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EXPLOITING INPUT DATA SPARSITY IN NEURAL NETWORK COMPUTE UNITS

BACKGROUND

[0001] This specification relates to performing machine learning computations using a
special purpose computational unit.

[0002] Neural networks are machine learning models that employ one or more layers of
models to generate an output, e.g., a classification, for a received input. Some neural
networks include one or more hidden layers in addition to an output layer. The output of each
hidden layer is used as input to the next layer in the network, i.e., the next hidden layer or the
output layer of the network. Each layer of the network generates an output from a received
input in accordance with current values of a respective set of parameters.

[0003] Some neural networks include one or more convolutional neural network layers.
Each convolutional neural network layer has an associated set of kernels. Each kernel
includes values established by a neural network model created by a user. In some
implementations, kernels identify particular image contours, shapes, or colors. Kernels can
be represented as a matrix structure of weight inputs. Each convolutional layer can also
process a set of activation inputs. The set of activation inputs can also be represented as a

matrix structure.

SUMMARY

[0004] One way of computing convolution calculations requires numerous matrix
multiplications in a large dimensional space. A processor or controller device of a compute
unit can compute matrix multiplications through a brute force method. For example,
although compute-intensive and time-intensive, the processor can repeatedly calculate
individual sums and products for convolution calculations. The degree to which the
processor parallelizes calculations is limited due to its architecture.

[0005] An innovative aspect of the subject matter described in this specification can be
embodied in a computer-implemented method. The method includes receiving, by a
computing device, a plurality of input activations, the input activations being provided, at
least in part, from a source external to the computing device and determining, by a controller
of the computing device, whether each of the plurality of input activations is one of a zero
value or a non-zero value. The method further includes storing, in a memory bank of the
computing device, at least one input activation, wherein storing the at least one of the input

activations includes generating, by the controller, an index comprising one or more memory
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address locations having input activation values that are non-zero values. The method still
further includes providing, by the controller and from the memory bank, at least one input
activation onto a data bus that is accessible by one or more units of a computational array,
wherein the activations are provided, at least in part, from a memory address location
associated with the index.

[0006] In some implementations, the index is created based on a bitmap comprising a
plurality of bits and, wherein each bit of the bitmap indicates at least one of a non-zero input
activation value or a zero input activation value. In some implementations, the method further
includes, providing a first input activation that has a non-zero value to perform, by at least
one unit, a computation using the non-zero value, and subsequently providing a second input
activation that has a zero value, and preventing, in at least one unit, computation that would
otherwise be performed using the zero value.

[0007] In some implementations, preventing occurs in response to the controller
determining that the input activation is provided from a memory address location that is not
associated with the index. In some implementations, the method further includes, detecting,
by the controller, that the input activation is provided from a memory address location that is
not associated with the index, and, in response to detecting, providing a control signal to at
least one unit of the computational array to prevent a multiply operation associated with the
zero input activation value.

[0008] In some implementations, the method further comprises, mapping, by the controller
and to a first unit, a first portion of a tensor computation that uses a first input activation and
mapping, to a second unit that differs from the first unit, a second portion of the tensor
computation that also uses the first input activation. In some implementations, the method
further comprises, sequentially providing a single input activation onto the data bus, the
single input activation being accessed and selected from memory address locations that are
associated with the index. In some implementations, providing further comprises, not
providing input activations that have a zero value.

[0009] Another innovative aspect of the subject matter described in this specification can
be embodied in one or more machine-readable storage devices storing instructions that are
executable by one or more processing devices to perform operations comprising, receiving,
by a computing device, a plurality of input activations, the input activations being provided,
at least in part, from a source external to the computing device and determining, by a
controller of the computing device, whether each of the plurality of input activations is one of

a zero value or a non-zero value. The operations further comprise storing, in a memory bank
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of the computing device, at least one of the input activations, wherein storing the at least one
input activation includes generating, by the controller, an index comprising one or more
memory address locations having input activation values that are non-zero values. The
operations still further comprise providing, by the controller and from the memory bank, at
least one input activation onto a data bus that is accessible by one or more units of a
computational array, wherein the activations are provided, at least in part, from a memory
address location associated with the index.

[0010] Another innovative aspect of the subject matter described in this specification can
be embodied in an electronic system comprising a controller disposed in a computing device,
the controller including one or more processing devices; and one or more machine-readable
storage devices for storing instructions that are executable by the one or more processing
devices to perform operations comprising: receiving, by the computing device, a plurality of
input activations, the input activations being provided, at least in part, from a source external
to the computing device; and determining, by the controller, whether each of the plurality of
input activations is one of a zero value or a non-zero value. The operations further comprise,
storing, in a memory bank of the computing device, at least one of the input activations,
wherein storing the at least one input activation includes generating an index comprising one
or more memory address locations having input activation values that are non-zero values.
The operations still further comprise, providing, by the controller and from the memory bank,
at least one input activation onto a data bus that is accessible by one or more units of a
computational array, wherein the activations are provided, at least in part, from a memory
address location associated with the index.

[0011] The subject matter described in this specification can be implemented in particular
embodiments so as to realize one or more of the following advantages. Activations
accessible from a first memory and a weights accessible from a second memory, in a single
compute system, can be traversed based on memory address values retrieved from registers.
A controller of the compute system can compress activation data by storing only non-zero
values in first memory, thereby saving memory storage space and corresponding bandwidth.
Matrix multiplications occur in the compute system based, in part, on primarily providing
non-zero input activations. Moreover, when the compute system uses a communication
scheme that includes primarily non-zero activation values, computational efficiency can be
enhanced or accelerated by eliminating multiplication by zeros.

