This invention relates to a face treating mask and more particularly pertains to a facial pad of the electrically heated type which is especially applicable for use in connection with face creams, astringents, and the like, in effecting treatment of the face and neck for the removal of wrinkles, soothing the nerves, relaxing the muscles, and stimulating the blood circulation.

Hereinafter devices of this character have been constructed to serve merely as heat applicators without regard to the particular portion or areas of the face and neck where the application of heat is the most essential and most effective in the treatment of wrinkles, and resulting in a mask or pad which is apt to afford discomfort to the wearer and also to apply heat generally throughout the area of the face and at portions and surfaces thereof where the application of the heat is unnecessary, uncomfortable and undesirable.

The primary object of the present invention is to provide a construction in an electrically heated face treating mask whereby the objections above pointed out are obviated, and whereby, by a peculiar arrangement of the electrical heating elements embodied in the mask, the fields of highest temperature developed thereby will be directed across the forehead, around the eyes, downwardly over the cheek muscles, under the chin, and over the throat and front portion of the neck.

Another object is to provide a construction in the heating element which will facilitate its mounting on the mask and whereby a series of fine electrical conductors may be arranged in close proximity to each other throughout the portion of the mask fitted therewith.

Another object is to provide a construction in the mask which will facilitate its being folded into a compact package.

A further object is to provide a mask of the above character embodying a construction whereby it may be safely employed in connection with face creams, astringents, and the like, and with wet pads, applied to the face.

With the foregoing objects in view together with such other objects and advantages as may subsequently appear the invention resides in the parts and in the combination, construction and arrangement of parts hereinafter described and claimed and illustrated by way of example in the accompanying drawing in which:

Fig. 1 is a view of the mask as seen in side elevation, depicting it as applied:

Fig. 2 is a cross-sectional view of the mask as seen on the line 2—2 of Fig. 1 in the direction indicated by the arrows:

Fig. 3 is a view of the mask as seen in elevation from the interior thereof with portions of the covering removed to show the arrangement of the heating element therein.

Fig. 4 is a detail in cross section taken on the line 4—4 of Fig. 3:

Fig. 5 is a view in elevation showing the mask in its folded position.

Referring to the drawing more specifically, A indicates generally the upper portion of the mask which when distended is substantially bowl shaped in form, and B designates an apron extension depending from the bowl portion of the mask. The bowl portion A is adapted to be applied over the face as shown in Fig. 1, and is fitted with an opening C to accommodate the nose and through which the patient may breathe when the mask is applied.

The mask is flexible through and when applied may be pressed to substantially conform to the contours of the face with the apron extension under the chin and overlying the throat. The margins of the upper and lower portions of the mask are provided with ribbons D and E adapted to pass around the back of the head and the neck respectively, and to be tied to effect fastening of the mask in place over the face.

In forming the mask a relatively stiff, close woven fabric, such as canvas, is provided to form a flexible backing and for supporting electrical conductors I constituting a heating element F. The backing sheet G is formed of an outline corresponding to that of the mask and is preferably formed in two pieces or halves of corresponding shape which are united or by a seam 8, which, when the sheet G is assembled in the mask will constitute the vertical longitudinal center thereof, as particularly shown in Fig. 3.

An important feature of the invention resides in the particular arrangement of electrical conductors G constituting the element F and which embodies a plurality of asbestos covered electrical conductors, here shown as four in number indicated at a b c and d united with a single conductor e leading from a thermostat switch S disposed adjacent the lower edge of the apron B. The group of conductors a b c and d leads upwardly on one half of the backing sheet in spaced relation to the seam 8 as indicated at f and is formed with an inwardly extending return bend g at a point to overlie the left eye. The group of conductors then leads down alongside the upwardly extending group as indicated at h and...
is then with a return bend adjacent to the lower end of the apron B, then leads upward adjacent to the side margins of the mask as indicated at 5 and across the face of the mask, then leads upward and around an inwardly extending bend m to overlie the right eye, then downwardly spaced relation to the seam 8 into connection with a single conductor p associated with a conductor q leading from the thermostat 9 and which conductors p and q constitute a pair of conductors of an electric cord p adapted to be connected to an electrical circuit through a cut-off switch 10 in a usual manner.

By thus arranging the electrical conductors in a group they are readily assembled on the backing sheet to which they are attached by stitching in a usual manner, and are arranged to form the heating element P with portions spaced apart on opposite sides of the central portion of the mask excepting where forming the cross over E at the forehead portion of the mask, so as not to extend over the nose, mouth, and chin, yet be arranged so as to cover the area of the mask adapted to overlie the cheeks, the eyes, the forehead, and extend downwardly under the chin and over the throat. This arrangement insures application of the heat to the portions of the face where most needed in effecting treatment of wrinkles, and permits ready folding of the mask along the seam 8 as shown in Fig. 5 with its opposite halves overlapping so that the mask will lie substantially flat when not in use. When thus folded the only bend in the conductors will be in the lead k crossing the seam 3.

In building up the mask a layer of flannel 11 is placed over the back of the backing sheet 6 and a corresponding layer of flannel 12 extends over the front of the backing sheet to cover the conductors 7. A sheet of celanese or other suitable finishing material, such as silk or satin, is employed to provide an covering 13 for the mask and which the sheet extends over the flannel layer 11.

The inner surface of the mask is covered with a moisture proof flexible material 14 such as softex. The several layers of material are stitched together throughout the outer margins of the mask and bound by a binding ribbon as indicated at 15, and are similarly stitched together around the opening C the margin of which is reinforced and covered by a binding ribbon 16. The fabric layers or sheets 11, 12, 13 and 14, are formed in halves and stitched together parallel with the seam 8.

In the application and operation of the invention the mask is applied to the face of the patient as shown in Fig. 1 with the opening C disposed opposite or near the nostrils and with the electrical heating element arranged to extend over the face on opposite sides of the face, across the forehead, over the eyes, around under the chin and over the throat, then that on directing electrical current through the conductors these portions of the face will be subjected to the heating of the electrical element.

In effecting treatment of the face various creams, lotions, and the like may be applied to the skin previous to application of the mask and subjected to the heating action of the latter, and if desired moist pads may be interposed between the mask and face when it is desired to effect a steaming action; the moisture proof lining 14 serving to protect the electrical conductors from being moistened by moisture of the mask.

The mask thus formed is quite flexible throughout and is thus readily adapted to conform to the contours of the face and throat of the patient when applied.

I claim:

1. A face treating mask embodying a substantially bowl shaped face covering portion, an apron portion depending therefrom adapted to overlie the throat, and an electrical heating element carried by said mask comprising a plurality of electrical conductors leading back and forth over the cheek portion of the mask forming spaced groups of conductors, and a plurality of conductors leading across the forehead portion of the mask and electrically connecting said groups of conductors, and conductors connecting said groups of conductors to a source of electrical current supply leading over the apron portion, said heating element embodying spaced portions arranged on opposite sides of and spaced from the vertical center of the mask.

2. A face treating mask embodying a substantially bowl shaped face covering portion, an apron portion depending therefrom adapted to overlie the throat, and an electrical heating element carried by said mask comprising a plurality of electrical conductors leading back and forth over the cheek portion of the mask forming spaced groups of conductors and a plurality of conductors leading across the forehead portion of the mask and electrically connecting said groups of conductors, and conductors connecting said groups of conductors to a source of electrical current supply leading over the apron portion, said heating element embodying spaced portions arranged on opposite sides of and spaced from the vertical center of the mask, said spaced portions of said heating elements having inwardly projecting upper portions adapted to overlie the eyes.

3. A face treating mask comprising a substantially bowl shaped face covering portion embodying a plurality of fabric layers, each of said layers being formed in corresponding halves united together by seams extending along the vertical center of the mask, an electrical heating element interposed between certain of the fabric layers consisting of spaced apart portions arranged on the layers and electrically connected together across the forehead portion of the mask, said bowl shaped portion being formed with an opening between the spaced apart portions of the heating element.

4. A face treating mask comprising a substantially bowl shaped face covering portion embodying a plurality of fabric layers, each of said layers being formed in corresponding halves united together by seams extending along the vertical center of the mask, an electrical heating element interposed between certain of the fabric layers consisting of spaced apart portions arranged on the layers and electrically connected together only across the forehead portion of the mask, said bowl shaped portion being formed with an opening between the spaced apart portions of the heating element, and an apron depending from said bowl shaped portion over which the lower portions of said heating element extends.

5. A face and neck treating device comprising a flexible mask formed to extend over the face and neck.
and forward portion of the neck and adapted to be folded along its vertical center, electrical heating conductors arranged in groups on opposite halves of the mask with the groups on one half of the mask spaced from the groups on the other half of the mask, and conductors electrically connecting said groups together across the forehead portion of the mask adapted to bend on folding said mask along its vertical center.

6. A face treating device comprising a flexible mask, and an electrical heating element carried by said mask having grouped portions spaced on opposite sides of the vertical central part of the mask connected together across the forehead portion of the mask; said mask being foldable along its vertical center.

JOSEPH S. BADDOUR.