

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2012320847 B2

**(54) Title
Nicotiana benthamiana plants deficient in fucosyltransferase activity**

**(51) International Patent Classification(s)
C12N 15/82 (2006.01) C12N 9/10 (2006.01)**

(21) Application No: 2012320847 (22) Date of Filing: 2012.10.04

(87) WIPO No: WO13/050155

(30) Priority Data

(31) Number	(32) Date	(33) Country
61/542,965	2011.10.04	US
11075218.5	2011.10.06	EP

(43) Publication Date: 2013.04.11

(44) Accepted Journal Date: 2018.03.08

**(71) Applicant(s)
Icon Genetics GmbH**

**(72) Inventor(s)
Weterings, Koen;Van Eldik, Gerben**

**(74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU**

**(56) Related Art
WO 2008141806 A1**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2013/050155 A1

(43) International Publication Date

11 April 2013 (11.04.2013)

WIPO | PCT

(51) International Patent Classification:

C12N 15/82 (2006.01) C12N 9/10 (2006.01)

(21) International Application Number:

PCT/EP2012/004160

(22) International Filing Date:

4 October 2012 (04.10.2012)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/542,965 4 October 2011 (04.10.2011) US
11075218.5 6 October 2011 (06.10.2011) EP

(71) Applicant: ICON GENETICS GMBH [DE/DE]; Weinbergweg 22, 06120 Halle (Saale) (DE).

(72) Inventors: WETERINGS, Koen; 2805 Westwick Court, Raleigh, North Carolina 27615 (US). VAN ELDIK, Gerben; Hekers 21, 9052 Zwijnaarde (BE).

(74) Agent: BLODIG, Wolfgang; Wächtershäuser & Hartz, Patentanwaltspartnerschaft, Ottostrasse 4, 80333 Munich (DE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description (Rules 13bis.4(d)(i) and 48.2(a)(viii))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: NICOTIANA BENTHAMIANA PLANTS DEFICIENT IN FUCOSYLTRANSFERASE ACTIVITY

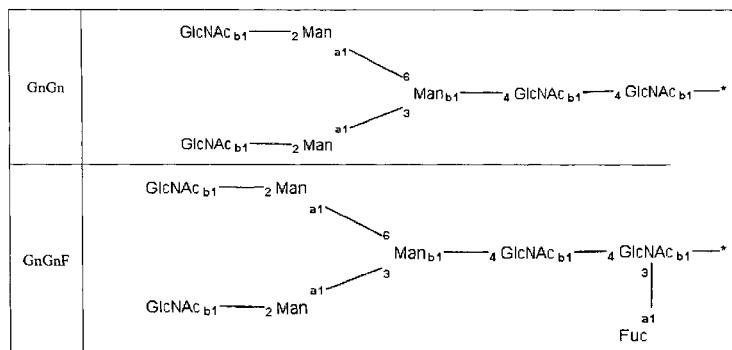


Fig. 10

(57) Abstract: The invention provides methods for reducing the levels of alfa (1,3)-fucosylated N-glycans on glycoproteins produced in plants or plant cells. In addition, the invention provides alfa(1,3)-fucosyltransferase genes from Nicotiana benthamiana, and mutant N. benthamiana plants in which the levels of alfa(1,3)-fucosylated N-glycans are reduced.

WO 2013/050155 A1

Nicotiana benthamiana* plants deficient in fucosyltransferase activity*Field of the invention**

5 The current invention relates to the field of molecular farming, i.e. the use of plants and plant cells as bioreactors to produce peptides and proteins, including biopharmaceuticals, particularly polypeptides and proteins with pharmaceutical interest such as therapeutic proteins, which have an altered N-glycosylation pattern resulting in a lower level of immunogenic protein-bound N-glycans, particularly a lower level of beta(1,2)-xylose residues and core alfa(1,3)-fucose residues on the protein-bound N-glycans, than counterpart unmodified plants. The invention relates to plants of the genus *Nicotiana* 10 which are deficient in alfa(1,3)-fucosyltransferase and beta(1,2)-xylosyltransferase activity, which plants may be applied as host plants or host cells to produce heterologous glycoproteins.

15

Background

Glycosylation is the covalent linkage of an oligosaccharide chain to a protein resulting in a glycoprotein. In many glycoproteins, the oligosaccharide chain is attached to the amide nitrogen of an asparagine (Asn) residue and leads to N-glycosylation. Glycosylation 20 represents the most widespread post-translational modification found in natural and biopharmaceutical proteins. It is estimated that more than half of the human proteins are glycosylated and their function frequently depends on particular glycoforms (glycans), which can affect their plasma half life, tissue targeting or even their biological activity. Similarly, more than one-third of approved biopharmaceuticals are glycoproteins and both 25 their function and efficiency are affected by the presence and composition of their N-glycans.

Leafy crops, such as the tobacco plant *Nicotiana benthamiana*, are an attractive system for the production of therapeutic proteins, as plants are generally considered to have 30 several advantages, including the lack of animal pathogens such as prions and viruses, low cost and the large-scale production of safe and biologically active valuable recombinant proteins, the ease of scale-up, efficient harvesting and storage possibilities. However, N-linked glycans from plants differ from those of mammalian cells. In plants, beta(1,2)-xylose and alfa(1,3)-fucose residues have been shown to be linked to the core 35 Man3GlucNAc2-Asn of glycans, whereas they are not detected on mammalian glycans, where sialic acid residues and terminal beta(1,4)-galactosyl structures occur instead. The

unique N-glycans added by plants could impact both immunogenicity and functional activity of the protein and, consequently, may represent a limitation for plants to be used as a protein production platform. Indeed, the immunogenicity of beta(1,2)-xylose residues and alfa(1,3)-fucose in mammals has been described (Bardor et al., 2003, *Glycobiology* 13: 427).

The enzyme that catalyses the transfer of xylose from UDP-xylose to the core β -linked mannose of protein-bound N-glycans is beta(1,2)-xylosyltransferase ("XylT", EC 2.4.2.38). The beta-1,2-xylosyltransferase is an enzyme unique to plants and some non-vertebrate 10 animal species and does not occur in human beings or in other vertebrates. WO2007107296 describes the identification and cloning of beta-1,2-xylosyltransferases from the genus *Nicotiana* such as *Nicotiana benthamiana*.

The enzyme that catalyses the transfer of fucose from GDP-fucose to the core β -linked N- 15 acetyl glucosamine (GlcNAc) of protein-bound N-glycans is alfa(1,3)-fucosyltransferase ("FucT", EC 2.4.1.214). WO2009056155 describes an alfa(1,3)-fucosyltransferase cDNA sequence from *Nicotiana benthamiana*.

Various strategies have been applied to avoid alfa(1,3)-fucosyl and beta(1,2)-xylosyl 20 structures on glycoproteins produced by plants. WO2008141806 describes knock-outs in two alfa(1,3)-fucosyltransferase genes and in one beta(1,2)-xylosyltransferase gene in *Arabidopsis thaliana*. WO2009056155 describes an RNA interference strategy for the generation of *Nicotiana benthamiana* plants which are deficient in the formation of beta- 25 1,2-xylosyl structures as well as devoid of alfa-1,3-fucosyl structures on heterologous glycoproteins. Yin et al. (2011, *Protein Cell* 2:41) report downregulation of the expression of the endogenous xylosyltransferase and fucosyltransferase in *Nicotiana tabacum* using RNA interference (RNAi) strategy. They found that xylosylated and core fucosylated N-glycans were significantly, but not completely, reduced in the glycoengineered lines. WO2010145846 describes knock-outs of the two beta(1,2)-xylosyltransferase genes in 30 *Nicotiana benthamiana*. The homozygous combination of the four beta(1,2)-xylosyltransferase null alleles proved to be sufficient for the elimination of the complete beta-1,2-xylosyltransferase activity in *Nicotiana benthamiana*.

Knock-out alleles of the alfa(1,3)-fucosyltransferase genes of *Nicotiana benthamiana* have 35 not been described thus far.

The current invention provides methods and means to reduce the levels of core alfa(1,3)-fucose residues on N-glycans on glycoproteins in *Nicotiana benthamiana*, as will become apparent from the following description, examples, drawings and claims provided herein.

Summary of the invention

In a first aspect, the present invention provides a method to produce glycoproteins with reduced levels of core alfa(1,3)-fucose residues in *Nicotiana benthamiana*, said method comprising the steps of: a. providing a plant or plant cell comprising five knock-out alfa(1,3)-fucosyltransferase genes; and b. cultivating said cell and isolating glycoproteins from said cell.

In a second aspect, the present invention provides a method to produce glycoproteins with reduced levels of core alfa(1,3)-fucose residues and reduced levels of beta(1,2)-xylose residues in *Nicotiana benthamiana*, said method comprising the steps of: a. providing a plant cell wherein said plant cell i. comprises five knock-out alpha(1,3)-fucosyltransferase genes; and ii. has a reduced level of beta(1,2)-xylosyltransferase activity; and b. cultivating said cell and isolating glycoproteins from said cell.

In a third aspect, the present invention provides a *Nicotiana benthamiana* plant, or a cell, part, seed or progeny thereof, comprising five knock-out alfa(1,3)-fucosyltransferase genes and further comprising a glycoprotein foreign to said plant or plant cell.

In a fourth aspect, the present invention provides use of the method according to the first or second aspect to obtain glycoproteins with a reduced level of core alfa(1,3)-fucose residues.

In a fifth aspect, the present invention provides use of the method according to the second aspect to obtain glycoproteins with a reduced level of core alfa(1,3)-fucose residues and with a reduced level of beta(1,2)-xylose residues.

In a first embodiment, the invention provides a method to produce glycoproteins with reduced levels of core alfa(1,3)-fucose residues in *Nicotiana benthamiana*, said method comprising the steps of providing a plant or plant cell comprising at least three knock-out alfa(1,3)-fucosyltransferase genes, and cultivating said cell and isolating glycoproteins from said cell. In another embodiment, said method further comprises a reduction of the level of beta(1,2)-xylosyltransferase activity. In yet another embodiment, said reduction of the level of beta(1,2)-xylosyltransferase activity is the result of a knock-out mutation in endogenous beta(1,2)-fucosyltransferase genes.

In another embodiment of the invention, a method is provided to produce glycoproteins with reduced levels of core alfa(1,3)-fucose residues in *Nicotiana benthamiana*, said method comprising the steps of providing a plant or plant cell comprising at least five knock-out alfa(1,3)-fucosyltransferase genes, and cultivating said cell and isolating glycoproteins from said cell. In a further embodiment, said knock-out alfa(1,3)-fucosyltransferase genes occur in a homozygous state in the genome.

In yet another embodiment, the methods according to the invention are further characterized in that the expression of at least five endogenous alfa(1,3)-fucosyltransferase encoding genes is reduced through transcriptional or post-transcriptional silencing. In a further embodiment, the plant or plant cell according to the invention further comprises at least one chimeric gene comprising the following operably linked DNA fragments: a plant-expressible promoter, a DNA region, which when transcribed yields an RNA molecule inhibitory to at least one alfa(1,3)-fucosyltransferase encoding gene, and a DNA region comprising a transcription termination and polyadenylation signal functional in plants. In yet a further embodiment, said DNA region comprises the sequence of SEQ ID No. 19.

In yet another embodiment of the method of the invention, said glycoprotein is a heterologous protein. In yet a further embodiment, said heterologous glycoprotein is expressed from a chimeric gene comprising the following operably linked nucleic acid molecules: a plant-expressible promoter, a DNA region encoding said heterologous

glycoprotein, and a DNA region involved in transcription termination and polyadenylation. In yet another embodiment, the method according to the invention further comprises the step of purification of said heterologous glycoprotein.

5 In another embodiment of the invention, a glycoprotein is provided which is obtained by the methods according to the invention. In yet another embodiment of the invention, a glycoprotein with reduced levels of core alfa(1,3)-fucose residues is provided which is obtained by the methods according to the invention. In yet a further embodiment, a glycoprotein with reduced levels of core alfa(1,3)-fucose and beta(1,2)-xylose residues is
10 provided which is obtained by the methods according to the invention.

Another embodiment of the invention provides a *Nicotiana benthamiana* plant, or a cell, part, seed or progeny thereof, comprising at least three knock-out alfa(1,3)-fucosyltransferase genes. Yet another embodiment of the invention provides a *Nicotiana benthamiana* plant, or a cell, part, seed or progeny thereof, comprising at least five knock-out alfa(1,3)-fucosyltransferase genes. In yet a further embodiment, said plant or plant cell is homozygous for the knock-out alfa(1,3)-fucosyltransferase genes. In another embodiment, said plant or plant cell further comprises at least one knock-out beta(1,2)-xylosyltransferase gene, wherein said knock-out beta(1,2)-xylosyltransferase gene
20 comprises a mutated DNA region consisting of one or more inserted, deleted or substituted nucleotides compared to a corresponding wild-type DNA region in the beta(1,2)-xylosyltransferase gene and wherein said knock-out beta(1,2)-xylosyltransferase gene does not encode a functional beta(1,2)-xylosyltransferase protein.

In yet another embodiment, the said plant or plant cell further comprises at least one
25 chimeric gene comprising the following operably linked DNA fragments: a plant-expressible promoter; a DNA region, which when transcribed yields an RNA molecule inhibitory to at least one alfa(1,3)-fucosyltransferase encoding gene; and a DNA region comprising a transcription termination and polyadenylation signal functional in plants. In a further embodiment, said DNA region comprises the sequence of SEQ ID No. 19.

30 In a further embodiment, said plant or plant cell further comprises a glycoprotein foreign to said plant or plant cell. In yet another embodiment, said glycoprotein is expressed from a chimeric gene comprising the following operably linked nucleic acid molecules: a plant-expressible promoter, a DNA region encoding said heterologous glycoprotein, and a DNA region involved in transcription termination and polyadenylation.

In another embodiment of the invention, knock-out alleles of alfa(1,3)-fucosyltransferase genes are provided.

Yet another embodiment provides the use of the methods according to the invention to obtain glycoproteins with a reduced level of core alfa(1,3)-fucose residues. A further embodiment provides the use of the methods according to the invention to obtain glycoproteins with a reduced level of core alfa(1,3)-fucose residues and with a reduced level of beta(1,2)-xylose residues.

10

Brief description of the Figures

Figure 1: Results from Southern blot hybridization of *N. benthamiana* genomic DNA hybridized with a cDNA probe of FucTA from *N. benthamiana*. lane 1 = lambda marker, lanes 2-7: *N. benthamiana* genomic DNA digested with EcoRV (lane 2), HindIII (lane 3), EcoRI (lane 4), NsI (lane 5), Asel (lane 6), PstI (lane 7); lane 8 = *Nicotiana tabacum* cv. SR1 digested with EcoRV and HindIII.

Figure 2: Example of a Southern blot comparing hybridization patterns of BAC clones (lanes 1-15) with the hybridization pattern of *N. benthamiana* genomic DNA (c).

Figure 3: Determining optimum EMS dose for production of M2 seeds in *N. benthamiana*. Seeds were treated with different concentrations of EMS. A: Germination rate 6 days (black bars) and 12 days (white bars) after sowing. B: Seed survival. C: plant fertility.

Figure 4: Crossing scheme used to obtain homozygous seven-fold knock out plants. x14: mutant allele XYL001 (XylTg14-1 as described in WO2010145846), x19: XYL002 (XylTg19-1 as described in WO2010145846), a: FucT004, b: FucT006, c: FucT007, d: FucT009, e: FucT003. The “x14/x14 x19/x19” refers to the double knock XylT mutant previously described in WO2010145846.

Figure 5: Setting up and testing the complementation assay for functionality of *N. benthamiana* FucT genes and mutant genes. WT: *A. thaliana* wildtype; 3KO: *A. thaliana* triple mutant (T-DNA-insertion knock-out mutant for XylT and FucTA and FucTB); At3KO + NbFucTA: triple mutant transformed with T-DNA carrying *N. benthamiana* FucTA cDNA; At3KO + mut FucTA: triple mutant transformed with T-DNA carrying *N. benthamiana*

FucTA cDNA carrying a point mutation creating a stop codon in exon 1 at position 217 of SEQ ID No. 1.

Figure 6: Comparison of fucosylation levels of protein samples from *N. benthamiana* plants in which different FucT genes have been knocked out. Western blot analysis of leaf protein samples from plants in which different FucT genes have been knocked out. Probed with anti- α 1,3 fucose antibody (1/500 dilution); 3 min. exposure for chemoluminescence. WT: Wild Type plant; M: Protein Marker. Knocked-out versions of the gene are indicated in the table as lower case; wild type version as upper case.

Figure 7: Comparison of relative glycan levels on leaf proteins from *N. benthamiana* plants carrying null mutations for four or five FucT genes. Total protein was isolated from leaves of plants in which different FucT genes were mutated. Glycans were isolated and analyzed by MALDI-TOF. Relative levels are expressed as percentage of the total peak area as determined from the MALDI-TOF spectra. White bars: wild-type; Black bars: 4KO: FucTA (FucT004), -B (FucT006), -C (FucT007), and -D (FucT009) knocked out (average of three lines); Gray bars: 5KO: all FucT genes knocked out (FucT004, -006, -007, -009, and -003) (average of three lines).

Figure 8: Comparison of relative glycan levels on leaf proteins from *N. benthamiana* plants in which all XylT and/or FucT genes have been knocked out (FucT004, -006, -007, -009, and -003, and XylTg14-1 and XylTg19-1 as described in WO2010145846). Total protein was isolated from leaves of plants in which all XylT and/or FucT genes were mutated. Glycans were isolated and analyzed by MALDI-TOF. Relative levels are expressed as percentage of the total peak area as determined from the MALDI-TOF spectra. White bars: wild-type. Dark gray bars: 5KO: all FucT genes knocked out (average of three lines); Black bars: 7KO: all FucT and XylT genes knocked out (average of three lines); Light gray bars: RNAi: plants expressing XylT and FucT RNAi genes (Strasser et al. 2008, Plant Biotech J 6:392).

Figure 9: LC-MS analysis of glycans on an IgG1 expressed in a full knock-out *N. benthamiana* plant using magnICON®.

In the full knock-out *N. benthamiana* plant, all XylT and/or FucT genes have been knocked out (FucT004, -006, -007, -009, and -003, and XylTg14-1 and XylTg19-1 as described in WO2010145846). IgG1 was expressed in these full knock-out plants using magnICON®. IgG1 was isolated from leaf extract nine days after infiltration using protein G. The heavy

chain of the purified antibody was isolated by cutting the corresponding band from a reducing SDS-PAGE. The heavy chain protein in this band was used for glycan analysis by LC-MS as described by Kolarich et al. (2006) *Proteomics* 6:3369.

The upper panel shows a wider mass spectrum to illustrate the presence of non-glycosylated peptides. Peptide 1 (EEQYNSTY) and peptide 2 (TKPREEQYNSTYR) are two variants from the same trypsin digestion. They differ in length caused by steric hindrance of the trypsin by the presence of N-glycans. As a result, all peptide-glycans produce two peaks in this LC-MS spectrum; those for glycopeptide 2 in the lower panel are indicated with an arrow.

10

Figure 10: Structure of N-glycans (See also <http://www.proglycan.com> for a current nomenclature of N-glycans). * indicates the bond between the indicated sugar chain and an asparagine of the peptidic part of the resulting glycoprotein.

15

Figure 11: Comparison of fucosylation levels of protein samples from *N. benthamiana* plants in which 6 or 7 genes have been knocked out. Plants containing the FucT RNAi gene are compared with plants which do not contain this gene. Western blot analysis of leaf protein samples. Probed with anti- α 1,3 fucose antibody (1/500 dilution); 1 hour exposure for chemoluminescence. WT: Wild Type plant; M: Protein Marker. Knocked-out versions of the gene are indicated in the table as lower case; wild type version as upper case.

Figure 12: Quantitative overview of fucosylated respectively xylosylated N-glycans present on the endogenous proteins of WT, 4-, 5-, 7-fold KO, RNAi and 7KO/ FucT RNAi plants. Total protein was isolated from leaves of plants and glycans were isolated and analyzed by MALDI-TOF. Glycan levels are expressed as the sum of all different fucosylated respectively xylosylated N-glycan peaks as determined from the MALDI-TOF spectra. WT: wild-type (average of two lines). RNAi: plants expressing XylT and FucT RNAi genes (Strasser et al. 2008, *Plant Biotech J* 6:392) (average of two lines). 4KO: all FucT genes except FucTE knocked out (average of six lines). 5KO: all FucT genes knocked out (average of three lines). HOM7KO: all FucT and XylT genes knocked out (average of three lines). HET7KO + RNAi: XylT and FucTA genes knocked out and other FucT genes are heterozygously knocked out combined with the FucT RNAi gene (average of four lines). HOM7KO + FucT RNAi: plants homozygous for all seven knock-out genes and containing the FucT RNAi gene (average of four lines).

Detailed description of different embodiments of the invention

The current invention is based on the identification of five genes encoding alfa(1,3)-fucosyltransferase in *Nicotiana benthamiana*, and that knocking-out more of these genes 5 progressively reduces the levels of core alfa(1,3)-fucose residues on proteins produced in said plant.

In a first embodiment, the invention provides a method to produce glycoproteins with reduced levels of core alfa(1,3)-fucose residues in *Nicotiana benthamiana*, said method 10 comprising the steps of providing a plant or plant cell comprising at least three knock-out alfa(1,3)-fucosyltransferase genes, and cultivating said cell and isolating glycoproteins from said cell.

“Reduced levels of core alfa(1,3)-fucose residues” or “a reduced level of core alfa(1,3)-fucose residues” as used herein is meant to be a reduction of levels of core alfa(1,3)-fucose residues with respect to levels as obtained in control plants. The “control plant” is generally a selected target plant which may be any plant, and may advantageously be selected among tobacco and related species like *Nicotiana*, including *N. benthamiana*, *N. tabacum*, and *S. tuberosum*, or other plants such as *M. sativa*. Generally, in the control 20 plant the alfa(1,3)-fucosyltransferase gene is unmodified and it has wild-type levels of alfa(1,3)-fucosyltransferase activity.

“Wild type levels of alfa(1,3)-fucosyltransferase activity” (also written “wildtype” or “wild-type”), as used herein, refers to the typical level of alfa(1,3)-fucosyltransferase activity in a plant as it most commonly occurs in nature. Said control plant has thus not been provided 25 either with a silencing nucleic acid molecule targeted to the endogenous alfa(1,3)-fucosyltransferase encoding gene or with an allele of an alfa(1,3)-fucosyltransferase gene associated with a low level of α-1,3-fucosyltransferase activity, such as a knock-out allele.

Said reduced levels of core alfa(1,3)-fucose residues can consist of a reduction of at least 30 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95%, or at least 97%, or at least 99%. The amount of alfa(1,3)-fucosylated glycan structures associated with a produced glycoprotein can be determined according to the methods described in this invention.

"Core alfa(1,3)-fucose residues", also "alfa(1,3)-fucose residues", or "alpha(1,3)-fucose residues" or "a(1,3)-fucose residues" as used herein refers to a fucose that is alpha 1,3-linked to the core region of N-glycans.

5 "Alfa(1,3)-fucosyltransferase" or "alpha(1,3)-fucosyltransferase", or α (1,3)-fucosyltransferase", or "FucT" is an enzyme that catalyses the transfer of fucose from GDP-fucose to the core β -linked N-acetyl glucosamine (GlcNAc) of protein-bound N-glycans (EC 2.4.1.214).

10 Genes encoding alfa(1,3) fucosyltransferase (FucT) in plants include the following database entries identifying experimentally demonstrated and putative FucT cDNA and gene sequences, parts thereof or homologous sequences: NM 112815 (*Arabidopsis thaliana*), NM103858 (*Arabidopsis thaliana*), AJ 618932 (*Physcomitrella patens*) At1g49710(*Arabidopsis thaliana*), At3g19280 (*Arabidopsis thaliana*). DQ789145 (*Lemna minor*), AY557602 (*Medicago truncatula*) Y18529 (*Vigna radiata*) AP004457 (*Oryza sativa*), AJ891040 encoding protein CAI70373 (*Populus alba* x *Populus tremula*) AY082445 encoding protein AAL99371 (*Medicago sativa*) AJ582182 encoding protein CAE46649 (*Triticum aestivum*) AJ582181 encoding protein CAE46648 (*Hordeum vulgare*), and EF562630.1 (*Nicotiana benthamiana*) (all sequences herein incorporated by reference).

20 A "Knock-out alfa(1,3)-fucosyltransferase gene" or "knock-out alfa(1,3)-fucosyltransferase allele" or "knock-out allele of the alfa(1,3)-fucosyltransferase gene" or "knock-out FucT gene" or "knock-out FucT allele" as used herein refers to a gene or an allele of said gene which does not complement the *Arabidopsis thaliana* triple knock-out as described by

25 Kang et al. (2008, Proc Natl Acad Sci USA 105: 5933), using the methods as described in this invention. Said "knock-out alfa(1,3)-fucosyltransferase gene" is a wild-type alfa(1,3)-fucosyltransferase gene or allele, which comprises one or more mutations in its nucleic acid sequence. Said knock-out gene can, for example, be a gene that is not transcribed into a functional mRNA, or a gene of which the encoded RNA is not spliced correctly, or a

30 gene not encoding a functional protein. Knock-out genes may thus comprise, for example, genes with mutations in promoter regions, with mutations in splice-sites, or with mutations coding sequences resulting in amino acid substitutions or resulting in premature translation termination.

35 A mutation can be a deletion, an insertion or a substitution of one or more nucleotides. Mutations can be either "natural mutations" which are mutations found in nature (e.g.

produced spontaneously without human application of mutagens) or “induced mutations”, which are induced by human intervention, e.g. by mutagenesis and are called non-natural mutant null alleles.

5 “Mutagenesis”, as used herein, refers to the process in which plant cells (e.g., a plurality of *Nicotiana benthamiana* seeds or other parts, such as pollen, etc.) are subjected to a technique which induces mutations in the DNA of the cells, such as contact with a mutagenic agent, such as a chemical substance (such as ethylmethylsulfonate (EMS), ethylnitrosourea (ENU), etc.) or ionizing radiation (neutrons (such as in fast neutron mutagenesis, etc.), alpha rays, gamma rays (such as that supplied by a Cobalt 60 source), X-rays, UV-radiation, etc.), or a combination of two or more of these. Thus, the desired mutagenesis of one or more alfa(1,3)-fucosyltransferase genes may be accomplished by use of chemical means such as by contact of one or more plant tissues with ethylmethylsulfonate (EMS), ethylnitrosourea, etc., by the use of physical means such as 10 x-ray, etc, or by gamma radiation, such as that supplied by a Cobalt 60 source. While mutations created by irradiation are often large deletions or other gross lesions such as translocations or complex rearrangements, mutations created by chemical mutagens are often more discrete lesions such as point mutations. For example, EMS alkylates guanine bases, which results in base mispairing: an alkylated guanine will pair with a thymine base, 15 resulting primarily in G/C to A/T transitions. Following mutagenesis, *Nicotiana benthamiana* plants are regenerated from the treated cells using known techniques. For instance, the resulting *Nicotiana benthamiana* seeds may be planted in accordance with conventional growing procedures and following self-pollination seed is formed on the plants. Additional seed that is formed as a result of such self-pollination in the present or a 20 subsequent generation may be harvested and screened for the presence of mutant alfa(1,3)-fucosyltransferase genes. Several techniques are known to screen for specific mutant genes, e.g., Deleteagene™ (Delete-a-gene; Li et al., 2001, Plant J 27: 235-242) uses polymerase chain reaction (PCR) assays to screen for deletion mutants generated by fast neutron mutagenesis, TILLING (targeted induced local lesions in genomes; 25 McCallum et al., 2000, Nat Biotechnol 18:455-457) identifies EMS-induced point mutations, direct sequencing, etc.

Mutant alfa(1,3)-fucosyltransferase genes may be generated (for example induced by mutagenesis) and/or identified using a range of methods, which are conventional in the art, 30 for example using PCR based methods to amplify part or all of the alfa(1,3)-fucosyltransferase genomic or cDNA and direct sequencing.

Following mutagenesis, plants are grown from the treated seeds, or regenerated from the treated cells using known techniques. For instance, mutagenized seeds may be planted in accordance with conventional growing procedures and following self-pollination seed is 5 formed on the plants. Additional seed which is formed as a result of such self-pollination in the present or a subsequent generation may be harvested and screened for the presence of mutant alfa(1,3)-fucosyltransferase genes, using techniques which are conventional in the art, for example polymerase chain reaction (PCR) based techniques (amplification of the alfa(1,3)-fucosyltransferase genes) or hybridization based techniques, e.g. Southern 10 blot analysis, BAC library screening, and the like, and/or direct sequencing of alfa(1,3)-fucosyltransferase genes. To screen for the presence of point mutations (so called Single Nucleotide Polymorphisms or SNPs) in mutant alfa(1,3)-fucosyltransferase genes, SNP 15 detection methods conventional in the art can be used, for example oligo-ligation-based techniques, single base extension-based techniques, techniques based on differences in restriction sites, such as TILLING, or direct sequencing and comparing the sequences to wild-type sequences using, for example, NovoSNP (Weckx et al, 2005, Genome Res 15: 436).

As described above, mutagenization (spontaneous as well as induced) of a specific wild- 20 type alfa(1,3)-fucosyltransferase gene results in the presence of one or more deleted, inserted, or substituted nucleotides (hereinafter called "mutation region") in the resulting mutant alfa(1,3)-fucosyltransferase gene. The mutant alfa(1,3)-fucosyltransferase gene can thus be characterized by the location and the configuration of the one or more deleted, 25 inserted, or substituted nucleotides in the wild type alfa(1,3)-fucosyltransferase gene.

Once a specific mutant alfa(1,3)-fucosyltransferase gene has been sequenced, primers and probes can be developed which specifically recognize the mutant alfa(1,3)-fucosyltransferase gene in biological samples (such as samples of plants, plant material or products comprising plant material). 30

As used herein, the term "allele(s)" means any of one or more alternative forms of a gene at a particular locus. In a diploid (or amphidiploid) cell of an organism, alleles of a given gene are located at a specific location or locus (loci plural) on a chromosome. One allele is present on each chromosome of the pair of homologous chromosomes.

In another embodiment, a method is provided to produce glycoproteins with reduced levels of core alfa(1,3)-fucose residues and reduced levels of beta(1,2)-xylose residues in *Nicotiana benthamiana*, said method comprising the steps of: providing a plant cell comprising at least three knock-out alpha(1,3)-fucosyltransferase genes; and having a 5 reduced level of beta(1,2)-xylosyltransferase activity; and cultivating said cell and isolating glycoproteins from said cell.

"Reduced levels of beta(1,2)-xylose residues" as used herein is meant to be a reduction of levels of core beta(1,2)-xylose residues with respect to levels as obtained in control plants.

10 The "control" plant is generally a selected target plant which may be any plant and may advantageously be selected among tobacco and related species like *Nicotiana*, including *N. benthamiana*, *N. tabacum*, and *S. tuberosum*, or other plants such as *M. sativa*. Generally, in the control plant the beta(1,2)-xylosyltransferase gene is unmodified and it has wild-type levels of beta(1,2)-xylosyltransferase activity. "Wild type levels of beta(1,2)- 15 xylosyltransferase activity" (also written "wildtype" or "wild-type"), as used herein, refers to the typical level of beta(1,2)-xylosyltransferase activity in a plant as it most commonly occurs in nature. Said control plant has thus not been provided either with a silencing nucleic acid molecule targeted to the endogenous beta(1,2)-xylosyltransferase encoding gene or with an allele of an beta(1,2)-xylosyltransferase gene associated with a low level 20 of beta(1,2)-xylosyltransferase activity, such as a knock-out allele.

Said reduced levels of beta(1,2)-xylosyltransferase residues can consist of a reduction of at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95%, or at least 97%, or at least 99%. The amount of beta(1,2)-xylosylated glycan 25 structures associated with a produced glycoprotein can be determined according to the methods described in this invention.

"Reduced levels of core alfa(1,3)-fucose residues and reduced levels of beta(1,2)-xylose residues" can consist of a reduction of the levels of glycans comprising alfa(1,3)-fucose residues, beta(1,2)-xylose residues, or alfa(1,3)-fucose and beta(1,2)-xylose residues. Said reduction can consist of a reduction of at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95%, or at least 97%, or at least 99%. The amount of alfa(1,3)-fucosylated and beta(1,2)-xylosylated glycan structures associated with a produced glycoprotein can be determined according to the methods described in 35 this invention.

The level of beta(1,2)-xylosyltransferase activity can be reduced by reducing the expression of endogenous beta(1,2)-xylosyltransferase encoding genes.

By "reducing the expression" of a stated integer it is meant that transcription and/or 5 translation and/or post-translational modification of the integer is inhibited or prevented or knocked-down or knocked-out or interrupted such that the specified integer has a reduced biological effect on a cell, tissue, organ or organism in which it would otherwise be expressed.

Those skilled in the art will be aware of whether expression is inhibited, interrupted or 10 reduced, without undue experimentation. For example, the level of expression of a particular gene may be determined by polymerase chain reaction (PCR) following reverse transcription of an mRNA template molecule. Alternatively, the expression level of a genetic sequence may be determined by northern hybridisation analysis or dot-blot hybridisation analysis or in situ hybridisation analysis or similar technique, wherein mRNA 15 is transferred to a membrane support and hybridised to a "probe"molecule which comprises a nucleotide sequence complementary to the nucleotide sequence of the mRNA transcript encoded by the gene-of-interest, labeled with a suitable reporter molecule such as a radioactively-labelled dNTP (eg [α -32P] dCTP or [α -35S] dCTP) or biotinylated dNTP, amongst others. Expression of the gene-of-interest may then 20 be determined by detecting the appearance of a signal produced by the reporter molecule bound to the hybridised probe molecule.

Alternatively, the rate of transcription of a particular gene may be determined by nuclear run-on and/or nuclear run-off experiments, wherein nuclei are isolated from a particular cell or tissue and the rate of incorporation of rNTPs into specific mRNA molecules is 25 determined. Alternatively, the expression of the gene-of-interest may be determined by RNase protection assay, wherein a labelled RNA probe or "riboprobe" which is complementary to the nucleotide sequence of mRNA encoded by said gene- of-interest is annealed to said mRNA for a time and under conditions sufficient for a double-stranded mRNA molecule to form, after which time the sample is subjected to digestion by RNase 30 to remove single-stranded RNA molecules and in particular, to remove excess unhybridised riboprobe. Such approaches are described in detail by Sambrook, J., Fritsch, E.F. and Maniatis, T. Molecular Cloning: a laboratory manual. 2nd ed. N.Y., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, 1989. 1659 p. ISBN 0-87969-309-6.

35 Those skilled in the art will also be aware of various immunological and enzymatic methods for detecting the level of expression of a particular gene at the protein level, for

example using rocket immunoelectrophoresis, ELISA, radioimmunoassay and western blot immunoelectrophoresis techniques, amongst others.

The level of beta(1,2)-xylosyltransferase activity can conveniently be reduced or 5 eliminated by transcriptional or post-transcriptional silencing of the expression of endogenous beta(1,2)-xylosyltransferase encoding genes. To this end a silencing RNA molecule is introduced in the plant cells targeting the endogenous beta(1,2)-xylosyltransferase encoding genes.

10 As used herein, "silencing RNA" or "silencing RNA molecule" refers to any RNA molecule, which upon introduction into a plant cell, reduces the expression of a target gene. Such silencing RNA may e.g. be so-called "antisense RNA", whereby the RNA molecule comprises a sequence of at least 20 consecutive nucleotides having 95% sequence identity to the complement of the sequence of the target nucleic acid, preferably the 15 coding sequence of the target gene. However, antisense RNA may also be directed to regulatory sequences of target genes, including the promoter sequences and transcription termination and polyadenylation signals. Silencing RNA further includes so-called "sense RNA" whereby the RNA molecule comprises a sequence of at least 20 consecutive nucleotides having 95% sequence identity to the sequence of the target nucleic acid.

20 Other silencing RNA may be "unpolyadenylated RNA" comprising at least 20 consecutive nucleotides having 95% sequence identity to the complement of the sequence of the target nucleic acid, such as described in WO01/12824 or US6423885 (both documents herein incorporated by reference). Yet another type of silencing RNA is an RNA molecule as described in WO03/076619 (herein incorporated by reference) comprising at least 20 25 consecutive nucleotides having 95% sequence identity to the sequence of the target nucleic acid or the complement thereof, and further comprising a largely-double stranded region as described in WO03/076619 (including largely double stranded regions comprising a nuclear localization signal from a viroid of the Potato spindle tuber viroid-type or comprising CUG trinucleotide repeats). Silencing RNA may also be double stranded 30 RNA comprising a sense and antisense strand as herein defined, wherein the sense and antisense strand are capable of base-pairing with each other to form a double stranded RNA region (preferably the said at least 20 consecutive nucleotides of the sense and antisense RNA are complementary to each other). The sense and antisense region may also be present within one RNA molecule such that a hairpin RNA (hpRNA) can be formed 35 when the sense and antisense region form a double stranded RNA region. hpRNA is well-known within the art (see e.g WO99/53050, herein incorporated by reference). The hpRNA

may be classified as long hpRNA, having long, sense and antisense regions which can be largely complementary, but need not be entirely complementary (typically larger than about 200 bp, ranging between 200-1000 bp). hpRNA can also be rather small ranging in size from about 30 to about 42 bp, but not much longer than 94 bp (see WO04/073390,

5 herein incorporated by reference). Silencing RNA may also be artificial micro-RNA molecules as described e.g. in WO2005/052170, WO2005/047505 or US 2005/0144667, or ta-siRNAs as described in WO2006/074400 (all documents incorporated herein by reference).

10 A suitable method for silencing the beta(1,2)-xylosyltransferase is the method as described in WO2009056155.

In a particular embodiment of the invention, the reduced level of beta(1,2)-xylosyltransferase is activity is the result of a knock-out mutation in endogenous beta(1,2)-xylosyltransferase genes.

