The present invention relates to lampholders and particularly lampholders for double-ended electric discharge lamps, commonly known as fluorescent lamps.

Prior art lampholders such as fluorescent lamp sockets have provided connector structure in which the conducting wires are electrically connected to the lampholder and automatically locked in place by simply inserting the bared end of the wire through an opening in the lampholder housing. This technique of wire connection is commonly known as "pressure locking" and is with the therm of making it convenient for even the most inexperienced person to install the socket. In certain fluorescent sockets of the prior art, the pressure locking is achieved by means of contact members which perform two resilient functions that of resiliently engaging a conductor wire, and that of resiliently seating a lamp pin in the socket. More particularly, such contact members each have one resilient section for locking a bared wire end in conductive position, and another resilient section for engaging and cooperating with a lamp pin to seat it in the socket. In such fluorescent lampholders, it has been found desirable to provide an improved means for segregating the separate resilient functions of each of the contact members so that the pressure locking action in the lampholder has no substantial effect upon the seating of a lamp pin in the socket. By segregating these functions, the dependability and durability of the lampholder is enhanced. It has been found additionally advantageous in such lampholders to increase the effective contact area of the contact member at the resilient section thereof which cooperates with a fluorescent lamp pin. This increased lampholder contact area assures effective electrical engagement of the lampholder contacts with pins of a fluorescent lamp where the lamp pins of the opposed bases of the lamp are spaced apart from end to end by a minimal over-all length.

The principal object of this invention is to provide an improved fluorescent lampholder which has an improved means for effecting a mechanical and electrical connection of the lead wires thereto.

A further object of my invention is to provide an improved fluorescent lampholder which has enlarged contact areas for seating the pins of fluorescent lamps.

In carrying out my invention, in one form thereof, I have provided a fluorescent lampholder having an insulating body with a recess therein. This recess is appropriately configured to receive an oppositely disposed pair of spaced resilient contact members which are arranged to resiliently engage and seat the pins of a bi-pin fluorescent lamp in the lampholder. Each contact member includes an elongated strip section which extends generally in a first plane and has a curved indentation near one of its ends. The curved indentation is movable in a direction transverse to this first plane to resiliently engage and seat one of the pins of the lamp. Each of the contact members also includes a pressure lock section which is integral with the strip section and is generally located in a second plane disposed perpendicularly to the first plane. The pressure lock section of each contact member is disposed so that it has its profile arranged in generally edge-wise relationship to the first plane, being also located across the inner end of a conductor receiving aperture for movement in a third plane and in a direction generally parallel to the first plane to resiliently engage a conductor which is inserted through the aperture. With the contact members arranged in the lampholder in such a manner, the pressure locking action of each of the contacts has no substantial effect upon the engagement of the lamp pins with the curved indentations of the lampholder. An effective means is thus achieved for segregating the separate resilient functions of the curved indentation and the pressure locking section of each contact.

By a further aspect of my invention, I provide an improved means for substantially increasing the effective electrical contact area for each contact member of my lampholder, without necessitating any increase in the overall dimensions of the lampholder. This means for increasing the over-all electrical contact area of each contact member may, of course, be combined with the aforesaid structure to provide a particularly desirable lampholder. In this arrangement, each contact member has a tab portion which extends outwardly from and on both sides of the apex of the curved indentation that engages the lamp pin. This tab portion extends parallel to a mating lamp pin in a forward direction and thereby increases the depth of the contact area provided by the indentation. The increased contact area thus provided enhances the flexibility of the lampholder by enabling it to more efficiently assure good contact with fluorescent lamps which have been poorly tolerated or have a minimal over-all length.

By a still further aspect of my invention, I provide a fluorescent lampholder having improved contact members with two resilient pressure lock sections at one of the ends of each contact member and a resilient lamp pin seat near the other end of each member. This contact structure may, of course, be combined with the aforesaid structures to provide a particularly desirable lampholder.

