1, n_2, \cdots, n_k)
$$

[0037] \hspace{1cm} (4)
[0039] 式（4）中，ρ_i 和 λ_i 为惩罚系数，且均趋向于 +∞，由式（4）中可知，当式（4）的最小值 Ψ_i^* > 0 时，该无约束条件的非线性规划问题目标函数无可行解。

[0040] 2.2.2 利用差分进化算法求解步骤 2.2.1（所得无约束条件非线性规划问题目标函数）

[0041] 2.2.2A 初始化化差分进化算法中所涉及的参数，包括种群数量 NP，最大迭代次数 G_{max} 以及迭代计数器 G = 1，解空间最大维度 N，交叉概率 CR；

[0042] 2.2.2B 随机创建一个初始化种群并将该种群均匀分布于整个解的搜索空间，种群的表示形式如下式:

\[N_i^0 = (1, 1, \ldots, 1) + \text{NINT}[(\rho_{i1}, \rho_{i2}, \ldots, \rho_{iN}) \cdot (N - 1)] \] \hspace{1cm} (5)

[0043] 式（5）中，i 为当前试验向量的索引，N_i^0 为目标向量，ρ_{ij} 为 [0, 1] 间的随机数，NINT[B] 表示对向量 B 做四舍五入取整操作；

[0044] 2.2.2C 从 K = 2 维搜索空间开始，搜索整个搜索空间，直至可行解的搜索空间大小等于极值点的集合大小，具体步骤为：

[0045] 2.2.2D 在当前迭代中搜索目标函数的可行解，对于每一代 G 的目标向量 N_i^G，在同一迭代中随机抽取其他三个不同的个体向量 N_{i1}^G、N_{i2}^G 和 N_{i3}^G，其中 r_1, r_2, r_3 是在 [1, NP] 区间中随机抽取的不等的三个整数，且均与当前试验向量的索引 i 不相等。那么通过差分策略得到一个与之对应的变异向量 V_i^G；

\[V_i^G = N_i^G + \text{NINT}[F \times (N_{r1}^G - N_{r2}^G)] \] \hspace{1cm} (6)

[0046] 式（6）中，F 为一个 [0, 1] 区间内取值的差分向量缩放因子；

[0047] 2.2.2E 在步骤 2.2.2D 所得到的变异向量 V_i^G 和对应的个体目标向量 N_i^G 进行交叉操作生成一个试验向量 U_i^G；

\[u_{ij}^G = \begin{cases} v_{ij}^G, & \text{rand}[0, 1] \leq CR \text{ or } j = j_{\text{rand}}, \\ n_{ij}^G, & \text{otherwise}, \end{cases} \hspace{1cm} j = 1, 2, \ldots, n. \] \hspace{1cm} (7)

[0048] 式（7）中 CR \in [0, 1] 是一个由差分进化算法使用者所设定的交叉概率，j_{\text{rand}} 是在 [1, NP] 区间内随机选择的索引，该索引用于保证 u_{ij}^G 能在 V_i^G 中至少获得一个参数值。目标向量 N_i^G 的整数参数按照从小到大顺序进行排列；

[0049] 2.2.2F 采用贪婪搜索策略对步骤 2.2.2E 所得到的试验向量 U_i^G 与目标向量 N_i^G 进行比较选择，若试验向量 U_i^G 所决定的函数值 Y(U_i^G) 小于目标向量 N_i^G 所决定的函数值 Y(N_i^G)，则下一代的目标向量由当前代的试验向量取代，否则将当前代的目标向量保留至下一代，用公式（8）表示如下：

\[N_i^{G+1} = \begin{cases} U_i^G, & \text{if } Y(U_i^G) < Y(N_i^G), \\ N_i^G, & \text{otherwise}. \end{cases} \] \hspace{1cm} (8)

[0050] 2.2.2G 在迭代计数器递增 1，若当前迭代计数器数值 G 小于最大迭代次数 G_{max}，则重复步骤 2.2.2D、2.2.2E、2.2.2F，于是在下一代中搜索可行解，若当前迭代计数器数值 G 等
于最大迭代次数 G_{max}，则跳出迭代并计算所有有效血糖波动的波动幅度之和的最大值 $Z^*_{k'}$，若 $Z^*_{k'}$ 不大于 0，则令解空间维度递增 1，并重复步骤 $2.2.2D$、$2.2.2E$、$2.2.2F$，若 $Z^*_{k'}$ 大于 0，则差分进化计算结束，此时的 $Z^*_{k'}$ 即为有约束条件非线性规划问题目标函数的最大值，对应的解即为有约束条件非线性规划问题目标函数的可行解 $\{n^*_1, n^*_2, \ldots, n^*_k\}$，即求得所有有效极值点序列集合，如图 4 所示。

