发明名称
乳液中交联的透明质酸

摘要
本发明涉及产生交联的透明质酸微珠的方法，以及产生的微珠，所述方法包括步骤：(a) 将包含透明质酸或其盐的含水碱溶液与包含交联剂的溶液混合；(b) 在有机相或油相中由步骤 (a) 的混合溶液形成具有期望大小的微滴，以形成有机包水或油包水 (W/O) 乳液；(c) 连续搅拌 W/O 乳液，由此进行透明质酸与二乙烯砜的反应以提供交联的透明质酸微珠；和 (d) 纯化交联的透明质酸微珠。
1. 产生交联的透明质酸微珠的方法，所述方法包括步骤：
 (a) 将包含透明质酸或其盐的含水碱溶液与包含交联剂的溶液混合；
 (b) 在有机相或油相中由步骤 (a) 的混合溶液形成具有期望大小的微滴，以形成有机包水或油包水 (W/O) 乳液；
 (c) 连续搅拌 W/O 乳液，由此进行透明质酸与二乙烯砜的反应以提供交联的透明质酸微珠；和
 (d) 纯化所述交联的透明质酸微珠。

2. 权利要求 1 的方法，其中透明质酸或其盐在芽孢杆菌属 (Bacillus) 宿主细胞中重组产生。

3. 权利要求 1 或 2 的方法，其中透明质酸或其盐的数均分子量为 100-3,000kDa，优选 500-2,000kDa，并且最优选 700-1,800kDa。

4. 权利要求 1-3 中任一项的方法，其中所述碱溶液包括溶剂的透明质酸或其盐，浓度为 0.1% - 40% (w/v)。

5. 权利要求 1-4 中任一项的方法，其中所述碱溶液包括溶剂的氢氧化钠，浓度为 0.001-2.0M。

6. 权利要求 1-5 中任一项的方法，其中所述交联剂是二乙烯砜 (DVS)。

7. 权利要求 6 的方法，其中 DVS 以 HA/DVS (干重) 为 1 : 1-100 : 1，优选 HA/DVS (干重) 为 2 : 1-50 : 1 的重量比包括在步骤 (a) 的混合溶液中。

8. 权利要求 1-7 中任一项的方法，其中透明质酸与二乙烯砜的反应在 5℃ -100℃ 范围内，优选 15℃ -50℃ 范围内，更优选 20℃ -30℃ 范围内的温度进行。

9. 权利要求 1-8 中任一项的方法，其中步骤 (c) 中的搅拌持续 1-180 分钟。

10. 权利要求 1-9 中任一项的方法，其中步骤 (b) 中的微滴具有约 1 纳米至 1 毫米范围内的数均直径。

11. 权利要求 1-10 中任一项的方法，其中所述纯化步骤包括使用可允许大小小于 13,000 道尔顿的分子自由扩散的透析膜，针对去离子水透析交联的微珠。

12. 权利要求 1-11 中任一项的方法，其中所述纯化步骤包括用缓冲液或酸中和交联的微珠的 pH。

13. 权利要求 12 的方法，其中所述缓冲液包括 pH 值在 2.0-8.0 范围内，优选在 5.0-7.5 范围内的缓冲液。

14. 权利要求 12 或 13 的方法，其中缓冲液包括 pH 值可使交联的微珠在纯化步骤后具有 5.0-7.5 的 pH 值的缓冲液。

15. 权利要求 12-14 中任一项的方法，其中缓冲液包括磷酸盐缓冲液和 / 或盐水缓冲液。

16. 权利要求 1-15 中任一项的方法，其中用水和 / 或磷酸盐和 / 或盐水缓冲液洗涤交联的微珠至少一次，所述缓冲液具有 2.0-8.0 范围内，优选 5.0-7.5 范围内的 pH 值。

17. 权利要求 1-16 中任一项的方法，其中在交联反应前或后将防腐剂作为组分添加至交联的微珠。

18. 包含与二乙烯砜交联的透明质酸或其盐的微珠。

19. 微珠，其具有约 1 纳米至 1 毫米范围内的数均直径。
20. 根据权利要求 18 或 19 的微球，其中所述透明质酸其盐具有 300,000-3,000,000 范围内；优选 400,000-2,500,000 范围内；更优选 500,000-2,000,000 范围内；并且最优选 600,000-1,800,000 范围内的分子量。

21. 根据权利要求 18 或 19 的微球，其中所述透明质酸其盐具有 10,000-800,000 Da 范围内；优选 20,000-600,000 Da 范围内；更优选 30,000-500,000 Da 范围内；甚至更优选 40,000-400,000 Da 范围内；并且最优选 50,000-300,000 Da 范围内的低的平均分子量。

22. 根据权利要求 18-21 中任一项的微球，其包含透明质酸的无机盐，优选透明质酸钠、透明质酸钾、透明质酸铵、透明质酸钙、透明质酸镁、透明质酸锌或透明质酸钻。

23. 根据权利要求 18-22 中任一项的微球，其还包含活性成分。

24. 根据权利要求 23 的微球，其中所述活性成分是药理学活性物质。

25. 根据权利要求 18-24 中任一项的微球，其还包含水溶性赋形剂，优选乳糖。

26. 根据权利要求 18-25 中任一项的微球，其还包含防腐剂。

27. 包含权利要求 18-26 中任一项所限定的微球和活性成分的组合物，优选地，活性成分是药理学活性剂。

28. 根据权利要求 27 的组合物，其还包含水溶性赋形剂，优选乳糖。

29. 药物组合物，其包含有效量的权利要求 18-26 中任一项所限定的微球，连同药物可接受的载体，赋形剂或稀释剂。

30. 药物组合物，其包含有效量的权利要求 18-26 中任一项所限定的微球作为运载体，连同药理学活性剂。

31. 卫生、医药或外科用品，其包含权利要求 18-26 中任一项所限定的微球，或权利要求 27-30 中任一项所限定的组合物；优选地，所述用品是尿布、卫生巾、外科海绵、伤口愈合海棉或者急救绷带或其它创伤敷料材料中包括的部分。