Further aspects of my invention will become apparent hereinafter, and the specification concludes with claims particularly pointing out and distinctly claiming the subject matter which I regard as my invention. The invention, however, as to organization and method of operation, together with other objects and advantages thereof, may best be understood by reference to the following description when taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a side-elevational view showing the general arrangement of a fluorescent lamp supported between a pair of inverted lampholders embodying my invention;

FIG. 2 is a front elevational view of one of the lampholders of FIG. 1;

FIG. 3 is a sectional view taken generally along the line 3-3 of FIG. 2;

FIG. 4 is a rear view of the lampholder with the back cover and fastening clip exploded;

FIG. 5 is a perspective view of one of the lampholder contact members; and

FIG. 6 is a plan view of the lampholder.

Referring first to FIG. 1 of the drawings, there is shown a conventional bi-pin fluorescent lamp 1 supported at opposite ends in the similar lampholders 3 which are constructed in accordance with my invention. The lampholders 3 in turn are supported from a reflecting surface 5 forming part of a lighting fixture or the like. The lamp 1 has a tubular glass envelope 7 provided with bases 9 and 11, each of which is provided with a pair of contact pins (not shown) to be supported in the lampholders 3. Although I have chosen to illustrate my invention as being incorporated in a bi-pin fluorescent lamp-
holder, it should be recognized that my improved contact structure which is the subject of this invention may also be incorporated in the standard slimline lamp holder for a single pin lamp as well as other lamp holders without departing from the spirit of this invention.

Turning now to a consideration of the lamp holder, its attention is first directed toward FIGS. 2-4, which illustrate the details of the over-all construction thereof. The illustrated lamp holder has been designed for the simplified, efficient and economical mounting of one end of a bi-pin fluorescent tube. To afford maximum simplicity, as best shown in FIG. 4, lamp holder comprises only five basic parts. These parts include supporting body 13, two contact members 12 and 14, cover member 16, and fastening clip 18. The supporting body 13 is molded from some suitable insulating material, and it is of generally L-shaped configuration, having a recess 19 comprising smaller recess sections therein. The over-all configuration of such a lamp holder is commonly referred to in the illumination industry as the “tombstone” type of lamp holder, providing a compact and sturdy support for the lamp pins of each lamp base. Body 13 is of one-piece molded construction, including a generally box-shaped base portion 15 having a smooth bottom wall 15a, and upward portion 17 extending outwardly from near one end of the base. Recess 19 opens generally into the rear of body 13 and it includes the recess sections 19a, 19b, 20a, and 20b, as shown in FIG. 4. The pair of elongated spaced recess sections 19a and 19b are molded into an upward portion 17, and the pair of relatively short but deeper, spaced recess sections 20a and 20b are molded into base portion 15. The recess section pairs 19a and 20a, and 19b and 20b, communicate respectively at channels 21a and 21b to provide a pair of separate chambers for supporting the two similar resilient contact members 12 and 14.

To close recess 19 of insulating body 13 and also furnish a supporting surface for contact members 12 and 14 therein, I have provided insulating cover 16. Cover 16 is supported on the coplanar and oppositely disposed stepped edges 25, 27, 29, and bottom end surface 31. (See FIG. 4.) These edges are recessed inwardly toward the front face of the body from the rear side thereof by a depth greater than the thickness of cover member 16 so that the side and top walls of the body serve to contain member 16 within them. With this arrangement, cover member 16 may be slid into its position from underneath the lamp holder body (as viewed in FIG. 4). To securely and positively attach cover 16 to body 13 and thus close the recess 19 of lamp holder 3, the relatively short bent ends 18a and 18b of U-shaped fastening clip 18 are pushed through apertures 35 and 37 of cover 16 and then forced into the molded openings 39 and 41 of body 13.

