COUNTER PRESSURE RACKING AND BUNGING APPARATUS.
APPLIOATION FILED JAN. 17, 1903.
NO MODEL.
3 SHEETS-SHEET 1 ,

COUNTER PRESSURE RACKING AND BUNGING APPARATUS.
APPLICATION FILED JAN. 17, 1903.
NO MODEL.
3 SHEETS-SHEET 2.

H. REININGER.

COUNTER PRESSURE RACKING AND BUNGING APPARATUS.
APPLIOATION FILED JAN, 17, 1903.

United States Patent Office.

HENRY REININGER, OF NEW ORLEANS, LOUISIANA.

COUNTER-PRESSURE RACKING AND BUNGING APPARATUS.

SPECIFICATION forming part of Letters Patent No. 737,480, dated August 25, 1903.
Appliortion filed January 17, 1903. Serial No. 139,435, (No model,

To all whom it may concern:
Be it known that I, Henry Reininger, a citizen of the United States, and a resident of New Orleans, in the parish of Orleans and
5 State of Louisiana, have invented a new and Improved Counter-Pressure Racking and Bunging Apparatus, of which the following is a full, clear, and exact description.

The object of the invention is to provide a
to new and improved apparatus for racking and bunging beer and other carbonated liquids from a storage cask or tank into smaller packages without loss of carbonic acid or waste of the liquid under treatment.
The invention consists of novel features and parts and combinations of the same, as will be more fully described hereinafter and then pointed out in the claims.

A practical embodiment of the invention is so represented in the accompanying drawings, forming a part of this specification, in which similar characters of reference indicate corresponding parts in all the views.

Figure 1 is a front elevation of the improve25 ment, parts being shown in section. Fig. 2 is an end elevation of the same. Fig. 3 is an enlarged transverse section of the improvement on the line 33 of Fig. 4, and Fig. 4 is a sectional plan view of the same on the line 30 ± 4 of Fig. 3.

The improved apparatus, as illustrated in Fig. 1, is provided with two sets of devices A and A^{\prime} for sealing, filling, and bunging barrels or other receptacles $\mathrm{B} \mathrm{B}^{\prime}$ in such a man-
35 ner that while one barrel B is filled the other barrel B^{\prime}, previously filled, is bunged. The sets of devices A and A^{\prime} are mounted on a suitably-constructed frame C, which supports saddles C^{\prime} for the barrels B and B^{\prime} to rest on during the filling and bunging operation, and as the said sets of devices A and A^{\prime} are alike in construction it suffices to describe bat one in detail.
Each of the devices A or A^{\prime} consists; esssenfor hermetically sealing the barrel at the bung-hole during the filling operation, and in the said sealing-tu'ye D is mounted to slide vertically a hollow plunger \mathbf{E} for driving the bung into the bung-hole of the filled barrel, and in this hollow pliunger is mounted to slide
up and down a filling-tube F, adapted to fill the barrel with the liquid.

The sealing-tube D is mounted to slide in a bearing G., formed on a bracket G, having spaced integral rings G^{2} mounted to slide on and to turn on a guideway in the form of a post C^{2}, secured to the main frame C at the top thereof, and between the said rings G^{2} of the bracket extends a collar G^{3}, mounted 60 loosely on the post C^{2} and provided with a nut G^{4}, in which screws a screw-rod G^{5}, moanted to turn in suitable bearings arranged on the post C^{2}, and on the upper end of the said screw-rod G^{5} is secured a hand-wheel G^{6} under the control of the operator to turn the said screw-rod to the right or to the left to move the collar G^{3}, and with it the bracket G, up or down, according to the direction in which the hand-wheel G^{6} is turned. By this arrangement the bracket G and the parts carried thereby can be raised or lowered, so as to bring the sealing, filling, and bunging devices into the proper position relative to the size of the barrel or vessel to be filled. When the bracket G has been adjusted to the desired height and swung into proper position to bring the axis of the sealing-tube D in vertical alinement with the axis of the bunghole, then the bracket G is fastered in placo 80 on the post C^{2} by the operator screwing up a nut G^{7} in the split end of one of the rings G^{2}, as plainly indicated in Fig. 4.