32. 药物胶囊或微胶囊，其包含权利要求 18-26 中任一项所限定的微球或权利要求 27-30 中任一项所限定的组合物。

33. 权利要求 18-26 中任一项所限定的微球或权利要求 27-30 中任一项所限定的组合物在制备用于治疗骨关节炎的药物中的用途。

34. 权利要求 18-26 中任一项所限定的微球或权利要求 27-30 中任一项所限定的组合物在制备用于眼科治疗的药物中的用途。

35. 权利要求 18-26 中任一项所限定的微球或权利要求 27-30 中任一项所限定的组合物在制备用于治疗癌症的药物中的用途。

36. 权利要求 18-26 中任一项所限定的微球，或权利要求 27-30 中任一项所限定的组合物在制备用于处理伤口的药物中的用途。

37. 权利要求 18-26 中任一项所限定的微球或权利要求 27-30 中任一项所限定的组合物在制备用于血管出血的药物中的用途。

38. 权利要求 18-26 中任一项所限定的微球或权利要求 27-30 中任一项所限定的组合物用于制备湿润剂的用途。

39. 权利要求 18-26 中任一项所限定的微球或权利要求 27-30 中任一项所限定的组合物在制备用于治疗脱发或秃顶的药物中的用途。

40. 权利要求 18-26 中任一项所限定的微球或权利要求 27-30 中任一项所限定的组合物用于制备...)
物用于制备皮肤填充剂的用途。

41. 权利要求 18–26 中任一项所限定的微珠或权利要求 27–30 中任一项所限定的组合物在制备用于组织增加的药物中的用途。

42. 权利要求 18–26 中任一项所限定的微珠或权利要求 27–30 中任一项所限定的组合物用于制备药物传递运载体的用途。
乳液中交联的透明质酸

发明领域
[0001] 本发明涉及用于产生交联的透明质酸微珠的过程，以及产生的微珠，所述方法包括步骤：
[0002] (a) 将包含透明质酸或其盐的含水碱溶液与包含交联剂的溶液混合；
[0003] (b) 在有机或油相中由步骤 (a) 的混合溶液形成具有期望大小的微滴，以形成有机包水或包油 W/O 乳液；
[0004] (c) 连续搅拌 W/O 乳液，由此进行透明质酸与二乙烯砜的反应以提供交联的透明质酸微珠；和
[0005] (d) 纯化交联的透明质酸微珠。
[0006] 发明背景
[0007] 本发明涉及用于制备修饰的透明质酸 (HA) 的方法，特别是乳液中交联的 HA，其用于生物医学和药物应用中。
[0008] 透明质酸 (HA) 是天然的直链糖类聚合物，其属于非硫酸化的 (non-sulfated) 糖胺聚糖类。由 B-1,3-、乙酰葡萄糖胺和 B-1,4- 葡萄糖醛酸的重复二糖单元组成，具有多至 6MDa 的分子量 (MW)。HA 存在于透明软骨、滑膜关节液 (synovial joint fluid) 和真皮和表皮皮肤组织中。可以从天然组织包括脊椎动物的结缔组织、从人脐带和从鸡冠 (cocks’ comb) 中提取 HA。然而，现今优选的是通过微生物方法制备透明质酸以便转移传染的潜在风险最小化，并且增加产物均匀性、品质和可用性 (WO 03/0175902, Novozymes)。
[0009] 已经鉴定了 HA 在体内的多种功能。它在生物体中作为对许多组织（例如皮肤、腱、肌肉和软骨）的细胞的机械支持而发挥重要作用。HA 参与了关键的生物学过程，例如组织的湿润、和润滑。它还疑似在许多生理功能中具有作用，例如粘附、发育、细胞运动性、瘤、血管发生和愈伤。由于 HA 独特的物理和生物学性质（包括粘弹性、生物相容性、生物可降解性），将 HA 广泛应用在眼科学、风湿病学、药物传递、愈伤以及组织工程中现有的和正在发展的应用中。在这些应用中的一些中 HA 的使用受到下述事实的限制，即在室温也就是大约 20°C HA 溶于水，在体内其被透明质酸酶迅速降解，和难以将其加工成生物材料。因此引入了 HA 的交联，从而改进 HA 的物理和机械性质及体内停留时间。
制备 HA 的交联凝胶的方法。
[0011] WO 2008/100041 发表于本申请的优先权年份，并且描述了通过交联透明质酸而制备透明质酸水凝胶纳米颗粒的方法，该方法包括混合 (i) 包含溶于其中的表面活性剂的油相和 (ii) 水相，其中包含透明质酸和溶于含水碱溶液的水溶性交联剂，其中未提及二乙烯砜，从而形成 w/o 乳液，并且交联 w/o 乳液中的透明质酸，油相包含十二烷、庚烷或鲸蜡基乙基己酸 (cetylethylhexanoate)。
[0012] EP 0 830 416 (等同于 US 6,214,331) 描述了交联的水溶性聚合物颗粒制备物的制备，其中颗粒的直径小于 212 μm，并且其中至少 80% 的颗粒为球形，可通过如下获得，将含水聚合物溶液（其包含选自如下的水溶性聚合物：透明质酸、硫酸软骨素、硫酸皮肤素、硫酸角质素、纤维素、几丁质、壳聚糖、琼脂糖、角叉菜胶、凝胶多糖、右旋糖醇、脂肪乳剂（Emulsan）、胶凝糖、黄原胶 (xanthans)、聚 (环氧乙烷)、聚 (乙烯醇)、聚 (N- 乙烯吡咯烷酮)、蛋白质、糖蛋白、肽聚糖、蛋白聚糖、糖多糖或它们的组合，和含水介质）加入包含油包水乳化剂的油相，搅拌混合物形成包含聚合物滴的乳液，并通过交联剂将聚合物滴原位交联，形成交联聚合物颗粒。为了产生透明质酸微球，直接向甲苯中的含水透明质酸的乳液加入交联剂。首先通过将水溶液的 pH 调至 pH11 而将交联剂失活，然后通过将 pH 降低至 7 至 8 而活化。优选的是使用甲苯、氯甲苯或异辛烷作为油相。水相与油相的重量比约为 1:1。
[0013] Nurettin Sahiner 和 Xinqiao Jai (Turk J Chem, 32 (2008), 397-409) 描述了使用异辛烷作为油相制备基于透明质酸的亚微米水凝胶颗粒。为了制备乳液，将 0.54ml 透明质酸水溶液添加至 15ml 异辛烷，使水相与油相的重量比高于 10:1。
[0014] 发明概述
[0015] 由上述显然可知，己知各种适合制备交联的 HA- 凝胶的交联剂。然而，商业上仍然有兴趣提供特别适合于多种应用的 HA 的新配制物。例如，提供期望大小的凝胶 - 样交联的 HA 微珠的新方法，其横截面为纳米至亚纳米级，是商业上感兴趣的。这些交联的 HA 的微珠可以用于多种应用，如，作为药物的递送载体，它们本身作为生物活性剂，作为组合物中的组分，和用于多种生物医学应用中。
[0016] 因此，在第一方面，本发明涉及产生交联的透明质酸微珠的方法，所述方法包括步骤：
[0017] (a) 将包含透明质酸或其盐的含水碱溶液与包含交联剂的溶液混合；
[0018] (b) 在有机相或油相中移动 (a) 的混合溶液形成具有期望大小的微滴，以形成有油包水乳液 (W/O) 乳液；
[0019] (c) 连续搅拌 W/O 乳液，由此进行透明质酸与二乙烯砜的反应以提供交联的透明质酸微珠；和
[0020] (d) 纯化所述交联的透明质酸微珠。
[0021] 在第二方面，本发明涉及包含透明质酸或其盐的微珠，其与二乙烯砜交联，优选通过第一方面的方法制得。
[0022] 在第三方面，本发明涉及包含第二方面中限定的微珠和活性成分的组合物，优选地，活性成分是药理学活性剂。
