wo 2014/153343 A2 | I 0V OO OO AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/153343 A2

25 September 2014 (25.09.2014) WIPO I PCT
(51) International Patent Classification: nia 92121-1714 (US). CHEN, Ying; 5775 Morchouse
HO04N 19/597 (2014.01) Drive, San Diego, California 92121-1714 (US). KAR-
(21) International Application Number: gﬁggﬁg%’zgi‘ _rlt 27"1 45ZI7JSS)Morehouse Drive, San Diego,
PCT/US2014/031039 ’
09 A JOSERE, ey R Sl & St
18 March 2014 (18.03.2014) (US) ’ ’ ’

(25) Filing Language: English (81) Designated States (uniess otherwise indicated, for every
(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,
L. AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
61/807,281 1 April 2013 (01.04.2013) Us HN.HR. HU. ID. IL. IN_ IR_ IS. JP. KE. KG. KN. KP. KR,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
ATTN: International IP Administration, 5775 Morehouse OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
Drive, San Diego, California 92121-1714 (US). SC, 8D, SE, 8G, 8K, SL, SM, ST, SV, S§Y, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

(72) Inventors: THIRUMALAI, Vijayaraghavan; 5775 ZW.

Morehouse Drive, San Diego, California 92121-1714 (US).
ZHANG, Li; 5775 Morehouse Drive, San Diego, Califor-

[Continued on next page]

(54) Title: SIMPLIFICATIONS ON DISPARITY VECTOR DERIVATION AND MOTION VECTOR PREDICTION IN 3D
VIDEO CODING

(57) Abstract: A video coder can be configured to perform texture first coding

122
r

PERFORM TEXTURE FIRST CODING
FOR A FIRST TEXTURE VIEW, A
FIRST DEPTH VIEW, A SECOND
TEXTURE VIEW, AND A SECOND

DEPTH VIEW

124
/

FOR A MACROBLOCK OF THE vector.
SECOND TEXTURE VIEW, LOCATE A
FIRST DEPTH BLOCK THAT
CORRESPONDS TO THE
MACROBLOCK

l /126

BASED ON AT LEAST ONE DEPTH
VALUE OF THE DEPTH BLOCK,
DERIVING A DISPARITY VECTOR FOR
THE MACROBLOCK

l /128

CODING A FIRST SUBLOCK OF THE
MACROBLOCK BASED ON THE
DERIVED DISPARITY VECTOR

l f130

CODING A SECOND SUBLOCK OF
THE MACROBLOCK BASED ON THE
DERIVED DISPARITY VECTOR

FIG. 11

for a first texture view, a first depth view, a second texture view, and a second
depth view; for a macroblock of the second texture view, locate a depth block
of the first depth view that corresponds to the macroblock; based on at least one
depth value of the depth block, derive a disparity vector for the macroblock;
code a first sub-block of the macroblock based on the derived disparity vector;
and, code a second sub-block of the macroblock based on the derived disparity

WO 2014/153343 A2 |IIWAT 00T 000 T 0

(84) Designated States (unless otherwise indicated, for every SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
kind of regional protection available): ARTIPO (BW, GH, GW, KM, ML, MR, NE, SN, TD, TG).
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU, TJ, 'ublished:
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — without international search report and to be republished
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, upon receipt of that report (Rule 48.2(g))

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

WO 2014/153343 PCT/US2014/031039

SIMPLIFICATIONS ON DISPARITY VECTOR DERIVATION AND MOTION
VECTOR PREDICTION IN 3D VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Application No.
61/803,100 filed 18 March 2013; U.S. Provisional Application No. 61/807,281 filed 01

April 2013, the entire contents each of which are incorporated by reference herein.

TECHNICAL FIELD

[0002] This disclosure relates to video encoding and decoding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, digital
cameras, digital recording devices, digital media players, video gaming devices, video
game consoles, cellular or satellite radio telephones, video teleconferencing devices, and
the like. Digital video devices implement video compression techniques, such as those
described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard presently under development, and extensions of such
standards, to transmit, receive and store digital video information more efficiently.
[0004] Extensions of some of the aforementioned standards, including H.264/AVC, may
provide techniques for multiview video coding in order to produce stereo or three-
dimensional (“3D”) video. In particular, techniques for multiview coding have been
proposed for use in AVC, with the scalable video coding (SVC) standard (which is the
scalable extension to H.264/AVC), and the multi-view video coding (MVC) standard
(which has become the multiview extension to H.264/AVC).

[0005] Typically, stereo video is achieved using two views, ¢.g., a left view and a right
view. A picture of the left view can be displayed substantially simultaneously with a
picture of the right view to achieve a three-dimensional video effect. For example, a
user may wear polarized, passive glasses that filter the left view from the right view.
Alternatively, the pictures of the two views may be shown in rapid succession, and the
user may wear active glasses that rapidly shutter the left and right eyes at the same

frequency, but with a 90 degree shift in phase.

WO 2014/153343 PCT/US2014/031039

SUMMARY

[0006] In general, this disclosure describes techniques for 3D video coding. In
particular, this disclosure is related to techniques for deriving disparity vectors.

[0007] In one example a method of coding three-dimensional (3D) video data includes
performing texture first coding for a first texture view, a first depth view, a second
texture view, and a second depth view; for a macroblock of the second texture view,
locating a depth block of the first depth view that corresponds to the macroblock; based
on at least one depth value of the depth block, deriving a disparity vector for the
macroblock; coding a first sub-block of the macroblock based on the derived disparity
vector; coding a second sub-block of the macroblock based on the derived disparity
vector.

[0008] In another example, a device for coding video data includes a video coder
configured to perform texture first coding for a first texture view, a first depth view, a
second texture view, and a second depth view; for a macroblock of the second texture
view, locate a depth block of the first depth view that corresponds to the macroblock;
based on at least one depth value of the depth block, derive a disparity vector for the
macroblock; code a first sub-block of the macroblock based on the derived disparity
vector; and, code a second sub-block of the macroblock based on the derived disparity
vector.

[0009] In another example, a device for coding three-dimensional (3D) video data
includes means for performing texture first coding for a first texture view, a first depth
view, a second texture view, and a second depth view; for a macroblock of the second
texture view, means for locating a depth block of the first depth view that corresponds
to the macroblock; based on at least one depth value of the depth block, means for
deriving a disparity vector for the macroblock; means for coding a first sub-block of the
macroblock based on the derived disparity vector; and, means for coding a second sub-
block of the macroblock based on the derived disparity vector.

[0010] In another example, a computer-readable storage medium storing instructions
that when executed by one or more processors cause the one or more processors to
perform texture first coding for a first texture view, a first depth view, a second texture
view, and a second depth view; for a macroblock of the second texture view, locate a

depth block of the first depth view that corresponds to the macroblock; based on at least

WO 2014/153343 PCT/US2014/031039

one depth value of the depth block, derive a disparity vector for the macroblock; code a
first sub-block of the macroblock based on the derived disparity vector; and, code a
second sub-block of the macroblock based on the derived disparity vector.

[0011] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0012] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize the techniques described in this disclosure.

[0013] FIG. 2 is a conceptual diagram illustrating an example multiview decoding
order.

[0014] FIG. 3 is a conceptual diagram illustrating an example prediction structure for
multiview coding.

[0015] FIG. 4 is a conceptual visualization of block-based view synthesis prediction
based on backward warping.

[0016] FIG. 5 is a conceptual diagram showing spatial neighboring blocks used for
neighboring block disparity vector derivation.

[0017] FIG. 6 is a conceptual diagram illustrating techniques related to backward view
synthesis prediction (BVSP) using neighboring blocks.

[0018] FIG. 7 shows an example of a depth bock that may be used for deriving a
disparity vector in accordance with the techniques of this disclosure.

[0019] FIG. 8 is a block diagram illustrating an example video encoder that may
implement the techniques described in this disclosure.

[0020] FIG. 9 is a block diagram illustrating an example video decoder that may
implement the techniques described in this disclosure.

[0021] FIG. 10 is a flowchart illustrating an example operation of disparity vector
derivation and inter-prediction coding in accordance with techniques described in this
disclosure.

[0022] FIG. 11 is a flowchart illustrating another example operation of disparity vector
derivation and inter-prediction coding in accordance with techniques described in this

disclosure.

WO 2014/153343 PCT/US2014/031039

DETAILED DESCRIPTION

[0023] This disclosure describes techniques related to disparity vector derivation, and
more particularly, this disclosure describes techniques in which a video coder (e.g.,
video encoder or video decoder) derives a disparity vector for a current block within a
current picture of a current view for use in three-dimensional (3D) video coding. The
video coder may use the disparity vector to locate a corresponding block in a different
view. In this way, the disparity vector may represent the disparity between two similar
video blocks in two different views. As will be explained in greater detail below, the
video coder may use the disparity vector as a disparity motion vector, and a current
block can be predicted based on the block that is located by the disparity motion vector.
The video coder may also use the disparity vector for other purposes. As one example,
the video coder may use the disparity vector to locate a corresponding block in another
view, and then use motion information of the located block for determining motion
information of the current block. Moreover, there may be still other uses for the
disparity vector. In this disclosure, the term “current” is generally used to refer to a
view, picture, or block currently being coded. Thus, a current block generally
represents a block of vide data being coded, as opposed to an already coded block or as
opposed to a yet to be coded block.

[0024] A disparity vector for a current block of a current picture is a vector that points
to a corresponding block in a corresponding picture that is in a different view than the
current picture. Thus, using a disparity vector, a video coder can locate, in a
corresponding picture, the block that corresponds to a current block of a current picture.
In this case, the corresponding picture is a picture that is of the same temporal instance
as the current picture but is in a different view. The corresponding block in the
corresponding picture and the current block in the current picture may include similar
video content; however, there is at least a horizontal disparity between the location of
the current block in the current picture and the location of the corresponding block in
the corresponding picture. The disparity vector of the current block provides a measure
of this horizontal disparity between the block in the corresponding picture and the
current block in the current picture. In some instances, there may also be vertical
disparity between the location of the block within the corresponding picture and the
location of the current block within the current picture; however, in many instances the

vertical disparity will be zero. The disparity vector of the current block may also

WO 2014/153343 PCT/US2014/031039

provide a measure of this vertical disparity between the block in the corresponding
picture and the current block in the current picture. A disparity vector contains two
components (an x-component and a y-component), although in many instances the
vertical component will be equal to zero. The time when the current picture of the
current view and the corresponding picture of the different view are displayed may be
the same, which is to say the current picture and the corresponding pictures are pictures
of the same temporal instance.

[0025] In 2D video coding, a frame is represented only by one view component,
sometimes referred to as a texture view component, or simply texture. In some types of
3D video coding, there are two view components: a texture view component and a depth
view component, or simply texture and depth. For example, each view may include a
texture view and a depth view, where the view includes a plurality of view components,
¢.g. the texture view includes a plurality of texture view components, and the depth
view includes a plurality of depth view components. Each texture view component is
associated with a depth view component to form a view component of a view. The
depth view component represents relative depth of the objects in the texture view
component. The depth view component and the texture view component may be
separately decodable.

[0026] This disclosure describes techniques for deriving disparity vectors. One such
technique for deriving a disparity vector may be used in conjunction with a backward
view synthesis prediction (BVSP) mode. The video coder may determine a block of a
first texture view is to be coded using a BVSP mode. The video coder may locate, in a
depth view, a depth block that corresponds to the block of the first texture view and
determine depth values for two or more corner positions of the depth block. Based on
the depth values, the video coder may derive a disparity vector for the block, and using
the disparity vector, locate a block of a second texture view. The video coder may then
inter-predict the block of the first texture view using the block of the second texture
view. In this regard, and as will be explained in more detail below, the techniques of
this disclosure may simplify the disparity vector derivation process by determining a

disparity vector, for use in BVSP mode, using only corner samples of the corresponding
depth block.

WO 2014/153343 PCT/US2014/031039

[0027] In another example technique, for a block of a first view, a video coder may
locate a depth block in a depth view that corresponds to the block of the first texture
view, and based on at least one depth value of the depth block, derive a disparity vector
for the block of the first texture view. The video coder may then code a first sub-block
of the block based on the derived disparity vector and code a second sub-block of the
macroblock based on the same derived disparity vector. In this regard and as will be
explained in more detail below, the techniques of this disclosure may simplify the
disparity vector derivation process by deriving one disparity vector for a block and
using that disparity for two or more sub-blocks of the block. Depending on the coding
mode specified for a particular sub-block, the video coder may use the derived disparity
vector as a disparity motion vector or may use the disparity vector to identify a
corresponding block in a different view, and from that corresponding block, determine
motion information for predicting the sub-block.

[0028] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may be configured to perform the techniques for disparity vector
derivation described in this disclosure. As shown in FIG. 1, system 10 includes a source
device 12 that generates encoded video data to be decoded at a later time by a
destination device 14. Source device 12 and destination device 14 may comprise any of
a wide range of devices, including desktop computers, notebook (i.c., laptop)
computers, tablet computers, set-top boxes, telephone handsets such as so-called
“smart” phones, so-called “smart” pads, televisions, cameras, display devices, digital
media players, video gaming consoles, video streaming devices, or the like. In some
cases, source device 12 and destination device 14 may be equipped for wireless
communication.

[0029] System 10 may operate in accordance with different video coding standards, a
proprictary standard, or any other way of multiview coding. The following describes a
few examples of video coding standards, and should not be considered limiting. Video
coding standards include ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or
ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264
(also known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC)
and Multiview Video Coding (MVC) extensions. The latest joint draft of MVC is
described in “Advanced video coding for generic audiovisual services,” ITU-T
Recommendation H.264, Mar 2010, the entire content of which is incorporated herein

by reference. Another joint draft of the MVC is described in “Advanced video coding

WO 2014/153343 PCT/US2014/031039

for generic audiovisual services,” ITU-T Recommendation H.264, June 2011, the entire
content of which is incorporated herein by reference. Some additional video coding
standards include the MVC+D and 3D-AVC, which are based on AVC. In addition, a
new video coding standard, namely the High-Efficiency Video Coding (HEVC), has
been developed by the Joint Collaboration Team on Video Coding (JCT-VC) of ITU-T
Video Coding Experts Group (VCEG) and ISO/IEC Motion Picture Experts Group
(MPEG).

[0030] For purposes of illustration only, the techniques described in this disclosure are
described with examples in accordance the H.264 standard, such as the 3D-AVC.
However, the techniques described in this disclosure should not be considered limited to
these example standards, and may be extendable to other video coding standards for
multiview coding or 3D video coding (¢.g., 3D-HEVC), or to techniques related to
multiview coding or 3D video coding that are not necessarily based on a particular
video coding standard. For example, the techniques described in this disclosure are
implemented by video encoders/decoders (codecs) for multiview coding, where
multiview coding includes coding of two or more views.

[0031] Destination device 14 may receive the encoded video data to be decoded via a
link 16. Link 16 may comprise any type of medium or device capable of moving the
encoded video data from source device 12 to destination device 14. In one example,
link 16 may comprise a communication medium to enable source device 12 to transmit
encoded video data directly to destination device 14 in real-time. The encoded video
data may be modulated according to a communication standard, such as a wireless
communication protocol, and transmitted to destination device 14. The communication
medium may comprise any wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local arca
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 12 to
destination device 14.

