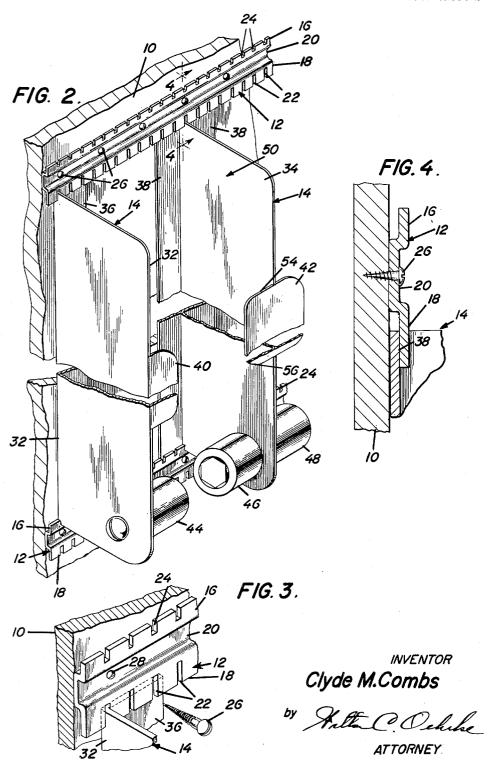

ADJUSTABLE DISPLAY AND STORAGE RACK

Filed July 26, 1960

2 Sheets-Sheet 1

Clyde M. Combs


by Halle C. Ochike

ATTORNEY

ADJUSTABLE DISPLAY AND STORAGE RACK

Filed July 26, 1960

2 Sheets-Sheet 2

1

3,018,001
ADJUSTABLE DISPLAY AND STORAGE RACK
Clyde M. Combs, San Diego, Calif.
(9250 Brookshire Ave., Downey, Calif.)
Filed July 26, 1960, Ser. No. 45,510
9 Claims. (Cl. 211—49)
(Granted under Title 35, U.S. Code (1952), sec. 266)

The invention described herein, if patented, may be manufactured and used by or for the Government for 10 governmental purposes, without the payment to me of any royalty thereon.

The present invention relates to racks for holding uniformly shaped packages or cans in a plurality of segregated stacks, and, more particularly, to a rack of this type 15 which can readily be adjusted to hold packages or cans of different sizes in the different stacks, and which incidentally provides a first-in, first-out system of storage.

The increased use of prepackaging or canning in the merchandising of such products as foods has created a demand for suitable shelving or racks for compactly storing or holding the same in both commercial establishments and in the home. In particular, a demand has thus been created for racks to receive packages or cans of more or less standardized shapes and sizes, so as best to display the packages or cans and hold the same for ready dispensation from the rack. Since packages and cans vary in size, this increased use of prepackaging or canning makes it desirable that the racks be adjustable to hold various-sized packages or cans. While adjustable shelving has heretofore been used for storing cans or packages of different sizes, this shelving commonly consisted of horizontal shelves which could be raised or lowered to vary the vertical spacing between the shelves, thereby permitting packages or cans to be stacked one upon another 35 in vertical stacks or permitting the shelves to be accommodated to packages or cans of various sizes or to stacks of various heights. However, packages or cans commonly had to be stacked in upright or end-to-end position on these shelves, and the adjacent stacks normally were 40 not segregated from each other. This shelving was commonly fixed in place as by anchoring the same along the walls of a building structure, or by constructing the shelving in the form of a floor stand. In contrast to this, in the rack of the present invention, packages or cans are arranged side-to-side in vertical stacks which are separated from one another by panels or dividers that may be adjusted as desired to vary the horizontal distance between adjacent panels and hence the size of the packages or cans that can be received in the various stacks. These racks may be built in any desired size from a small hand portable type to large installations for commercial establishments.

Moreover, as an incident to the use of the racks of the present invention, insurance is had that packages or cans will be removed from a rack in the order in which they were placed on the rack, i.e., on a first-in, first-out basis. This is particularly desirable in the case of food products to prevent retention of the same on the racks for undue periods of time through oversight or accident. In addition, each of the packages or cans in each of the stacks held on the rack of the present invention is visible, or a sufficient part thereof is visible, to permit immediate identification of the packages or cans, thus reducing the likelihood of the wrong package or can being taken from the rack by mistake, or packages or cans being loaded in the wrong stack, and also indicating at a glance which of the stacks on the rack requires replenishment.

With the foregoing in view, it is an object of the present invention to provide a new and improved rack for holding or storing packaged or canned merchandise in one or more tiers of segregated vertical stacks, in each of which 2

portions of the packages or cans in each stack are visible at all times to facilitate selection of a desired package or can and to make readily visible the condition of supply of each stack.

Another object of the invention is to provide a new and improved rack for holding or storing packaged or canned merchandise which comprises a minimum number of interchangeably usable parts of relatively simple form that may be readily assembled and disassembled so that racks can readily be adjusted to accommodate packages or cans of different sizes.

A further object of the invention is to provide a new and improved rack for holding or storing packaged or canned merchandise having a maximum storage capacity relative to the space occupied.

A still further object of the invention is to provide a new and improved rack for systematizing the storage of packaged or canned foods or the like so that a continuous first-in, first-out system of using the stored merchandise 20 is assured without reshuffling the cans or packages.

Another object of the invention is to provide a new and improved rack for storing packages or cans in vertical stacks, the principles of which may be utilized in racks of various sizes such as small hand portable wall racks for use in the home, larger wall racks for more or less fixed installation in the home or commercial establishments, and large fixed racks for use in commercial establishments.

These and other objects, advantages and capabilities of the invention will become apparent from the following description wherein reference is had to the accompanying drawings in which:

FIG. 1 is a perspective view of a rack embodying the principles of the present invention;

FIG. 2 is a fragmentary view of a portion of the improved rack shown in FIG. 1;

FIG. 3 is an enlarged exploded perspective view of a portion of the rack; and

FIG. 4 is a vertical sectional view on the line 4-4 of FIG. 2.

Referring to FIGS. 1 and 2, the elements essential to the invention are a suitable backing or supporting member 10, at least two anchor rails 12, and a plurality of side-wall forming and divider panels indicated as an entirety by the numeral 14. The backing or supporting member 10 preferably comprises a flat rigid panel of wood, plywood, or light-weight sheet metal, such as sheet aluminum. The dimensions of the backing member are determined by the dimensions of the space that is to be used for storage purposes, except for hand portable wall-type racks in which the backing member preferably is small enough so that the rack, when loaded, can be handled by a single individual. The backing member 10 shown in FIG. 1 for illustrative purposes is of vertically elongated generally rectangular shape and is designed to accommodate two tiers of stacks across its face, as therein shown. This backing member could, for example, be mounted more or less permanently on a wall or on a floor stand, or it might be supported by suitable track or slide structure to permit the panel to be moved into and out of a wall-type storage compartment space in a manner analogous to a sliding door. The backing member 10 might also be hinged along one of its edges so as to be swingable from a readily accessible position into and out of the way of position. It is contemplated that portable racks for home use shall include a backing member of sufficient size to support two tiers of relatively low vertical stacks.

The anchor rails 12 which comprise elongated metal straps have their opposite longitudinal edges 16 and 18 offset from end to end thereof from the medial portions thereof which are indicated at 20. For convenience in description, the upwardly facing offset edge in each rail 12,

i.e., the lower offset edge in a pair of adjacent rails, has been identified by the numeral 16, and the downwardly facing offset edge, which is the upper edge in a pair of adjacent anchor rails by the numeral 18. These offset edges 16 and 18 are notched or kerfed to provide a series of duplicate uniformly spaced notches 22 from end to end of the upper edge 18 of each pair of adjacent anchor rails and a series of duplicate uniformly spaced notches 24 from end to end of the lower offset edge 16 of each pair of adjacent anchor rails. The upper and lower notches 10 22 and 24 in each rail are vertically aligned, and the individual rails are correspondingly notched so that they can be interchangeably used. It will be noted that the upper notches 22, i.e., those in the upper offset edge 18 are deeper than the lower notches 24. The purpose for this 15 difference in depth will be described hereinafter.

The anchor rails 12 are fixed to the flat side of the backing member 10 in horizontally extending parallel vertically spaced relation by means of a plurality of screws 26, for example, passing through uniformly spaced aper- 20 tures 28 in the medial portion 20 of the rails 12, the medial portion 20 seating against the flat side of the backing member 10 so that the offset upper and lower edges 18 and 16, respectively, will be offset forwardly or outwardly of the front or flat side of the backing mem- 25

The side-wall forming or divider panels 14 may be stamped from relatively lightweight sheet metal such as aluminum, and each is somewhat shorter in end-to-end length than the vertical straight-line distance between 30 the bottoms of each of the series of vertically aligned notches in opposed offset upper and lower edges 18 and 16, respectively, in the adjacent anchor rails 12 upon which the panels are to be mounted. While the rack shown in FIG. 1 is designed to hold two tiers of vertical 35 stacks of substantially equal height, and for that purpose has three duplicate anchor rails 12 mounted thereon uniformly spaced from each other, the number of these anchor rails mounted on the backing member will vary with the number of tiers of stacks it is desired to mount 40 on a single backing member. Moreover, the height of the tiers can be varied by varying the spacing between the several adjacent pairs of anchor rails on a backing member and the end-to-end length of the panels 14 to correspond therewith. It is also to be noted that the 45 uppermost and lowermost anchor rails 12, such as 12a and 12b in FIG. 1, need not necessarily be offset and notched along both of their longitudinal edges, since only one edge of each of these rails performs a panel anchoring

Although the panels 14 for the present embodiment of the invention are of the same shape and size for the reasons above stated, the outermost right and left-hand panels which have been numbered 30 and 32, respectively, differ slightly in construction from the intermediate panels indicated at 34. Each of the outer panels 30 and 32 has an inturned flange 36 on the rearwardly facing edge thereof. The intermediate panels 34 each have a flange 38 extending from end to end to the rear edges thereof, but these flanges differ from flanges 36 on panels 30 and 32 because they extend to both sides of the rear edges of panels 34, as best seen in FIG. 2. All of these panels also have a flange on the front or outer edges thereof, those on the outermost panels 30 and 32 which are indicated at 40 being inturned only, while the flanges on the intermediate panels 34 which are indicated at 42, extend to both sides of the front edges of these panels. In FIG. 1, it will be noted that the front flanges 40 and 42 on the outermost panels 30 and 32 and off somewhat short of the upper and lower edges of the panels, the cut-off being at approximately the same distance from the top and bottom edges on each of the panels. Each of the panels 30, 32 and 34 are provided with resilient stop rollers adjacent the lower front edges 75 direction, thus tending to wedge can 52 against the back

4

thereof, the outermost panels 30 and 32 having a single roller 44 on the inwardly facing sides thereof, while the intermediate panels 34 have rollers 46 and 48 on opposite sides thereof. These rollers rotate upon an axis normal to the panels and are suitably fixed in apertures in the panel.

In accordance with one of the features of the invention, the end-to-end length of panels 30, 32 and 34 and the depth of the upper and lower notches 22 and 24, respectively, are proportioned to provide for mounting of each of the aforesaid panels, such as one of the intermediate panels 34 (FIGS. 2 to 4) upon backing member 10 by engaging the upper and lower rear-edge portions of the panels in aligned upper and lower notches 22 and 24, respectively, and hooking the upper and lower ends of rear-edge flanges 33 on this panel behind the opposed offset edges 16 and 18 of adjacent anchor rails 12, shown in these views. This is made possible by the fact that the amount of the straight-line distance between the bottoms of any pair of vertically aligned notches 22 and 24 in the opposed offset edges 16 and 18 on adjacent anchor rails 12 exceeds the end-to-end length of panels 34 and the amount the depth of upper notches 22 exceeds the depth fo lower notches 24, both are slightly greater than the depth of notches 24 in lower offset edges 16.

By virtue of this proportioning of parts, the panels 34 may be mounted on backing member 10 by first bringing the top edge of the panel into alignment with one of the notches 22 in the upper offset edge 18 and then sliding the panel upwardly while the lateral flange 38 thereon engages or hooks behind the offset edge 18 until the bottom edge of the panel clears the lower offset edge 16. Panel 34 is then lowered into engagement with the notch 24 in the lower offset edge 16 vertically aligned with the upper notch 22 in which the panel has been engaged with the lateral flange 38 thereon engaging or hooking behind lower offset edge 16 until the panel comes to rest on the bottom of lower notch 24. At this position of the panel, its upper edge and the lateral flange 38 will remain engaged or interfitted with the offset upper edge 18 so that the panel is fixed to the backing member 10. It may be quickly removed by reversing the steps above-mentioned.

It will thus be apparent that the panels can readily be mounted upon the backing member 10 at any position desired longitudinally of the anchor rails 12, or dismounted therefrom. Moreover, since the several pairs of adjacent anchor rails are uniformly spaced, the panels 30, 32 and 34 may be mounted on any adjacent pair of anchor rails.

As best seen in FIG. 2, the front flanges 40 and 42 on the adjacent panels 32 and 34 shown in that view partially span the space between the front edges of these panels so as to cooperate therewith and with the backing member 10 and the lateral rear edge flanges 36 and 38 in defining vertically disposed channels 50 for receiving packages or cans indicated at 52 (FIG. 1) stacked one upon another, the cans normally being stacked in a sideto-side position rather than end-to-end. By proper spacing of panels 30, 32 and 34, cans of varying end-to-end length may be received in channels 50 formed between adjacent panels.

Stacks of packages or cans 52 are supported in channels 50 by the cooperative action of stop rollers 44, 46 $_{65}$ and 48, and the lateral rear edge flanges 36 and 38 on panels 32 and 34 (FIG. 2), which flanges cooperate with backing member 10 to define the backs of the channels 50. These rollers are located forward of the backs of the channels 50 a distance slightly less than the diameter the intermediate panel 34 each terminate at or are cut- 70 of the cans to be stacked in the channel or the front-torear measurement of the packages, so that the rollers 44 and 46, for example, engage the downwardly facing side of the lowermost can 52 in channel 50 slightly below the portion thereof which is located outermost in a forward side of channel 50 sufficiently firmly for the stack to be supported by this lowermost can.

The cut-off or cut-out portions of the upper and lower ends of flanges 40 and 42 on the front edges of the adiacent panels 32 and 34, for example, define an inlet 54 and an outlet 56, respectively, for the channel 50 defined between these panels. Because of the wedging action of rollers 44 and 46, unintended escape or release of packages or cans through the outlet 56 is prevented due to the fact that a package or can 52 can only be removed by raising it slightly, i.e., far enough to clear the top side of the aligned rollers 44 and 46 on adjacent panels 32 and 34.

It is to be understood that FIG. 1 is merely illustrative of one form of rack embodying a backing member 10, 15 duplicate anchor rails 12 and substantially duplicate panels 14. These same elements could, of course, be used to form larger or smaller racks having one, two, or more horizontally extending tiers of stacking channels 50, depending on the capacity desired, and the individual 20 channels could vary in width with respect to each other. The rack disclosed in FIG. 1 is designed particularly to be hung on a wall and to contain a small supply of the several different canned items normally used in the home. Because of its relatively small size, this rack is readily portable so that it can easily be moved from place to place by a single individual.

In larger and more or less permanent installations, the backing member could be more or less permanently mounted on the building, or the anchor rails, instead of 30 being mounted on a separate backing member, could be mounted directly to the side walls of the building. It is also to be noted that a flat panel-like backing member is not necessarily required. All that is essential is that structure be provided upon which anchor rails could be 35 rigidly supported in parallel spaced relation.

While a preferred embodiment of the invention has been shown and described, it will be apparent that variations and modifications thereof may be made without departing from the underlying principles of the invention. It is desired, therefore, by the following claims, to include within the scope of the invention, all such variations and modifications by which substantially the results of the invention may be obtained through the use of substantially the same or equivalent means.

I claim:

1. A rack for holding packages or cans in upright stacks comprising a flat backing member adapted to be disposed in a vertical plane, a plurality of anchor rails fixed to the flat side of said backing member in parallel horizontally extending relation, the opposed edges of adjacent rails being outwardly offset from the plane of said backing member and being uniformly notched to provide a corresponding number of elongated notches in the said opposed offset edges the longitudinal axes of 55 which are in end-to-end alignment, a plurality of sidewall panels, structure on the rear edge of said side-wall panels slidably to engage in and hook behind the notched offset edges of opposed anchor rails when said panels are at one position of transverse adjustment relative to said rails releasably to anchor the said panels to said backing member, there being sufficient play between said panels and said rails and the notches in the upper of said rails being deep enough to allow said panels to be raised far enough in the upper notches to permit the lower edges thereof to be held clear of said lower rail thereby permitting the top end of panels so held to be withdrawn from or brought into engagement with said upper rail and means at least partially spanning the space between the front edges of adjacent panels to cooperate therewith in defining channels to receive packages or cans in vertical stacks including structure to define an inlet to said channels and an outlet therefor.

2. A rack for holding packages or cans in upright

disposed in a vertical plane, a plurality of parallel horizontally extending anchor rails on the front side of said backing member, the opposed edges of adjacent rails being outwardly offset from the plane of said backing member and being uniformly notched to provide a corresponding number of elongated notches in the said opposed offset edges the longitudinal axes of which are in end-to-end alignment, side-wall-forming panels, structure on said panels to interfit with the opposed notched edges of the upper and lower rails in each pair of adjacent anchor rails, the depth of the notches in said upper and lower rails in each such pair and the length of said panels being proportioned so that the opposite ends of the said panels will be interfitted with the opposed offset edges of the upper and lower rails in a pair when the lower ends of said panels rest on the bottom of notches in the lower rail fixedly but releasably to anchor said panels in vertically disposed parallel spaced relation on said backing member and the upper ends of said panels may be raised far enough in the notches in the said upper rails to permit the bottom edges thereof to be held clear of the lower rails thereby permitting the top end of a panel so held to be withdrawn from or inserted into interfitting engagement with an upper rail and means at least partially spanning the space between the front edges of adjacent panels to cooperate therewith in defining channels to receive packages or cans in vertical stacks including structure to define an inlet to said channels and an outlet therefor.

3. A rack for holding packages or cans in upright stacks comprising a flat backing member adapted to be disposed in a vertical plane, a plurality of anchor rails fixed to the flat side of said backing member in parallel horizontally extending relation, the opposed edges of adjacent rails being outwardly offset from the plane of said backing member and being uniformly notched so that corresponding notches therein are vertically aligned, a plurality of side-wall panels, means for removably anchoring said panels in vertically disposed parallel relation on said backing member including a lateral flange on the rear edge of said panels to hook behind the notched offset edges of both the upper and lower rails in a pair of opposed anchor rails when the lower edges of said panels rest on the bottom of notches in the lower rail, the notches in said upper rail being deep enough to permit said panels to be raised far enough to disengage the lower end thereof and the flanges thereon from said lower rail before the upper ends of said flanges engage the ends of the said notches in said upper rail so that the said lower ends of said panels may be swung clear of said lower rails thereby permitting the top end of a panel so held and the flange thereon to be withdrawn from or inserted into panel-holding engagement with said upper rails and means at least partially spanning the space between adjacent panels to cooperate therewith in defining vertical channels for receiving packages or cans in stacks including structure to define an inlet at the upper end of said channel and an outlet at the lower end thereof and means to cooperate with said outlet in constraining removal of packages or cans through said outlet to the lowermost one of said packages or cans each time one is

4. A rack for holding packages or cans in upright stacks comprising a flat backing member adapted to be disposed in a vertical plane, a plurality of anchor rails fixed to the flat side of said backing member in parallel horizontally extending relation, the opposed edges of adjacent rails being outwardly offset from the plane of said backing member and being uniformly notched so that corresponding notches therein are vertically aligned, side-wall panels having upper and lower edge portions receivable in aligned notches in the upper and lower rails, respectively, of a pair of anchor rails and lateral flanges simultaneously to hook behind the offset portions stacks comprising a flat backing member adapted to be 75 of said rails fixedly but releasably to mount said panels

in parallel vertically disposed relation on said backing member, the side-wall panels being slightly shorter in end-to-end length than the straight-line distance between the bottoms of vertically aligned notches in opposed rails but long enough so that the upper end of the flange on a panel resting on its lower edge in a notch in said lower rail will remain hooked behind the offset portion of said upper rail and the notches in said upper rails being deeper than those in the lower rail by an amount sufficient to permit a panel engaged with one of said notches to be raised far enough completely to unhook the lower end of the flange thereon from the lower rails so that by holding the bottom end of said panel clear of the outer side of the lower rail the top edge may be withdrawn from or inserted into hooking engagement with the upper 15 rail thereby facilitating mounting of said panels on said backing member and dismounting of the same therefrom and structure on the front edge of said panels at least partly spanning the space between adjacent panels to cooperate therewith in defining channels for receiving 20 packages or cans in vertical stacks, said structure being conformed to define an inlet for loading said channels and an outlet for unloading the same.

5. A rack for holding packages or cans in upright stacks comprising a backing member adapted to be disposed in a vertical plane, a plurality of parallel horizontally extending anchor rails on said backing member, a plurality of side-wall-forming panels, means for anchoring said side-wall-forming panels in vertically disposed parallel spaced relation at various positions longitudinally of said anchor rails including offset notched structure on one of said parts and projecting flanges on the other brought into and out of operative panel-holding relationship in response to predetermined relative movement between the said parts, means on the front edge of 35 said panels at least partially spanning the space between the adjacent panels to cooperate therewith in forming vertically extending channels for receiving packages or cans in stacks, said partial spanning means being cut-out to define inlets at the top of said channels for loading the 40same and outlets at the bottom for removing packages or cans and abutment-forming means adjacent the bottom of said panels, the abutment-forming means on adjacent panels supporting the stack housed in the said channel formed thereby and cooperating with each other lightly to wedge the lowermost package or can in a stack in position in said channel and with the outlet to constrain removal of packaged or canned merchandise from said channel to the lowermost of the packages or cans stacked

6. A rack for holding packages or cans in upright stacks comprising a backing member adapted to be disposed in a vertical plane, a plurality of parallel horizontally extending anchor rails on said backing member, a plurality of side-wall-forming panels, cooperating structure on said rails and said panels to hook together when the parts are in one position of transverse adjustment for anchoring said panels in vertically disposed parallel spaced relationship at various points longitudinally of said anchor rails and to release said cooperating structure from hooked-together engagement when the parts are moved relatively to a second position of relative transverse adjustment, means on the front edge of said panels at least partially spanning the space between the adjacent panels to cooperate therewith in forming vertically extending channels for receiving packages or cans in stacks, said partial spanning means being cut-out to define inlets at the top of said channels for loading the same and outlets at the bottom for removing packages or cans and rollers on each of said panels, the rollers on ad- 70jacent panels on said backing member being axially aligned to form abutments adjacent the bottom of the channels formed between the said adjacent panels lightly to wedge the lowermost package or can in the stacks in said channels against said backing member, said rollers 75 ages or cans in said stack.

cooperating with the said outlets of said channels to limit removal of packages or cans from said channels to one at a time only, such one being the lowermost in the stack in said channel.

7. A rack for holding symmetrically shaped packages or cans in upright stacks comprising a backing member, a plurality of anchor rails arranged in three or more vertically spaced parallel horizontally extending rows on said backing member and each having longitudinally extending edges outwardly offset from the flat side of said backing member so that the immediately adjacent rails in said rows of rails have opposed offset edges, said opposed edges being uniformly notched so that corresponding notches in each pair of opposed offset edges in said plurality of rails are vertically aligned, a plurality of substantially duplicate side-wall panels including structure along at least the upper and lower ends of the rear edges of said panels loosely to engage in and hook behind any preselected pair of opposed notched offset edges when said panels are in one position of transverse adjustment relative thereto for anchoring said panels to said backing member and to be releasable from engagement with one of said offset edges when said panels are at another position of transverse adjustment relative to said offset edges so that said panels may then be canted to a position to permit removal of the same from interengagement with the second of said offset edges or interengagement therewith thereby to provide for mounting of said panels in parallel relation upon any pair of opposed offset edges in: the rows of rails on said backing member or dismounting of the same therefrom and means at least partially spanning the space between the front edges of adjacent panels on said backing member to cooperate therewith in defining channels to receive packages or cans in vertical stacks including structure to define an inlet to said channels and an outlet therefor.

8. Rack structure for mounting on a backing member to form one or more channels for holding symmetrically shaped packages or cans in vertical stacks comprising a plurality of duplicate elongated anchor rails each having longitudinal edges correspondingly offset relative to their medial portions from end-to-end thereof, the said offset edges being uniformly notched at relatively closely spaced intervals, means for anchoring said rails on said backing member in horizontally extending parallel spaced relationship so as to bring the offset edges of the upper and lower rails in each pair of adjacent rails into opposed relationship and the corresponding notches therein into vertical alignment, a plurality of side-wall-forming panels each having structure including a lateral flange on the rear edge thereof to interfit with the opposed offset notched edges of adjacent rails when the panels are in one position of transverse adjustment relative to said rails for anchoring the same thereto in parallel vertically extending spaced relation and to be releasable from interfitting relation with one of said rails when the panels are in a second position of transverse adjustment relative thereto so that the panels may be canted into a position to permit removal of the same from interfitting relation with the second of said rails or insertion into interfitting engagement therewith, lateral flanges on the front edge of said panels at least partially spanning the space between each pair of adjacent panels to cooperate therewith and with said rear edge flanges in defining a vertically extending channel in which packages or cans may be stacked, said lateral front edge flanges being conformed to define an inlet at the top of the said channel for loading the same and an outlet at the bottom for removing packages therefrom and abutment-forming means adjacent the bottom edge of each of said panels, the abutment-forming means on adjacent panels cooperating with each other to support the stack housed between the said panels and with said outlet to limit removal of packages or cans from said channel to the lowermost of the pack-

10

9. A rack for holding packages or cans in uniform rows or stacks comprising flat base structure, a plurality of anchor rails fixed to said flat base structure in longitudinal parallel relation to each other, the opposed edges of adjacent rails being outwardly offset from the plane of said base and being uniformly notched so that corresponding notches therein are disposed in end-toend aligned relation, a plurality of partitioning panels and means for removably anchoring said panels to said base structure in planes normal thereto and in parallel 10 relation to each other including peripheral flanges on corresponding longitudinal edges of said panels interlockingly to engage with aligned notches in the opposed offset edges of adjacent anchor rails when one of the ends of said panels abut against the bottoms of slots in 15 the offset edge of one of said anchor rails, the notches in the offset edge opposed to the first mentioned offset edge being deep enough and the panels being of a length to permit the said panels to be moved far enough into

the said latter notches to disengage the panels from the notches in the first mentioned opposed edge so that the disengaged end of any of said panels may be canted in a direction and far enough to clear the said first mentioned offset edge thereby permitting the opposite ends of panels so canted to be withdrawn from or inserted into interengagement with said second offset edge.

References Cited in the file of this patent

UNITED STATES PATENTS

712,936	Jones Nov. 4, 1902
1,523,136	O'Connor Jan. 13, 1925
1,673,812	Dunn June 19, 1928
1,688,003	Darby Oct. 16, 1928
1,748,843	Kuckel Feb. 25, 1930
2,127,230	Moineau Aug. 16, 1938
2,715,467	Smith Aug. 16, 1955