As seen in FIG. 3, upward portion 17 of supporting body 13 is characterized by thinness in size, i.e., the distance between the front and back surfaces of the upper portion, thus enhancing the over-all space economy of the socket 3. To roll or slide the contact pins of a bi-pin fluorescent lamp into the socket 3, the upper end wall 43 of body 13 (as seen in FIG. 2) has been made of uprights 44 and inwardly inclined converging sections 45 which are rounded and turned downwardly to establish an entry slot 47 for movement of the lamp pins into the socket. To guide the pins of a bi-pin fluorescent lamp within socket 3, I have molded two intersecting arcuate grooves 49 in front of the upper portion 17. Grooves 49 are separated and formed in part by a cordate boss 51. Boss 51 has its front surface coplanar with front wall 44 and apex 50 of the boss is directed toward entry slot 47. Grooves 49 thus intersect the entry slot 47 so that the pins 53 and 55 of a bi-pin lamp (as represented in FIG. 2) are passed into the arcuate grooves and guided into engagement with the resilient contacts 12 and 14 (FIG. 2). When a bi-pin lamp is mounted in this socket, the possibility of the lamp being disengaged and falling out of the socket is greatly reduced by one of the pins being forced into a semi-locked position by a cammed interference of the other pin against an arcuate outer edge of one of the grooves during intentional or accidental removal or rotation of the lamp. This effect is more specifically achieved by the resilient shoulder-like portion one pin, for example shown in FIG. 2 as dotted pin 53a, against neck 57 of wall 44 of body 13 due to the biasing force of the associated contact member when the other pin, shown for example as dotted pin 53b, rotates to a free or unseated position.

To enhance the sturdiness and durability of my improved lamp holder, I have formed cordate boss 51 as one end of, and an integral part of, a rearwardly extending arrow-shaped central dividing rib 59. (See FIG. 4.) By this manner of construction, the possibility of the shearing of the boss during the mounting or unmounting of the lamp in the socket is substantially lessened. Rib 59 also serves to provide additional strength for the body 13 and to generally divide the recess 19 into the two aforementioned communicating pairs of recess sections 19a and 20a, and 19b and 20b, wherein contact members 12 and 14 are supported (as shown in FIG. 4).

Turning now to the similar contact members 12 and 14, and the manner in which they are supported within recess 19, it will become apparent that these contact members constitute an important aspect of my invention. The contact members 12 and 14 are symmetrical and similar, differing only in that member 14 has been designed for insertion into recess sections 19a and 20a, being on the right hand side of the body 13 (as viewed in FIG. 2), and member 12 has been designed for insertion into recess sections 19b and 20b, being on the left hand side of body 13 (as viewed in FIG. 2). Contact members 12 and 14 shall thus be described in detail together by reference to the enlarged perspective view of left handed contact member 12, which is shown more explicitly in FIG. 5. Members 12 and 14 are of one-piece construction and they each include an elongated strip section 65, a rear supporting portion 67 having perpendicularly from one end of section 65, upper supporting portion 69 which is bent over, as shown in FIG. 5 from rear portion 67, and two pressure locking sections 71, which are bent downwardly and angularly inwardly (i.e., toward portion 67) from portion 69.

Considering first the configuration of the elongated strip section 65, to provide a resilient seat for each lamp contact pin, a V-shaped curved groove or indentation 79 (as shown in FIG. 5) is formed in section 65 near upper end 73. As seen in FIG. 2, the V-shaped indentation 79 forms a resilient seat for the lamp contact pin of a bi-pin fluorescent lamp after the pins of the lamp have been inserted through entry slot 47 and properly guided into indentations 79 by arcuate grooves 49. Upper end 73 of each strip section is turned outwardly in the same direction as the indentation 79 of that section so that when contact members 12 and 14 are positioned within their socket recess sections, ends 73 serve as limiting stops. More particularly, the bent over ends 73 engage corner projections 77 which are molded into recess sections 19a and 19b (as seen in FIG. 4) to limit the outward resilient movement of indentations 79.

To increase the effective contact area of each contact member 12 and 14, as illustrated in FIG. 5, forward tab portion 81 has been formed on the side edge 85 as an abbreviation of a V-shaped groove or indentation 79. Tab portions 81 have the configuration of a V-shaped groove or indentation, and extend forward when the contact members 12 and 14 are positioned in the lamp holder, to provide an additional contact area on each member for electrically engaging and resiliently seating a lamp pin. These enlarged contact areas provide a wide margin of safety where a pair of lamp holders 3 (as seen in FIG. 1) are mounted in accordance with the recommended maximum back to back spacing procedures known to those skilled
in the art. More particularly, where a pair of prior art lampholders are supported in a fixture (not shown) with the maximum recommended distance between them, and a bi-pin fluorescent lamp of minimum length is seated in these lampholders, a scanty contact surface (e.g., 0.009 inch) might be effected between the contact members of my lampholder 3 overcome this by providing a substantially increased electrical contact surface for cooperation with the lamp pins. In lampholder 3, tab portions 51 may, for example, project outwardly from side edge 85 approximately 0.020 inch.