[0023] 本发明的第四方面涉及制药组合物，其中包含有效量的第二方面中限定的微珠，
连同医药上可接受的载体、赋形剂或稀释剂。
[0024] 第五方面涉及药物组合物，其中包括有效量的第二方面中限定的微珠作为运载体，连同药理学活性剂，后者优选在微珠中包被为分散系或溶液。
[0025] 在第六方面，本发明涉及卫生、医药或外科用品，其包含第二方面中限定的微珠或第三、四或五方面中任一方面所限定的组合物，优选地，用品为尿布、卫生巾、外科海绵、愈伤海绵，或包含于急救绷带或其它创伤敷料材料中的部分。
[0026] 一个重要方面涉及药物胶囊或微胶囊，其包含第二方面限定的微珠或第三、四或五方面中任一方面所限定的组合物。
[0027] 很多方面涉及第二方面中限定的微珠或第三、四或五方面中任一方面所限定的组合物的用途，所述用途用于制备治疗骨关节炎、癌症的药物，制备用于眼科治疗的药物，制备用于处理伤口的药物，制备用于血管发生的药物，制备用于治疗脱发或秃顶的药物，制备湿润剂，制备皮肤填充剂，药物传递系统/运载体或组织增加 (tissue augmentation) 设备。
[0028] 附图简述
[0029] 图 1 显示分离的交联的透明质酸凝胶颗粒的显微照片，表示直径为 22 微米的颗粒的球形轮廓。
[0030] 图 2 显示包括 pH 指示剂作为显色剂的乳液的显微照片。照片显示由较大颗粒包围的小颗粒 (1-5 微米) 的贡献。
[0031] 图 3 显示分离的交联的透明质酸凝胶颗粒的显微照片 (80x)，显示直径最大 1mm 的凝胶颗粒。
[0032] 图 4 显示分离的微珠颗粒的显微照片，显示具有不同大小直径 (500-1000 微米范围内) 的颗粒的球形轮廓。
[0033] 图 5 显示洗涤过程后颗粒的显微照片。
[0034] 定义
[0035] 术语 “透明质酸” 在本文中用于表示具有不同分子量的酸化多糖，其由 D- 葡糖醛酸和 N- 乙酰葡糖胺酸组成，其天然存在于细胞表面、脊椎动物结缔组织的胞外基质（basic extracellular substance）中，关节的滑液中、眼角膜液 (endobulbar fluid of the eye) 中、人脂带组织中和鸡冠中。
[0036] 术语 “透明质酸” 事实上经常用来表示具有不同分子量的具有 D- 葡糖醛酸和 N- 乙酰 -D- 葡糖胺酸的交替残基的全系列多糖，或者甚至所述多糖的降解的部分，因此使用复数术语的 “透明质酸” 似乎更正确。然而，单数术语将在本文中同样使用；此外，缩略形式 “HA” 经常用来代替集合术语。
[0037] “透明质酸” 在本文中定义为非硫酸化的羧胶聚糖，其由通过交替的 β-1,4 和 β-1,3 糖苷键连接在一起的 N- 乙酰葡糖胺 (GlcNAc) 和葡糖醛酸 (GlcUA) 的重复二糖单元组成。透明质酸也称为乙酰透明质酸 (hyaluronan)、透明质酸 (hyaluronate) 或 HA。术语乙酰透明质酸和透明质酸在本文可互换使用。
[0038] 鸡冠是乙酰透明质酸的主要商业来源。微生物是可供选择的来源。美国专利4,801,539 公开了用兽链球菌 (Streptococcus zooepidemicus) 制备透明质酸的发酵方法，报道的产量为约 3.6g 透明质酸每升。欧洲专利 EP0694616 公开了使用改进的兽链球
菌株的发酵方法，报道的产量为约 3.5g 透明质酸每升。如 WO 03/054163 (Novozymes) 中所公开的，其通过提及整体并入本文，透明质酸或其盐可以重组产生，例如，在革兰氏阳性
的芽孢杆菌属宿主中产生。[0039] 已经描述了来自脊椎动物、细菌病源体和海藻病毒的乙酰透明质酸合酶
(Pasteurella multocida) 的 II 组透明质酸合酶。Ferretti 等公开了酿脓链球菌的透明质酸
合酶操纵子，其由三个基因组成，hasA、hasB 和 hasC，其分别编码透明质酸合酶、UDP 葡萄
99/51265 描述了包括似马链球菌乙酰透明质酸合酶的编码区域的核酸区段。
[0040] 因为重组芽孢杆菌属细胞的乙酰透明质酸直接表达至培养基，所以可以使用简单
的方法从培养基分离透明质酸。首先，从培养基物理去除芽孢杆菌属细胞和细胞碎片。如
果需要，可以先稀释培养基，以降低培养基的粘度。本领域的技术人员已知有很多方法用于从
培养基移出细胞，如离心或微滤。如果需要，然后可以过滤剩余的上清液，如通过超滤，以浓
缩并从乙酰透明质酸去除小分子污染物。在去除细胞和细胞碎片后，通过已知的机制简单地
从培养基沉淀乙酰透明质酸。可以使用盐、醇或盐与醇的组合从滤液沉淀乙酰透明质酸。
一旦成为沉淀物，可通过物理方法从溶液中分离乙酰透明质酸。可使用本领域已知的
蒸发技术，如冻干或喷雾干燥从过滤溶液干燥或浓缩乙酰透明质酸。
[0041] 术语“微珠”在本文中可与微滴 (microdrop)、微滴 (microdroplet)、微粒、微球、
纳米珠、纳米滴 (nanodrop)、纳米滴 (nanodroplet)、纳米颗粒、纳米球等互换使用。典型的
微珠大致为球形，数均横截面或直径为 1 纳米 ~1 微米。尽管如此，本发明的微珠的理想尺
寸通常在窄得多的范围内，即，它们是相当均一的。微珠优选具有约 100~1000 纳米，或
1000 纳米 ~1000 微米的直径。微珠的尺寸分布低并且多分散性窄。
[0042] 宿主细胞
[0043] 一个优选的实施方案涉及第一方面的方法，其中透明质酸或其盐是重组产生的，
优选通过革兰氏阳性细菌或宿主细胞，更优选通过芽孢杆菌属 (genus Bacillus) 的细胞来
重组产生。
[0044] 宿主细胞可以是适合用于重组产生透明质酸的任何芽孢杆菌属细胞。芽孢杆菌属
宿主细胞可以是野生型芽孢杆菌属细胞或其变体。在本发明的实施中有用的芽孢杆菌属
细胞包括，但不限于 Bacillus agaradherhens、嗜碱芽孢杆菌 (Bacillus alkalophilus)、
解淀粉芽孢杆菌 (Bacillus amyloliquefaciens)、短芽孢杆菌 (Bacillus brevis)、环
状芽孢杆菌 (Bacillus circulans)、克劳氏芽孢杆菌 (Bacillus clausii)、凝结芽孢杆
菌 (Bacillus coagulans)、坚硬芽孢杆菌 (Bacillus firmus)、灿烂芽孢杆菌 (Bacillus
lautus)、迟缓芽孢杆菌 (Bacillus lentus)、地衣芽孢杆菌 (Bacillus licheniformis)、巨
大芽孢杆菌 (Bacillus megaterium)、短小芽孢杆菌 (Bacillus pumilus)、嗜热脂肪芽孢杆
菌 (Bacillus steatoothermophilus)、枯草芽孢杆菌 (Bacillus subtilis) 和苏云金芽孢
杆菌 (Bacillus thuringiensis) 细胞。在 WO 98/22598 中描述尤其适合用于重组表达
的突变枯草芽孢杆菌细胞。非包囊的 (non-encapsulating) 芽孢杆菌属细胞尤其适用于本发
明。

