In the drawings:

Fig. 1 is a broken side elevation of an equalizer bar constructed in accordance with this invention;

Fig. 2 is a section taken on line 2--2 of Fig. 1;

Fig. 3 is a section taken on line 3--3 of Fig. 1;

Fig. 4 is a section similar to Fig. 3 of a modified construction, and

Figs. 5 and 6 are sections similar to Fig. 2 of further modifications.

It is an object of this invention to provide an equalizer bar of improved construction for railway car trucks which can be readily and economically manufactured and which is of such design that the same design of bar can be adapted to all weights of cars without causing difficulties in the manufacture thereof.

As shown in Figs. 1, 2, and 3 of the drawings, an equalizer bar constructed in accordance with this invention comprises a rolled or structural member 1, shown as a T-bar, of suitable dimensions, which is sheared or cut to provide a web 2 of gradually decreasing height toward the ends and then bent to provide the ends 3 offset from but parallel to and lying in the same plane as the main body portion of the member 1 and raised above the main body portion when the member 1 is placed with the web 2 vertical and above the outwardly projecting flanges 4.

To the web 2 of the member 1 there is secured a compression member 6 formed of a plate or sheet of the desired thickness, cut to the proper shape and then folded to a U-shape and bent to conform to the shape of the tension member 1.

The member 6 is fitted on the web 2 of the member 1 and secured thereto by a line of rivets 8 which are placed along the neutral axis of the combined section. As shown in Figs. 1 and 2, certain of the rivets 8 may be replaced by bolts 10 in order to provide a means for readily securing the spring supports 11 (shown in dotted lines in Figs. 1 and 2) to the bar.

As thus designed the equalizer bar may be manufactured of members 1 and 6 of various weights and the dimensions may be varied to fit the bars to trucks for cars of different weights without changing the essentials of the design. It also permits of providing additional metal in the web 2 of the tension member 1 by welding fillers 21 to the web 2, as shown in Fig. 4, the member 6 fitting over the thickened web without any change other than an increased separation between the sides of the member 6. In special cases it may be desirable in order to secure the proper thickness of web to form the tension member 1 of a pair of angles having flanges 12 placed back to back and the flanges 14 projecting outwardly, the flanges 12 being secured together by welding, if desired, or only by the rivets 8 which secure the member 6 to the member 1.

The flanges 14 may be reinforced by a member 16 which may be of any length desired and secured to the flanges 14 by welding or riveting after the member 1 has been bent to shape. The member 16 may also be applied to the flanges 4 in the same manner where the member 1 is of T-shape as in Figs. 2, 3 and 4.

It will be noted that the angles arranged as in Figs. 5 and 6 provide a member of the same shape as member 1 of Fig. 2 and may be substituted therefor where it is desired to increase the amount of metal in the web 2 of the member 1.

What is claimed is:

1. An equalizer bar for railway car trucks comprising a tension member, a compression member and means on the neutral axis of the combined section securing said members together.

2. An equalizer bar for railway car trucks comprising a flanged and webbed tension member and a U-shape compression member lapping the web of said tension member.

3. An equalizer bar for railway car trucks comprising a flanged tension member, a U-shape compression member lapping said tension member and means on the neutral axis of the combined section securing said members together.

4. An equalizer bar for railway car trucks comprising a tension member of inverted T-shape and a compression member lapping the web of said tension member and secured thereto.

5. An equalizer bar for railway car trucks comprising a tension member having a web and outwardly projecting flanges and an inverted U-shape compression member receiving said web and secured thereto.

6. An equalizer bar for railway car trucks comprising a tension member having a web...
and outwardly projecting flanges, an inverted U-shape compression member receiving said web and means on the neutral axis of the combined section securing said members together.

7. An equalizer bar for railway car trucks comprising a tension member having a web and outwardly projecting flanges, an inverted U-shape compression member receiving said web, reinforcing means secured to said tension member flanges and means on the neutral axis of the combined section securing said members together.

8. An equalizer bar for railway car trucks comprising a tension member having a vertical web and oppositely projecting flanges and a compression member comprising a plate folded to a U-shape and fitted on said web.

9. An equalizer bar for railway car trucks comprising a tension member having a vertical web and oppositely projecting flanges, a compression member comprising a plate folded to a U-shape and fitted on said web and reinforcing means secured to said tension member flanges.

10. An equalizer bar for railway car trucks comprising a flanged tension member having a vertical web, a compression member comprising a folded plate fitted to said web, and means securing said members together.

11. An equalizer bar for railway car trucks comprising a flanged tension member having a vertical web and a U-shaped member fitting over said web.

12. An equalizing bar for railway car trucks comprising a tension member of T-section and a compression member of U-shape lapping the web of said tension member.

In witness whereof I have hereunto set my hand.

JOHN J. McBRIDE.