[0012] Other implementations of this and other aspects include corresponding systems,

apparatus, and computer programs, configured to perform the actions of the methods,
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encoded on computer storage devices. A system of one or more computers can be so
configured by virtue of software, firmware, hardware, or a combination of them installed on
the system that in operation cause the system to perform the actions. One or more computer
programs can be so configured by virtue of having instructions that, when executed by data
processing apparatus, cause the apparatus to perform the actions.

[0013] The subject-matter described in this specification also relate to an image
recognition and/or classification method/system. The system(s) can be implemented using
the disclosed techniques for exploiting input data sparsity when computing units of a
hardware computing system process inputs for a neural network layer to perform inference
computations.

[0014] The details of one or more implementations of the subject matter described in this
specification are set forth in the accompanying drawings and the description below. Other
potential features, aspects, and advantages of the subject matter will become apparent from

the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 illustrates an example computation structure that includes activations and
parameters.

[0016] FIG. 2 illustrates an example computation structure that includes activations and
multiple parameter structures for an output depth greater than one.

[0017] FIG. 3 illustrates an example computation system for feeding input activations to
one or more parameters.

[0018] FIG. 4 illustrates an example architecture that includes a memory unit providing
input activations to one or more multiply accumulate (MAC) operators.

[0019] FIG. 5 is an example flow chart of a process for reducing parameter computations
and exploiting input data sparsity.

[0020] Like reference numbers and designations in the various drawings indicate like

elements.

DETAILED DESCRIPTION

[0021] The subject matter described in this specification relates to reducing computations
that occur within a compute unit or tile of an example neural network hardware computing

system. In general, as part of computing a neural network inference, an input activation is
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multiplied with a parameter or weight value to produce an output activation. Herein, inputs
and input activation can refer to a data element included in a multi-dimensional data structure
such as a tensor, matrix and/or data array commonly used in neural networks. Due to the
algorithmic properties of computing inferences for deep neural networks, a large fraction of
input activations are zero. In other words, current compute units perform a large number of
unnecessary computations that include multiplying one number (e.g., a weight) against zero
(input activation value).

[0022] This specification describes, in part, a more efficient activation storage and
communication scheme as well as a custom architecture design for deep neural network
processing, especially for processing convolutional layers of a neural network. Unlike
conventional hardware accelerators that perform dense matrix multiplication over time, this
specification describes an architecture that can 1) skip or bypass a computation upon seeing
zero input values; and 2) reduce memory usage in a compute unit by storing compressed
input activations that include only non-zero values. Overall, through the teachings of this
specification, compute unit performance for neural network inference computations is
improved and energy savings are realized by skipping unnecessary computations.

[0023] FIG. 1 illustrates an example computation structure 100 that includes an activation
structure 102 and a parameter structure 104. Activation structure 102 can include a first data
structure 102a including multiple data elements corresponding to a first input depth (denoted
by subscript 0). Likewise, activation structure 102 can also include a second data structure
102b including multiple data elements corresponding to a second input depth (denoted by
subscript 1). The multiple data elements shown in data structure 102a and 102b are indicated
as ao, bo, co, do and a1, by, c1, di, respectively. Each data element (ao, a1, bo, b1, co, do and etc.)
of the data structure 102a/b is an input activation value and each input depth corresponds to a
depth of an input to a neural network layer. In some implementations, a neural network layer
can have an input depth of one while in other implementations a neural network layer can
have an input depth of more than one.

[0024] Parameter structure 104 can be described in a similar manner as activation structure
102. Parameter structure 104 includes a first data structure 104a and a second data structure
104b. Each data structure 104a/b can include multiple data elements that each contain kernel
values. As shown in FIG. 1, the multiple data elements corresponding to data structure 104a
and 104b are indicated as Xo, vo, 7o and x1, y1, 71, respectively.

[0025] As discussed above, each layer of the neural network generates an output from a

received input in accordance with values of a respective set of operands. Like other neural
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network layers, each convolutional layer can process a set of activation inputs that can be
represented as a matrix structure. A convolutional neural network layer will also have an
associated set of kernels that includes values and the kernels can also be represented as a
matrix structure of weights. In FIG. 1, activation structure 102 can correspond to a matrix
structure having one or more activation inputs and parameter structure 104 can correspond to
a matrix structure having one or more kernels or weight parameters.

[0026] As described in more detail below, various layers of a neural network process
machine learning inferences by performing large quantities of computations that include
matrix multiplications. Computation processes performed within a neural network layer (e.g.,
a convolutional layer) can include multiplying an input activation (i.e., a first operand) with a
weight (i.e., a second operand) on one or more cycles and performing an accumulation of
products over many cycles. An output activation is generated based on multiply and
accumulation operations performed on the two operands.

[0027] As shown, equation 106 provides an example series-sequence based mathematical
operation that can be performed when an input activation associated with a certain data
element of activation structure 102 is multiplied with a kernel value or weight/parameter
associated with a certain data element of parameter structure 104. For example, in equation
106, when index “i” equals O, the input activation associated with data element a0 of
activation structure 102 is multiplied with the weight/parameter associated with data element
xo of parameter structure 104. Moreover, because equation 106 is, in part, a series based
equation, additional multiply operations will occur between sets of operands that correspond
to other data elements of activation structure 102 and parameter structure 104. In some
implementations, multiplication of a set of operands can be produce a partial sum 106a/b for
a particular output feature or activation. Hence, as shown in equation 106, partial sums can be
added to produce an output feature.

[0028] Neural networks can be embodied in one or more hardware computing systems that
include multiple computing units configured to accelerate machine learning inference
workloads of a network layer. Each computing unit can process a sub-set of computations for
a given layer. In some implementations, structure 100 can be embodied in one or more
computing units that each include at least two memory banks and one or more multiply
accumulate (MAC) cells that can collectively form a MAC array (described below).