在一个优选的实施方案中，芽孢杆菌属宿主细胞是解淀粉芽孢杆菌、克劳氏芽孢杆菌、迟缓芽孢杆菌、地衣芽孢杆菌、嗜热脂肪芽孢杆菌或枯草芽孢杆菌细胞。在一个更优选的实施方案中，芽孢杆菌属细胞是解淀粉芽孢杆菌细胞。在另一个更优选的实施方案中，芽孢杆菌属细胞是克劳氏芽孢杆菌细胞。在另一个更优选的实施方案中，芽孢杆菌属细胞是迟缓芽孢杆菌细胞。在另一个更优选的实施方案中，芽孢杆菌属细胞是地衣芽孢杆菌细胞。在另一个更优选的实施方案中，芽孢杆菌属细胞是枯草芽孢杆菌细胞。在一个最优选的实施方案中，芽孢杆菌属宿主细胞是枯草芽孢杆菌 A164 A5（参见美国专利No. 5, 891, 701）或枯草芽孢杆菌 168 A4。

分子量

在一个优选的实施方案中，本发明的透明质酸或其盐的分子量为约 1,000 至约 10,000,000Da。在另一个更优选的实施方案中，其分子量为约 25,000 至约 5,000,000Da。在一个最优选的实施方案中，透明质酸或其盐的分子量为约 50,000 至约 3,000,000Da。

在一个优选的实施方案中，透明质酸或其盐的分子量为约 300,000 至约 3,000,000Da; 优选为约 400,000 至约 2,500,000Da; 更优选为约 500,000 至 2,000,000Da; 并且最优选 600,000 至 1,800,000Da。

在一个优选的实施方案中，透明质酸或其盐具有在 10,000-800,000Da; 优选在 20,000-600,000Da; 更优选在 30,000-500,000Da; 甚至更优选在 40,000-400,000Da; 并且最优选 50,000-300,000Da 的低数均分子量。

盐和交联的 IIA

优选的实施方案涉及第一方面的方法，其包含透明质酸的无机盐，优选透明质酸钠、透明质酸钾、透明质酸铵、透明质酸钙、透明质酸镁、透明质酸锌或透明质酸钴。

其它成分

在一个优选的实施方案中，由本发明的方法产生的产品还可以包含其它成分，优选一种或多种活性成分，优选一种或多种药理学活性物质，并且还优选水溶性赋形剂，如乳糖或非生物来源的糖。

可在本发明中使用的活性成分或一种或多种药理学活性物质的非限定性实例包括维生素、抗炎药、抗生素、抑菌剂、常用麻醉药物，如利多卡因、吗啡等，以及蛋白质和/或肽药物，如，人生长激素、牛生长激素、猪生长激素、生长激素释放激素/肽；粒细胞-巨噬刺激因子、粒细胞巨噬细胞-巨噬刺激因子、巨噬细胞-巨噬刺激因子、红细胞生成素、成骨蛋白、干扰素或其他生物分子、胰岛素或其他生物分子、心房肽 -III、单克隆抗体、肿瘤坏死因子、巨噬细胞活化因子、白细胞介素、肿瘤坏化因子、胰岛素-样生长因子、表皮生长因子、组织纤维蛋白溶酶原激活剂、IV 因子、III 因子和尿激酶。

为稳定活性成分可以包括水溶性赋形剂，这种赋形剂可以包括蛋白质，例如，白蛋
白或明胶；氨基酸，如甘氨酸，丙氨酸，谷氨酸，精氨酸，赖氨酸和它们的盐；糖如葡萄糖，乳糖，木糖，半乳糖，果糖，麦芽糖，蔗糖，右旋糖酐，甘露糖醇，山梨糖醇，海藻糖和硫酸软骨素；无机盐如磷酸盐；表面活性剂如 TWEEN® (IC1)、聚乙二醇，和它们的混合物。赋形剂或稳定剂可以产品重量的 0.001 至 99% 的量使用。

[0057] 本发明的几个方面涉及各种组合物和药物，其中包含，除其它组分外，有效量的交联的 HA 产品，和活性成分，优选地，活性成分作为药理学活性剂；药学可接受的载体，赋形剂或稀释剂，优选水溶性赋形剂，并且优选乳糖。

[0058] 此外，本发明的方面涉及产品，其中包含如第一方面所限定的产品，或上述方面和实施方案中所限定的组合物，例如，卫生用品，医疗或外科用品。在最后一个方面，本发明涉及药物胶囊或微胶囊，其中包含第一方面所限定的产品，或本发明其它方面和实施方案中所限定的组合物。

[0059] 发明详述

[0060] 本发明的第一方面涉及产生交联的透明质酸微珠的方法，所述方法包括步骤：

[0061] （a）将包含透明质酸或其盐的含水碱溶液与包含交联剂的溶液混合；

[0062] （b）在有机相或缓冲液中步骤（a）的混合溶液转形成具有期望大小的微滴，以形成有机包水或水包油（W/O）乳液；

[0063] （c）连续搅拌 W/O 乳液，由此进行透明质酸与二乙烯砜的反应以提供交联的透明质酸微珠；和

[0064] （d）纯化所述交联的透明质酸微珠。

[0065] 先前已经描述了如何在芽孢杆菌属宿主细胞中重组产生透明质酸，参见 WO 2003/054163，Novozymes A/S，其通过所述全部并入本文。

[0066] 因此，在一个优选的实施方案中，本发明涉及第一方面的方法，其中在芽孢杆菌属宿主细胞中重组产生透明质酸或其盐。

[0067] 透明质酸的各种分子量的部分已经作为特定用途的优势而描述。

[0068] 本发明的一个优选实施方案涉及第一方面的方法，其中透明质酸或其盐具有 100 〜 3,000 kDa，优选 500 〜 2,000 kDa，并且最优选 700 〜 1,800 kDa 的数均分子量。

[0069] 在本发明的方法中，透明质酸或其盐的初始浓度可以影响得到的交联的微珠的性质。因此，本发明的一个优选实施方案涉及第一方面的方法，其中碱溶液包含溶解的透明质酸或其盐，浓度为 0.1% 〜 40% （w/v）。

[0070] 交联反应过程中的 pH 值影响产物结果，所以在一个优选的实施方案中，本发明涉及第一方面的方法，其中碱溶液以 0.001 〜 2.0M 的浓度包含溶解的氢氧化钠。

[0071] 还值得注意的是，交联剂的浓度对产生的微珠具有显著影响。

[0072] 因此，本发明的优选实施方案涉及第一方面的方法，其中交联剂是二乙烯砜（DVS）；优选地，DVS 以 1 ： 1 〜 100 ： 1 的 HA/DVS（干重），优选 2 ： 1 〜 50 ： 1 的 HA/DVS（干重）的比例稀释在步骤（a）的混合溶液中。

