
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization I

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/184093 Al
12 December 2013 (12.12.2013) P O P C T

(51) International Patent Classification: (72) Inventors; and
G06F 17/30 (2006.01) G06F 15/16 (2006.01) (75) Inventors/Applicants (for US only): SEERING, Adam

[US/US]; 150 Cambridge Park Drive, 10th Floor, Cam
(21) International Application Number:

bridge, Massachusetts 02140 (US). VENKATESH, Rajat
PCT/US20 12/040764 [IN/US]; 150 Cambridge Park Drive, 10th Floor, Cam

(22) International Filing Date: bridge, Massachusetts 02140 (US). BEAR, Charles, Ed¬

4 June 2012 (04.06.2012) ward [US/US]; 150 Cambridge Park Drive, 10th Floor,
Cambridge, Massachusetts 02140 (US). LAWANDE,

(25) Filing Language: English Shilpa [US/US]; 150 Cambridge Park Drive, 10th Floor,

(26) Publication Language: English Cambridge, Massachusetts 02140 (US). LAMB, Andrew,
Allinson [US/US]; 150 Cambridge Park Drive, 10th Floor,

(71) Applicant (for all designated States except US) : HEW¬ Cambridge, Massachusetts 02140 (US).
LETT-PACKARD DEVELOPMENT COMPANY, L.P.
[US/US]; 11445 Compaq Center Drive W., Houston, Texas (74) Agents: JAKOB SEN, Kraig A. et al; Hewlett-Packard

77070 (US). Company, Intellectual Property Administration, 3404 E.
Harmony Road, Mail Stop 35, Fort Collins, Colorado
80528 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

[Continued on nextpage]

(54) Title: USER-DEFINED LOADING OF DATA ONTO A DATABASE

(57) Abstract: As part of managing the loading of data from a source onto a
300

database, according to an example, an interface through which a user is to
define logic related to the loading of the data onto the database is provided.
The user-defined logic pertains to at least one of a user-defined location

PROVIDE INTERFACE THROUGH WHICH A USER identification of the source, a user-defined filter to be applied on the data,

IS TO DEFINE LOGIC RELATED TO THE LOADING and a user-defined parsing operation to be performed on the data to convert
OF DATA ONTO A DATABASE the data into an appropriate format for the database. In addition, the user-

302 defined logic is received and the user-defined logic is implemented to load
the data onto the database.

RECEIVE/STORE THE USER-DEFINED LOGIC
304

IMPLEMENT THE USER-DEFINED LOGIC TO
LOAD DATA ONTO THE DATABASE

306

©

0 0
FIG. 3

o
o

wo 2013/184093 Ai II II II I III I11 III I II I I I ll llll III II I II

SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, Declarations under Rule 4.17:
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

— as to the identity of the inventor (Rule 4.17(if)
(84) Designated States (unless otherwise indicated, for every — as to applicant's entitlement to apply for and be granted

kind of regional protection available): ARIPO (BW, GH, a patent (Rule 4.1 7())
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Published:
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — with international search report (Art. 21(3))
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

USER-DEFINED LOADING OF DATA ONTO A DATABASE

BACKGROUND

[0001] Data is commonly loaded onto databases from a number of different

types of sources. Examples of various types of sources include a local storage

location, a file transfer protocol (FTP) site, and Hadoop™ (e.g., stored within the

Hadoop™ File system, which is also known as HDFS) In addition, the data that is

loaded onto the databases often comprise various types of formats. Examples of

various formats include Javascript object notation (JSON) files, extensible markup

language (XML) files, custom binary formats, tarballs, and 7-Zip files.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Features of the present disclosure are illustrated by way of example

and not limited in the following figure(s), in which like numerals indicate like

elements, in which:

[0003] FIG. 1 shows a block diagram of a network environment, according to

an example of the present disclosure;

[0004] FIG. 2 illustrates a block diagram of a database machine, according

to an example of the present disclosure;

[0005] FIGS. 3 and 4, respectively, depict flow diagrams of methods for

managing loading of data from a source to a database, according to examples of

the present disclosure; and

[0006] FIG. 5 illustrates a schematic representation of a computing device,

which may be employed to perform various functions of the database machines

depicted in FIGS. 1 and 2, according to an example of the present disclosure.

DETAILED DESCRIPTION

[0007] For simplicity and illustrative purposes, the present disclosure is

described by referring mainly to an example thereof. In the following description,

numerous specific details are set forth in order to provide a thorough understanding

of the present disclosure. It will be readily apparent however, that the present

disclosure may be practiced without limitation to these specific details. In other

instances, some methods and structures have not been described in detail so as

not to unnecessarily obscure the present disclosure. In the present disclosure, the

term "includes" means includes but not limited thereto, the term "including" means

including but not limited thereto. The term "based on" means based at least in part

on. In addition, the terms "a" and "an" are intended to denote at least one of a

particular element.

[0008] As used throughout the present disclosure, the term "data" is

generally intended to encompass electronic data, such as electronic mail (e-mail),

word processing documents, spreadsheet documents, webpages, computer aided

drawing documents, electronic file folders, database records, logs, sales

information, patient information, etc.

[0009] Disclosed herein is a method for managing loading of data from a

source onto a database. Also disclosed herein are an apparatus for implementing

the method and a non-transitory computer readable medium on which is stored

machine readable instructions that implement the method. As discussed herein,

the method for managing loading of data from a source onto a database comprises

providing an interface through which a user is to define logic related to the loading

of the data onto the database, in which the user-defined logic pertains to a user-

defined location identification of the source and retrieval of data from the source, a

user-defined filter to be applied on the data, and a parsing operation to be

performed on the data to convert the data into an appropriate format for the

database. The method also includes receiving the user-defined logic and

implementing the user-defined logic to load the data onto the database.