[0029] In one example, a first memory bank 108 of an example computing unit stores data
associated with activation structure 102 and can be configured to receive and write input

activation values to memory address locations within memory bank 108. Likewise, a second
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memory bank 110 of the example computing unit stores data associated with parameter
structure 104 and can be configured to receive and write weight values to memory address
locations within memory bank 110. In this example, each element (e.g., ao, bo, co, do) of data
elements 102a can be stored at a respective memory address of first memory bank 108.
Similarly, each element (e.g., Xo, vo, 7o) of data elements 104a can be stored at a respective
memory address of second memory 110.

[0030] In some implementations, first memory bank 108 and second memory bank 110 are
each a volatile memory unit or units. In some other implementations, memory bank 108 and
memory bank 110 are each a non-volatile memory unit or units. Memory banks 108, 110 can
also be another form of a computer-readable storage medium, such as a floppy disk device, a
hard disk device, an optical disk device, or a tape device, a flash memory or other similar
solid state memory device, or an array of devices, including devices in a storage area network
or other configurations.

[0031] In general, a computing unit of a hardware computing system can include one or
more registers to keep track of memory address values. The data elements of the matrix
structure corresponding to activation structure 102 can be accessed from first memory bank
108 while data elements of the matrix structure corresponding to parameter structure 104 can
be accessed from second memory bank 110. An example control device of the computing
tile/compute unit can access and/or traverse data elements of the matrix structures based on
address values that are accessible from the one or more registers. An example compute
unit/tile including an example control device, activation structure 102, parameter structure
104, first memory bank 108, and second memory bank 110 are described more detail below
with reference to FIG. 3.

[0032] Moreover, additional details and descriptions relating to hardware computing
systems for accelerating neural network tensor computations and matrix-multiplications for
neural network inference workloads are described in U.S. Patent Application No. 15/335,769,
entitled “Neural Network Compute Tile,” filed on October 27, 2016. The entire disclosure of
U.S. Patent Application No. 15/335,769 is expressly incorporated by reference herein in its
entirety.

[0033] FIG. 2 illustrates an example computation structure 200 that includes an activation
structure and multiple parameter structures for an output feature depth greater than one. In
some implementations, a neural network can have multiple layers that generate outputs that
have multiple output feature depths. In some implementations, each parameter structure can

be responsible for a respective one of the output depths. Hence, computation structure 200
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depicts a scalable computing structure in which additional parameter structures 104 a/b/c are
added to facilitate computations associated with N number of output depths. N is a variable
and can have an integer value that ranges from, for example, 1 to 5, or alternatively, 1 to N
depending the preferences or needs of a computing system designer.

[0034] As shown by data path 105, individual input activation values for elements
associated with data structure 102a can be fed to each parameter structure 104a/b/c for use in
computations performed by multiply operators associated with respective parameter
structures 104. Each parameter structure 104 can then pass an activation value received from
its left neighbor to its right neighbor in a pipelined manner. Altematively, activations can be
provided and consumed by each parameter structure 104 at the same time.

[0035] Matrix 202 can represent an example matrix structure that corresponds to
activations 102. More specifically, element row 202a can correspond to data structure 102a
and element row 202b can correspond to data structure 102b. In general, and by way of
example, a first parameter structure 104 (1) is accessed to perform computations associated
with space 206 and a second parameter structure 104 (2) is accessed to perform computations
associated with space 208. Although not shown, additional computations can also be
performed corresponding to the z — dimension. As an example, element row 202a can be in
an R plane of an RGB image and element row 202b can be in a G plane of the same RGB
image. An example convolutional layer of a neural network typically produces multiple
output features. Example output features can include an output feature for classifying an
apple, and another output feature for classifying a banana. Regarding data structures 204,
space(s) 206 and 208 can represent different planes for different classifications.

[0036] FIG. 3 illustrates an example compute system 300 for feeding input activations to
one or more parameter structures. Compute system 300 generally includes a controller 302
that provides one or more control signals 310 to cause input activations for activation
structure 102 to be either stored to or retrieved from a memory address of memory bank 108.
Likewise, controller 302 also provides one or more control signals 310 to cause weights for
parameter structure 104a/b/c to be either stored to or retrieved from a memory address of
memory bank 110. Compute system 300 further includes one or more multiply accumulate
(MAC) cell/unit(s) 304, an input activation bus 306 and an output activation bus 308. Control
signals 310 can, for example, cause memory bank 108 to provide one or more input
activations unto input activation bus 306, cause memory bank 110 to provide one or more
weights to parameter structure 104 a/b/c, and/or cause MAC unit 304 to perform

computations that produce output activations that are provided to output activation bus 308.
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[0037] Controller 302 can include one or more processing units and memory. In some
embodiments, processing units of controller 302 can include one or more processors (e.g.,
microprocessors or central processing units (CPUs)), graphics processing units (GPUs),
application specific integrated circuits (ASICs), or a combination of different processors. In
alternative embodiments, controller 302 can include other storage or computing
resources/devices (e.g., buffers, registers, control circuitry, etc.) that provide additional
processing options for performing one or more of the determinations and calculations
described in this specification.

[0038] In some implementations, processing unit(s) of controller 302 executes
programmed instructions stored in memory to cause controller 302 and compute system 300
to perform one or more functions described in this specification. The memory of controller
302 can include one or more non-transitory machine-readable storage mediums. The non-
transitory machine-readable storage medium can include solid-state memory, magnetic disk,
and optical disk, a portable computer diskette, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only memory (e.g., EPROM, EEPROM, or
Flash memory), or any other tangible medium capable of storing information.

[0039] In general, compute system 300 is an example compute unit or tile and can include
additional hardware structures to perform computations associated with multi-dimensional
data structures such as tensors, matrices and/or data arrays. In some implementations, input
activation values can be pre-loaded to memory bank 108 for activation structure 102 and
weight values can be pre-loaded to second memory bank 110 using data values received by
compute system 300 that arrive at a compute system 300 from an external or higher level
control device associated with a neural network hardware computing system.