[0032] Alternatively, encoded data may be output from output interface 22 to a storage
device 34. Similarly, encoded data may be accessed from storage device 34 by input
interface. Storage device 34 may include any of a variety of distributed or locally

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,

WO 2014/153343 PCT/US2014/031039

flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, storage device 34 may
correspond to a file server or another intermediate storage device that may hold the
encoded video generated by source device 12. Destination device 14 may access stored
video data from storage device 34 via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from storage device 34 may be a
streaming transmission, a download transmission, or a combination of both.

[0033] The techniques of this disclosure for disparity vector derivation are not
necessarily limited to wireless applications or settings. The techniques may be applied
to video coding in support of any of a variety of multimedia applications, such as over-
the-air television broadcasts, cable television transmissions, satellite television
transmissions, streaming video transmissions, ¢.g., via the Internet, encoding of digital
video for storage on a data storage medium, decoding of digital video stored on a data
storage medium, or other applications. In some examples, system 10 may be configured
to support one-way or two-way video transmission to support applications such as video
streaming, video playback, video broadcasting, and/or video telephony.

[0034] In the example of FIG. 1, source device 12 includes a video source 18, video
encoder 20 and an output interface 22. In some cases, output interface 22 may include a
modulator/demodulator (modem) and/or a transmitter. In source device 12, video
source 18 may include a source such as a video capture device, ¢.g., a video camera, a
video archive containing previously captured video, a video feed interface to receive
video from a video content provider, and/or a computer graphics system for generating
computer graphics data as the source video, or a combination of such sources. As one
example, if video source 18 is a video camera, source device 12 and destination device
14 may form so-called camera phones or video phones. However, the techniques
described in this disclosure may be applicable to video coding in general, and may be

applied to wireless and/or wired applications.

WO 2014/153343 PCT/US2014/031039

[0035] The captured, pre-captured, or computer-generated video may be encoded by
video encoder 20. The encoded video data may be transmitted directly to destination
device 14 via output interface 22 of source device 12. The encoded video data may also
(or alternatively) be stored onto storage device 34 for later access by destination device
14 or other devices, for decoding and/or playback.

[0036] Destination device 14 includes an input interface 28, a video decoder 30, and a
display device 32. In some cases, input interface 28 may include a receiver and/or a
modem. Input interface 28 of destination device 14 receives the encoded video data
over link 16. The encoded video data communicated over link 16, or provided on
storage device 34, may include a variety of syntax elements generated by video encoder
20 for use by a video decoder, such as video decoder 30, in decoding the video data.
Such syntax elements may be included with the encoded video data transmitted on a
communication medium, stored on a storage medium, or stored a file server.

[0037] Display device 32 may be integrated with, or external to, destination device 14.
In some examples, destination device 14 may include an integrated display device and
also be configured to interface with an external display device. In other examples,
destination device 14 may be a display device. In general, display device 32 displays
the decoded video data to a user, and may comprise any of a variety of display devices
such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

[0038] Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0039] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. For example, the techniques described in this disclosure may be described from
the perspective of an apparatus or a device. As one example, the apparatus or device
may include video decoder 30 (e.g., destination device 14 as part of a wireless

communication device), and video decoder 30 may include one or more processors

WO 2014/153343 PCT/US2014/031039
10

configured to implement techniques described in this disclosure (e.g., decode video data
in accordance with techniques described in this disclosure). As another example, the
apparatus or device may include a micro-processor or an integrated circuit (IC) that
includes video decoder 30, and the micro-processor or IC may be part of destination
device 14 or another type of device. The same may apply for video encoder 20 (i.e., an
apparatus or device like source device 12 and/or a micro-controller or IC includes video
encoder 20, where video encoder 20 is configured to encode video data in accordance
with techniques described in this disclosure).

[0040] When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0041] A video sequence typically includes a series of video pictures from a view. A
group of pictures (GOP) generally comprises a series of one or more video pictures. A
GOP may include syntax data in a header of the GOP, a header of one or more pictures
of the GOP, or elsewhere, that describes a number of pictures included in the GOP.
Each picture may include picture syntax data that describes an encoding mode for the
respective picture. Video encoder 20 typically operates on video blocks within
individual video pictures in order to encode the video data. A video block may
correspond to a macroblock, a partition of a macroblock, and possibly a sub-block of a
partition, as defined in the H.264 standard. The video blocks may have fixed or varying
sizes, and may differ in size according to a specified coding standard. Each video
picture may include a plurality of slices. Each slice may include a plurality of blocks.
[0042] As an example, the ITU-T H.264 standard supports intra-prediction in various
block sizes, such as 16 by 16, 8 by 8, or 4 by 4 for luma components, and 8x8 for
chroma components, as well as inter-prediction in various block sizes, such as 16x16,
16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 for luma components and corresponding scaled sizes
for chroma components. In this disclosure, “NxN” and “N by N” may be used
interchangeably to refer to the pixel dimensions of the block in terms of vertical and
horizontal dimensions (e.g., 16x16 pixels or 16 by 16 pixels). In general, a 16x16 block
will have 16 pixels in a vertical direction (y = 16) and 16 pixels in a horizontal direction

(x =16). Likewise, an NxN block generally has N pixels in a vertical direction and N

WO 2014/153343 PCT/US2014/031039
11

pixels in a horizontal direction, where N represents a nonnegative integer value. The
pixels in a block may be arranged in rows and columns. Moreover, blocks need not
necessarily have the same number of pixels in the horizontal direction as in the vertical
direction. For example, blocks may comprise NxM pixels, where M is not necessarily
equal to N.

[0043] When the block is intra-mode encoded (e.g., intra-predicted), the block may
include data describing an intra-prediction mode for the block. As another example,
when the block is inter-mode encoded (e.g., inter-predicted), the block may include
information defining a motion vector for the block. This motion vector refers to a
reference picture in the same view (e.g., a temporal motion vector), or refers to a
reference picture in another view (e.g., a disparity motion vector). The data defining the
motion vector for a block describes, for example, a horizontal component of the motion
vector, a vertical component of the motion vector, a resolution for the motion vector
(e.g., one-quarter pixel precision or one-eighth pixel precision). In addition, when inter-
predicted, the block may include reference index information such as a reference picture
to which the motion vector points, and/or a reference picture list (e.g., RefPicList0 or
RefPicList1) for the motion vector.

[0044] In the H.264 standard, following intra-predictive or inter-predictive coding,
video encoder 20 calculates residual data for the macroblocks. The residual data may
correspond to pixel differences between pixels of the unencoded picture and prediction
values for the macroblock in H.264.

[0045] Following any transforms to produce transform coefficients, video encoder 20
performs quantization of the transform coefficients, in some examples. Quantization
generally refers to a process in which transform coefficients are quantized to possibly
reduce the amount of data used to represent the coefficients, providing further
compression. The quantization process reduces the bit depth associated with some or all
of the coefficients. For example, an n-bit value is rounded down to an m-bit value
during quantization, where # is greater than m.

[0046] In some examples, video encoder 20 utilizes a predefined scan order to scan the
quantized transform coefficients to produce a serialized vector that can be entropy
encoded. In other examples, video encoder 20 performs an adaptive scan. After
scanning the quantized transform coefficients to form a one-dimensional vector, in some
examples, video encoder 20 entropy encodes the one-dimensional vector according to

context adaptive variable length coding (CAVLC), context adaptive binary arithmetic

WO 2014/153343 PCT/US2014/031039
12

coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC),
Probability Interval Partitioning Entropy (PIPE) coding or another entropy encoding
methodology, as a few examples. Video encoder 20 also entropy encodes syntax
elements associated with the encoded video data for use by video decoder 30 in
decoding the video data.

[0047] To perform CABAC, video encoder 20 may assign a context within a context
model to a symbol to be transmitted. The context may relate to, for example, whether
neighboring values of the symbol are non-zero or not. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.
Codewords in VLC may be constructed such that relatively shorter codes correspond to
more probable symbols, while longer codes correspond to less probable symbols. In
this way, the use of VLC may achieve a bit savings over, for example, using equal-
length codewords for each symbol to be transmitted. The probability determination
may be based on a context assigned to the symbol.

[0048] Video decoder 30 implements the inverse of the techniques of video encoder 20.
For example, video decoder 30 decodes the encoded video bitstream and determines the
residual blocks by inverse quantization and inverse transform. Video decoder 30 sums
the residual blocks with blocks of previously decoded pictures to determine the pixel
values for the blocks within the picture.

[0049] Certain techniques described in this disclosure may be performed by both video
encoder 20 and video decoder 30. As one example, video encoder 20 may derive a
disparity vector as part of determining how to encode a block of video data. Video
encoder 20 may also derive the disparity vector as part of a decoding loop used to
generate reference pictures. Video decoder 30 may perform the same disparity vector
derivation technique performed by video encoder 20 as part of decoding the video
block. This disclosure may at times refer to techniques as being performed by video
decoder 30, but unless specified otherwise, it should be assumed that the techniques
described with reference to video decoder 30 may also be performed by video encoder
20.

[0050] As described above, the techniques described in this disclosure are directed to 3d
video coding. To better understand the techniques, the following describes some
H.264/AVC coding techniques, multiview video coding from the perspective of
H.264/MVC extension and the High Efficiency Video Coding (HEVC) standard, and
3D-AVC techniques.

WO 2014/153343 PCT/US2014/031039
13

[0051] For H.264/Advance Video Coding (AVC), video encoding or decoding (e.g.,
coding) is implemented on macroblocks, where a macroblock represents a portion of a
frame which are inter-predicted or intra-predicted (i.e., inter-prediction encoded or
decoded or intra-prediction encoded or decoded). For instance, in H.264/AVC, each
inter Macroblock (MB) (e.g., inter-predicted macroblock) may be partitioned in four
different ways: one 16x16 MB partition, two 16x8 MB partitions, two 8x16 MB
partitions, or four 8x8 MB partitions. Different MB partitions in one MB may have
different reference index values for each direction (i.c., RefPicList0 or RefPicList1).
When a MB is not partitioned into multiple (more than 1) MB partitions, it has only one
motion vector for the whole MB partition in each direction.

[0052] As part of video coding (encoding or decoding), video decoder 30 may be
configured to construct one or two reference picture lists, referred to as RefPicList0 and
RefPicListl. The reference picture list(s) identify reference pictures that can be used to
inter-predict macroblocks of a frame or a slice. For instance, video encoder 20 may
signal a reference index and a reference picture list identifier. Video decoder 30 may
receive the reference index and the reference picture list identifier and determine the
reference picture that is to be used for inter-prediction decoding the current macroblock
from the reference index and the reference picture list identifier.

[0053] When a MB is partitioned into four 8x8 MB partitions, each 8x8 MB partition
can be further partitioned into H.264/AVC sub-blocks. There are four different ways to
get H.264/AVC sub-blocks from an 8x8 MB partition: one 8x8 sub-block, two 8x4 sub-
blocks, two 4x8 sub-blocks, or four 4x4 sub-blocks. Each H.264/AVC sub-block can
have a different motion vector in each direction but share the same reference picture
index for each direction. The manner in which an 8x8 MB partition is partitioned into
sub-blocks is named sub-block partitioning.

[0054] This disclosure will generally use the term block to refer to any block of video
data. For example, in the context of H.264 coding and its extensions, a block may refer
to any of macroblocks, macroblock partitions, sub-blocks, or any other types of blocks.
In the context of HEVC and its extensions, a block may refer to any of PUs, TUs, CUs,
or any other types of blocks. A sub-block as used in this disclosure generally refers to
any portion of a larger block. A sub-block may also itself be referred to simply as a
block. When referring specifically to a sub-block as defined in H.264/AVC, the term
H.264/AVC sub-block may be used. Otherwise, sub-block, as used in this disclosure, is

WO 2014/153343 PCT/US2014/031039
14

generally intended to be a generic term which encompasses H.264/AVC sub-block as
well as the other types of sub-blocks described above.

[0055] For multiview video coding there are multiple different video coding standards.
To avoid confusion, when this disclosure describes multiview video coding generically,
this disclosure uses the phrase “multiview video coding.” In general, in multiview
video coding, there is a base view and one or more non-base or dependent views. The
base view is fully decodable without reference to any of the dependent views (i.e., the
base view is only inter-predicted with temporal motion vectors). This allows a codec
that is not configured for multiview video coding to still receive at least one view that is
fully decodable (i.c., the base view can be extracted out and the other views discarded,
allowing a decoder not configured for multiview video coding to still decode the video
content albeit without 3D experience). The one or more dependent views may be inter-
predicted with respect to the base view or with respect to another dependent view (i.e.,
disparity compensation predicted), or with respect to other pictures in the same view
(i.e., motion compensated predicted).

[0056] Whereas “multiview video coding” is used generically, the acronym MVC is
associated with an extension of H.264/AVC. Accordingly, when the disclosure uses the
acronym MVC, the disclosure is referring specifically to the extension to H.264/AVC
video coding standard. The MVC extension of H.264/AVC relies upon disparity motion
vectors as another type of motion vector in addition to temporal motion vectors.
Another video coding standard, referred to as MVC plus depth (MVC+D), has also been
developed by JCT-3V and MPEG. MVC+D applies the same low-level coding tools as
those of MVC for both texture and depth, with the decoding of depth being independent
to the decoding of texture and vice-versa. For instance, in MVC, a frame is represented
only by one view component, referred to as a texture view component, or simply
texture. In MVC+D, there are two view components: texture view component and
depth view component, or simply texture and depth. For example, in MVC+D, each
view includes a texture view and a depth view, where the view includes a plurality of
view components, the texture view includes a plurality of texture view components, and
the depth view includes a plurality of depth view components.