[0010] According to an example, the user-defined logic also pertains to a

user-defined policy that defines a condition to be met prior to the data being

retrieved from the source. In this example, the user-defined logic may be

registered with the database meta-data, such that the loading of the data may be

deferred to query time, which is also known as "late binding." In one regard, late

binding enables federated use of the user-defined data sources, for instance, the

ability to run SQL queries directly over data stored in HDFS. In addition, the user

may define the user-defined policy to dynamically transition between immediate

loading of the data onto the database and late binding. By way of example, the

user may define the user-defined policy to automatically keep the last loaded

content in the database for up to a week if the data set is accessed more than a

predetermined number times in a predetermined time period via late binding. As

another example, the user may define the user-defined policy to move the data set

from the database to another storage, such as HDFS, if the data set is rarely used

(e.g., used less than a predetermined number of times within a predetermined time

period), and to access the data from the another storage via late binding.

[0011] In one regard, the late binding of the data may or may not actually

need to persist to disk, because the data is only used for the duration of the query.

Instead the data load operation may be streamed directly into the query processing

pipeline as the data is being extracted by the user-defined load command

disclosed herein.

[0012] Data to be loaded onto a database often has one of a variety of

different types of formats and sizes. As such, it is typically impractical for any

single piece of software to fully support every possible data format and encoding

that may be of practical value to any number of users. In one regard, the method

disclosed herein enables users to define customized logic or functions, such as

programming, code, etc., to manage the loading of the data onto a database, and

in certain instances, to manage data that has already been loaded onto the

database. As such, a user may implement the method disclosed herein to load

data onto a database regardless of the format and size of the data as well as the

format of the source from which the data is to be loaded. Particularly, for instance,

the method disclosed herein enables data that is at least one of encoded using a

custom library, data that is in a custom format, data that is available via a custom

source, etc., to be loaded onto the database in a relatively simple manner.

[0013] In addition, the user-defined logic of at least one user may be stored

for later retrieval by the user or by other users. In this regard, users may mix and

match the stored user-defined logic to manage loading of various types of data

from various types of sources on to various types of databases, without having to

define the logic each time the data is to be loaded. Furthermore, users may

access the stored user-defined logic to manage data that has already been loaded

onto the database.

[0014] According to an example, the method disclosed herein is

implemented by an apparatus that also manages the database. As such, a uniform

interface for loading the data, which includes a relatively simple user interface, may

be employed to manage the loading of the data. In addition, management tools

may relatively easily track and support the loading of the data. Moreover, the

loading of the data may substantially be optimized, for instance, to substantially

minimize bottlenecks, to substantially maximize efficiency, etc.

[0015] Through implementation of various examples of the present

disclosure, users may be provided with an interface and options that afford a

relatively high level of flexibility in managing the loading of data onto a database.

In addition, the users may customize various aspects of the loading of the data, as

well as the management of data that has already been loaded onto the database,

without having to understand and cope with a full-fledged distribution computation

system. As such, the various examples of the present disclosure enable users to

load the data onto a database, as well as management of the data on the

database, in a relatively simple and efficient manner.

[0016] With reference first to FIG. 1, there is shown a block diagram of a

network environment 100, according to an example of the present disclosure. The

network environment 100 is depicted as including a distributed database system

110, a network device 114, a network 120, and a source 130. The distributed

database system 110 is also depicted as having a plurality of database machines

112a-1 12n, in which "n" represents an integer greater than one. It should be

understood that the network environment 100 may include additional components

and that one or more of the components described herein may be removed and/or

modified without departing from a scope of the network environment 100. For

instance, the network environment 100 may include any number of database

machines 112a-1 12n and sources 130.

[0017] The database machines 112a-1 12n comprise servers or other

apparatuses on which data is stored and that are able to receive data transferred

from the source 130. According to another example, a database machine 112a

comprises a machine that manages the transfer of the data between other

database machines 112b-1 12n, without having the data stored on the database

machine 112a. The distributed database system 110 is a database in which the

database machines 112a-1 12n are not all attached to a common central

processing unit (CPU). In one regard, the distributed database system 110

enables data to be stored in multiple ones of the database machines 112a-1 12n,

which may be located in one physical location or dispersed in geographically

disparate locations. According to an example, the database provided or hosted by

the distributed database system 110 is a relational database.

[0018] The network device 114 comprises any of, for instance, a network

switch, router, hub, etc., through which data may be communicated to and from the

database machines 112a-1 12n. In addition, or alternatively, at least two of the

database machines 112a-1 12n may be directly connected to each other, i.e.,

without going through the network device 114. The network 120 represents an

infrastructure through which the database machines 112a-1 12n may communicate

with the source 130. In this regard, the network 120 comprises any of, a local area

network, a wide area network, the Internet, etc., and may include additional

network devices 114, which are not shown. Although not shown, any of the

database machines 12a-1 12n may be connected to the network 120 through a

plurality of network devices 114, for instance, a series of interconnected switches.

[0019] Various manners in which data is loaded from the source 130 onto a

database hosted on the distributed database system 110, for instance, on at least

one of the database machines 112a-1 12n, are described in detail herein below.