[0073] 作为适于本发明的方法，也设想其它交联剂，如，基于双环氧化物交联技术的交联剂：GDE = 丙三醇二环氧甘油醚，而 BDE：1，4- 丁二醇二环氧甘油醚。

[0074] 适用于本发明方法的交联剂为，例如，多官能（> = 2）OH- 反应性化合物。合适的交联剂的实例为二乙烯砜（DVS）或基于双环氧化物交联技术的交联剂，例如 GDE = 丙三醇
二环氧甘油醚或BDE:1,4-二醇二环氧甘油醚。交联剂优选选自二乙烯砜、丙三醇二环氧甘油醚或1,4-二醇二环氧甘油醚。本发明优选的交联剂是二乙烯砜，其优选以上述重量比使用。

[0075] 本发明人发现，在将包含交联剂的溶液和HA-溶液混合过程中和/或在其中后的初始搅拌期对于实现令人满意的胶凝实理想的。

[0076] 因此，本发明的优选实施方案涉及第一方面的方法，其中交联质与二乙烯砜的反应在5℃-100℃，优选15℃-50℃，更优选20℃-30℃的温度进行。

[0077] 在第一方面方法的另一个优选实施方案中，步骤(c)中的搅拌持续1-180分钟。

[0078] 本发明的发明人确定在混合溶液后的加热步骤是有益的。

[0079] 因此，本发明的一个优选实施方案涉及第一方面的方法，其中将混合溶液加热至20℃-100℃，优选25℃-80℃，更优选30℃-60℃，并且优选35℃-55℃的温度，并且其中在混合溶液后将温度在此范围内保持一定时间，至少5分钟，优选至少10分钟，20分钟，30、40、50、60、70、80、90、100、110、120、130、140、150、160、170，或者优选至少180分钟，优选不进行搅拌。

[0080] 在进行交联反应后，将反应混合物在室温保留在短时间是有利的，但是要连续搅拌。

[0081] 在第一方面的方法的优选实施方案中，反应混合物在反应进行一段时间，至少5分钟，优选至少10分钟，20分钟，30、40、50、60、70、80、90、100、110、120、130、140、150、160、170，或者优选至少180分钟后保持在0℃-40℃，优选10℃-30℃的温度。

[0082] 在步骤(b)的微滴的数均直径为约1纳米至1毫米时可为有利的。步骤(b)的微滴的颗粒大小分布的最大值优选为0.1-100μm，更优选0.5-10μm，并且优选1-2μm。可以通过选择使用的乳化剂和搅拌强度调整液滴的尺寸。可以通过简单的测试系列，确定使用的乳化剂和获得期望大小的液滴所需的搅拌强度的组合。可以用Accusizer(780 Optical Particle Sizer, PSSNICOmp, Santa Barbara, CAL, USA with Accusizer 780AD CW788-Nicompssoftware, V 1.68 (2000))确定液滴或微珠的尺寸。

[0083] 在一个优选的方面，本发明涉及第一方面的方法，其中步骤(b)的微滴的数均直径在约1纳米至1毫米的范围内。还优选的是，第二方面的交联的微珠的数均直径在约1纳米至1毫米的范围内。

[0084] 在步骤(c)中获得分散液可为有利的，其中几乎不包括未反应的交联剂。优选地，分散液，更优选地，微珠包含按重量计小于10 ppm(wppm)，更优选少于5 ppm。如果分散剂直接用于药物或生物医药应用/设备组合物中，分散剂中游离交联剂的浓度需要为很低，因为未反应的交联剂可为毒物组分。因此，优选步骤(c)的操作持续，直至获得上述浓度包含未反应交联剂的分散剂。

[0085] 可以使用来自下组中至少一种化合物作为非离子乳化液或表面活性剂:2-100摩尔环氧乙烯和/或0至5摩尔的环氧丙烷加成于在烷基中具有8至22个C原子的直链脂肪醇的产物，和加成于在烷基中具有12至22个C原子的脂肪酸，和加成于在烷基中具有8至15个C原子的烷基酯的产物，1至100摩尔环氧乙烯加成于甘油的加成产物的C12/18脂肪酸单酯和二酯，具有6至22个碳原子的饱和与不饱和脂肪酸的甘油单酯和二酯，和它们环氧乙烯加成产物，在烷基基团中具有8至22个碳原子的烷基单-和寡糖类和其环氧乙烯加成产物，2至200摩尔环氧乙烯加合于蓖麻油和/或氢化蓖麻油的
产物，基于直链、支链、不饱和或饱和 C6-C22 脂肪酸、蓖麻油酸和 12- 羟基硬脂酸和甘油、聚甘油、季戊四醇、二季戊四醇、糖醇（例如山梨糖醇）、烷基糖苷（例如甲基葡糖苷、丁基葡萄糖苷、月桂基葡萄糖苷）和聚葡萄糖苷（例如纤维素）的产物酯，单 -、二 - 和 / 或三 -PEG- 烷基磷酸酯及盐，聚硅氧烷 / 聚醚共聚物（二甲聚硅氧烷共多醇），如 PEG/PPG-20/6 二甲聚硅氧烷 / PEG/PPG-20/20 二甲聚硅氧烷，PEG/PPG-20/20 二甲聚硅氧烷，PEG/PPG-14/2 二甲聚硅氧烷，PEG/PPG-20/4 或 4/12 或 20/20 或 18/18 或 17/18 或 15/15，聚硅氧烷 / 聚醚聚醚共聚物和相应的衍生物，如月桂基或鲸蜡基二甲聚硅氧烷共多醇，特别是鲸蜡基 PEG/PPG-10/1 二甲聚硅氧烷（ABIL® EM 90（Evonik Degussa）），根据 DE 11 65 574 的季戊四醇、脂肪酸、柠檬酸和脂肪醇的混合酯，和 / 或具有 6 至 22 个碳原子的脂肪酸、甲基葡萄糖和多醇（如甘油或聚甘油）的混合酯、柠檬酸酯，如甘油硬脂酸柠檬酸酯，甘油油酸酯柠檬酸酯和柠檬酸二月桂酯。

[0086] 本发明中使用的优选的乳化剂选自 HLB 值为 3-9，优选 4-6 和更优选约 5 的那些乳化剂。优选的乳化剂选自：聚甘油基 -4- 二异硬酯酸酯 / 聚羟基酯酸酯 / 二酸酯 (ISOLAN® GPS)、PEG/PPG-10/1 二甲聚硅氧烷（ABIL® EM 90）、聚甘油基 -4- 异硬脂酸酯 (ISOLAN® G1 34)、聚甘油基 -3- 油酸酯 (ISOLAN® G033)、甲基葡萄糖异硬脂酸酯 (ISOLAN® IS)、二异硬酯酸酯聚甘油基 -3- 二聚物三亚油酸酯 (ISOLAN® PDI)、甘油酯酸酯 (TEGIN® OV)、山梨聚糖月桂酸酯 (TEGO® SM)，山梨聚糖酸酯 (TEGO® SM V) 和山梨聚糖硬脂酸酯 (TEGO® SMS)。这些优选的乳化剂可从 Evonik Goldschmidt GmbH 获得。