[0057] Each texture view component is associated with a depth view component to
form a view component of a view. The depth view component represents relative depth
of the objects in the texture view component. In MVC+D, the depth view component

and the texture view component are separately decodable. For example, video decoder

WO 2014/153343 PCT/US2014/031039
15

30 may implement two instances of an MVC codec, in which a first codec decodes the
texture view components and a second codec decodes the depth view components.
These two codecs can execute independent of one another because the texture view
components and the depth view components are separately encoded.
[0058] In MVC+D, a depth view component is always immediately following the
associated (e.g., corresponding) texture view component. In this manner, MVC+D
supports texture-first coding, where the texture view component is decoded prior to the
depth view component.
[0059] A texture view component and its associated (e.g., corresponding) depth view
component may include the same picture order count (POC) value and view id (i.e., the
POC value and view _id of a texture view component and its associated depth view
component is the same). The POC value indicates the display order of the texture view
component and the view_id indicates the view to which the texture view component and
depth view component belong.
[0060] FIG. 2 shows a typical MVC decoding order (i.e. bitstream order). The
decoding order arrangement is referred as time-first coding. Note that the decoding
order of access units may not be identical to the output or display order. In FIG. 2, SO—
S7 each refers to different views of the multiview video. TO-T8 ecach represents one
output time instance. An access unit may include the coded pictures of all the views for
one output time instance. For example, a first access unit may include all of the views
S0-S7 for time instance TO, a second access unit may include all of the views S0-S7 for
time instance T1, and so forth.
[0061] For purposes of brevity, the disclosure may use the following definitions:

view component: A coded representation of a view in a single access unit.
When a view includes both coded texture and depth representations, a view component
may include a texture view component and a depth view component.

texture view component: A coded representation of the texture of a view in a
single access unit.

depth view component: A coded representation of the depth of a view in a
single access unit.
[0062] As discussed above, in the context of this disclosure, the view component,
texture view component, and depth vide component may be generally referred to as a
layer. In FIG. 2, each of the views includes sets of pictures. For example, view SO

includes set of pictures 0, 8, 16, 24, 32, 40, 48, 56, and 64, view S1 includes set of

WO 2014/153343 PCT/US2014/031039
16

pictures 1, 9, 17, 25, 33, 41, 49, 57, and 65, and so forth. Each set includes two
pictures: one picture is referred to as a texture view component, and the other picture is
referred to as a depth view component. The texture view component and the depth view
component within a set of pictures of a view may be considered as corresponding to one
another. For example, the texture view component within a set of pictures of a view is
considered as corresponding to the depth view component within the set of the pictures
of the view, and vice-versa (i.e., the depth view component corresponds to its texture
view component in the set, and vice-versa). As used in this disclosure, a texture view
component that corresponds to a depth view component may be considered as the
texture view component and the depth view component being part of a same view of a
single access unit.

[0063] The texture view component includes the actual image content that is displayed.
For example, the texture view component may include luma (Y) and chroma (Cb and
Cr) components. The depth view component may indicate relative depths of the pixels
in its corresponding texture view component. As one example analogy, the depth view
component is like a gray scale image that includes only luma values. In other words,
the depth view component may not convey any image content, but rather provide a
measure of the relative depths of the pixels in the texture view component.

[0064] For example, a purely white pixel in the depth view component indicates that its
corresponding pixel or pixels in the corresponding texture view component is closer
from the perspective of the viewer, and a purely black pixel in the depth view
component indicates that its corresponding pixel or pixels in the corresponding texture
view component is further away from the perspective of the viewer. The various shades
of gray in between black and white indicate different depth levels. For instance, a very
gray pixel in the depth view component indicates that its corresponding pixel in the
texture view component is further away than a slightly gray pixel in the depth view
component. Because only gray scale is needed to identify the depth of pixels, the depth
view component need not include chroma components, as color values for the depth
view component may not serve any purpose. The above explanation is intended to be
an analogy for purposes of relating depth images to texture images. The depth values in
a depth image do not in fact represent shades of gray, but in fact, represent 8-bit, or
other bit size, depth values.

[0065] The depth view component using only luma values (e.g., intensity values) to

identify depth is provided for illustration purposes and should not be considered

WO 2014/153343 PCT/US2014/031039
17

limiting. In other examples, any technique may be utilized to indicate relative depths of
the pixels in the texture view component.

[0066] FIG. 3 shows a typical MVC prediction structure (including both inter-picture
prediction within each view and inter-view prediction between views) for multi-view
video coding. Prediction directions are indicated by arrows, the pointed-to object using
the pointed-from object as the prediction reference. In MVC, inter-view prediction is
supported by disparity motion compensation, which uses the syntax of the H.264/AVC
motion compensation, but allows a picture in a different view to be used as a reference
picture.

[0067] In the example of FIG. 3, eight views (having view IDs “S0” through “S7”) are
illustrated, and twelve temporal locations (“TO” through “T11”) are illustrated for each
view. That is, each row in FIG. 3 corresponds to a view, while each column indicates a
temporal location.

[0068] Although MVC has a so-called base view, which is decodable by H.264/AVC
decoders, and sterco view pairs could be supported also by MVC, the advantage of
MVC is that it could support an example that uses more than two views as a 3D video
input and decodes this 3D video represented by the multiple views. A renderer of a
client having an MVC decoder may expect 3D video content with multiple views.
[0069] Pictures in FIG. 3 are indicated at the intersection of each row and each column.
The H.264/AVC standard may use the term frame to represent a portion of the video.
This disclosure may use the term picture and frame interchangeably.

[0070] The pictures in FIG. 3 are illustrated using a block including a letter, the letter
designating whether the corresponding picture is intra-coded (that is, an I-picture), or
inter-coded in one direction (that is, as a P-picture) or in multiple directions (that is, as a
B-picture). In general, predictions are indicated by arrows, where the pointed-to
pictures use the pointed-from picture for prediction reference. For example, the P-
picture of view S2 at temporal location TO is predicted from the I-picture of view SO at
temporal location TO.

[0071] As with single view video encoding, pictures of a multiview video coding video
sequence may be predictively encoded with respect to pictures at different temporal
locations. For example, the b-picture of view S0 at temporal location T1 has an arrow
pointed to it from the I-picture of view SO at temporal location T0, indicating that the b-
picture is predicted from the I-picture. Additionally, however, in the context of

multiview video encoding, pictures may be inter-view predicted. That is, a view

WO 2014/153343 PCT/US2014/031039
18

component can use the view components in other views for reference. In MVC, for
example, inter-view prediction is realized as if the view component in another view is
an inter-prediction reference. The potential inter-view references are signaled in the
Sequence Parameter Set (SPS) MVC extension and can be modified by the reference
picture list construction process, which enables flexible ordering of the inter-prediction
or inter-view prediction references. Inter-view prediction is also a feature of proposed
multiview extension of HEVC, including 3D-HEVC (multiview plus depth).

[0072] FIG. 3 provides various examples of inter-view prediction. Pictures of view S1,
in the example of FIG. 3, are illustrated as being predicted from pictures at different
temporal locations of view S1, as well as inter-view predicted from pictures of views S0
and S2 at the same temporal locations. For example, the b-picture of view S1 at
temporal location T1 is predicted from each of the B-pictures of view S1 at temporal
locations TO and T2, as well as the b-pictures of views SO and S2 at temporal location
T1.

[0073] In some examples, FIG. 3 may be viewed as illustrating the texture view
components. For example, the I-, P-, B-, and b-pictures illustrated in FIG. 2 may be
considered as texture view components for each of the views. In accordance with the
techniques described in this disclosure, for each of the texture view components
illustrated in FIG. 3 there is a corresponding depth view component. In some examples,
the depth view components may be predicted in a manner similar to that illustrated in
FIG. 3 for the corresponding texture view components.

[0074] Coding of two views may also be supported by MVC. One of the advantages of
MVC is that an MVC encoder may take more than two views as a 3D video input and
an MVC decoder may decode such a multiview representation. As such, any renderer
with an MVC decoder may decode 3D video content with more than two views.

[0075] As discussed above, in MVC, inter-view prediction is allowed among pictures in
the same access unit (meaning, in some instances, with the same time instance). When
coding a picture in one of the non-base views, a picture may be added into a reference
picture list, if it is in a different view but within a same time instance. An inter-view
prediction reference picture may be put in any position of a reference picture list, just
like any inter-prediction reference picture. As shown in FIG. 3, a view component can
use the view components in other views for reference. In MVC, inter-view prediction is

realized as if the view component in another view was an inter-prediction reference.

WO 2014/153343 PCT/US2014/031039
19

[0076] In MVC, inter-view prediction is allowed among pictures in the same access unit
(i.e., with the same time instance). When coding a picture in one of the non-base views,
a picture may be added into a reference picture list, if it is in a different view but with a
same time instance. An inter-view prediction reference picture can be put in any
position of a reference picture list, just like any inter prediction reference picture.
[0077] As shown in FIG. 3, a view component can use the view components in other
views for reference. This is called inter-view prediction. In MVC, inter-view
prediction is realized as if the view component in another view was an inter prediction
reference.

[0078] In the context of multiview video coding, there are two kinds of motion vectors
ne is a normal motion vector pointing to temporal reference pictures. The
corresponding temporal inter prediction is motion-compensated prediction (MCP). The
other type of motion vector is a disparity motion vector pointing to pictures in a
different view (i.c., inter-view reference pictures). The corresponding inter prediction is
disparity-compensated prediction (DCP).

[0079] The next section will discuss the AVC-based 3D video coding standard.
Currently, a Joint Collaboration Team on 3D Video Coding (JCT-3V) of VCEG and
MPEG is developing a 3DV standard based on H.264/AVC, i.c., 3D-AVC. For 3D-
AVC, new coding tools besides the inter-view prediction in MVC have been included
and supported. The latest software 3D-ATM for 3D-AVC can be downloaded from the
following link: [3D-ATM version 6.2]:
http://mpeg3dv.research.nokia.com/svn/mpeg3dv/tags/3DV-ATMv6.2/

[0080] The AVC based 3D video (3D-AVC) coding standard is currently under
development by JCT-3V, and the latest version of 3D-AVC is now available in public:
M. M. Hannuksela, Y. Chen, T. Suzuki, J.-R. Ohm, G. J. Sullivan, "3D-AVC draft text
5," JCT3V-C1002, Geneva, CH, Jan., 2013. It is available, as of 14 March 2014, from
the following link, and is hereby incorporated by reference: http://phenix.it-
sudparis.cu/jct2/doc_end user/documents/3 Geneva/wgl1/JCT3V-C1002-v3.zip.
[0081] Coding order of view components in 3D-AVC will now be discussed. 3D-AVC
is compatible with H.264/AVC in a way that the texture part of the base view is fully
decodable by an H.264/AVC decoder. For example, the texture view components in
view components of the base view may only be inter-predicted with other texture view

components in the same base view. The texture view components in the base view may

WO 2014/153343 PCT/US2014/031039
20

not be inter-view predicted. Also, the texture view component in the base view may not
require the corresponding depth view component for decoding purposes.

[0082] For enhanced view components in 3D-AVC, in some other example techniques,
the depth may be coded prior to the texture and a texture view component may be coded
based on the information from the depth view component, which is also known as a
depth-first coding. However, each texture view component is coded before the
respective depth view components in texture-first coding order, such as in MVC+D
described above. In other words, in some other example techniques, in 3D-AVC, the
texture view component of the base view is coded first, followed by the associated depth
view component of the base view, followed by the depth view component of a first
enhancement or dependent view, followed by the associated texture view component of
the first enhancement or dependent view, followed by the depth view component of a
second enhancement or dependent view, followed by the associated texture view
component of the second enhancement or dependent view, and so forth.

[0083] For example, the coding orders of the texture and depth view components in 3D-
AVC are exemplified as follows. In the following examples, TO and DO, respectively,
refer to the texture and depth view components of the base view, and Ti and Di,
respectively, refer to the texture and depth view components of the i-th dependent view.
In the following examples, three views are considered.

[0084] In a first example, the views considered are TO, DO, D1, D2, T1, and T2. In this
example, the base views (T0 and D0) are coded with texture-first coding order while the
dependent views are coded with the depth-first coding order. A hybrid coding order is
currently used in common test conditions of 3D-AVC. In another example, the order of
coding is TO, DO, T1, D1, T2, and D2. That is, all view components are coded with
texture-first coding order.

[0085] If inter-view prediction is enabled for Ti, the reference texture view is defined as
the view which includes the inter-view reference picture and the corresponding depth
view is defined as the reference depth view which has the same view order index as that
of the reference texture view.

[0086] 3D-AVC disparity vector derivation via the depth map will now be discussed.
Techniques for deriving the disparity vector may vary with each low-level coding tool,
but, commonly, the depth data of the dependent view is used for disparity vector
derivation for the texture view component coding. This is because the depth view of the

dependent view is available, due to the depth-first coding order. The low-level coding

WO 2014/153343 PCT/US2014/031039
21

tools used are in-loop block-based view synthesis inter-view prediction (BVSP) and
depth-based motion vector prediction (D-MVP) in 3D-AVC. A video coder, ¢.g., video
decoder 30 may use the disparity vector converted from the depth values of the depth
view (sometimes called depth map) in the dependent view (sometimes called dependent
frame). In 3D-AVC reference software, typically, the results of the conversion process
from the actual depth map value to a disparity to a particular view are stored in look-up
tables with camera parameters.

[0087] Maximum depth derivation from four corners, for use in disparity vector
derivation, will now be discussed. For deriving the depth value, video decoder 30 first
identifies the reference depth block of a depth view component. The reference depth
block is co-located/corresponding to the current MB/partition/sub-block. In the
identified reference depth block, video decoder 30 accesses the four corner samples
corresponding to the top-left, top-right, bottom-left and bottom-right depth samples. A
depth value is then calculated by taking the maximum of the four corner depth samples.
[0088] Finally, video decoder 30 infers the horizontal component of a disparity vector
from the look-up table using the calculated depth value and setting the vertical
component of the disparity vector to 0. In this method, the number of accessed depth
samples increases when the MB is divided into partitions or sub-blocks. For example,
when a 16x16 MB is partitioned into four 8x8 partitions, the number of the depth
samples to be accessed is 16, and when a 16x16 MB is partitioned into sixteen 4x4
partitions, the number of the depth samples to be accessed is 64.

[0089] BVSP in 3D-AVC is a coding mode supported by 3D-AVC as well as other
coding standards. BVSP was originally proposed in “3DV-CE].a: Block-Based View
Synthesis Prediction for 3DV-ATM” (JCT3V-A0107) by W. Su, et al., which can be
downloaded from the following link, and is hereby incorporated by reference:
http://phenix.it-sudparis.eu/jct2/doc_end user/documents/1_Stockholm/wgl1/JCT3V-
A0107-v1.zip.

[0090] FIG. 4 is a conceptual diagram of BVSP based on backward warping. Referring
to FIG. 4, assume that the following coding order is utilized, (TO, DO, D1, T1), with T
referring to texture views and D referring to depth views. Texture component TO is a
base view, and T1 is a dependent view coded with VSP. Depth map components DO
(not shown in FIG. 4) and D1 are respective depth maps associated with TO and T1.
[0091] In dependent view T1, sample values of currently coded block Cb are predicted

from reference area R(Cb) , using VSP-Prediction, that consists of sample values of the

WO 2014/153343 PCT/US2014/031039
22

base view T0. The displacement vector (Disp_vec) between current samples to be
coded (i.e. Cb) and reference samples (i.e. R(Cb)) is denoted as a derived disparity
vector between T1 and TO from a depth map value associated with a currently coded
texture sample.