15 "A knock-out mutation in endogenous beta(1,2)-xylosyltransferase genes" as used herein is a mutation that renders the beta(1,2)-xylosyltransferase gene inactive, wherein the inactive gene is characterized in that the gene does not encode a functional alfa(1,3)-fucosyltransferase protein. Said gene, also referred to as "knock-out gene" or "knock-out allele" can either be a gene that is not transcribed into a functional mRNA, or a gene of which the encoded RNA is not spliced correctly, or a gene not encoding a functional protein. Mutations that render the beta(1,2)-xylosyltransferase gene inactive thus comprise, for example, mutations in the promoter regions, mutations in the splice-sites, or mutations 20 in the coding sequences resulting in amino acid substitutions or premature translation 25 termination.

Suitable knock-out mutations in endogenous beta(1,2)-xylosyltransferase genes of *Nicotiana benthamiana* are the knock-outs as described in WO2010145846.

30 The alfa(1,3)-fucosyltransferase and the beta(1,2)-xylosyltransferase activity can be evaluated by determining the level of alfa(1,3)-fucose and the level of beta(1,2)-xylose residues on protein-bound N-glycans from a plant, respectively. The level of alfa(1,3)-fucose and the level of beta(1,2)-xylose residues on protein-bound N-glycans from a plant 35 can be measured e.g. by Western blot analysis using fucose- or xylose specific antibodies, as described e.g. by Faye et al. (Analytical Biochemistry (1993) 209: 104-108) or by mass

spectrometry on glycans isolated from the plant's glycoproteins using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) as described e.g. by Kolarich and Altmann (Anal. Biochem. (2000) 285: 64-75), or using Liquid-Chromatography-ElectroSpray Ionization-Mass Spectrometry (LC/ESI/MS) as described by Pabst et al. (Analytical Chemistry (2007) 79: 5051-5057) or using Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS) as described e.g. by Henriksson et al. (Biochem. J. (2003) 375: 61-73).

In yet another embodiment of the method of the invention, said plant or plant cell comprises at least five knock-out alfa(1,3)-fucosyltransferase genes.

At least five knock-out alfa(1,3)-fucosyltransferase genes can be five knock-out alfa(1,3)-fucosyltransferase genes, or six alfa(1,3)-fucosyltransferase genes, or seven alfa(1,3)-fucosyltransferase genes, or more than seven alfa(1,3)-fucosyltransferase genes.

Suitable knock-out alfa(1,3)-fucosyltransferase genes can be mutated versions of the native alfa(1,3)-fucosyltransferase genes selected from the group consisting of nucleic acids encoding the amino acid sequence of SEQ ID No. 3, SEQ ID No. 6, SEQ ID No. 9, SEQ ID No. 12, SEQ ID No. 14, or of nucleic acids encoding amino acid sequences having at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 97%, or at least 98%, or at least 99% identity to these amino acid sequences.

Suitable knock-out alfa(1,3)-fucosyltransferase genes can further be mutated versions of the native alfa(1,3)-fucosyltransferase genes selected from the group consisting of SEQ ID No. 1, SEQ ID No. 4, SEQ ID No. 7, SEQ ID No. 10, SEQ ID No. 13, or of nucleic acids having at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 97%, or at least 98%, or at least 99% identity to these sequences.

In yet another embodiment of the method of the invention, said knock-out alfa(1,3)-fucosyltransferase genes are mutated versions of the native alfa(1,3)-fucosyltransferase genes selected from the group consisting of:

- a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 3;
- a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 6;

- a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 9;
- a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 12;
- 5 – a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 14.

In a further embodiment, said knock-out alfa(1,3)-fucosyltransferase genes are mutated versions of the native alfa(1,3)-fucosyltransferase genes selected from the group consisting of:

- a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 1;
- a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 4;
- a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 7;
- a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 10;
- 15 – a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 13.

Suitable knock-out alfa(1,3)-fucosyltransferase genes for the invention are genes with one or more mutations selected from the group of mutations as depicted in Table 2 and Table 4.

20 In yet a further embodiment, said knock-out alfa(1,3)-fucosyltransferase gene is selected from the group consisting of:

- FucTA gene containing a G to A substitution at position 355 of SEQ ID NO: 1;
- FucTB gene containing a G to A substitution at position 3054 of SEQ ID NO: 4;
- 25 – FucTC gene containing a G to A substitution at position 2807 of SEQ ID NO: 7;
- FucTD gene containing a G to A substitution at position 224 of SEQ ID NO: 10;
- FucTE gene containing a G to A substitution at position 910 of SEQ ID NO: 13.

30 A “mutated version” of a gene as used herein is a version of a gene which contains one or more mutations. A “native alfa(1,3)-fucosyltransferase”, also “wild-type alfa(1,3)-fucosyltransferase” as used herein refers to a typical form of an alfa(1,3)-fucosyltransferase gene as it most commonly occurs in nature.

35 In another specific embodiment, said knock-out alfa(1,3)-fucosyltransferase genes occur in a homozygous state in the genome.

In another embodiment according to the invention, the method according to the invention is further characterized in that the expression of at least five endogenous alfa(1,3)-fucosyltransferase encoding genes is reduced through transcriptional or post-transcriptional silencing. Transcriptional and post-transcriptional silencing can suitably be 5 achieved by introducing a silencing RNA molecule in the plant cells targeting the endogenous alfa(1,3)-fucosyltransferase encoding genes.

For silencing at least five endogenous alfa(1,3)-fucosyltransferase encoding genes, it is suitable to introduce more than one chimeric gene into the plant cells, characterized in that 10 each of the chimeric genes encodes a silencing RNA molecule, each of which is suitable to silence at least one of the alfa(1,3)-fucosyltransferase genes. Alternatively, one chimeric gene can be introduced in the plant cells which encodes a silencing RNA molecule capable of silencing at least five alfa(1,3)-fucosyltransferase genes. Said one chimeric gene can comprise several regions of 21 consecutive nucleotides, each of which 15 having at least 85% sequence identity to a region of 21 nucleotides occurring in at least one of the alfa(1,3)-fucosyltransferase genes. Alternatively, said one chimeric gene can comprise a region of 21 consecutive nucleotides characterized that at least five alfa(1,3)-fucosyltransferase genes comprise a sequence of 21 nucleotides having 85% identity to said region of 21 consecutive nucleotides.

20

A suitable methods for silencing the alfa(1,3)-fucosyltransferase genes of *Nicotiana benthamiana* are the methods as described in WO2009056155.

In yet a further embodiment, the plant cell according to the invention comprises at least 25 one chimeric gene comprising the following operably linked DNA fragments: a plant-expressible promoter, a DNA region, which when transcribed yields an RNA molecule inhibitory to at least one alfa(1,3)-fucosyltransferase encoding gene, a DNA region comprising a transcription termination and polyadenylation signal functional in plants. In a further embodiment, said DNA region yields an RNA molecule capable of forming a 30 double-stranded RNA region at least between an RNA region transcribed from a first sense DNA region comprising a nucleotide sequence of at least 18 out of 21 nucleotides selected from SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 11, SEQ ID NO: 13, or the complement thereof, and an RNA region transcribed from a second antisense DNA region comprising a nucleotide sequence of at least 18 consecutive nucleotides 35 which have at least 95% sequence identity to the complement of said first sense DNA region.

"An RNA molecule inhibitory to at least one alfa(1,3)-fucosyltransferase encoding gene" as used herein refers to a silencing RNA molecule which reduces the expression of at least one alfa(1,3)-fucosyltransferase encoding gene.

5

As used herein, the term "plant-expressible promoter" means a DNA sequence that is capable of controlling (initiating) transcription in a plant cell. This includes any promoter of plant origin, but also any promoter of non-plant origin which is capable of directing transcription in a plant cell, i.e., certain promoters of viral or bacterial origin such as the 10 CaMV35S (Harpster *et al.* (1988) *Mol Gen Genet.* 212(1):182-90, the subterranean clover virus promoter No 4 or No 7 (WO9606932), or T-DNA gene promoters but also tissue-specific or organ-specific promoters including but not limited to seed-specific promoters (e.g., WO89/03887), organ-primordia specific promoters (An *et al.* (1996) *Plant Cell* 8(1):15-30), stem-specific promoters (Keller *et al.*, (1988) *EMBO J.* 7(12): 3625-3633), leaf 15 specific promoters (Hudspeth *et al.* (1989) *Plant Mol Biol.* 12: 579-589), mesophyl-specific promoters (such as the light-inducible Rubisco promoters), root-specific promoters (Keller *et al.* (1989) *Genes Dev.* 3: 1639-1646), tuber-specific promoters (Keil *et al.* (1989) *EMBO J.* 8(5): 1323-1330), vascular tissue specific promoters (Peleman *et al.* (1989) *Gene* 84: 359-369), stamen-selective promoters (WO 89/10396, WO 92/13956), dehiscence zone 20 specific promoters (WO 97/13865) and the like.

A "transcription termination and polyadenylation region" as used herein is a sequence that drives the cleavage of the nascent RNA, whereafter a poly(A) tail is added at the resulting RNA 3' end, functional in plants. Transcription termination and polyadenylation signals 25 functional in plants include, but are not limited to, 3'nos, 3'35S, 3'his and 3'g7.

In yet a further embodiment, the plant cell according to the invention comprises a chimeric gene comprising a plant-expressible promoter, a DNA region, which when transcribed yields an RNA molecule inhibitory to at least one alfa(1,3)-fucosyltransferase encoding 30 gene, and a DNA region comprising a transcription termination and polyadenylation signal functional in plants, characterized in that said DNA region comprises the sequence of SEQ ID No. 19.

In another embodiment of the invention, the glycoproteins produced according to the 35 methods of the invention are heterologous glycoproteins. In yet another embodiment, said heterologous proteins are expressed from a chimeric gene comprising the following

operably linked nucleic acid molecules: a plant-expressible promoter, a DNA region encoding said heterologous glycoprotein, a DNA region involved in transcription termination and polyadenylation. In yet another embodiment, the methods according to the invention further comprise the step of purification of said heterologous proteins.

5

The word "expression" as used herein shall be taken in its widest context to refer to the transcription of a particular genetic sequence to produce sense or antisense mRNA or the translation of a sense mRNA molecule to produce a peptide, polypeptide, oligopeptide, protein or enzyme molecule. In the case of expression comprising the production of a sense mRNA transcript, the word "expression" may also be construed to indicate the combination of transcription and translation processes, with or without subsequent post-translational events which modify the biological activity, cellular or sub-cellular localization, turnover or steady-state level of the peptide, polypeptide, oligopeptide, protein or enzyme molecule.

10

Heterologous glycoproteins, i.e. glycoproteins which are not normally expressed in such plant cells in nature, may include mammalian or human proteins, which can be used as therapeutics such as e.g. monoclonal antibodies. Conveniently, the foreign glycoproteins may be expressed from chimeric genes comprising a plant-expressible promoter and the coding region of the glycoprotein of interest, whereby the chimeric gene is stably integrated in the genome of the plant cell. Methods to express foreign proteins in plant cells are well known in the art. Alternatively, the foreign glycoproteins may also be expressed in a transient manner, e.g. using the viral vectors and methods described in WO02/088369, WO2006/079546 and WO2006/012906 or using the viral vectors described in WO89/08145, WO93/03161 and WO96/40867 or WO96/12028.

By "heterologous protein" it is understood a protein (i.e. a polypeptide) that is not expressed by the plant or plant cells in nature. This is in contrast with a homologous protein which is a protein naturally expressed by a plant or plant cell. Heterologous and homologous polypeptides that undergo post-translational N-glycosylation are referred to herein as heterologous or homologous glycoproteins.

Examples of heterologous proteins of interest that can be advantageously produced by the methods of this invention include, without limitation, cytokines, cytokine receptors, growth factors (e.g. EGF, HER-2, FGF-alpha, FGF-beta, TGF-alpha, TGF-beta, PDGF, IGF-I, IGF-2, NGF), growth factor receptors. Other examples include growth hormones (e.g. human growth hormone, bovine growth hormone); insulin (e.g., insulin A chain and insulin

B chain), pro-insulin, erythropoietin (EPO), colony stimulating factors (e.g. G-CSF, GM-CSF, M-CSF); interleukins; vascular endothelial growth factor (VEGF) and its receptor (VEGF-R), interferons, tumor necrosis factor and its receptors, thrombopoietin (TPO), thrombin, brain natriuretic peptide (BNP); clotting factors (e.g. Factor VIII, Factor IX, von 5 Willebrands factor and the like), anti-clotting factors; tissue plasminogen activator (TPA), urokinase, follicle stimulating hormone (FSH), luteinizing hormone (LH), calcitonin, CD proteins (e. g., CD2, CD3, CD4, CD5, CD7, CD8, CD1 Ia, CD1 Ib, CD18, CD19, CD20, CD25, CD33, CD44, CD45, CD71, etc.), CTLA proteins (e.g. CTLA4); T-cell and B-cell receptor proteins, bone morphogenic proteins (BNPs, e.g. BMP-1, BMP-2, BMP-3, etc.), 10 neurotrophic factors, e.g. bone derived neurotrophic factor (BDNF), neurotrophins, e.g. rennin, rheumatoid factor, RANTES, albumin, relaxin, macrophage inhibitory protein (e.g. MIP-1, MIP-2), viral proteins or antigens, surface membrane proteins, ion channel proteins, enzymes, regulatory proteins, immunomodulatory proteins, (e.g. HLA, MHC, the B7 family), 15 homing receptors, transport proteins, superoxide dismutase (SOD), G-protein coupled receptor proteins (GPCRs), neuromodulatory proteins, Alzheimer's Disease associated proteins and peptides. Fusion proteins and polypeptides, chimeric proteins and polypeptides, as well as fragments or portions, or mutants, variants, or analogs of any of the aforementioned proteins and polypeptides are also included among the suitable 20 proteins, polypeptides and peptides that can be produced by the methods of the present invention. The protein of interest can be a glycoprotein. One class of glycoproteins are viral glycoproteins, in particular subunits, than can be used to produce for example a vaccine. Some examples of viral proteins comprise proteins from rhinovirus, poliomyelitis 25 virus, herpes virus, bovine herpes virus, influenza virus, newcastle disease virus, respiratory syncitio virus, measles virus, retrovirus, such as human immunodeficiency virus or a parvovirus or a papovavirus, rotavirus or a coronavirus, such as transmissible gastroenteritisvirus or a flavivirus, such as tick-borne encephalitis virus or yellow fever virus, a togavirus, such as rubella virus or eastern-, western-, or venezuelean equine 30 encephalomyelitis virus, a hepatitis causing virus, such as hepatitis A or hepatitis B virus, a pestivirus, such as hog cholera virus or a rhabdovirus, such as rabies virus. The heterologous glycoprotein can be an antibody or a fragment thereof. The term 35 "antibody" refers to recombinant antibodies (for example of the classes IgD, IgG, IgA, IgM, IgE) and recombinant antibodies such as single-chain antibodies, chimeric and humanized antibodies and multi-specific antibodies. The term "antibody" also refers to fragments and derivatives of all of the foregoing, and may further comprise any modified or derivatised variants thereof that retain the ability to specifically bind an epitope. Antibody derivatives may comprise a protein or chemical moiety conjugated to an antibody. A monoclonal

antibody is capable of selectively binding to a target antigen or epitope. Antibodies include, monoclonal antibodies (mAbs), humanized or chimeric antibodies, camelized antibodies, camelid antibodies (nanobodies[®]), single chain antibodies (scFvs), Fab fragments, F(ab')₂ fragments, disulfide-linked Fvs (sdFv) fragments, anti-idiotypic (anti-Id) antibodies, intra-bodies, synthetic antibodies, and epitope-binding fragments of any of the above. The term "antibody" also refers to fusion protein that includes a region equivalent to the Fc region of an immunoglobulin. Also envisaged is the production in the plant or plant cells of the invention of so called dual-specificity antibodies (Bostrom J *et al* (2009) *Science* 323, 1610-1614).

Antibodies within the scope of the present invention include those comprising the amino acid sequences of the following antibodies: anti-HER2 antibodies including antibodies comprising the heavy and light chain variable regions (see US5,725,856) or Trastuzumab such as HERCEPTIN[™]; anti-CD20 antibodies such as chimeric anti-CD20 as in US5,736,137, a chimeric or humanized variant of the 2H7 antibody as in US5,721,108; anti-VEGF antibodies including humanized and/or affinity matured anti-VEGF antibodies such as the humanized anti- VEGF antibody huA4.6.1 AVASTIN[™] (WO 96/30046 and WO 98/45331); anti-EGFR (chimerized or humanized antibody as in WO 96/40210); anti-CD3 antibodies such as OKT3 (US4,515,893); anti-CD25 or anti-tac antibodies such as CHI-621 (SIMULECT) and (ZENAPAX) (US5,693,762). The present invention provides a method for the production of an antibody which comprises culturing a transformed plant cell or growing a transformed plant of the present invention. The produced antibody may be purified and formulated in accordance with standard procedures.

The DNA region encoding the heterologous glycoproteins may be codon optimized to increase the level of expression within the plant. By codon optimization it is meant the selection of appropriate DNA nucleotides for the synthesis of oligonucleotide building blocks, and their subsequent enzymatic assembly, of a structural gene or fragment thereof in order to approach codon usage in plants.

"Purification" as used herein is to isolate the heterologous protein from the mixture of total plant proteins. The level of purification can be to at least 50% purity, or to at least 60% purity, or to at least 70% purity, or to at least 80% purity, or to at least 85% purity, or to at least 90% purity, or to at least 95% purity, or to at least 98% purity, or to at least 99% purity. Methods for protein purification are well-known in the art and may consist of, but are not limited to, differential precipitation, ultracentrifugation, chromatography, or affinity purification.

Another embodiment of the invention provides a glycoprotein obtained by the methods according to the invention. In yet another embodiment, said glycoprotein has reduced levels of alfa(1,3)-fucose residues. In yet a further embodiment, said glycoprotein has 5 reduced levels of alfa(1,3)-fucose residues and reduced levels of beta(1,2)-xylose residues.

Another embodiment according to the invention provides a *Nicotiana benthamiana* plant, or a cell, part, seed or progeny thereof, comprising at least three knock-out alfa(1,3)-fucosyltransferase genes. In yet another embodiment, said plant comprises at least five 10 knock-out alfa(1,3)-fucosyltransferase genes.

At least five knock-out alfa(1,3)-fucosyltransferase genes can be five knock-out alfa(1,3)-fucosyltransferase genes, or six knock-out alfa(1,3)-fucosyltransferase genes, or seven 15 knock-out alfa(1,3)-fucosyltransferase genes, or at least seven knock-out alfa(1,3)-fucosyltransferase genes.

Suitable knock-out alfa(1,3)-fucosyltransferase genes can be mutated versions of the native alfa(1,3)-fucosyltransferase genes selected from the group consisting of nucleic 20 acids encoding the amino acid sequence of SEQ ID No. 3, SEQ ID No. 6, SEQ ID No. 9, SEQ ID No. 12, SEQ ID No. 14, or of nucleic acids encoding amino acid sequences having at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 97%, or at least 98%, or at least 99% identity to these amino acid sequences.

25 Suitable knock-out alfa(1,3)-fucosyltransferase genes can further be mutated versions of the native alfa(1,3)-fucosyltransferase genes selected from the group consisting of SEQ ID No. 1, SEQ ID No. 4, SEQ ID No. 7, SEQ ID No. 10, SEQ ID No. 13, or of nucleic acids having at least 80%, or at least 85%, or at least 90%, or at least 95%, or at least 97%, or at least 98%, or at least 99% identity to these sequences.

30 Another embodiment provides plants according to invention, wherein one or more of the knock-out alfa(1,3)-fucosyltransferase genes is a mutated version of the native alfa(1,3)-fucosyltransferase gene selected from the group consisting of:

35 – a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 3;

- a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 6;
- a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 9;
- 5 – a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 12;
- a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 14.

10 Yet another embodiment provides plants according to the invention, wherein one or more of the knock-out alfa(1,3)-fucosyltransferase genes is a mutated version of the native alfa(1,3)-fucosyltransferase gene selected from the group consisting of:

- a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 1;
- a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 4;
- 15 – a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 7;
- a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 10;
- a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 13.

20 Yet another embodiment provides plants according to the invention wherein the knock-out alfa(1,3)-fucosyltransferase gene is selected from the group consisting of:

- FucTA gene containing a G to A substitution at position 355 of SEQ ID NO: 1;
- FucTB gene containing a G to A substitution at position 3054 of SEQ ID NO: 4;
- FucTC gene containing a G to A substitution at position 2807 of SEQ ID NO: 7;
- FucTD gene containing a G to A substitution at position 224 of SEQ ID NO: 10;
- 25 – FucTE gene containing a G to A substitution at position 910 of SEQ ID NO: 13.

In a further embodiment, the plant or plant cell according to the invention is homozygous for the knock-out alfa(1,3)-fucosyltransferase genes.

30 In yet another embodiment, the plant or plant cell according to the invention further comprises at least one knock-out beta(1,2)-xylosyltransferase gene, wherein said knock-out beta(1,2)-xylosyltransferase gene comprises a mutated DNA region consisting of one or more inserted, deleted or substituted nucleotides compared to a corresponding wild-type DNA region in the beta(1,2)-xylosyltransferase gene and wherein said knock-out beta(1,2)-xylosyltransferase gene does not encode a functional beta(1,2)-xylosyltransferase protein.

In yet another embodiment, the said plant or plant cell further comprises at least one chimeric gene comprising the following operably linked DNA fragments: a plant-expressible promoter; a DNA region, which when transcribed yields an RNA molecule inhibitory to at least one alfa(1,3)-fucosyltransferase encoding gene; and a DNA region comprising a transcription termination and polyadenylation signal functional in plants.

5 Suitably, said DNA region yields an RNA molecule capable of forming a double-stranded RNA region at least between an RNA region transcribed from a first sense DNA region comprising a nucleotide sequence of at least 18 out of 21 nucleotides selected from SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 11, SEQ ID NO: 13, or the complement thereof, and an RNA region transcribed from a second antisense DNA region comprising a nucleotide sequence of at least 18 consecutive nucleotides which have at 10 least 95% sequence identity to the complement of said first sense DNA region.

In a further embodiment, said DNA region comprises the sequence of SEQ ID No. 19.

15 In a further embodiment, the plant or plant cell according to the invention further comprises a glycoprotein foreign to said plant or plant cell. In yet another embodiment, said glycoprotein is expressed from a chimeric gene comprising the following operably linked nucleic acid molecules: a plant-expressible promoter, a DNA region encoding said heterologous glycoprotein, a DNA region involved in transcription termination and 20 polyadenylation.

Another embodiment according to the invention provides a knock-out allele of an alfa(1,3)-fucosyltransferase gene selected from the group consisting of:

- FucTA gene containing a G to A substitution at position 355 of SEQ ID NO: 1;
- FucTB gene containing a G to A substitution at position 3054 of SEQ ID NO: 4;
- FucTC gene containing a G to A substitution at position 2807 of SEQ ID NO: 7;
- FucTD gene containing a G to A substitution at position 224 of SEQ ID NO: 10;
- FucTE gene containing a G to A substitution at position 910 of SEQ ID NO: 13.

30 Yet another embodiment provides the use of the methods according to the invention to obtain glycoproteins with a reduced level of core alfa(1,3)-fucose residues. A further embodiment provides the use of the methods according to the invention to obtain glycoproteins with a reduced level of core alfa(1,3)-fucose residues and with a reduced level of beta(1,2)-xylose residues.

Plants according to the invention can be further crossed by traditional breeding techniques and can be used to produce seeds to obtain progeny plants comprising glycoproteins with reduced levels of alfa(1,3)-fucosylation and/or reduced levels of beta(1,2)-xylosylation.

5 As used herein "comprising" is to be interpreted as specifying the presence of the stated features, integers, steps or components as referred to, but does not preclude the presence or addition of one or more features, integers, steps or components, or groups thereof. Thus, e.g., a nucleic acid or protein comprising a sequence of nucleotides or amino acids, may comprise more nucleotides or amino acids than the actually cited ones, i.e., be
10 embedded in a larger nucleic acid or protein. A chimeric gene comprising a DNA region which is functionally or structurally defined, may comprise additional DNA regions etc.

Unless stated otherwise in the Examples, all recombinant techniques are carried out according to standard protocols as described in "Sambrook J and Russell DW (eds.) (2001) Molecular Cloning: A Laboratory Manual, 3rd Edition, Cold Spring Harbor Laboratory Press, New York" and in "Ausubel FA, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K (eds.) (2006) Current Protocols in Molecular Biology. John Wiley & Sons, New York". Standard materials and references are described in "Croy RDD (ed.) (1993) Plant Molecular Biology LabFax, BIOS Scientific Publishers Ltd., Oxford and
20 Blackwell Scientific Publications, Oxford" and in "Brown TA, (1998) Molecular Biology LabFax, 2nd Edition, Academic Press, San Diego". Standard materials and methods for polymerase chain reactions (PCR) can be found in "McPherson MJ and Møller SG (2000) PCR (The Basics), BIOS Scientific Publishers Ltd., Oxford" and in "PCR Applications Manual, 3rd Edition (2006), Roche Diagnostics GmbH, Mannheim or www.roche-applied-science.com".
25

All patents, patent applications, and publications or public disclosures (including publications on internet) referred to or cited herein are incorporated by reference in their entirety.

30 Throughout the description and Examples, reference is made to the following sequences:

SEQ ID No 1: FucTA genomic DNA
SEQ ID No 2: FucTA coding sequence
35 SEQ ID No 3: FucTA protein
SEQ ID No 4: FucTB genomic DNA

SEQ ID No 5: FucTB coding sequence
 SEQ ID No 6: FucTB protein
 SEQ ID No 7: FucTC genomic DNA
 SEQ ID No 8: FucTC coding sequence
 5 SEQ ID No 9: FucTC protein
 SEQ ID No 10: FucTD genomic DNA
 SEQ ID No 11: FucTD coding sequence
 SEQ ID No 12: FucTD protein
 SEQ ID No 13: FucTE genomic DNA
 10 SEQ ID No 14: FucTE protein
 SEQ ID No 15: Primer VH031
 SEQ ID No 16: Primer VH032
 SEQ ID No 17: Primer VH033
 SEQ ID No 18: Primer VH034
 15 SEQ ID No 19: Sequence encoding FucT silencing RNA
 SEQ ID No 20: Sequence encoding FucT silencing RNA: part of the Nicotiana benthamiana FucTB coding sequence from 1183 to 1265:
 gaaactgtctatcatgtatagtacgtgaaagagggagggttgagatggattccatttcttaagg
 tcgagtgattgtctt
 20 SEQ ID No 21: Sequence encoding FucT silencing RNA:

FH	Key	Location/Qualifiers
FH		
FT	intron	84..307 /vntifkey="15" /label=intron\2
25	FT	/note="Arabidopsis XylT gene intron 2"
FT	misc_feature	1..83 /vntifkey="21" /label=Nb\FuctB
30	FT	/note="Part of N. benthamiana FucTB coding sequence from 1183 - 1265"
FT	misc_feature	complement(308..390) /vntifkey="21" /label=Nb\FuctB
35	FT	/note="Inverse complement of part of N. benthamiana FucTB coding sequence from 1183 - 1265 "
SQ	Sequence 390 BP; 100 A; 71 C; 79 G; 140 t;	
40		gaaactgtct atcatgtata tgtacgtgaa agagggagggt ttgagatgga ttccatttc 60 ttaaggtcga gtgatttgc tttgatccac tgcacggat gtcctcttc ttgttcatgg 120 tcatgatcct tatatgagca gggaaagtcc agtttagact tgttagttgt tactcttcgt 180 tataggattt ggatttcttg cgtgtttatg gtttagttt ccctccttg atgaataaaa 240 ttgaatcttg tatgagttc atatccatgt tgtgaatctt tttgcagacg cagctaggt 300 ccgatcaaa gacaaatcac tcgacctaa gaaaatggaa tccatctcaa acctccctct 360 ttcacgtaca tatacatgtat agacagttc
45		

Examples

1. Isolating the FucT genes from *Nicotiana benthamiana*.

5 To produce a FucT KO plant, it was needed to identify and isolate all members of the FucT gene family. Therefore, we first determined the gene family size by Southern blot analysis. Genomic DNA from *N. benthamiana* was digested with EcoRI, EcoRV, PstI, HindIII, NsI, or AsI, run on 1% agarose gel and blotted on nylon membrane. The blots were hybridized with a cDNA clone of FucTA from *N. benthamiana* (Strasser et al. (2008)
10 Plant Biotech J. 6:392). After exposure, the autoradiogram showed up to seven hybridizing bands per lane indicating a family of maximum seven genes (Figure 1).

To isolate all members of this FucT gene family, 2 BAC libraries were constructed by Amplicon Express. Each covered the genome 2.5 fold using MboI and HindIII as cloning enzymes, respectively. The libraries were screened with the FucTA cDNA probe. In total, 15 32 BAC clones were found. These clones were classified into different families based on Southern blot analyses comparing the hybridization pattern of each individual clone with the hybridization pattern of *N. benthamiana* genomic DNA (Figure 2). Of the 32 clones, 8 did not hybridize. The remaining clones could be classified into 8 families. Five of these 20 families displayed hybridization patterns that overlapped with bands in the *N. benthamiana* genomic Southern blot hybridization.

One representative of each BAC clone family was sequenced using 454 sequencing technology and analyzed for the presence of a FucT gene by BLAST homology search using the FucTA cDNA sequence. Of the 8 families tested in this way, five contained FucT 25 sequences that were all full length with respect to the FucTA coding sequence. These five genes were named FucTA, -B, -C, -D, and -E. The sequences of these five FucT genes are represented in SEQ ID No 1, SEQ ID No 4, SEQ ID No 7, SEQ ID No 10, and SEQ ID No 13, respectively.

30 EST2Genome (Mott (1997) Comput. Applic. 13:477) analysis using these contigs and the published FucTA cDNA sequence, showed that all genes except FucTE have the same number of introns as compared to the *A. thaliana* FucT-A and -B genes and that the intron-exon boundaries are also preserved between these two species. Surprisingly, no 35 introns were found in the *N. benthamiana* FucTE gene. The FucT-D gene was found to contain an unusually large intron 1 of 7833 bp.

Analysis of the upstream sequences for promoter elements using TSSP (Shahmuradov et al. (2005) *Nucl. Acids Res.* 33:1069) showed that all genes except FucTE had TATA regions predicted with high confidence levels. In addition, analysis of the amino acid sequence of FucTE gene showed that it contains a Tyrosine to Aspartic Acid substitution 5 at position 288 (Y288D). This position is part of the highly conserved donor substrate binding site ("MOTIFII") and mutation of this Tyrosine residue has been shown to completely inactivate the enzyme activity of human FucT VI (Jost et al. 2005 *Glycobiology* 15:165). By contrast, all other *N. benthamiana* FucT genes contain the conserved Tyrosine residue at this position. Together, this indicates that FucTE is likely an inactive 10 gene coding for an inactive FucT enzyme.

Finally, to determine the homology between the genes, we aligned the derived coding sequences of the genes on the nucleotide level using the Clonemanager program, resulting in a FucT gene family divided in two groups: FucTA and FucTB form one group, 15 FucTA has 100% identity to the previously published *N. benthamiana* FucTA cDNA (Strasser et al. (2008) *Plant Biotech J.* 6:392). The coding regions of FucTA and -B have 96% identity. The main striking difference between the two genes is that FucTB has a shorter coding sequence due to a premature stop codon. FucTC, FucTD and FucTE form the second group. All three genes have 96% identity in the coding regions. Genes from 20 the two groups share 80% relative identity.

2. EMS mutagenesis

We used EMS mutagenesis to come to a selection of null mutations for each FucT gene. Ethyl MethaneSulfonate (EMS) causes G -> A and C -> T point mutations by alkylating 25 Guanine (G). These point mutations can knock out genes if they generate null mutations by inducing stop codons or splice site mutations. Using this method we can screen for knock outs for all FucT genes. A total knock out will be achieved after crossing these mutants.

30 Determination of the optimal EMS dosage for M2 seed production.

Different EMS dosages and the effect on seed set, germination and plant phenotype were tested. This was needed to find out the optimal EMS dose to find EMS induced FucT 35 knock outs in *N. benthamiana*.

The optimum dose for EMS mutagenesis was determined by treating seeds with 0, 50, 75, 35 100, 150, and 200 mM EMS. Briefly, seeds were imbibed for 2 hours at room temperature, treated with EMS for 4 hours at room temperature and washed 5 times for 15 minutes at

room temperature. Seeds were dried overnight and sown immediately. The effects on germination, seedling lethality and plant fertility were recorded. As *N. benthamiana* most probably is an amphidiploid species from a combination of *N. debneyi* and *N. suaveolens* (Goodspeed, T. H. 1954 Pages 485-487 in: The Genus *Nicotiana*: Origins, Relationships and Evolution of its Species in the Light of Their Distribution, Morphology and Cytogenetics. Chronica Botanica, Waltham, MA, U.S.A.) they initially were also included in the tests. However, as they showed to be less sensitive to EMS as compared to *N. benthamiana* (data not shown) they were not used for the fertility tests. Although EMS treatment caused a delay in germination (Figure 3A), no lethality was detected up to 75 mM EMS. At higher EMS doses, lethality rose quickly and at 150 mM no seeds survived the treatment (Figure 3B). Fertility already was affected at 50 mM. By treating the seeds with 75 mM approximately 60 % of the M1 plants were infertile (Figure 3C). Based on these results, the optimum EMS dose was set at 75 mM.

15 **Production of EMS-mutagenized plants and DNA samples of M2 populations to screen for FucT mutants.**

To have a good chance finding our mutants, we needed to screen about 10000 plants. To obtain more than 10000 M2 plants by using the EMS dosage of 75mM, we needed to grow at least 20000 M1 plants. At the determined density and generation time, 7000 M1 plants 20 could be grown in 4 months. Therefore, at least 3 M1 populations needed to be grown.

M2 seed was sown and a DNA extraction on leaf samples of the M2 *N. benthamiana* plants was done. The DNA extraction was done in-house, extracting 4 leaf discs per plant following the in-house Edwards and Kingfisher method. DNA plates coming from 1 EMS treatment were defined as EMS batch.

25 In total we made 6 EMS batches. Two batches failed: batch 2 due to a bad mutation frequency, batch 4 due to the plant death unrelated to EMS mutagenesis. Together, four batches were left, comprising 99 plates of 95 DNA samples each extracted from M2 *N. benthamiana* leaf samples. On position H12 of each plate we included an internal control DNA sample of *N. benthamiana* accession NBNPGS2 from the USDA National 30 Germplasm System (accession code PI555684). This accession contained several known SNPs compared to the *benthamiana* accession used for EMS mutagenesis (i.e. Cultivar "BENTHAMIANA" supplied by Icon Genetics GmbH). The positions of these SNPs are summarized in Table 1. Plates were stored at -70°C.

35 **Table 1:** SNP's in the sequences of the FucT genes between Bayer's "BENTHAMIANA" and NBNPGS2 accessions (USDA National Germplasm System accession PI555684).

	exon 3(target 1) position	SNP	exon 1 (target2) position	SNP
FucTA	3080	T/C	32	A/T
			63	C/G
			76	A/G
FucTB			218	T/A
			296	A/C
			307	G/T
FucTC	2809	C/T		
FucTD	9653	G/A	34	A/C
	9656	C/A	56	T/C
	9710	G/A	107	T/C
	9833	T/C	192	T/C
FucTE	582	T/A	353	G/A
	708	T/C	427	A/T
	723	A/G		
	725	C/A		
	783	C/T		
	912	G/T		

Detecting EMS-induced point mutations by direct sequencing and Single Nucleotide Polymorphism (SNP) detection.

5 For high throughput detection of the EMS-induced point mutations by direct sequence analysis, we used the method described by Smits et al. (2006), Pharmacogenet. Genomics 16:159. The method was adapted for us by Agowa GmbH (currently part of LGC laboratory services). Briefly, specific gene fragments were amplified by PCR from DNA of leaf tissue of individual plants using gene specific primers. Each primer carried an additional sequence at its 5' end that would allow the sequence of both strands of the 10 resulting PCR fragment to be analyzed.

The chromatograms of sequences were analyzed for Single Nucleotide Polymorphisms (SNPs) by comparing them to the FucTA, FucTB, FucTC, FucTD and FucTE sequences in NovoSNP (Weckx, S. et al. 2005 Genome Research 15:436).

15

Defining the target area for mutagenesis detection.

Because the SNP detection by direct sequencing was limited to sequence fragments of 500 bp, it was necessary to identify a 500 bp region in the FucTA- E genes that had the highest chance to produce a null mutation when mutagenized with EMS. Therefore we 20 needed to identify a region that (1) had the highest density of codons that can change into stop codons by one G to A or C to T mutation and/or splice donor and acceptor sites and (2) was placed in or upstream of a catalytic or conserved domain.

In order to find the highest density of candidate stop or splice mutations, we used an algorithm that identifies all codons in a coding sequence that can be mutated to a stop codon or a splice mutant by one EMS mutation.

Two general targets were defined for mutagenesis detection within the FucT genes:

5 For our first target our choice was based on a shared conserved amino acid sequence for the α 1,3- FucT's "MOTIF II" and 2 other motifs, "Mn binding" and "SSD motif", upstream of "MOTIFII" (Jost et al. 2005 Glycobiology 15:165; Wilson et al. 2001 Biochim Biophys Acta. 1527:88). Therefore as target we took an exon between "MOTIFII" and the "Mn binding, SSD motif" described above. For the FucTA- D genes this was exon3 (nt 2833-3074 of 10 SEQ ID No 1 for FucTA; nt 2813-3054 of SEQ ID No 4 for FucTB, nt 2565-2806 of SEQ ID No 7 for FucTC, and nt 9685-9926 of SEQ ID No 10 for FucTD), all having a length of 241bp; for FucTE (consisting of only one exon) we took a fragment of 320bp (nt 592-912 of SEQ ID No 13).

15 We screened a second target to have more chance in finding mutations. We took exon1, having the highest density of codons that can change into stop codons (nt 1-354 of SEQ ID No 1 for FucTA, nt 1-354 of SEQ ID No 4 for FucTB, nt 1-396 of SEQ ID No 7 for FucTC, nt 1-396 of SEQ ID No 10 for FucTD), and a fragment of 396 bp for FucTE (nt 1-396 of SEQ ID No 13).

20 As screening for mutants delivered stop codon mutants for all genes except FucTE and FucTA, of which the latter only delivered splice site mutants, it was decided to include a third target for the FucTA gene. This target was located in exon 2 (nt 1098-1258 of SEQ ID No 1).

25 For each gene, the possible SNP's causing a stop codon or splice site mutation are listed per target in Tables 2 and 3. It is clear that using exon1 as target should give a lot more possible stop codon- or splice site mutation positions. However these mutations had a lower confidence level to produce an effective knock out mutant, because it is possible that an ATG downstream of the mutation might function as a new start codon. This then could produce a protein devoid of a transmembrane domain which still could have an active glycosyltransferase activity (Jost et al., 2005, Glycobiology 15:165).

Table 2: Exon3, splice-site/stopcodon mutation prediction list of FucT genes. Nucleotides that, when mutated with EMS, would result in the mutation of a splice-site or the introduction of a stopcodon are indicated gray. Dashed lines indicate the actual splice site. The positions of the nucleotides are given in the gene sequences and in the coding sequences.

FuctA				FuctB				FuctC				FuctD				FuctE			
bas	pos.	pos.	CD																
A	283	514		A	281	514		A	256	556		A	968	556		T	622		
G	283	515		G	281	515		G	256	557		G	968	557		G	623		
A	283	516		A	281	516		A	256	558		A	968	558		G	624		
T	289	580		T	287	580		T	262	622		C	977	652		C	652		
G	289	581		G	287	581		G	263	623		A	978	653		A	653		
G	289	582		G	287	582		G	263	624		A	978	654		A	654		
C	299	679		C	297	679		C	265	652		C	984	721		C	721		
A	299	680		A	297	680		A	266	653		A	984	722		A	722		
A	299	681		A	297	681		A	266	654		G	985	723		A	723		
G	307			G	305			C	272	721		G	992			C	880		
G	307			G	305			A	272	722		G	992			A	881		
T	307			T	305			G	273	723		T	992			G	882		
								G	280										
								T	280										

Table 3: Exon1, splice site/stopcodon mutation prediction lists FucT genes. Nucleotides that, when mutated with EMS, would result in the mutation of a splice site or the introduction of a stopcodon are indicated gray. Dashed lines indicate the actual splice site.

FucTA		FucTB		FucTC		FucTD		FucTE	
base	pos.								
gene		gene		gene		gene		gene	
C	37	C	37	C	22	C	22	C	22
A	38	A	38	A	23	A	23	A	23
A	39	A	39	A	24	A	24	A	24
T	40	T	40	C	76	C	76	C	76
G	41	G	41	A	77	A	77	A	77
G	42	G	42	A	78	A	78	A	78
T	49	T	49	T	85	T	85	T	85
G	50	G	50	G	86	G	86	G	86
G	51	G	51	G	87	G	87	G	87
C	103	C	103	T	94	T	94	T	94
G	104	G	104	G	95	G	95	G	95
A	105	A	105	G	96	G	96	G	96
T	133	T	133	C	148	C	148	C	148
G	134	G	134	G	149	G	149	G	149
G	135	G	135	A	150	A	150	A	150
C	151	C	151	T	187	T	187	T	187
A	152	A	152	G	188	G	188	G	188
G	153	G	153	G	189	G	189	G	189
T	169	T	169	C	205	C	205	C	205
G	170	G	170	A	206	A	206	A	206
G	171	G	171	G	207	G	207	G	207

C	217	C	247	T	223	T	223
A	218	A	248	G	224	G	224
G	219	G	249	G	225	G	225
T	277	T	262	C	289	T	319
G	278	G	263	A	290	G	320
G	279	G	264	G	291	G	321
C	352	T	277	T	319	G	396
A	353	G	278	G	320	G	397
G	354	G	279	G	321	T	398
G	355	C	352	G	396		
T	356	A	353	G	397		
		G	354	G	397		
		G	355	T	356		

Results from screening the different EMS-mutagenized populations for possible knock-out mutations in the different FucT genes

For the FucT genes, the following number of EMS lines were screened: 4275 M2 individuals were screened for mutations in FucTA, 8075 for FucTB, 6555 for FucTC, 6270 for FucTD and 4370 for FucTE. The following number of putative null alleles were identified: three in FucTA, two splice site mutations and one stop codon mutation, respectively labeled FucT001, FucT004, and FucT013. Two putative null alleles, respectively one splice site mutation and one stop codon mutation, were identified for FucTB, labeled FucT006 and FucT008. For FucTC, 4 putative null alleles were identified, respectively 1 splice site mutation and three stop codon positions, labeled FucT007, FucT010, FucT011 and FucT012. For FucTD, one splice site mutation and one stop codon mutation, were identified, labeled FucT005 and FucT009. Finally for FucTE, no stop codon mutations were identified. Instead, two alleles with substitution mutations were identified, labeled FucT002 and FucT003. The FucT003 substitution was located in the conserved "MOTIFII".

Table 4 summarizes the results of the screening for FucT genes: mutation position, mutation sequence and mutant type.

Table 4: Overview of possible EMS mutants for the FucT genes. Seeds comprising the mutants FucT004, FucT006, FucT007, FucT009 and FucT003 have been deposited at the National Collection of Industrial, Marine and Food Bacteria (NCIMB), NCIMB Ltd, Ferguson Building, Craibstone Estate, Bucksburn, Aberdeen AB219YA, Scotland, on 5 12 September 2011, under accession number NCIMB 41860.

EMS mutants for FucTA					
Mutant Name	Position	WT Sequence	MUT sequence	Allele	Type
FucT001	3074	GGT	AGT	FucTA-1	SPL
FucT004	355	GGT	GAT	FucTA-2	SPL
FucT013	1176	CAA	TAA	FucTA-3	STOP
EMS mutants for FucTB					
Mutant Name	Position	WT Sequence	MUT sequence	Allele	Type
FucT006	3054	GGT	AGT	FucTB-1	SPL
FucT008	135	TGG	TGA	FucTB-2	STOP
EMS mutants for FucTC					
Mutant Name	Position	WT Sequence	MUT sequence	Allele	Type
FucT007	2807	GGT	GAT	FucTC-1	SPL
FucT010	188	TGG	TAG	FucTC-2	STOP
FucT011	86	TGG	TAG	FucTC-3	STOP
FucT012	87	TGG	TGA	FucTC-4	STOP
EMS mutants for FucTD					
Mutant Name	Position	WT Sequence	MUT sequence	Allele	Type
FucT005	397	GGT	GAT	FucTD-1	SPL
FucT009	224	TGG	TAG	FucTD-2	STOP
EMS mutants for FucTE					
Mutant Name	Position	WT Sequence	MUT sequence	Allele	Type
FucT002	811	GAA (Glu)	AAA (Lys)	FucTE-1	SUBST
FucT003	910	GTG (Val)	ATG (Met)	FucTE-2	SUBST

3. Crossing scheme to produce *N. benthamiana* plants homozygous for knock out mutants of all XylT and FucT genes: the seven-fold knock out plant.

10 We retrieved homozygous mutants for all lines, listed in Table 4, by sowing and screening 24 plants from the original M2 seed lot in which the mutation had been identified. DNA samples from each of these plants were screened using the direct sequencing technique described above. We were unable to retrieve mutant FucT013.

The homozygous mutants that were selected this way, were allowed to self-fertilize to create a stable mutant seedlot. In addition, a selected number of mutants were entered into a 5-fold backcrossing scheme with the "BENTHAMIANA" accession to eliminate most if not all of the mutation drag. Finally, a selected number of mutants were entered 5 in a crossing scheme to produce the 7-fold knock out plants. The crossing scheme is shown in Figure 4. The final set of mutants that were used to generate the 7-fold knock out plant was: XYL001 (XylTg14-1 as described in WO2010145846), XYL002 (XylTg19-1 as described in WO2010145846), FucT003, FucT004, FucT006, FucT007, FucT009. The selection of the final set of FucT mutants was based on a gene 10 transcription- and a complementation assay. Both are described below.

In order to be able to quickly and more economically identify zygosity of the mutant alleles in the back-crossing and crossing schemes described above, an End Point 15 TaqMan assay was designed by Applied Bioscience. The RT-PCR analyses for this were run in-house. TaqMan probes are oligonucleotides that have a fluorescent reporter dye attached to the 5' end and a quencher moiety coupled to the 3' end. These probes are designed to hybridize to an internal region of a PCR product. In the unhybridized state, the proximity of the fluorescent and the quench molecules prevents the detection of a fluorescent signal from the probe. During PCR, when the polymerase 20 replicates a template on which a TaqMan probe is bound, the 5'- nuclease activity of the polymerase cleaves the probe. This uncouples the fluorescent and quenching dyes. Thus, fluorescence increases in each cycle, proportional to the amount of probe 25 cleavage which, in turn, is related to the zygosity level of the target. When compared to an internal standard, the level of fluorescence can thus be translated into the zygosity levels: "wt", "heterozygous" and "homozygous".

4. Linkage analysis of the FucT genes.

To determine whether any of the FucT genes were genetically linked, we performed a linkage analysis making use of the SNPs in all FucT genes in accessions 30 "BENTHAMIANA" and NBNPGS2 (USDA National Germplasm System accession PI555684; see also Table 1). To this end, BENTHAMIANA and NBNPGS2 were crossed, the F1 was crossed with BENTHAMIANA, and the FucT genotypes of 576 individuals from the next BC1 generation were analyzed.

If no linkage exists between any of the FucT genes, alleles would be seemingly 35 randomly spread over the different individual's genotypes. If linkage exists between two or more FucT genes, this would show up as approximately 50% of the individuals being homozygous for two or more specific FucT genes. As the latter was not observed in the

population of 96 that was analyzed, we concluded that the five FucT genes are unlinked.

5. Determining whether the different FucT genes are being transcribed.

5 As the crossing scheme for the full knock out plant would run over 5 generations, we looked for opportunities to shorten this timeline. One possibility was to check whether any of the five FucT genes was not expressed. To determine this, we amplified FucT transcripts from leaf mRNA using primer sets with broad specificity. We then cloned and sequenced individual cDNAs resulting from this amplification. Sequence analysis 10 of this set of clones should thus reveal if and which FucT genes were expressed. In addition, as we used primers that hybridized to regions that were conserved between FucT genes, we could pick up additional genes that we might have missed in the BAC screening.

cDNA was prepared from mRNA extracted from *N. benthamiana* leaves, following the 15 protocol of the superscript II (Invitrogen) kit.

We performed a PCR on these cDNA samples, using primers designed on the FucTA CDS, taking the SNP's between genes into account. Using primers VH031 (SEQ ID No. 15) and VH032 (SEQ ID No. 16), described as primer combination 1 (PC1), a fragment of 570bp will be amplified. Using primer combination 2 (PC2), formed by primers 20 VH033 (SEQ ID No. 17) and VH034 (SEQ ID No. 18), a fragment of 348bp will be amplified. The PCR's were run with annealing temperatures of 56°C (PC2) and 62°C (PC1), using a standard PCR mix [10 µl Go Taq buffer 5x; 1 µl dNTM 10 mM; 1 µl forward primer 10 µM; 1 µl reverse primer 10 µM; 0.4 µl Taq polymerase 5 U/µl; 2 µl purified PCR product in 50 µl total volume] and standard protocol [2 min 94 °C; 30x[30 sec 94°C , 30 sec 56°C /62°C , 30 sec 72°C], 10 min 72°C].

The resulting PCR products were purified with the Qiagen PCR purification kit, cloned in the PGemT Easy vector (Promega) and transformed into commercial thermo competent TOP10 cells (Invitrogen). 100µl was plated out on LB plates containing 100µg/ml triacelline. 192 clones resulting from primer combination PC1 and 96 from 30 PC2 were sequenced by AGOWA. Based on SNPs in the five FucT sequences, it was possible to distinguish which of the different FucT genes was expressed.

For PC1, 148 clones gave usable sequence information resulting in 61 clones homologous to FucTA, 58 to FucTB, 2 to FucTC, 27 to FucTD and none for FucTE, 44 samples failed by sequencing. Checking the 96 clones of PC2, we found 15 clones 35 homologous to FucTA, 39 to FucTB, none to FucTC, 12 to FucTD and none to FucTE, 30 samples failed by sequencing. In addition, none of the two primer combinations produced any new FucT sequences.

Together, this indicated that likely all FucT genes except for FucTE are expressed in *N. benthamiana* leaves. These findings corroborate the TSSP prediction data presented in example 1. In addition, these results indicated that likely no other FucT genes are present besides the five that were identified by BAC screening.

5 As FucTE appeared not to be expressed in *N. benthamiana* leaves, we decided to keep the FucTE gene as last one to cross into to the crossing scheme for the 7-fold knock out plant (see "generation 4" in Figure 4).

10 6. Complementation assay shows which FucT genes are likely active and which mutations are likely null mutations.

In order to determine the functionality of the individual FucT genes and also to determine whether the putative null mutations, that were isolated from our EMS screen, are true null or knock-out mutants, we devised a complementation assay. In this assay, the mutant to be complemented was an *Arabidopsis thaliana* line in which the FucT and 15 XylT genes were knocked out by T-DNA insertion ("triple knock-out mutant"). This line has been described by Kang et al. (2008) Proc Natl Acad Sci USA and was also created in our laboratory by crossing three different T-DNA knock out lines available from SALK (see also WO2010121818).

20 To set up the system, we first tested whether the *Arabidopsis* triple mutant could be complemented with any one of the *N. benthamiana* FucT genes. We transformed the *Arabidopsis* triple mutant, using the *Agrobacterium* dipping method, with a T-DNA containing the cDNA sequence of one of the FucT genes driven by the CaMV 35S promoter. The cDNA sequence was produced synthetically based on the predicted 25 coding sequence and intron-exon boundaries of the genes. After selection of the transformants using basta (glufosinate), protein samples from leaf tissue were analyzed for the presence of glycans containing core α 1,3 fucose using a western blot probed with an anti-core α 1,3 fucose antibody. This antibody was prepared as described by Faye et al. (1993) Anal Biochem 209:104. In Figure 5 (left panel) the results show that the *A. thaliana* triple mutant can be complemented by the *N. benthamiana* FucTA 30 cDNA. The wt control lane shows a clear chemoluminescence signal, produced by binding of the antibody to core α 1,3 fucoses. No chemoluminescence signal was detected in the lane containing protein sample from *A. thaliana* triple mutant. This was caused by absence of core α 1,3 fucoses as a result of inactivation of the endogenous 35 FucT genes. By contrast, a clear signal could be detected in the lanes containing protein from several different individual triple mutants transformed with the FucTA cDNA. Together, this shows that the complementation assay can be used to determine whether the *N. benthamiana* FucT genes are active.

Using this assay, we have shown that all genes except for FucTB and FucTE are able to complement and, therefore, represent active genes (data not shown). The fact that FucTB was unable to complement and therefore probably represents an inactive gene was unexpected because FucTB is 100% homologous to the FucTA gene except for a 5 premature stop codon removing 41 amino acids from the C-terminal end of the FucT protein. The fact that FucTE probably represents an inactive gene, based on the complementation assay, is in line with the finding that this gene also does not seem to be transcribed in *N. benthamiana* leaves and contains an inactivating Y288D substitution in MOTIFII.

10 Next, we used this complementation assay to determine whether the putative null mutations, that were isolated from the EMS-mutagenized populations, indeed rendered the respective FucT genes inactive. The right panel of Figure 5 shows the results of a complementation assay with a FucTA in which an EMS mutation was simulated at the 8th possible stop codon (position 217; see table 3 FucTA gene). From the absence of 15 a chemoluminescence signal in lanes 1 to 5 in the section labeled "At3KO + mut FucTA (stop in Exon1)", it is clear that this mutated version of FucTA cannot complement the triple knock-out mutant. Absence of chemoluminescence was not caused by the fact that the plants were not transformed (see "copy nr" below each of the lanes) nor by the fact the mutated gene was not expressed as determined by real time RT-PCR (data not 20 shown). Therefore, we can conclude that this mutation can be considered a null mutation.

We subsequently applied this complementation analysis to all putative null mutations for the FucTA, -C, and -D genes that we had found in the EMS population. FucTB and -E mutations were not analyzed as their wt genes were not able to complement.

25 Complementation was investigated first for the splice site mutants that were identified for FucTA (introns 3 and 1; FucT001, -and -004, respectively) and FucTC (intron 2; FucT007) (Table 4). The splice site mutation for FucTD was not analyzed because of the size of the intron (7833 bp). To analyze the FucTA and -C mutations, we transformed the triple knock-out mutants with FucTA or FucTC CDS containing their 30 own intron 3, 1, or 2 and compared the complementation obtained with these genes with the genes containing the splice site mutation. The results showed that, for FucTA, mutant FucT001 does not represent a null mutation, whereas FucT004 very likely represents a null mutation (data not shown). For FucTC, the intron splice site mutation could not be assessed because the triple knock-out plants transformed with the FucTC 35 CDS containing intron 3 did not complement the mutant phenotype. The gene prediction program FGENESH did predict a strongly disruptive effect for the FucTC splice site mutation however.

Based on a next complementation assay, we confirmed that mutant FucT004 (FucTA), FucT010, -011, and -012 (FucTC), and FucT009 (FucTD) were null mutants (data not shown). Because by the time we had all the data from the complementation assay at hand we were already advanced with crossing FucT004, -007, and -009, we continued 5 with those and used the other mutants as back-up mutant FucT. Our crossing strategy was aimed at first achieving a 5-fold knock-out mutant (XYL001, XYL002, FucT004, FucT007, and FucT009) as the most likely strategy to create a full knock out plant. Our second strategy was aimed at creating a 7-fold knock-out by further introducing FucT006 and FucT003 (see generations 4 and 5 in Figure 4, respectively).

10

7. Glycan analysis of the seven-fold knock out plant: *N. benthamiana* plants homozygous for null mutations in all FucT and XylT genes.

While producing seven-fold knock out plant, we also generated three- four, and five-fold knock-out plants as by-products of the crossing scheme. We used these plants to 15 assess whether knocking out consecutive FucT genes had an additive effect and thus whether the FucT-B and -E genes indeed are inactive as was suggested from the complementation assay.

Figure 6 clearly shows that knocking out more FucT genes progressively removes core 20 α 1,3 Fucosyltransferase activity from the mutant plants as indicated by the decreasing chemoluminescence signal from the bound anti- α 1,3 fucose antibody. This result indicates that probably the FucTB and -E genes still have some fucosyltransferase activity although this was not detected (i.e. compare lanes "aBcdE" versus "abcdE" and compare lanes "abcdE" versus "abcde").

Seeds of the plants in which the 5 FucT genes FucTA, FucTB, FucTC, FucTD and 25 FucTE are knocked out, containing knock-out alleles FucT004, FucT006, FucT007, FucT009, and FucT003, have been deposited at the National Collection of Industrial, Marine and Food Bacteria (NCIMB), NCIMB Ltd, Ferguson Building, Craibstone Estate, Bucksburn, Aberdeen AB219YA, Scotland, on 12 September 2011, under accession 30 number NCIMB 41860 by Bayer BioScience NV, Technologiepark 38, BE-9052 Gent, Belgium. The depositor Bayer BioScience NV, assignor of this invention to the applicant, has merged with and into Bayer CropScience NV having its registered office at J.E. Mommaertslaan 14, 1831 Diegem, Belgium.

In order to determine which specific glycan levels were reduced and also to determine 35 what types of glycans were present in the four-fold ("abcdE") and five-fold plants ("abcde"), we performed a MALDI-TOF analysis on glycans isolated from total soluble

endogenous proteins from leaves of above-mentioned plants. Results are summarized in Table 5 and shown in Figure 7.

When comparing the glycans in WT and 4- and 5-fold KO plants it is clear that the levels of the fucose-containing glycans are sharply reduced albeit not completely eliminated. By contrast the levels of glycans carrying xylose only (i.e not carrying fucose) are sharply increased. Similar results have been reported by Strasser et al. for FucT knock outs in *A. thaliana* (Strasser et al. 2004, FEBS Lett 561:132).

Finally, we have analyzed the glycan quantity and quality in the full knock-out plants (7KO) in which all FucT and XylT genes were mutated and knocked out. Results are summarized in Table 5 and Figure 8.

Comparing the WT plants with the 5KO and 7KO plants, a strong reduction in all glycans that contain either fucose, xylose or both is observed. When comparing the 5KO and 7KO plants, it is clear that all xylose containing glycans have disappeared from the 7KO spectrum as was to be expected from our previous results on the double XylT knock-out plants (WO2010145846). Also, it seems that the bars representing glycans that contained both xylose and fucose in the 5KO plants had shifted to glycans carrying only fucoses (for instance, compare MMXF and MMF; GnMXF and GnMF; GnGnXF and GnGnF). Finally, when comparing the glycans obtained from 7KO plants with the glycans obtained from plants expressing the XylT- and FucT RNAi genes (Strasser et al. 2008, Plant Biotech J 6:392), the spectra are almost identical. Notable differences are a strong presence of MM glycans in the 7KO plants which are absent in the RNAi plants similar, albeit to a lesser extent, for the Man4Gn glycan. Also, the 7KO plants have a higher level of GnGnF glycans as compared to RNAi and, vice versa, the RNAi plants have a higher level of GnM and GnGn glycans.

Table 5: Relative glycan levels on endogenous soluble leaf proteins from *N. benthamiana* plants in which Xylosyl- and/or Fucosyltransferase activity has been reduced by gene mutation or RNAi. Total protein was isolated from leaves of plants in which different XylT and/or FucT genes were mutated or in which XylT and FucT RNAi genes were expressed. Glycans were isolated and analyzed by MALDI-TOF. Relative levels are expressed as percentage of the total peak area as determined from the MALDI-TOF spectra. 4KO-: FucTA (FucT004), -B (FucT006), -C (FucT007), and -D (FucT009) knocked out; 5KO-: all FucT genes knocked out (FucT004, -006, -007, -009, and -003); 7KO-: all FucT and XylT genes knocked out (FucT004, -006, -007, -009, and -003, and XylTg14-1 and XylTg19-1 as described in WO2010145846); WT: Wild Type; RNAi: plants expressing XylT and FucT RNAi genes (Strasser et al. 2008, Plant Biotech J 6:392).

	4KO			5KO			7KO			WT		RNAi	
	4KO- 0447	4KO- 0660	4KO- 0772	5KO- 0023	5KO- 0044	5KO- 0046	7KO- 0095	7KO- 0910	7KO- 0925	WT	WT	WT	WT
MM	0.0	0.0	1.4	0.0	0.0	0.0	16.3	13.4	12.2	0.0	0.0	0.0	0.0
MMX	27.9	21.2	21.4	0.0	41.5	49.5	0.0	0.0	0.0	3.5	3.5	0.0	0.0
MMF	1.4	0.9	1.3	0.0	0.0	0.0	5.8	5.1	6.5	0.0	7.0	0.0	7.0
Man4	0.0	0.0	0.0	0.0	0.0	0.0	2.3	2.0	1.7	0.0	2.2	0.0	2.2
GnM / MGn	0.0	0.0	0.8	0.0	0.0	0.0	13.3	11.6	11.4	0.0	21.6	0.0	21.6
MMXF	13.6	18.5	15.0	14.7	10.7	13.4	0.0	0.0	0.0	34.8	34.8	0.0	0.0
Man4X	0.0	1.0	0.0	3.9	2.0	3.2	0.0	0.0	0.0	0.0	1.8	0.0	0.0
Man5	0.0	2.0	2.0	1.9	1.8	1.6	4.0	4.3	3.2	2.4	4.3	0.0	4.3
GnMX*	15.4	10.6	14.1	25.0	15.9	13.0	0.0	0.0	0.0	3.2	3.2	0.0	0.0
GnMF*	0.0	0.0	0.0	0.0	0.0	0.0	3.5	3.4	4.7	0.0	3.9	0.0	3.9
Man4Gn / MA / Man4Gn*													
GnGn	0.0	0.0	0.0	0.0	0.0	0.0	25.0	25.2	23.0	0.0	30.8	0.0	30.8
GnMXF	3.6	4.0	4.3	4.8	2.6	2.0	0.0	0.0	0.0	14.3	0.0	0.0	0.0

	Man6	1.5	2.6	1.9	0.0	0.0	0.0	2.9	2.8	2.9	2.1	3.6
Man4GnX / MAX	0.0	0.0	0.9	3.0	1.2	0.0	0.0	0.0	0.0	0.0	0.9	0.0
GnGnX	19.1	12.5	16.5	21.8	12.7	10.0	0.0	0.0	0.0	0.0	1.7	0.0
GnGnF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.1	12.7	16.7	0.0	9.7
GnA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4	3.2	3.3	0.0	2.1
Man7	2.0	3.2	1.8	3.1	1.5	1.3	3.3	3.5	3.6	2.3	4.5	
GnGnXF	12.7	18.2	15.9	14.8	6.3	6.0	0.0	0.0	0.0	0.0	27.8	0.0
Man5A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0
GnAX	0.0	0.0	0.0	3.6	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LeaGn / GnLea *	0.0	0.0	0.0	0.0	0.0	0.0	1.1	1.3	1.3	0.0	1.8	
AA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0
Man8	1.9	3.2	1.6	3.3	1.8	0.0	3.6	4.8	4.5	2.5	5.7	
AAX	0.0	0.0	0.0	0.0	0.0	0.0	0.8	1.0	1.3	0.0	0.0	
Man9	1.0	1.2	1.1	0.0	0.0	0.0	1.6	2.2	2.2	1.0	2.8	
LeaGnXF / GnLeaXF	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0
LeaLea	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.6	0.0	0.0	0.0	0.0
Man9 + Glc	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.5	0.0	0.0	0.0	0.0

8. Glycan analysis of an IgG1 expressed in the *N. benthamiana* full knock-out plant using magnICON®.

Since the glycan quality and quantity on the endogenous proteins of the 7KO plants were comparable those of the plants expressing the XylT- and FucT RNAi genes and since it has been described that IgG1 proteins expressed in the latter plants do not contain glycans carrying xylose or fucoses (i.e. despite the fact that their endogenous proteins do carry fucoses; Nagels et al. 2011, Plant Physiol 155:1103), we decided to test whether glycans on an IgG1 molecule expressed in the full knock plants would similarly be free of fucose and xylose.

IgG1 was isolated from leaf extract nine days after infiltration using protein G. The heavy chain of the purified antibody was isolated by cutting the corresponding band from a reducing SDS-PAGE. The heavy chain protein in this band was used for glycan analysis by LC-MS as described by Kolarich et al. 2006, Proteomics 6:3369.

Figure 9 shows the resulting spectrum from this analysis. The upper panel shows a wider mass spectrum to illustrate the presence of non-glycosylated peptides. Peptide 1 (EEQYNSTY) and peptide 2 (TKPREEQYNSTYR) are two variants from the same trypsin digestion. They differ in length caused by steric hindrance of the trypsin by the presence of N-glycans. As a result, all peptide-glycans produce two peaks in this LC-MS spectrum: indicated on the lower panel in black for glycopeptide 1 and orange for glycopeptide 2. In the lower panel of Figure 9, only one major glycan peak can be found for GnGn. In addition, some minor peaks for high mannose glycans are also visible (Man7, 8, and -9). However, in the full summary of all glycopeptides that were identified by LC-MS, listed in Table 6, a small fraction of GnGnF glycans representing 2.6% of the total fraction of glycosylated and non-glycosylated glyco-peptides was identified.

Table 6: Relative glycan levels on heavy chain of IgG1 expressed in a *N. benthamiana* full knock out plant. In the full knock-out plant, all FucT and XylT genes are knocked out (FucT004, -006, -007, -009, and -003, and XylTg14-1 and XylTg19-1 as described in WO2010145846). Relative levels are expressed as percentage of the total peak area as determined from the 5 LC-MS spectrum in Figure 9.

	Relative glycan level
non-glyc peptide	19.8
MGn	2.3
GnGn	51.7
GnGnF	2.6
GnA	0.9
AA	0.2
Man5	0.7
Man7	6.0
Man8	8.6
Man9	7.2

Combining the seven-fold knock out plant with a FucT RNAi gene further reduces the 10 Fucose levels on N-glycans

In an attempt to further decrease the amount of residual Fucose residues on the N-glycans in the seven-fold knock out plants, we introduced a FucT RNAi gene in these plants by crossing these plants with plants containing the FucT RNAi gene from pGAX3 (WO 2009/056155).

Homozygosity of the seven knock-out genes as well as the FucT RNAi gene was confirmed by

15 End Point Taqman assays. Endogenous proteins from these plants (i.e. 7KO/FucT RNAi) were analyzed by Western blot and by MALDI-TOF analysis.

Results from the Western blot analysis in Figure 11 clearly show that adding the FucT RNAi gene to the seven-fold knock out plants further removes core α1,3 Fucose residues from the 20 N-glycans as indicated by the complete absence of chemoluminescence signal from the lanes

containing proteins from the 7KO/FucT RNAi plants as compared to lanes containing proteins from plants in which 6 or 7 genes have been knocked out. Even after a prolonged exposure of 1hour, no signal could be detected in 7KO/FucT RNAi lanes.

In order to determine specific glycan levels, MALDI-TOF analysis on glycans isolated from total soluble endogenous proteins from leaves of 7KO/FucT RNAi plants was performed. When comparing the glycans of the 7KO/FucT RNAi plants with WT, 4-, 5- and 7-fold KO plants, it is clear that the levels of the fucose-containing glycans are further reduced to only 5 trace amounts of MMF, GnGnF and GnAF (LeaGn) glycans. As was the case for the 7KO plants, xylosylated N-glycans have completely disappeared in the 7KO/FucT RNAi plants (as shown in table 7)

10 **Table 7:** Relative glycan levels on endogenous soluble leaf proteins from *N. benthamiana* 7KO/FucT RNAi plants. Total protein was isolated from leaves of plants in which all XyIT and FucT genes were mutated and in which a FucT RNAi gene was expressed. Glycans were isolated and analyzed by MALDI-TOF. Relative levels are expressed as percentage of the total peak area as determined from the MALDI-TOF spectra. Fucosylated N-glycans in shadow.

	7KO/FucT RNAi			
	7KO-1679	7KO-2125	7KO-2264	7KO-2512
MM	24.93	41.72	31.98	26.95
MMX	0.00	0.00	0.00	0.00
MMF	0.00	0.00	0.77	0.00
Man4	0.00	0.00	0.55	0.00
GnM / MGn	13.58	14.64	14.59	16.16
MMXF	0.00	0.00	0.00	0.00
Man4X	0.00	0.00	0.00	0.00
Man4F	0.00	0.00	0.00	0.00
Man5	1.27	2.81	2.68	1.73
GnMX	0.00	0.00	0.00	0.00
GnMF	0.00	0.00	0.00	0.00
Man4Gn / MA / Man4Gn	0.00	0.00	0.00	0.00
GnGn	44.03	33.60	36.05	40.06
Man4XF	0.00	0.00	0.00	0.00
Man5X	0.00	0.00	0.00	0.00
Man5F	0.00	0.00	0.00	0.00
GnMXF	0.00	0.00	0.00	0.00
Man6	1.34	1.60	2.15	1.63
Man4GnX / MAX	0.00	0.00	0.00	0.00
Man4GnF / MAF	0.00	0.00	0.00	0.00
Man5Gn / Man4A	0.00	0.00	0.00	0.00
GnGnX	0.00	0.00	0.00	0.00
GnGnF	0.83	0.60	0.91	0.72
GnA	0.00	0.00	0.00	0.00
Man5XF	0.00	0.00	0.00	0.00
GnGnGn	0.00	0.00	0.00	0.00
Man4GnXF / MAXF	0.00	0.00	0.00	0.00

	7KO/FucT RNAi			
	7KO-1679	7KO-2125	7KO-2264	7KO-2512
Man7	2.33	1.79	2.99	2.17
Man5GnX / Man4AX	0.00	0.00	0.00	0.00
Man5GnF / Man4AF	0.00	0.00	0.00	0.00
GnGnXF	0.00	0.00	0.00	0.00
Man5A	0.00	0.00	0.00	0.00
GnAX	0.00	0.00	0.00	0.00
GnAF/(LeaGn)	0.83	0.50	0.94	0.60
AA	0.00	0.00	0.00	0.00
GnGnGnX	0.00	0.00	0.00	0.00
GnGnGnF	0.00	0.00	0.00	0.00
GnGnA	0.00	0.00	0.00	0.00
Man5GnXF / Man4AXF	0.00	0.00	0.00	0.00
Man8	3.62	2.65	2.90	2.79
GnGnGnGn	0.00	0.00	0.00	0.00
Man5AX	0.00	0.00	0.00	0.00
Man5AF	0.00	0.00	0.00	0.00
GnAXF	0.00	0.00	0.00	0.00
(AF)GnF	0.00	0.00	0.00	0.00
AAX	0.00	0.00	0.00	0.00
AAF	0.00	0.00	0.00	0.00
GnGnGnXF	0.00	0.00	0.00	0.00
AA + Hex	0.00	0.00	0.00	0.00
GnGnAX	0.00	0.00	0.00	0.00
GnGnAF	0.00	0.00	0.00	0.00
GnAA	0.00	0.00	0.00	0.00
GnGnGnGnX	0.00	0.00	0.00	0.00
GnGnGnGnF	0.00	0.00	0.00	0.00
Man5AXF	0.00	0.00	0.00	0.00
Man9	6.68	0.70	3.49	6.37
GnGnGnA	0.00	0.00	0.00	0.00
LeaGnXF / GnLeaXF	0.00	0.00	0.00	0.00
AAXF	0.00	0.00	0.00	0.00
(AAF)F/LeaLea	0.00	0.00	0.00	0.00
AAX+Hex	0.00	0.00	0.00	0.00
AAF+Hex	0.00	0.00	0.00	0.00
GnGnAXF	0.00	0.00	0.00	0.00
AA + 2 Hex	0.00	0.00	0.00	0.00
GnAAX	0.00	0.00	0.00	0.00
GnAAF	0.00	0.00	0.00	0.00
GnGnGnGnXF	0.00	0.00	0.00	0.00
GnGnGnAX	0.00	0.00	0.00	0.00
GnGnGnAF	0.00	0.00	0.00	0.00
Man9 + Glc	0.55	0.00	0.00	0.00
GnGnAA	0.00	0.00	0.00	0.80
A(AF)XF	0.00	0.00	0.00	0.00
(AF)(AF)F	0.00	0.00	0.00	0.00
AAXF+Hex	0.00	0.00	0.00	0.00
GnAAXF	0.00	0.00	0.00	0.00

	7KO/FucT RNAi			
	7KO-1679	7KO-2125	7KO-2264	7KO-2512
GnGnGnAXF	0.00	0.00	0.00	0.00
GnGnAAX	0.00	0.00	0.00	0.00
GnGnAAF	0.00	0.00	0.00	0.00
Man9+2Glc	0.00	0.00	0.00	0.00
GnAAA	0.00	0.00	0.00	0.00
LeaLeaXF	0.00	0.00	0.00	0.00
GnGnAAXF	0.00	0.00	0.00	0.00
GnAAAX	0.00	0.00	0.00	0.00
GnAAAF	0.00	0.00	0.00	0.00
AAAA	0.00	0.00	0.00	0.00
GnAAAXF	0.00	0.00	0.00	0.00
AAAX	0.00	0.00	0.00	0.00
AAAF	0.00	0.00	0.00	0.00
AAAXF	0.00	0.00	0.00	0.00

Figure 12 shows a quantitative overview of fucosylated resp. xylosylated N-glycans present on the endogenous proteins of WT, 4-, 5-, 7-fold KO, RNAi and 7KO/FucT RNAi plants.

5 Introducing a FucT RNAi gene into the seven-fold knock out plants to further reduce fucose levels on N-glycans.

In order to further reduce the fucose levels on N-glycans in seven-fold knock-out plants, RNAi genes are constructed that target silencing of all FucT genes by including multiple stretches of 10 25 or more nucleotides that are 100% homologous to two or more FucT genes and, combined, target all FucT genes. For example, a fragment of the FucTB coding sequence (Seq ID No 5) from nucleotide 1183 to 1265 (Seq ID No 20) contains a stretch of 44 nucleotides, from 1183 to 1226, that is 100 % homologous to FucT-B, -C, -D, and -E and a fragment of 47 nucleotides, from 1219 to 1265, that is 100% homologous to FucT-A, and -B. This fragment (Seq ID No 20) 15 is assembled into an RNAi gene as shown in Seq ID No 21. Expression of the RNAi gene is driven by the 35S promoter by cloning it into a T-DNA vector similar to pGAX3 (WO 2009/056155). The seven-fold knock-out *N. benthamiana* plants are transformed with this construct and analyzed for N-glycan composition on endogenous proteins and on heterologously magnICON®-expressed proteins like, for instance, an IgG1 molecule.

20 In addition, the FucT RNAi gene is cloned in a promoterless T-DNA vector similar to pICH3781 and pICH3831 (WO 02/101060) where the existing BAR gene is replaced by the FucT RNAi gene fragment. The seven-fold knock-out *N. benthamiana* plants are transformed with these constructs. Use of promoterless vectors will provide a broader choice of primary

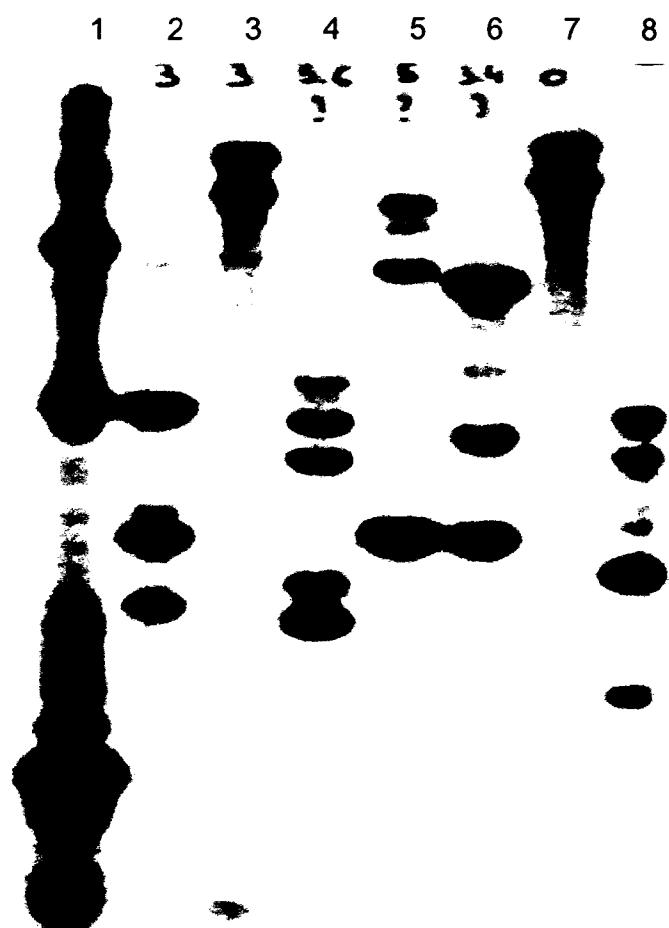
transformants in comparison to vectors with strong constitutive promoter. In such case the RNAi becomes part of a transcriptional fusion with a residential gene (the promoterless vector contains splice acceptor sites in front of the RNAi gene). This can be an advantage, as the RNAi usually targets multigene family and this might compromise plant phenotype - growth, 5 development, abiotic or biotic stress resistance, etc. The resulting stably transformed plants are screened for absence of fucoses on the N-glycans of their endogenous proteins and of heterologously magnICON®-expressed proteins like, for instance, an IgG1 molecule. Those selected can be additionally screened for their performance in glasshouses, e.g. vegetative growth efficiency in comparison with wild type plants.

10

The content of US patent application 61/542,965 filed on October 4, 2011 and European patent application No. 11 075 218.5 filed on October 6, 2011 the priorities of which are claimed by the present patent application are herewith incorporated by reference in their 15 entirety including descriptions, all claims, all figures and SEQ ID NOs 1 to 19 of the sequence listing.

CLAIMS

1. A method to produce glycoproteins with reduced levels of core alfa(1,3)-fucose residues in Nicotiana benthamiana, said method comprising the steps of:
 - a. providing a plant or plant cell comprising five knock-out alfa(1,3)-fucosyltransferase genes; and
 - b. cultivating said cell and isolating glycoproteins from said cell.
2. A method to produce glycoproteins with reduced levels of core alfa(1,3)-fucose residues and reduced levels of beta(1,2)-xylose residues in Nicotiana benthamiana, said method comprising the steps of:
 - a. providing a plant cell wherein said plant cell
 - i. comprises five knock-out alpha(1,3)-fucosyltransferase genes; and
 - ii. has a reduced level of beta(1,2)-xylosyltransferase activity; and
 - b. cultivating said cell and isolating glycoproteins from said cell.
3. The method according to claim 2, wherein said reduced level of beta(1,2)-xylosyltransferase activity is the result of a knock-out mutation in endogenous beta(1,2)-xylosyltransferase genes.
4. The method according to any one of claims 1 to 3, wherein said knock-out alfa(1,3)-fucosyltransferase genes are mutated versions of the native alfa(1,3)-fucosyltransferase genes selected from the group consisting of:
 - a. a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 3;
 - b. a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 6;
 - c. a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 9;
 - d. a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 12;
 - e. a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 14.
5. The method according to claim 4, wherein said knock-out alfa(1,3)-fucosyltransferase genes are mutated versions of the native alfa(1,3)-fucosyltransferase genes selected from the group consisting of:


- a. a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 1;
b. a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 4;
c. a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 7;
d. a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 10;
e. a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 13.
6. The method according to claim 5, wherein said knock-out alfa(1,3)-fucosyltransferase gene is selected from the group consisting of:
 - a. FucTA gene containing a G to A substitution at position 355 of SEQ ID NO: 1;
 - b. FucTB gene containing a G to A substitution at position 3054 of SEQ ID NO: 4;
 - c. FucTC gene containing a G to A substitution at position 2807 of SEQ ID NO: 7;
 - d. FucTD gene containing a G to A substitution at position 224 of SEQ ID NO: 10;
 - e. FucTE gene containing a G to A substitution at position 910 of SEQ ID NO: 13.
7. The method according to any one of claims 1 to 6, wherein said knock-out alfa(1,3)-fucosyltransferase genes occur in a homozygous state in the genome.
8. The method according to any one of claims 1 to 7, wherein the expression of the five endogenous alfa(1,3)-fucosyltransferase encoding genes is reduced through transcriptional or post-transcriptional silencing.
9. The method according to claim 8, wherein said plant or plant cell further comprises at least one chimeric gene comprising the following operably linked DNA fragments:
 - a. a plant-expressible promoter;
 - b. a DNA region, which when transcribed yields an RNA molecule inhibitory to at least one alfa(1,3)-fucosyltransferase encoding gene;
 - c. a DNA region comprising a transcription termination and polyadenylation signal functional in plants.
10. The method according to claim 9, wherein said DNA region yields an RNA molecule capable of forming a double-stranded RNA region at least between:
 - a. an RNA region transcribed from a first sense DNA region comprising a nucleotide sequence of at least 18 out of 21 nucleotides selected from SEQ ID NO: 2, SEQ ID NO: 5, SEQ ID NO: 8, SEQ ID NO: 11, SEQ ID NO: 13, or the complement thereof;

- b. an RNA region transcribed from a second antisense DNA region comprising a nucleotide sequence of at least 18 consecutive nucleotides which have at least 95% sequence identity to the complement of said first sense DNA region.
- 11. The method according to claim 10, wherein said DNA region comprises the sequence of SEQ ID No. 19.
- 12. The method according to any one of claims 1 to 11, wherein said glycoproteins are heterologous glycoproteins.
- 13. The method according to claim 12, wherein said heterologous glycoproteins are expressed from a chimeric gene comprising the following operably linked nucleic acid molecules:
 - a. a plant-expressible promoter,
 - b. a DNA region encoding said heterologous glycoprotein,
 - c. a DNA region involved in transcription termination and polyadenylation.
- 14. The method according to claim 12 or 13, further comprising the step of purification of said heterologous glycoproteins.
- 15. A Nicotiana benthamiana plant, or a cell, part, seed or progeny thereof, comprising five knock-out alfa(1,3)-fucosyltransferase genes and further comprising a glycoprotein foreign to said plant or plant cell.
- 16. The plant according to claim 15, wherein said five knock-out alfa(1,3)-fucosyltransferase genes are mutated versions of the following native alfa(1,3)-fucosyltransferase genes:
 - a. a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 3;
 - b. a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 6;
 - c. a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 9;
 - d. a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 12; and
 - e. a nucleic acid molecule encoding an amino acid sequence comprising at least 90% sequence identity to SEQ ID NO: 14.

17. The plant according to claim 16, wherein said five knock-out alfa(1,3)-fucosyltransferase genes are mutated versions of the following native alfa(1,3)-fucosyltransferase genes:
 - a. a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 1;
 - b. a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 4;
 - c. a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 7;
 - d. a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 10; and
 - e. a nucleic acid molecule comprising at least 90% sequence identity to SEQ ID NO: 13.
18. A plant according to claim 16 or 17, wherein said five knock-out alfa(1,3)-fucosyltransferase genes are mutated versions of the following native alfa(1,3)-fucosyltransferase genes:
 - a. FucTA gene containing a G to A substitution at position 355 of SEQ ID NO: 1;
 - b. FucTB gene containing a G to A substitution at position 3054 of SEQ ID NO: 4;
 - c. FucTC gene containing a G to A substitution at position 2807 of SEQ ID NO: 7;
 - d. FucTD gene containing a G to A substitution at position 224 of SEQ ID NO: 10; and
 - e. FucTE gene containing a G to A substitution at position 910 of SEQ ID NO: 13.
19. The plant or plant cell according to any one of claims 15 to 18 which is homozygous for the knock-out alfa(1,3)-fucosyltransferase genes.
20. The plant or plant cell according to any one of claims 15 to 19, further comprising at least one knock-out beta(1,2)-xylosyltransferase gene, wherein said knock-out beta(1,2)-xylosyltransferase gene comprises a mutated DNA region consisting of one or more inserted, deleted or substituted nucleotides compared to a corresponding wild-type DNA region in the beta(1,2)-xylosyltransferase gene and wherein said knock-out beta(1,2)-xylosyltransferase gene does not encode a functional beta(1,2)-xylosyltransferase protein.
21. The plant or plant cell according to any one of claims 15 to 20, further comprising at least one chimeric gene comprising the following operably linked DNA fragments:
 - a. a plant-expressible promoter;
 - b. a DNA region, which when transcribed yields an RNA molecule inhibitory to at least one alfa(1,3)-fucosyltransferase encoding gene;
 - c. a DNA region comprising a transcription termination and polyadenylation signal functional in plants.

22. The plant or plant cell according to claim 21, wherein said DNA region comprises the sequence of SEQ ID No. 19.
23. The plant or plant cell according to claim 15, wherein said glycoprotein is expressed from a chimeric gene comprising the following operably linked nucleic acid molecules:
 - a. a plant-expressible promoter,
 - b. a DNA region encoding said heterologous glycoprotein,
 - c. a DNA region involved in transcription termination and polyadenylation.
24. Use of the method according to any one of claims 1 to 14 to obtain glycoproteins with a reduced level of core alfa(1,3)-fucose residues.
25. Use of the method according to any one of claims 2 to 14 to obtain glycoproteins with a reduced level of core alfa(1,3)-fucose residues and with a reduced level of beta(1,2)-xylose residues.

Icon Genetics GmbH
Patent Attorneys for the Applicant/Nominated Person
SPRUSON & FERGUSON

Fig. 1

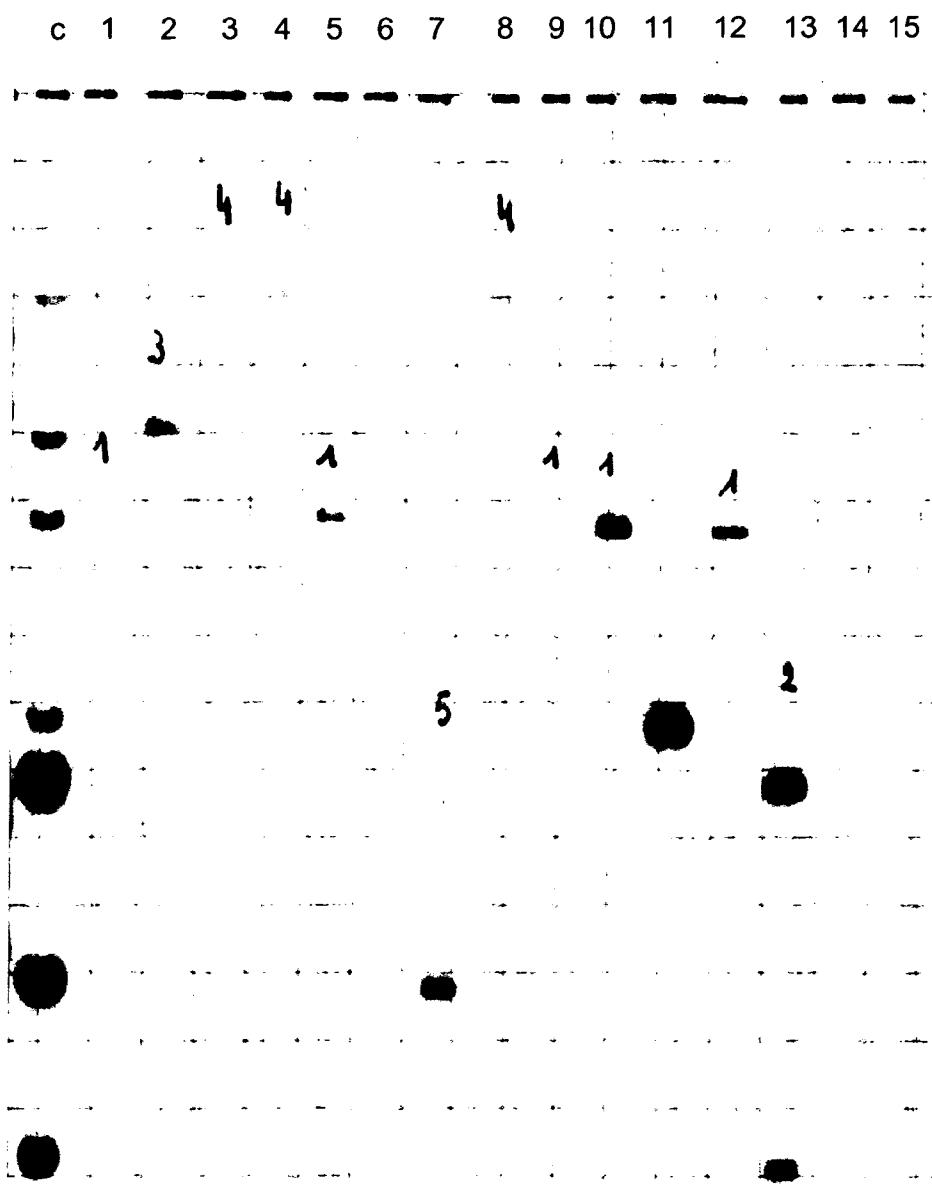
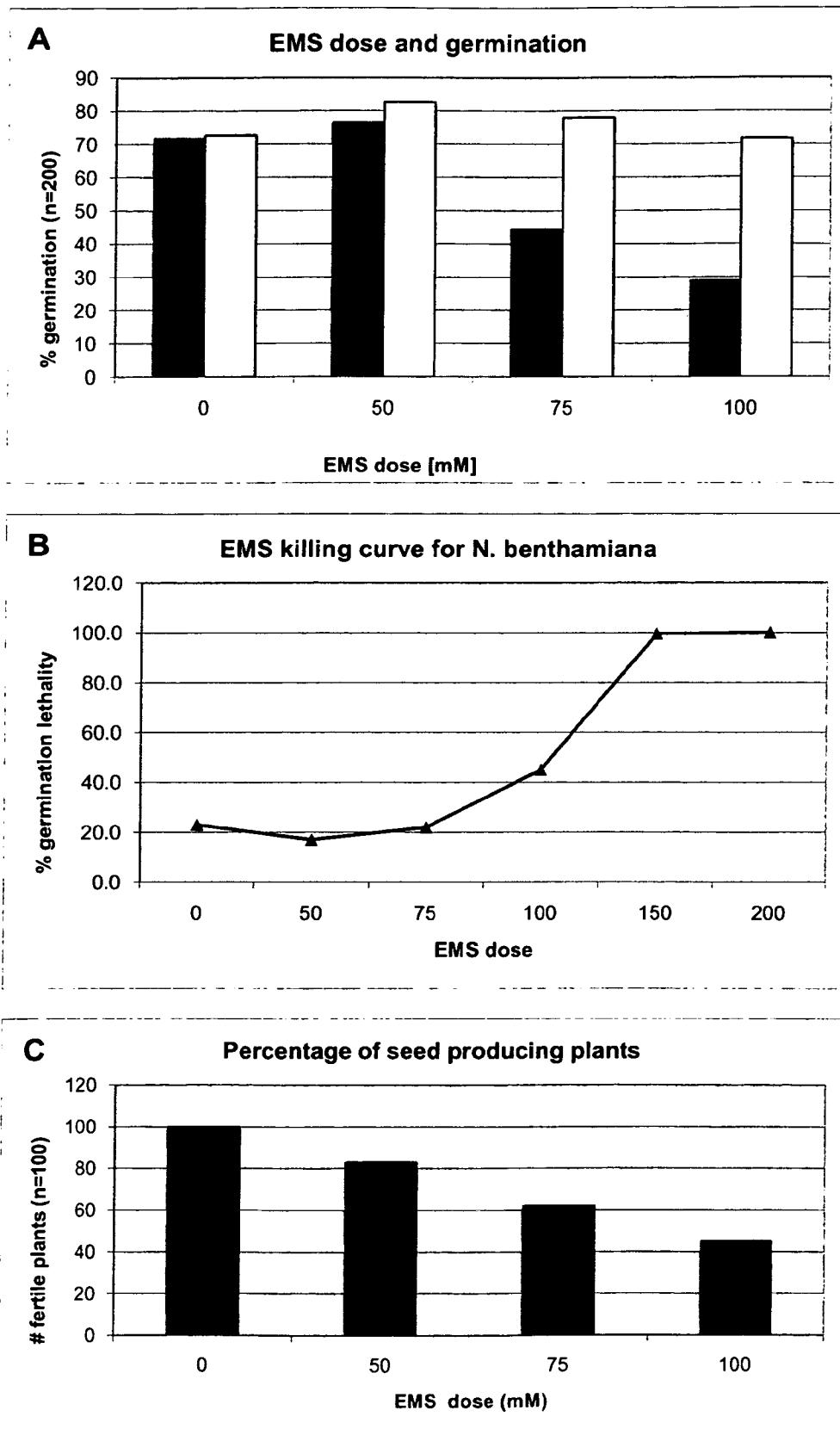
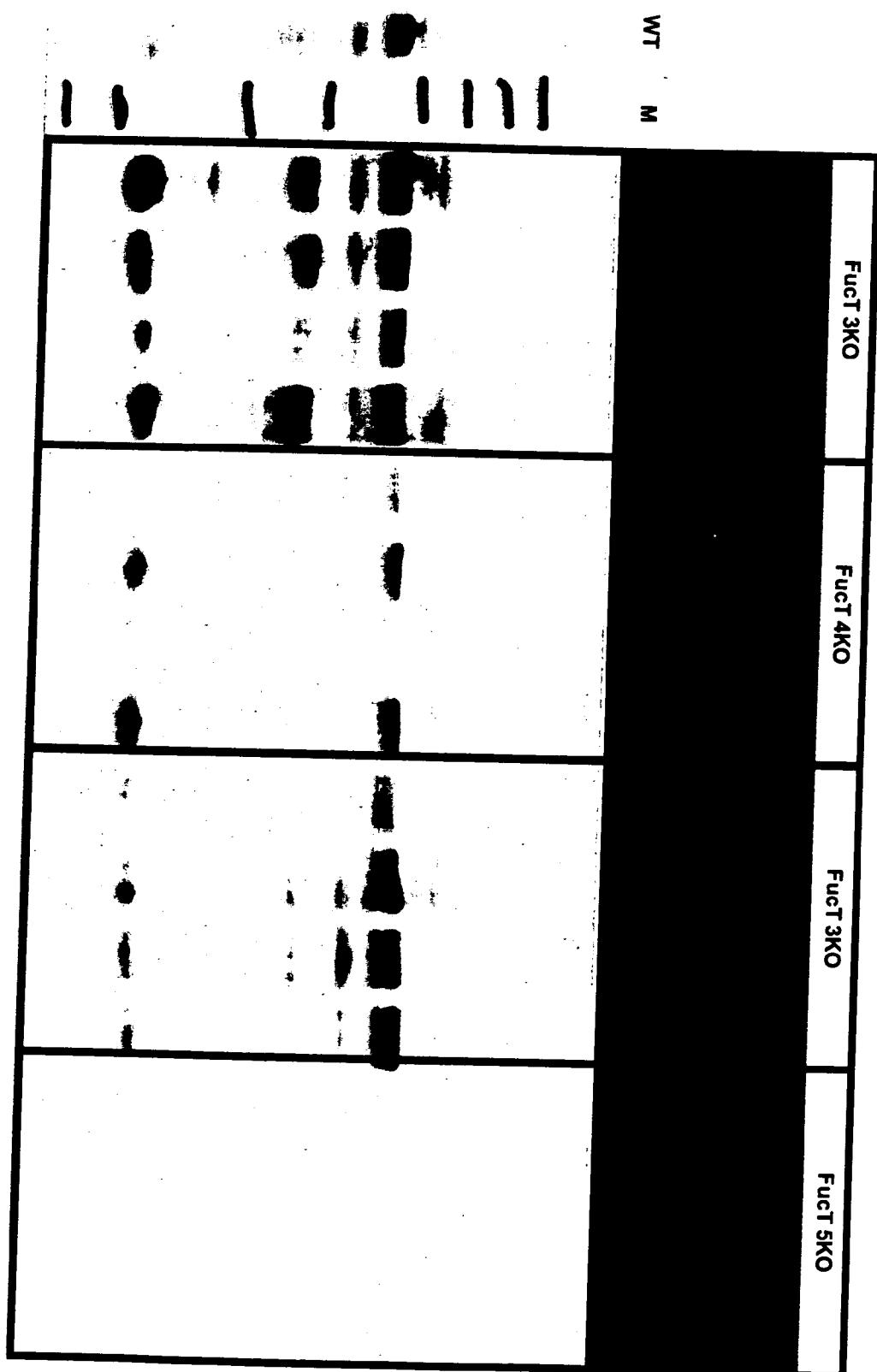



Fig. 2


Fig. 3

generation	selected genotypes	crosses
1	$\times 14/x14 \times 19/x19$ a/a b/b c/c d/d e/e	$\times 14/x14 \times 19/x19 \times a/a$ b/b \times c/c c/c \times d/d d/d \times e/e a/a \times b/b
2	selected genotypes $X14/x14 \times 19/x19 A/a$ B/b C/c C/c D/d D/d E/e	crosses $X14/x14 \times 19/x19 A/a \times B/b C/c$ $X14/x14 \times 19/x19 A/a \times C/c D/d$ $X14/x14 \times 19/x19 A/a \times D/d E/e$ $X14/x14 \times 19/x19 A/a \times A/a B/b$
3	selected genotypes $X14/x14 \times 19/x19 A/a B/b C/c$ $X14/x14 \times 19/x19 A/a C/c D/d$ $X14/x14 \times 19/x19 A/a D/d E/e$	crosses $X14/x14 \times 19/x19 A/a B/b C/c \times X14/x14 \times 19/x19 A/a D/d E/e$ $X14/x14 \times 19/x19 A/a C/c D/d \times X14/x14 \times 19/x19 A/a C/c D/d E/e$
4	selected genotypes $x14/x14 \times 19/x19 a/a c/c d/d$ $x14/x14 \times 19/x19 a/a B/b C/c D/d E/e$	crosses $x14/x14 \times 19/x19 a/a B/b C/c D/d E/e$
5	selected genotypes $x14/x14 \times 19/x19 a/a b/b c/c d/d e/e$	

Fig. 4

Fig. 5

Fig. 6

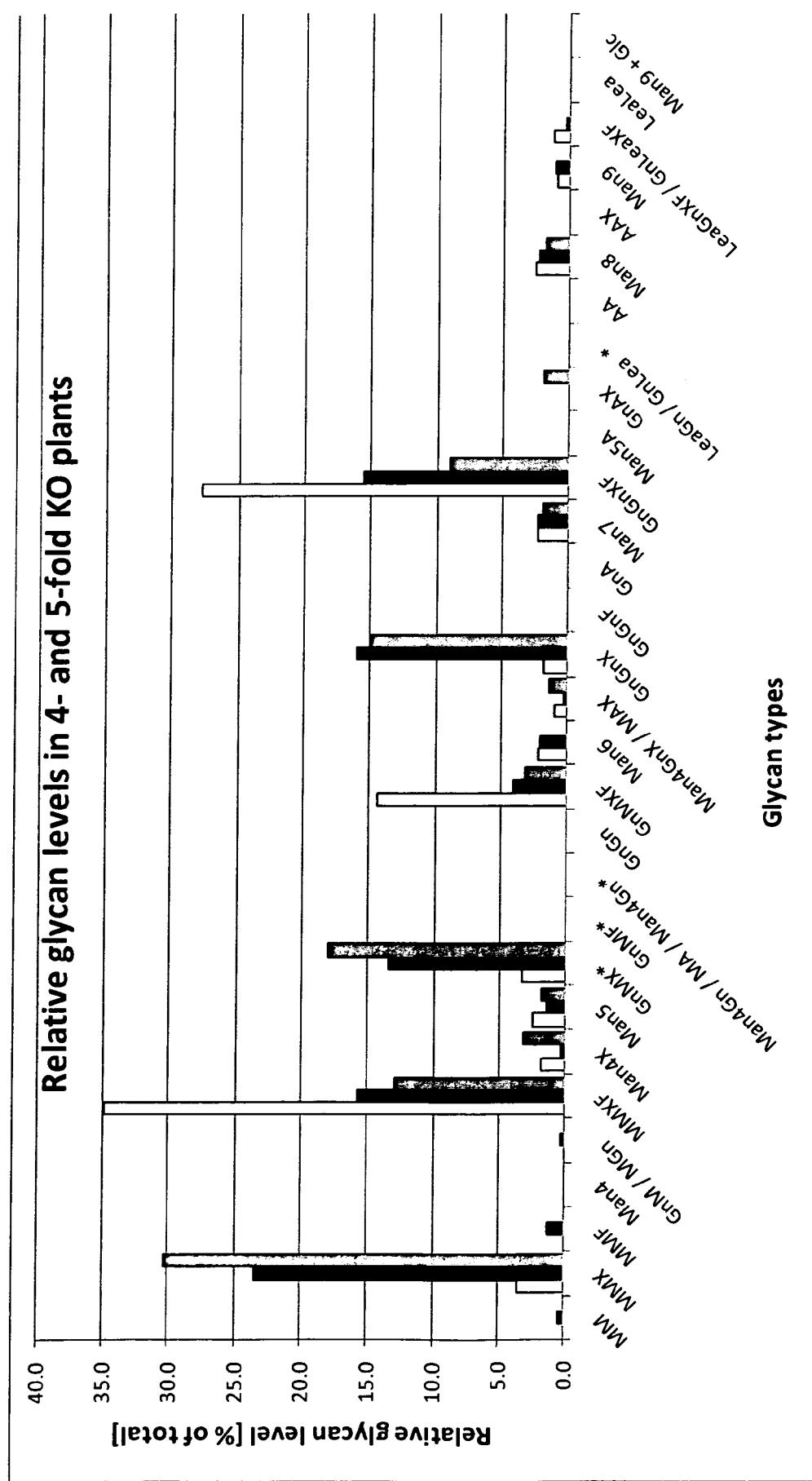
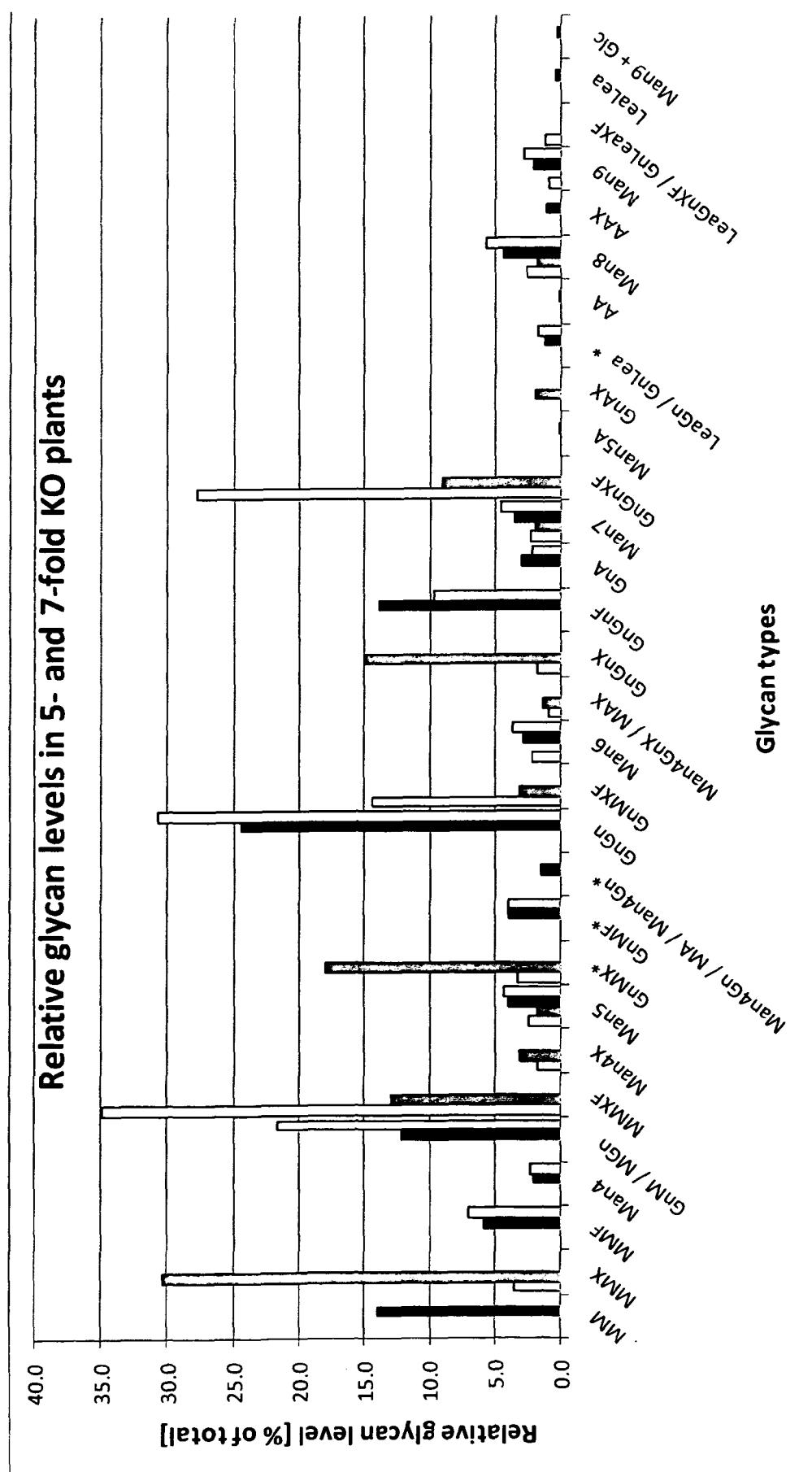
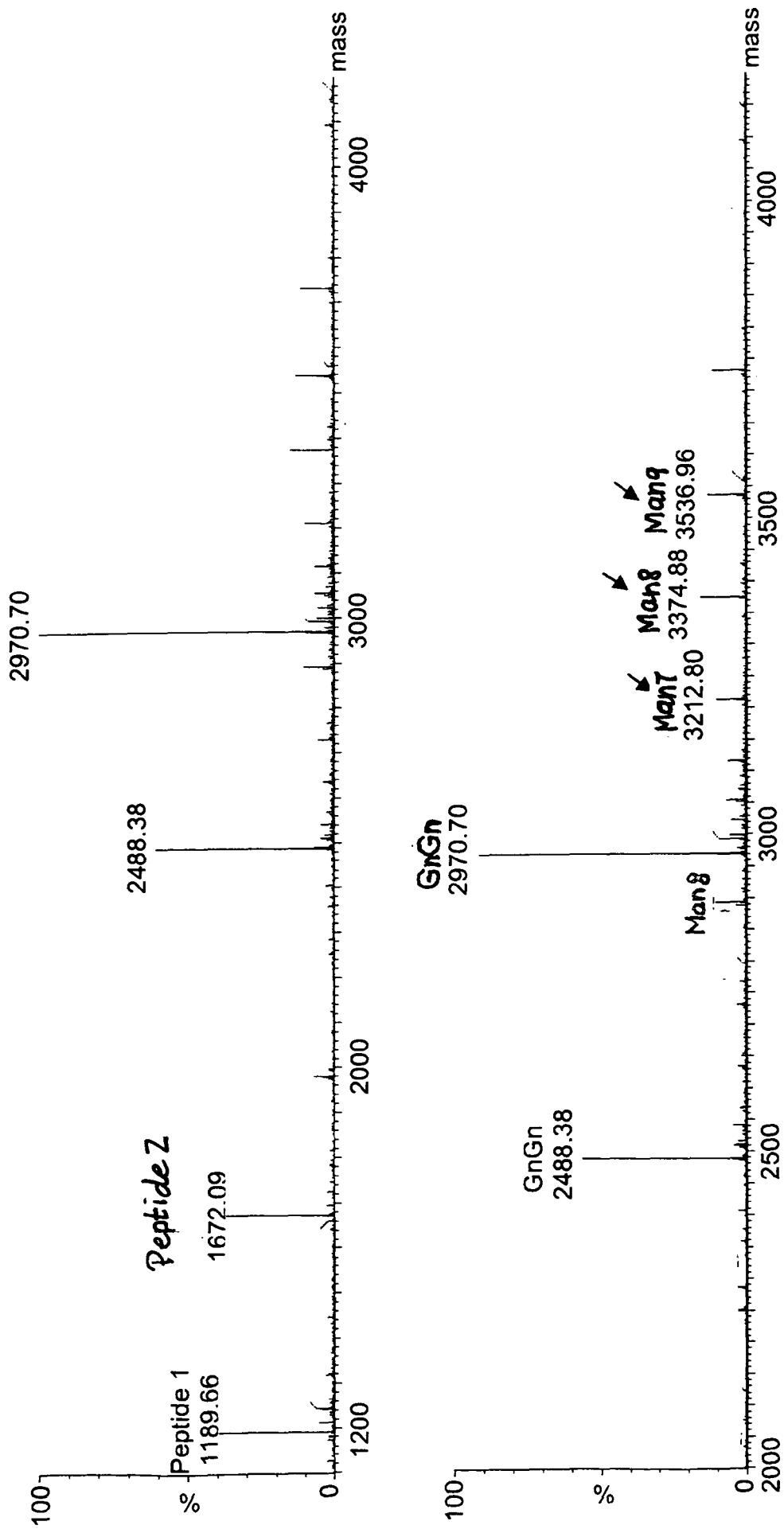




Fig. 7

8
Fig.

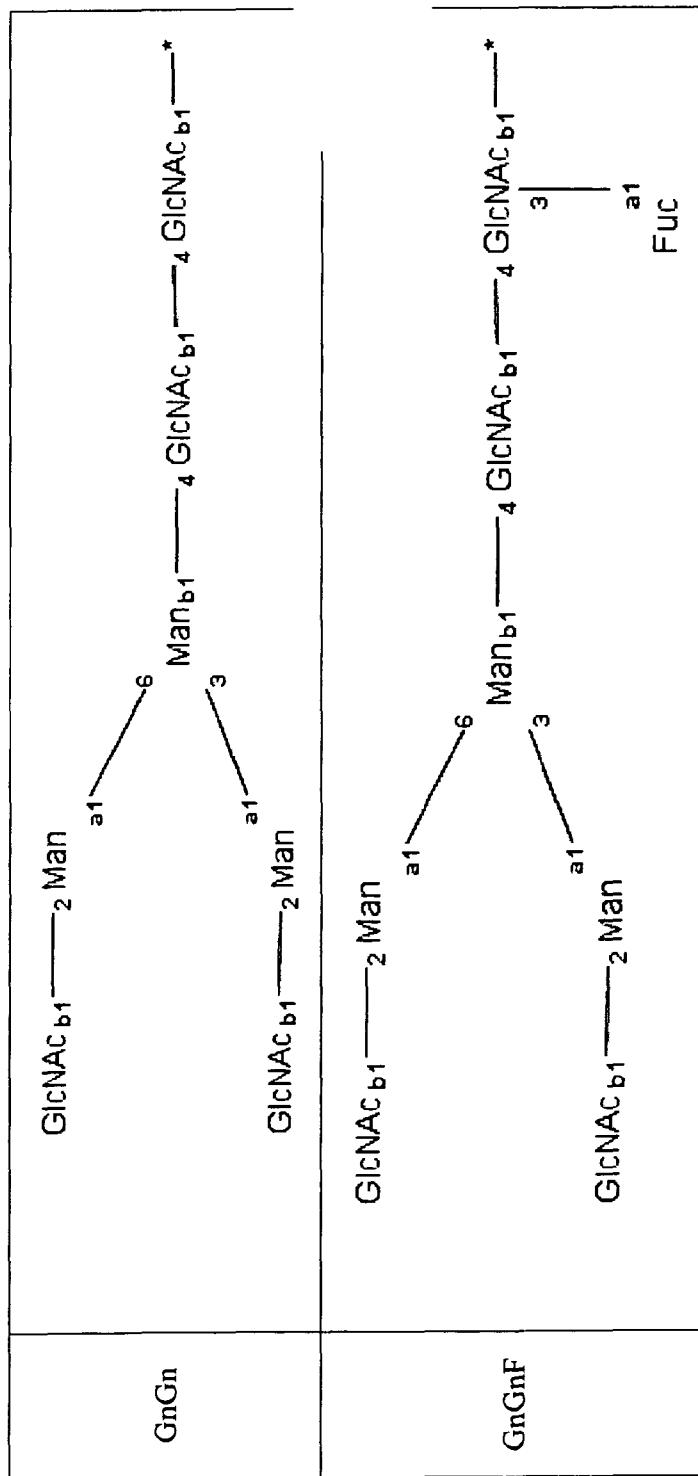


Fig. 10

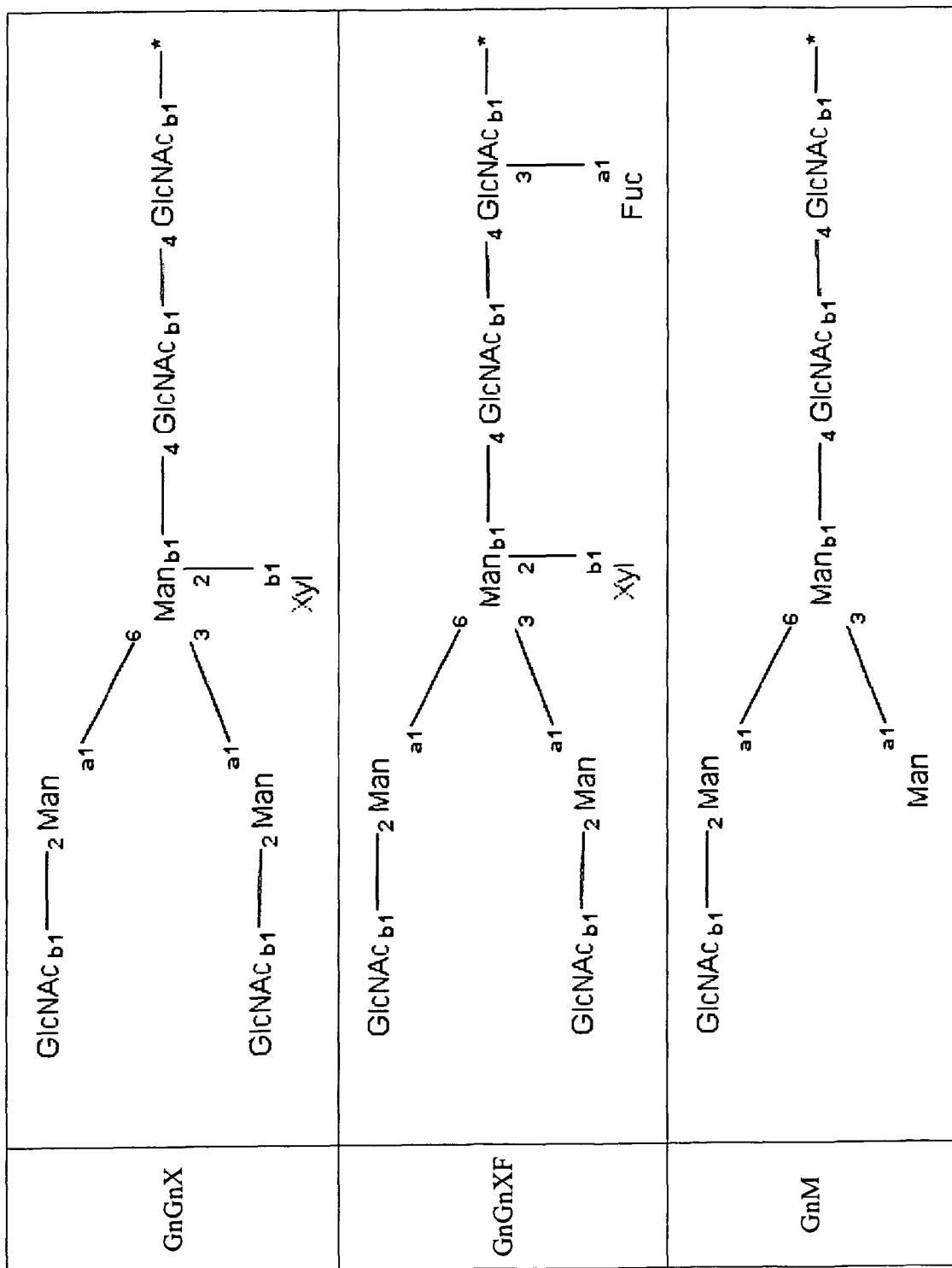


Fig. 10, continued

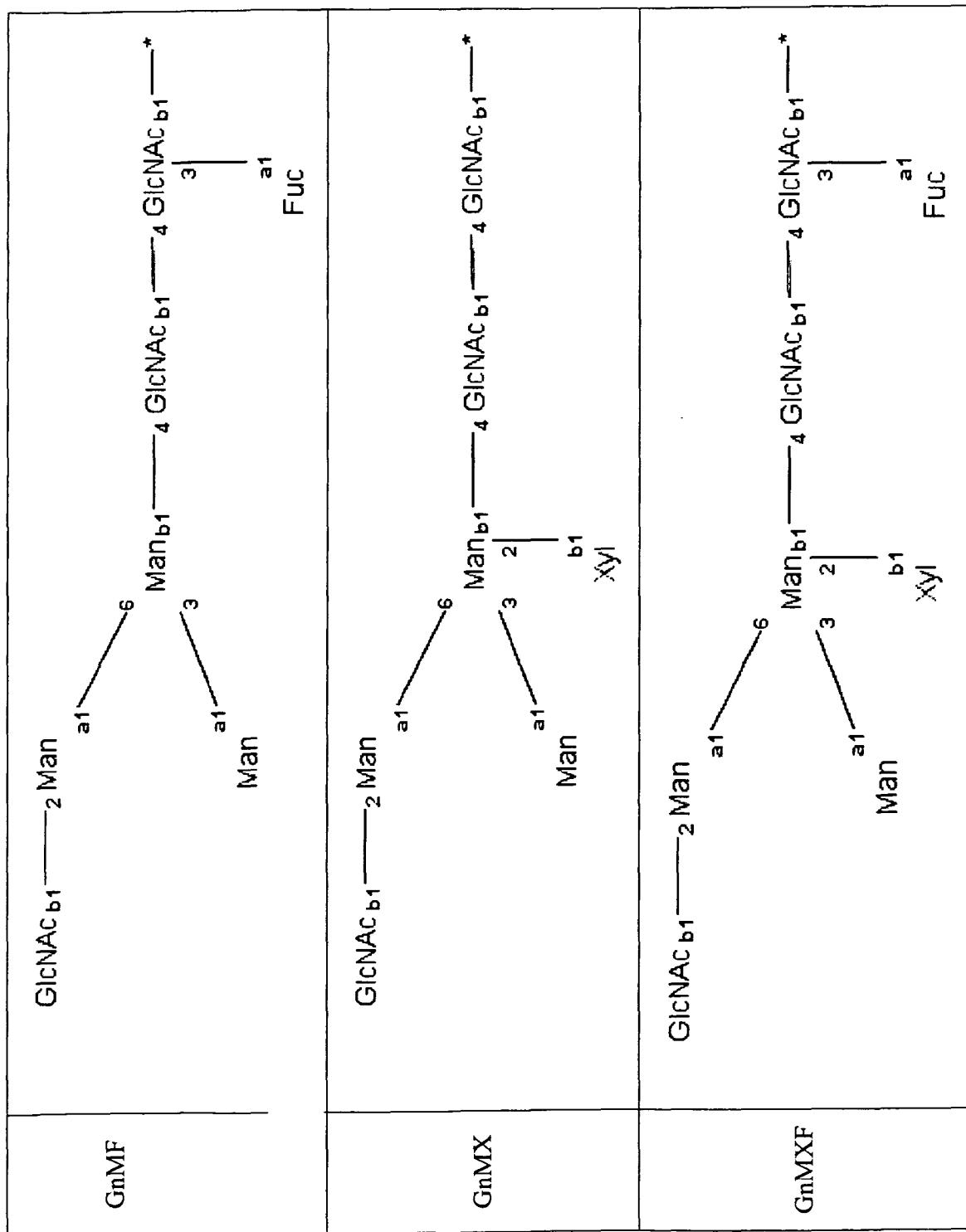


Fig. 10, continued

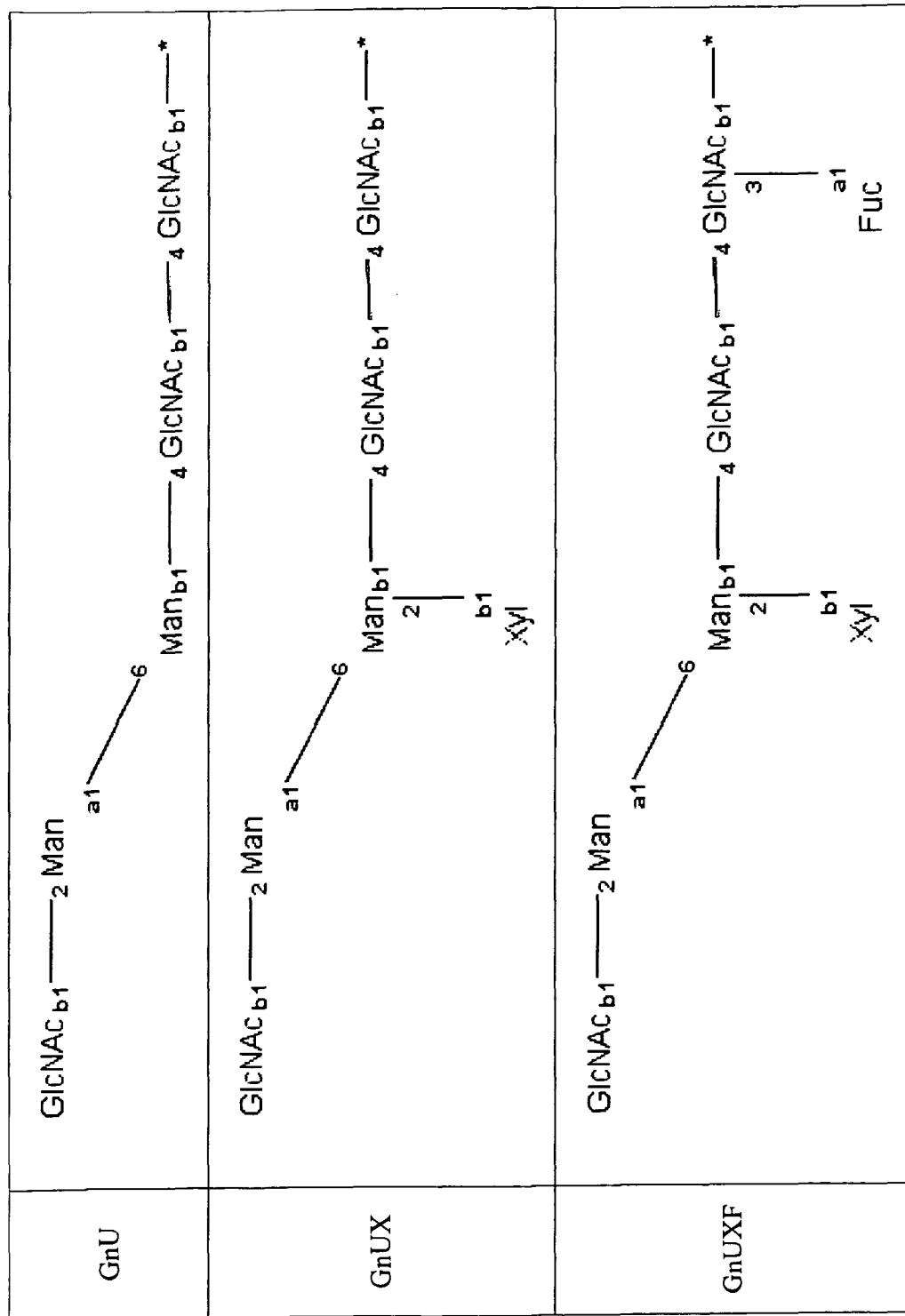


Fig. 10, continued

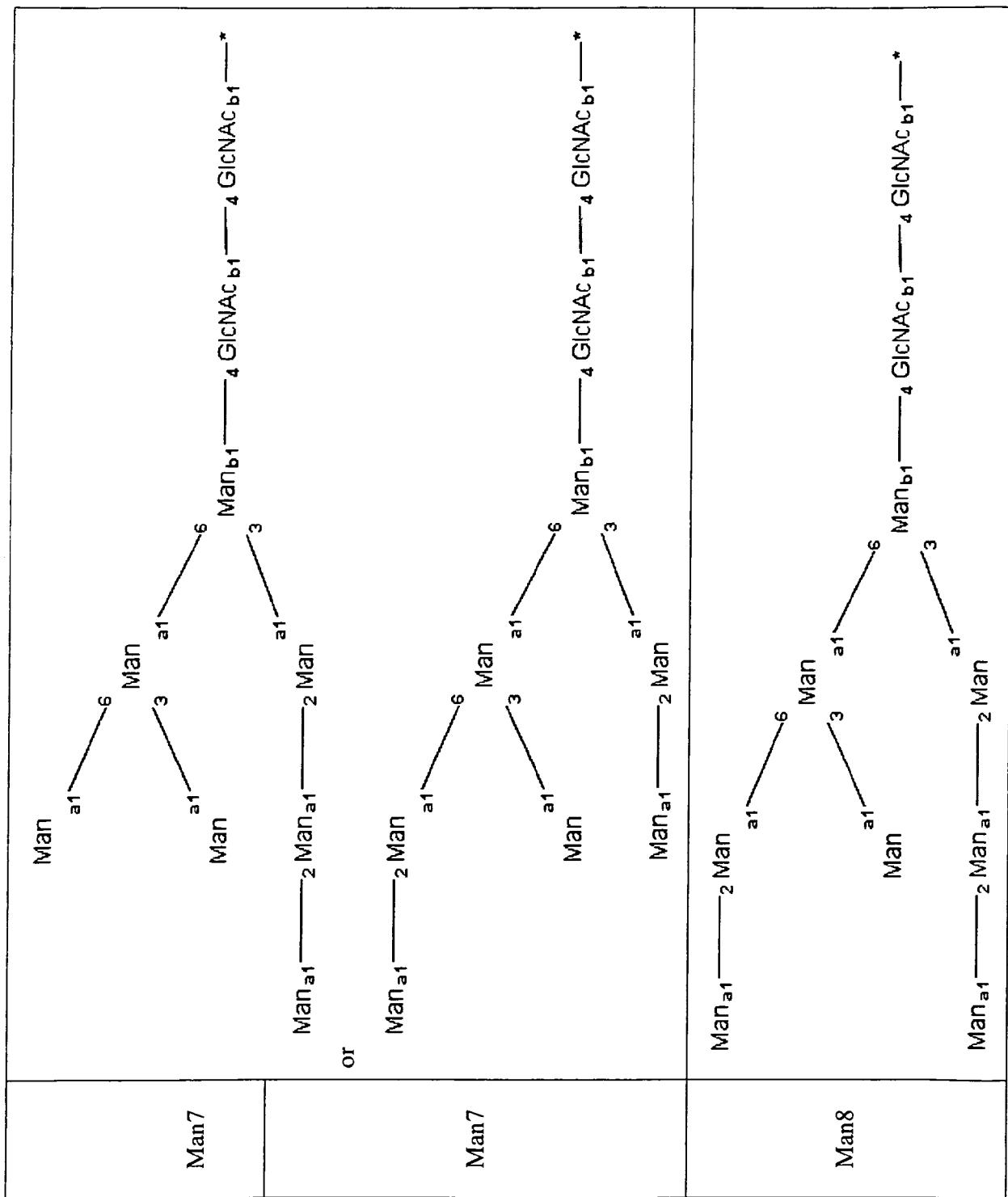


Fig. 10,
continued

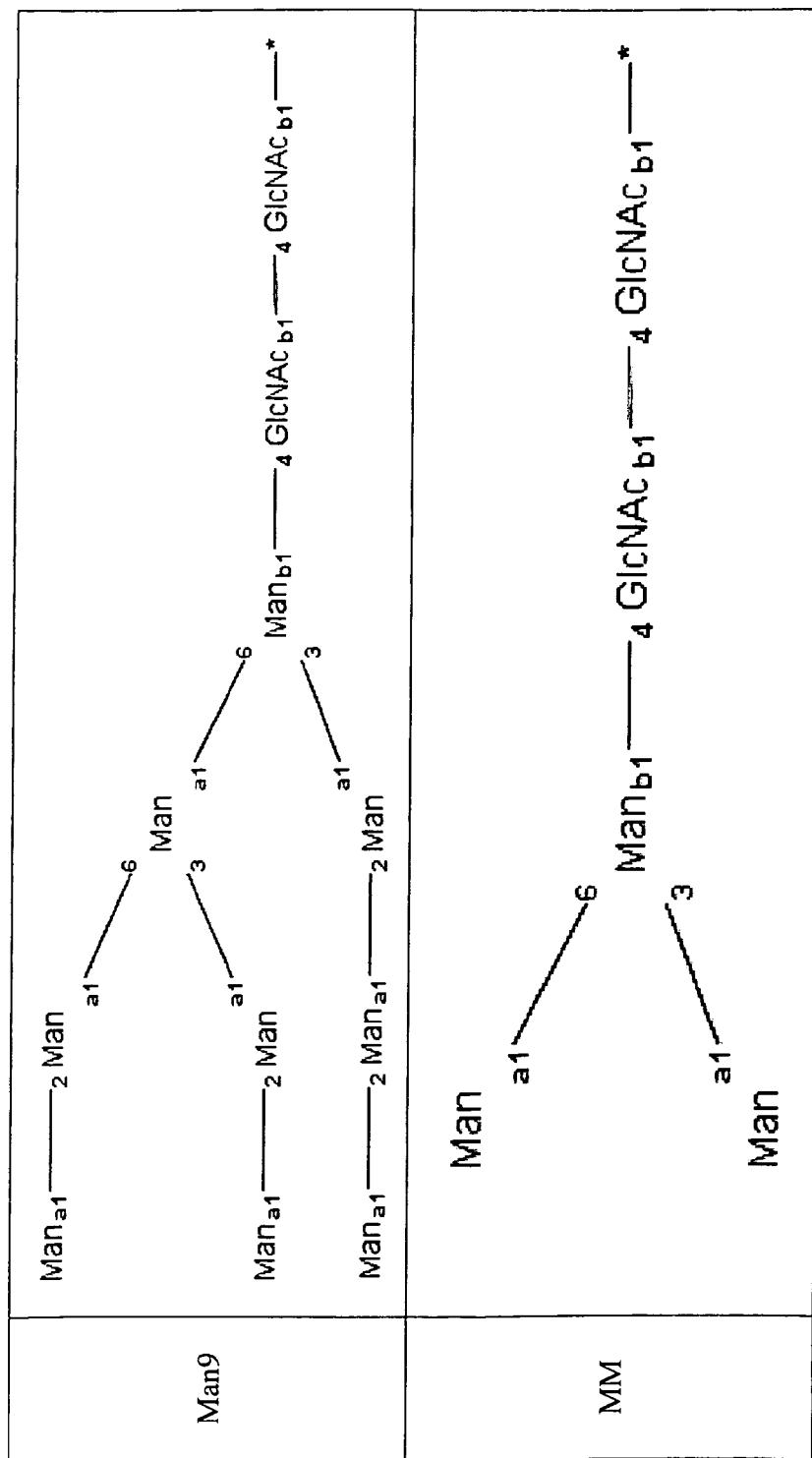


Fig. 10, continued

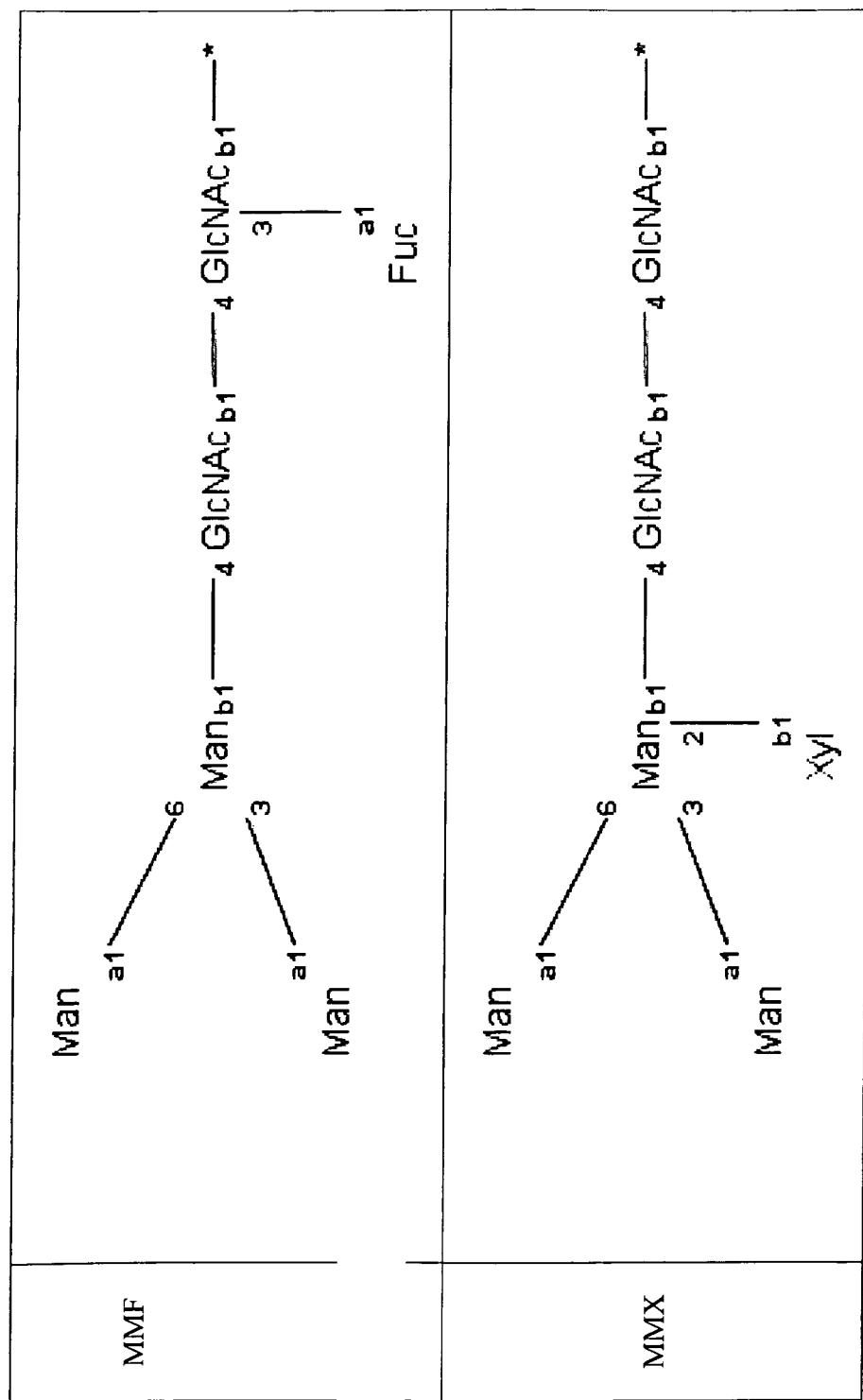


Fig. 10, continued

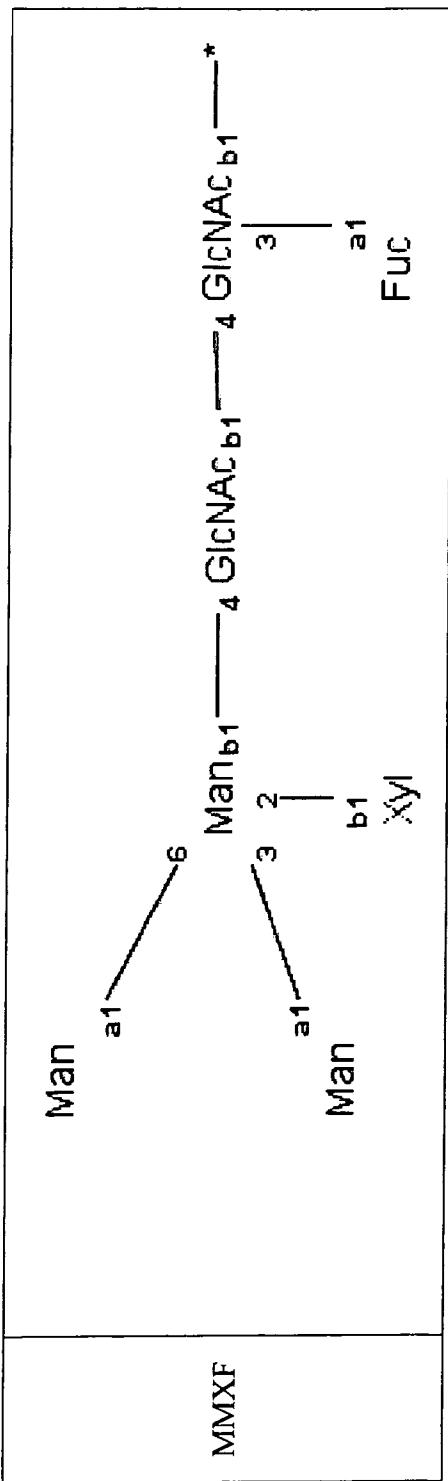
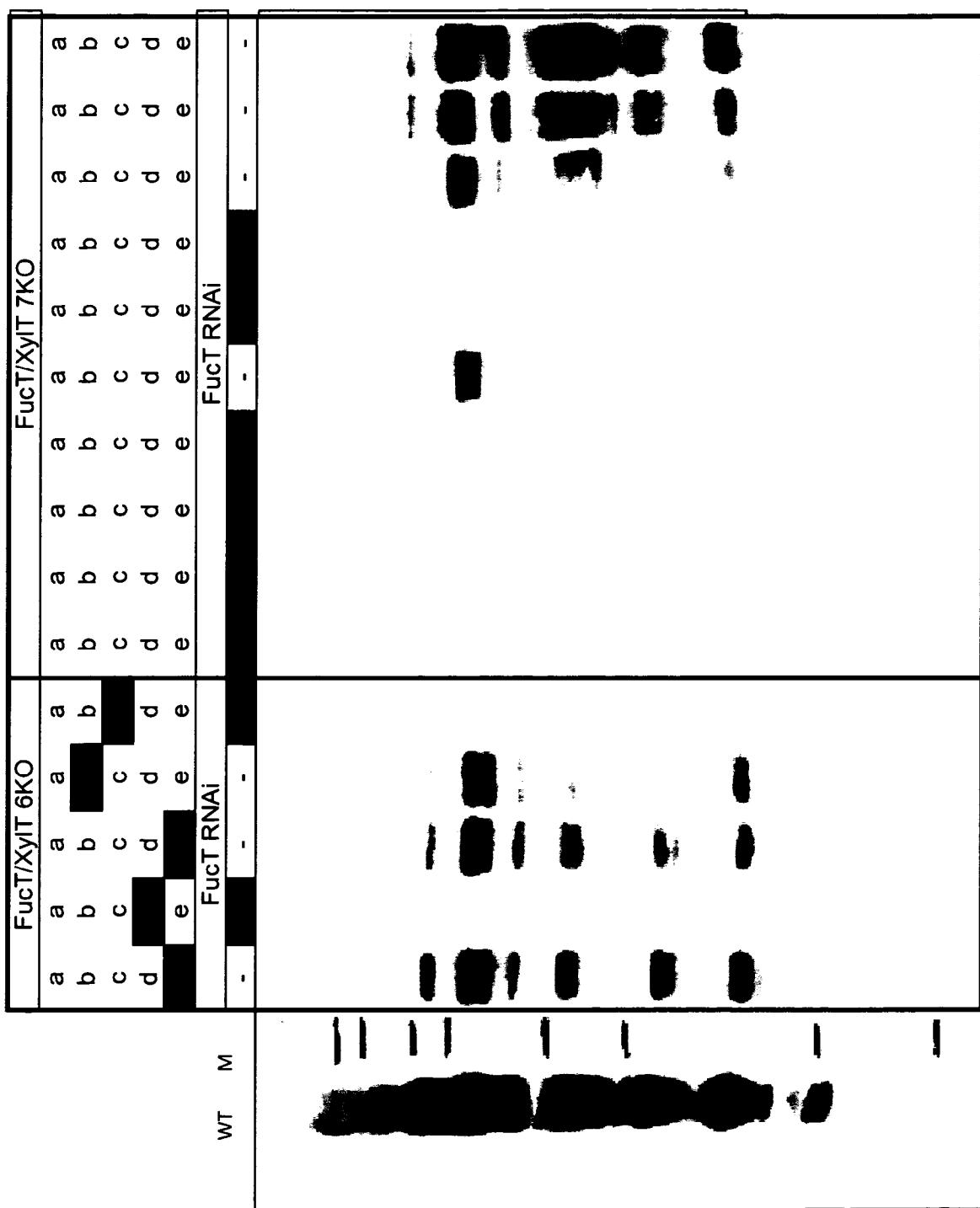



Fig. 10, continued

Fig. 11

Overview: endogenous Fucose and Xylose N-glycans

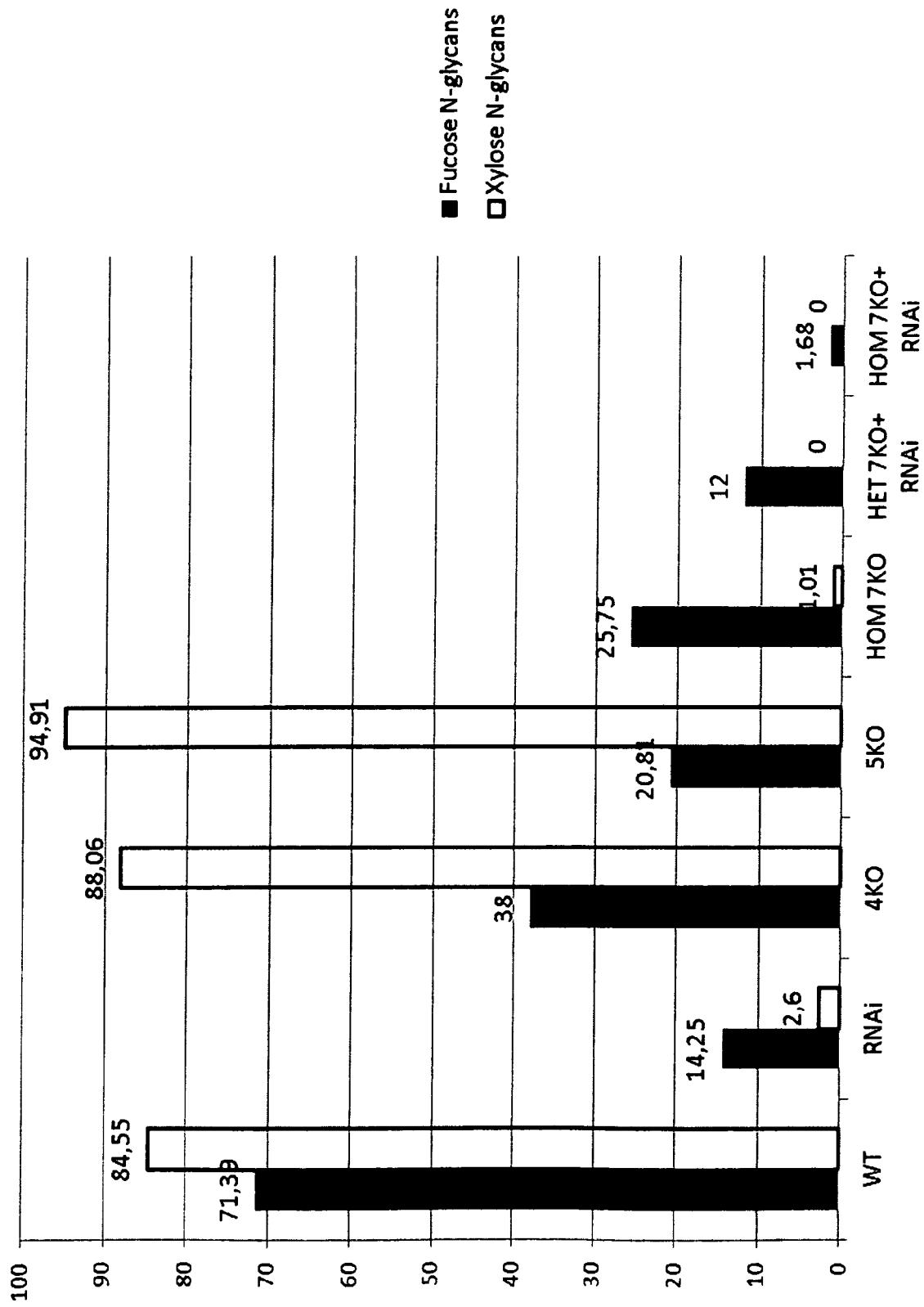


Fig. 12

SEQUENCE LISTING

<110> Icon Genetics GmbH
Weterings, Koen
van Eldik, Gerben

<120> Nicotiana benthamiana plants deficient in fucosyltransferase activity

<130> PCT-15780

<160> 21

<170> PatentIn version 3.5

<210> 1
<211> 6339
<212> DNA
<213> Nicotiana benthamiana

<220>
<221> Exon1
<222> (1)..(354)

<220>
<221> Variation
<222> (355)..(355)
<223> G to A substitution in FucT004

<220>
<221> Intron1
<222> (355)..(1097)

<220>
<221> Exon2
<222> (1098)..(1258)

<220>
<221> Intron2
<222> (1259)..(2832)

<220>
<221> Exon3
<222> (2833)..(3074)

<220>
<221> Intron3
<222> (3075)..(3647)

<220>
<221> Exon4
<222> (3648)..(3752)

<220>
<221> Intron4
<222> (3753)..(4265)

<220>
<221> Exon5
<222> (4266)..(4422)

<220>
<221> Intron5
<222> (4423)..(4846)

<220>

<221> Exon6
 <222> (4847)..(5074)

 <220>
 <221> Intron6
 <222> (5075)..(6083)

 <220>
 <221> Exon7
 <222> (6084)..(6339)

 <400> 1
 atgagatcg cgtaaattc aaacgcaccc aataagcaat ggcgcaattg gttgcctctg 60
 ttcgttgcgg tagtgattat agctgagttt tctttctgg ttcgactcga cgtagctgaa 120
 aaagccaaact cttggccga atcgaaaaat cagttcacca cggcctcttg gtccacccct 180
 aaactggctg ttgaccacgg cgacggtttag gagggtccagt tgggtgtttt gagtggtag 240
 ttcgatcatg gcttcgttacc tgggagttgc gaggagtgg tggaaaggga agattctgtg 300
 gcttattcga gggattttga taatgaacca atttttgttc atgggcctgg acaggttata 360
 tccacttcta tttatttagt aatataatata attggattta ctagtttgcattt attgagtcatt 420
 actcgttattt ctttttttgg atcggttta gtgatatgcc taaatttctt tataatgtat 480
 ttgtttaatt ttgtcgattt tatcgcaatt cctagtttgcataatcctt aaatacgtgg 540
 tattgaatta ttatggactc agacagagca tttatgatat tgagaattca tgcagccgac 600
 tccaaactgtt ttgggataga ggcgttagtag tagtagttgt tttgttgc gaaaaaaatg 660
 tattggcattc tcagtttgcattt ggttgcattt agtcttttgg tattattgtat 720
 gctggctcat agcaagagag gtttgcattt ttgtatggatt tttgtttttt agcttcattt 780
 gctgttagat attaataagg attagatgtt ctaatcctt tattttaaag tggggaaaga 840
 gtagggaaac tttgtgaatt ttcatatttgcattt tttgcctttt gaagcatata ttcatcagc 900
 gttcctttat ttatccatc acaaaaaata atactctat ggaatgtca gaaatcaatt 960
 tatcataatg caaatgccac ttcttattgt tcttggtctc ccatgctatg cgcttgcatt 1020
 atattcccta ctcatctctg actttatgaa tgtccatca tatacggat tctgtatgtct 1080
 attcaatcac tatacaggaa ttgaaatctt gttccatagg atgtaagttt ggaacagatt 1140
 ccaataagaa gcctgatgca gcatttcggc taccacaaca agctggcaca gctagttgc 1200
 tacggtcattt ggagtcagct caatactatg cagagaacaa cattactttgc acacgacgg 1260
 gggtaagcac actgtgaaag aagtcttattt tcattccctg cctttattgg caattttctt 1320
 ttcaatattt gatgtcattt tatttcattt ttatcacattt cttatatttgc ttatgtattt 1380
 ctattagttt tagataagaa cttttgcattt atatgcgtat tggcagctat aggtccttgc 1440
 caaaaatttttgcattt ccatagacaa gatataatgac ataaattctt tccctttagg cacaatataat 1500
 atttccctgtat gaaaatagtt aagattcacc tcaatcggat acaaccccttc tctacccctca 1560
 agatgggggtt aaggtcttgcattt acatactatcc ctctccagac cgcacttgc agattacatg 1620
 ggatttgttgcattt tcaccccttgcattt tgaatcatgc ctcaccctga tttttgtcgt 1680

ttaatctgg ctgggtttcc tttcttttt tcttcatccc tgttagggcaa aaaataggaa	1740
ctctgcttt caattgggaa gttttgggaa tggagtagac cacaaccat acttattgaa	1800
gctaatttag agctaaagat gctaaagtac cttttgatt agtcataaat cataatgtga	1860
atgtactagc tttggattt tgaccgcaca aatcaaacta ggacttagtt tcgacgtggt	1920
ataagtgttc ctatttact tatataggaa ctcttcct tttgttact ttgtaaaggg	1980
tgtaagatga ttaatatatt gtctactctt ggggtctct gggtatgcta aatgagctaa	2040
gaggtgatta gaactctagc aaggattgta atgacgtatt aaggacatga tcaggaaccc	2100
atgtgcagtg tttgcgcagg attatgcacc aactaatggt caatgagcac gtctaatcta	2160
gtttaatgtt tgagtttta tttgattgac tttcaatat caataaaacca tcggtaaat	2220
ttcatgatat tttactgagc catctgtaat atgatgtcca accatgccta ttcaacaaaa	2280
tgaaaattta aaaacttgca gaatttagtt agcgccacca gatactaaa gctatgccaa	2340
ctgcgtctaa cgcgaaggta aagacaaagt tgagtaagag cacagtttt gatgtgtgga	2400
ttaggtgcatt gtcacaagtt cgaaccctgt agcagacagt cctggattt aagtgagaa	2460
gggttagaggg ctgggcataat tatccatcga gtttgcacc gtgcgtcact agcccttagg	2520
gattcagtt atcataaaact taaaaaaaaag ttgaaataca aagttatTT tttaccacaa	2580
aatcttgaa ttttattgta gttgagttt tagcatcagt taaaaaattt gcttagcata	2640
tagacagaga tattaaagc tatgccagtt gccttgatag agtctaaaat taccttgatt	2700
agttggtag tgctcttcgt tatattgagt cacaagatta atttatgaag acaaagttct	2760
taaggaccat tgcgtggttt agttttattt gcataagctt gctaaccatat ttttttctg	2820
ctcacatacc agaagggat atgatgtgt aatgacaaca agcctcttt cagatgtcc	2880
tgttggatac ttctcttggg ctgagttatga tatcatggct ccagtagaaac ctaaaacaga	2940
gaatgccttg gcagcggctt tcatttctaa ttgtggctt cgcaacttcc gtttgcagc	3000
tttagaagcc ctgaaaggg caaatatcag aattgactct tatgaaagtt gtcatacaa	3060
cagggatgga agaggttagt atatttcaaa tatccaaact tactgaagaa ttagaggata	3120
gaatatggat ggtgcattt ctaagtagcg ccactaggaa gctaattcta gtccatagag	3180
tagtattatg ttttgattt actcttgggt gtcacacattt cctccaggag ataggattt	3240
actaccagtg caaaccttat gtttttctc ctggctaatg tgagcatgca tgctgtgg	3300
tttttagtga ttcaattta tgctagtctt gcttctcgat ggattatTT gcttttttc	3360
ttgtttaaaa attgagttac aattttgcca cctgataaga ataaatttgg aatacaacgt	3420
ttaaatagtt caaattcatt ctgaggaagt tagactgtga tttgttcatg aagagagaag	3480
tatagccaga aaaggtgtgg tggacaaatc atcttctga atgcagtgtt ttttacacat	3540
gcatttggtg taggtttagg ctaatatcca attgaatcac gttacttgc aataaaaaagt	3600
atccaattaa atctaacttc tggttctgt tctcaatttg atggcagttt acaaagtggc	3660

agcactgaag cgttaccagt ttagcttggc ttttggaaat tctaattgagg aggactatgt	3720
aactgaaaaa ttctttcagt ctctggtagc tggtaatcac atttgtttt tcttattggg	3780
tttataact tggattttca gaattgagag catctattat agctcaatcc atcccttaac	3840
atgatagata catttggcc tagttgtatt tgatgtggtt ttggaaagat cttctgggtt	3900
tactagcaga ctttggaaatt gtagtatcta aagcgacaa ttatttata aagttgcagg	3960
aaggacaaac ttctgaattc tgataaattc ttgacacatc caacaatggt ttgaatctag	4020
acttgcattt ctgtagaatg cacaatgtgc tctacagtct acactgagat gactcaaata	4080
tttttggaaat ttgttggaaat gattttgggg gatcatctt tgtagcat tttctttatg	4140
ctctaagaat aaattctctt tttcgaggt ttatcccattt tttaagattt tgataatttt	4200
attagttcta gattgagatt taaggtttca gcttgctgat aaaagtaagt ctataaaact	4260
tgttaggtca atccctgtgg tgggggtgc tccaaacatc caagactttg cgccttctcc	4320
taattcagtt ttacacatta aagagataaa agatgctgaa tcaattgcca ataccatgaa	4380
gtaccttgct caaaacccta ttgcatataa tgagtcatta aggtatgtat caataaaaat	4440
tgttggttatc gtcgtttttt gttttgttt tttcaggtta ctccagttgt ttacttgata	4500
atgggatggt actcttctta attgttcgat atcctgtcgt tgcaattata cactgtccaa	4560
atctctcttt tttaagtcat ctggtacctt ttgagcatag aattacgaag aaaatggtag	4620
agacccattt cactaaaatg tttcacaac tgtatttcca gttttgacc aatttatata	4680
tcgatattgc cttttgatgt taggtggata actgaattga acgaaaacac aatggatctc	4740
tctctgtttt tctgttagtta caagacattt cttccctgtc aagatttact taatgtttc	4800
ttgaattttac tggacgtgta acaaattgatt tgctttatt gttcaggtgg aagtttgggg	4860
gcccatctga tgccttcaaa gcccttggat atatggcagc agttcattca tcttgcgtt	4920
tgtgcattttt cttggcaagt aggttccggg aaagagaaga gcagagtcca aaatttatga	4980
agcgtccctg caaatgtacc agagggactg aaactgtata tcatgtataat gtaggtgaaa	5040
gaggcagggt tgagatggat tccattttct taaggtattt ttaatctcca gttactgaat	5100
tctgaccatg aatgtctaag aaaattttct ctgacccgtt aaaaagaata tcaaagtata	5160
ctttctgaat acgttcgagg cagatatgca tctactttt cctatgttc aactgtttt	5220
gtattattat tgttattgtt attgttatct tctttgtgt ttgttttgc caaatcact	5280
cagttggatga caatttttga gatatgttct ccagaactct accagacaaa gaataatatt	5340
ttagattttt taatgaggaa atagttttt agatgtctag atcgtgaaat cttctatgct	5400
ttttctttaa ttcatggaa gatggggtag actctctctc tgtccacatg tccgctgtct	5460
tcttgcctaa gacacttgaa aaagctatcg tctacttata cctttatgtt ttccctctta	5520
ccaagctgcg tattatttc atgttgaaga gctaaaagtg gaacccgaga gtttagcagct	5580
tctgctggc cttccagtag cttccatctg tacaactgtg tgatcaaata aatcttcctt	5640
tttctcctag agattccggc aagtaaagct gaaagcggag ctcttactta caatgaatac	5700

atgtgaaata	ctacatgata	tcttggccta	gagtcgatag	tctaagggt	tgaaaagtgt	5760
ttgaacatga	aaagaggaaa	agagattgt	ggttggataa	caccatagag	acactatcaa	5820
tgtgtgtata	atcatttctg	attgattcat	aggctgaagc	aggacgatcc	tgaaagttgt	5880
tgtagtgggt	agtttcttcc	aattttcttc	attatgtgga	cttcctgcac	ccccattata	5940
tctttgaat	tctgtctgg	aattctcctc	ctgttaaatt	gcgaagcatc	cccccccccc	6000
cctttttaa	tgtttctcg	tcagagctt	ccttatttct	ccgatataaa	ctttgaatca	6060
ccctaatttc	tatatctgtg	caggtcgagt	gatttgtctt	tgaaggcgtt	tgaatctgct	6120
atcctctcga	ggttcaagtc	tgttaaacat	gttcctgttt	ggaaggagga	aagacctcaa	6180
gtactacgag	gtggtgatga	actcaaactt	tacaaagtat	atcctgttgg	cttgacacag	6240
agacaagcat	tgtttcctt	cagattcaac	ggggatactg	agtttaacaa	ttacattcaa	6300
agccacccat	gtgcaaaatt	tgaagccatc	ttcgtatag			6339

<210> 2
 <211> 1503
 <212> DNA
 <213> Nicotiana benthamiana

<220>
 <221> CDS
 <222> (1)..(1503)

atg	aga	tcg	gcf	tca	aat	tca	aac	gca	ccc	aat	aag	caa	tgg	cgf	aat		48
Met	Arg	Ser	Ser	Asn	Ser	Asn	Ala	Pro	Asn	Lys	Gln	Trp	Arg	Asn			
1							5		10			15					
tgg	ttg	cct	ctg	ttc	gtt	gcc	cta	gtg	att	ata	gct	gag	ttt	tct	ttt		96
Trp	Leu	Pro	Leu	Phe	Val	Ala	Leu	Val	Ile	Ile	Ala	Glu	Phe	Ser	Phe		
							20		25			30					
ctg	gtt	cga	ctc	gac	gta	gct	gaa	aaa	gcc	aac	tct	tgg	gcc	gaa	tcg		144
Leu	Val	Arg	Leu	Asp	Val	Ala	Glu	Lys	Ala	Asn	Ser	Trp	Ala	Glu	Ser		
							35		40			45					
ttt	tat	cag	ttc	acc	acg	gcc	tct	tgg	tcc	acc	tct	aaa	ctg	gct	gtt		192
Phe	Tyr	Gln	Phe	Thr	Thr	Ala	Ser	Trp	Ser	Thr	Ser	Lys	Leu	Ala	Val		
						50		55			60						
gac	cac	ggc	gac	gtt	gag	gag	gtc	cag	ttg	ggt	gtt	ttg	agt	ggt	gag		240
Asp	His	Gly	Asp	Val	Glu	Glu	Val	Gln	Leu	Gly	Val	Leu	Ser	Gly	Glu		
						65		70			75			80			
ttc	gat	cat	ggc	ttc	gta	cct	ggg	agt	tgc	gag	gag	tgg	ttg	gaa	agg		288
Phe	Asp	His	Gly	Phe	Val	Pro	Gly	Ser	Cys	Glu	Trp	Leu	Glu	Arg			
						85		90			95						
gaa	gat	tct	gtg	gct	tat	tcg	agg	gat	ttt	gat	aat	gaa	cca	att	ttt		336
Glu	Asp	Ser	Val	Ala	Tyr	Ser	Arg	Asp	Phe	Asp	Asn	Glu	Pro	Ile	Phe		
						100		105			110						
gtt	cat	ggg	cct	gga	cag	gaa	ttg	aaa	tct	tgt	tcc	ata	gga	tgt	aag		384
Val	His	Gly	Pro	Gly	Gln	Glu	Leu	Lys	Ser	Cys	Ser	Ile	Gly	Cys	Lys		
						115		120			125						

ttt gga aca gat tcc aat aag aag cct gat gca gca ttt cggtt cta cca Phe Gly Thr Asp Ser Asn Lys Lys Pro Asp Ala Ala Phe Arg Leu Pro 130 135 140	432
caa caa gct ggc aca gct agt gtg cta cggtt tcg atg gag tca gct caa Gln Gln Ala Gly Thr Ala Ser Val Leu Arg Ser Met Glu Ser Ala Gln 145 150 155 160	480
tac tat gca gag aac aac att act ttg gca cga cga agg gga tat gat Tyr Tyr Ala Glu Asn Asn Ile Thr Leu Ala Arg Arg Arg Gly Tyr Asp 165 170 175	528
gtt gta atg aca aca agc ctc tct tca gat gtt cct gtt gga tac ttc Val Val Met Thr Thr Ser Leu Ser Ser Asp Val Pro Val Gly Tyr Phe 180 185 190	576
tct tgg gct gag tat gat atc atg gct cca gta gaa cct aaa aca gag Ser Trp Ala Glu Tyr Asp Ile Met Ala Pro Val Glu Pro Lys Thr Glu 195 200 205	624
aat gcc ttg gca gcg gct ttc att tct aat tgt ggt gct cgc aac ttc Asn Ala Leu Ala Ala Phe Ile Ser Asn Cys Gly Ala Arg Asn Phe 210 215 220	672
cgt ttg caa gct tta gaa gcc ctt gaa agg gca aat atc aga att gac Arg Leu Gln Ala Leu Glu Ala Leu Glu Arg Ala Asn Ile Arg Ile Asp 225 230 235 240	720
tct tat gga agt tgt cat cat aac agg gat gga aga gtt gac aaa gtg Ser Tyr Gly Ser Cys His His Asn Arg Asp Gly Arg Val Asp Lys Val 245 250 255	768
gca gca ctg aag cgt tac cag ttt agc ttg gct ttt gag aat tct aat Ala Ala Leu Lys Arg Tyr Gln Phe Ser Leu Ala Phe Glu Asn Ser Asn 260 265 270	816
gag gag gac tat gta act gaa aaa ttc ttt cag tct ctg gta gct ggg Glu Glu Asp Tyr Val Thr Glu Lys Phe Phe Gln Ser Leu Val Ala Gly 275 280 285	864
tca atc cct gtg gtg gtt ggt gct cca aac atc caa gac ttt gcg cct Ser Ile Pro Val Val Gly Ala Pro Asn Ile Gln Asp Phe Ala Pro 290 295 300	912
tct cct aat tca gtt tta cac att aaa gag ata aaa gat gct gaa tca Ser Pro Asn Ser Val Leu His Ile Lys Glu Ile Lys Asp Ala Glu Ser 305 310 315 320	960
att gcc aat acc atg aag tac ctt gct caa aac cct att gca tat aat Ile Ala Asn Thr Met Lys Tyr Leu Ala Gln Asn Pro Ile Ala Tyr Asn 325 330 335	1008
gag tca tta agg tgg aag ttt gag ggc cca tct gat gcc ttc aaa gcc Glu Ser Leu Arg Trp Lys Phe Glu Gly Pro Ser Asp Ala Phe Lys Ala 340 345 350	1056
ctt gtt gat atg gca gca gtt cat tca tct tgt cgt ttg tgc atc ttc Leu Val Asp Met Ala Ala Val His Ser Ser Cys Arg Leu Cys Ile Phe 355 360 365	1104
ttg gca agt agg atc cgg gaa aga gaa gag cag agt cca aaa ttt atg Leu Ala Ser Arg Ile Arg Glu Arg Glu Glu Gln Ser Pro Lys Phe Met 370 375 380	1152
aag cgt ccc tgc aaa tgt acc aga ggg act gaa act gta tat cat gta Lys Arg Pro Cys Lys Cys Thr Arg Gly Thr Glu Thr Val Tyr His Val 385 390 395 400	1200

tat gta ggt gaa aga ggc agg ttt gag atg gat tcc att ttc tta agg	1248
Tyr Val Gly Glu Arg Gly Arg Phe Glu Met Asp Ser Ile Phe Leu Arg	
405 410 415	
tcg agt gat ttg tct ttg aag gcg ttt gaa tct gct atc ctc tcg agg	1296
Ser Ser Asp Leu Ser Leu Lys Ala Phe Glu Ser Ala Ile Leu Ser Arg	
420 425 430	
ttc aag tct gtt aaa cat gtt cct gtt tgg aag gag gaa aga cct caa	1344
Phe Lys Ser Val Lys His Val Pro Val Trp Lys Glu Glu Arg Pro Gln	
435 440 445	
gta cta cga ggt ggt gat gaa ctc aaa ctt tac aaa gta tat cct gtt	1392
Val Leu Arg Gly Gly Asp Glu Leu Lys Leu Tyr Lys Val Tyr Pro Val	
450 455 460	
ggc ttg aca cag aga caa gca ttg ttt tcc ttc aga ttc aac ggg gat	1440
Gly Leu Thr Gln Arg Gln Ala Leu Phe Ser Phe Arg Phe Asn Gly Asp	
465 470 475 480	
act gag ttt aac aat tac att caa agc cac cca tgt gca aaa ttt gaa	1488
Thr Glu Phe Asn Asn Tyr Ile Gln Ser His Pro Cys Ala Lys Phe Glu	
485 490 495	
gcc atc ttc gta tag	1503
Ala Ile Phe Val	
500	

<210> 3
 <211> 500
 <212> PRT
 <213> Nicotiana benthamiana

 <400> 3

Met Arg Ser Ala Ser Asn Ser Asn Ala Pro Asn Lys Gln Trp Arg Asn
 1 5 10 15

Trp Leu Pro Leu Phe Val Ala Leu Val Ile Ile Ala Glu Phe Ser Phe
 20 25 30

Leu Val Arg Leu Asp Val Ala Glu Lys Ala Asn Ser Trp Ala Glu Ser
 35 40 45

Phe Tyr Gln Phe Thr Thr Ala Ser Trp Ser Thr Ser Lys Leu Ala Val
 50 55 60

Asp His Gly Asp Val Glu Glu Val Gln Leu Gly Val Leu Ser Gly Glu
 65 70 75 80

Phe Asp His Gly Phe Val Pro Gly Ser Cys Glu Glu Trp Leu Glu Arg
 85 90 95

Glu Asp Ser Val Ala Tyr Ser Arg Asp Phe Asp Asn Glu Pro Ile Phe
 100 105 110

Val His Gly Pro Gly Gln Glu Leu Lys Ser Cys Ser Ile Gly Cys Lys
 115 120 125

Phe Gly Thr Asp Ser Asn Lys Lys Pro Asp Ala Ala Phe Arg Leu Pro
130 135 140

Gln Gln Ala Gly Thr Ala Ser Val Leu Arg Ser Met Glu Ser Ala Gln
145 150 155 160

Tyr Tyr Ala Glu Asn Asn Ile Thr Leu Ala Arg Arg Arg Gly Tyr Asp
165 170 175

Val Val Met Thr Thr Ser Leu Ser Ser Asp Val Pro Val Gly Tyr Phe
180 185 190

Ser Trp Ala Glu Tyr Asp Ile Met Ala Pro Val Glu Pro Lys Thr Glu
195 200 205

Asn Ala Leu Ala Ala Ala Phe Ile Ser Asn Cys Gly Ala Arg Asn Phe
210 215 220

Arg Leu Gln Ala Leu Glu Ala Leu Glu Arg Ala Asn Ile Arg Ile Asp
225 230 235 240

Ser Tyr Gly Ser Cys His His Asn Arg Asp Gly Arg Val Asp Lys Val
245 250 255

Ala Ala Leu Lys Arg Tyr Gln Phe Ser Leu Ala Phe Glu Asn Ser Asn
260 265 270

Glu Glu Asp Tyr Val Thr Glu Lys Phe Phe Gln Ser Leu Val Ala Gly
275 280 285

Ser Ile Pro Val Val Val Gly Ala Pro Asn Ile Gln Asp Phe Ala Pro
290 295 300

Ser Pro Asn Ser Val Leu His Ile Lys Glu Ile Lys Asp Ala Glu Ser
305 310 315 320

Ile Ala Asn Thr Met Lys Tyr Leu Ala Gln Asn Pro Ile Ala Tyr Asn
325 330 335

Glu Ser Leu Arg Trp Lys Phe Glu Gly Pro Ser Asp Ala Phe Lys Ala
340 345 350

Leu Val Asp Met Ala Ala Val His Ser Ser Cys Arg Leu Cys Ile Phe
355 360 365

Leu Ala Ser Arg Ile Arg Glu Arg Glu Glu Gln Ser Pro Lys Phe Met
370 375 380

Lys Arg Pro Cys Lys Cys Thr Arg Gly Thr Glu Thr Val Tyr His Val

385 390 395 400

Tyr Val Gly Glu Arg Gly Arg Phe Glu Met Asp Ser Ile Phe Leu Arg
405 410 415

Ser Ser Asp Leu Ser Leu Lys Ala Phe Glu Ser Ala Ile Leu Ser Arg
420 425 430

Phe Lys Ser Val Lys His Val Pro Val Trp Lys Glu Glu Arg Pro Gln
435 440 445

Val Leu Arg Gly Gly Asp Glu Leu Lys Leu Tyr Lys Val Tyr Pro Val
450 455 460

Gly Leu Thr Gln Arg Gln Ala Leu Phe Ser Phe Arg Phe Asn Gly Asp
465 470 475 480

Thr Glu Phe Asn Asn Tyr Ile Gln Ser His Pro Cys Ala Lys Phe Glu
485 490 495

Ala Ile Phe Val
500

<210> 4
<211> 6367
<212> DNA
<213> Nicotiana benthamiana

<220>
<221> Exon1
<222> (1)..(354)

<220>
<221> Intron1
<222> (355)..(1047)

<220>
<221> Exon2
<222> (1048)..(1208)

<220>
<221> Intron2
<222> (1209)..(2812)

<220>
<221> Exon3
<222> (2813)..(3054)

<220>
<221> Variation
<222> (3054)..(3054)
<223> G to A substitution in FucT006

<220>
<221> Intron3
<222> (3055)..(3632)

<220>

gcacgacggc	gggtaagcac	tctatgaaag	aagtcttatt	tcattccctg	ccttattgg	1260
caaatttctt	ttcaatattt	gatgtcattc	tcttcattt	ttatcacatt	cttatttaag	1320
ttatgtattt	ctcttagttt	tagataagaa	ctttgcatt	ataagcgtat	tggaagctat	1380
aggccttgc	caaaattttg	tcatagacaa	gatattttaa	aactgatgac	atgaattctt	1440
tccctttagt	cacaaaatat	atttcctgta	gaaaatagtt	aagattcact	tctatcgaa	1500
ataacctctc	taccttcaag	atggggcaa	ggtctgcgt	catactaccc	tctctaaacc	1560
ccacttgtgg	gattacattt	ggttttgc	gttgcgtttt	ttgttattca	ccttgactga	1620
atcatccctg	accctgctt	ttgtcgttt	aatcttgc	ggtttcctt	ctcttttct	1680
tcattcctgt	aggacacaaa	atggaaatc	tgctttca	ttgggagtt	gggtatggag	1740
tggaccacga	accatactt	ttgaagctaa	tttagagata	aagatgctaa	agtaccttt	1800
tgattagtca	taaatcatat	tgtgaattac	tagcttgc	tatgtgaccg	aagaatcaa	1860
actggactta	gtttcgacgt	ggtataagtc	tcttcctatt	ttacttata	agaagctctt	1920
ctcctttgt	ttactttgt	aagggtataa	gatgattaat	atattgtcta	ctcttgggg	1980
tctctggta	tgctatatga	gctaagaggt	gattagaact	ccagcaagga	ttgtaatgac	2040
atattaagga	catgatcaga	accatgttc	agtgttgca	caggattatg	caccaactaa	2100
tggtaatga	gcacatctaa	tctagttaa	tgttgagtt	gttattggat	tgactttca	2160
ttatcaataa	accatcggtc	aaatttcatg	atatttacg	gagccatctg	taatatgatg	2220
tccaaccatg	cctattcaac	aaaatgaaaa	ttgaaaactt	gcagaattag	ttgagcgcca	2280
cggcccccacc	agataacttaa	agctatgcca	actgcgtcta	acagaagtt	aaagacaaag	2340
tttagtaaga	gcacaatttt	tgtgtgtgg	attaggtgca	tgtcacaagt	tcgaacccta	2400
tcgcagacaa	agtccttagta	tttaagtgg	gaagggtaga	ggctggcg	tattaccgat	2460
cgaatttcga	accgtgcgtc	actagtcctt	agggatttca	gttacataa	actaaaaaaa	2520
gttgaatac	aaagttaatt	tttttaccac	aaaatcttgc	aattttatttgc	tagttgagat	2580
tttagcatca	tcttgcttac	aaaatttgct	tagcatata	acagagat	ttaaagctat	2640
gccagttgcc	ttgatggagt	ctacaattac	cttggtagt	tggtagtgc	tctcgtgag	2700
attgagtcac	aagattaatt	tatgaagcca	aagttctaa	ggaccattgc	gtgggtgagt	2760
tttatttgca	taagcttgct	aacctatttt	ctttttccg	ctcacatacc	agaaggggat	2820
atgatgtgt	aatgacaaca	agcctctt	cagatgttcc	tgttgatac	ttctcttggg	2880
ctgagtatga	tatcatggct	ccagtagaac	ctaaaacaga	gaatgccttgc	gcagccgctt	2940
tcatttctaa	ttgcgggtgct	cgcaacttcc	gtttgcaagc	tttagaaagcc	cttggaaaggg	3000
caaatatcag	aattgactct	tatggcagtt	gtcatcataa	cagggatgg	agaggttagt	3060
atatttcaaa	tatccaaact	tactgaagaa	tttagaggata	gaatatggat	ggtgcatctt	3120
ctaagaagcg	ccacttaggga	gctatttctt	gtccatagag	tagtattatg	tttttgcattt	3180

actttccctt gggatcaca cttccctcca ggagacagga tttcaactacc agtgcaaacc 3240
ttatgtttt ctcctggcta atgtgagcat gcatttcgtg gttttatag tgattcaat 3300
ttatgctagt ccaatgattt cttctcaatg gattatggc ctcttttat tgttaaaaaa 3360
ttgagttaca atttccacc tgataagaat aaatttggaa tacaacattt aaatagttca 3420
aattcattat gaggaagtta gactgtgatt tgttgaagag agaagtatag ccagaaaagg 3480
tgtggggac aaatcatctt tctgaatgcg gtgtatTTt tacatgcatt tggtaggt 3540
ttaggctaat atctaattga atcacgttac ttgtcaacaa aaagtatcca attaaatcta 3600
acttctggtt tctgttctca atttgcgtt agtagacaaa gtggcagcac tgaagcgtt 3660
caagtttagc ttggctttt agaattctaa tgaggaggac tatgtaccc aaaaattctt 3720
tcagtctctg gtagctggta atcacattt tttttctta ttggatttt agacttggat 3780
tttcagaatt gagagcatct attatacg tgcgtatccc tcaacatgtt agatacattt 3840
gttccttagtt gtatTTgtt tggtttggg aagatTTctt gggttacta gcagacctt 3900
gaattttagt atctaaagcg tacaattttt tatagaattt gcaggaagga caaacttctg 3960
aattctgata aactcttgac acattctacg atggtttggc tctagacttgc catttctgt 4020
gaatgcacaa tggctctat agtctacact gagatggctc aaatattttt ggaattttt 4080
tggaaatgatt ttgggggtat catttttagtt ggcattttc tttatgtctt aagactaaat 4140
tctctttttt cgaggTTTt cctatgttta agatTTgtt aattttatag ttctggattt 4200
agatTTaagg ttcaacttgc ctgataaaag taagtctata aaacttgcgtt ggtcaatccc 4260
tgtgggggtt ggtgctccaa acatccaaga ctttgcgcct tctcctaatt cagttttaca 4320
cattaaagag ataaaagatg ctgaattttt tgccaaatacc atgacgtacc ttgctcaaaa 4380
ccctatttgc tctaatgtt cattaaggta tggatcaata aaaatttggat tttatgtcat 4440
tttttggat ttttttctt gttactccag ttgttttgc taatggatg gtactcttct 4500
taatttggat catttttttttgc gttgcaattt tacactgtcc acatctcttctt ttttttgc 4560
atccgggttcc ttttgcatttcat agaatttacga agaaaaatag tacagacccca ttttgcatttttca 4620
atgttttgc ttttgcatttcat agaatttacga agaaaaatag tacagacccca ttttgcatttttca 4680
tggatccat ttttgcatttcat agaatttacga agaaaaatag tacagacccca ttttgcatttttca 4740
ttacaagaca ttttgcatttcat agaatttacga agaaaaatag tacagacccca ttttgcatttttca 4800
aacaatgttcat ttttgcatttcat agaatttacga agaaaaatag tacagacccca ttttgcatttttca 4860
agccctgggtt gatatggcag cagtttgcatttcat ttttgcatttcat ttttgcatttcat 4920
taggatccat ttttgcatttcat agaatttacga agaaaaatag tacagacccca ttttgcatttttca 4980
cagagagact gaaactgtct atcatgtata tggatccat ttttgcatttcat ttttgcatttttca 5040
ttccatttttca ttttgcatttcat agaatttacga agaaaaatag tacagacccca ttttgcatttttca 5100
gcaaaatTTt cctgacttgc ttttgcatttcat ttttgcatttcat ttttgcatttttca 5160
cagatatgttcat ttttgcatttcat ttttgcatttcat ttttgcatttcat ttttgcatttttca 5220

ttctttgct gttgtttgc actcaatcac tcagtgatg acaattttg agatatgttc	5280
tcctgaattc tacctgacaa agaacaatgt tctagattt ttaatgagga aataacattt	5340
gagatgtcta gatcgaaaaa ttttctgtgc ttttccttca attcatttgg gatggggtag	5400
actatttctc tgtccatata tccgttgtct tcttgccaa gaaacttcaa aagctatcat	5460
ctacatttac ctttgtctgt tccctttaac caagctgcgt gattattttc atgttcaaga	5520
ggtaaaagta gaaccccgat agttgcagc ttctgctggg cttccagtc tcctccatct	5580
gtacaactgt gtgatcaaat aattccttctt tttctcttag agattccgac aagtaagctg	5640
aaagcggagc tcttatttac gatgaatgca tgtgaaatac tacatgatat cttggccaag	5700
agtgcatagt ctaaggggtt gaaaagtgtt tgaacatgaa agaggaaaag agtattgtgg	5760
ttggataaca ccatagagac ctctcaatct gtgtataatc atttctgatt gattcataga	5820
ctgaagcagg acaatcttga aagttgttgt agtggtagt tgcttctgta tttatcggag	5880
taacgaaact aaaggaaaag gacattgaac cctttcatt tttcgaaaat tcttcaaatt	5940
ttcttcatta tgtggacttc ctgcacccccc attatatctt ttgaattctg tcctagaatt	6000
ctctcctgct aaattgcaaa gcattcattcc tttttaatg tttctcgctc agagcttcc	6060
ttgtctctct gatataaaact ttgaatcacc ctaatttctg tatctgtgca ggtcgagtga	6120
tttgtcttta aaggcgtttgc aatctgctat tctctcgagg ttcaagtctg tttaaacatgt	6180
tcctgtttgg agggaggaaa gacctaagt actacgaggt ggtgatgaac tcaaacttta	6240
ctaagtatat cctgtggct tgacacagag acaagcatttgc ttttccttca gattcaacgg	6300
ggatactgag tttaagaattt acattcaaag ccaccatgt gcaaaatttgc aagccatctt	6360
cgtata	6367

<210> 5
 <211> 1503
 <212> DNA
 <213> Nicotiana benthamiana

<220>
 <221> CDS
 <222> (1)..(1380)

<400> 5	
atg aga tcg tcg tca aat tca aac gca ccc gat aaa caa tgg cgc aat	48
Met Arg Ser Ser Ser Asn Ser Asn Ala Pro Asp Lys Gln Trp Arg Asn	
1 5 10 15	
tgg ttg cct ctg ttc gtt gcc cta gtt gtt ata gca gaa att tct ttt	96
Trp Leu Pro Leu Phe Val Ala Leu Val Val Ile Ala Glu Ile Ser Phe	
20 25 30	
ctg gtt cga ctc gac gtg gct gaa aaa gcc aac tct tgg gct gag tcg	144
Leu Val Arg Leu Asp Val Ala Glu Lys Ala Asn Ser Trp Ala Glu Ser	
35 40 45	
ttt tat cag ttc acc acg gcg tct tgg tca acc tcc aaa ctg gct gtt	192
Phe Tyr Gln Phe Thr Thr Ala Ser Trp Ser Thr Ser Lys Leu Ala Val	

50	55	60	
gac ggc ggc gat gtt gat gag gtc ctg ttg ggt gtt ttg agt ggt gag			240
Asp Gly Gly Asp Val Asp Glu Val Leu Leu Gly Val Leu Ser Gly Glu			
65	70	75	80
ttt gat cag ggc ttc cta cct tgg agt tgc gag gag tgg ttg gaa agg			288
Phe Asp Gln Gly Phe Leu Pro Trp Ser Cys Glu Glu Trp Leu Glu Arg			
85	90	95	
gaa gat tat gtg gct tat gcg agg gat ttt gat aat gaa cca att ttt			336
Glu Asp Tyr Val Ala Tyr Ala Arg Asp Phe Asp Asn Glu Pro Ile Phe			
100	105	110	
gtt cat ggg cct gga cag gaa ttg aaa tct tgt tcc ata gga tgt aag			384
Val His Gly Pro Gly Gln Glu Leu Lys Ser Cys Ser Ile Gly Cys Lys			
115	120	125	
ttt gga aca gat tcc aat aag aag cct gat gca gca ttt cgg cta cca			432
Phe Gly Thr Asp Ser Asn Lys Lys Pro Asp Ala Ala Phe Arg Leu Pro			
130	135	140	
caa caa gct ggc aca gct agt gtg cta cgg tcc atg gag tca gct caa			480
Gln Gln Ala Gly Thr Ala Ser Val Leu Arg Ser Met Glu Ser Ala Gln			
145	150	155	160
tac tat gca gag aac aac att act ttg gca cga cga agg gga tat gat			528
Tyr Tyr Ala Glu Asn Asn Ile Thr Leu Ala Arg Arg Arg Gly Tyr Asp			
165	170	175	
gtt gta atg aca aca agc ctc tct tca gat gtt cct gtt gga tac ttc			576
Val Val Met Thr Thr Ser Leu Ser Ser Asp Val Pro Val Gly Tyr Phe			
180	185	190	
tct tgg gct gag tat gat atc atg gct cca gta gaa cct aaa aca gag			624
Ser Trp Ala Glu Tyr Asp Ile Met Ala Pro Val Glu Pro Lys Thr Glu			
195	200	205	
aat gcc ttg gca gcc gct ttc att tct aat tgc ggt gct cgc aac ttc			672
Asn Ala Leu Ala Ala Phe Ile Ser Asn Cys Gly Ala Arg Asn Phe			
210	215	220	
cgt ttg caa gct tta gaa gcc ctt gaa agg gca aat atc aga att gac			720
Arg Leu Gln Ala Leu Glu Ala Leu Glu Arg Ala Asn Ile Arg Ile Asp			
225	230	235	240
tct tat ggc agt tgt cat cat aac agg gat gga aga gta gac aaa gtg			768
Ser Tyr Gly Ser Cys His His Asn Arg Asp Gly Arg Val Asp Lys Val			
245	250	255	
gca gca ctg aag cgt tac aag ttt agc ttg gct ttt gag aat tct aat			816
Ala Ala Leu Lys Arg Tyr Lys Phe Ser Leu Ala Phe Glu Asn Ser Asn			
260	265	270	
gag gag gac tat gta acc gaa aaa ttc ttt cag tct ctg gta gct ggg			864
Glu Glu Asp Tyr Val Thr Glu Lys Phe Phe Gln Ser Leu Val Ala Gly			
275	280	285	
tca atc cct gtg gtg gtt ggt gct cca aac atc caa gac ttt gcg cct			912
Ser Ile Pro Val Val Val Gly Ala Pro Asn Ile Gln Asp Phe Ala Pro			
290	295	300	
tct cct aat tca gtt tta cac att aaa gag ata aaa gat gct gaa tta			960
Ser Pro Asn Ser Val Leu His Ile Lys Glu Ile Lys Asp Ala Glu Leu			
305	310	315	320
att gcc aat acc atg acg tac ctt gct caa aac cct att gca tct aat			1008

Ile Ala Asn Thr Met Thr Tyr Leu Ala Gln Asn Pro Ile Ala Ser Asn				
325	330	335		
gag tca tta agg tgg aag ttt gag ggc cca ttt gat gcc ttc aaa gcc				1056
Glu Ser Leu Arg Trp Lys Phe Glu Gly Pro Phe Asp Ala Phe Lys Ala				
340	345	350		
ctg gtt gat atg gca gca gtt cat tca tct tgc cgt ttg tgc atc ttc				1104
Leu Val Asp Met Ala Ala Val His Ser Ser Cys Arg Leu Cys Ile Phe				
355	360	365		
ttg gca agt agg atc cag gaa aga gaa gag cat agt cca aaa ttt acg				1152
Leu Ala Ser Arg Ile Gln Glu Arg Glu His Ser Pro Lys Phe Thr				
370	375	380		
aag cgc ccc tgc aaa tgt acc aga gag act gaa act gtc tat cat gta				1200
Lys Arg Pro Cys Lys Cys Thr Arg Glu Thr Glu Thr Val Tyr His Val				
385	390	395	400	
tat gta cgt gaa aga ggg agg ttt gag atg gat tcc att ttc tta agg				1248
Tyr Val Arg Glu Arg Gly Arg Phe Glu Met Asp Ser Ile Phe Leu Arg				
405	410	415		
tcg agt gat ttg tct tta aag gcg ttt gaa tct gct att ctc tcg agg				1296
Ser Ser Asp Leu Ser Leu Lys Ala Phe Glu Ser Ala Ile Leu Ser Arg				
420	425	430		
ttc aag tct gtt aaa cat gtt cct gtt tgg agg gag gaa aga cct caa				1344
Phe Lys Ser Val Lys His Val Pro Val Trp Arg Glu Glu Arg Pro Gln				
435	440	445		
gta cta cga ggt ggt gat gaa ctc aaa ctt tac taa gtatatcctg				1390
Val Leu Arg Gly Gly Asp Glu Leu Lys Leu Tyr				
450	455			
ttggcttgac acagagacaa gcattgttt cttcagatt caacggggat actgagttt				1450
agaattacat tcaaagccac ccatgtgcaa aatttgaagc catcttcgta tag				1503
<210> 6				
<211> 459				
<212> PRT				
<213> Nicotiana benthamiana				
<400> 6				
Met Arg Ser Ser Ser Asn Ser Asn Ala Pro Asp Lys Gln Trp Arg Asn				
1 5 10 15				
Trp Leu Pro Leu Phe Val Ala Leu Val Val Ile Ala Glu Ile Ser Phe				
20 25 30				
Leu Val Arg Leu Asp Val Ala Glu Lys Ala Asn Ser Trp Ala Glu Ser				
35 40 45				
Phe Tyr Gln Phe Thr Thr Ala Ser Trp Ser Thr Ser Lys Leu Ala Val				
50 55 60				
Asp Gly Gly Asp Val Asp Glu Val Leu Leu Gly Val Leu Ser Gly Glu				
65 70 75 80				

Phe Asp Gln Gly Phe Leu Pro Trp Ser Cys Glu Glu Trp Leu Glu Arg
85 90 95

Glu Asp Tyr Val Ala Tyr Ala Arg Asp Phe Asp Asn Glu Pro Ile Phe
100 105 110

Val His Gly Pro Gly Gln Glu Leu Lys Ser Cys Ser Ile Gly Cys Lys
115 120 125

Phe Gly Thr Asp Ser Asn Lys Lys Pro Asp Ala Ala Phe Arg Leu Pro
130 135 140

Gln Gln Ala Gly Thr Ala Ser Val Leu Arg Ser Met Glu Ser Ala Gln
145 150 155 160

Tyr Tyr Ala Glu Asn Asn Ile Thr Leu Ala Arg Arg Arg Gly Tyr Asp
165 170 175

Val Val Met Thr Thr Ser Leu Ser Ser Asp Val Pro Val Gly Tyr Phe
180 185 190

Ser Trp Ala Glu Tyr Asp Ile Met Ala Pro Val Glu Pro Lys Thr Glu
195 200 205

Asn Ala Leu Ala Ala Ala Phe Ile Ser Asn Cys Gly Ala Arg Asn Phe
210 215 220

Arg Leu Gln Ala Leu Glu Ala Leu Glu Arg Ala Asn Ile Arg Ile Asp
225 230 235 240

Ser Tyr Gly Ser Cys His His Asn Arg Asp Gly Arg Val Asp Lys Val
245 250 255

Ala Ala Leu Lys Arg Tyr Lys Phe Ser Leu Ala Phe Glu Asn Ser Asn
260 265 270

Glu Glu Asp Tyr Val Thr Glu Lys Phe Phe Gln Ser Leu Val Ala Gly
275 280 285

Ser Ile Pro Val Val Val Gly Ala Pro Asn Ile Gln Asp Phe Ala Pro
290 295 300

Ser Pro Asn Ser Val Leu His Ile Lys Glu Ile Lys Asp Ala Glu Leu
305 310 315 320

Ile Ala Asn Thr Met Thr Tyr Leu Ala Gln Asn Pro Ile Ala Ser Asn
325 330 335

Glu Ser Leu Arg Trp Lys Phe Glu Gly Pro Phe Asp Ala Phe Lys Ala
340 345 350

Leu Val Asp Met Ala Ala Val His Ser Ser Cys Arg Leu Cys Ile Phe
355 360 365

Leu Ala Ser Arg Ile Gln Glu Arg Glu Glu His Ser Pro Lys Phe Thr
370 375 380

Lys Arg Pro Cys Lys Cys Thr Arg Glu Thr Glu Thr Val Tyr His Val
385 390 395 400

Tyr Val Arg Glu Arg Gly Arg Phe Glu Met Asp Ser Ile Phe Leu Arg
405 410 415

Ser Ser Asp Leu Ser Leu Lys Ala Phe Glu Ser Ala Ile Leu Ser Arg
420 425 430

Phe Lys Ser Val Lys His Val Pro Val Trp Arg Glu Glu Arg Pro Gln
435 440 445

Val Leu Arg Gly Gly Asp Glu Leu Lys Leu Tyr
450 455

<210> 7
<211> 5937
<212> DNA
<213> Nicotiana benthamiana

<220>
<221> Exon1
<222> (1)..(396)

<220>
<221> Intron1
<222> (397)..(1400)

<220>
<221> Exon2
<222> (1401)..(1561)

<220>
<221> Intron2
<222> (1562)..(2564)

<220>
<221> Exon3
<222> (2565)..(2806)

<220>
<221> Variation
<222> (2807)..(2807)
<223> G to A substitution in FucT007

<220>
<221> Intron3
<222> (2807)..(3463)

<220>
<221> Exon4
<222> (3464)..(3568)

```

<220>
<221>  Intron4
<222>  (3569)..(4057)

<220>
<221>  Exon5
<222>  (4058)..(4214)

<220>
<221>  Intron5
<222>  (4215)..(4832)

<220>
<221>  Exon6
<222>  (4833)..(5060)

<220>
<221>  Intron6
<222>  (5061)..(5681)

<220>
<221>  Exon6
<222>  (5682)..(5937)

<400>  7
atggcaacag ttattccaat tcaaagatta ccaagattt aaggtgttgg gtcatcatca      60
cctacaaacg caccggaaaa gaaatggtcc aattggctac ctctagtagt tggacttgtg      120
gttttagtgg aaattgcatt tctgggtcga ttggacatgg ctgaaaaagc caacctagtc      180
aactcttggaa ctgactcatt ttaccagttt acgacgtcgt cttggtcaac ctccaaagtg      240
gaaattaatg aggctgggtt ggggtgttgg aggagtagtg aggttcatca gaatttggaa      300
actgggagct gtgaggagtg gttggaaaag gaggattctg tggagtattc tagagatttt      360
gataaagatc caattttgt tcattggcgc gaaaaggtga gatagttct tgtatatgtt      420
tattttttt actaataaat ggggtgaata gagcagaatg aatatacagg attcatatag      480
ttgaacacgaa atagtttggg aagttctatg cactaaacaa tgtaatagtt tttttttt      540
ttaatgatga gtgaaggggaa gctttgggt aacgattaaa gttgttgcca tgtgacctct      600
cgggctcgag ccgtgcaaac agtctctcgc agaaatgcag ggtaaggctg catacaattg      660
acccttgtgg tccggcctt ccatggaccc cgcacatagc gggagcttag cgcatcggc      720
tgccttttg atgatgggtc taagttctat gcactaacga tataaaaaag atttacacca      780
tcaactcact taaaaggttag tagcagctaa ttctccatag aaacattaat tgtaaacga      840
gcatccctt tagactataa tatggattgt ttgcaattt tgcattttttt tttattacat      900
cagttagctg ccagaactcg cgcgcgtgtg tggccaggc ttatcgctt ggttagatgg      960
atgataaaaa ttgttattt caaatgatgc ttggcattt tcatctagtt ttttttatct      1020
tccatgatgt ttacagtgc atatcttata aagtacagaa tattttgacc atattcaga      1080
acctcttcat tatgggtaaa aataactgata aattttacat acaagtgggaa atgagtgag      1140
gagtcttgag tatcttctt tctctgcct gtgttccttc attacatcga attcttcata      1200
gaggacttaa gtgaaatgag cagaaatcaa tcagtaaaac tgccatttat tgcttaagtt      1260

```

tatcatgact agttcttggtt cccatgttat ccactggcat gacggtgaga gcaggtaaca	1320
gtacccgggtt accatcttc ttcttgactt tttttcctt accatatgcg aaaactgatg	1380
ttccttcaat cattatctag gattggaagt cttgtgccat aggatgtaac tttggtgtgg	1440
attctgataa gaagcctgac gcggcatttg ggacaccaca acagactggc acagctagcg	1500
tgcttcggtc aatggagtct tctcaatact atcctgagaa caacatcggtt accgcacgac	1560
ggtgggtaag cacatcttga aaaagactta aaacattctc accacatttg gcacctgaaa	1620
gataatagca tttgtccaca tttgaatttt catctgtgt tcattttca atgaaacata	1680
tctcaactgg aagcaatgtt atcctaggcg aaaagcgaa aaaactctaa ggcccattag	1740
agctttaagt gcaaagcgta aaaaagtaaa aatatgtata ttagtccaa gactaataat	1800
tataagcatg aataacacaa ggaataaaga ccagatactc caagaaagat tacgatgcat	1860
cgggagatga ctaacagatt cacatagaca atcctgattt gaaaccacaa ctgaacacag	1920
ttgggtataa atctgttaact aaacgttcat taccatctat cagtc当地 cttgactttc	1980
ctaccatttt caacttctt tttatgttt gtcttgaac tggcccaaa aattagctat	2040
tggctccac aaagcaacct catacagaat acttactggt tttggatcct aatatctctc	2100
catgccataa atcgacttaa taatccttcc atactgcata tttccatcg ttacaaaaag	2160
aagcagttgc atttgctcaa atagcctttg gaaagggcat atacaaatat gcaatcataa	2220
agccctcaac aacaataact acaacaacaa cccagtaaaa tcccaact gggctggct	2280
aggtagtag gtacacaaaac cttaccctta ctccgaggga gtagagaggt tggccat	2340
agaccctcga ctcaagaaga tgaaaagaga tgatatatca gtaccataac agaaaaatcat	2400
agagataata acagcaatca taaagccctc atagacacaa taaccttagg atcatgggt	2460
ggttataatt taattttag atctctata gttcttctct cgatctttat atcttctct	2520
agggaaatct ctaaccaact ttattattt ttctcatgtt tcagaagggg atatgatatt	2580
ataatgacaa caagcctctc ttcatgttt cctgtgggt acttctctt ggcggagtag	2640
gatataatgg ctccggtgca acctaaaact gagaatgcata tagcagctgc ttttatttct	2700
aattgtggtg ctgcacactt ccgggtgcag gctcttgaag tccttggaaag ggcaaatatc	2760
aagattcatt ctttggcag ttgtcatgtt aaccggatg gaaatggca gtgtatctcc	2820
attatatatg ataatatatt aatgggttctt ttcttgaagt agttaccatt aaggagctga	2880
ttgtctaaaa tatttcaata taatgggttt ttgaaaagcc atgtttactg gtaatagaaa	2940
ccttatattt gtttccttgg taaatgtaca catacacatg taagtttctt aaatagtcag	3000
attttctgct agtttgaaga tttcattatg tggattgggtt attttctgt tatgcttgc	3060
atctttgaa taacttctag tattttgcaa cccattaaat tgagttgaaa agcagacagt	3120
ttttgcaaata tcattgcaaa caaatttagac cctaattgt tagaaaaagaa aaatttagag	3180
aaaattcagt ttttagttat ttttctgtatg tagaatatgc atgcataatgg taaaacttta	3240

cattatatga atttatttaga atagagatga aaatcagaca tctttgtaa atttattgtg	3300
aagaagctag accagggttt gttggaaagg gaaattaaga gaaaaggcag tcttaataaa	3360
tgtgatatta gaatgcagaa tactttatt catgcctcta gtttaattgt acattatatc	3420
ctgtgaatgc tcacttgtca tcttgttctc aatttcatgg cagtggacaa agtggaaact	3480
ctcaagcact acaaatttag ctgcgtttt gagaattcta atgaggagga ttatgtcacc	3540
gaaaaattct tccagtcattt agtagctggt aataattttt gcctattaat tttggttctg	3600
ctcttacac ttactttccg atgtatctat tattttctat tagccccac ccctctgcat	3660
tgtgcattt ttttacttt ttctacaatt cataattttt cccaaaagac ataggagata	3720
ttatctatag agcgccacga agaacaagc aaaagcacaa acctctgagc actttatgtt	3780
acttcaacta cgttttgtac ccgaatttgc attttctggt acggttcaca aatatgctct	3840
gctctatatt catttaaaag gctttaggaa aattttaaat gattttcgt gaagtatcat	3900
tgttaatcat attatttgtg ctcctagtag atatatatta ggctagagct atgcacagaa	3960
tcctttttt atgatttttc acaagttaat acaaaattat gatttatggt agtcaacact	4020
attgtgctga taaaaggaag ttcttgtaaa cttgcaggat cagtcgggt ggtgattgg	4080
gctccaaaca tcctagactt tgctccttct cctacttcac ttttacacat taaagagctg	4140
aaagacggtg catcagttgc caagactatg aagtaccttgcagaaaatcc tagtgcata	4200
aatgagtcat taaggtatgc atcaattagt cgtgcttttc ttgatcatt tgaattttct	4260
tgtccttaat taactttgt tggttgcct gaagatttat ccactctaaa aaaaaaaaaac	4320
ccttttcca acatctttct atactttct gttatcatgt tattgagaaa gtaacactgg	4380
catgtctcta tagttacaaa agtttattac cttatcctat tttatgacac actgatagtc	4440
tgttatatacgttactaaactc ctaaattggg aagatttggt ttgtgtgtgt	4500
gagttgtgtgt tcccttcgc atatgtggac ttgcatttga ccctttttt tatgaccgag	4560
aaatccgtct aggactgatc ctttgacca accgcagcct tcgaaactcg gtggataata	4620
ggcccgcccc tctatccttc tccacttaaa taccggcct tgctttgct tggtgtgggg	4680
gcttgaacct gtgacttaag acacaaatcc tcctccctt gccacttgag ctaggcccgt	4740
ggagcagttg cattcgaccc ttcccttca aatttattaa agattcttac ttccctgggtc	4800
ttgctaacaa atggtttctt ttcatgttt aggtggaaat ttgagggtcc atctgactct	4860
ttcaaagccc tggttgacat ggcagcagtt cactcttctt gtcgtttgtg tatcttctta	4920
gcaactagta ttagggagaa agaagagaag agtccaaaat ttacgaaacg tccctgcaaa	4980
tgtaccagag gttcagaaac tgtctatcat gtatatgtac gtgaaagagg gaggtttgac	5040
atggagtccg ttttcctaag gtattctcga tcaaccatga ctaaatatca tgcataataca	5100
agtgcctttt ctgtttatgt tcctgtgccg cttttcttatt gtttaatatg taccatgtat	5160
atcaaattgt ttaccaatat tggaaatgaaa agatccgaa aagagtggaa tgtatataga	5220
gaattcatag agctgaccgc aaataggggt gagacattga tcaaattatt tgagtaacta	5280

ttcaactgtgt	cttactctcg	atgttatgaga	agtatatgct	tgatagccat	tatctatggg	5340
cttataaaagt	aatttacatg	tttgggttg	ggtattccac	aaaatcaatg	tcaatctatc	5400
taaagtattt	cttgatcgat	ttgatagact	taactaggaa	agttccagaa	aatgattggc	5460
aggtgtgttt	tggttcacta	gtaaagctag	aagatagggc	tggggaggg	taaagttggg	5520
gggatccggc	cgcaaaaaag	aaatatggac	aaccagtgtc	ataatgtgaa	ttctctcctg	5580
cacttctcct	tttaattgct	gagcatatac	aaactgtttc	gtgtcttatt	ggcaattctt	5640
atgttatgtt	tgaatcatcg	ttattgctgg	aaccttgca	ggtcatctaa	tttgcactg	5700
gaggctttg	aatctgcagt	actgtcgaag	ctcaaatctc	taaagcatgt	tcctatttg	5760
aaagacgaaa	gacctcaaat	acttcatgga	ggggatgaac	taaagctcta	cagaatatat	5820
cctctggca	tgacacaacg	acaggcattg	tacacctta	aattcaaagg	agacgcagat	5880
tttaggaatc	acatcgaaag	ccacccatgc	gcaaacttg	aagccatatt	tgtata	5937

<210> 8
 <211> 1545
 <212> DNA
 <213> Nicotiana benthamiana

<220>
 <221> CDS
 <222> (1)..(1545)

atg	gca	aca	gtt	att	cca	att	caa	aga	tta	cca	aga	ttt	gaa	ggt	gtt	48
Met	Ala	Thr	Val	Ile	Pro	Ile	Gln	Arg	Leu	Pro	Arg	Phe	Glu	Gly	Val	
1				5					10				15			
ggg	tca	tca	tca	cct	aca	aac	gca	ccc	caa	aag	aaa	tgg	tcc	aat	tgg	96
Gly	Ser	Ser	Ser	Pro	Thr	Asn	Ala	Pro	Gln	Lys	Lys	Trp	Ser	Asn	Trp	
20				25						30						
cta	cct	cta	gta	gtt	gga	ctt	gtg	gtt	tta	gtg	gaa	att	gca	ttt	ctg	144
Leu	Pro	Leu	Val	Val	Gly	Leu	Val	Val	Leu	Val	Glu	Ile	Ala	Phe	Leu	
35		40							45							
ggt	cga	ttg	gac	atg	gct	gaa	aaa	gcc	aac	cta	gtc	aac	tct	tgg	act	192
Gly	Arg	Leu	Asp	Met	Ala	Glu	Lys	Ala	Asn	Leu	Val	Asn	Ser	Trp	Thr	
50		55							60							
gac	tca	ttt	tac	cag	ttt	acg	acg	tcg	tct	tgg	tca	acc	tcc	aaa	gtg	240
Asp	Ser	Phe	Tyr	Gln	Phe	Thr	Thr	Ser	Ser	Trp	Ser	Thr	Ser	Lys	Val	
65				70					75				80			
gaa	att	aat	gag	gct	ggg	ttg	ggt	gtg	ttg	agg	agt	agt	gag	gtt	gat	288
Glu	Ile	Asn	Glu	Ala	Gly	Leu	Gly	Val	Leu	Arg	Ser	Ser	Glu	Val	Asp	
85						90							95			
cag	aat	ttg	gaa	act	ggg	agc	tgt	gag	gag	tgg	ttg	gaa	aag	gag	gat	336
Gln	Asn	Leu	Glu	Thr	Gly	Ser	Cys	Glu	Glu	Trp	Leu	Glu	Lys	Glu	Asp	
100							105					110				
tct	gtg	gag	tat	tct	aga	gat	ttt	gat	aaa	gat	cca	att	ttt	gtt	cat	384
Ser	Val	Glu	Tyr	Ser	Arg	Asp	Phe	Asp	Lys	Asp	Pro	Ile	Phe	Val	His	
115						120						125				

ggc ggc gaa aag gat tgg aag tct tgt gcc ata gga tgt aac ttt ggt		432	
Gly Gly Glu Lys Asp Trp Lys Ser Cys Ala Ile Gly Cys Asn Phe Gly			
130	135	140	
gtg gat tct gat aag aag cct gac gcg gca ttt ggg aca cca caa cag		480	
Val Asp Ser Asp Lys Lys Pro Asp Ala Ala Phe Gly Thr Pro Gln Gln			
145	150	155	160
act ggc aca gct agc gtg ctt cgg tca atg gag tct tct caa tac tat		528	
Thr Gly Thr Ala Ser Val Leu Arg Ser Met Glu Ser Ser Gln Tyr Tyr			
165	170	175	
cct gag aac aac atc gtt acc gca cga cga agg gga tat gat att ata		576	
Pro Glu Asn Asn Ile Val Thr Ala Arg Arg Arg Gly Tyr Asp Ile Ile			
180	185	190	
atg aca aca agc ctc tct tca gat gtt cct gtt ggg tac ttc tct tgg		624	
Met Thr Thr Ser Leu Ser Ser Asp Val Pro Val Gly Tyr Phe Ser Trp			
195	200	205	
gcg gag tac gat ata atg gct ccg gtg caa cct aaa act gag aat gca		672	
Ala Glu Tyr Asp Ile Met Ala Pro Val Gln Pro Lys Thr Glu Asn Ala			
210	215	220	
tta gca gct gct ttt att tct aat tgt ggt gct cgc aac ttc cgg ttg		720	
Leu Ala Ala Ala Phe Ile Ser Asn Cys Gly Ala Arg Asn Phe Arg Leu			
225	230	235	240
cag gct ctt gaa gtc ctt gaa agg gca aat atc aag att cat tct ttt		768	
Gln Ala Leu Glu Val Leu Glu Arg Ala Asn Ile Lys Ile His Ser Phe			
245	250	255	
ggc agt tgt cat cgt aac cgg gat gga aat gtg gac aaa gtg gaa act		816	
Gly Ser Cys His Arg Asn Arg Asp Gly Asn Val Asp Lys Val Glu Thr			
260	265	270	
ctc aag cac tac aaa ttt agc ttc gct ttt gag aat tct aat gag gag		864	
Leu Lys His Tyr Lys Phe Ser Phe Ala Phe Glu Asn Ser Asn Glu Glu			
275	280	285	
gat tat gtc acc gaa aaa ttc ttc cag tct tta gta gct gga tca gtc		912	
Asp Tyr Val Thr Glu Lys Phe Phe Gln Ser Leu Val Ala Gly Ser Val			
290	295	300	
ccc gtg gtg att ggt gct cca aac atc cta gac ttt gct cct tct cct		960	
Pro Val Val Ile Gly Ala Pro Asn Ile Leu Asp Phe Ala Pro Ser Pro			
305	310	315	320
act tca ctt tta cac att aaa gag ctg aaa gac ggt gca tca gtt gcc		1008	
Thr Ser Leu Leu His Ile Lys Glu Leu Lys Asp Gly Ala Ser Val Ala			
325	330	335	
aag act atg aag tac ctt gca gaa aat cct agt gca tat aat gag tca		1056	
Lys Thr Met Lys Tyr Leu Ala Glu Asn Pro Ser Ala Tyr Asn Glu Ser			
340	345	350	
tta agg tgg aaa ttt gag ggt cca tct gac tct ttc aaa gcc ctg gtt		1104	
Leu Arg Trp Lys Phe Glu Gly Pro Ser Asp Ser Phe Lys Ala Leu Val			
355	360	365	
gac atg gca gca gtt cac tct tct tgt cgt ttg tgt atc ttc tta gca		1152	
Asp Met Ala Ala Val His Ser Ser Cys Arg Leu Cys Ile Phe Leu Ala			
370	375	380	
act agt att agg gag aaa gaa gag aag agt cca aaa ttt acg aaa cgt		1200	
Thr Ser Ile Arg Glu Lys Glu Glu Lys Ser Pro Lys Phe Thr Lys Arg			
385	390	395	400

ccc tgc aaa tgt acc aga ggt tca gaa act gtc tat cat gta tat gta Pro Cys Lys Cys Thr Arg Gly Ser Glu Thr Val Tyr His Val Tyr Val 405 410 415	1248
cgt gaa aga ggg agg ttt gac atg gag tcc gtt ttc cta agg tca tct Arg Glu Arg Gly Arg Phe Asp Met Glu Ser Val Phe Leu Arg Ser Ser 420 425 430	1296
aat ttg tca ctg gag gct ttt gaa tct gca gta ctg tcg aag ctc aaa Asn Leu Ser Leu Glu Ala Phe Glu Ser Ala Val Leu Ser Lys Leu Lys 435 440 445	1344
tct cta aag cat gtt cct att tgg aaa gac gaa aga cct caa ata ctt Ser Leu Lys His Val Pro Ile Trp Lys Asp Glu Arg Pro Gln Ile Leu 450 455 460	1392
cat gga ggg gat gaa cta aag ctc tac aga ata tat cct ctt ggc atg His Gly Gly Asp Glu Leu Lys Leu Tyr Arg Ile Tyr Pro Leu Gly Met 465 470 475 480	1440
aca caa cga cag gca ttg tac acc ttt aaa ttc aaa gga gac gca gat Thr Gln Arg Gln Ala Leu Tyr Thr Phe Lys Phe Lys Gly Asp Ala Asp 485 490 495	1488
ttt agg aat cac atc gaa agc cac cca tgc gca aac ttt gaa gcc ata Phe Arg Asn His Ile Glu Ser His Pro Cys Ala Asn Phe Glu Ala Ile 500 505 510	1536
ttt gta tag Phe Val	1545

<210> 9
 <211> 514
 <212> PRT
 <213> Nicotiana benthamiana

<400> 9

Met Ala Thr Val Ile Pro Ile Gln Arg Leu Pro Arg Phe Glu Gly Val
1 5 10 15

Gly Ser Ser Ser Pro Thr Asn Ala Pro Gln Lys Lys Trp Ser Asn Trp
20 25 30

Leu Pro Leu Val Val Gly Leu Val Val Leu Val Glu Ile Ala Phe Leu
35 40 45

Gly Arg Leu Asp Met Ala Glu Lys Ala Asn Leu Val Asn Ser Trp Thr
50 55 60

Asp Ser Phe Tyr Gln Phe Thr Thr Ser Ser Trp Ser Thr Ser Lys Val
65 70 75 80

Glu Ile Asn Glu Ala Gly Leu Gly Val Leu Arg Ser Ser Glu Val Asp
85 90 95

Gln Asn Leu Glu Thr Gly Ser Cys Glu Glu Trp Leu Glu Lys Glu Asp
100 105 110

Ser Val Glu Tyr Ser Arg Asp Phe Asp Lys Asp Pro Ile Phe Val His
115 120 125

Gly Gly Glu Lys Asp Trp Lys Ser Cys Ala Ile Gly Cys Asn Phe Gly
130 135 140

Val Asp Ser Asp Lys Lys Pro Asp Ala Ala Phe Gly Thr Pro Gln Gln
145 150 155 160

Thr Gly Thr Ala Ser Val Leu Arg Ser Met Glu Ser Ser Gln Tyr Tyr
165 170 175

Pro Glu Asn Asn Ile Val Thr Ala Arg Arg Arg Gly Tyr Asp Ile Ile
180 185 190

Met Thr Thr Ser Leu Ser Ser Asp Val Pro Val Gly Tyr Phe Ser Trp
195 200 205

Ala Glu Tyr Asp Ile Met Ala Pro Val Gln Pro Lys Thr Glu Asn Ala
210 215 220

Leu Ala Ala Ala Phe Ile Ser Asn Cys Gly Ala Arg Asn Phe Arg Leu
225 230 235 240

Gln Ala Leu Glu Val Leu Glu Arg Ala Asn Ile Lys Ile His Ser Phe
245 250 255

Gly Ser Cys His Arg Asn Arg Asp Gly Asn Val Asp Lys Val Glu Thr
260 265 270

Leu Lys His Tyr Lys Phe Ser Phe Ala Phe Glu Asn Ser Asn Glu Glu
275 280 285

Asp Tyr Val Thr Glu Lys Phe Phe Gln Ser Leu Val Ala Gly Ser Val
290 295 300

Pro Val Val Ile Gly Ala Pro Asn Ile Leu Asp Phe Ala Pro Ser Pro
305 310 315 320

Thr Ser Leu Leu His Ile Lys Glu Leu Lys Asp Gly Ala Ser Val Ala
325 330 335

Lys Thr Met Lys Tyr Leu Ala Glu Asn Pro Ser Ala Tyr Asn Glu Ser
340 345 350

Leu Arg Trp Lys Phe Glu Gly Pro Ser Asp Ser Phe Lys Ala Leu Val
355 360 365

Asp Met Ala Ala Val His Ser Ser Cys Arg Leu Cys Ile Phe Leu Ala

370

375

380

Thr Ser Ile Arg Glu Lys Glu Glu Lys Ser Pro Lys Phe Thr Lys Arg
385 390 395 400

Pro Cys Lys Cys Thr Arg Gly Ser Glu Thr Val Tyr His Val Tyr Val
405 410 415

Arg Glu Arg Gly Arg Phe Asp Met Glu Ser Val Phe Leu Arg Ser Ser
420 425 430

Asn Leu Ser Leu Glu Ala Phe Glu Ser Ala Val Leu Ser Lys Leu Lys
435 440 445

Ser Leu Lys His Val Pro Ile Trp Lys Asp Glu Arg Pro Gln Ile Leu
450 455 460

His Gly Gly Asp Glu Leu Lys Leu Tyr Arg Ile Tyr Pro Leu Gly Met
465 470 475 480

Thr Gln Arg Gln Ala Leu Tyr Thr Phe Lys Phe Lys Gly Asp Ala Asp
485 490 495

Phe Arg Asn His Ile Glu Ser His Pro Cys Ala Asn Phe Glu Ala Ile
500 505 510

Phe Val

<210> 10
<211> 13089
<212> DNA
<213> Nicotiana benthamiana

<220>
<221> Exon1
<222> (1)..(396)

<220>
<221> Variation
<222> (224)..(224)
<223> G to A substitution in FucT009

<220>
<221> Intron1
<222> (397)..(8228)

<220>
<221> Exon2
<222> (8229)..(8389)

<220>
<221> Intron2
<222> (8390)..(9684)

<220>

```

<221>  Exon3
<222>  (9685)..(9926)

<220>
<221>  Intron3
<222>  (9927)..(10665)

<220>
<221>  Exon4
<222>  (10666)..(10770)

<220>
<221>  Intron4
<222>  (10771)..(11419)

<220>
<221>  Exon5
<222>  (11420)..(11576)

<220>
<221>  Intron5
<222>  (11577)..(11984)

<220>
<221>  Exon6
<222>  (11985)..(12212)

<220>
<221>  Intron6
<222>  (12213)..(12833)

<220>
<221>  Exon7
<222>  (12834)..(13089)

<400>  10
atggcaacag ttattccaat tcaaagaata ccaagattt aaggtgttgg gtcattatca      60
cctacaaacg ttcccccaaaa gaaatggtcc aattggttac ctctagtagt tgcacttgc      120
gttatagttg aaattgcatt tctgggtcga ctggacatgg ctgaaaaagc caacctggc      180
aactcttggaa ctgactcatt ttaccagttt acgacgtcgt cttggtaaac ctccaacgtg      240
gaaattaaatg aggctgggtt ggggtgttgg aggagtagtg aggttgcgtc gaatttggca      300
actgggagct gtgaggagtg gttggaaaag gaagattctg tagagtattc tagagatttt      360
gacaaagatc caattttgt tcatggcggc gaaaagggtga tatagtttc ttgtaaatgt      420
ttatTTTTT agagcagaat gaatatgagg attcattttt ttgaaccggaa acagtttagg      480
aggcatagtt gattgctctt tttctgtatga tgagtattta gttctgtaca gaaagggagc      540
cttggagcaa cggtaaagtt gtctccctag gtcacgggtt cgaataatgg aatcagacac      600
gatgcttcca tcagggttagg ctacctacat tatacctctt cgtgcactag actactgtcc      660
tctagtgta gttctatgca ctaacgtatgt aaaaacgtt tacaccataa ggtcacttaa      720
aaggtagtag cagctaattc ttcatagaaa cattaattgg taatcgatca tctcttttag      780
acgataatat cgatTTTATT gtcattttatg tcttgctatt tattacatca gttagctgcc      840
agagctcgcg cgagtgtgtg tttgttgcag acttatggct ttggtagatg gaatgtatg      900
aatttgggtt ttcaaattatgat gctttggcat cattttcttag tttttgttc ttttattatg      960

```

cctacagtaa aacatcttat aaagtacaga ctattgacca tattccaaaa cctatatggg	1020
taaaaatact catgaatttt atatactagt aggaaataag tggaggagcc ttgagtatct	1080
tctcttctct taccttttt ccttcgttat tgttacgacc ccagttcacc ctctatgaac	1140
atgtcgtgat ggcacctagt tcctacaact aggttaagtct aacaatgcgg aaatttaata	1200
taagtatata acttgccgaa catttaatta aattaagcaa aactagaaga aaatgatata	1260
taagtgccac atggcatata caattcaaaa ataaaacgcg gaagtctaaa atctcatccc	1320
aaaacccgaa aactcacggg aacacaagct aacgaatagt aatacatagc tctaactcca	1380
gaatatctaa agcaaaaagta cgaaagaagt ctaaatacta caaacaaagt aaagaaggag	1440
actccttggt ttgcgaacgc tgcaagaagta cctcaaagtc ttcgttagctc tcctgacctt	1500
aaggatagtg cacttgagat caagtacctg ggtctgcaca taaaaaacat gtcagtaagt	1560
gccaggccta acctcgttg ggtggttacg atgaaggtta gggccctact gagataaaaat	1620
ataataataa ggctaacaac agtattaaat aagcagaaaat aatggaatac aattgtgaag	1680
taagtttagt tacacaagca acaatttaac acatagagga taagataaca cagagtaaaa	1740
ttgttcaata ccagtaccaa taacgaggat ctcctaggat accgtcctat agtcctttc	1800
atcaatccgt ccgaggagct cccggataac cgtcccatag tccatcatat gagtatatcc	1860
gaaggatctc ccgggatacc gtcccatagt ccaactatca atgtataagg ggatctaccg	1920
ggaatctaac ccgtagcccc atagtaaagt gcagggggat ctatcggaa tcgaaccgc	1980
aatcccaaag taaatatgca ggggatctat cgggaatcga acccgcagtc ccaaagttaa	2040
tatgcagggg gatctatcgg gaattgaacc cgcagtcacc aagtaaatat gcagggggat	2100
ctatcgagaa tcgaaccgt agtccaaag taaatatgta ggggatcta tcgggaattg	2160
aactcgcagt cccaaagtaa atacgcagcc accacaaaag atattcagaa ctgggtgca	2220
aaaatacaag gcaataagta gttctcgct aacatgcttc acatattaca atcaaggcaa	2280
cttaagcaaa taggaattt aggtcagcta agcatgctt gatcctttag caactctaacc	2340
cacccctct ggaacaaatt tagatcattc tgcttgaaca aatgctgcaa actcctatga	2400
tcagaataaa tctcacaagg cacaccgtac aaataatgac gccagatctt caaggcatga	2460
acaatagtag ctaactcaag gttgtggaca gggtaattct tctcatgtat cttcaactgt	2520
ctggacgcgt aggcaatcac cctactgtcc tgcatcaaca ctctccaagg ccaacccgtg	2580
aggcatcaca ataaactgta caagatctcg aaccagtagg caatatcaga ataggggctg	2640
tagtcaaagc tgtcttgagc ttctgaaagc tcgcctgaca ctcccctgca cactgaaatg	2700
gggcaccctt ctgggtcaac ctagtcatag gggctgcaat cgatgaaaac ccctccacaa	2760
aacgacggta ataacctgcc aagccaagga aattgcgaat ctcagtggct aagcacggcc	2820
tgggccaact ctgcacggcc tctatcttcc tcggatctac ccgaatgccc tcgctcgaaa	2880
ccacatggcc taagaatgcc actgaatcta accaaaactc acattttag aacttcgcata	2940

ataacttctt ctccttcagg gtctgaagtg ctgcttatga tttcccgac tccggtata	3000
caccagaata tcatcaataa aaacaataat gaatgagtcg agatatcgcc tgaatacact	3060
gtgcatcaa tgcataaaag ctgcttagggc attggtcaac ccaaatgaca taacaaggaa	3120
ctcgtaatga ccataccgag tcctgaaggt agtctcgag atatctggct cccgaatctt	3180
caactgatgg taacctgagc gcaagtcaat ctttagaaaac acctgtgcgc cctgaagctg	3240
gtcaaacaga tcatcaatac gaggcaaagg ataaccgttc ttcacggtaa ccttgtttaa	3300
ctggcaataa tcaatacaca tatgtataga accatccttc ttcttcacaa acaacacagg	3360
agcacccac agtgaardac taggtcgaat aaaaccctta tcaaacaatt ccggcaactg	3420
atccttcaat tccttcaact caagaggaac catacgatac ggaggaatgg aaatgggctg	3480
agtgcgggt caacaggta atgccaaaat caatatctt atcaggcggc atgctcggaa	3540
gatcagctag aaacgcacatcg ggataatccc gtaccactgg aattgaatca acaaaagggg	3600
tatcggcact aatatcttc acataagcta aatacgtac acacccttc tcaatcatac	3660
gctgagctt aagaaaagag ataactttc tgagagtgtg atctaaagta ccactccact	3720
caacacgcgg aatacctggc atagccagcg tcacggctt ggcgtgacaa tcaagaatcg	3780
caaaaatggag cgacaaccag tccatgcccc agataatatc aaaatcaacc atgttgagta	3840
aaaataaaatc tgccgtggtc tcaaaaaccac gaatagtaac taaacatgac taataaacgc	3900
ggtccacaac aagggaatcc cccacaggag tagaaacata aacgggggca ttcaaagaat	3960
cccgaggcac acccaaattgc ggagcaaatt aagaagacac ataagaataa gtgaagcata	4020
gatcgaagag aattggtaca cctctataac aaaccatgaa aaatacttgt gatgatagaa	4080
tcgaaggcaa cagcctcggt acggtaggt gggtagcaa ctggggctgt aacgatggca	4140
tgggaactt gcggggcacg ctgtggccga gaagtctgtg gatgtcact cctccaaagt	4200
atggggcaat acctcaccac atggcgtatg tccccacact ggaagtagcc tcgcggctga	4260
cgcgatagtg gaaactaagg ggtacgggta ctctgaaacc cctgaacaca tgaagccctg	4320
tgtgaaatct gggatgaaa ctgagctggc tgaccacaa aacctctacc atgcgtact	4380
cttcctccaa aataaggact agtgggtctc cccaatctgc gaggcctact cattcctcta	4440
tactctccct cctgaccccg tctgtctcct actcgtaag agttctcac aactcactga	4500
actgggacca catgctgtgt caccatgaca cctggAACCT gaccaatgtg aactcgctgc	4560
tctggagtgg gggcgccgg agtctgagtc cctccctaa cctgtgaagt agtcgtaca	4620
acttgaatca atcctgcctg aatcaatgta ccaaacaacgc tcaggaactg tgccaaagtc	4680
tcttggaaagg ctggcgtagt agtagcaggc gtgtcaagtg cctggactcc gttggatct	4740
gctgggtgtg cctcggtgtc agctcgccga ggtgctctgg ctgcaccacg tgtgcgtcct	4800
cgacctctgc cccggccttg gcctctgacg gctgcagtag aggtgcgggt gcctggcatc	4860
ccgagtagtg cgtgtccccca ccatctgtga gagaattaaa gacagaagtt tagatccgat	4920
gtcaaaaata tctcacgaca aggaaatcaa tgaagtgaag atttttccta aatagttaca	4980

tagcctctcg	gaataagtac	agacgtctcc	gtaccgatca	tcgagactct	aataaaccgg	5040
cctgtattct	gtgactcata	tgaacctaga	gctctgatac	caacttgtca	caatcccagt	5100
tcaccctcca	tgaacatgtc	gtgatggcac	ctagttccta	caacttaggt	agcctaacaa	5160
tgtaaaatt	taatataact	tgcggAACAT	taaattaaat	taagcaaaac	tagaagaaaa	5220
tgatataaa	gtgtcacctg	gtatatacaa	ctcaaaaata	aatggaagt	ctaaaatctc	5280
atccaaaac	ccggaaactc	acggAACAC	aagctaacga	atagtaatac	atggctctaa	5340
ctccagaata	tctaaagcaa	aattatggaa	tgagtcct	ttgtctgcga	acgctgcaga	5400
agtacctcaa	agtctcggt	gctttctga	cctcaaggat	agtgtgcctg	agatgaagta	5460
cctctgtctg	cacattaaaa	gcatgcgcgg	aagaggcatg	agtacaccac	agctgtactc	5520
agtaagtgcc	aagcctaacc	tcggggggt	ggtgacgagg	aaggtcaggg	ccctactgag	5580
atagaatata	agaataaggc	tgacaatagt	atgaaataag	cagaataat	ggaataacaac	5640
tatgaagtaa	gttagttac	acaagtaaca	atthaacaca	caaaggataa	gataacacag	5700
agtaaaaaccg	ctcgatacca	gtaccaataa	cgaggatctc	ccaggatacc	atccagtagt	5760
cctttcatc	aatccatccg	aggagctccc	ggataccgtc	ccgtagtcca	tcatatgagt	5820
atatccgaat	gatctccgg	aataccgttc	catagtccaa	ctatcaatgt	acagggggat	5880
ctaccggaa	tctaaccgt	agtccaaaag	taaagtgcag	ggggatctac	cggaatctt	5940
acccgtagtc	ccaaagtaaa	gttaggggg	atctatcggg	aatcgaaccc	gcagtcCAA	6000
agtaaatatg	cagggatct	accggaaatc	gaacccgcaa	tccaaagta	aatatgcagg	6060
gggatctatc	ggaaatcgaa	cccgcaatcc	caaattaaat	atgcaggggg	atctatcggg	6120
aattgaaccc	gcagcctcga	agtaaatatg	cagggatct	accggaaatt	gaatccgcac	6180
tccaaagta	aatacgcagc	cacaacaaaa	gatattcaga	accagggtgc	taaaatacaa	6240
ggcaacaagt	agttctagcc	aaacatgttt	cacgtagtagc	aatcaaggca	acttaagcaa	6300
ataggcaatt	tagtttagct	tagcatactt	tcctagacta	acatggctat	aatggcaggt	6360
agaacgacac	atgctataat	ggcaagtaga	gtaacacatg	ctataatggc	aagtagaata	6420
aagcaggtag	gaaagaaaact	cagtctaaat	atthaagta	aaactggatt	tccgacaatt	6480
agctcgagta	cgcgctcg	acctcacgt	caaggcattc	aatcaccaga	tatcatatcc	6540
taagggaaa	gtccccgac	acaaggtag	acaagccact	ggctccaaat	tcaacttgaa	6600
atcacacttt	tgccacgagt	atccgtttcc	aaatggccca	aatctattca	attcaattac	6660
atatcgtaaa	taacatctca	aataattgtat	tttactattt	agttcaatga	taaaacgcga	6720
aattaggtaa	aatgacccaaa	acgcccctca	gaacaccgtc	tcggaatcgg	ataattttta	6780
tatTTcaga	accctcgatc	tctcacgagt	ctaaccatat	gaaaatctcc	caaatcgaag	6840
gtgaaacacc	ccctcaaaac	tcaataattc	ggtctatgaa	gttataccca	tttttcatta	6900
aaaatttcaa	attaaaggac	gaaattaaga	ggagatttat	ggaaatttgg	ctaaaatcga	6960

gtgagaaaca cttatccaag tcgcccaggt gaaaatccct tcaaaaatcg ccaaaaaccg	7020
agctctagaa gtcaaaatgt gataaaatgg tgaaaccctc gaatttggga ttaattctgt	7080
ctgcccagtg gtttgccta tccgatcgcg agccaaacaa tgcgatcgca tagaaggaaa	7140
aatattgttgc ccaaatttgc tctatgcgt cgccggcaaa tcaatgcgt cgcatagaag	7200
gaatttgcgttgc ccaaatttgc tttatgcgt catggcaaa tcaatgcgt cgcatagaag	7260
gaaaaatatt gttgccaaat ttgttctatg cgatgcggg aaaaacaatg caatcgata	7320
gaaggaaata ccagatagca gaataacagt tcaaacatag gaaaaaaaaatg agccgtagcc	7380
catccggaac gcacccgagg cccccaggac ctcaacccaa cctacggaca tatcccataa	7440
catcattcaa acttgcacca atccttaagc cacctaaaac gtcggaaact cgaattaatc	7500
aatgtttga gcctaagaac ttcaattttc atcgaaacat gcttcgatc aaaaacctaa	7560
ccgaaatacg tccgaatgac ctgaaatttt gcacacacat cccaaataac atgacggagc	7620
tactgcaact tctggattta cgttctgact ttgcgttcaa aaactcaact tcagaccgga	7680
aactaaaaaa ttcaaaactt cggcatttca agcctaaatg agctacggac ttccaaaatg	7740
cattcgaaac acgctccaa ccccgaaatc acctaacgga gctaacggaa ccatcgatt	7800
cccatccga ggtcgcttc acattttcc gactacgaac cactttccaa cacttacgct	7860
ctcttttgc gacttaagtgc tccaaaact ctttgcggaaac caacaccgaa cgtccggca	7920
aacccaaata gcatagacaa acttagggga agcagttat ggggatcgaaa gctgttttc	7980
cgaaaaacga ccgaccgggt cgtcgcaatt acattgtt acattgtt cttcatagag cacttacgat	8040
gaatgagcag aaatcaatca gtaaaactgc cattttactgc ttaagtttat aatgacttagt	8100
tcttgcatttttcc atgttatcca ctggatataa ggtgagagca ggttaccatg acccggttat	8160
catcttttttcc ctggattttttccatgc gaaatgttgc ttttgcatttttccatgc	8220
ttatcttaggc ttggaaatgttgc ttttgcatttttccatgc gaaatgttgc ttttgcatttttccatgc	8280
agcctgttgc ggcattttggg acaccacaac aggctggcac ggctagcgtg cttcggtcaa	8340
tggagtctgc tcaataactat ccggagaaca acatcgatcc cgcacgacgg tgggtaaagca	8400
catcttgaaa aaggcttaaa acatttcac cacatttgc acctgaaaga taatagcatt	8460
tgtccacatt tgaattttca tcttgcatttttccatgc gaaatgttgc ttttgcatttttccatgc	8520
gtttttgttgc gcaattttttccatgc cttttttttccatgc gaaatgttgc ttttgcatttttccatgc	8580
aatatttagtactaactgatccatgc agtaccaaga aagtacaaaa attgtatccatgc cttttttttccatgc	8640
ctcaaaaacctt gaatccagcg actccaaagaa ctcatttgc tcaactacaa gatctgttttccatgc	8700
atgccggcaa aagagataact gtaaaacatct atacttcata aatataatct cctcatttttccatgc	8760
ccctcaaaa tatctcatat ttctttctat ccaaaaccgtc aaaacaatgc acgaaataag	8820
cttccagtttgc ttttgcatttttccatgc ttttgcatttttccatgc gaaatgttgc ttttgcatttttccatgc	8880
aagttttgcgttgc gcaattttccatgc gtattacacc caaaatataat ttgttgcatttttccatgc gaaatgttgc ttttgcatttttccatgc	8940
aaatattaag gaataatgac cagatactcc aagaaagatt acgatgcac ttttgcatttttccatgc	9000

taacagattc acatagtcaa tcctgattt aaaccacaac tgaacacagt tggaaataaa	9060
tctgttaagta agcttgcatt acaccatcta tcagtc当地 gcttgacttc cctaccattt	9120
tcaacgtttt gtttatgtt tgtcttgaa ctgtccccag aaatttagcta ttgatctcca	9180
caaagcaacc tcataatggat tacttactgg tttggatcc taatatctct ccatgccata	9240
aattgactta ataacagcct tccataatcc atactgcata tttccatcg ttacaaaaaa	9300
aagcattcac atttgctcaa atagcctttg gaaggggcat ctacaaatat gcaatcataa	9360
agccctcaac aacaataatt acaacaacaa ccaagtaaaa tcccacaatt ggggtctggg	9420
gagggtagtg tgtacgcaaa ccttacctct aactccgata gaccctcggc tcaagaatat	9480
gaaaagagac aatatataag taccatcaac aaaaaatcat agagataata acagcaatca	9540
taaagccctc atagacacaa taaccttagg atcatgttgt gttataatt taatcttag	9600
attcctata gttttctctt caatctttat atcttctctt agggaaatct ctgaccaact	9660
ttattattct ttttcatgtt tcagaagggg atatgatatt gtaatgacag caagcctctc	9720
ttcgatgtt cctgtgggt acttctcttg ggcggagtt gatataatgg ctccagtgc	9780
acctaaaact gagaatgcat tagcagctgc ttttatttct aattgtgggt cttgcaactt	9840
ccggatgcag gctttgaag tccttggaaag ggcaaatatc aagattgatt ctttggcag	9900
ttgtcatcgt aaccgggacg gaaatggtca gtagtccat tatatatgt aatatattga	9960
tggttctttt cttgaagtag ttaccattaa ggagctaatt gtctaaaata tttcaatata	10020
atgggtttt gaaaagccat gtttactggt aatagaaacc ttacagtatt tatttccttg	10080
gtaaatgtac acatacacat gtaagtgttc taaatagtca gatgttctgc tagttgaag	10140
atttcatttt gtggattggc tatattgctg ttacgcttgt tatctttga atacccctt	10200
agtattttgc aaccattaa attgggttga aaagcagcag ttttgcaaa ttcattgcaa	10260
agaaattaga ccctaatttg ttataataga aaaattaaa caaaatttag ttttagttt	10320
ttcttctgat gtataatatg catgcctgtc gtttactttt acattatacg taaattttt	10380
agaatagagt tgaaaagcag acatttttc taaattaaac cacgtgcatt cataaaaaat	10440
gtctgttttgc caacttacta ggatatagtt gaaagcagcag atctttttgt aaatttttt	10500
tgaagaagct agaccagggtt tggtggaaag ggaaatataag agaaaaggca tttcttaata	10560
aatgtcatat tacaatgcag aatatttttta tccatgcctc tagtttaatt gtacattata	10620
tcctgtgaat gcttacttgtt catcttgcattc tcaatttcattt ggcagtggac aaagtggaaa	10680
ctctcaagtgc tacaatttttgc agcttcgctt ttgagaatttcaatgaggag gattatgtca	10740
ccgaaaaattt cttccagtctt ttagtagctg gtaataattt ttgcctgtta atttgggttc	10800
tgcatttttac acttagtttc caatgtatctt attctttctt attaaccccc tccctctgc	10860
attgatgcattt tttgttttac tttttctgca attcataattt acacaaaaga cataggagat	10920
attagctata gagcgccatg aagaacaaag caaaaagcac aaactttttt ttttatgacc	10980

aagaaatccg tctggggccg atcctttgga ccaaatgcaa cttcgaaat tcggtgata	11040
atgggacctc ccctctatcg ttctccactt aaatgccagg ctttgctttg catggtgtgg	11100
gggcaagcga aaagcacaaa cttctgaaca ctttatgtta cttcaactac gttttgtacc	11160
cgaatttgca ttttctggta cgacgtacaa atatgctctg ctctatattc atttaaaagg	11220
ctttaggaaa atgttaaatg atttacgtg aattatcatt gttaataata ttctttgtgc	11280
tcctagtcaa tatgttttag ggtagaatta tgcacggaat cctgtttta tgattttca	11340
caagttacta cttcaaaatt atgattttag gtagtcaacg ctattgtgct gataaaagga	11400
agttcatgta aacttgcagg atcagtcccc gtggtgattt gtagtccaaa catcctagac	11460
tttgctcctt ctcctaattc acttttacac attaaagagc tgaaagacgc tgcacatgtt	11520
gccaagatta tgaagtacct tgcagaacat cctagtgcataa acgatc attaaggat	11580
gcatcaattt gtcgtgctt tcttacgtgc tcttcttgat tatttgaatt ttcctgtcct	11640
aaatthaactt tttttgtttg tcctgaagat ttatccactc tctctaaaaaaa aaaacccctt	11700
ttccaacatc tttctgtact tttctgttat catgttattt agagagtaac actggcctgt	11760
ctctatggtt gcaaaagttt attaccttat cctattttat gacacttaa tatatagttt	11820
tggtctaact aaaactccta aattagtaag attgttctct gtagtgcgtt ttgtgtcccc	11880
ttctgcattt gtagtgcattt atttgacccctt tgcctttcaa aatttatttta agattcttaa	11940
acttcctggg tcttgctaac aaatggtttc ttttcatgtt ttagttggaa atttgagggt	12000
ccatctgact cgatccaaagc cctgggttgc atggcagcag ttcactcttc ttgtcggtt	12060
tgtatcttct tagcaacttag tattagggag aaagaagaga agagtccaaa atttacgaaa	12120
cgtccctgca aatgtaccag agttcagaa actgtctatc atgtatatgt acgtgaaaga	12180
gggagggtttg acatggagtc cgttttccta aggtatttc gatctgccat gactaaatat	12240
catgcatata caagtgcctt tctgtttatg ttcctgtgcc gctgttctta tgttaatat	12300
gtaccatgtat gatcaaattt tttaccaata ttggaatgaa aaggatccaa aaagagtggaa	12360
atgtatatac aggtttccata gagctgaccg caaatgggt tgagacatac tgatcaaatt	12420
atttgagtaa ctattcaattt cttaactctcg atgtatgaga agtataatgt tggatccat	12480
ggtctatggg cttataaagt ggtttacatg tttttgggtt ggtattccac aaaatcaatg	12540
tcaatctatc taaagtattt cttgatcgat ttgatagact taactagaga agttccggaa	12600
aatatttggc aactgggttt tggttcataa taaagctaga agatagggtt gggggggggg	12660
ggtaaaattt ggggcattccg gccacgaaaa agaaatatcg acaaccaatg tcataatgtg	12720
aattctctcc tgcacttctc ctttacttg ctgagcatat acaaactgtt tcatgtctca	12780
ttggcaagtc ttctgttatac tttgaatcac cggttattgtt ggaatctttt caggtcatct	12840
aatttgcattt tggaggcttt tgaatctgca gtactgtcaa agttcaaatc tctaaagcat	12900
gttcccattt ggaaagaaga aagacctcaa atactacgtg gaggggatga actaaagctc	12960
tacagagtagt atcctctcg catgacacag cgtcaggcat tgcacacatt taaattcaaa	13020

ggagacgcag attttaggaa tcacattgaa agccacccat gcgcaaactt tgaagccata 13080
 tttgtatag 13089

<210> 11
 <211> 1545
 <212> DNA
 <213> Nicotiana benthamiana

<220>
 <221> CDS
 <222> (1)..(1545)

<220>
 <221> Variation
 <222> (224)..(224)
 <223> G to A substitution in FucT009

<400> 11
 atg gca aca gtt att cca att caa aga ata cca aga ttt gaa ggt gtt 48
 Met Ala Thr Val Ile Pro Ile Gln Arg Ile Pro Arg Phe Glu Gly Val
 1 5 10 15

ggg tca tta tca cct aca aac gtt ccc caa aag aaa tgg tcc aat tgg 96
 Gly Ser Leu Ser Pro Thr Asn Val Pro Gln Lys Lys Trp Ser Asn Trp
 20 25 30

tta cct cta gta gtt gca ctt gtg gtt ata gtt gaa att gca ttt ctg 144
 Leu Pro Leu Val Val Ala Leu Val Val Ile Val Glu Ile Ala Phe Leu
 35 40 45

ggt cga ctg gac atg gct gaa aaa gcc aac ctg gtc aac tct tgg act 192
 Gly Arg Leu Asp Met Ala Glu Lys Ala Asn Leu Val Asn Ser Trp Thr
 50 55 60

gac tca ttt tac cag ttt acg acg tcg tct tgg tca acc tcc aac gtg 240
 Asp Ser Phe Tyr Gln Phe Thr Thr Ser Ser Trp Ser Thr Ser Asn Val
 65 70 75 80

gaa att aat gag gct ggg ttg ggt gtg ttg agg agt agt gag gtt gat 288
 Glu Ile Asn Glu Ala Gly Leu Gly Val Leu Arg Ser Ser Glu Val Asp
 85 90 95

cgg aat ttg gca act ggg agc tgt gag gag tgg ttg gaa aag gaa gat 336
 Arg Asn Leu Ala Thr Gly Ser Cys Glu Glu Trp Leu Glu Lys Glu Asp
 100 105 110

tct gta gag tat tct aga gat ttt gac aaa gat cca att ttt gtt cat 384
 Ser Val Glu Tyr Ser Arg Asp Phe Asp Lys Asp Pro Ile Phe Val His
 115 120 125

ggc ggc gaa aag gat tgg aag tct tgt gca gta gga tgt aac ttt ggt 432
 Gly Gly Glu Lys Asp Trp Lys Ser Cys Ala Val Gly Cys Asn Phe Gly
 130 135 140

gtg gat tct gat aag aag cct gat gcg gca ttt ggg aca cca caa cag 480
 Val Asp Ser Asp Lys Lys Pro Asp Ala Ala Phe Gly Thr Pro Gln Gln
 145 150 155 160

gct ggc acg gct agc gtg ctt cgg tca atg gag tct gct caa tac tat 528
 Ala Gly Thr Ala Ser Val Leu Arg Ser Met Glu Ser Ala Gln Tyr Tyr
 165 170 175

ccg gag aac aac atc gtt acc gca cga cga agg gga tat gat att gta 576

Pro Glu Asn Asn Ile Val Thr Ala Arg Arg Arg Gly Tyr Asp Ile Val			
180	185	190	
atg aca gca agc ctc tct tcg gat gtt cct gtt ggg tac ttc tct tgg		624	
Met Thr Ala Ser Leu Ser Ser Asp Val Pro Val Gly Tyr Phe Ser Trp			
195	200	205	
gcg gag tat gat ata atg gct cca gtg caa cct aaa act gag aat gca		672	
Ala Glu Tyr Asp Ile Met Ala Pro Val Gln Pro Lys Thr Glu Asn Ala			
210	215	220	
tta gca gct gct ttt att tct aat tgt ggt gct tgc aac ttc cgg ttg		720	
Leu Ala Ala Ala Phe Ile Ser Asn Cys Gly Ala Cys Asn Phe Arg Leu			
225	230	235	240
cag gct ctt gaa gtc ctt gaa agg gca aat atc aag att gat tct ttt		768	
Gln Ala Leu Glu Val Leu Glu Arg Ala Asn Ile Lys Ile Asp Ser Phe			
245	250	255	
ggc agt tgt cat cgt aac cgg gac gga aat gtg gac aaa gtg gaa act		816	
Gly Ser Cys His Arg Asn Arg Asp Gly Asn Val Asp Lys Val Glu Thr			
260	265	270	
ctc aag tgc tac aaa ttt agc ttc gct ttt gag aat tct aat gag gag		864	
Leu Lys Cys Tyr Lys Phe Ser Phe Ala Phe Glu Asn Ser Asn Glu Glu			
275	280	285	
gat tat gtc acc gaa aaa ttc ttc cag tct tta gta gct gga tca gtc		912	
Asp Tyr Val Thr Glu Lys Phe Phe Gln Ser Leu Val Ala Gly Ser Val			
290	295	300	
ccc gtg gtg att ggt gct cca aac atc cta gac ttt gct cct tct cct		960	
Pro Val Val Ile Gly Ala Pro Asn Ile Leu Asp Phe Ala Pro Ser Pro			
305	310	315	320
aat tca ctt tta cac att aaa gag ctg aaa gac gct gca tca gtt gcc		1008	
Asn Ser Leu Leu His Ile Lys Glu Leu Lys Asp Ala Ala Ser Val Ala			
325	330	335	
aag att atg aag tac ctt gca gaa cat cct agt gca tat aac gag tca		1056	
Lys Ile Met Lys Tyr Leu Ala Glu His Pro Ser Ala Tyr Asn Glu Ser			
340	345	350	
tta agt tgg aaa ttt gag ggt cca tct gac tcg ttc aaa gcc ctg gtt		1104	
Leu Ser Trp Lys Phe Glu Gly Pro Ser Asp Ser Phe Lys Ala Leu Val			
355	360	365	
gac atg gca gca gtt cac tct tct tgt cgt ttg tgt atc ttc tta gca		1152	
Asp Met Ala Ala Val His Ser Ser Cys Arg Leu Cys Ile Phe Leu Ala			
370	375	380	
act agt att agg gag aaa gaa gag aag agt cca aaa ttt acg aaa cgt		1200	
Thr Ser Ile Arg Glu Lys Glu Glu Lys Ser Pro Lys Phe Thr Lys Arg			
385	390	395	400
ccc tgc aaa tgt acc aga ggt tca gaa act gtc tat cat gta tat gta		1248	
Pro Cys Lys Cys Thr Arg Gly Ser Glu Thr Val Tyr His Val Tyr Val			
405	410	415	
cgt gaa aga ggg agg ttt gac atg gag tcc gtt ttc cta agg tca tct		1296	
Arg Glu Arg Gly Arg Phe Asp Met Glu Ser Val Phe Leu Arg Ser Ser			
420	425	430	
aat ttg tca ttg gag gct ttt gaa tct gca gta ctg tca aag ttc aaa		1344	
Asn Leu Ser Leu Glu Ala Phe Glu Ser Ala Val Leu Ser Lys Phe Lys			
435	440	445	

tct cta aag cat gtt ccc att tgg aaa gaa gaa aga cct caa ata cta	1392
Ser Leu Lys His Val Pro Ile Trp Lys Glu Glu Arg Pro Gln Ile Leu	
450 455 460	
cgt gga ggg gat gaa cta aag ctc tac aga gta tat cct ctc ggc atg	1440
Arg Gly Gly Asp Glu Leu Lys Leu Tyr Arg Val Tyr Pro Leu Gly Met	
465 470 475 480	
aca cag cgt cag gca ttg tac acc ttt aaa ttc aaa gga gac gca gat	1488
Thr Gln Arg Gln Ala Leu Tyr Thr Phe Lys Phe Lys Gly Asp Ala Asp	
485 490 495	
ttt agg aat cac att gaa agc cac cca tgc gca aac ttt gaa gcc ata	1536
Phe Arg Asn His Ile Glu Ser His Pro Cys Ala Asn Phe Glu Ala Ile	
500 505 510	
ttt gta tag	1545
Phe Val	

<210> 12
 <211> 514
 <212> PRT
 <213> Nicotiana benthamiana

<400> 12

Met Ala Thr Val Ile Pro Ile Gln Arg Ile Pro Arg Phe Glu Gly Val
 1 5 10 15

Gly Ser Leu Ser Pro Thr Asn Val Pro Gln Lys Lys Trp Ser Asn Trp
 20 25 30

Leu Pro Leu Val Val Ala Leu Val Val Ile Val Glu Ile Ala Phe Leu
 35 40 45

Gly Arg Leu Asp Met Ala Glu Lys Ala Asn Leu Val Asn Ser Trp Thr
 50 55 60

Asp Ser Phe Tyr Gln Phe Thr Thr Ser Ser Trp Ser Thr Ser Asn Val
 65 70 75 80

Glu Ile Asn Glu Ala Gly Leu Gly Val Leu Arg Ser Ser Glu Val Asp
 85 90 95

Arg Asn Leu Ala Thr Gly Ser Cys Glu Glu Trp Leu Glu Lys Glu Asp
 100 105 110

Ser Val Glu Tyr Ser Arg Asp Phe Asp Lys Asp Pro Ile Phe Val His
 115 120 125

Gly Gly Glu Lys Asp Trp Lys Ser Cys Ala Val Gly Cys Asn Phe Gly
 130 135 140

Val Asp Ser Asp Lys Lys Pro Asp Ala Ala Phe Gly Thr Pro Gln Gln
 145 150 155 160

Ala Gly Thr Ala Ser Val Leu Arg Ser Met Glu Ser Ala Gln Tyr Tyr
165 170 175

Pro Glu Asn Asn Ile Val Thr Ala Arg Arg Arg Gly Tyr Asp Ile Val
180 185 190

Met Thr Ala Ser Leu Ser Ser Asp Val Pro Val Gly Tyr Phe Ser Trp
195 200 205

Ala Glu Tyr Asp Ile Met Ala Pro Val Gln Pro Lys Thr Glu Asn Ala
210 215 220

Leu Ala Ala Ala Phe Ile Ser Asn Cys Gly Ala Cys Asn Phe Arg Leu
225 230 235 240

Gln Ala Leu Glu Val Leu Glu Arg Ala Asn Ile Lys Ile Asp Ser Phe
245 250 255

Gly Ser Cys His Arg Asn Arg Asp Gly Asn Val Asp Lys Val Glu Thr
260 265 270

Leu Lys Cys Tyr Lys Phe Ser Phe Ala Phe Glu Asn Ser Asn Glu Glu
275 280 285

Asp Tyr Val Thr Glu Lys Phe Phe Gln Ser Leu Val Ala Gly Ser Val
290 295 300

Pro Val Val Ile Gly Ala Pro Asn Ile Leu Asp Phe Ala Pro Ser Pro
305 310 315 320

Asn Ser Leu Leu His Ile Lys Glu Leu Lys Asp Ala Ala Ser Val Ala
325 330 335

Lys Ile Met Lys Tyr Leu Ala Glu His Pro Ser Ala Tyr Asn Glu Ser
340 345 350

Leu Ser Trp Lys Phe Glu Gly Pro Ser Asp Ser Phe Lys Ala Leu Val
355 360 365

Asp Met Ala Ala Val His Ser Ser Cys Arg Leu Cys Ile Phe Leu Ala
370 375 380

Thr Ser Ile Arg Glu Lys Glu Glu Lys Ser Pro Lys Phe Thr Lys Arg
385 390 395 400

Pro Cys Lys Cys Thr Arg Gly Ser Glu Thr Val Tyr His Val Tyr Val
405 410 415

Arg Glu Arg Gly Arg Phe Asp Met Glu Ser Val Phe Leu Arg Ser Ser
420 425 430

Asn Leu Ser Leu Glu Ala Phe Glu Ser Ala Val Leu Ser Lys Phe Lys
435 440 445

Ser Leu Lys His Val Pro Ile Trp Lys Glu Glu Arg Pro Gln Ile Leu
450 455 460

Arg Gly Gly Asp Glu Leu Lys Leu Tyr Arg Val Tyr Pro Leu Gly Met
465 470 475 480

Thr Gln Arg Gln Ala Leu Tyr Thr Phe Lys Phe Lys Gly Asp Ala Asp
485 490 495

Phe Arg Asn His Ile Glu Ser His Pro Cys Ala Asn Phe Glu Ala Ile
500 505 510

Phe Val

<210> 13
<211> 1536
<212> DNA
<213> Nicotiana benthamiana

<220>
<221> CDS
<222> (1)..(1536)

<220>
<221> Variation
<222> (910)..(910)
<223> G to A substitution in FucT003

<400> 13
atg gaa aca gtt att cca att caa aga ata cca aga ttt gaa ggt gtt 48
Met Glu Thr Val Ile Pro Ile Gln Arg Ile Pro Arg Phe Glu Gly Val
1 5 10 15

ggg tca tca tcc aca aac gtt ccc caa aag aaa tgg tcc aat tgg 96
Gly Ser Ser Pro Thr Asn Val Pro Gln Lys Lys Trp Ser Asn Trp
20 25 30

tta cct cta ata gtt gca ctt gtg gtt ata gtt gaa att gca ttt ctg 144
Leu Pro Leu Ile Val Ala Leu Val Val Ile Val Glu Ile Ala Phe Leu
35 40 45

ggt cga ctg gag atg gct gaa aaa gcc aac ctg gtc aac tct tgg act 192
Gly Arg Leu Glu Met Ala Glu Lys Ala Asn Leu Val Asn Ser Trp Thr
50 55 60

gac tca ttt tac cag ttt acg acg tcg ttt tgg tca acc tcc aaa gtg 240
Asp Ser Phe Tyr Gln Phe Thr Ser Phe Trp Ser Thr Ser Lys Val
65 70 75 80

gaa att aat gag gct ggg ttg ggt gtg ttg agg agt agt gag gtt gat 288
Glu Ile Asn Glu Ala Gly Leu Gly Val Leu Arg Ser Ser Glu Val Asp
85 90 95

cgg aat ttg gca act ggg agc tgt gag gag tgg ttg gaa aag gaa gat 336

Arg Asn Leu Ala Thr Gly Ser Cys Glu Glu Trp Leu Glu Lys Glu Asp			
100	105	110	
tct gtg gag tat tct aga gat ttt gac aaa gat cca att ttt gtt cat		384	
Ser Val Glu Tyr Ser Arg Asp Phe Asp Lys Asp Pro Ile Phe Val His			
115	120	125	
ggc ggc gaa aag gat tgg aag tct tgt gca gta gga tgt aac att ggt		432	
Gly Gly Glu Lys Asp Trp Lys Ser Cys Ala Val Gly Cys Asn Ile Gly			
130	135	140	
gtg gat tct gat aag aag cct gat gcg gca ttt ggg acg cca caa cag		480	
Val Asp Ser Asp Lys Lys Pro Asp Ala Ala Phe Gly Thr Pro Gln Gln			
145	150	155	160
gct ggc acg gct agc gtg ctt cgg tca atg gag tct gct caa tac tat		528	
Ala Gly Thr Ala Ser Val Leu Arg Ser Met Glu Ser Ala Gln Tyr Tyr			
165	170	175	
ccg gag aac aac atc gtt acc gca cga cga agg gga tat gat att gta		576	
Pro Glu Asn Asn Ile Val Thr Ala Arg Arg Arg Gly Tyr Asp Ile Val			
180	185	190	
atg act aca agc ctc tct tcg gat gtt cct gtt ggg tac ttc tct tgg		624	
Met Thr Thr Ser Leu Ser Ser Asp Val Pro Val Gly Tyr Phe Ser Trp			
195	200	205	
gcg gag tat gat ata atg gct cca gtg caa cct aaa act gag aat gca		672	
Ala Glu Tyr Asp Ile Met Ala Pro Val Gln Pro Lys Thr Glu Asn Ala			
210	215	220	
tta gca gct gct ttt att tct aat tgt ggt gct cgt aac ttc cgg ttg		720	
Leu Ala Ala Ala Phe Ile Ser Asn Cys Gly Ala Arg Asn Phe Arg Leu			
225	230	235	240
caa gct ctt gaa gtc ctt gaa agg gca aat atc aag att gat tct ttt		768	
Gln Ala Leu Glu Val Leu Glu Arg Ala Asn Ile Lys Ile Asp Ser Phe			
245	250	255	
ggc agt tgt cat cgc aac cgg gac gga aat gtg gac aaa gtg gaa act		816	
Gly Ser Cys His Arg Asn Arg Asp Gly Asn Val Asp Lys Val Glu Thr			
260	265	270	
ctc aag cgc tac aaa ttt agc ttc gct ttt gag aat tcc aat gag gac		864	
Leu Lys Arg Tyr Lys Phe Ser Phe Ala Phe Glu Asn Ser Asn Glu Asp			
275	280	285	
acc gaa aaa ttc ttc cag tct tta gta gct gga tca gtc ccc gtg gtg		912	
Thr Glu Lys Phe Phe Gln Ser Leu Val Ala Gly Ser Val Pro Val Val			
290	295	300	
att ggt gct cca aac atc cta gac ttt gct cct tct cct aat tca ctt		960	
Ile Gly Ala Pro Asn Ile Leu Asp Phe Ala Pro Ser Pro Asn Ser Leu			
305	310	315	320
tta cac att aaa gag ctg aaa gac gct gca tca gtt gcc aag act atg		1008	
Leu His Ile Lys Glu Leu Lys Asp Ala Ala Ser Val Ala Lys Thr Met			
325	330	335	
aag tac ctt gca gaa aat cct agt gca tat aac gag tca tta agg tgg		1056	
Lys Tyr Leu Ala Glu Asn Pro Ser Ala Tyr Asn Glu Ser Leu Arg Trp			
340	345	350	
aaa ttt gag ggt cca tct gac tcg ttc aaa gcc ctg gtt gac atg gca		1104	
Lys Phe Glu Gly Pro Ser Asp Ser Phe Lys Ala Leu Val Asp Met Ala			
355	360	365	

gca gtt cac tct tct tgt cgt ttg tgt atc ttc tta gca act agt att Ala Val His Ser Ser Cys Arg Leu Cys Ile Phe Leu Ala Thr Ser Ile 370 375 380	1152
agg gag aaa gaa gag aag agt cca aaa ttt acg aaa cgt ccc tgc aaa Arg Glu Lys Glu Lys Ser Pro Lys Phe Thr Lys Arg Pro Cys Lys 385 390 395 400	1200
tgt acc aga ggt tca gaa act gtc tat cat gta tat gta cgt gaa aga Cys Thr Arg Gly Ser Glu Thr Val Tyr His Val Tyr Val Arg Glu Arg 405 410 415	1248
ggg agg ttt gac atg gag tcc att ttc cta agg tca tct aat ttg tca Gly Arg Phe Asp Met Glu Ser Ile Phe Leu Arg Ser Ser Asn Leu Ser 420 425 430	1296
ttg gag gct ttt gaa tct gca gta ctg tcg aag ttc aaa tct cta aag Leu Glu Ala Phe Glu Ser Ala Val Leu Ser Lys Phe Lys Ser Leu Lys 435 440 445	1344
cat gtt ccc att tgg aaa gaa gaa aga cct caa ata cta cgt gga ggg His Val Pro Ile Trp Lys Glu Arg Pro Gln Ile Leu Arg Gly Gly 450 455 460	1392
gaa gaa cta aag ctc tac aga gta tat cct ctc ggc atg aca cag cga Glu Glu Leu Lys Leu Tyr Arg Val Tyr Pro Leu Gly Met Thr Gln Arg 465 470 475 480	1440
cag gca ttg tac acc ttt aaa ttc aaa gga gac gca gat ttt agg aat Gln Ala Leu Tyr Thr Phe Lys Phe Gly Asp Ala Asp Phe Arg Asn 485 490 495	1488
cac att gaa agc cac cca tgc gca aac ttt gaa gcc ata ttt gta tag His Ile Glu Ser His Pro Cys Ala Asn Phe Glu Ala Ile Phe Val 500 505 510	1536

<210> 14
 <211> 511
 <212> PRT
 <213> Nicotiana benthamiana

<400> 14

Met Glu Thr Val Ile Pro Ile Gln Arg Ile Pro Arg Phe Glu Gly Val
1 5 10 15

Gly Ser Ser Ser Pro Thr Asn Val Pro Gln Lys Lys Trp Ser Asn Trp
20 25 30

Leu Pro Leu Ile Val Ala Leu Val Val Ile Val Glu Ile Ala Phe Leu
35 40 45

Gly Arg Leu Glu Met Ala Glu Lys Ala Asn Leu Val Asn Ser Trp Thr
50 55 60

Asp Ser Phe Tyr Gln Phe Thr Thr Ser Phe Trp Ser Thr Ser Lys Val
65 70 75 80

Glu Ile Asn Glu Ala Gly Leu Gly Val Leu Arg Ser Ser Glu Val Asp
85 90 95

Arg Asn Leu Ala Thr Gly Ser Cys Glu Glu Trp Leu Glu Lys Glu Asp
100 105 110

Ser Val Glu Tyr Ser Arg Asp Phe Asp Lys Asp Pro Ile Phe Val His
115 120 125

Gly Gly Glu Lys Asp Trp Lys Ser Cys Ala Val Gly Cys Asn Ile Gly
130 135 140

Val Asp Ser Asp Lys Lys Pro Asp Ala Ala Phe Gly Thr Pro Gln Gln
145 150 155 160

Ala Gly Thr Ala Ser Val Leu Arg Ser Met Glu Ser Ala Gln Tyr Tyr
165 170 175

Pro Glu Asn Asn Ile Val Thr Ala Arg Arg Arg Gly Tyr Asp Ile Val
180 185 190

Met Thr Thr Ser Leu Ser Ser Asp Val Pro Val Gly Tyr Phe Ser Trp
195 200 205

Ala Glu Tyr Asp Ile Met Ala Pro Val Gln Pro Lys Thr Glu Asn Ala
210 215 220

Leu Ala Ala Ala Phe Ile Ser Asn Cys Gly Ala Arg Asn Phe Arg Leu
225 230 235 240

Gln Ala Leu Glu Val Leu Glu Arg Ala Asn Ile Lys Ile Asp Ser Phe
245 250 255

Gly Ser Cys His Arg Asn Arg Asp Gly Asn Val Asp Lys Val Glu Thr
260 265 270

Leu Lys Arg Tyr Lys Phe Ser Phe Ala Phe Glu Asn Ser Asn Glu Asp
275 280 285

Thr Glu Lys Phe Phe Gln Ser Leu Val Ala Gly Ser Val Pro Val Val
290 295 300

Ile Gly Ala Pro Asn Ile Leu Asp Phe Ala Pro Ser Pro Asn Ser Leu
305 310 315 320

Leu His Ile Lys Glu Leu Lys Asp Ala Ala Ser Val Ala Lys Thr Met
325 330 335

Lys Tyr Leu Ala Glu Asn Pro Ser Ala Tyr Asn Glu Ser Leu Arg Trp
340 345 350

Lys Phe Glu Gly Pro Ser Asp Ser Phe Lys Ala Leu Val Asp Met Ala
355 360 365

Ala Val His Ser Ser Cys Arg Leu Cys Ile Phe Leu Ala Thr Ser Ile
370 375 380

Arg Glu Lys Glu Glu Lys Ser Pro Lys Phe Thr Lys Arg Pro Cys Lys
385 390 395 400

Cys Thr Arg Gly Ser Glu Thr Val Tyr His Val Tyr Val Arg Glu Arg
405 410 415

Gly Arg Phe Asp Met Glu Ser Ile Phe Leu Arg Ser Ser Asn Leu Ser
420 425 430

Leu Glu Ala Phe Glu Ser Ala Val Leu Ser Lys Phe Lys Ser Leu Lys
435 440 445

His Val Pro Ile Trp Lys Glu Glu Arg Pro Gln Ile Leu Arg Gly Gly
450 455 460

Glu Glu Leu Lys Leu Tyr Arg Val Tyr Pro Leu Gly Met Thr Gln Arg
465 470 475 480

Gln Ala Leu Tyr Thr Phe Lys Phe Lys Gly Asp Ala Asp Phe Arg Asn
485 490 495

His Ile Glu Ser His Pro Cys Ala Asn Phe Glu Ala Ile Phe Val
500 505 510

<210> 15
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer VH031

<400> 15

attgtggtgc tcgcaacttc

20

<210> 16
<211> 19
<212> DNA
<213> Artificial

<220>
<223> Primer VH032

<400> 16

acctccctct ttcacgtac

19

<210> 17
<211> 20
<212> DNA
<213> Artificial

<220>
 <223> Primer VH033
 <400> 17
 cttctcttgg gctgagttatg 20

<210> 18
 <211> 20
 <212> DNA
 <213> Artificial

<220>
 <223> Primer VH034
 <400> 18
 ttaggagaag gcgcaaagtc 20

<210> 19
 <211> 1066
 <212> DNA
 <213> artificial

<220>
 <223> sequence encoding FucT silencing RNA

<220>
 <221> misc_feature
 <222> (1)..(426)
 <223> part of the Nicotiana benthamiana FucT cDNA sequence in sense orientation

<220>
 <221> Intron
 <222> (427)..(644)
 <223> second intron of the A. thaliana XylT gene

<220>
 <221> misc_feature
 <222> (647)..(1066)
 <223> part of the Nicotiana benthamiana FucT cDNA sequence in antisense orientation

<400> 19
 ctagaggatc ctggcagcg gcttcattt ctaattgtgg tgctcgcaac ttccgttgc 60
 aagctttaga agccctttaga agggcaaata tcagaattga ctcttatgga agttgtcatc 120
 ataacaggga tggaaagatg gacaaagtgg cagcactgaa gcgttaccag tttagcctgg 180
 cttttggaa ttctaatgag gaggactatg taactgaaaa attcttcag tctctggtag 240
 ctgggtcaat ccctgtggtg gttggtgctc caaacatcca agactttgcg ctttcctta 300
 attcagttt acacattaaa gagataaaag atgctgaatc aattgccaat accatgaagt 360
 accttgctca aaaccctatt gcatataatg agtcattaaag gtggaaagttt gagggccat 420
 ctgatggatc cactgcacgg tatgctcctc ttcttggta tggtcatgat ctttatatga 480
 gcagggaaag tccagtttag actttagttt agttactt cgttataagga tttggatttc 540
 ttgcgtgttt atggtttag tttccctcct ttgatgaata aaattgaatc ttgtatgagt 600
 ttcatatcca tggatcattttgcag acgcagctag gtaccggatc catcagatgg 660

gcctcaaac ttccaccta atgactcatt atatgcaata gggtttgag caaggtactt	720
catggtattg gcaattgatt cagcatctt tatctctta atgtgtaaaa ctgaattagg	780
agaaggcgca aagtcttgg aagttggagc accaaccacc acagggattg acccagctac	840
cagagactga aagaattttt cagttacata gtcctcctca ttagaattcc caaaagccag	900
gctaaactgg taacgcttca gtgctgccac tttgtcaact cttccatccc tgttatgatg	960
acaacttcca taagagtcaa ttctgatatt tgcccttca agggcttcta aagcttgcaa	1020
acggaagttg cgagcaccac aattagaaat gaaagccgct gccaat	1066
<210> 20	
<211> 83	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Part of the Nicotiana benthamiana FucTB coding sequence from 1183 to 1265	
<400> 20	
gaaactgtct atcatgtata tgtacgtgaa agagggaggt ttgagatgga ttccatttc	60
ttaaggtcga gtgatttgc ttt	83
<210> 21	
<211> 390	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Sequence encoding FucT silencing RNA	
<400> 21	
gaaactgtct atcatgtata tgtacgtgaa agagggaggt ttgagatgga ttccatttc	60
ttaaggtcga gtgatttgc tttgatccac tgcacggat gctcctcttc ttgttcatgg	120
tcatgatcct tatatgagca gggaaagtcc agtttagact tgttagttgt tactcttcgt	180
tataggattt ggatttcttg cgtgttatg gtttagttt ccctccttg atgaataaaa	240
ttgaatcttg tatgagtttc atatccatgt tgtgaatctt tttgcagacg cagctaggtt	300
ccggatcaaa gacaaatcac tcgaccttaa gaaaatggaa tccatctcaa acctccctct	360
ttcacgtaca tatacatgat agacagttc	390