(0055) 3) 根据步骤 $2.2.2G$ 所有有效极值点序列集合，计算平均血糖波动幅度，计算过程如下：

(0056) a) 若 n^*_i 对应的是动态血糖监测数据的第一个局部极小值点，则平均血糖波动幅度的计算公式为：

\[
\begin{align*}
MAGE^+_i &= \frac{1}{[K^*/2]} \sum_{k=1}^{[K^*/2]} \left| f_{n^*_i(k-1)/2} - f_{n^*_i(k-1)/2+1} \right| \\
MAGE^- &= \frac{1}{[(K^*-1)/2]} \sum_{k=2}^{[(K^*-1)/2]} \left| f_{n^*_i(k-1)/2} - f_{n^*_i(k-1)/2+1} \right| \\
MAGE_a &= \frac{MAGE^+_a + MAGE^-}{2}
\end{align*}
\] (9)

(0058) b) 若 n^*_i 对应的是动态血糖监测数据的第一个局部极大值点，则平均血糖波动幅度的计算公式为：

\[
\begin{align*}
MAGE^+_a &= \frac{1}{[(K^*-1)/2]} \sum_{k=2}^{[(K^*-1)/2]} \left| f_{n^*_i(k-1)/2} - f_{n^*_i(k-1)/2+1} \right| \\
MAGE^- &= \frac{1}{[K^*/2]} \sum_{k=1}^{[K^*/2]} \left| f_{n^*_i(k-1)/2} - f_{n^*_i(k-1)/2+1} \right| \\
MAGE_a &= \frac{MAGE^+_a + MAGE^-}{2}
\end{align*}
\] (10)

(0059) 式 (9) 和式 (10) 中，$MAGE_a$ 为以第一个有效波动方向 (从波谷到波峰或从波峰到波谷) 为计算方向的平均血糖波动幅度，$MAGE$ 为以该计算方向的另一侧 (从波峰到波谷或从波谷到波峰) 为计算方向的平均血糖波动幅度，$MAGE_a$ 是 $MAGE_a$ 和 $MAGE$ 的平均值。

(0061) 例 2 （方法的准确性和和可行性验证）

(0062) 下表 1 所示为从 76 例就医者的动态血糖监测数据分别利用传统人工计算方法和本文所述的计算方法计算得到的平均血糖波动幅度，共分 3 组，其中，正常成人 27 例，2 型糖尿病成人患者 25 例，正常孕妇 24 例，$MAGE_a$ 表示采用传统人工计算方法计算所得平均血糖波动幅，$MAGE_a$ 表示采用本发明所述的计算方法计算所得平均血糖波动幅度。由于采用传统人工计算方法所得计算结果的准确性会受医务工人的主观性影响，因此本表中 $MAGE_a$ 数值均为长期从事相关工作的工作人员采用传统人工计算方法获得，具有较高的准确性。

(0063) 现将表 1 中 3 组的本发明所述的计算方法所得计算结果与传统人工计算方法所得计算结果进行相关性分析，分析结果如图 5 所示，正常成人组的相关系数 $\gamma = 0.994$ (P
< 0.01)，参见图 5a），2 型糖尿病成人患者组的相关系数 $r = 0.997 (P < 0.01)$，参见图 5b），正常孕妇组的相关系数 $r = 0.998 (P < 0.01)$，参见图 5c），76 例就医者的相关系数 $r = 0.997 (P < 0.01)$，参见图 5d），由此可知，本发明所述的计算方法所得计算结果 MAGEc 和传统人工计算方法所得计算结果 MAGEc 对于不同就医者分组均显著相关。