[0092] The process of conversion from a depth value to a disparity vector may be
performed for example with following equations:

- 1
z(Cb(j.i))= d(Cb(j,l.))‘[1 1 j+ —)

255\ Znear zfar) Zfar

D(Chj.i))= %; 2)

z(c
where j and i are local spatial coordinates within Cb, d Cb(j,i)is a depth map value in
depth map image of a view 1, Z is the actual corresponding depth value, and D is the
horizontal component of a derived disparity vector to a particular view 0. The
parameters f, b, Znear and Zfar are parameters specifying the camera setup; i.c., the
used focal length (f), camera separation (b) between view #1 and view #0, and depth
range (Znear, Zfar) representing parameters of depth map conversion.
[0093] Note that, in some examples, the vertical component of the derived disparity
vector is set to 0. Also, in some 3DV-ATM implementation, equations (1) and (2) have
been already pre-computed for every depth map value (0...255) and stored as a look up-
table.
[0094] In the example of FIG. 3, Cb represents a block currently being coded. Video
decoder 30 may code Cb using a BVSP mode. If Cb is to be coded using BVSP mode,
then video decoder 30 identifies the depth block, d(Cb) in FIG. 4, corresponding to Cb.
In this regard, corresponding means co-located. Depth block d(Cb) includes a plurality
of depth values. Based on one or more of those depth values of d(Cb), video decoder 30
determines a disparity value. That disparity value may be used as the x-component of a
disparity vector, with the y-component being set to 0. Using the disparity vector, video
decoder 30 may identify a reference block, R(cb) in the example of FIG. 4, in a different

view and inter-predict block Cb based on that reference block.

[0095] The depth view resolution and the texture view resolution may be the same, or
they may be different. If the depth view resolution and the texture view resolutions are

different, then video decoder 30 may perform a conversion to find the co-located depth

WO 2014/153343 PCT/US2014/031039
23

the block. Video decoder 30 may perform the conversion as follows. Let (x,y) denote
the top-left position of the block Cb. The top-left corner position of the co-located block
in the depth view is represented by (x>> reduced_resolution_flag, y >>

reduced resolution_flag). The syntax element “reduced resolution flag” is equal to 1 to
specify that the depth view components of a view component pair have a lower spatial
resolution than the luma component of the texture view component of the same view
component pair, and the width and height of the depth view components are both half of
the width and height of all the texture view components.

[0096] The next section of this disclosure will discuss several implementation issues of
BVSP. One issue involves the indication of BVSP blocks, i.e. what blocks are to be
coded using BVSP mode. BVSP blocks are indicated as follows:

- One flag at a MB-level is used to signal whether the current MB is coded with
the conventional skip/direct mode or if it is coded with the skip/direct mode but
predicted from a synthetic reference component. In this context, “conventional
skip/direct mode refers to the extended version of skip/direct mode used in the
H.264/AVC coding standard, and a synthetic reference component refers to a reference
block generated from an inter-view block.

- For each MB partition (from 16x16 to 8x8), a reference index (or a flag, as in
some proposals for 3D-AVC) in each reference picture list is used to signal the
reference picture. When a partition is coded in BVSP mode, motion vector differences
are not signaled since there are no motion vectors for BVSP coded blocks.

[0097] When cither the flag or the reference index indicates a synthetic reference
component, the prediction of one partition as described in the following item is invoked.
In other words, a bit may indicate if the MB or MB-partition is coded using
conventional skip/direct modes or a BVSP mode. In BVSP mode, video decoder 30
decodes the part of a MB or MB- partition that is coded using BVSP mode (you are
calling as Synthetic skip/direct) by dividing the MB or MB-partition into KxK blocks,
and for each KxK block, identifying the collocated depth block, getting a disparity value
from the depth block, and predicting the MB or MB-partition from the inter-view
reference picture pointed to by the disparity vector.

[0098] In 3D-AVC, for conventional skip/direct mode, video decoder 30 derives the
motion vector and the reference index as follows. The motion vector of the
corresponding block (pointed by the disparity vector) in the reference view , if available,

is set equal to the motion vector of the current block, and the reference index of the

WO 2014/153343 PCT/US2014/031039
24

current block is derived accordingly. If the inter-view motion vector is unavailable, i.e.,
the reference block in the base view pointed by the disparity vector is intra-coded, a
conventional median-based motion vector prediction scheme is used, by setting the
reference index to zero.

[0099] Another implementation issue with BVSP involves the prediction derivation
process. For each MB partition, with its size denoted by NxM (wherein N or M shall be
8 or 16), if the MB partition is coded with BVSP mode, a current MB partition is further
partitioned into several sub-regions with a size equal to KxK (wherein K may be 8x8, as
in some proposals for 3D-AVC, 4x4, 2x2 or 1x1). For each sub-region, a separate
disparity vector is derived and each sub-region is predicted from one block located by
the derived disparity vector in the inter-view reference picture, e.g., R(cb) in FIG. 4. In
some example common test conditions, K is defined to be 4. Note that the derived
disparity vectors are not stored for BVSP coded blocks, since there are no coding tools
that use such vectors.

[0100] Another implementation issue with BVSP involves the disparity vector
derivation process. When a depth first coding order is applied, the disparity vector is
derived by converting a depth value from the corresponding depth block in the
corresponding non-base depth view, as shown in the example of FIG. 4. A single depth
value is calculated by first accessing the four corner depth samples from the depth block
co-located/corresponding to the K x K sub-region and then by taking the maximum
value of the four accessed depth samples. The calculated depth value is later converted
into a disparity vector using equations (1) and (2). When texture first coding order is
applied, BVSP modes are disabled since the corresponding non-base depth view is
unavailable when decoding the non-base texture view.

[0101] Depth—based motion vector prediction (D-MVP) in 3D-AVC for normal inter
prediction modes will now be discussed. D-MVP refers to a motion vector prediction
method that uses the associated depth map data of the current view which is available
due to the depth-first coding order. The method is applied with the texture view
components in the dependent views.

[0102] In 3D-AVC, motion vector prediction still utilizes the neighbouring blocks. The
neighboring blocks include, in order, a left block, above block, above-right block and
above-left block of the current block. The motion vector in the above-left block is used
only when one of the other three neighboring blocks does not contain a motion vector

thus considered as unavailable.

WO 2014/153343 PCT/US2014/031039
25

[0103] The motion vector from a neighbouring block is considered as unavailable if it
has a different type as the current motion vector to be predicted. The type of a motion
vector depends on the corresponding reference index. That is, if the reference index
corresponds to an inter-view reference picture, the motion vector is a disparity motion
vector and the type is “disparity” and if the reference index corresponds to a temporal
reference picture (in the same view), the motion vector is a temporal motion vector and
the type is “temporal.”

[0104] In 3D-AVC, if three neighboring blocks are available, the motion vectors in the
three neighboring blocks are employed for the motion vector prediction of the current
block. In temporal prediction, if their motion vectors all have the same type and have
the same reference indices, median filter is directly used as in H.264/AVC, otherwise (if
they belong to different types and have different reference indices), a motion vector is
further derived. When the current reference picture is inter-view reference picture, the
motion vector types and their reference indices in neighboring block positions are
checked, and, if they have all the same type and the same reference indices, the median
filter is applied. In both cases, if less than three neighboring blocks are available;
motion vectors for the unavailable blocks are further derived so that three neighboring
blocks become available.

[0105] If a spatial neighboring block does not contain an available temporal motion
vector, a temporal motion vector is to be predicted for the current block. A reference
block of the current block in the reference view picture is identified by the disparity
vector derived as described above with respect to block-based view synthesis prediction.
The motion vector of a block containing the center position of the reference block, if it
is a temporal motion vector, is derived for the current spatial neighboring block. If the
temporal motion vector is considered to be unavailable (Intra block or not pointing to a
reference picture in the reference view aligned with the current reference picture), the
derived motion vector is set to zero.

[0106] If a spatial neighboring block does not contain an available disparity motion
vector and a disparity motion vector is to be predicted for the current block, the
disparity vector derived for the current block is converted to a disparity motion vector as
described above with respect to block-based view synthesis prediction

[0107] In 3D-AVC, the D-MVP method is incorporated into the conventional median
function-based motion vector prediction in H.264/AVC. So when the motion vectors in

spatial neighboring blocks are available, (or not available originally but made available

WO 2014/153343 PCT/US2014/031039
26

with the methods mentioned above), the median function can be applied still to three
motion vectors, however all of them should belong to the same type.

[0108] Inter-view motion prediction in the 3D-AVC for skip and direct modes will now
be discussed. The inter-view motion prediction in the 3D-AVC is performed in P-skip,
B-skip, B-16x16 direct, and B-8x8 direct modes. In these modes, a disparity vector
used to identify a reference block is either from the neighboring blocks or from the
derived disparity vector (see above regarding block-based view synthesis prediction)
from the corresponding depth block associated with the current MB. The candidate
neighboring blocks A, B and C is checked for its availability whether if it has disparity
motion vector or not. If one spatial neighboring block is available i.¢., and it contains a
disparity motion vector, this disparity motion vector becomes the disparity vector.
[0109] If the disparity vector for the spatial neighboring blocks A, B and C is
unavailable, a disparity vector derived from the depth block (see above regarding block-
based view synthesis prediction) associated with the current MB is used for the
unavailable block. Afterwards, a median filter is applied to get the disparity vector.
[0110] This disparity vector got from the above process is used to get a reference block
in a reference view picture. Within the reference block, the motion vector (namely
inter-view motion vector) if available, is set equal to the motion vector of the current
block and the reference index of the current block is derived accordingly.

[0111] If the inter-view motion vector is not available, i.¢., the reference block in the
base view pointed by the disparity vector is intra-coded, conventional median-based
motion vector prediction scheme is used. In this case a reference index is derived first
and the D-MVP scheme described in section 1.4.5 is used to derive the motion vector
prediction for the current MB.

[0112] Improvements for disparity vector derivation will now be discussed. In JCT3V-
C0122, a simplified disparity vector derivation method has been proposed. In the
proposed method, when the current MB is coded with inter-prediction modes that are
not skip or direct, all the partition/sub-blocks with the current MB share the derived
disparity vector that is calculated from the bottom-right depth sample of the associated
depth block of the current MB. However, when the current MB is coded with a skip or
direct mode, a different disparity vector derivation process, i.¢., accessing four corner
samples of the reference depth block is utilized. Furthermore, in BVSP mode, accessing
the four corner samples of the reference depth block of the each KxK sub-region of an

MB partition is still required.

WO 2014/153343 PCT/US2014/031039
27

[0113] In JCT3V-CO0134, it is proposed that when coded with inter modes, all partition
blocks within the same MB share the single disparity vector which is derived from a
maximum depth value of four corner samples from the same reference depth block
which is co-located/corresponding to the current MB. However, for the BVSP mode,
accessing the four corner samples of the reference depth block of the each KxK sub-
region of an MB partition is still required.

[0114] This disclosure will now discuss aspects of 3D-HEVC. Neighboring block-
based disparity vector derivation (NBDV) may be used as a disparity vector derivation
method in 3D-HEVC that uses the texture-first coding order for all the views. In the
current 3D-HEVC design, the disparity vector derived from NBDV could be further
refined by retrieving the depth data from a reference view’s depth map. In NBDV, a
disparity vector (DV) is used as an estimator of the displacement between two views.
As neighboring blocks share almost the same motion/disparity information in video
coding, the current block can use the motion vector information in neighboring blocks
as a good predictor. Following this idea, NBDV uses the neighboring disparity
information for estimating the disparity vector in different views.

[0115] Several spatial and temporal neighboring blocks are firstly defined. Each of the
neighboring blocks is then checked in a pre-defined order, determined by the priority of
the correlation between the current block and the candidate block. Once a disparity
motion vector (i.e., the motion vector that points to an inter-view reference picture) is
found in the candidates, the disparity motion vector is converted to a disparity vector.
Two sets of neighboring blocks are utilized. One set is from spatial neighboring blocks
and the other set is from temporal neighboring blocks.

[0116] 3D-HEVC first adopted the Neighboring Block (based) Disparity Vector
(NBDV) method proposed in JCT3V-A0097, 3D-CES.h: Disparity vector generation
results, L. Zhang, Y. Chen, M. Karczewicz (Qualcomm). Implicit disparity vectors were
included with a simplified NBDV in JCTVC-A0126, 3D-CES5.h: Simplification of
disparity vector derivation for HEVC-based 3D video coding, J. Sung, M. Koo, S. Yea
(LG). On top of that, in JCT3V-B0047, 3D-CE5.h related: Improvements for disparity
vector derivation, J. Kang, Y. Chen, L. Zhang, M. Karczewicz (Qualcomm), the NBDV
is further simplified by removing the implicit disparity vectors stored in the decoded
picture buffer, but also improved a coding gain with the RAP picture selection.

[0117] In the current (as of the time of this disclosure) NBDV, five spatial neighboring

blocks are used for the disparity vector derivation. They are the below-left, left, above-

WO 2014/153343 PCT/US2014/031039
28

right, above, and above-left blocks of current block (e.g., current prediction unit (PU)),
as denoted by A0, A1, B0, B1 or B2 in FIG. 5. It should be noted that these neighboring
blocks are the same as those used in the MERGE modes in HEVC. Therefore, no
additional memory access is required.

[0118] For checking temporal neighboring blocks, a video coder may first perform a
construction process of a candidate picture list. In one example, up to two reference
pictures from current view may be treated as candidate pictures. The video coder may
first insert a co-located reference picture into the candidate picture list, followed by the
rest of the candidate pictures in the ascending order of reference index. When the
reference pictures with the same reference index in both reference picture lists are
available, the one in the same reference picture list of the co-located picture may
precede the other one. For each candidate picture in the candidate picture list, three
candidate regions may be determined for deriving the temporal neighboring blocks.
[0119] When a block is coded with inter-view motion prediction, a disparity vector may
be derived for selecting a corresponding block in a different view. An implicit disparity
vector (IDV, also referred to as a derived disparity vector) is referred to as the disparity
vector derived in the inter-view motion prediction. Even though the block is coded with
motion prediction, the derived disparity vector is not discarded for the purpose of
coding a following block.

[0120] In the current design of 3D-HTM 6.0, the video coder, in accordance with the
NBDYV process, checks disparity motion vectors in the temporal neighboring blocks,
disparity motion vectors in the spatial neighboring blocks, and then the IDVs in order.
Once, the disparity motion vector or IDV is found, the process is terminated.