[0087] 阴离子乳化剂或表面活性剂可以包含赋予水溶性的基团，如羧酸、硫酸、磺酸或磺酸基团和亲脂基团。本领域技术人员已知大量的皮肤耐受的阴离子表面活性剂，并且这些表面活性剂是商业上可获得的。在本上下文中，这些可以是碱金属、铵或烷醇铵盐形式的烷基硫酸盐或烷基磷酸盐，烷基醚硫酸盐，烷基醚羧酸盐，酰基肌氨酸盐和磷酸基琥珀酸盐，和碱金属或铵盐形式的酰基谷氨酸盐。

[0088] 也可以加入阳离子乳化剂和表面活性剂。可采用季胺化合物，特别是提供有至少一个直链和 / 或支链、饱和或不饱和的具有 8 至 22 个 C 原子的烷基链的那些，特别是，例如，烷基三甲基氯化铵，如鲸蜡基三甲基氯化铵或鲸蜡基三甲基溴化铵或十二烷基三甲基氯化铵，还有二烷基二甲基氯化铵，如二甲基二甲基氯化铵。

[0089] 此外可采用 Monoalkylamidoquat，如棕榈酰胺基丙基三甲基氯化铵，或者相应的 dialkylamidoquats。

[0090] 此外可采用用于生物降解的季铵化合物，其可为基于单 -、二 - 或三乙醇胺的季铵化脂肪酸酯。此外可混合烷基酯盐作为阳离子乳化剂。

[0091] 温和表面活性剂，即皮肤特别能耐受的表面活性剂的典型实例，是脂肪醇聚甘油醚 - 硫酸盐、硫酸单甘油酯、单 - 和 / 或二烷基磺基琥珀酸盐、脂肪酸羟乙基磺酸盐、脂肪酸肌氨酸盐、脂肪酸双磺酸酯、脂肪酸谷氨酸酯、醚 - 硫酸、烷基寡葡糖苷、脂肪酸葡萄糖酰胺、烷基酰胺基甜菜碱和 / 或蛋白质 - 脂肪酸缩合物，后者例如基于小麦蛋白质。

[0092] 此外，可采用两性表面活性剂，如甜菜碱、两性醋酸盐或两性丙酸盐，因此例如物质如 N- 烷基 -N, N- 二甲基甘氨酰胺，例如椰油 - 烷基二甲基甘氨酰胺，N- 酰基氨基丙基 -N, N- 二甲基甘氨酰胺，例如椰油 - 酰基氨基丙基二甲基甘氨酰胺，和在每种情况下在烷基或酰基中各具有 8 至 18 个 C 原子的 2- 烷基 -3- 羧基甲基 -3- 羟基乙基咪唑啉，和椰油 - 酰基氨基
基乙烃基羧甲基甘氨酸酯。

[0094] 用于配制组合物的优选的乳化剂或表面活性剂与生产微珠中使用的相同。

[0095] 如技术人员所熟知的，已经设想很多类型的缓冲液或酸适用于本发明交联的微珠的膨胀或中和。在一个优选的实施方案中，缓冲液包含具有在 2.0-8.0，优选 5.0-7.5 范围内的 pH 值的缓冲液。

[0096] 最佳地，以 pH 值选择合适的缓冲液，其可使交联的微珠的 pH 值尽可能接近中性。在一个优选的实施方案中，缓冲液包含的缓冲液，其 pH 值可使交联的微珠的 pH 值为 5.0-7.5。

[0097] 优选的是，第一方面方法中的缓冲液包含磷酸盐缓冲液和/或盐水缓冲液。

[0098] 还优选使用 pH 值为 2.0-8.0，优选为 5.0-7.5 的水，水和酸，水和磷酸盐缓冲液，水和盐水缓冲液，或水和磷酸盐缓冲液和盐水缓冲液，将交联的微珠洗涤至少一次。

[0099] 纯化步骤可以包括任何已知的任何分离技术，例如过滤，倾析，离心等。可以有利地将一个或多个纯化步骤与一个或多个中和步骤组合。

[0100] 第一方面优选实施方案涉及方法，其中纯化步骤包括使用透析膜针对去离子水透析交联的微珠，所述透析膜允许具有小于 13,000 道尔顿大小的分子自由扩散。

[0101] 优选使用化妆品或个人护理配制物中用作油相的标准软化剂（emollient）。这种标准软化剂不是烃或芳香烃，特别地不是甲苯，邻二甲苯，十二烷，庚烷，辛烷或鲸蜡基乙基己酸酯。本发明中使用的选择软化剂选自具有 2 至 44 个 C 原子的直链和/或支链单-和/或二羧酸与具有 1 至 22 个 C 原子的直链和/或支链饱和或不饱和的单-或二酯，具有 2 至 36 个 C 原子的脂族二官能醇与具有 1 至 22 个 C 原子的单官能脂族羧酸的酯化产物，长链脂肪酸酯，如苯甲酸与直链和/或支链 C6-C22- 酯的酯，或者苯甲酸异硬脂酯，苯甲酸丁基辛酯或苯甲酸辛基十二酯，硫酸酯，优选直链 C6-C22- 脂肪醇硫酸酯，格伯特（Guerbet）硫酸酯，例如二辛酰基硫酸酯，二乙基己基硫酸酯，长链三甘油酯，即甘油与三个酸分子的三酯，其中至少一个是较长链，基于 C6-C10- 脂肪酸的三甘油酯，直链或支链脂肪醇，如油醇或辛基十二烷醇，和脂肪醇醚，如二烃基醚，例如二辛酰基醚，硅油和蜡，例如聚二甲基硅氧烷，环甲硅氧烷，和芳基或烷基或烷氧基取代的聚甲基硅氧烷或环甲基硅氧烷，基于具有 6-18，优选 8-10 个碳原子的脂肪醇的格伯特醇，直链 C6-C22 脂肪酸与直链 C6-C22- 脂肪醇的酯，支链 C6-C13- 羧酸与直链 C6-C22- 脂肪醇的酯，直链 C6-C22- 脂肪酸与支链 C8-C18- 酯的酯，特别是 2-乙基己醇或异壬醇，支链 C6-C13- 羧酸与支链醇的酯，特别是 2-乙基己醇或异壬醇，直链醇和/或支链脂肪酸与多羟基醇（如，丙二醇，二聚二醇或二聚三醇）和/或格伯特醇的酯，基于 C6-C 18-脂肪酸的液体单-二/三甘油酯混合物，C6-C22- 脂肪醇和/或格伯特醇与芳族羧酸的酯，植物油，支链醇，取代环己烷，环氧化
脂肪酸酯与多醇的开环产物和 / 或硅油或这些化合物中两或多个的混合物。使用的软化剂优选与水湿溶而无相分离。

[0102] 适合用作软化剂和油组分的单酯为例如具有 12 至 22 个 C 原子的脂肪酸的甲酯和异丙酯，如月桂酸甲酯、硬脂酸甲酯、油酸甲酯、肉豆蔻酸异丙酯、棕榈酸异丙酯、硬脂酸异丙酯、油酸异丙酯。其它合适的单酯为例如油酸正丁酯、月桂酸正已酯、油酸正癸酯、硬脂酸异辛酯、棕榈酸异壬酯、异壬酸异壬酯、月桂酸 2-乙基己酯、棕榈酸 2-乙基己酯、硬脂酸 2-乙基已酯、硬脂酸 2-乙基癸酯、棕榈酸 2-辛基癸酯、油酸十二烷酯、油酸油酯、芥酸油酯和可从工业级 (technical-grade) 族脂酵剪切物和工业级脂族羧酸混合物获得的酯，例如具有 12 至 22 个 C 原子的不饱和脂肪酯与具有 12 至 22 个 C 原子的饱和和不饱合脂肪酸的酯，如可从动植物和植物脂肪得到的。然而，天然存在的单酯和蜡酯混合物，如存在于例如黑莓得木油 (jojoba oil) 或鲸油 (sperm oil) 中的那些，也是合适的。合适的二羧酸酯为例如己二酸二正丁酯、癸二酸二正丁酯、己二酸二 (2-乙基己基酯) 酯、琥珀酸二 (2-乙基己基酯) 酯、壬二酸二异癸酯。合适的二醇酯为例如乙二醇二油酸酯、二 - 异癸烯酸乙二醇酯，二 (2-乙基己基酯) 丙二醇酯、二 - 异硬脂酸丁二醇酯、二 - 辛酸 / 癸酸丁二醇酯和二 - 辛酸戊二醇酯。

[0103] 本文可以通过实例脂肪酸三甘油酯描述，如，例如，天然植物油，例如橄榄油、葵花油、大豆油、花生油、菜籽油、杏仁油、芝麻油、鳄梨油、蓖麻油、可可油、棕榈油、或者棕榈油的液体内容物和动物油，如鲨鱼肝油、鱼肝油、鲸脂油、牛脂和乳脂，蜡，如蜂蜡、巴西棕榈蜡、鲸蜡、羊毛脂和牛蹄脂，牛脂的液体内容物，或者辛酸 / 癸酸混合物的合成三甘油酯，来自工业级油酸的三甘油酯，异硬脂酸的三甘油酯，或者来自棕榈酸 / 油酸混合物的三甘油酯，可以用作软化剂 (油相)。

[0104] 在第一方面的另一个优选的实施方案中，有机相或油相包含矿物油或 TEGOSOFT® M。

[0105] 优选地，乳化剂选自聚氧乙烯山梨聚糖脂肪酸酯，蔗糖脂肪酸酯，山梨聚糖脂肪酸酯，聚山梨酸酯，聚乙烯醇，聚乙烯吡咯烷酮，明胶，卵磷脂，聚 - 氧乙烯蓖麻油衍生物，生育酚，生育酚浓聚二醇琥珀酸酯，生育酚棕榈酸酯和生育酚乙酸酯，聚氧乙烯 - 聚氧丙烯共聚物，或它们的混合物。

[0106] 本发明的微珠可以接近包含这些微珠的本发明的组合物。本发明的组合物可以包含至少一种选自下组的其它成分：软化剂，乳化剂和表面活性剂，增稠剂 / 粘度调节剂 / 稳定剂，UV 光保护剂，抗氧化剂，助水溶剂 (或醇类)，固体和填充剂，成膜剂，驱虫剂，防腐剂，调理剂，香料，染料，生源活性化合物，保湿剂和溶剂。其它成分可以在微珠内部和 / 或外部。优选地，其它组分存在于本发明组合物中微珠的外部或内部。

[0107] 在一个优选的实施方案中，本发明的组合物可以是乳液、悬浮液、溶液、霜、软膏、膏、凝胶、油、粉末、气溶胶、粘附剂和喷雾。

[0108] 本发明的微珠或组合物可以用作透皮药物递送系统 / 运载体。当局部施用时，微珠聚集在皮肤的皱纹和褶皱中（结果未示出）。

实施例

[0109] 实施例 1。在乳液中制备 DVS 交联的微珠
说明书

[0110] 本实施例说明DVS-交联的微粒的制备。

[0111] 通过在室温剧烈搅拌3小时将透明质酸钠（HA，580kDa，1.90g）溶于NaOH水溶液（0.2M，37.5mL），直至获得均质溶液。加入氯化钠（0.29g）并短暂混合。

[0112] 通过搅拌混合矿物油（10.0g）和ABIL®EM 90表面活性剂（鲸蜡基PEG/PPG-10/1二甲聚硅氧烷，1.0g）。

[0113] 向碱性HA水溶液加入二乙烯砜（DVS，320微升）并混合1分钟，以获得水相中的均匀分布。然后在2分钟内将水相加至油相，以降低机械搅拌。立即形成乳液，并且在室温继续搅拌30分钟。将乳液在室温放置过夜。

[0114] 通过加入HCl水溶液（4M，约2.0mL）将乳液中和至pH 7.0，并搅拌约40分钟。

[0115] 实施例2。使用pH指示剂在中和的乳液中制备DVS交联的微粒。

[0116] 本实施例说明使用pH指示剂以中和而制备DVS交联的微粒。

[0117] 通过在室温剧烈搅拌2小时使透明质酸钠（HA，580kDa，1.88g）溶于NaOH水溶液（0.2M，37.5mL），直至获得均质溶液。加入溴百里酚蓝pH指示剂（等当范围pH 6.6-6.8）（15滴，溶液呈蓝色）。加入氯化钠（0.25g）并短暂混合。

[0118] 通过搅拌混合矿物油（10.0g）和ABIL®EM 90表面活性剂（鲸蜡基PEG/PPG-10/1二甲聚硅氧烷，1.0g）。

[0119] 向碱性HA水溶液加入二乙烯砜（DVS，320微升）并非常剧烈地混合30-60分钟，以获得水相中的均匀分布。然后在30分钟内将水相加至油相，以400RPM机械搅拌。立即形成乳液，并且在室温继续搅拌30分钟。通过加入HCl水溶液（4M，1.6mL）进行中和，并将乳液在室温放置，以磁力搅拌约4小时。凝胶颗粒中存在的pH指示剂变为绿色。通过pH计测定乳液中的pH为3-4。将乳液在冰箱中过夜放置。凝胶颗粒中存在的pH指示剂变为黄色。

[0120] 实施例3。乳液的相分离、微粒的膨胀和分离。

[0121] 本实施例说明WO/乳液的分解，之后为相分离和透析。通过有机溶剂提取从W/O乳液分离交联的HA微粒。

[0122] 在室温通过旋转混合在试管中剧烈混合W/O乳液（5g）和正丁醇/氯仿的混合物（1/1v%，4.5mL）。另外加入mQ水（20mL）以获得相分离。离心试管并获得三个相，底部相为有机相，中间相为凝胶颗粒，而顶部相为清澈的水溶液。弃去顶部和底部相，并将中间相的凝胶颗粒转移至透析管中（MWCO12-14,000，直径29mm，体积/长度为6.4mL/cm）。