Particularly, the loading of data from the source 130 to the database may be

managed in a manner that enables users, such as computer system

administrators, information technology personnel, end users, etc., to substantially

customize any of extraction, transformation, and loading of the data onto the

database, as well as management of previously loaded data, in a relatively simple

and efficient manner. In addition, the data may be loaded from the source 130 to

the database in a substantially optimized manner, as also discussed in greater

detail herein below.

[0020] The loading of the data may be considered as being substantially

optimized when at least one of the amount of time required to load the data is

substantially minimized, the number of copies of the data being loaded is

substantially minimized, the consumption of network resources is substantially

minimized during the loading of the data, the use of the most efficient network

resources is substantially maximized during the loading of the data, etc. In

addition, the loading of the data may be considered as being substantially

optimized when the loading of the data is performed in a manner that is less than

an optimized data loading manner in instances where the optimized data loading

manner is infeasible, violates a policy, etc. Thus, for instance, the loading of the

data may be considered as being substantially optimized when the loading of the

data is performed in a manner that is optimized with respect to any of a variety of

constraints applicable on the loading of the data.

[0021] Turning now to FIG. 2, there is shown a block diagram of a database

machine 200, according to an example of the present disclosure. The database

machine 200 generally represents any of the database machines 112a-1 2n

depicted in FIG. 1. It should be understood that the database machine 200 may

include additional components and that one or more of the components described

herein may be removed and/or modified without departing from a scope of the

database machine 200.

[0022] The database machine 200 is depicted as including a processor 202,

a data store 204, an input/output interface 206, and a data loading manager 210.

The database machine 200 comprises any of, for instance, a server, a computer, a

laptop computer, a tablet computer, a personal digital assistant, a cellular

telephone, or other electronic apparatus that is to perform a method for managing

loading of data from a source onto a database disclosed herein. The database

machine 200 may therefore store the data and/or may manage the storage of data

in other database machines 112a-1 12n.

[0023] The data loading manager 210 is depicted as including an

input/output module 212, an interface providing module 214, a user-defined logic

receiving module 216, a user-defined logic implementation module 218, a

predefined load stack implementation module 220, a data loading optimization

module 222, and a data loading module 224. The processor 204, which may

comprise a microprocessor, a micro-controller, an application specific integrated

circuit (ASIC), or the like, is to perform various processing functions in the

database machine 200. One of the processing functions includes invoking or

implementing the modules 212-224 contained in the data loading manager 210 as

discussed in greater detail herein below.

[0024] According to an example, the data loading manager 210 comprises a

hardware device, such as a circuit or multiple circuits arranged on a board. In this

example, the modules 212-224 comprise circuit components or individual circuits.

According to another example, the data loading manager 210 comprises a volatile

or non-volatile memory, such as dynamic random access memory (DRAM),

electrically erasable programmable read-only memory (EEPROM),

magnetoresistive random access memory (MRAM), Memristor, flash memory,

floppy disk, a compact disc read only memory (CD-ROM), a digital video disc read

only memory (DVD-ROM), or other optical or magnetic media, and the like. In this

example, the modules 212-224 comprise software modules stored in the data

loading manager 210. According to a further example, the modules 212-224

comprise a combination of hardware and software modules.

[0025] The input/output interface 206 comprises a hardware and/or a

software interface. In any regard, the input/output interface 206 may be connected

to a network, such as the Internet, an intranet, etc., through the network device

114, over which the data loading manager 210 may receive and communicate

information, for instance, information relevant to the user-defined logic and the

loading of the data. The processor 202 may store information received through the

input/output interface 206 in the data store 204 and may use the information in

implementing the modules 212-224. The data store 204 comprises volatile and/or

non-volatile memory, such as DRAM, EEPROM, MRAM, phase change RAM

(PCRAM), Memristor, flash memory, and the like. In addition, or alternatively, the

data store 204 comprises a device that is to read from and write to a removable

media, such as a floppy disk, a CD-ROM, a DVD-ROM, or other optical or

magnetic media.

[0026] Various manners in which the modules 212-224 may be implemented

are discussed in greater detail with respect to the methods 300 and 400 depicted in

FIGS. 3 and 4 . FIGS. 3 and 4 , respectively depict flow diagrams of methods 300,

400 for managing loading of data from a source 130 to a database that is hosted

on at least one of the database machines 112a-1 12n, 200, according to an

example of the present disclosure. It should be apparent to those of ordinary skill

in the art that the methods 300 and 400 represent generalized illustrations and that

other operations may be added or existing operations may be removed, modified or

rearranged without departing from the scopes of the methods 300 and 400.

Although particular reference is made to the data loading manager 210 depicted in

FIG. 2 as comprising an apparatus and/or a set of machine readable instructions

that may perform the operations described in the methods 300 and 400, it should

be understood that differently configured apparatuses and/or machine readable

instructions may perform the methods 300 and 400 without departing from the

scopes of the methods 300 and 400. The method 400 is related to the method 300

in that the method 400 includes operations in addition to those included in the

method 300. Thus, the method 400 is to be construed as including all of the

features discussed below with respect to the method 300.

[0027] Generally speaking, the methods 300 and 400 may separately be

implemented to manage loading of data from a source 130 to a database hosted

on at least one of the database machines 112a-1 12n. In one regard, the methods

300 and 400 may be implemented to manage the loading of the data, such that a

user may relatively easily customize various stages associated with loading of the

data. In another regard, the methods 300 and 400 may be implemented to

manage the loading of the data, such that the data is transferred in a substantially

optimized manner, as discussed above. In a further regard, the method 400 may

be implemented to manage data that is loaded onto the database, for instance, to

manage the conditions under which the loaded data is transferred to another

storage.

[0028] The source 130 may comprise a single entity or a plurality of entities

on which data is stored. Likewise, the database onto which the data from the

source 130 is to be loaded may comprise a single database machine 112a or a

plurality of database machines 112a-1 12n. In addition, the source 130 may

comprise the same or a different number of entities than the database machine(s)

112a-1 12n, 200 onto which the data is to be loaded. According to an example, the

methods 300, 400 are implemented in a database machine 112a-1 12n, 200. In a

further example, the methods 300, 400 are implemented in a plurality of database

machines 112a-1 12n.

[0029] With reference first to FIG. 3 , at block 302, an interface through which

a user is to define logic related to the loading of the data onto the database is

provided, for instance, by the interface providing module 214. The interface may

comprise, for instance, a portal, such as a web portal, a desktop portal, etc., that

provides various options and features to a user regarding the loading of data onto a

database from a source 130. According to an example, the interface is displayed

on a monitor that is local to the database machine 200, i.e., connected to the

database machine 200, or remote from the database machine 200, i.e., connected

to a client machine (not shown) of the database machine 200.

[0030] The interface generally provides a mechanism through which a user

may direct the data loading manager 210 to load data from the source 130.

Particularly, the interface provides a mechanism through which the user may define

logic pertaining to a user-defined location identification of the source 130, a user-

defined filter to be applied on the data, and a parsing operation to be performed on

the data to convert the data into an appropriate format for the database. The

interface may also provide a mechanism through which the user may define logic

pertaining to a user-defined policy that defines a condition to be met prior to the

data being retrieved from the source. The user-defined policy may in addition, or

alternatively, define how data loaded onto the database is to be managed.

[0031] According to an example, the interface provides the user with access

to a library that includes previously defined logic. In addition, or alternatively, the

interface provides the user with the ability to program the logic, for instance,

through any suitable programming language, such as C++, structured query

language (SQL), etc. Thus, for instance, the user may define the logic related to

the loading of the data from the source 130 to the database by directly

programming the logic or by selecting a previously defined, e.g., programmed,

logic. The previously defined logic may have been created by the user, another

user, a programmer of the data loading manager, a third-party vendor, etc., and

stored in the library.

[0032] Generally speaking, the user-defined logic provides mechanisms by

which users may write and install custom libraries to handle various stages of the

data loading process. In one regard, by providing users with an interface to define

logic for performing various stages of the data loading process, users are able to

selectively replace arbitrary portions of a data-load stack with custom

implementations. In addition, users, such as developers, may write fully-functional

and interchangeable logic for the various stages of the data loading process.

Users are therefore provided with a relatively high level of flexibility in loading

various types of data from various types of sources 130 onto a database.

[0033] In one example, the user defines a location identification of the

source 130. The location identification of the source 130 may comprise, for

instance, an Internet Protocol (IP) address of the source 130, or other location

identifier of the source 130 that may be used to access the source 130. The user

may also define parameters associated with accessing the appropriate data from

the source 130. The parameters may include, for instance, the particular folder in

which the data is stored on the source 130 as well as the file name of the data. In

addition, the parameters may include appropriate passwords, security keys, and

other information that may be required to access the data on the source 130.

[0034] In another example, the user defines at least one filter to be applied

to the data retrieved from the source 130. The user may define the at least one

filter based upon various factors associated with the data, such as whether the

data is compressed, what type of compression scheme was used to compress the

data, whether the data is to be compressed, what type of compression scheme is

to be used to compress the data, whether the data is to be converted from one

format to another, the type of format to which the data is to be converted, whether

the data is to be decrypted, what type of decryption scheme is to be employed, etc.

As such, the filter(s) may comprise at least one of a filter to decompress the data, a

filter to compress the data, a filter to convert the data from one format to another, a

filter to decrypt the data, a filter to render the data (for instance, convert a JPEG

image to a bitmap form), etc.

[0035] In a further example, the user defines a parsing operation to be

performed on the data to convert the data into an appropriate format for loading

onto the database. Alternatively, the suitable parsing operation may be predefined

because the format required for the database may already be known. In any

regard, the parsing operation may comprise formatting of the data into tuples for

use by the database system 110, which may comprise a relational database

system.

[0036] In a yet further example, the user defines a policy that defines a

condition to be met prior to the data being retrieved from the source. In this regard,

the user-defined policy may cause the loading of the data onto the database to be

deferred, for instance, until query time, which is also known as "late binding." In

one regard, late binding enables federated use of the user-defined data sources,

for instance, the ability to run SQL queries directly over data stored in HDFS. In

addition, the user may define the user-defined policy to dynamically transition

between immediate loading of the data onto the database and late binding.

[0037] According to an example, the late binding capability is implemented

through use of External Tables, in which an EXTERNAL keyword is added to SQL

CREATE TABLE, which indicates to the database that the data is not stored within

the database. Whereas typical use of External tables involves providing a list of

data files external to the database, in case of the user-defined logic disclosed

herein, the COPY command is associated with the CREATE EXTERNAL TABLE

statement. As such, whenever the External table is used in a query, the user-

defined logic command is run to first load the data into the database and the query

is run on top of the user-defined logic command. In another example, the late

binding capability is implemented through use of the meta-data on the source

system, for instance, in the case of Hadoop™, HCatalog is used as the meta-data

source.

[0038] In a yet further example, the user defines a policy that defines how

data loaded onto the database is to be managed. In this regard, the user-defined

policy may cause the data loaded onto the database to be managed in particular

manners. By way of example, the user may define the user-defined policy to

automatically keep the last loaded content in the database for up to a week if the

data set is accessed more than a predetermined number times in a predetermined

time period via late binding. As another example, the user may define the user-

defined policy to move the data set from the database to another storage, such as

HDFS, if the data set is rarely used (e.g., used less than a predetermined number

of times within a predetermined time period), and to access the data from the

another storage via late binding.

[0039] At block 304, the user-defined logic is received, for instance, by the

user-defined logic receiving module 216. According to an example, a user may

define the logic related to the loading of the data from the source 130 onto the

database through the interface and may submit the defined logic through the

interface. In this regard, for instance, the interface may provide a user-defined

logic submission feature, which the user may select to submit the user-defined

logic to the data loading manager 2 10.

[0040] In addition, at block 304, the user-defined logic may be stored in a

library, for instance, to enable the user-defined logic to be retrievable for later use

by the user or by another user. In this example, the user may provide a title for the

logic that the user defined, for instance, as the logic relates to the source 130, the

format of the data, and/or the types of filters that have been defined. The user-

defined logic may therefore be stored using a descriptive title to enable users to

find and implement the user-defined logic.

[0041] Once the user-defined logic has been written, compiled, and

received, the database engine, for instance, the processor 202, is to be informed of

the existence of the user-defined logic. This is performed, for instance, through the

addition of new SQL statements to the database machine 112a that allow

registration of a user-defined logic based on the path of the shared library

representing the compiled user-defined logic, and the name of the user-defined

logic object inside that shared library that is to be used.

[0042] At block 306, the user-defined logic is implemented to load the data

onto the database from the source 130, for instance, by the user-defined logic

implementation module 218. Although not shown, the user-defined logic may be

implemented as part of a pre-configured data-load stack, for instance, by the

predefined load stack implementation module 220. Particularly, for instance, the

predefined load stack implementation module 220 may perform predefined

functions in addition to the functions corresponding to the user-defined logic. The

predefined functions may include, for instance, a parsing operation that transforms

the data into a format suitable for loading the data onto the database, a converting

operation to convert data from a particular format to a format that is compatible for

processing in the parsing operation, etc. The predefined functions may also

include, for instance, invocation of various calls associated with implementation of

the user-defined filters.

[0043] According to an example, to invoke the user-defined logic, an

extension to the existing syntax for loading files into a database is generated, for

instance, the COPY statement. The COPY statements add a WITH clause. By

way of particular example, a user may write "WITH SOURCE MyExampleSourceQ"

or "WITH PARSER MyExampleParser()". The calls may also take keyword

arguments; for example, "WITH FILTER MyExampleFilter(argument="value",

integer_argument= 12345)". Arguments are passed to the user-defined logic, which

may use them to inform how the user-defined logic performs the computation that

the user-defined logic is performing.

[0044] In any regard, and according to an example, because the user-

defined logic is implemented by the data loading manager 210, which may also

manage the database, the loading operation may substantially be optimized, for

instance, by the data loading optimization module 222. More particularly, for

instance, the data loading optimization module 222 may obtain information relevant

to the loading of the data from the source 130, such as the number of sources 130

from which the data is to be loaded, the number of database machines 12a- 12n

available for receiving the data, the locations of the sources 130, the locations of

the database machines 112a-1 12n, the type of data to be transferred, the size of

the data to be transferred, the content of the data, the types of filters to be applied

to the data, etc. The data loading optimization module 222 may obtain the

information relevant to the loading of the data as part of the receipt of the user-

defined logic.

[0045] In addition, the data loading optimization module 222 may determine

a data loading operation that substantially optimizes the loading of the data based

upon the information relevant to the loading of the data. The substantially

optimized data loading operation may be determined through implementation of

any of a variety of different types of optimizers on the information relevant to the

loading of the data. For instance, a rule-based optimizer may be implemented that

determines the substantially optimized data loading operation based upon whether

the information relevant to the data loading indicates that predetermined conditions

have been met. In this example, the rule-based optimizer may be programmed

with instructions that indicate that certain data loading operations are to be

implemented under certain conditions.

[0046] As another example, a cost-based optimizer may be implemented

that determines the data loading operation based upon a determination as to which

data loading implementation results in the lowest cost. For instance, the cost-

based optimizer may run predictive models on various data loading operation

scenarios, determine costs associated with each of the data loading operation

scenarios, and may identify the data loading operation scenario that results in the

lowest cost to transfer the data. The cost in this example may comprise any of, for

instance, resource utilization, energy utilization, bandwidth consumption, etc.

[0047] As a further example, a machine-learning optimizer that employs

historical information to determine the data loading operation may be implemented.

In this example, the machine-learning optimizer may take as inputs various

historical information pertaining to the loading of data onto the database machines

112a-1 12n and may use the historical information to determine, based upon the

information relevant to the current loading of data, the data loading operation that

substantially optimizes the current loading of the data. Any of a number of suitable

machine-learning optimizers may be employed in this example.

[0048] Regardless of the type of optimizer implemented, any of a number of

various types of data loading operations may be employed to substantially optimize

the transfer of the data. In addition, various combinations of types of data loading

operations may be employed to substantially optimize the loading of the data.

[0049] According to an example, the user-defined logic is implemented to

stream the data from the source 130, to filter the data as the data is being

streamed, to parse the streamed data, and to load the parsed data onto the

database. In this example, a relatively large data file may be loaded onto the

database without first storing the data file locally. Alternatively, however, the data

may first be stored locally from the source 130 prior to performance of the filtering,

parsing, and loading operations. Various operations that the data loading manager

210 may implement in loading the data onto the database from the source 130 are

described in greater detail with respect to the method 400 depicted in FIG. 4.

[0050] Turning now to FIG. 4, at block 402, an interface through which a

user is to define logic related to the loading of the data onto the database is

provided, for instance, by the interface providing module 214. Block 402 is similar

to block 302 discussed above with respect to FIG. 3. In addition, at block 404, the

user-defined logic is received, for instance, by the user-defined logic receiving

module 216, which is similar to block 304 discussed above with respect to FIG. 3.

[0051] At block 406, the user-defined logic is implemented to retrieve the

data from the source 130, for instance, by the user-defined logic implementation

module 218. Particularly, the user-defined logic pertaining to a user-defined

location identification of the source 130 is used to retrieve the data from the source

130. Thus, for instance, the user-defined logic implementation module 218

accesses the data based upon the user-defined location identification associated

with the location of the source 130 and a particular file location on the source 130.

As discussed above, the user-defined logic may include various information that

enable the data loading manager 210 to access and retrieve the data stored on the

source 130, such as passwords, security keys, etc. The user-defined logic

implementation module 218 may also use the various information to access and

retrieve the data from the source 130. As also discussed above, block 406 may be

implemented at a deferred time from the time at which the user-defined logic is

received at block 404, for instance, during a query time.

[0052] At block 408, the user-defined logic is implemented to filter the data

retrieved from the source 130, for instance, by the user-defined logic

implementation module 218. As discussed above, the user may define at least one

filter to be applied onto the data, for instance, to process the data to be in a better

or a more compatible form for loading onto the database. The filter may include,

for instance, at least one of a filter to decompress the data, a filter to compress the

data, a filter to convert the data from one format to another, etc.

[0053] In an example in which the data stored on the source 130 has been

compressed using a particular compression scheme, the user-defined logic may

define a filter that is to decompress the data. Thus, for instance, if the data has

been compressed using a zip compression scheme (e.g., BZIP, GZIP, 7-ZIP, etc.),

the user may define the logic to decompress the data using an appropriate

decompression scheme.

[0054] As another example, in which the data stored on the source 130 is in

a first format, the user-defined logic implementation module 218 may implement a

filter that converts the data from the first format to a second format, as defined by

the user. In this example, the user may define a filter that converts the data from

the first format, for instance, a native format, to the second format, for instance, a

Native Varchar (NChar) format. In defining the filter, the user may specify that a

particular converter program be executed to perform the conversion of the data. In

one example, the particular converter program may comprise a previously defined

program that the user may specify by an identification of the particular converter

program. In this example, the user-defined logic implementation module 218 may

be able to access the previously defined program, either from a local library or from

a remote location. In any regard, the second format may comprise a format from

which the data may appropriately be formatted for loading onto the database. By

way of particular example, the filter may be defined to convert the data from a first

format to a second format that is readily converted to a format suitable for being

parsed into a format in which data is stored in the database.

[0055] At block 410, the data is parsed to convert the filtered data into an

appropriate or compatible format for the database, for instance, by the user-defined

logic implementation module 218. The parsing operation performed on the filtered

data may be user-defined, i.e., the user may define the particular parsing operation

to be performed on the filtered data. Alternatively, the parsing operation may be

predefined in the user-defined logic implementation module 218 because the

appropriate o compatible format for the database may already be known.

[0056] At block 412, the parsed data is loaded onto the database, for

instance, by the data loading module 224. According to an example, the data

loading module 224 loads the parsed data directly onto a particular database

machine 112a. In another example, the data loading module 224 loads the parsed

data onto multiple database machines 112a-1 12n according to a data loading

optimization operation, for instance, as determined by the data loading optimization

module 222. Various manners in which the data loading optimization module 222

may substantially optimize the loading of the data onto multiple ones of the

database machines 112a-1 12n are described in greater detail herein above with

respect to the method 300. The loading of the data may be substantially optimized

by at least one of segmenting and/or sorting the data and by storing the data in the

segmented and/or sorted manner on multiple ones of the database machines

112a-1 12n.

[0057] According to an example, the loading of the data may also

substantially be optimized through implementation of the method 400 on multiple

ones of the database machines 112a-1 12n, to thereby distribute the workload

associated with loading the data. Thus, for instance, a plurality of the database

machines 112a-1 12n may retrieve different portions of the data and may

concurrently filter, parse, and load the data. As another example, one of the

database machines 12a may retrieve the data from the source 130, another one

of the database machines 112b may filter the data, and another one of the

database machines 112c may parse and load the data. The implementation of the

database machines 112a-1 12n that substantially optimizes the loading of the data

onto the database may be determined through performance of any suitable

optimization technique.

[0058] According to an example, blocks 406-412 are implemented while the

data is streamed from the source 130. In this example, therefore, relatively small

portions of the data are processed at a given time, thereby, substantially

minimizing data storage requirements of the database machines 112a-1 12n. In

addition, an input buffer and an output buffer may be implemented, in which the

input buffer contains some input from the stream of data and the output buffer is

used to write process data from the input buffer.

[0059] In another example, at block 406, all of the data is copied from the

source 130 and saved, for instance, in the data store 204. In this example, blocks

408-412 are implemented on the stored copy of the data, which therefore requires

that the database machines 112a-1 12n have relatively larger data storage

capabilities.