[0121] A video coder may further refine disparity vectors derived using NBDV by
accessing depth information. When one disparity vector is derived from the NBDV
process, the video coder may further refine the disparity vector by retrieving the depth
data from the depth map of the reference view. The refinement process may include two
steps:

a) Locate a corresponding depth block by the derived disparity vector in the
previously coded reference depth view, such as the base view; the size of
the corresponding depth block is the same as that of current PU.

b) Select one depth value from four corner pixels of the corresponding

depth block and convert it to the horizontal component of the refined

WO 2014/153343 PCT/US2014/031039
29

disparity vector. The vertical component of the disparity vector is

unchanged.
[0122] The video coder may use the refined disparity vector for inter-view motion
prediction while the unrefined disparity vector is used for inter-view residual prediction.
In addition, the refined disparity vector may be stored as the motion vector of one PU if
it is coded with backward VSP mode.
[0123] In accordance with the techniques of this disclosure, one of the spatially
neighboring blocks may correspond to a BVSP-coded block, and another one of the
spatially-neighboring blocks may correspond to a non-BVSP-coded block. For
example, block A1 may correspond to a BVSP-coded block and block B1 may
correspond to a non-BVSP-coded block. Nevertheless, when coding motion
information for the current block, a video coder may access motion information for both
block A1 and block B1 using the same logic function. It is presumed that the motion
information for the BVSP-coded block, i.e., block Al in the example stated above,
includes a reference index that identifies a reference picture. Therefore, a separate logic
function for accessing motion information of block A1 need not be provided in the
video coder.
[0124] FIG. 6 is a conceptual diagram illustrating techniques related to backward view
synthesis prediction (BVSP) using neighboring blocks. BVSP has been proposed, and
adopted, as a technique for 3D-HEVC. The backward-warping VSP approach as
proposed in JCT3V-CO0152 was adopted in the 3rd JCT-3V meeting. The basic idea of
this backward-warping VSP is the same as the block-based VSP in 3D-AVC. Both of
these two techniques use the backward-warping and block-based VSP to avoid
transmitting the motion vector differences and use more precise motion vectors.
Implementation details are different due to different platforms. This disclosure
generally uses the initialism BVSP to refer to backward view synthesis prediction in
3D-HEVC, although BVSP may also refer to block-based view synthesis prediction of
3D-AVC.
[0125] In 3D-HTM, texture first coding is applied in common test conditions.
Therefore, the corresponding non-base depth view is unavailable when decoding one
non-base texture view. Therefore, the depth information is estimated and used to
perform BVSP. In order to estimate the depth information for a block, it was proposed
to first derive a disparity vector from the neighboring blocks, and then use the derived

disparity vector to obtain a depth block from a reference view.

WO 2014/153343 PCT/US2014/031039
30

[0126] In the HTM 5.1 test model, there exists a process to derive a disparity vector
predictor, known as NBDV (Neighboring Block Disparity Vector). Let (dvx, dvy)
denote the disparity vector identified from the NBDV function, and the current block
position is (blockx, blocky). It was proposed to fetch a depth block at (blockx+dvx,
blocky+dvy) in the depth image of the reference view. The fetched depth block would
have the same size of the current prediction unit (PU), and it would then be used to do
backward warping for the current PU. FIG. 6 illustrates the steps for locating a depth
block from the reference view and then using the depth block for BVSP prediction.
[0127] In the example of FIG. 6, depth picture 150 and texture picture 154 correspond
to the same view, while texture picture 152 corresponds to a different view. In
particular, texture picture 152 includes current block 160 being coded relative to texture
picture 154, acting as a reference picture. A video coder may refer to neighboring block
162, which neighbors current block 160. Neighboring block 162 includes a previously
determined disparity vector 166. Disparity vector 166 may be derived as a disparity
vector 164 for current block 160. Thus, disparity vector 164 refers to depth block 156
in depth picture 150 of the reference view.

[0128] The video coder may then use pixels (that is, depth values) of depth block 156 to
determine disparity values 168 for pixels (that is, texture values) of current block 160,
for performing backward warping. The video coder may then synthesize values for a
predicted block (i.e., a BVSP reference block) for current block 160 from the pixels
identified by disparity values 168. The video coder may then predict current block 160
using this predicted block. For instance, during video encoding by video encoder 20,
video encoder 20 may calculate pixel-by-pixel differences between the predicted block
and current block 160 to produce a residual value, which video encoder 20 may then
transform, quantize, and entropy encode. On the other hand, during video decoding by
video decoder 30, video decoder 30 may entropy decode, inverse quantize, and inverse
transform residual data, then combine the residual data (on a pixel-by-pixel basis) with
the predicted block to reproduce current block 160.

[0129] JCT3V-C0152 proposed changes to the BVSP techniques of 3D-HEVC, as
described below. In particular, italicized text represents text added to 3D-HEVC, while
bracketed text preceded by “removed:” represents deletions from 3D-HEVC:

If BVSP is enabled in the sequence, the NBDV process for inter-view motion prediction

is changed and the differences are highlighted in the following paragraphs:

WO 2014/153343 PCT/US2014/031039
31

e For cach of the temporal neighboring blocks, if it uses a disparity motion vector,
the disparity motion vector is returned as the disparity vector and it is further
refined with the method described in Section 1.6.1.3 of 3D-HEVC.

o For each of the spatial neighboring blocks, the following apply:

o For reference picture list 0 and reference picture list 1 in order:

= [fituses a disparity motion vector, the disparity motion vector is
returned as the disparity vector and it is further refined with the
method described in Section 1.6.1.3.

» Otherwise, if it uses BVSP mode, the associated motion vector is
returned as the disparity vector. It is further refined in a similar
way as described in Section 1.6.1.3. However, the maximum
depth value is selected from all pixels of the corresponding depth
block rather than four corner pixels and the vertical component
of the refined disparity vector is set to 0.

e For cach of the spatial neighboring blocks, if it uses an IDV, the IDV is returned
as the disparity vector and it is further refined with the method described in
Section 1.6.1.3.

[0130] The introduced BVSP mode is treated as a special inter-coded mode, and a flag
indicating the usage of BVSP mode may be maintained for each PU. Rather than
signalling the flag in the bitstream, a new merging candidate (BVSP merging candidate)
was added to the merge candidate list. The flag is dependent on whether the decoded
merge candidate index corresponds to a BVSP merging candidate. The BVSP merging
candidate is defined, per JCT3V-C0152, as follows:

e Reference picture index for each reference picture list: -1

e Motion vector for each reference picture list: the refined disparity vector

[0131] In JCT3V-CO0152, the inserted position of the BVSP merging candidate is
dependent on the spatial neighboring blocks, as discussed below:

e If any of the five spatial neighboring blocks (A0, A1, BO, B1, or B2, shown in
FIG. 5) is coded with the BVSP mode, i.¢., the maintained flag of the
neighboring block is equal to 1, BVSP merging candidate is treated as the
corresponding spatial merging candidate and inserted to the merge candidate list.

BVSP merging candidate will only be inserted to the merge candidate list once.

WO 2014/153343 PCT/US2014/031039
32

e Otherwise (none of the five spatial neighboring blocks are coded with the BVSP
mode), the BVSP merging candidate is inserted to the merge candidate list just
before the temporal merging candidates.

[0132] It is noted that during the combined bi-predictive merging candidate derivation
process, additional conditions may be checked to avoid including the BVSP merging
candidate.

[0133] JCT3V-J0152 further provided that each BVSP coded PU with its size denoted
by NxM is further partitioned into several sub-regions with the size equal to KxK
(wherein K may be 4 or 2). For each sub-region, a separate disparity motion vector is
derived, and each sub-region is predicted from one block located by the derived
disparity motion vector in the inter-view reference picture. In other words, the size of
motion-compensation unit for BVSP coded PUs are set to KxK. In common test
conditions, K is sct to 4.

[0134] JCT3V-J0152 further provides that for each sub-region (4x4 block) within one
PU coded with BVSP mode, a corresponding 4x4 depth block is firstly located in the
reference depth view with the refined disparity vector aforementioned above. Secondly,
the maximum value of the sixteen depth pixels in the corresponding depth block is
selected. Thirdly, the maximum value is converted to the horizontal component of a
disparity motion vector. The vertical component of the disparity motion vector is set to
0.

[0135] In 3D-HEVC, when the texture firstly coding order is applied, for each
prediction unit (PU), a disparity vector could be derived from NBDV with/without the
consideration the depth values in the reference depth view. After a disparity vector is
obtained, it would be further refined for each 4x4 sub-region of one PU, if the PU is
coded with BVSP mode.

[0136] 3D-HEVC describes the refinement process as including two steps: 1) select one
maximum depth value from the 4x4 depth block in the reference depth view which is
located by the derived disparity vector; 2) convert the depth value to a horizontal
component of the refined disparity vector while keeping the vertical component of the
refined disparity vector to be 0. After the disparity vector is refined for one 4x4 sub-
region of one PU, 3D-HEVC provides that the refined disparity vector is used to locate
one block in the reference texture view for motion compensation.

[0137] NBDV in 3D-AVC will now be discussed. According to some 3D coding

techniques, MB-level NBDV may be used to derive a disparity vector for the current

WO 2014/153343 PCT/US2014/031039
33

MB and further used for motion vector prediction. Once a disparity motion vector is
identified, i.e., one of the temporal or spatial neighboring block uses the inter-view
reference picture, it is returned as the disparity vector for current MB.

[0138] According to some 3D coding techniques, the disparity vector derived from
NBDYV can be further refined by accessing the corresponding depth block. For example,
the depth values of the four corner of the depth block of the reference view (identified
by the disparity vector) can be used and the maximum depth value is chosen and
converted to a disparity vector. According to other 3D coding techniques, BVSP is
utilized in a way for each 4x4 or 8x8 block, the corresponding depth block is used to
produce the disparity motion vector. Similar to the disparity vector derivation process,
the four corners of the depth block (identified by the refined disparity vector) can be
used and the maximum depth value is chosen to be converted to a disparity motion
vector.

[0139] The techniques of this disclosure may address several potential problems. As
one example, for D-MVP in the inter mode, the depth-to-DV conversion needs to be
performed multiple times to derive DVs for various partition blocks in one MB, which
increases number of depth samples to be accessed from the memory when the current
MB is divided into partitions/sub-blocks. As another example, for D-MVP in
Skip/Direct mode, a disparity vector is derived for a MB by taking the maximum depth
value of four corner samples of the associated depth block; this requires high memory
access bandwidth. As another example, in BVSP mode, a disparity vector is derived for
a sub-region of size K x K by taking the maximum of four corner depth samples of the
associated depth block of current sub region; this is done at the cost of high memory
access bandwidth. As another example, for the Skip/direct MBs, when the inter-view
motion vector is not available, the conventional median-based motion vector prediction
isused. As another example, in 3D-HEVC, refining the disparity vector for a current
block when the disparity vector is derived from an inter-view predicted neighbouring
block only requires accessing the four corners of the reference depth block. Refining
the disparity vector for a current block when the disparity vector is derived from a
BVSP coded neighbouring block and producing a disparity motion vector for a 4x4 or
8x8 sub-region for a PU coded with BVSP mode require a slightly different design,
which requires accessing all samples of the reference block.

[0140] This disclosure introduces techniques that may simplify the disparity (motion)

vector derivation process, when disparity vectors are derived by accessing a depth map.

WO 2014/153343 PCT/US2014/031039
34

The explanation of these techniques may mainly focus on 3D-AVC, although it should
be understood that similar ideas may be applicable to 3D-HEVC. More specifically,
this disclosure provides a simplified and unified disparity vector derivation scheme for
various inter prediction modes (including Skip/direct, inter) as well as BVSP modes,
when a depth-to-disparity conversion scheme is utilized. The calculations and memory
accesses may be simplified.

[0141] FIG. 7 shows an example of an 8x8 depth block 170. The four corner samples of
depth block 170 are labeled 172A-172D. A “reduced_resolution_flag” in the bitstream
may indicate if a depth view has a reduced resolution relative to the texture view or if
the depth view has the same resolution as the texture view. If reduced resolution_flag
is equal to 1, then a 16x16 macroblock in a texture view will have a corresponding (i.c.,
co-located) 8x8 depth block , such as 8x8 depth block 170, in a corresponding texture
view. If reduced resolution flag is equal to 0,, then a 16x16 macroblock in a texture
view will have a corresponding (i.e., co-located) 16x16 depth block in a corresponding
texture view. Several examples below will be explained by making reference to depth
block 170.

[0142] According to one technique of this disclosure, when coding a non-base texture
view component, video decoder 30 may derive only one disparity vector for a whole
macroblock by accessing a depth block corresponding to the macroblock containing the
current texture block. Regardless of whether the current MB is coded with skip/direct
modes or other inter modes, whenever a disparity vector is required for any block within
the MB, video decoder 30 may derive the same unique disparity vector once from the
same MB level disparity vector derivation. Video decoder 30 may, for example, derive
the disparity vector by accessing the depth values of corner samples 172A-172D and
determining a maximum depth value from the four corner samples. Video decoder 30
may then convert the maximum depth value into a disparity value using, for example, a
look up table or equations (1) and (2) above. In some implementations, video decoder
30 may derive a disparity vector by accessing depth values other than the four corner
samples and/or by identifying a value other than the maximum.

[0143] As one example, for a macroblock of a non-base texture view, video decoder 30
may locate a depth block that corresponds to the macroblock, and based on at least one
depth value of the depth block, derive a disparity vector for the macroblock. Video
decoder 30 may code a first sub-block of the macroblock based on the derived disparity

vector and code a second sub-block of the macroblock based on the derived disparity

WO 2014/153343 PCT/US2014/031039
35

vector. The depth block and macroblock may be co-located. Video decoder 30 may
derive the disparity vector for the macroblock by determining a set of depth values that
includes depth values of two or more corner samples of the depth block, and identify
from the set of depth values, a maximum depth value. Video decoder 30 may, for
example, code the first sub-block using one of a skip mode and a direct mode and code
the second sub-block using an inter prediction mode other than the skip mode or the
direct mode.

[0144] One potential difference between skip/direct modes and inter-prediction is then
when a macroblock) is coded using skip/direct modes, there will not be any partitioning,
1.e., MB size of 16x16 is coded fully. When a MB is coded using a mode other than
skip/direct (i.e., inter modes), there may be MB partitioning. Also, each MB partition
may be further partitioned into sub-blocks (i.e. H.264/AVC sub-blocks) . According to
the techniques of this disclosure, the same disparity vector derived for the MB may be
used for all the modes, such as skip/direct and inter-modes.

[0145] According to another technique of this disclosure, when deriving a disparity
vector from a corresponding depth block of the depth view component within the same
view, only the bottom-left (172A) and bottom-right (172B) corner depth samples of the
corresponding depth block of the current MB are accessed. As shown in FIG. 7,
typically a MB corresponds to an 8x8 reference block in the same view in 3D-AVC.
The depth block typically has a lower spatial resolution (with horizontal and vertical
downsamped by half). Thus, a 16x16 macroblock corresponds to an 8x8 depth block.
According to one technique of this disclosure, only corner samples 172A and 172B are
accessed to derive the disparity vector for the whole MB. Furthermore, the maximum
depth value of the accessed depth samples is used for converting it to a disparity vector.
Alternatively, only the top-left (172C) and bottom-right (172B) corner samples of the
reference depth block are accessed. Alternatively, only the top-left (172C) and top-right
(172D) corner samples of the reference depth block are accessed. Alternatively, only
the bottom-left (172A) and bottom-right (172B) corner samples of the reference depth
block are accessed. Alternatively, only the bottom-left (172A) and top-right (172D)
corner samples of the reference depth block are accessed. Alternatively, only the
bottom-right (172B) and top-right (172D) corner samples of the reference depth block
are accessed. Alternatively, any other two samples located within the corresponding

depth block are accessed, for example, one center pixel and one corner pixels or two

WO 2014/153343 PCT/US2014/031039
36

center pixels etc. Alternatively, when two samples are accessed, the average/minimum
of these two depth samples can be used, instead of maximum.

[0146] According to another technique of this disclosure, similar depth-to-disparity
conversion methodology may be used in the BVSP modes in order to derive a disparity
vector for each sub-region of size K x K within a MB partition. A reference depth block
is firstly identified for a KxK sub-region, and the same corner samples with positions in
a relative coordination (e.g., bottom-right and bottom-left corners of the reference depth
block corresponding/co-located to the KxK sub-region) of the reference depth block,
similar to those in MB level disparity vector derivation are accessed. Alternatively,
fewer corner samples of a reference depth block may be accessed for BVSP.