[0040] Instructions, inputs or input activations, and weights can be provided to system 300
from an external source, such as an external input/output (I/O) device or a high level control
device associated with a neural network hardware computing system. In some
implementations, one or more data buses provide data communications between the external
source (e.g., a control device) and system(s) 300. The data buses are used to provide
instructions, inputs or activations, and weights from an example I/O device to each of
multiple systems 300 or between multiple compute tiles (e.g., multiple systems 300) included
in a hardware computing system for a neural network.

[0041] System 300 can receive instructions that define a particular compute operation to be
performed by system 300. Moreover, controller 302 can execute programed instructions to,

for example, analyze a data stream associated with the received input activations. Analyzing
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the input activation data stream can enable controller 302 to detect or determine whether a
value associated with each of the input activations is a zero value or a non-zero value. In
some implementations, controller 302 analyzes an example input activation data stream and
maps each detected zero activation value and each detected non-zero activation value to
bitvector or bitmap 303.

[0042] As shown in FIG. 3, bitmap 303 can use binary values to map detected zero value
input activations and detected non-zero value input activations. For example, a binary value
of “0” can correspond to a detected zero input activation value and a binary value of “1” can
correspond to a detected non-zero input activation value. For example, bitmap 303 can be an
8-bit bitmap in which odd numbered bit positions that include a binary “1” correspond to
non-zero activation values and even numbered bit positions that include a binary “0”
correspond to zero activation values.

[0043] Controller 302 can cause input activations to be stored in memory bank 108. In
general, data values stored in memory bank 108 are typically each written to a respective
memory address location. The address location in memory bank 108 can then be accessed by
an example control device (e.g., controller 302) when a data value such as an input activation
is needed to perform a particular compute operation. Controller 302 can use bitmap 303 to
create an index of memory address locations that include non-zero input activation values.
[0044] In some implementations, controller 302 uses bitmap 303 to determine which input
activations to write to memory bank 108. For example, analysis of bitmap 303 can indicate
that only activation values corresponding to bitmap positions 1, 3, 5, 7 (non-zero values)
should be written to address locations in memory bank 108. Moreover, data values
associated with bitmap positions 2, 4, 6, 8 (zero values) can either be discarded or written to
memory address locations which may or may not be accessed by controller 302 when
activation values are provided to input bus 306. Thus, bitmap 303 can be used as a basis to
compress zero activation values in which compression occurs when zero value input
activations are not written to memory address locations, thereby reducing the overall memory
usage and freeing address locations for storing other data values.

[0045] Controller 302 can provide one or more control signals 310 to memory bank 108 to
load input activations, from memory bank 108, onto input activation bus 306 and provide the
values to an array of computational units that include MAC 304. In some implementations,
bitmap 303, or the non-zero memory address index that corresponds to bitmap 303, can be

referenced by controller 302 so as to determine which memory address values should be
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accessed to provide non-zero activation values. Activation values are provided by controller
302 from memory bank 108 and onto data bus 306.

[0046] In some implementations, the input activations are provided, at least in part, from a
memory address location associated with the index or bitmap 303. In other implementations,
controller 302 can detect or determine, based on one of bitmap 303 or the index, whether an
input activation that is provided has a zero value. In response to making this determination,
controller 302 can then provide a control signal to unit or MAC 304 in the computational
array to prevent, stall, or otherwise inhibit the occurrence of an unnecessary multiply
operation (e.g., a multiply by zero). Within compute system 300, energy savings can be
realized from providing a zero activation value and subsequently or simultaneously disabling
a compute operation associated with that activation.

[0047] As discussed above, the index includes all memory address locations having input
activations with non-zero values. Data bus 306 is accessible by one or more units of a
computational array. The units of the computational array can receive, from data bus 306,
one or more non-zero activation values to perform computations relating to matrix
multiplication based on the received activation values. In some implementations, compute
system 300 will only provide input activations from memory address locations that
correspond to the indexed addresses. Thus, no zero activations will be provided to input bus
306 and so, no compute operations will be disabled or otherwise prevented from occurring.
When compute system 300 uses this communication scheme, computational efficiency can be
enhanced or accelerated by eliminating multiplication by zeros.

[0048] For a given compute cycle, compute system 300 can require access to an element of
activation structure 102 and parameter structure 104 to execute multiplication operations
associated with inference computations for a neural network layer. As noted above, certain
memory address values for memory bank 108 and memory bank 110 can correspond to
elements of activation structure 102 and parameter structure 104 respectively.

[0049] For a cycle in which computations are performed, controller 302 will provide one
input activation value at a time and the array of computational units including MAC cell 304
will multiply an activation with a weight to produce different output activations for a given
input activation. Each element (described above as a parameter structure) or MAC cell 304
of the array of computational units can be responsible for different output depths of a neural
network layer. In general, whenever controller 302 detects a zero activation value, controller
302 can either: 1) not store that activation value in memory bank 108; 2) not provide the

activation value, or 3) provide the value and provide a control signal to a particular
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computational unit to cause the unit to not perform a multiply operation corresponding to that
zero activation value.

[0050] The array of computational units is fully controlled by controller 302, which can
determine, based on detection of a zero activation value, when there is a need to skip or
prevent a particular computation. Thus, there is no need for additional complex hardware
structures within the array of computational units to skip a particular computation.
Furthermore, input activation values can be analyzed upon arriving at compute system 300
for storage in memory bank 108. In response to analyzing the input activations, controller
302 can execute an instruction to efficiently compress activation data by storing only non-
zero values in memory 108, thereby saving memory storage space and corresponding
bandwidth.