[0060] At block 414, the data loaded onto the database is managed, for

instance, by the user-defined logic implementation module 218. As discussed

above, the data loaded onto the database may be managed, for instance, to control

the length of time during which the data is stored in the database, conditions under

which the data is to transferred to another storage, etc.

[0061] Some or all of the operations set forth in the methods 300 and 400

may be contained as a utility, program, or subprogram, in any desired computer

accessible medium. In addition, the methods 300 and 400 may be embodied by

computer programs, which may exist in a variety of forms both active and inactive.

For example, they may exist as machine readable instructions, including source

code, object code, executable code or other formats. Any of the above may be

embodied on a non-transitory computer readable storage medium. Examples of

non-transitory computer readable storage media include conventional computer

system RAM, ROM, EPROM, EEPROM, and magnetic or optical disks or tapes. It

is therefore to be understood that any electronic device capable of executing the

above-described functions may perform those functions enumerated above.

[0062] Turning now to FIG. 5, there is shown a schematic representation of

a computing device 500, which may be employed to perform various functions of

the database machines 2a- 12n, 200 respectively depicted in FIGS. 1 and 2 ,

according to an example. The computing device 500 includes a processor 502,

such as but not limited to a central processing unit; a display device 504, such as

but not limited to a monitor; a network interface 508, such as but not limited to a

Local Area Network LAN, a wireless 802.1 1 LAN, a 3G/4G mobile WAN or a

WiMax WAN; and a computer-readable medium 510. Each of these components is

operatively coupled to a bus 512. For example, the bus 512 may be an EISA, a

PCI, a USB, a FireWire, a NuBus, or a PDS.

[0063] The computer readable medium 510 comprises any suitable

medium that participates in providing instructions to the processor 502 for

execution. For example, the computer readable medium 510 may be non-volatile

media, such as memory. The computer-readable medium 510 may also store an

operating system 514, such as but not limited to Mac OS, MS Windows, Unix, or

Linux; network applications 516; and a data loading management application 518.

The operating system 514 may be multi-user, multiprocessing, multitasking,

multithreading, real-time, and the like. The operating system 514 may also perform

basic tasks such as but not limited to recognizing input from input devices, such as

but not limited to a keyboard or a keypad; sending output to the display 504;

keeping track of files and directories on medium 510; controlling peripheral

devices, such as but not limited to disk drives, printers, image capture device; and

managing traffic on the bus 512. The network applications 516 include various

components for establishing and maintaining network connections, such as but not

limited to machine readable instructions for implementing communication protocols

including TCP/IP, HTTP, Ethernet, USB, and FireWire.

[0064] The data loading management application 518 provides various

components for managing loading of data from a source to a database system as

discussed above with respect to the methods 300 and 400 in FIGS. 3 and 4 . The

data loading management application 518 may thus comprise the input/output

module 212, the interface providing module 214, the user-defined logic receiving

module 216, the user-defined logic implementation module 218, the predefined

load stack implementation module 220, the data loading optimization module 222,

and the data loading module 224. In this regard, the data loading management

application 518 may include modules for performing the methods 300 and/or 400.

[0065] In certain examples, some or all of the processes performed by the

application 518 may be integrated into the operating system 514. In certain

examples, the processes may be at least partially implemented in digital electronic

circuitry, or in computer hardware, machine readable instructions (including

firmware and software), or in any combination thereof, as also discussed above.

[0066] What has been described and illustrated herein are examples of the

disclosure along with some variations. The terms, descriptions and figures used

herein are set forth by way of illustration only and are not meant as limitations.

Many variations are possible within the scope of the disclosure, which is intended

to be defined by the following claims - and their equivalents - in which all terms

are meant in their broadest reasonable sense unless otherwise indicated.

CLAIMS

What is claimed is:

. A method for managing loading of data from a source onto a database, said

method comprising:

providing an interface through which a user is to define logic related to the

loading of the data onto the database, wherein the user-defined logic pertains to a

user-defined location identification of the source, a user-defined filter to be applied

on the data, and a parsing operation to be performed on the data to convert the

data into an appropriate format for the database;

receiving the user-defined logic; and

implementing, by a processor, the user-defined logic to load the data onto

the database.

2. The method according to claim 1, wherein providing the interface further

comprises providing the interface through which the user is to define the logic by

programing the logic, said method further comprising:

storing the programmed logic in a library.

3 . The method according to claim 1, wherein providing the interface further

comprises providing access to a library on which is stored previously defined logic

through the interface, and wherein receiving the user-defined logic further

comprises receiving previously stored logic from the library.

4 . The method according claim 1, wherein the user-defined filter to be applied

on the data is to at least one of uncompress, compress, and convert the data.

5 . The method according to claim 1, wherein implementing the user-defined

logic further comprises implementing the user-defined logic as part of a pre-

configured data-load stack.

6 . The method according to claim 1, wherein implementing the user-defined

logic further comprises:

retrieving the data from the source using the user-defined location

identification of the source;

filtering the data using the user-defined filter;

parsing the data through performance of the parsing operation; and

loading the parsed data onto the database.

7 . The method according to claim 6 , wherein retrieving, filtering, parsing, and

loading the parsed data further comprises retrieving, filtering, parsing, and loading

the parsed data as the data is streamed from the source.

8. The method according to claim 1, wherein the user-defined logic further

pertains to a user-defined policy that defines a condition to be met prior to the data

being retrieved from the source.