[0147] According to another technique of this disclosure, in skip/direct modes of the
current 3D-AVC, when the inter-view motion vector is unavailable, the motion vector
predictor is set to be the motion vector of the first available spatial neighbour, including
the reference index, instead of using the medium of motion vectors of three neighboring
blocks. Check in order, if any of the spatial neighbours has the reference picture index
greater than or equal 0. If true, the motion vector and the reference picture index of the
current MB are set respectively to be equal to the motion vector and the reference index
of the spatial neighboring block, and the checking process terminates.

[0148] According to another technique of this disclosure, when NBDV is used for 3D-
AVC and the depth map of the reference view is used to refine the disparity vector, the
same two corner samples can be used to get one optimal depth value to be converted to
a refined disparity vector.

[0149] According to another technique of this disclosure, when NBDV is used for 3D-
AVC and the depth map of the reference view is used to produce disparity motion
vectors in BVSP mode, the same two corner samples can be used to get one optimal
depth value to be converted to a disparity motion vector.

[0150] According to another technique of this disclosure, in 3D-HEVC, similarly,
accessing the reference block for a disparity motion vector in BVSP mode can be
aligned in a way by just checking the corner samples of the neighboring blocks. In
other words, for each KxK sub-region, video decoder 30 checks only the corner samples
of the reference depth block of the KxK sub-region identified by a disparity vector of
the prediction unit containing the KxK sub-region. Furthermore, the simplifications as
described above can be applicable to 3D-HEVC, by applying refinement to a PU or CU
instead of a MB block.

WO 2014/153343 PCT/US2014/031039
37

[0151] Aspects of implementing the techniques described above will now be explained
in greater detail, beginning with disparity vector derivation in the Skip/direct mode. For
this example, the location of the top-left sample of the current MB relative to the current
picture is denoted by (X, y). One depth value (D) is selected for the current MB from
the bottom-left and bottom-right corner pixels in the reference depth view as

D =max (D0, D1),

where the function max(*) returns the maximum value of Di (i being 0 to 1) and
Di denotes the depth value at the i-th pixel location that is calculated as

1=0: (x >> reduced resolution flag, (y >> reduced resolution_flag) +
SMD_POS),

i=1: ((x >> reduced _resolution flag) + SMD_ POS, (y >>
reduced_resolution_flag) + SMD POS),
here, SMD POS is equal to 7 and 15 when the “reduced resolution_flag,” respectively
is equal to 1 and 0. “reduced resolution flag” equal to 1 specifies that the depth view
components of a view component pair have a lower spatial resolution than the luma
component of the texture view component of the same view component pair, and the
width and height of the depth view components are both half of the width and height of
all the texture view components. “reduced resolution_flag” equal to 0 specifies that
when both depth view components and texture view components are present, they have
the same spatial resolution. Finally, the horizontal component of the disparity vector is
calculated from the selected depth value D using Eq. (1) and (2) and the vertical
component of the disparity vector is always set to 0.
[0152] Disparity vector derivation in the inter mode will now be described. In this
example, the top-left position of current MB (where the current partition/sub-block is
located) relative to the current picture is denoted by (x, y). One depth value (D) is
selected for the current MB from the bottom-left and bottom-right corner pixels in the
reference depth view as

D =max (D0, D1),

where the function max(*) returns the maximum value of Di (i being 0 to 1) and
Di denotes the depth value at the i-th pixel location that is calculated as

1=0: (x >> reduced resolution flag, (y >> reduced resolution_flag) +
SMD_POS),

i=1: ((x >> reduced _resolution flag) + SMD_ POS, (y >>
reduced_resolution_flag) + SMD POS),

WO 2014/153343 PCT/US2014/031039
38

here, SMD POS and reduced resolution_flag function as described above.
Finally, the horizontal component of the disparity vector is calculated from the selected
depth value D using Eq. (1) and (2), or a look up table, and the vertical component of
the disparity vector may be set to 0.
[0153] Disparity vector derivation in the BVSP mode will now be described. The size
of the sub-region by K x K (where K could be 8 or 4), the top-left position of one sub-
region within current MB partition relative to current picture is denoted by (X, y). One
depth value (D) is selected for each sub-region of size K x K from the bottom-left and
bottom-right corner pixels in the reference depth view as

D =max (D0, D1),

where the function max(*) returns the maximum value of Di (i being 0 to 1) and
Di denotes the at i-th depth pixel location at:

1=0: ((x>> reduced _resolution_flag), (y >> reduced resolution flag) + VSP S)

i=1: ((x >>reduced resolution flag) + VSP_S, (y >>reduced resolution flag)
+ VSP_S)

here, VSP_S is computed as:

VSP_S = (K >>reduced resolution flag) - 1,

and the reduced resolution_flag functions as defined above. Finally, the
horizontal component of the disparity vector may be calculated from the selected depth
value D using Eq. (1) and (2), or look up tables, and the vertical component of the
disparity vector may be set to 0.
[0154] MVP in the Skip/direct modes when inter-view motion is not available will now
be discussed. In this example, the motion vectors Mvc X[i] and reference indices
Ric_X[i] (for X equal to 0 and 1) with i equal 0, 1 and 2 are denoted respective to the
spatial neighbors A, B and C of the current MB. When the reference block in the base
view corresponding to the current Skip/direct MB is encoded in the intra mode, the
predicated motion vector (Mvp0, Mvpl) and the reference index (Ri0, Ril) for the
current MB is calculated as follows:

1. initialize both the Mvp0 , Mvp1 equal to the zero motion vector [0,0] and
reference index Ri0, Ril is set equal to -1.
2. When all the spatial candidate neighbors has the reference index equal to -1
(i.e.,Ric_QO[i]=-1 and, Ric 1[i]=-1, for all i =0, 1, 2), then the motion vector and
the reference index of the current MB is set to zero.

3. Foribeing 0 to 2, the following apply:

WO 2014/153343 PCT/US2014/031039
39

o Ifthei-th (i=0, 1, 2) spatial neighbor has the reference index greater
than or equal to zero, set the predicted motion vector Mvp0 and Mvpl to
be equal to the motion vector MvC 0[i] and MvC 1]i], respectively.
Further, the reference index Ri0 and Ril are set equal to the reference
index Ric 0[i] and Ric_1[i], respectively.

[0155] FIG. 8 is a block diagram illustrating an example of a video encoder that may
implement the techniques described in this disclosure. For example, FIG. 8 illustrates
video encoder 20 which may represent either a 3D-AVC compliant or a 3D-HEVC
compliant video encoder. Video encoder 20 will be described using certain HEVC
terminology such as PUs, TUs, and CUs, but it should be understood that the techniques
described with reference to video encoder 20 may also be performed with video coded
according to the H.264 standard.

[0156] Video encoder 20 may perform intra- and inter-coding of video blocks within
video slices. For example, video encoder 20 may perform inter-prediction encoding or
intra-prediction encoding. Intra-coding relies on spatial prediction to reduce or remove
spatial redundancy in video within a given video frame or picture. Inter-coding relies
on temporal prediction or inter-view prediction to reduce or remove temporal
redundancy within adjacent frames or pictures of a video sequence or redundancy
between pictures in different views. Intra-mode (I mode) may refer to any of several
spatial based compression modes. Inter-modes, such as uni-directional prediction (P
mode) or bi-prediction (B mode), may refer to any of several temporal-based
compression modes.

[0157] In the example of FIG. 8, video encoder 20 includes video data memory 40,
prediction processing unit 42, reference picture memory 64, summer 50, transform
processing unit 52, quantization processing unit 54, and entropy encoding unit 56.
Prediction processing unit 42 includes motion and disparity estimation unit 44, motion
and disparity compensation unit 46, and intra-prediction unit 48. For video block
reconstruction, video encoder 20 also includes inverse quantization processing unit 58,
inverse transform processing unit 60, and summer 62. A deblocking filter (not shown in
FIG. 8) may also be included to filter block boundaries to remove blockiness artifacts
from reconstructed video. If desired, the deblocking filter would typically filter the
output of summer 62. Additional loop filters (in loop or post loop) may also be used in

addition to the deblocking filter.

WO 2014/153343 PCT/US2014/031039
40

[0158] Video data memory 40 may store video data to be encoded by the components of
video encoder 20. The video data stored in video data memory 40 may be obtained, for
example, from video source 18. Reference picture memory 64 is one example of a
decoding picture buffer (DPB that stores reference video data for use in encoding video
data by video encoder 20 (e.g., in intra- or inter-coding modes, also referred to as intra-
or inter-prediction coding modes). Video data memory 40 and reference picture
memory 64 may be formed by any of a variety of memory devices, such as dynamic
random access memory (DRAM), including synchronous DRAM (SDRAM),
magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory
devices. Video data memory 40 and reference picture memory 64 may be provided by
the same memory device or separate memory devices. In various examples, video data
memory 40 may be on-chip with other components of video encoder 20, or off-chip
relative to those components.

[0159] Video encoder 20 receives video data, and a partitioning unit (not shown)
partitions the data into video blocks. This partitioning may also include partitioning
into slices, tiles, or other larger units, as wells as video block partitioning (e.g.,
macroblock partitions and sub-blocks of partitions). Video encoder 20 generally
illustrates the components that encode video blocks within a video slice to be encoded.
The slice may be divided into multiple video blocks (and possibly into sets of video
blocks referred to as tiles). Prediction processing unit 42 may select one of a plurality
of possible coding modes, such as one of a plurality of intra coding modes (intra-
prediction coding modes) or one of a plurality of inter coding modes (inter-prediction
coding modes), for the current video block based on error results (e.g., coding rate and
the level of distortion). Prediction processing unit 42 may, for example, select a BVSP
mode to code a current block. Prediction processing unit 42 may provide the resulting
intra- or inter-coded block to summer 50 to generate residual block data and to summer
62 to reconstruct the encoded block for use as a reference picture.

[0160] Intra-prediction unit 48 within prediction processing unit 42 may perform intra-
predictive coding of the current video block relative to one or more neighboring blocks
in the same frame or slice as the current block to be coded to provide spatial
compression. Motion and disparity estimation unit 44 and motion and disparity
compensation unit 46 within prediction processing unit 42 perform inter-predictive
coding of the current video block relative to one or more predictive blocks in one or

more reference pictures to provide temporal compression.

WO 2014/153343 PCT/US2014/031039
41

[0161] Motion and disparity estimation unit 44 may be configured to determine the
inter-prediction mode for a video slice according to a predetermined pattern for a video
sequence. The predetermined pattern may designate video slices in the sequence as P
slices or B slices. Motion and disparity estimation unit 44 and motion and disparity
compensation unit 46 may be highly integrated, but are illustrated separately for
conceptual purposes. Motion estimation, performed by motion and disparity estimation
unit 44, is the process of generating motion vectors, which estimate motion for video
blocks. A motion vector, for example, may indicate the displacement of a video block
within a current video frame or picture relative to a predictive block within a reference
picture.

[0162] A predictive block is a block that is found to closely match the video block to be
coded in terms of pixel difference, which may be determined by sum of absolute
difference (SAD), sum of square difference (SSD), or other difference metrics. In some
examples, video encoder 20 may calculate values for sub-integer pixel positions of
reference pictures stored in reference picture memory 64. For example, video encoder
20 may interpolate values of one-quarter pixel positions, one-cighth pixel positions, or
other fractional pixel positions of the reference picture. Therefore, motion and disparity
estimation unit 44 may perform a motion search relative to the full pixel positions and
fractional pixel positions and output a motion vector with fractional pixel precision.
[0163] Motion and disparity estimation unit 44 calculates a motion vector for a video
block in an inter-coded (inter-prediction coded) slice by comparing the position of the
video block to the position of a predictive block of a reference picture. The reference
picture may be selected from a first reference picture list (RefPicList0) or a second
reference picture list (RefPicListl), each of which identify one or more reference
pictures stored in reference picture memory 64. Motion and disparity estimation unit 44
sends the calculated motion vector to entropy encoding unit 56 and motion and disparity
compensation unit 46.

[0164] Motion compensation, performed by motion and disparity compensation unit 46,
may involve fetching or generating the predictive block based on the motion vector
determined by motion estimation, possibly performing interpolations to sub-pixel
precision. Upon receiving the motion vector for the current video block, motion and
disparity compensation unit 46 may locate the predictive block to which the motion
vector points in one of the reference picture lists. Video encoder 20 forms a residual

video block by subtracting pixel values of the predictive block from the pixel values of

WO 2014/153343 PCT/US2014/031039
42

the current video block being coded, forming pixel difference values. The pixel
difference values form residual data for the block, and may include both luma and
chroma difference components. Summer 50 represents the component or components
that perform this subtraction operation. Motion and disparity compensation unit 46 may
also generate syntax elements associated with the video blocks and the video slice for
use by video decoder 30 in decoding the video blocks of the video slice.

[0165] In some examples, motion and disparity compensation unit 46 may perform
BVSP for a current block in a current view. That is, motion and disparity compensation
unit 46 may determine a picture of reference picture memory 64 in a first view. As
explained in greater detail above, motion and disparity compensation unit 46 may
determine a disparity vector for the current block by accessing a corresponding block in
a depth view. Then, using depth values of the depth block, motion and disparity
compensation unit 46 may warp pixel values of a picture in the first view, determined
relative to positions of pixels in the current block, such that a predicted block is formed
in a second view, different from the first view and the current view. Motion and
disparity compensation unit 46 may provide this predicted block to summer 50 and
summer 62, for use in calculating a residual and in reproducing the current block,
respectively. Likewise, in accordance with the techniques of this disclosure, video
encoder 20 may encode syntax data defining motion information for the current block
such that the motion information includes a reference index having a value that
identifies the picture in the first view from which the predicted block (i.e., a BVSP
reference block) is synthesized.

[0166] Intra-prediction unit 48 may intra-predict a current block, as an alternative to the
inter-prediction performed by motion and disparity estimation unit 44 and motion and
disparity compensation unit 46, as described above. In particular, intra-prediction unit
48 may determine an intra-prediction mode to use to encode a current block. In some
examples, intra-prediction unit 48 may encode a current block using various intra-
prediction modes, e.g., during separate encoding passes, and intra-prediction unit 48 (or
a mode select unit, in some examples) may select an appropriate intra-prediction mode
to use from the tested modes. For example, intra-prediction unit 48 may calculate rate-
distortion values using a rate-distortion analysis for the various tested intra-prediction
modes, and select the intra-prediction mode having the best rate-distortion
characteristics among the tested modes. Rate-distortion analysis generally determines

an amount of distortion (or error) between an encoded block and an original, unencoded

WO 2014/153343 PCT/US2014/031039
43

block that was encoded to produce the encoded block, as well as a bit rate (that is, a
number of bits) used to produce the encoded block. Intra-prediction unit 48 may
calculate ratios from the distortions and rates for the various encoded blocks to
determine which intra-prediction mode exhibits the best rate-distortion value for the
block.