An additional contact depth provided toward the mating lamp pins of 0.020 inch thus be provided by the contact members of each lampholder 3. To help position each contact member in recess 19 and limit any undue rearward movement of indentations 79 after the cover member has been attached to body 13. Tab portions 58, of course, also provide an enlarged rearward contact surface for each indentation 79.

As seen in FIGS. 3 and 4, it will be noted that transverse recesses 89 are formed in the inner surface of the front wall 44 of upright portion 17 of body 13. These recesses are located outwardly from the normal positions of indentations 79 to provide clearance for the movement of tab portions 51, particularly during the insertion and removal of the lamp pins.

Turning now to a very important aspect of my invention, as shown in FIG. 5, it will be noted that the supported end 93 of strip section 65 of each contact member of portion 67 integral thereto. Portion 67 is bent over perpendicularly from the plane of section 65 along bend 95 and includes four positioning bosses 93 for engaging the inner surface of insulating cover 16 after it has been fitted to body 13. Intermediate the ends of bend 95, before effecting the bend, slot 97 has been formed. Slot 97 serves to reduce the stresses built up in section 65 and portion 67 during the forming of bend 95. To furnish additional support for the contact members within body 13, and also to properly position the pressure locking sections 71 of these members 12 and 14 therein, another supporting portion 69 is bent over from the upper end 67a of rear portion 67. Portion 69 includes two positioning bosses 93 which about upper surface 99 within the base portion recess section 20a or 20b to further position contact members 12 and 14 therein. (See FIGS. 3 and 5.) To facilitate the resilient engagement of two bared conductor ends with each contact member, two pressure locking sections 71 are extended downwardly from front end 101 of upper supporting portion 69. The two pressure locking sections 71 are separated from each other by slot 103 and are connected to upper supporting portion 69 at curved upper ends 105. It should be noted that slot 103 extends between and around the curved ends 105 of sections 71 toward bend 67a so that each pressure locking section 71 may flex about its curved upper end 105 without interfering with the other pressure locking section.

The pressure locking sections 71 of the contact members 12 and 14 have shallow tapered grooves 71a, the depths of which gradually increase in the direction of their outer ends. These grooves are provided to increase the effective wedging force against larger size conductors; to reinforce the locking sections against distortion, and to hold the conductor centered with relation to the locking section. The ends of each pair of locking sections 71 are positioned adjacent recessed inner forward walls 106 of base portion 15, as shown in FIG. 3. Near these ends, a pair of conductor receiving apertures 107 is molded into each wall 106 of base portion 15. Each pair of apertures 107 communicates with one of the recess sections 20a and 20b and the axes of the apertures are parallel to the bottom wall of base portion 15. Tapered grooves 71a of the pressure locking sections 71 extend angularly away from the inner ends of their adjacent apertures, as shown in FIG. 3, so that when the bared end of a conductor is thrust through any receiving aperture 107, the associated locking section 71 presses flexes about its curved upper end 105 in response to the force transmitted to it by the conductor, and the tapered groove of the locking section resiliently coacts with the bottom wall of base portion 15 and the aperture 107 to sandwich or wedge the bared conductor end into electrical engagement with the contact member. (See FIG. 3.)

It will thus be noted that each of the contact members 12 and 14 in addition to providing a resilient force for mounting one of the lamp pins within arcuate groove 49 also furnishes two pressure locking terminals at one of its ends. In order to efficiently segregate the pressure locking and lamp pin seating functions of each contact member, my improved lampholder 3 provides for the movement of lamp pin seat 79 and pressure locking sections 71 (of each contact member) in a novel manner in two different and parallel planes and in different directions. More particularly, when the pins of a bi-pin fluorescent lamp are being seated in the indentations 79 of lampholder 3, the innermost ends of indentations 79 move in a plane generally parallel to the plane of upper supporting portions 69 and also in a direction transverse to the parallel general planes of the elongated strip sections 65 (viewing FIG. 4). The pressure locking sections 71 of each contact are in offset and unopposite relationship to the elongated strip section 65 and they are also in a plane perpendicular to the plane of the strip section 65. Thus, the profile of each pair of generally coplanar and adjacent pressure locking sections 71 is disposed in edgeswise relationship to the plane in which strip section 65 is essentially located. When the bared end of a conductor is inserted into any one of the conductor receiving apertures 107 of the lampholder 3, the resilient movement of the adjacent pressure locking section 71 is in a direction substantially parallel to the plane of the strip section 65. The resilient movement of pressure locking section 71 also occurs in a different plane from that in which indentation 79 of the contact member has moved. The plane of resilient movement for the pressure locking sections of each contact, that is, the plane of movement of the locking tips of the sections, is also generally parallel to the plane of movement of the lamp pin receiving indentation 79. The physical separation of strip section 65 of each contact member from the pressure locking sections 71 thereof by rear and upper supporting portions 67 and 69 has thus segregated the resilient functions of my contact members 12 and 14 by efficiently dividing them into resilient motion which occurs in two substantially spaced apart parallel planes. With such an arrangement, when lamp pins 53 and 55 are seated in contact indentations 79 (as shown in FIG. 2), the insertion of conductors into any of the apertures 107 has no substantial effect upon the engagement of the lamp pins with the curved indentations of the lampholder.

To disengage any conductor from its pressure locking section 107, an unlocking slot 109 is molded above each pair of adjacent conductor receiving apertures 107. One needs merely to insert a sharply pointed tool through the unlocking slot 109 and flex the pressure locking sections
to unlock any conductor end from electrical engagement with its pressure locking section.

As will now be apparent, my improved fluorescent lampholder 3 affords several advantages. In addition to providing two pressure locking sections on one end of a single contact member, and an indentation near the other end of each contact member for resiliently engaging and seating a lamp pin, my lampholder 3 efficiently segregates the two resilient functions achieved by each of these two contact members by separating the resilient movements of the lamp pin seat or indentation and the pressure locking sections into two substantially spaced apart parallel planes. A further advantage which my improved contact members afford is the provision of a contact tab on the lamp pin seat or indentation, to provide an increased area of contact for engagement with the pins of a fluorescent lamp. The overall contact arrangement which I have disclosed is, of course, particularly advantageous in a fluorescent lamp socket, such as the illustrated socket, which is intended for use with a bi-pin fluorescent lamp.

It will now, therefore, be seen that my new and improved fluorescent lampholder such as herein illustrated provides a simple and efficient means for economically providing two pressure locking terminals and a lamp pin seat in a single contact member. This construction conveniently lends itself to simplified installation and is low in cost. It should be realized that certain aspects of my invention may be efficiently and beneficially incorporated in lamps other than lampholders.

While, in accordance with the patent statutes, I have described what at present is considered to be the preferred embodiment of my invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from my invention and I, therefore, aim to have the following claims to cover all such equivalent variations as fall within the true spirit and scope of this invention.

What I claim as new and desire to secure by Letters Patent of the United States is:

1. A socket for an electric lamp comprising an insulating housing with opposed front and rear walls in a perpendicular relationship to opposed side walls, at least one conductor receiving aperture extending into said housing through said front wall, at least one resilient contact disposed within said housing, said contact including an elongated strip section having an edgewise relationship to said front and rear walls, a lamp pin seating means formed in said strip section adjacent one of its ends to resiliently engage a pin of said lamp, and at least one pressure lock section integral with said strip section and having an edgewise relationship to an associated side wall, said strip section having means for resiliently engaging and lock conductors inserted therethrough, whereby the pressure locking action of said contact has no substantial effect upon the engagement of said lamp pin with said lamp pin seating means.

2. A socket for an electric lamp comprising an insulating housing with opposed front and rear walls in a perpendicular relationship to opposed side walls, at least one pair of adjacent conductor receiving apertures extending into said housing through said front wall, at least one resilient contact disposed within said housing, said contact including an elongated strip section having an edgewise relationship to said front and rear walls, a lamp pin seating means formed in said strip section adjacent one of its ends to resiliently engage a pin of said lamp, and at least two generally coplanar pressure locking sections integral with said strip section and having an edgewise relationship to an associated side wall, said pressure locking sections being disposed angularly across the inner ends of said conductor receiving apertures to resiliently engage and lock conductors inserted therethrough, whereby the pressure locking action of said contact

3. A socket for a bi-pin fluorescent lamp comprising an insulating body having a plurality of sides forming a recess therein, a pair of spaced conductor receiving apertures extending into said recess through said sides, a pair of resilient contacts spaced apart with said recess, each of said contacts including an elongated strip section extending essentially in a singular plane, said strip section having a curved indentation adjacent one of its ends for movement in a direction transverse to said plane to resiliently lock said contact, and said indentation including a tab portion which extends outwardly toward the front of said socket thereby to increase the depth of contact area provided by the indentations, and at least one pressure lock section integral with said strip section and disposed outwardly therefrom toward the front of said socket, said pressure lock section having a profile disposed in edgewise relationship to said plane and across the inner end of an associated one of said apertures for movement in a direction generally parallel to said plane to resiliently engage a conductor inserted therethrough, whereby the pressure locking action of each of said contacts has no substantial effect upon the engagement of the lamp pins with the curved indentations of the lampholder.

4. A socket for a bi-pin electric lamp comprising an insulating body having a front wall and a plurality of sides forming a recess therein, a pair of resilient contacts spaced apart within said recess, each of said contacts including an elongated strip section having a curved indentation adjacent one of its ends for resiliently seating one of the pins of said socket, said elongated strip section being disposed in edgewise relationship with said front wall, said strip section having means for guiding the pins of said lamp into engagement with said curved indentations, a tab portion formed on said strip section of each said contact, said tab portion protruding outwardly from said indentation as a similarly configured extension thereof toward the front of said socket, and a transverse recess formed in the inner surface of said front wall of said socket to accommodate the resilient movement of each said tab portion in a direction transverse to said strip section, said tab portions providing an additional contact area for each of said contact indentations thereby increasing the depth of contact area engageable by the pins of a bi-pin fluorescent lamp.

5. A socket for a bi-pin fluorescent lamp comprising an insulating body having a plurality of sides forming a recess therein, a pair of resilient contacts spaced apart within said recess, each of said contacts including an elongated strip section having a curved indentation adjacent one of its ends for resiliently seating one of the pins of said lamp, arcuate means formed in said socket for guiding the pins of said lamp into engagement with said indentations, a tab portion formed on each strip section of each said contact, said tab portion protruding outwardly from said indentation as a similarly configured extension thereof toward the front of said socket, a transverse recess formed in the inner surface of a front wall of said socket to accommodate the resilient movement of each said tab portion, said tab portions providing an additional contact area for each of said contact indentations thereby increasing the depth of contact area engageable by the pins of a bi-pin fluorescent lamp.

6. A socket for a bi-pin fluorescent lamp comprising an insulating body having a plurality of sides forming a recess therein, a pair of spaced conductor receiving apertures extending into said recess through said sides, a pair of resilient contacts spaced apart with said recess, each of said contacts including an elongated strip section extending essentially in a first plane and having a curved indentation adjacent one of its ends for contact for movement in a direction transverse to said first plane to resiliently engage one of the pins of said lamp, a stop formed
adjacent said contact end for limiting the resilient movement of said indentation, and at least one pressure lock section integrally connected to the other end of said strip section and generally disposed in a second plane extending at a substantial angle to said first plane, said pressure lock section having integrally therein a longitudinally extending tapered groove integral with said strip section and formed in said conductor engaging section, said groove being deepest at an extreme end thereof and spaced from said indentation for movement in a direction parallel to said plane to serve as a locking tongue when the contact is mounted in a lamp socket, thereby providing a pressure locking terminal for said contact, whereby the pressure locking action of said contact has no substantial effect upon the resilient movement of said indentation.

17. A socket for a bi-pin fluorescent lamp comprising an insulating body having a plurality of sides forming a recess therein, two pairs of conductor receiving apertures extending into said recess through one of said sides, a pair of resilient contacts spaced apart within said recess, each of said contacts including an elongated strip section extending essentially in a first plane and having a lamp pin seating means adjacent one of its ends for movement in a direction transverse to said plane resiliently engaging a pin of said lamp, and at least one pressure lock section integral with said strip section and disposed in a second plane in transverse relationship to said first plane, said pressure lock section being in offset relationship to said strip section and disposed across the inner end of said aperture for movement in a direction substantially parallel to said first plane for resiliently engaging a conductor inserted therethrough, whereby the pressure locking action of said contact has no substantial effect upon the engagement of said lamp pin with said lamp pin seating means.

18. A socket for a bi-pin fluorescent lamp comprising an insulating body having a plurality of sides forming a recess therein, two pairs of conductor receiving apertures extending into said recess through one of said sides, a pair of resilient contacts spaced apart within said recess, each of said contacts including an elongated strip section extending essentially in a first plane and having a lamp pin seating means adjacent one of its ends for movement in a direction transverse to said plane resiliently engaging a pin of said lamp, and at least one pressure lock section integral with said strip section and disposed in a second plane in transverse relationship to said first plane, said pressure lock section being in offset relationship to said strip section and disposed across the inner end of said aperture for movement in a direction substantially parallel to said first plane for resiliently engaging a conductor inserted therethrough, whereby the pressure locking action of said contact has no substantial effect upon the engagement of said lamp pin with said lamp pin seating means.

19. As an article of manufacture, an electrical contact for a lamp socket, said contact being configured comprising an elongated strip section disposed generally in a single plane, said strip section having a curved indentation adjacent one of its ends for movement in a direction transverse to said plane to resiliently engage the mating contact of an electric lamp, a conductor engaging section having its profile disposed in edgewise relationship to said strip plane, and at least one longitudinally extending tapered groove integral with said strip section and formed in said conductor engaging section, said groove being deepest at an extreme end thereof and spaced from said indentation for movement in a direction parallel to said plane to serve as a locking tongue when the contact is mounted in a lamp socket, thereby providing a pressure locking terminal for said contact, whereby the pressure locking action of said contact has no substantial effect upon the resilient movement of said indentation.

20. A socket for a bi-pin fluorescent lamp comprising an insulating body having a plurality of sides forming a recess therein, two pairs of conductor receiving apertures extending into said recess through one of said sides, a pair of resilient contacts spaced apart within said recess, each of said contacts including an elongated strip section extending essentially in a first plane and having a lamp pin seating means adjacent one of its ends for movement in a direction transverse to said plane resiliently engaging a pin of said lamp, and at least one pressure lock section integral with said strip section and disposed in a second plane in transverse relationship to said first plane, said pressure lock section being in offset relationship to said strip section and disposed across the inner end of said aperture for movement in a direction substantially parallel to said first plane for resiliently engaging a conductor inserted therethrough, whereby the pressure locking action of said contact has no substantial effect upon the engagement of said lamp pin with said lamp pin seating means.

21. A socket for a bi-pin fluorescent lamp comprising an insulating body having a plurality of sides forming a recess therein, two pairs of conductor receiving apertures extending into said recess through one of said sides, a pair of resilient contacts spaced apart within said recess, each of said contacts including an elongated strip section extending essentially in a first plane and having a lamp pin seating means adjacent one of its ends for movement in a direction transverse to said plane resiliently engaging a pin of said lamp, and at least one pressure lock section integral with said strip section and disposed in a second plane in transverse relationship to said first plane, said pressure lock section being in offset relationship to said strip section and disposed across the inner end of said aperture for movement in a direction substantially parallel to said first plane for resiliently engaging a conductor inserted therethrough, whereby the pressure locking action of said contact has no substantial effect upon the engagement of said lamp pin with said lamp pin seating means.