On the sealing-tube D is secured a verti-cally-disposed rack H in mesh with a pinion 85 H^{\prime}, secured on a shaft H^{2}, monnted to turn in suitable bearings carried by a bracket G^{8}, attached to the bearing G^{\prime} at the front end thereof, and on the said shaft H^{2} is secured a hand-wheel H^{3} under the control of the operator for turning the shaft H^{2} and pinion H^{\prime} to cause the rack H , and with it the seal-ing-tube D, to move up or down, according to the direction in which the hand-wheel H^{3} is turned. By this arrangement the lower end of the sealing-tube D is moved to or from the bung-hole of the barrel or other vessel B or B^{\prime} to be filled.
In order to hermetically seal the barrel at the bung-hole by the sealing-tube D, the latter is provided with a rubber gasket D^{\prime}, set into the lower end of the somewhat enlarged
sealing-head D^{2}, which forms an integral part of the lower end of the sealing-tube D. Now when the latter is moved downward by the operator turning the hand-wheel H^{3} in the 5 proper direction the gasket D^{\prime} finally engages the top of the barrel around the bung-hole, and in order to powerfully compress the gasket D^{\prime} by moving the sealing-tube farther downward I provide the following device: The pinion H is H^{5}, wha worm, secured on a shaft H^{5}, journaled in a frame H^{6}, pi voted at H^{7} in the bracket G^{8}, and the said frame is pressed on by a spring H^{8}, the tension of which can be regulated by a nut H^{9}, screwing in the bracket G^{8}. The spring H^{8} normally holds the frame H^{6} in such a position that the worm H^{4} is in mesh with the pinion H^{\prime} to lock the latter against rotation, thus holding the sealing-tube D in a locked pord 0 on upper end of the shaft H^{5} is secured a handwheel H^{10} under the control of the operator, so that when the gasket D^{\prime} is in engagement with the barrel, as previously explained, then tat the shaft H^{5} and worm H^{4} to powerfully tates the shaft H^{5} and worm H^{4} to powerfully turn the pinion H^{\prime}, so that the sealing-tube D is moved farther down ward to compress the gasket D^{\prime} on the top of the barrel to insure the the operator turns the hand-wheel H^{3} with one hand, as previously explained, for quickly lowering or raising the filling-tube D, it is necessary for the operator to pull with the 35 other hand on the hand-wheel H^{10}, so as to impart a swinging motion to the frame H^{6} to move the worm H^{4} temporarily out of mesh with the pinion H^{\prime} to permit quick turning of the pinion by the operator manipulating the hand-wheel H^{3}. When the sealing-tube D has been moved to the desired position, then the operator releases the pressure on the hand-wheel H^{10}, so that the spring H^{8} returns the frame H^{2}, and with it the worm H^{4},
Into normal locking positions.
Inte of the enlarged sealing-head D^{2} extends one end of a pipe I, connected at its other end by a flexible hose I^{\prime} with a pres-sure-tank J, containing carbonic-acid gas or
50 other fluid under pressure, and in the said pipe I is arranged a valve I^{2} under the control of the operator to connect the pressure-tank J with the head D^{2} of the sealing-tabe at the time the gasket D^{\prime} engages the barrel B, so that 5 the fluid from the pressure-tank J can pass into the barrel to fill the same and to recede during the time the liquid flows through the filling-tube F into the barrel, it being, however, understood that the liquid flows under
60 a somewhat heavier pressure into the barrel than that of the fluid. In the pipe I, adjacent to the valve I^{2}, is arranged an observa-tion-glass $]^{3}$ to enable the operator to see when the barrel is filled, as the liquid then
65
65 rises from the barrel through the bung-hole into the head D^{2} and pipe I to the observa-tion-glass I^{3}.

The filling-tnbe F is provided at its lower end with a check-valve F^{\prime}, the stem F^{2} of which extends a short distance beyond the check-valve casing F^{3}, as plainly shown in Fig. 3, so that when the filling-tube F is moved downward by hand to pass into the barrel B or B^{\prime} then the said projecting end of the stem F^{2} finally comes in contact with the bottom of the barrel, and on the further downward movement of the filling - tube F the check-valve is unseated to allow the liquid to flow from the filling-tabe F through the valvecasing F^{3} into the barrel to fill the same. When the barrel is filled and the operator moves the filling-tube F upward, then the check-valve F^{\prime} immediately seats itself by the pressure of the liquid within the filling-tube, so that the lower end of the filling-tube is closed against escape of liquid from the fill-ing-tube until the valve F^{\prime} is again unseated when filling the next barrel.

The upper end of the filling-tube F is connected by a flexible hose F^{4} with a liquidsupply pipe K, leading to the storage cask or tank containing the liquid to be filled into the barrels $B B^{\prime}$. The supply-pipe K is supported by a bracket K^{\prime} from the pressuretank J, and the said supply-pipe is provided with an observation-glass K^{2} and a samplecock K^{3}, to enable the operator to obtain samples of the liquid to be filled into the barrels. The supply - pipe K is also provided with a pressure-gage K^{4} to indicate the pressure of the liquid to be filled into the barrels.

From the supply-pipe K lead branch pipes $\mathrm{K}^{5} \mathrm{~K}^{6}$, containing valves K^{7} and K^{8}, of which the valve K^{7} is an ordinary stop-valve, for allowing objectionable liquid to flow into a suitable vessel previous to allowing such liquid to flow into the barrel to be filled. The other valve K^{8} is an automatic relief-valve and is connected to a suitable vessel, or in case a pump is used for racking-off in addition to air-pressure then the said valve is connected to the suction of this pump. By this arrangement the valve K^{8} prevents any excess of pressure in the racking-machine or any other apparatus through which the liquid is caused to flow from the storage-tank to the barrel to be filled.

The filling-tube F is counterbalanced, and for this purpose the upper end thereof is connected with one end of a rope I, extending over a pulley L^{\prime}, journaled on a pulley-post L^{2}, secured to the bracket G, and the other end of the said rope L supports a counterweight L^{3}, mounted to slide on the post L^{2}. By this arrangement the operator can readily move the filling-tube F down ward or upward by hand, and when the desired position is reached the filling-tube is locked to the upper end of the hollow plunger by a suitable clamping device O. (Indicated in Fig. 3.)

In order to impart the desired up-and-down sliding movement to the hollow planger E , the latter is provided with a rack N in mesh with a pinion N^{\prime}, secured on a shaft N^{2},
mounted to turn in suitable bearings arranged on the bracket G, and on one outer end of the said shaft N^{2} is secured a handle N^{3} under the control of the operator for 5 turning the shaft N^{2} and the pinion N^{\prime} for the latter to impart an up-and-down movement to the rack N and the planger E, according to the direction in which the handle N^{3} is moved. The tank J previonsly meno tioned is provided with a suitable gage-glass J^{\prime}, and the top of the tank has a hand-hole J^{2} and an air-inlet J^{3}, and from the bottom of the said tank leads a waste-valve J^{4} to connect by a hose with a cask, if desired. The 15 tank J is also provided near its upper end with an air-relief valve P and a pressuregage Q for indicating the pressure in the said tank.

By reference to Fig. 1 it will be seen that - the gages K^{4} and Q are located one above the other, so as to enable the operator to see at a glance that the desired pressures are on the liquid to be filled into the barrel and the air or gas in the tank J to allow proper filling of 25 the liquid in to the barrel, as before explained.