[0167] In any case, after selecting an intra-prediction mode for a block, intra-prediction
unit 48 may provide information indicative of the selected intra-prediction mode for the
block to entropy encoding unit 56. Entropy encoding unit 56 may encode the
information indicating the selected intra-prediction mode in accordance with the
techniques of this disclosure. Video encoder 20 may include in the transmitted
bitstream configuration data, which may include a plurality of intra-prediction mode
index tables and a plurality of modified intra-prediction mode index tables (also referred
to as codeword mapping tables), definitions of encoding contexts for various blocks,
and indications of a most probable intra-prediction mode, an intra-prediction mode
index table, and a modified intra-prediction mode index table to use for each of the
contexts.

[0168] After prediction processing unit 42 generates the predictive block for the current
video block via either inter-prediction or intra-prediction, video encoder 20 forms a
residual video block by subtracting the predictive block from the current video block.
The residual video data in the residual block may be applied to transform processing
unit 52. Transform processing unit 52 transforms the residual video data into residual
transform coefficients using a transform, such as a discrete cosine transform (DCT) or a
conceptually similar transform. Transform processing unit 52 may convert the residual
video data from a pixel domain to a transform domain, such as a frequency domain.
[0169] Transform processing unit 52 may send the resulting transform coefficients to
quantization processing unit 54. Quantization processing unit 54 quantizes the
transform coefficients to further reduce bit rate. The quantization process may reduce
the bit depth associated with some or all of the coefficients. The degree of quantization
may be modified by adjusting a quantization parameter. In some examples,
quantization processing unit 54 may then perform a scan of the matrix including the
quantized transform coefficients. Alternatively, entropy encoding unit 56 may perform
the scan.

[0170] Following quantization, entropy encoding unit 56 entropy encodes the quantized

transform coefficients. For example, entropy encoding unit 56 may perform context

WO 2014/153343 PCT/US2014/031039
44

adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy encoding methodology or
technique. Following the entropy encoding by entropy encoding unit 56, the encoded
bitstream may be transmitted to video decoder 30, or archived for later transmission or
retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode the
motion vectors and the other syntax elements for the current video slice being coded.
[0171] Inverse quantization processing unit 58 and inverse transform processing unit 60
apply inverse quantization and inverse transformation, respectively, to reconstruct the
residual block in the pixel domain for later use as a reference block of a reference
picture. Motion and disparity compensation unit 46 may calculate a reference block by
adding the residual block to a predictive block of one of the reference pictures within
one of the reference picture lists. Motion and disparity compensation unit 46 may also
apply one or more interpolation filters to the reconstructed residual block to calculate
sub-integer pixel values for use in motion estimation. Summer 62 adds the
reconstructed residual block to the motion compensated prediction block produced by
motion and disparity compensation unit 46 to produce a reference block for storage in
reference picture memory 64. The reference block may be used by motion and disparity
estimation unit 44 and motion and disparity compensation unit 46 as a reference block
to inter-predict a block in a subsequent video frame or picture.

[0172] In this manner, video encoder 20 is an example of a video encoder that may be
configured to implement one or more example techniques described in this disclosure.
For example, video data memory 40 stores video data. The video data may include a
texture video component of a dependent view and a depth view component that
corresponds to the texture view component, each of which video encoder 20 is to
encode in a 3D-AVC compliant or 3D-HEVC compliant video coding process.

[0173] In the techniques described in this disclosure, video encoder 20 may include one
or more processors that are configured to encode, in a 3D-AVC compliant or 3D-HEVC
compliant video coding process, a texture view component of a dependent view of the
video data. As described above, each view in a 3D-AVC includes a texture view
component and depth view component. There is one base view and one or more
enhancement or dependent views in 3D-AVC, where texture view components of the

one or more enhancement or dependent views may be inter-view predicted.

WO 2014/153343 PCT/US2014/031039
45

[0174] To encode the texture view component, video encoder 20 may be configured to
evaluate motion information of one or more neighboring blocks of a current block in the
texture view component to determine whether at least one neighboring block is inter-
view predicted with a disparity motion vector that refers to an inter-view reference
picture in a view other than the dependent view. Video encoder 20 may derive a
disparity vector for the current block based on the disparity motion vector for one of the
neighboring blocks. For texture-first coding, video encoder 20 may encode a depth
view component, of the video data, that corresponds to the texture view component
subsequent to encoding the texture view component.

[0175] In some examples, prediction processing unit 42 of video encoder 20 may be one
example of a processor configured to implement the examples described in this
disclosure for disparity vector derivation and BVSP coding. In some examples, a unit
(e.g., one or more processors) other than prediction processing unit 42 may implement
the examples described above. In some examples, prediction processing unit 42 in
conjunction with one or more other units of video encoder 20 may implement the
examples described above. In some examples, a processor of video encoder 20 (not
shown in FIG. 8) may, alone or in conjunction with other processors of video encoder
20, implement the examples described above.

[0176] FIG. 9 is a block diagram illustrating an example of a video decoder that may
implement the techniques described in this disclosure. FIG. 9 is a block diagram
illustrating an example of a video decoder that may implement the techniques described
in this disclosure. For example, FIG. 9 illustrates video decoder 30 which may
represent either a 3D-AVC compliant or a 3D-HEVC compliant video decoder. Video
decoder 30 will be described using certain HEVC terminology such as PUs, TUs, and
CUs, but it should be understood that the techniques described with reference to video
decoder 30 may also be performed with video coded according to the H.264 standard.
[0177] Video decoder 30 may perform inter-prediction decoding or intra-prediction
decoding. FIG. 9 illustrates video decoder 30. In the example of FIG. 9, video decoder
30 includes video data memory 69, entropy decoding unit 70, prediction processing unit
71, inverse quantization processing unit 76, inverse transform processing unit 78,
summer 80, and reference picture memory 82. Prediction processing unit 71 includes
motion and disparity compensation unit 72 and intra-prediction unit 74. Video decoder
30 may, in some examples, perform a decoding pass generally reciprocal to the

encoding pass described with respect to video encoder 20 from FIG. 8.

WO 2014/153343 PCT/US2014/031039
46

[0178] Video data memory 69 may store video data, such as an encoded video
bitstream, to be decoded by the components of video decoder 30. The video data stored
in video data memory 69 may be obtained, for example, from storage device 34, from a
local video source, such as a camera, via wired or wireless network communication of
video data, or by accessing physical data storage media. Video data memory 69 may
form a coded picture buffer (CPB) that stores encoded video data from an encoded
video bitstream.

[0179] Reference picture memory 82 is one example of a decoded picture buffer (DPB)
that stores reference video data for use in decoding video data by video decoder 30 (e.g.,
in intra- or inter-coding modes). Video data memory 69 and reference picture memory
82 may be formed by any of a variety of memory devices, such as dynamic random
access memory (DRAM), including synchronous DRAM (SDRAM), magnetoresistive
RAM (MRAM), resistive RAM (RRAM), or other types of memory devices. Video
data memory 69 and reference picture memory 82 may be provided by the same
memory device or separate memory devices. In various examples, video data memory
69 may be on-chip with other components of video decoder 30, or off-chip relative to
those components.

[0180] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors, and other
syntax elements. Entropy decoding unit 70 forwards the motion vectors and other
syntax elements to prediction processing unit 71. Video decoder 30 may receive the
syntax elements at the video slice level and/or the video block level.

[0181] When the video slice is coded as an intra-coded (1) slice, intra-prediction unit 74
of prediction processing unit 71 may generate prediction data for a video block of the
current video slice based on a signaled intra-prediction mode and data from previously
decoded blocks of the current frame or picture. When the video frame is coded as an
inter-coded (i.e., B or P) slice, motion and disparity compensation unit 72 of prediction
processing unit 71 produces predictive blocks for a video block of the current video
slice based on the motion vectors and other syntax elements received from entropy
decoding unit 70. The predictive blocks may be produced from one of the reference

pictures within one of the reference picture lists. Video decoder 30 may construct the

WO 2014/153343 PCT/US2014/031039
47

reference picture lists (RefPicList0 and RefPicList]) using default construction
techniques based on reference pictures stored in reference picture memory §2.

[0182] Motion and disparity compensation unit 72 determines prediction information
for a video block of the current video slice by parsing the motion vectors and other
syntax elements, and uses the prediction information to produce the predictive blocks
for the current video block being decoded. For example, motion and disparity
compensation unit 72 uses some of the received syntax elements to determine a
prediction mode (e.g., intra- or inter-prediction) used to code the video blocks of the
video slice, an inter-prediction slice type (e.g., B slice or P slice), construction
information for one or more of the reference picture lists for the slice, motion vectors
for each inter-encoded video block of the slice, inter-prediction status for each inter-
coded video block of the slice, and other information to decode the video blocks in the
current video slice.

[0183] Motion and disparity compensation unit 72 may also perform interpolation based
on interpolation filters. Motion and disparity compensation unit 72 may use
interpolation filters as used by video encoder 20 during encoding of the video blocks to
calculate interpolated values for sub-integer pixels of reference blocks. In this case,
motion and disparity compensation unit 72 may determine the interpolation filters used
by video encoder 20 from the received syntax elements and use the interpolation filters
to produce predictive blocks.

[0184] Motion and disparity compensation unit 72 may perform backward view
synthesis prediction for a current block in a current view. That is, motion and disparity
compensation unit 72 may determine a picture of reference picture memory 82 in a first
view. As explained in greater detail above, motion and disparity compensation unit 72
may determine a depth block corresponding to the current block, and using depth values
of the depth block, motion and disparity compensation unit 72 may warp pixel values of
a picture in the first view, determined relative to positions of pixels in the current block,
such that a predicted block (i.e., a BVSP reference block) is formed in a second view,
different from the first view and the current view. Motion and disparity compensation
unit 72 may provide this predicted block to summer 50 and summer 80, for use in
calculating a residual and in reproducing the current block, respectively. Likewise, in
accordance with the techniques of this disclosure, video decoder 30 may decode syntax

data defining motion information for the current block such that the motion information

WO 2014/153343 PCT/US2014/031039
48

includes a reference index having a value that identifies the picture in the first view
from which the predicted block is synthesized.

[0185] Inverse quantization processing unit 76 inverse quantizes (i.¢., de-quantizes), the
quantized transform coefficients provided in the bitstream and decoded by entropy
decoding unit 70. The inverse quantization process may include use of a quantization
parameter calculated by video encoder 20 for each video block in the video slice to
determine a degree of quantization and, likewise, a degree of inverse quantization that
should be applied. Inverse transform processing unit 78 applies an inverse transform
(e.g., an inverse DCT, an inverse integer transform, or a conceptually similar inverse
transform process), to the transform coefficients in order to produce residual blocks in
the pixel domain.

[0186] After motion and disparity compensation unit 72 generates the predictive block
for the current video block based on the motion vectors and other syntax elements,
video decoder 30 forms a decoded video block by summing the residual blocks from
inverse transform processing unit 78 with the corresponding predictive blocks generated
by motion and disparity compensation unit 72. Summer 80 represents the component or
components that perform this summation operation. If desired, a deblocking filter may
also be applied to filter the decoded blocks in order to remove blocking artifacts. Other
loop filters (either in the coding loop or after the coding loop) may also be used to
smooth pixel transitions, or otherwise improve the video quality. The decoded video
blocks in a given picture are then stored in reference picture memory 82, which stores
reference pictures used for subsequent motion compensation. Reference picture
memory 82 also stores decoded video for later presentation on a display device, such as
display device 32 of FIG. 1.

[0187] In this manner, video decoder 30 is an example of a video decoder that may be
configured to implement one or more example techniques described in this disclosure.
For example, video data memory 69 stores video data. The video data may include
information from which video decoder 30 can decode a texture video component of a
dependent view and a depth view component that corresponds to the texture view
component, each of which video encoder 20 is encoded in a 3D-AVC compliant or 3D-
HEVC compliant video coding process.

[0188] In the techniques described in this disclosure, video decoder 30 may include one
or more processors that are configured to decode, in a 3D-AVC compliant or 3D-HEVC

compliant video coding process, a texture view component of a dependent view of the

WO 2014/153343 PCT/US2014/031039
49

video data. To decode the texture view component, video decoder 30 may be
configured to evaluate motion information of one or more neighboring blocks of a
current block in the texture view component to determine whether at least one
neighboring block is inter-view predicted with a disparity motion vector that refers to an
inter-view reference picture in a view other than the dependent view. Video decoder 30
may derive a disparity vector for the current block based on the disparity motion vector
for one of the neighboring blocks. For texture-first coding, video decoder 30 may
decode a depth view component, of the video data, that corresponds to the texture view
component subsequent to decoding the texture view component.

[0189] In some examples, prediction processing unit 71 of video decoder 30 may be one
example of a processor configured to implement the examples described in this
disclosure for disparity vector derivation and BVSP coding. In some examples, a unit
(e.g., one or more processors) other than prediction processing unit 71may implement
the examples described above. In some examples, prediction processing unit 71 in
conjunction with one or more other units of video decoder 30 may implement the
examples described above. In yet some other examples, a processor of video decoder
30 (not shown in FIG. 9) may, alone or in conjunction with other processors of video
decoder 30, implement the examples described above.

[0190] FIG. 10 is a flowchart showing an example 3D video coding process in
accordance with the techniques of this disclosure. The techniques of FIG. 10 may be
applicable to either 3D-AVC compliant video or to 3D-HEVC compliant video. The
techniques of FIG. 10 will be described with respect to a generic video coder, which
may for example be a video encoder such as video encoder 20 or a video decoder such
as video decoder. The video coder determines a block of a first texture view is to be
coded using a BVSP mode(110). When performing video decoding, video decoder 30
may, for example, determine that the block of the first texture view is to be decoded
using the BVSP mode by receiving a syntax element that indicates the block of the first
texture view is to be coded using the block-based view synthesis mode. When
performing video encoding, video encoder 20 may, for example, determine the block of
the first texture view is to be coded using the BVSP mode by performing several coding
passes and identifying BVSP mode as a mode that produces a desired rate-distortion
tradeoff.

[0191] The video coder locates, in a depth view, a depth block that corresponds to the
block of the first texture view (112). In 3D-AVC, the block in this example may refer to

WO 2014/153343 PCT/US2014/031039
50

a KxK sub-region of a macroblock or macroblock partition. In 3D-HEVC, the block
may also refer to a KxK sub-region. The corresponding depth block may, for example,
be a co-located depth block in 3D-AVC or may be a depth block in the reference base
view (i.e., second view) that is identified by the disparity vector generated using NBDV
in 3D-HEVC. The video coder determines depth values for two or more corner
positions of the depth block (114). Based on the depth values, the video coder derives a
disparity vector for the block (116). Using the disparity vector, the video coder locates
a block of a second texture view (118). The video coder inter-predicts the block of the
first texture view using the block of the second texture view (120). The first texture
view may, for example, be a non-base texture view, and the second texture view may,
for example, be a base texture view. When the techniques of FIG. 10 are implemented
by a 3D-AVC compliant video coder, the block of the first texture view may be, for
example, a sub-block of a macroblock partition. When the techniques of FIG. 10 are
implemented by a 3D-HEVC compliant coder, the block of the first texture view may,
for example, be a prediction unit.