22. A socket for a bi-pin fluorescent lamp comprising an insulating body having a plurality of sides forming a recess therein, two pairs of conductor receiving apertures extending into said recess through one of said sides, a pair of resilient contacts spaced apart within said recess, each of said contacts including an elongated strip section extending essentially in a first plane and having a lamp pin seating means adjacent one of its ends for movement in a direction transverse to said plane resiliently engaging a pin of said lamp, and at least one pressure lock section integral with said strip section and disposed in a second plane in transverse relationship to said first plane, said pressure lock section being in offset relationship to said strip section and disposed across the inner end of said aperture for movement in a direction substantially parallel to said first plane for resiliently engaging a conductor inserted therethrough, whereby the pressure locking action of said contact has no substantial effect upon the engagement of said lamp pin with said lamp pin seating means.
conductors inserted through the apertures, means for segregating the resilient movement of said pressure lock sections relative to each other, said sections of said contact being located adjacent a wall of said recess and resiliently engaging conductors inserted through said apertures thereby to sandwich the inserted conductors against said wall for locking the conductors in electrical engagement with said contact, whereby said contact provides a lamp pin seat and two pressure locking terminals for external conductors and the pressure locking action of said contact has no substantial effect upon the engagement of said lamp pin with said indentation.

14. As an article of manufacture, an electric contact for a lamp socket, said contact being of thin blade construction and comprising an elongated strip section disposed generally in a first plane, said strip section having a curved indentation formed near one end thereof for movement in a direction transverse to said first plane for the purpose of resiliently engaging a mating electrical contact of an electric lamp, at least two generally coplanar pressure locking sections integral with said strip section and disposed generally in a second plane which has its profile in edgewise relationship to said first plane, said sections being formed on said contact at the other end thereof, a longitudinally extending tapered groove formed in each pressure locking section, each groove being deepest at an extreme end thereof, means for segregating the resilient movement of said grooves relative to each other, the tapered grooves being spaced from said curved indentation for movement in a direction substantially parallel to said first plane and serving as locking tongues when the contact is mounted in the lamp socket, thereby to provide a plurality of pressure locking terminals near one end of said contact, whereby the pressure locking action of said contact has no substantial effect upon the resilient movement of said indentation.

15. A socket for a bi-pin fluorescent lamp comprising an insulating body having a plurality of sides forming a recess therein, two spaced pairs of adjacent conductor receiving apertures extending into said recess through said sides, a pair of resilient contacts spaced apart within said recess, each of said contacts including an elongated strip section extending essentially in a singular plane and having a curved indentation between its ends for movement in a direction transverse to said plane to resiliently engage one of the pins of said lamp, a tab portion formed on each of said contacts and protruding outwardly from said indentation as a similarly configured extension thereof toward the front of said socket thereby to increase the depth of contact area provided by said indentation, one end of each of said contacts having a pair of coplanar pressure locking sections positioned angularly across the inner ends of an associated pair of said apertures, each of said pressure locking sections having its profile disposed in edgewise relationship to said plane of its associated strip section, means for segregating the resilient movements of each pair of said sections relative to each other, said pressure lock sections of each contact being located adjacent a wall of said recess for movement in a direction substantially parallel to said plane to resiliently engage conductors inserted through the two apertures and lock the conductors in electrical engagement with said contact, whereby said contacts each provide a lamp pin seat and two pressure locking terminals, and the pressure locking action of each of the contacts has no substantial effect upon the engagement of the lamp pins with the curved indentations of the lampholder.

References Cited in the file of this patent

UNITED STATES PATENTS

2,671,204 Hubbell Mar. 2, 1954
2,705,785 Benander Apr. 5, 1955
2,705,787 Benander Apr. 5, 1955
2,729,799 Pistey Jan. 3, 1956
2,745,081 Offerman May 8, 1956
2,767,349 Feinberg Oct. 16, 1956
2,890,436 Bentley June 9, 1959
2,988,724 Larkin June 13, 1961

FOREIGN PATENTS

1,049,581 France Aug. 19, 1953