[0051] When compute system 300 receives input activations and weights, controller 302
can, for example, execute one or more direct memory access operations. Execution of these
memory access operations includes storing, in address locations of memory bank 108, input
activations corresponding to dimensional elements of activation structure 102. Likewise,
controller 302 can also store, in address locations of memory bank 110, parameters
corresponding to dimensional elements of parameter structure 104. In addition to bitmap
303, controller 302 can further include one or more address registers that maintain the
memory addresses from which a particular input activation (e.g., having a zero value or non-
zero value) will be fetched. Moreover, the one or more registers will also store the memory
addresses from which a corresponding weight is fetched to be multiplied with the particular
input activation.

[0052] As discussed above, controller 302 identifies memory addresses for non-zero
activation values based, in part, on bitmap 303. In some implementations, controller 302
reads bitmap 303 and determines, for example, at least two memory addresses that have non-
zero activation values. If controller 302 is configured to provide, and subsequently skip or
disable computes for, zero activation values, then controller 302 may also determine at least
one memory address that has a zero activation value. In this implementation, controller 302
can reference the above mentioned registers to determine a corresponding weight (and
memory address) for the first input activation and to determine a corresponding weight (and
memory address) for the second input activation.

[0053] As noted above, controller 302 maintains one or more address registers in memory.
So, to mitigate or prevent any potential misalignment of operands (input activation and

weight), upon detection of the zero value input activation, controller 302 can disable the
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corresponding compute unit, skip loading a particular weight, and retrieve the appropriate
corresponding weight (and memory address) for the next non-zero input activation to resume
computing output activations for a given neural network layer.

[0054] In some implementations, the output activations computed at a first neural network
layer are used as input activations to a next second layer in the network, e.g., a next hidden
layer or the output layer of the network. In general, each layer of the neural network
generates an output from a received input in accordance with current values of a respective
set of parameters. In some instances, controller 302 can execute programed instructions (i.e.,
output logic) to analyze data streams associated with output activations provided to output
activation bus 308. Analyzing the output activation data stream can enable controller 302 to
detect or determine whether a value associated with each of the output activations is a zero
value or a non-zero value. Controller 302 can analyze an example output activation data
stream and map each detected non-zero activation value to bitmap 305. Mapped non-zero
activation values in bitmap 305 can be used to supply only non-zero values as input
activations to a subsequent compute system 300 that is responsible for computations
associated with the next second layer in the network.

[0055] In alternative implementations, there can be some compute operations in which a
single non-zero input activation is used as an operand for several multiply operations
covering a variety of weights for a given dimensional element of parameter structure 104
(i.e., iterate a “x” or “y” dimension). For example, when controller 302 causes memory bank
108 to provide a first input activation (e.g., non-zero value), parameter structure 104a
receives the activation and a corresponding weight at a given address is also loaded to
parameter structure 104a. Parameter structure 104a will proceed to update a particular
number of partial sums (e.g., denoted by variable “K”) that the first input activation affects
over K compute cycles. As a result, for these K cycles, parameter structure 104a will receive
no additional input activations. Controller 302 can then provide a control signal to memory
bank 108 to cause the next input activation to be provided to input activation bus 306.

[0056] FIG. 4 illustrates an example architecture that includes a memory bank 108 that
provides activations 404 via input bus 306 to one or more multiply accumulate (MAC)
operators. A shift register 404 can provide shift functionality whereby activations 404 are
sent out one at a time onto input bus 306 for receipt by one or more MAC operators in a
MAUC cell 304. As shown, in one implementation, activation 406 may have an activation

value of zero and, therefore, may not be consumed by a MAC cell 304.
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[0057] In general, MAC cells 304 comprising MAC operators are defined as compute units
that calculate a partial sum and, in some implementations, are configured to write a partial
sum datum to output bus 308. As shown, cells 304 may consist of one or more MAC
operators. In one implementation, the number of MAC operators in MAC cell 304 is referred
to as the issue width of the cell. As an example, a dual issue cell refers to a cell with two
MAC operators that can compute the multiplication of two activations values (from memory
bank 108) with two parameters (from memory 110) and perform an addition between the
results of the two multipliers and the current partial sum.

[0058] As described above, input bus 306 is a communication bus that provides input
activations to MAC operators of the linear unit (i.e., MAC array 304). In some
implementations, the same input is shared between all MAC operators. The width of input
bus 306 must be wide enough to supply the input activations to the corresponding number of
cells for a given MAC array 304. Consider the following example to illustrate the structure of
input bus 306. When the number of cells in the linear unit equals four and the activation
width equals eight bits, input bus 306 can be configured to provide up to four input
activations every cycle. In this example, every cell in MAC array 304 will only access one
out of the four activations that are provided.

[0059] In some examples, instruction data 312 can indicate that cells of MAC array 304
will need to perform computations using the same input activation. This may be referred to
as Zout partitioning within a cell of MAC array 304. Likewise, Zin partitioning within a cell
occurs when cells of MAC array 304 need different activations to perform computations. In
the former case, the single input activation is replicated four times and four activations read
from memory bank 108 are provided over four cycles. In the latter case, a read of memory
bank 108 is required every cycle.

[0060] FIG. 5 is an example flow chart of process for reducing parameter computations
and exploiting input data sparsity. At block 502, compute system 300 receives input
activations that have either a zero activation value or a non-zero activation value. As
discussed above, in some implementations, compute system 300 can receive input activations
from a host interface device or higher level controller of an example neural network hardware
system.

[0061] At block 504, controller 302 determines whether each of the input activations is a
zero value or a non-zero value. In some implementations, controller 302 analyzes an input

activation data stream and maps each detected zero value and non-zero value to bitmap 303
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that includes binary values that correspond to zero input activation values (“0”) and non-zero
input activation values (“17).

[0062] At block 506, controller 302 stores, in memory bank 108, received input
activations. Storing the input activation can include controller 302 generating an index of
one or more memory address locations having input activations that include non-zero values.
In some implementations, the index is created based on bitmap 303. For example, because
each bit of bitmap 303 indicates either a non-zero activation value or a zero activation value,
bitmap 303 can be referenced by controller 302 to create an index of memory address
locations having non-zero values when writing input activations to memory bank 108.

[0063] At block 508, controller 302 provides, from memory bank 108, at least one input
activation onto data bus 306. In some implementations, the input activations are provided, at
least in part, from a memory address location identified in the index. As discussed above, the
index identifies all memory address locations storing input activations with non-zero values.
Data bus 306 is accessible by one or more units of a computational array. The units of the
computational array receive, from data bus 306, one or more non-zero activation values to
perform computations relating to matrix multiplication. In some implementations, compute
system 300 will only provide input activations from memory addresses that correspond to the
indexed addresses. When compute system 300 uses this communication scheme,
computational efficiency can be enhanced by eliminating multiplication by zeros.

[0064] At block 510, in implementations where all activation values are provided rather
than only input activations from indexed addresses, controller 302 detects that an input
activation is provided from a memory address that is not associated with any indexed
addresses that include non-zero activation values. In response to this detecting step, controller
302 can then provide a control signal to at least one unit of the computational array to prevent
a multiply operation associated with the zero input. When compute system 300 uses this
communication scheme, energy savings can be realized by preventing unnecessary or
wasteful computations that yield no useful results (e.g., useful results includes compute of a
partial sum or output activation).

[0065] Embodiments of the subject matter and the functional operations described in this
specification can be implemented in digital electronic circuitry, in tangibly-embodied
computer software or firmware, in computer hardware, including the structures disclosed in
this specification and their structural equivalents, or in combinations of one or more of them.
Embodiments of the subject matter described in this specification can be implemented as one

or more computer programs, i.e., one or more modules of computer program instructions
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encoded on a tangible non transitory program carrier for execution by, or to control the
operation of, data processing apparatus. Altematively or in addition, the program instructions
can be encoded on an artificially generated propagated signal, e.g., a machine-generated
electrical, optical, or electromagnetic signal, which is generated to encode information for
transmission to suitable receiver apparatus for execution by a data processing apparatus. The
computer storage medium can be a machine-readable storage device, a machine-readable
storage substrate, a random or serial access memory device, or a combination of one or more
of them.

[0066] The processes and logic flows described in this specification can be performed by
one or more programmable computers executing one or more computer programs to perform
functions by operating on input data and generating output(s). The processes and logic flows
can also be performed by, and apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array), an ASIC (application specific
integrated circuit), a GPGPU (General purpose graphics processing unit), or some other
processing unit.

[0067] Computers suitable for the execution of a computer program include, by way of
example, can be based on general or special purpose microprocessors or both, or any other
kind of central processing unit. Generally, a central processing unit will receive instructions
and data from a read only memory or a random access memory or both. The essential
elements of a computer are a central processing unit for performing or executing instructions
and one or more memory devices for storing instructions and data. Generally, a computer
will also include, or be operatively coupled to receive data from or transfer data to, or both,
one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such devices.

[0068] Computer readable media suitable for storing computer program instructions and
data include all forms of non-volatile memory, media and memory devices, including by way
of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or removable disks. The processor and the
memory can be supplemented by, or incorporated in, special purpose logic circuitry.

[0069] While this specification contains many specific implementation details, these
should not be construed as limitations on the scope of any invention or of what may be
claimed, but rather as descriptions of features that may be specific to particular embodiments
of particular inventions. Certain features that are described in this specification in the context

of separate embodiments can also be implemented in combination in a single embodiment.
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Conversely, various features that are described in the context of a single embodiment can also
be implemented in multiple embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as acting in certain combinations and
even initially claimed as such, one or more features from a claimed combination can in some
cases be excised from the combination, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

[0070] Similarly, while operations are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated operations be performed, to achieve
desirable results. In certain circumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system modules and components in the
embodiments described above should not be understood as requiring such separation in all
embodiments, and it should be understood that the described program components and
systems can generally be integrated together in a single software product or packaged into
multiple software products.

[0071] Further implementations are summarized in the following examples:

[0072] Example 1. A computer-implemented method, comprising: receiving, by a
computing device, a plurality of input activations , the input activations being provided, at
least in part, from a source external to the computing device ; determining, by a controller of
the computing device, whether each of the plurality of input activations has one of a zero
value or a non-zero value; storing, in a memory bank of the computing device, at least one of
the input activations; generating, by the controller, an index comprising one or more memory
address locations having input activation values that are non-zero values; and providing, by
the controller and from the memory bank, at least one input activation onto a data bus that is
accessible by one or more units of a computational array, wherein the activations are
provided, at least in part, from a memory address location associated with the index.

[0073] Example 2: The method of example 1, wherein the index is created based on a
bitmap comprising a plurality of bits and, wherein each bit of the bitmap indicates at least one
of a non-zero input activation value or a zero input activation value.

[0074] Example 3: The method of example 1 or 2, further including, providing a first input
activation that has a non-zero value to perform, by at least one unit, a computation using the
non-zero value, and subsequently providing a second input activation that has a zero value,
and preventing, in at least one unit, computation that would otherwise be performed using the

zero value.
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[0075] Example 4: The method of example 3, wherein preventing occurs in response to
the controller determining that the input activation is provided from a memory address
location that is not associated with the index.

[0076] Example 5: The method of example 4, further including, detecting, by the
controller, that the input activation is provided from a memory address location that is not
associated with the index, and, in response to detecting, providing a control signal to at least
one unit of the computational array to prevent a multiply operation associated with the zero
input activation value.

[0077] Example 6: The method of one of examples 1 to 5, wherein the method further
comprises, mapping, by the controller and to a first unit, a first portion of a tensor
computation that uses a first input activation and mapping, to a second unit that differs from
the first unit, a second portion of the tensor computation that also uses the first input
activation.

[0078] Example 7: The method of one of examples 1 to 6, further comprising, sequentially
providing a single input activation onto the data bus, the single input activation being
accessed and selected from memory address locations that are associated with the index.
[0079] Example 8: The method of one of examples 1 to 7, wherein providing further
comprises, not providing input activations that have a zero value.

[0080] Example 9: One or more machine-readable storage devices storing instructions that
are executable by one or more processing devices to perform operations comprising:
receiving, by a computing device, a plurality of input activations, the input activations being
provided, at least in part, from a source external to the computing device; determining, by a
controller of the computing device, whether each of the plurality of input activations has one
of a zero value or a non-zero value; storing, in a memory bank of the computing device, at
least one of the input activations; generating, by the controller, an index comprising one or
more memory address locations having input activation values that are non-zero values; and
providing, by the controller and from the memory bank, at least one input activation onto a
data bus that is accessible by one or more units of a computational array, wherein the
activations are provided, at least in part, from a memory address location associated with the
index.

[0081] Example 10: The machine-readable storage devices of example 9, wherein the
index is created based on a bitmap comprising a plurality of bits and, wherein each bit of the
bitmap indicates at least one of a non-zero input activation value or a zero input activation

value.
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[0082] Example 11: The machine-readable storage devices of example 9 or 10, further
including, providing a first input activation that has a non-zero value to perform, by at least
one unit, a computation using the non-zero value, and subsequently providing a second input
activation that has a zero value, and preventing, in at least one unit, computation that would
otherwise be performed using the zero value.

[0083] Example 12: The machine-readable storage devices of example 11, wherein
preventing occurs in response to the controller determining that the input activation is
provided from a memory address location that is not associated with the index.

[0084] Example 13: The machine-readable storage devices of example 12, further
including, detecting, by the controller, that the input activation is provided from a memory
address location that is not associated with the index, and, in response to detecting, providing
a control signal to at least one unit of the computational array to prevent a multiply operation
associated with the zero input activation value.

[0085] Example 14: The machine-readable storage devices of one of examples 9 to 13,
wherein the operations further comprise, mapping, by the controller and to a first unit, a first
portion of a tensor computation that uses a first input activation and mapping, to a second
unit that differs from the first unit, a second portion of the tensor computation that also uses
the first input activation.

[0086] Example 15: An electronic system comprising: a controller disposed in a computing
device, the controller including one or more processing devices; and one or more machine-
readable storage devices for storing instructions that are executable by the one or more
processing devices to perform operations comprising: receiving, by the computing device, a
plurality of input activations, the input activations being provided, at least in part, from a
source external to the computing device; determining, by the controller, whether each of the
plurality of input activations has one of a zero value or a non-zero value; storing, in a
memory bank of the computing device, at least one of the input activations; generating, by
the controller, an index comprising one or more memory address locations having input
activation values that are non-zero values; and providing, by the controller and from the
memory bank, at least one input activation onto a data bus that is accessible by one or more
units of a computational array, wherein the activations are provided, at least in part, from a
memory address location associated with the index.

[0087] Example 16: The electronic system of example 15, wherein the index is created
based on a bitmap comprising a plurality of bits and, wherein each bit of the bitmap indicates

at least one of a non-zero input activation value or a zero input activation value.
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[0088] Example 17: The electronic system of example 15 or 16, further including,
providing a first input activation that has a non-zero value to perform, by at least one unit, a
computation using the non-zero value, and subsequently providing a second input activation
that has a zero value, and preventing, in at least one unit, computation that would otherwise
be performed using the zero value.

[0089] Example 18: The electronic system of example 17, wherein preventing occurs in
response to the controller determining that the input activation is provided from a memory
address location that is not associated with the index.

[0090] Example 19: The electronic system of example 17 or 18, further including,
detecting, by the controller, that the input activation is provided from a memory address
location that is not associated with the index, and, in response to detecting, providing a
control signal to at least one unit of the computational array to prevent a multiply operation
associated with the zero input activation value.

[0091] Example 20: The electronic system of one of examples 15 to 19, wherein the
operations further comprise, mapping, by the controller and to a first unit, a first portion of a
tensor computation that uses a first input activation and mapping, to a second unit that differs
from the first unit, a second portion of the tensor computation that also uses the first input
activation.

[0092] Particular embodiments of the subject matter have been described. Other
embodiments are within the scope of the following claims. For example, the actions recited
in the claims can be performed in a different order and still achieve desirable results. As one
example, the processes depicted in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve desirable results. In certain

implementations, multitasking and parallel processing may be advantageous.
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What is claimed is:

1. A computer-implemented method, comprising;

receiving, by a computing device, a plurality of input activations, the input
activations being provided, at least in part, from a source external to the computing
device;

determining, by a controller of the computing device, whether each of the plurality
of input activations has one of a zero value or a non-zero value;

storing, in a memory bank of the computing device, at least one of the input
activations;

generating, by the controller, an index comprising one or more memory address
locations having input activation values that are non-zero values; and

providing, by the controller and from the memory bank, at least one input
activation onto a data bus that is accessible by one or more units of a computational array,
wherein the activations are provided, at least in part, from a memory address location

associated with the index.

2. The method of claim 1, wherein the index is created based on a bitmap comprising
a plurality of bits and, wherein each bit of the bitmap indicates at least one of a non-zero

input activation value or a zero input activation value.