The operation is as follows: When the barrel B is in position on its saddle C^{\prime}, as shown in Fig. 1, the operator first turns the handle H^{3} to move the sealing-tube D downward to
30 bring its gasket D^{\prime} into contact with the top of the barrel around the bung-hole, and then the gasket is firmly pressed by the operator subsequently turning the hand-wheel H^{10}, as previouslos explained. When this has been
35 done, the valve I^{2} is opened, so as to establish communication between the pressuretank J and the interior of the barrel B to fill the latter with air or gas under pressure. The operator next mores the filling-tube F down-
40 ward by hand, so that the valve-casing F^{3} passes to the bottom of the barrel for opening the check-valve F^{\prime} to allow the liquid to flow into the barrel B under a somewhat higher pressure than that of the air or gas
45 from the tank J. The liquid in filling the barrel causes a return flow of the air or gas under pressure into the tank J, and when the liquid has filled the barrel and rises to the head D^{2} and pipe I in to the observation-glass
$50 I^{3}$ then the operator closes the valve I^{2} and moves the filling-tube F upward to cause the check-valve F^{\prime} to seat itself, as previously explained. The operator now imparts a return movement to the hand-wheel \hat{H}^{3}, so that the
55 sealing-tube D moves upward out of engagement with the barrel and then inserts the bung into the bung-hole, after which he imparts a downward swinging motion to the handle N^{3} to move the hollow plunger E down-
60 ward in the sealing-tube D to cause the steel head E^{\prime} of the said hollow plunger to act on the bung to drive the same into the bunghole, as wiil be readily understood by refereuce to the device A. (Shown in Fig.1.) When
65 the bung is driven into the bung-hole, the operator swings the handle N^{3} back to its former position to raise the plunger E , and
then the barrel is rolled off the saddle C^{\prime} and another empty barrel is placed in position on the saddle, and the above-described operation is then repeated.

Having thus described my invention, I claim as new and desire to secure by Letters Patent-

1. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable thereon, means for moving the bracket on the guideway, a sealing-tube slidable on the bracket and movable in the direction of its length, means for moving the sealing-tube, a plunger movable lengthwise within the seal-ing-tube for driving a bung, means for moving the plunger, a filling-tube movable within the plunger, and connected at one end with the liquid-supply and a check-valve in the discharge end of the said filling-tube, adapted to open on coming in contact with the bottom of the vessel to be filled, as set forth.
2. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable thereon, means for moving the bracket on the guideway, a sealing-tube movable in the direction of its length on said bracket, a plunger movable lengthwise within the sealing-tube, for driving a bung, a filling-tube movable within the plunger, manually-actuated means for moving the said sealing-tube, and manu-ally-actuated means for moving the said planger independent of the said sealing-tube and the said filling-tube, as set forth.
3. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable thereon, means for moving the bracket on the guidewar, a sealing-tube movable in the direction of its length on said bracket, a plunger movable length wise within the sealing-tube, for driving a bung, a filling-tube movable within the planger, a check-valve in the discharge end of the said filling-tube, adapted to open on coming in contact with the bottom of the vessel to be filled, and means for locking the filling-tube in position, as set forth.
4. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable thereon, means for moving the bracket on the guideway, a sealing-tabe slidable on the bracket and having a sealing-head for engagement with the vessel to be filled, a pres-sure-tank connected with the said sealinghead, a hollow plunger slidable on the sealingtube, a filling-tube slidable in the hollow plunger and connected with a liquid-supply, manually-actuated means for moving the sealing-tube lengthwise, to engage the said sealing-head with the vessel, and a supplementary actuating device, for forcibly moving the sealing-head in position on the vessel and for locking the tube against return movement, as set forth.
5. A racking and bungiag apparatus comprising a fixed guideway, a bracket movable thereon, a sealing-tube slidable on the bracket and having a sealing-head for engagement
with the vessel to be filled, a pressure-tank connected with the said sealing-head, a hollow plunger slidable in the sealing-tube, a filling-tube slidable in the hollow plunger and
5 connected with a liquid-supply, an observation device in the connection between the sealing-head and the pressure-tank, and a valve in the said connection between the observation device and the sealing-head, as set
6. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable thereon, means for moving the bracket on the guideway, a sealing-tube slidable on the 15 bracket, a rack-and-pinion movement for the said sealing-tube, a hollow plunger slidable in the sealing-tube, a rack-and-pinion movement for the said plunger, and a filling-tube slidable in the hollow plunger and connected - at one end with the liquid-supply and provided at the other end with a check-valve, as set forth.
7. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable 25 thereon, means for moving the bracket on the guideway, a sealing-tube slidable on the bracket, a rack-and-pinion movement for the said sealing-tube, a hollow plunger slidable in the sealing-tube, a rack-and-pinion move30 ment for the said planger, a filling-tube slidable in the hollow plunger and connected at one end with the liquid-supply and provided at the other end with a check-valve, a pres-sure-tank, and a connection between the 35 pressure-tank and the head of the sealingtube, as set forth.
8. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable thereon, means for moving the bracket on 40 the guideway, a sealing-tube slidable on the bracket, a rack-and-pinion movement for the said sealing-tube, a hollow plunger slidable in the sealing-tube, a rack-and-pinion movement for the said plunger, a filling-tube slid-
45 able in the hollow plunger and connected at one end with the liquid-supply and provided at the other end with a check-valve, a pres-sure-tank, a connection between the pressuretank and the head of the sealing-tube, and an observation device in the said connection, as
set forth.
9. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable thereon, means for moving the bracket on 55 the guideway, a sealing-tube slidable on the bracket, a rack-and-pinion movement for the said sealing-tube, a hollow plunger slidable in the sealing-tube, a rack-and-pinion movement for the said plunger, a filling-tube slid-
60 able in the hollow plunger and connected at oue end with the liquid-supply and provided at the other end with a check-valve, a liquidsupply pipe, a flexible connection between the supply-pipe and the filling-tube, and valved
65 outlets connected with the said supply-pipe, as set forth.
10. A racking and bunging apparatus, com-
prising a fixed guideway, a bracket movable thereon, means for moving the bracket on the guideway, a sealing-tube slidable on the bracket, a rack-and-pinion movement for the said sealing-tube, a hollow plunger slidable in the sealing-tube, a rack-and-pinion movement for the said plunger, a filling-tube slidable in the hollow plunger and connected at one end with the liquid-supply and provided at the other end with a check-valve, a liquidsupply pipe, a flexible connection between the supply-pipe and the filling-tube, valved outlets connected with the said supply-pipe, and an observation device in the said snpply-pipe, as set forth.
11. A racking and bunging apparatus, provided with a bearing, a sealing-tube slidable in the bearing, a hollow plunger slidable in the sealing-tube, a filling-tube slidable in the plunger, a rack on the said sealing-tube, a pinion in mesh with the rack and journaled on the bearing, a worm adapted to be moved in mesh with the said pinion, a frame pivoted in the bearing and in which the worm is journaled, a spring pressing the frame to normally hold the worm in mesh with the pinion and means for regulating the tension of the spring, as set forth.
12. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable thereon, means for moving the bracket on the guideway, a sealing-tube slidable on the bracket, a rack-and-pinion movement for the said sealing-tube, a hollow plunger slidable in the sealing-tube, a rack-and-pinion movement for the said plunger, a filling-tube slidable in the hollow plunger and connected at one end with the liquid-supply and provided at the other end with a check-valve, and a counterbalance for the said filling-tube, as set forth.
13. A racking and bunging apparatus, provided with a guideway, a collar slidable on the guideway, a screw-rod for sliding the collar on the guideway, a bracket mounted to turn on the gaideway and moved up and down by the said collar, the said bracket having a bearing, a sealing-tube slidable in the bearing, a hollow plunger slidable in the sealing - tube, and a filling-tube slidable in the plunger, as set forth.
14. A racking and bunging apparatus, provided with a guideway, a collar slidable on the guideway, a screw-rod for sliding the collar on the guideway, a bracket mounted to turn ou the guideway and moved upand down by the said collar, and devices carried by the said bracket, for sealing the vessel to be filled, for filling the vessel with the liquid and for driving the bung into the bung-hole of the filled vessel, as set forth.
15. A racking and bunging apparatus, provided with a guideway, a bracket mounted to slide on and to turn on said guideway and having spaced integral rings, a collar slidable on the gaideway and located between the said rings, the collar being provided with a nut, a
screw-rod screwing into the nut for sliding the collar on the guideway to move the bracket up and down, means for fastening the bracket in place on the guideway, a vertically-reciprocating tube and sealing-head slidable on the bracket, and means for reciprocating the same, as set forth.
16. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable o thereon, means for moving the bracket on the guideway, a sealing-tube slidable on the bracket, a rack-and-pinion movement for the said sealing-tube, a hollow plunger slidable in the sealing-tube, a rack-and-pinion move-都 able in the hollow plunger and connected at one end with the liquid-supply and provided at the other end with a check-valve, and means for temporarily fastening the fillingtube to the bunging-tube, as set forth.
17. In a racking device for beer or other liquids, the combination of a vertically and horizontally adjustable bracket, a guideway on which said bracket is mounted, means for securing the bracket to the guideway in any desired position, a vertically - reciprocating hollow tube and sealing-head for sealing a package around its bung, means for reciprocating the same, a vertically-reciprocating plunger, the tube and sealing-head receiving and acting as a guide for the said plunger, and means for reciprocating the plunger, as set forth.
18. In a racking device, the combination of
19. In a racking device, the combination of an adjustable bracket, a vertically-reciprocating hollow tube and sealing-head, means for reciprocating same, a vertically-reciprocating hollow plunger, for which the hollow
50 tube and sealing-head act as a guide, means for reciprocating the hollow plunger, independent of the tube and sealing-head, a ver-tically-reciprocating filling-tube, adapted to be inserted into a package, this hollow plunan adjusting-bracket, vertically-reciprocating tube and sealing-head, means for reciprocating same, a vertically-reciprocating hollow plunger, the tube and sealing-head to receive and act as a guide for said plunger, means for reciprocating said plunger independently of the hollow tube and sealing-head and a filling-tube movable in said plunger and connected at one end with a liquid-supand connected at one end with a liqu-sup ply and for the purpose as set forth.
ger to receive and act as a guide for the fill-ing-tube, this filling-tube to have at its lower end a valve, which is automatically closed by the weight of the liquid, and for the purpose as set forth.
20. In a racking device, the combination 60 with a liquid-supply pipe connected with a storage-tank, and branch pipes leading from the supply-pipe, one of said branch pipes containing a stop-valveand the other branch pipe containing an automatic relief-valve, of a fill- 6 ing-tube connected with said supply-pipe, a fixed guideway, a bracket movable thereon, means for moving the bracket in the guideway, a sealing-tube slidable on the bracket, and provided with a sealing-head, a pressuretank connected with the sealing-head, and a hollow planger slidable in the sealing-head, the said filling-tube being slidable in the hollow plunger, as set forth.
21. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable thereon, means for moving the bracket on the guideway, a sealing-tube slidable on the bracket and provided with a sealing-head, a pressure-tank, a connection between the pres-sure-tank and the sealing-head, an observa-tion-glass in said connection, a valve located in said connection between the observationglass and the said sealing-head, means for actuating the sealing-tube, a hollow plunger slidable in the sealing-tube, means for actuating the said plunger, and a filling-tube slidable in the said plunger and connected with a liquid-supply, as set forth.
22. A racking and bunging apparatus, comprising a fixed guideway, a bracket movable thereon, means for moving the bracket on the guideway, a sealing-tube slidable on the bracket, means for actuating the sealing-tube, a hollow plunger slidable in the sealing-tube, means for actuating the said plunger, a fill-ing-tube slidable in the hollow plunger and connected at one end with a liquid-supply and provided at the other with a check-valve, and means for securing the filling-tube in po- roo sition on the said plunger, as set forth.

In testimony whereof I have signed my name to this specification in the presence of two subseribing witnesses.

HENRY REININGER.

Witnesses:

John F. A. Hebel,
Edmund Wegener.

85