9. The method according to claim 1, wherein the user-defined logic further

pertains to a user-defined policy that defines how data loaded onto the database is

to be managed.

10. The method according to claim 1, wherein implementing the user-defined

logic further comprises implementing the user-defined logic in a system that

manages the database, wherein the system that manages the database comprises

a distributed database system and wherein implementing the user-defined logic

further comprises implementing the user-defined logic on a plurality of the systems

in the distributed database system while implementing a database optimization

operation.

11. An apparatus for managing loading of data from a source onto a database,

said apparatus comprising:

at least one module to,

provide an interface through which a user is to define functions

related to the loading of the data onto the database, wherein the user-defined

functions pertain to a user-defined location identification of the source, a user-

defined filter to be applied on the data, and a parsing operation to be performed on

the data to convert the data into a format that is compatible with the database;

receive the user-defined functions; and

implement the user-defined functions to load the data onto the

database;

a processor to implement the at least one module.

12. The apparatus according to claim 11, wherein the user-defined logic further

pertains to a user-defined policy that defines at least one of a condition to be met

prior to the data being retrieved from the source and management of the data

loaded onto the database, and wherein the at least one module is further to:

retrieve the data from the source using the user-defined location

identification of the source according to the user-defined policy;

filter the data using the user-defined filter;

parse the data through performance of the parsing operation; and

load the parsed data onto the database.

13. The apparatus according to claim 11, wherein the apparatus comprises a

database management apparatus.

14. The apparatus according to claim , wherein the database is a relational

database.

15. A non-transitory computer readable storage medium on which is stored

machine readable instructions that when executed by a processor, implement a

method for managing loading of data from a source onto a database, said machine

readable instructions comprising code to:

provide an interface through which a user is to define code related to the

loading of the data onto the database, wherein the user-defined code pertains to a

user-defined location identification of the source, a user-defined filter to be applied

on the data, a user-defined policy that defines at least one of a condition to be met

prior to the data being retrieved from the source and management of the data

loaded onto the database, and a parsing operation to be performed on the data to

convert the data into format that is compatible with the database;

receive the user-defined code;

implement the user-defined code to transform the data into a format suitable

for loading the data onto the database; and

implementing the user-defined code to load the data onto the database.

A. CLASSIFICATION OF SUBJECT MATTER

G06F 17/30(2006.01)i, G06F 15/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06F 17/30; G06F 7/00; G06Q 40/00; G06F 15/16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: loading, data, source, database, location identification, IP address, filter, parse,
convert, format, user-defined

DOCUMENTS CONSIDERED TO BE RELEVANT

Category' Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2010-0023546 Al (JOSEPH M. SILSBY) 28 January 2010 1-15

See paragraphs [0002] - [0010] , [0014]- [0015] , [0026H0040] [0051H0052] ;
and c l aims 1-2 , 7-8 , 13 .

US 2011-0302226 Al (DANIEL ABADI e t a l .) 08 December 2011 1-15
See paragraphs [0002] - [0020] , [0034] , [0040] , [0050H0051] , [0092] -[0118] ;

and c l aims 1-3 .

US 2009-0319550 Al (JAMES SHAU e t a l .) 24 December 2009 1-15
See paragraphs [0002] - [0005] , [0043]- [0044] , [0057] -[0059] ; and c l aim 1 .

US 2009-0222361 Al (GERALD f . SMITH e t a .) 03 September 2009 1-15
See paragraphs [0001] - [0012] , [0029]- [0030] , [0046] ; and c l aim 1 .

US 2009-0299987 Al (IAN ALEXANDER WILLSON) 03 December 2009 1-15
See abstract ; paragraphs [0002] -[0008] , [0026] - [0027] , [0035] - [0036] , [0107]-
[0110] ; and c l aim 1 .

I IFurther documents are listed in the continuation of Box C. See patent family annex.

Special categories of cited documents: later document published after the international filing date or priority
document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to b e of particular relevance the principle or theory underlying the invention
earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot b e
filing date considered novel or cannot be considered to involve an inventive
document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other document of particular relevance; the claimed invention cannot b e
special reason (as specified) considered to involve an inventive step when the document is
document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
document published prior to the international filing date but later document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

08 August 2013 (08.08.2013) 12 August 2013 (12.08.2013)
Name and mailing address of the ISA/KR Authorized officer . - ·™ ···...

Korean Intellectual Property Office
1 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, BYUN Sung Cheal ¾

302-70 1, Republic of Korea

Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8262

Form PCT/ISA/210 (second sheet) (July 2009)

Information on patent family members PCT/US2012/040764

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2010-0023546 Al 28/01/2010 US 8401990 B2 19/03/2013

US 2011-0302226 Al 08/12/2011 EP 2577512 A2 10/04/2013
O 2011-153239 A2 08/12/2011
o 2011-153239 A3 16/05/2013

US 2009-0319550 Al 24/12/2009 us 2011-0099155 Al 28/04/2011
us 7895151 B2 22/02/2011
us 8165988 B2 24/04/2012

US 2009-0222361 Al 03/09/2009 AU 2009-200674 Al 17/09/2009
AU 2009-200674 B2 18/04/2013
CA 2648611 Al 29/08/2009
US 8473377 B2 25/06/2013

US 2009-0299987 Al 03/12/2009 GB 0909482 DO 15/07/2009
GB 2460532 A 09/12/2009
US 2012-0150791 Al 14/06/2012
US 8271430 B2 18/09/2012
wo 2012-138437 Al 11/10/2012

Form PCT/ISA/210 (patent family annex) (July 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