再通过 Bland-Altman 图评估本发明所述的计算方法和传统人工计算方法的一致性，所结果如图 6 所示，不同就医者采用两种不同方法所得计算结果的差值分别为：正常成人组（-0.00242±0.0136）mmol*L-1，2 型糖尿病成人患者组（0.01533±0.0275）mmol*L-1，正常孕妇组（0.0034±0.0191）mmol*L-1，76 例就医者（0.00526±0.0218）mmol*L-1。95% 一致性界限利用 mean±1.96SD 公式求得，分别为正常成人组（0.0243，-0.0292）；2 型糖尿病成人患者组（0.0692，-0.0386）；正常孕妇组（0.0409，-0.0341）；76 例就医者（0.0480，-0.0374）。分析图 6 中不同的 Bland-Altman 图可知，落在一致界限外的点分别为正常成人组 3 个，占 11.1% (3/27)，2 型糖尿病成人患者组 1 个，占 4% (1/25)；正常孕妇组 1 个，占 4.2% (1/24)；76 例就医者 6 个，占 7.9% (6/76)。分析结果显示本发明所述的平均血糖波动幅度计算方法 (MAGEc) 与传统人工计算方法 (MAGEc) 具有较好的一致性。

表 1 本发明所述计算方法与传统人工计算方法数据对比

<table>
<thead>
<tr>
<th>正常成人组 (mmol/L)</th>
<th>2 型糖尿病成人组 (mmol/L)</th>
<th>正常孕妇组 (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>病例数</td>
<td>MAGEc</td>
<td>MAGEc</td>
</tr>
<tr>
<td>1</td>
<td>1.100</td>
<td>1.100</td>
</tr>
<tr>
<td>2</td>
<td>0.914</td>
<td>0.914</td>
</tr>
<tr>
<td>3</td>
<td>3.025</td>
<td>3.025</td>
</tr>
<tr>
<td>4</td>
<td>3.500</td>
<td>3.500</td>
</tr>
<tr>
<td>5</td>
<td>0.880</td>
<td>0.880</td>
</tr>
<tr>
<td>6</td>
<td>0.814</td>
<td>0.814</td>
</tr>
<tr>
<td>7</td>
<td>3.433</td>
<td>3.433</td>
</tr>
<tr>
<td>8</td>
<td>1.333</td>
<td>1.333</td>
</tr>
<tr>
<td>9</td>
<td>1.971</td>
<td>1.971</td>
</tr>
<tr>
<td>10</td>
<td>1.575</td>
<td>1.575</td>
</tr>
</tbody>
</table>

[0067]
<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2.000</td>
<td>1.943</td>
<td>11</td>
<td>4.625</td>
<td>4.650</td>
<td>11</td>
<td>1.700</td>
<td>1.700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.575</td>
<td>1.575</td>
<td>13</td>
<td>4.700</td>
<td>4.700</td>
<td>13</td>
<td>1.663</td>
<td>1.663</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.450</td>
<td>2.450</td>
<td>14</td>
<td>6.633</td>
<td>6.633</td>
<td>14</td>
<td>3.133</td>
<td>3.133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3.400</td>
<td>3.400</td>
<td>15</td>
<td>5.025</td>
<td>5.025</td>
<td>15</td>
<td>1.940</td>
<td>1.940</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3.567</td>
<td>3.567</td>
<td>16</td>
<td>5.933</td>
<td>5.933</td>
<td>16</td>
<td>2.240</td>
<td>2.240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3.140</td>
<td>3.140</td>
<td>17</td>
<td>6.460</td>
<td>6.460</td>
<td>17</td>
<td>1.571</td>
<td>1.571</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2.233</td>
<td>2.233</td>
<td>18</td>
<td>4.133</td>
<td>4.133</td>
<td>18</td>
<td>1.357</td>
<td>1.357</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3.525</td>
<td>3.550</td>
<td>19</td>
<td>6.067</td>
<td>6.067</td>
<td>19</td>
<td>2.400</td>
<td>2.400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.500</td>
<td>2.467</td>
<td>20</td>
<td>4.533</td>
<td>4.533</td>
<td>20</td>
<td>3.030</td>
<td>3.030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2.733</td>
<td>2.733</td>
<td>21</td>
<td>5.900</td>
<td>5.900</td>
<td>21</td>
<td>1.250</td>
<td>1.250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.529</td>
<td>1.529</td>
<td>22</td>
<td>3.817</td>
<td>3.833</td>
<td>22</td>
<td>0.775</td>
<td>0.775</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.400</td>
<td>1.400</td>
<td>23</td>
<td>5.100</td>
<td>5.100</td>
<td>23</td>
<td>0.570</td>
<td>0.563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3.375</td>
<td>3.375</td>
<td>24</td>
<td>4.300</td>
<td>4.350</td>
<td>24</td>
<td>0.600</td>
<td>0.600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>3.500</td>
<td>3.500</td>
<td>26</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.686</td>
<td>1.686</td>
<td>27</td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
图 2
图 3
图 4
图 5
图 6