3. The method of claim 1, further including, providing a first input activation that has
a non-zero value to perform, by at least one unit, a computation using the non-zero value,
and subsequently providing a second input activation that has a zero value, and

preventing, in at least one unit, computation that would otherwise be performed using the

zero value.

4, The method of claim 3, wherein preventing occurs in response to the controller
determining that the input activation is provided from a memory address location that is

not associated with the index.

5. The method of claim 4, further including, detecting, by the controller, that the input
activation is provided from a memory address location that is not associated with the

index, and, in response to detecting, providing a control signal to at least one unit of the
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computational array to prevent a multiply operation associated with the zero input

activation value.

6. The method of claim 1, wherein the method further comprises, mapping, by the
controller and to a first unit, a first portion of a tensor computation that uses a first input
activation and mapping, to a second unit that differs from the first unit, a second portion

of the tensor computation that also uses the first input activation.

7. The method of claim 1, further comprising, sequentially providing a single input
activation onto the data bus, the single input activation being accessed and selected from

memory address locations that are associated with the index.

8. The method of claim 1, wherein providing further comprises, not providing input

activations that have a zero value.

9. One or more machine-readable storage devices storing instructions that are
executable by one or more processing devices to perform operations comprising:

receiving, by a computing device, a plurality of input activations, the input
activations being provided, at least in part, from a source external to the computing
device;

determining, by a controller of the computing device, whether each of the plurality
of input activations has one of a zero value or a non-zero value;

storing, in a memory bank of the computing device, at least one of the input
activations;

generating, by the controller, an index comprising one or more memory address
locations having input activation values that are non-zero values; and

providing, by the controller and from the memory bank, at least one input
activation onto a data bus that is accessible by one or more units of a computational array,
wherein the activations are provided, at least in part, from a memory address location

associated with the index.

10.  The machine-readable storage devices of claim 9, wherein the index is created
based on a bitmap comprising a plurality of bits and, wherein each bit of the bitmap

indicates at least one of a non-zero input activation value or a zero input activation value.
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11.  The machine-readable storage devices of claim 9, further including, providing a
first input activation that has a non-zero value to perform, by at least one unit, a
computation using the non-zero value, and subsequently providing a second input
activation that has a zero value, and preventing, in at least one unit, computation that

would otherwise be performed using the zero value.

12.  The machine-readable storage devices of claim 11, wherein preventing occurs in
response to the controller determining that the input activation is provided from a

memory address location that is not associated with the index.

13.  The machine-readable storage devices of claim 12, further including, detecting, by
the controller, that the input activation is provided from a memory address location that is
not associated with the index, and, in response to detecting, providing a control signal to
at least one unit of the computational array to prevent a multiply operation associated

with the zero input activation value.

14.  The machine-readable storage devices of claim 9, wherein the operations further
comprise, mapping, by the controller and to a first unit, a first portion of a tensor
computation that uses a first input activation and mapping, to a second unit that differs
from the first unit, a second portion of the tensor computation that also uses the first input

activation.

15.  An electronic system comprising:
a controller disposed in a computing device, the controller including one or more
processing devices; and
one or more machine-readable storage devices for storing instructions that are
executable by the one or more processing devices to perform operations comprising:
receiving, by the computing device, a plurality of input activations, the input
activations being provided, at least in part, from a source external to the computing
device;
determining, by the controller, whether each of the plurality of input
activations has one of a zero value or a non-zero value;
storing, in a memory bank of the computing device, at least one of the input

activations;
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generating, by the controller, an index comprising one or more memory
address locations having input activation values that are non-zero values; and

providing, by the controller and from the memory bank, at least one input
activation onto a data bus that is accessible by one or more units of a computational
array, wherein the activations are provided, at least in part, from a memory address

location associated with the index.

16.  The electronic system of claim 15, wherein the index is created based on a bitmap
comprising a plurality of bits and, wherein each bit of the bitmap indicates at least one of

a non-zero input activation value or a zero input activation value.

17.  The electronic system of claim 15, further including, providing a first input
activation that has a non-zero value to perform, by at least one unit, a computation using
the non-zero value, and subsequently providing a second input activation that has a zero
value, and preventing, in at least one unit, computation that would otherwise be

performed using the zero value.

18.  The electronic system of claim 17, wherein preventing occurs in response to the
controller determining that the input activation is provided from a memory address

location that is not associated with the index.

19.  The electronic system of claim 17, further including, detecting, by the controller,
that the input activation is provided from a memory address location that is not associated
with the index, and, in response to detecting, providing a control signal to at least one unit
of the computational array to prevent a multiply operation associated with the zero input

activation value.

20.  The electronic system of claim 15, wherein the operations further comprise,
mapping, by the controller and to a first unit, a first portion of a tensor computation that
uses a first input activation and mapping, to a second unit that differs from the first unit, a

second portion of the tensor computation that also uses the first input activation.
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500 \

RECEIVE INPUT ACTIVATIONS FROM SOURCE EXTERNAL TO COMPUTING DEVICE

502

DETERMINE WHETHER EACH OF THE INPUT ACTIVATIONS INCLUDES ONE OF A
ZERO-VALUE OR A NON-ZERO VALUE 504

'

STORE INPUT ACTIVATION AND CREATE INDEX WITH MEMORY ADDRESS
LOCATIONS THAT HAVE NON-ZERO ACTIVATION VALUES 0

BROADCAST INPUT ACTIVATION ONTO DATA BUS AND FROM A MEMORY
ADDRESS LOCATION ASSOCIATED WITH THE INDEX

'

DETECT WHETHER INPUT ACTIVATION IS BROADCAST FROM NON-INDEXED
MEMORY ADDRESS LOCATION, IF YES, PROVIDE CONTROL SIGNAL TO
COMPUTATIONAL ARRAY TO PREVENT COMPUTATION USING ZERO INPUTg4q
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