[0123] 在室温在MilliQ®-水中过夜透析样品。将透析液更换两次以上并放置过夜。得到的凝胶干燥，并膨胀至约50mL体积，其质量为0.004g HA/cm³。

[0124] 实施例4。在乳液中制备DVS交联的微粒和微粒的分离。

[0125] 本实施例说明DVS-交联的HA微粒的制备。

[0126] 使透明质酸钠（HA，580kDa，1.89g）溶于NaOH水溶液（0.2M，37.5mL）加入氯化钠（0.25g）并透过磁力搅拌在室温搅拌溶液1小时，直至获得均质溶液。

[0127] 通过搅拌混合TEGOSOFT®EM（10.0g）油和ABIL®EM 90表面活性剂（鲸蜡基PEG/PPG-10/1二甲聚硅氧烷，1.0g）。

[0128] 向碱性HA水溶液加入二乙烯砜（DVS，320微升）并混合1分钟，以获得水相中的均匀分布。然后在2分钟内将水相加至油相，以机械搅拌（300RPM）。立即形成乳液，并且在
室温继续搅拌30分钟。

【0129】通过加入化学计量的HCl（4M,1.8ml）中和乳液，并搅拌约40分钟。通过加入正丁醇/氯仿混合物（1：1v%，90ml）和另外的MilliQ®水（100ml）然后磁力搅拌而破坏乳液。分离体积约175ml的顶部相。有机相与mQ-水（30ml）混合以进行最终的洗涤。将合并的水/凝胶相（205ml）转移至透析管（MWCO12-14,000，直径29mm，体积/长度6.4ml/cm），并在室温对MilliQ®水过夜透析。随后更换水（3次）并过夜透析（2夜）后电导率降至0.67微西弗特/cm。通过显微镜（DIC 200x）评价微粒，见图1；其中表示一个微粒的横截面并标记为“21,587.92nm”。

【0130】实施例5-乳液的相分离和微粒的分离

【0131】本实施例说明W/O乳液的破坏和凝胶微粒的分离。

【0132】通过有机提取从W/O-乳液分离凝胶微粒。用于本提取的有机溶剂的实例是正丁醇
/氯仿的混合物，体积比（v%）分别为75：20至20：80。W/O乳液对有机溶剂的重量比
（w%）为约1：1。

【0133】小规模分离：在离心管（50ml）中称重W/O乳液（5g）。制备正丁醇/氯仿混合物
（1：1v%）并向试管中加入4.5ml混合物。仔细混合试管以确保所有乳液溶解。通过旋
转混合试管并在室温放置分相，经常观察到的相分离为水相在顶层，有机相在底层，中
间是白色乳液层。加入更多的水和有机相可促进分离。通过倾析而分离水相，并进一步
纯化或表征。

【0134】实施例6-油包水乳液的制备

【0135】本实施例说明其中形成HA微粒的组合物。

【0136】可以使用热/冷方法，在热水相中并入冷水相B，其将缩短制备时间。制剂的非限
制性实例可为如下：

【0137】A相：

【0138】●2.0%ABIL®EM 90（鲸蜡基PEG/PPG-10/1二甲聚硅氧烷）

【0139】●20.0%矿物油（或TEGOSOFT®M）

【0140】B相：

【0141】●0.5%氯化钠

【0142】●3.8%透明质酸

【0143】●多达100%的0.2M NaOH（水溶液）

【0144】C相：

【0145】●约0.6%二乙烯砜

【0146】制备：

【0147】1. 在室温混合A相。

【0148】2. B相：通过搅拌在NaOH水溶液中溶解透明质酸（Hyacare®）后加入NaCl并
搅拌。

【0149】3. 向B相加入DVS并搅拌1分钟。

【0150】4. 缓慢向A相加入B相，同时搅拌。

【0151】5. 短时间均质化并搅拌，并放置以进行反应。

【0152】6. 搅拌并膨胀。
实施例 7. 制备和分离 DVS 交联的微粒
使透明质酸钠（HA, 580kDa, 1.88g）溶于 NaOH 水溶液 (0.2M, 3.5ml)。加入氯化钠 (0.25g) 并通过磁力搅拌在室温搅拌溶液 1 小时，直至获得均匀溶液。

通过搅拌混合油：TEGOSOFT®M（10.0g）和表面活性剂 ABIL®EM 90（鲸蜡醇 PEG / PPG-10/1 二甲聚硅氧烷, 1.0g)。向碱性 HA 水溶液加入二乙烯砜（DVS, 320 微升）并混合 1 分钟，以获得水相中的均匀分布。然后在 2 分钟内向油相加入水相，以机械搅拌 (300RPM) 立即形成乳液，并且在室温继续搅拌 30 分钟。

通过加入化学计量量的 HCl (4M, 1.8ml) 中和乳液，并搅拌约 40 分钟。通过加入正丁醇 / 氯仿混合物 (1 : 1v%, 90ml) 和另外的 MilliliQ®- 水 (100ml) 后剧烈振荡而破坏乳液。分离体积为约 175ml 的顶层相。用 MilliliQ®- 水 (100ml) 洗涤有机相。将合并的水 / 凝胶相转移至透析管（MWCO 12 - 14,000, 直径 29mm, 体积 / 长度 6.4ml/cm），并针对 MilliliQ® - 水在室温过夜透析。随后更换水 （3 次）并过夜透析（2夜）后导电率降至 10 微希沃特 / cm。通过显微镜评价乳液（图 4）。

实施例 8. 纯化微粒的洗涤方法

将先前分离的 100mL 颗粒重悬于 Na2HPO4 / NaH2PO4 缓冲液 (0.15M, 400ml) 中，并缓慢搅拌 1/2 小时。悬浮液在 5°C 冷置 2 小时，并去除固化油脂。然后通过筛子过滤溶液，并用 2x 50ml 缓冲液进一步洗涤。表征前使颗粒滴干（drip-dry）（图 5）。

实施例 9. 膜流变性质的研究

本实施例说明对于颗粒的流变性能的研究。通过使用 50mm 2”锥形 / 平板形状，在 Anton Paar 流变仪（Anton Paar GmbH, Graz, Austria, Physica MCR 301, 软件：Rheopius）上分析颗粒样品。首先通过具有可变张力 (variable strain) γ 的振幅扫描（amplitude sweep）确定物质的粘弹性性质 G"（储存模量）和 G’（损失模量）的线性范围。然后进行频率扫描，并且根据粘弹性值 G‘和 G"的数值，可计算 tan δ 作为弱 / 强凝胶行为的数值。

实施例 10. 织物分析仪上的可注射性实验的研究

本实施例说明以一定速度注射施用的力的性能研究，所述力作为样品均质性的系数。将颗粒样品转移至用针施用的注射器。针可以是 27G x 1/2”, 30Gx1/2”, 并且设置在样品装备中，在织物分析仪（Stable Micro Systems, Surrey, UK, TA. XT Plus, 软件：Texture Component 32）中。以 12.5mm/ 分钟的注射速度，经过指定的距离，进行测试。
图 3
图4
图 5