[0192] FIG. 11 is a flowchart showing an example 3D video coding process in
accordance with the techniques of this disclosure. The techniques of FIG. 11 will be
described using 3D-AVC terminology, but the techniques may potentially be extended
to other video coding standards such as 3D-HEVC. The techniques of FIG. 11 will be
described with respect to a generic video coder, which may for example be a video
encoder such as video encoder 20 or a video decoder such as video decoder. The video
coder performs texture first coding for a first texture view, a first depth view, a second
texture view, and a second depth view (122). The first texture view and the first base
depth view may, for example, be base views, while the second texture view and the
second depth view are non-base views.

[0193] For a macroblock of the second texture view, the video coder locates a depth
block, in the first depth view, that corresponds to the macroblock (124). Based on at
least one depth value of the depth block, the video coder derives a disparity vector for
the macroblock (126). The video coder may, for example, derive the disparity vector
by determining a set of depth values that includes depth values of two or more corner
samples of the depth block, and identify from the set of depth values, a maximum depth
value. The maximum depth value may then be converted into a disparity vector based
on a conversion table that converts depth values to disparity values or using some other

technique. The video coder codes a first sub-block of the macroblock based on the

WO 2014/153343 PCT/US2014/031039
51

derived disparity vector (128). The video coder codes a second sub-block of the
macroblock based on the derived disparity vector (130). The video coder may, for
example, code the first sub-block using one of a skip mode and a direct mode and code
the second sub-block using an inter prediction mode other than the skip mode or the
direct mode. In the example of FIG. 11, the sub-blocks may, for instance, be
H.264/AVC sub-blocks or may be macroblock partitions.

[0194] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, ¢.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0195] By way of example, and not limitation, such computer-readable storage media
can comprisc RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc

WO 2014/153343 PCT/US2014/031039
52

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0196] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0197] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0198] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2014/153343 PCT/US2014/031039
53

WHAT IS CLAIMED IS:

1. A method of coding three-dimensional (3D) video data, the method comprising:

performing texture first coding for a first texture view, a first depth view, a
second texture view, and a second depth view;

for a macroblock of the second texture view, locating a depth block of the first
depth view that corresponds to the macroblock;

based on at least one depth value of the depth block, deriving a disparity vector
for the macroblock;

coding a first sub-block of the macroblock based on the derived disparity vector;

coding a second sub-block of the macroblock based on the derived disparity

vector.

2. The method of claim 1, wherein the first texture view comprises a base texture
view, the second texture view comprises a non-base texture view, the first depth view
comprises a base depth view, and the second depth view comprises a non-base depth

view.

3. The method of claim 1, wherein the macroblock comprises a 16x16 block, and

wherein the depth block comprises one of an 8x8 depth block or 16x16 depth block.

4. The method of claim 1, further comprising:
determining the depth block based on a disparity motion vector from one of a
spatial neighboring block or a temporal neighboring block of the

macroblock.

5. The method of claim 1, wherein deriving the disparity vector for the macroblock
comprises:
determining a set of depth values, wherein the set of depth values comprises
depth values of two or more corner samples of the depth block, and

identifying from the set of depth values, a maximum depth value.

WO 2014/153343 PCT/US2014/031039
54

6. The method of claim 1, further comprising:
coding the first sub-block using a first motion vector, wherein the first motion
vector is determined using the disparity vector;
coding the second sub-block using a second motion vector, wherein the second
motion vector is determined using the disparity vector, and wherein the

first motion vector is different than the second motion vector.

7. The method of claim 1, wherein coding the first sub-block of the macroblock
comprises:
using the disparity vector, locating a corresponding block of the first sub-block
in a second texture view;
determining motion information for the corresponding block;
coding the first sub-block using the motion information for the corresponding

block.

8. The method of claim 1, further comprising:
coding all sub-blocks of the macroblock based on motion information

determined using the disparity vector.

9. The method of claim 1, wherein the first sub-block comprises one of a first
macroblock partition or a first sub-block coded according to the 3D-AVC video coding
standard, and wherein the second sub-block comprises one of a second macroblock

partition or a second sub-block according to the 3D-AVC video coding standard.

10. The method of claim 1, wherein the method of coding the 3D video data

comprises a method of decoding the 3D video data.

11. The method of claim 1, wherein the method of coding the 3D video data

comprises a method of encoding the 3D video data.

WO 2014/153343 PCT/US2014/031039
55

12. A device for coding three-dimensional (3D) video data, the device comprising:

a video coder configured to perform texture first coding for a first texture view, a
first depth view, a second texture view, and a second depth view; for a macroblock of
the second texture view, locate a depth block of the first depth view that corresponds to
the macroblock; based on at least one depth value of the depth block, derive a disparity
vector for the macroblock; code a first sub-block of the macroblock based on the
derived disparity vector; and, code a second sub-block of the macroblock based on the

derived disparity vector.

13. The device of claim 12, wherein the first texture view comprises a base texture
view, the second texture view comprises a non-base texture view, the first depth view
comprises a base depth view, and the second depth view comprises a non-base depth

view.

14. The device of claim 12, wherein the macroblock comprises a 16x16 block, and

wherein the depth block comprises one of an 8x8 depth block or 16x16 depth block.

15. The device of claim 12, further comprising:
determining the depth block based on a disparity motion vector from one of a
spatial neighboring block or a temporal neighboring block of the

macroblock.

16. The device of claim 12, wherein the video coder is configured to derive the
disparity vector for the macroblock by determining a set of depth values, wherein the set
of depth values comprises depth values of two or more corner samples of the depth

block, and identifying from the set of depth values, a maximum depth value.

17. The device of claim 12, wherein the video coder is further configured to code the
first sub-block using a first motion vector, wherein the first motion vector is determined
using the disparity vector, and code the second sub-block using a second motion vector,
wherein the second motion vector is determined using the disparity vector, and wherein

the first motion vector is different than the second motion vector.

WO 2014/153343 PCT/US2014/031039
56

18. The device of claim 12, wherein the video coder is further configured to code the
first sub-block of the macroblock by using the disparity vector, locating a corresponding
block of the first sub-block in a second texture view; determining motion information
for the corresponding block; and, coding the first sub-block using the motion

information for the corresponding block.

19. The device of claim 12, wherein the video coder is further configured to code all
sub-blocks of the macroblock based on motion information determined using the

disparity vector.

20. The device of claim 12, wherein the first sub-block comprises one of a first
macroblock partition or a first sub-block coded according to the 3D-AVC video coding
standard, and wherein the second sub-block comprises one of a second macroblock

partition or a second sub-block according to the 3D-AVC video coding standard.

21. The device of claim 12, wherein the video coder comprises a video decoder.
22. The device of claim 12, wherein the video coder comprises a video encoder.
23. The device of claim 12, wherein the device comprises at least one of:

an integrated circuit;
a microprocessor; and,

a wireless communication device that comprises a video decoder.

WO 2014/153343 PCT/US2014/031039

24.

25.

57

A device for coding three-dimensional (3D) video data, the device comprising;:

means for performing texture first coding for a first texture view, a first depth
view, a second texture view, and a second depth view;

for a macroblock of the second texture view, means for locating a depth block of
the first depth view that corresponds to the macroblock;

based on at least one depth value of the depth block, means for deriving a
disparity vector for the macroblock;

means for coding a first sub-block of the macroblock based on the derived
disparity vector;

means for coding a second sub-block of the macroblock based on the derived

disparity vector.

The device of claim 24, wherein the first texture view comprises a base texture

view, the second texture view comprises a non-base texture view, the first depth view

comprises a base depth view, and the second depth view comprises a non-base depth

view.

26.

The device of claim 24, wherein the means for deriving the disparity vector for

the macroblock comprises:

27.

means for determining a set of depth values, wherein the set of depth values
comprises depth values of two or more corner samples of the depth
block, and

means for identifying from the set of depth values, a maximum depth value.

The device of claim 24, further comprising:

means for coding the first sub-block using a first motion vector, wherein the first
motion vector is determined using the disparity vector;

means for coding the second sub-block using a second motion vector, wherein
the second motion vector is determined using the disparity vector, and
wherein the first motion vector is different than the second motion

vector.

WO 2014/153343 PCT/US2014/031039
58

28. The device of claim 24, wherein the means for coding the first sub-block of the
macroblock comprises:
means for using the disparity vector, locating a corresponding block of the first
sub-block in a second texture view;
means for determining motion information for the corresponding block;
means for coding the first sub-block using the motion information for the

corresponding block.

29. The device of claim 24, further comprising:
means for coding all sub-blocks of the macroblock based on motion information

determined using the disparity vector.

30. A computer-readable storage medium storing instructions that when executed by
one or more processors cause the one or more processors to:
perform texture first coding for a first texture view, a first depth view, a second
texture view, and a second depth view;
for a macroblock of the second texture view, locate a depth block of the first
depth view that corresponds to the macroblock;
based on at least one depth value of the depth block, derive a disparity vector for
the macroblock;
code a first sub-block of the macroblock based on the derived disparity vector;
code a second sub-block of the macroblock based on the derived disparity

vector.

WO 2014/153343

SOURCE DEVICE
12

VIDEO SOURCE
18

l

VIDEO
ENCODER
20

l

OUTPUT
INTERFACE
22

Page 1/ 11

— e— e— — —

l
| STORAGE |

- DEVICE
| 34

-

— ——— |

PCT/US2014/031039

Yy

FIG. 1

DESTINATION DEVICE
14

DISPLAY DEVICE
32

T

VIDEO
DECODER
30

T

INPUT INTERFACE
28

PCT/US2014/031039

WO 2014/153343

Page 2 / 11

T8

T7

T6

T5

T4

T3

T2

T

T0

e
65
L
66

4
67

—
68
1
69

4
71

......

=] [¢]

1
1
1
2

4
3

1

S6

Nlclblblola

FIG. 2

WO 2014/153343

Page 3 /11

11

PCT/US2014/031039

T10

T9

T8
Y

“4,
o/

T7

E)
»

T6

T5

T4

T3

T2

T1

TO

S0

S1

S2

S3

S4

S5

S6
S7

FIG. 3

PCT/US2014/031039

WO 2014/153343

Page 4 / 11

¥ 'Old

29A dsiqg

_~(ao)p

1d

uondIPaid-dSA

0L

L

0L M3IA

L1 M3IA

WO 2014/153343 PCT/US2014/031039

Page 5/ 11

B Bo

(&2
(=3
o

A

Ao

FIG. 5

WO 2014/153343

PCT/US2014/031039

Page 6 / 11

DEPTH

154~

TEXTURE

FIG. 6

WO 2014/153343 PCT/US2014/031039

Page 7/ 11

172C 172D

172A 172B

FIG. 7

PCT/US2014/031039

WO 2014/153343

Page 8 / 11

A
- T - - - - - - - - - - - —_——_——_— == || —_— "
0¢ |
Y3IAOONI OFAIN |
— — Z9 |
95 8¢ 09 S)2079 03aIA 55 _
LINA LINN LINN a3LoNYLISNODIY Asonaw | !
ONIdooNS [$A™] ONISSI00¥d [ONISSI00NUd -+ > _
NOILVZILNVNO IWNO4SNVYL e 34n121d
AdOU.N3 ISYIANI JsuaANl | | A0018 8y 43y |
1 -aIs3y 1INN _
"NOOIY NOILOIdI¥d _
VHINI _
— |
9% LINN |
NOILVSNIdNO9 _
ALIMVdSIa |
dNV NOILOW |
) «— _
7 LINN _
§ ; NOILVIILST |
SININTTI XVINAS ALINvVdia |
|
< dNV NOILOW |
v _
1INN ONISSIO0ud |
NOILOIdT¥d |
— — 0S
SIN3I0144309 75 75 _ q - "
INNOASNVHL 1INN 1INN
< N e —
vnais3y ONISSID0Ud ONISSID0Nd So01g <Hwﬁw_uwm,__ A v1va
a3zZILNVNO NOILVZILNVNO WHOSNVAL [SHO0TE o3daIA | o3I

PCT/US2014/031039

WO 2014/153343

Page 9 /11

| — 8z 73
_ 8 1INN 1INN
- _ AHONIN | g ONISSI00¥d e o9NISSTOO0Ud
O3dalA _ AANLOId WHO4ASNVYYL NOILVZILNYNO
aaaodaa 43y 08 SX0014 3ISYIANI 3ISUIANI
" IvNnais3y 7y
_
_ 7
_ 1INN
_ NOILDIa3dd ‘44309
| VYLNI "ZILNVNO
_ ZZ 1INN 0L
_ NOILVSNIdIWOD 1INN
| T || Avesia e xviNAs | ©NIa0o3a
_ ANV NOILON AdONLNT
_ 1z
LINN ONISSIO0Nd
_ NOILOIa3¥d
_ |
_ 69
| ANOW3IN |
| v.1vad 03aiA
_ o

¥3a0903a OddIA

NVvI™1sllg
O3dIA
d3doON3

WO 2014/153343

Page 10/ 11

110
/

DETERMINE A BLOCK OF A FIRST
TEXTURE VIEW IS TO BE CODED
USING A BVSP MODE

112
f

LOCATE, IN A DEPTH VIEW, A DEPTH

THE BLOCK OFTHE FIRST TEXTURE

BLOCK THAT CORRESPONDS TO

VIEW

114
/

DETERMINE A DEPTH VALUE FROM
TWO OR MORE CORNER POSITIONS

OF THE DEPTH BLOCK

116
/

DERIVE A DISPARITY VECTOR
BASED ON THE DEPTH VALUES

118
/

LOCATE A BLOCK OF A SECOND
TEXTURE VIEW USING THE
DISPARITY VECTOR

120
/

INTER-PREDICT THE BLOCK OF THE

BLOCK OF THE SECOND TEXTURE

FIRST TEXTURE VIEW USING THE

VIEW

FIG. 10

PCT/US2014/031039

WO 2014/153343

FIG. 11

PCT/US2014/031039

Page 11 /11

122
[

PERFORM TEXTURE FIRST CODING
FOR A FIRST TEXTURE VIEW, A
FIRST DEPTH VIEW, A SECOND

TEXTURE VIEW, AND A SECOND
DEPTH VIEW

124
\ -

FOR A MACROBLOCK OF THE
SECOND TEXTURE VIEW, LOCATE A
FIRST DEPTH BLOCK THAT
CORRESPONDS TO THE
MACROBLOCK

126
v -

BASED ON AT LEAST ONE DEPTH
VALUE OF THE DEPTH BLOCK,
DERIVING A DISPARITY VECTOR FOR
THE MACROBLOCK

l /128

CODING A FIRST SUBLOCK OF THE
MACROBLOCK BASED ON THE
DERIVED DISPARITY VECTOR

l f130

CODING A SECOND SUBLOCK OF
THE MACROBLOCK BASED ON THE
DERIVED DISPARITY VECTOR

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings

